
by
Dennis Kehrig

Swabbing in the Wild

A longitudinal study of
touchscreen input methods

for users with hand tremor

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Christopher M. Schlick

Registration date: 2012-10-31
Submission date: 2013-06-06

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, June2013
Dennis Kehrig

v

Contents

Abstract xvii

Überblick xix

Acknowledgements xxi

Conventions xxiii

1 Introduction 1

2 Related work 5

2.1 TRABING . 5

2.2 Swabbing . 7

2.3 Goal Crossing 8

2.4 Area Cursor 9

2.5 Bubble Cursor 9

2.6 Enhanced Area Cursors 10

3 Swabbing implementation 15

vi Contents

3.1 Visual design 15

3.2 Gesture detection 18

3.3 Toggling the overlay 21

3.4 Improving multitouch handling 22

3.5 What is the target size? 24

4 Software Testbed: Touchscreen Web Browser 33

4.1 General requirements 34

4.2 The traditional interface 35

4.3 Swabbing interface 40

4.3.1 The text menus 43

4.3.2 The cursor menu 46

4.3.3 The aiming menu 46

4.4 The web-based prototype 49

4.4.1 First iteration 49

4.4.2 Second iteration 50

4.4.3 Third iteration 52

4.4.4 Fourth iteration 54

5 User study 1: Link assocation 57

5.1 Study Design 59

5.2 Participants 60

5.3 Measurements 60

Contents vii

5.4 Procedure . 61

5.5 Results . 63

5.6 Discussion . 63

5.7 Limitations . 65

6 User study 2: Swabbing feedback 67

6.1 Study Design 68

6.2 Participant . 69

6.3 Measurements 69

6.4 Procedures . 69

6.5 Results . 70

6.6 Discussion . 74

6.7 Limitations . 76

7 Longitudinal Study: Swabbing-based web
browser 77

7.1 Study Design 77

7.2 Setup . 79

7.3 Participant . 80

7.4 Measurements 85

7.5 Procedures . 89

7.6 Quantitative Results 92

7.6.1 Results from the questionnaire 92

viii Contents

7.6.2 Results from analyzing the log files . 98

7.7 Qualitative Results 105

7.8 Discussion . 111

7.9 Limitations . 112

8 Summary and future work 113

A iPad keyboard layouts 115

B Log file player 119

C Material for the user studies 121

C.1 User study 1: Link association 121

C.2 User study 2: Swabbing feedback 125

C.3 Longitudinal Study: Swabbing-based web
browser . 127

Bibliography 131

ix

List of Figures

2.1 TRABING . 6

2.2 Swabbing . 6

2.3 Goal Crossing 8

2.4 Point cursor and area cursor 9

2.5 Bubble Cursor 10

2.6 Enhanced Area Cursors 11

2.7 Arc Crossing Issue example 12

3.1 Swabbing-related definitions 16

3.2 Swabbing error due to an extra touch within
250ms . 20

3.3 Finger handoff during a Swabbing gesture as
implemented 22

3.6 Revised finger handoff during a Swabbing
gesture . 23

3.9 Selection difficulty depending on the ges-
ture’s origin 26

3.10 Candidates for the Swabbing target size . . . 27

x List of Figures

3.12 Swabbing target size: final definition 29

4.1 Safari - the default browser on the iPad . . . 35

4.2 The browser’s traditional interface 36

4.3 Changing the URL using the browser’s tra-
ditional interface 36

4.4 Shift states on the iPad 37

4.5 Accented character selection on the iPad via
long tapping 38

4.6 Accented character selection on the iPad via
sliding upwards 39

4.7 Native cursor movement 39

4.8 Native cursor context menu (no selection) . . 40

4.9 Native cursor context menu (with selection) . 40

4.10 Drop down list support in the browser’s tra-
ditional interface 41

4.11 The main menu of the browser’s Swabbing
interface . 42

4.12 The tabs menu to switch between the cur-
rently open tabs 43

4.13 Text menu for entering letters with Swabbing 44

4.14 Text menu for entering special characters
with Swabbing, shift off 44

4.15 Text menu for entering special characters
with Swabbing, shift on 45

4.16 Text menu for controlling the cursor posi-
tion, selection and accessing the clipboard . . 45

List of Figures xi

4.17 The aiming menu 47

4.18 Prototype v1: Page menu 50

4.19 Prototype v2: Drop down menus 51

4.20 Prototype v3: Keyboard Menu 54

4.21 Prototype v4: Cursor menu 55

4.22 Amazon.com: Links that look like buttons . 56

5.1 Target indicators with menu silhouette 60

5.2 Connection between target indicators and
menu options 62

5.3 Initial color sequence 64

5.4 Improved color sequence 65

6.1 Userstudy 2: Spiralometry 70

6.2 Userstudy 2: Aiming for the labels 71

6.3 Userstudy 2: Avoiding the center point . . . 72

6.4 Userstudy 2: Moving from the outside in . . 73

6.5 Userstudy 2: Avoiding the corridor lines . . . 73

6.6 Userstudy 2: Longer movements to reach the
target . 74

6.7 Userstudy 2: Contrast problem on dark,
noisy web sites 75

7.1 Longitudinal Study: Setup 79

7.2 iPad Settings: Language 80

xii List of Figures

7.3 iPad Settings: Keyboard features 81

7.4 User study 3: Restored Shift key state after
deleting a character 82

7.5 iPad Settings: Keyboard layout 82

7.6 iPad Settings: Multitouch gestures 83

7.7 User study 3: The text entry task 90

7.8 User study 3: The aiming task 90

7.9 User study 3: Feedback during the aiming
task . 91

7.10 Emotional State before and after each session 92

7.11 Tiredness before and after each session . . . 93

7.12 User study 3: First spiralometry 94

7.13 Tremor intensity before and after each ses-
sion . 95

7.14 Satisfaction and self-assessed input speed
and precision 96

7.15 Difficulty ratings 97

7.16 User study 3: Selection & confirmation times 99

7.17 User study 3: Selection & confirmation touch
counts . 100

7.18 User study 3: Weakness of the aiming menu 101

7.19 User study 3: Words per Minute 102

7.20 User study 3: Error Rate (cleaned data) . . . 103

7.21 User study 3: Error Rate (original data) . . . 103

List of Figures xiii

7.22 User study 3: Extract of the first session . . . 106

7.25 User study 3: Course correction in reaction
to feedback 110

A.1 iPad’s letter keyboard for plain text 116

A.2 iPad’s letter keyboard for URLs 116

A.3 iPad’s special character keyboard for plain
text, shift off 117

A.4 iPad’s special character keyboard for URLs,
shift off . 117

A.5 iPad’s special character keyboard for plain
text, shift on 118

A.6 iPad’s special character keyboard for URLs,
shift on . 118

B.1 Log file player 120

xv

List of Tables

7.1 Session schedule listing the duration of the
training tasks with the number of presented
words and links. The sessions are grouped
by their Swabbing conditions: no Swabbing,
one character per entry, two characters per
entry. 83

xvii

Abstract

Touch screens are less cognitively demanding than indirect input devices. Since
cognitive abilities decline with age, touch screens can therefore improve usability
for older users. Sadly, the elderly are more likely to be affected by a hand tremor,
making tapping very hard. One alternative to tapping is called Swabbing. It at-
tempts to compensate for tremor symptoms in numerous ways.

Previous investigations of Swabbing were limited to lab settings and short term
use. In this thesis, a fully functional iPad web browser with optional Swabbing
support was used for multiple weeks. For this purpose, Swabbing text entry was
enhanced to allow editing text and entering an extended character set as needed
for URLs. This thesis also shows how Swabbing could be used to make existing
interfaces more accessible by providing Swabbing menus to activate links, buttons
and form fields on web pages. This implementation of Swabbing is also the first
to provide immediate feedback about the selection. Finally, an approach to double
the previous capacity of Swabbing menus is presented.

This thesis shows that Swabbing can be used successfully outside of the lab. For
text entry, the corrected error rate when using Swabbing is significantly lower than
that of the iPad keyboard, while surprisingly, the uncorrected error rate is low for
both techniques despite the user’s strong tremor. While text input using two char-
acters per option was faster than with one character per option, text input speed
with the iPad keyboard was much higher, contradicting previous studies. More
in line with previous studies, the user’s link selection performance with Swabbing
was eventually on par with his performance when tapping, while consistently re-
quiring fewer touches, indicating fewer errors. For known selection targets, Swab-
bing outperformed tapping. The user’s satisfaction was highest when using the
Swabbing web browser with two characters per menu slot.

xviii Abstract

xix

Überblick

Die kognitive Belastung bei der Benutzung von Touchscreens ist geringer als mit
indirekten Eingabegeräten. Da mit dem Alter eines Menschen auch dessen kog-
nitive Fähigkeiten sinken, können Touchscreens zu einer höheren Benutzbarkeit
beitragen. Leider sind ältere Benutzer häufiger von einem Handtremor betroffen,
der präzises Tippen deutlich erschwert. Eine Alternative zum Tippen ist Swabbing.
Diese versucht in mehrfacher Hinsicht die Tremorsymptome auszugleichen.

Die bisherigen Studien zu Swabbing waren begrenzt auf Laborversuche und
kurzzeitige Benutzung. Im Rahmen dieser Diplomarbeit wurde ein voll funk-
tionsfähiger Webbrowser mit optionalem Swabbing-Support mehrere Wochen
lang benutzt. Zu diesem Zweck wurde die Swabbing-basierte Texteingabe um
die Möglichkeit erweitert, Text zu editieren und einen erweiterten Zeichensatz
einzugeben, wie für URLs benötigt. Des weitern wird gezeigt, wie Swabbing be-
nutzt werden kann, um existierende Oberflächen zugänglicher zu machen durch
Swabbing-Menüs zum Anwählen von Links, Buttons und Formfeldern auf Web-
seiten. Diese Swabbing-Implementierung ist außerdem die erste mit Echtzeit-
Feedback beim Eingabeprozess. Abschließend wird ein Ansatz zur Verdoppelung
der bisherigen Kapazität von Swabbing-Menüs präsentiert.

Im Rahmen dieser Diplomarbeit wird gezeigt, dass Swabbing erfolgreich außerhalb
des Labors benutzt werden kann. Bei Texteingaben ist die Rate der korrigierten
Fehler signifikant kleiner als die des iPad-Keyboards. Überraschenderweise ist die
Rate der unkorrigierten Fehler trotz starken Tremors bei beiden Eingabetechniken
gering. Während die Texteingabe mit zwei Zeichen pro Menüeintrag schneller war
als mit einem, war die Texteingabe mit dem iPad-Keyboard deutlich schneller,
im Widerspruch zu vorherigen Untersuchungen. Eher passend zu vorherigen
Ergebnissen konnte der User schlussendlich Links mit Swabbing ähnlich schnell
anwählen wie mittels Tippen, mit durchgängig geringerer Anzahl an Bildschirm-
berührungen, ein Anzeichen für eine geringere Fehlerrate. Für bekannte Tip-
pziele ist Swabbing schneller als Tippen. Der Benutzer war mit der Benutzung
des Browsers mit zwei Zeichen pro Menüeintrag am zufriedensten.

xxi

Acknowledgements

I want to thank the following people:

Chatchavan Wacharamanotham
For great advice sessions and being an impressive role model
Alexander Mertens
For helpful discussions and helping me find users
Prof. Dr. Jan Borchers
For giving inspiring lectures and founding the great Media Computing Group
Prof. Dr. Schlick
For being my second examiner
Johanna Schorn
For proof reading and the most devoted friendship ever
Carl Huch
For being a great friend and equal
Horst and Dietlinde Kehrig
For always being there for me and having my back
Timo Kehrig
For showing me how it’s done and being my bro
Ines Färber
For being a steady light in my life and her unsurpassed kindness
Jonathan Diehl
For his mentorship and the occasional push when I needed one
Maren Weissmayer
For finding a bug and sending a yummy thesis survival kit
Alexander Clauss
For thorough advice about iCab Mobile

xxiii

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Excursus are detailed discussions of a particular point in a
book, usually in an appendix, or digressions in a written
text.

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

1

Chapter 1

Introduction

Indirect input devices like the mouse require mental trans-
lation between the human body and the machine, making
them more cognitively demanding than direct input de-
vices like touch screens (McLaughlin et al. [2009]). Since
cognitive abilities decline with age (Salthouse [2009]), di-
rect input devices like touch screens can therefore improve
usability, especially for older users.

Sadly, the elderly are more likely to be affected by a tremor
(Louis and Ferreira [2010]). Tremors cause the body to
shake involuntary in a variety of circumstances. They can
also affect a person’s hands, making the most basic inter-
action technique on touch screens — tapping — extremely
challenging.

Tapping refers to touching a point inside of a target area
on the screen for a short time. Tapping is often critical for
using a touch screen device successfully — for instance, on
Apple’s iPad tapping is used to start apps, enter text and
navigate the settings menu.

One source of difficulty is the target’s size - the stronger the
tremor and the smaller the target, the easier it is to miss.
In addition, tremors can cause movement even during the
short time the finger touches the screen, possibly leading to
the gesture being recognized as panning instead of tapping.
Therefore, even if a button was hit successfully, it may not

2 1 Introduction

be activated. For able-bodied users, this is a welcome safety
mechanism to abort accidental touches, making its removal
problematic.

Even if buttons could also be activated by panning, target
size remains an issue. Recommendations for the size of but-
tons on touchscreens are usually designed for able-bodied
users. For instance, Jin et al. [2007] propose a button size
of 19.05 mm square for older adults with poor manual dex-
terity. This recommendation still does not cover all cases,
such as hand tremors categorized as “Severe> 2 cm” (Hurt-
manns [2011]), exceeding the proposed size. Consequently,
even interfaces that keep these recommendations in mind
may not be usable by all tremor sufferers.

Instead of optimizing current user interfaces on touch
screens, the problem may be solved by using alternative
input techniques. Ideally, such a technique would work in
all scenarios that make use of touch screens. Consequently,
solutions that require special hardware or the use of other
body parts were not considered for this thesis, focusing in-
stead on software-only solutions.

While there are multiple options to choose from, Swabbing
is the only one designed specifically with tremor sufferers
in mind. Swabbing divides the edge of the screen into an ar-
ray of targets, each representing an action. Selection works
by touching any point on the screen and sliding towards
the desired action’s target on the screen edge. Crossing the
target is not necessary – instead, all touch points are used
to calculate a vector, and the vector’s direction determines
the target.

With Swabbing, tremor symptoms are reduced by the sur-
face friction when touching the screen (Wacharamanotham
et al. [2011]) and further compensated for by using linear
regression to calculate the vector. Ending the gesture by
moving across the edge avoids additional tremor influences
that occur when the user has to stop at a certain position
(Hurtmanns [2011]). Since the selection is only based on
the general direction of the touch points, crossing a differ-
ent target can still trigger the correct action, allowing the
target size to be smaller than the tremor strength.

3

Hurtmanns [2011] showed that tremor sufferers make
fewer mistakes when using Swabbing for selection tasks
than when using tapping, while being equally fast. Huck
[2012] achieved similar results for text entry tasks using a
full 360o layout for the Swabbing menu in comparison with
a custom touch screen keyboard. However, due to the short
duration of these studies, the learning curve of using either
tapping or Swabbing remains unknown. In addition, these
studies were restricted to lab settings, using very regular
menu layouts, restricting text entry to uppercase letters and
using a custom keyboard.

Through a longitudinal study that employs a custom web
browser with optional Swabbing support, this thesis aims
to overcome these limitations in numerous ways. First, by
allowing the user to become familiar with the keyboard
layouts, long-term text entry performance can be assessed
more realistically. Second, the results are made more mean-
ingful by comparing Swabbing with established interface
elements as present on the iPad, in particular its sophis-
ticated touch screen keyboard. Third, by adding a cursor
menu, Swabbing’s text entry capabilities are enhanced to
allow editing existing text, such as the URL of a web site.
This also requires the ability to insert special characters.
Both features are critical for Swabbing to be usable outside
of the lab.

The previous investigations focused on using Swabbing
solely as an alternative to traditional interfaces, exempli-
fied here by making the web browser itself controllable via
Swabbing. However, this thesis also investigates how exist-
ing interfaces can be made more accessible to tremor users
without modifying or replacing them. Here, these inter-
faces are provided by the web sites the user accesses: In
addition to tapping, the user can use Swabbing to activate
known tapping targets, such as links, buttons and form
fields. This principle could be applied to other application
interfaces as well, though further studies will have to show
the limitations of this approach.

The Swabbing implementation used for this thesis is also
the first to provide closed loop feedback to the user, i.e.,
information about the selected target before the user lets

4 1 Introduction

go of the screen. Feedback is provided in two ways. First,
by changing the background color of the option the user
is aiming at, the user can end a touch as soon as the in-
tended target is confirmed, possibly shortening selection
times. Second, a dot at the screen edge indicates the exact
target point, allowing the user to notice when they are in
danger of accidentally selecting a neighboring option. This
could accelerate learning, and reduce the error rate by im-
proving the input accuracy. However, this is not investi-
gated as part of this thesis.

Since Swabbing gestures are intended to start in the middle
of the screen, the user’s fingers usually only pass through
one side of it. This can be used to offer two actions per
menu slot. Through linear regression, every gesture indi-
cates a line crossing the entire screen. While one bit of infor-
mation is provided by the side of the screen that is used to
indicate the line (e.g., left or right), another bit is provided
by the direction the user is moving in (e.g., away from the
center or towards it). The line itself usually provides two
menu options to choose from. The first bit could be used to
decide which one to use (e.g., if the gesture was performed
on the left side, use the left item), while the second bit can
be used to decide which of the two actions to perform (e.g.,
if the item has an inner and an outer character, insert the
inner character if the user moved towards the center). This
approach was used to increase the opening angle of the op-
tions in the text menus by combining pairs of characters
into single options, expecting a reduced error rate and/or
increased selection speed since the selection can be less pre-
cise.

5

Chapter 2

Related work

While there are many approaches to generally increase us-
ability of computers for motion-impaired users, the focus
here is on techniques designed for or possibly applicable
to touch screens and their potential in helping people with
hand tremors, without requiring additional hardware, or
using alternative body parts. This will ensure that the solu-
tions are usable whenever touch screens are.

2.1 TRABING

Proposed by Mertens et al. [2010], TRABING is a
“Touchscreen-based Input Technique for People Affected
by Intention Tremor”. Intention tremors occur at the end
of an intentional movement towards a target if the person
is looking at it. They therefore make tapping unreliable.
TRABING exploits that the tremor symptoms are lower be-
fore reaching the target by letting the user touch the screen
and slide off it towards an imagined target off the screen
(see figure 2.1). The measured movement is therefore less
affected by the tremor and can be used to trigger an action
by comparing the direction of the movement with the loca-
tion of targets. Tremor symptoms also were suspected to be
reduced by the surface friction, a finding later confirmed by
Wacharamanotham et al. Wacharamanotham et al. [2011].

6 2 Related work

1
2

3

4
56

7

8

9
0

Figure 2.1: TRABING

Figure 2.2: Swabbing

2.2 Swabbing 7

2.2 Swabbing

TRABING is described as using a “swabbing interaction
movement” (Mertens et al. [2010]), a term that Jan Hurt-
manns picked up when he investigated various basic de-
signs for menus using this technique (Hurtmanns [2011]).
His work was adapted to text input by Huck [2012].

Swabbing generalizes TRABING by using linear regression
to determine the direction of the gesture from all recorded
touch points. This makes it usable for people with tremors
that affect any part of the movement, not just the end as
with intention tremor. In addition, crossing the target is no
longer strictly necessary. Instead, a threshold distance of
about 4 cm has to be covered to provide enough coordinates
to reliably calculate a direction (Huck [2012]). Since the se-
lection is only based on the general direction of the touch
points, crossing a different target can still trigger the correct
action, allowing the target size to be smaller than the tremor
strength. Since tremor sufferers sometimes accidently lift
the finger while sliding over the surface, a swabbing move-
ment is complete only when the finger has stopped touch-
ing the surface for 250 ms (Huck [2012]).

Keates et al. [2002] did not detect a significant difference in
movement offsets (average distance from the optimal line)
between able-bodied and motion-impaired users when us-
ing a mouse. Frett et al. found that users with Parkinsonian
tremor and essential tremor had the lowest movement vari-
ability (MV) when using a FingerWorks MultiTouch Sur-
face (MTS), and higher MV when using a mouse, track-
ball or joystick (Frett and Barner [2005]). Hurtmanns [2011]
found that Swabbing produces lower errors rates than tap-
ping and comparable selection times when used by tremor
sufferers. These results suggest that Swabbing is a viable
input technique for users with hand tremors.

8 2 Related work

Figure 2.3: Goal Crossing

2.3 Goal Crossing

Instead of clicking a point within an area on the screen, goal
crossing (Wobbrock and Gajos [2007]) lets the user merely
cross a line that represents an action (Figure 2.3). Adapted
to touchscreens, goal crossing would share one advantage
with Swabbing: reduced tremor symptoms due to surface
friction. The important difference is that only the short
distance covered when crossing a potential target is used
for target selection, again opening up the possibility for se-
lection errors due to uncontrolled movement as caused by
tremor. The goal lines have to be as wide as the tremor
is strong, essentially causing the same problems as when
merely adjusting the button sizes.

2.4 Area Cursor 9

Figure 2.4: Point cursor (left) and area cursor (right)

2.4 Area Cursor

Normal mouse cursors have a so-called hot spot that is just
one pixel wide. When clicking, exactly one pixel is selected
on the screen, preventing any ambiguity about which tar-
get was aimed at. Area cursors increase the size of the hot
spot to a wider area (Figure 2.4). Consequently, a click may
target multiple items at once.

The implementation of Worden et al. [1997] resolves the
ambiguity of area cursors by reverting to a normal cursor
if multiple targets are within the cursor’s area. This im-
plementation therefore is effectively a normal mouse cur-
sor except when clicking on a point with no associated tar-
get. In that case, it searches for the target in a predefined
area around the cursor and clicks it if only one was found.
Consequently, this approach would not decrease the chance
of accidentally clicking a wrong target and is therefore not
suitable for tremor sufferers. On the contrary, it essentially
enhances the tremor strength by making it more likely to
trigger a different target when missing the intended target,
even if the other target was not hit directly, but happened
to be the only target in the area around the hit point.

2.5 Bubble Cursor

Similar to the Area Cursor above, the bubble cursor (Gross-
man and Balakrishnan [2005]) is effectively a normal cursor
except when no target is selected. Then it looks for the tar-

10 2 Related work

Figure 2.5: Bubble Cursor

get closest to the center and would activate that on click.
It therefore poses the same problems as the area cursor de-
scribed above. The difference is that the size of the cursor
area is gradually reduced in case of conflict, instead of di-
rectly reverting to area pointing (Figure 2.5).

2.6 Enhanced Area Cursors

(Findlater et al. [2010]) proposed four versions of enhanced
area cursors, all of which divide the task of clicking a target
into two parts: activation and selection. Targets within the
cursor’s area are activated on click in the Click-and-Cross
design. In the Cross-and-Cross design, the cursor area is
moved by moving the point cursor to the area’s edge, thus
dragging it along. In the direction opposite of the move-
ment, part of the circle’s outline forms a trigger arc. Ac-
tivation is performed by reversing the direction of move-
ment, crossing the trigger arc, and stopping the movement
for 300ms.

Then, both designs present a circular menu around the cur-

2.6 Enhanced Area Cursors 11

Figure 2.6: Selection step in the Click-and- Cross and Cross-
and-Cross designs

sor area (Figure 2.6) and position the point cursor in the
center of that circle. Each selected target is assigned an
equally sized arc of the circle. Activation is performed by
crossing the arc belonging to the intended target, and stop-
ping for 300ms.

On first glance, the activation phase seems similar to Swab-
bing. The most important difference is that with the area
cursors the direction of the movement is irrelevant, the im-
portance lies on the arc that was crossed. For people with
strong tremors it is very easy to generally move towards
one arc, but finally cross a different arc due to the tremor
(see figure 2.7). With Swabbing, crossing a different tar-
get is unproblematic as long as the general direction of the
movement still points towards the intended target. Unlike
Swabbing, the circle will usually be smaller than the screen.
Even if the direction of the movement were to determine

12 2 Related work

Figure 2.7: Gesture path that triggers the correct action with
Swabbing, but would trigger an incorrect action if this were
arc crossing

the target, fewer cursor coordinates can be recorded until
activation, resulting in lowered accuracy.

However, a similar division of activation and selection can
be found in the aiming menu that I propose. Activation is
performed by opening the aiming menu, essentially acti-
vating all targets on the screen. Selection is performed by
using the resulting menu.

Activation in the Motor-Magnifier design and the Visual-
Motor-Magnifier works the same way as with Click-and-
Cross. In the Motor-Magnifier design, selection is eased
by lowering the mouse gain. This cannot be adapted to
touch screens. In the Visual-Motor-Magnifier-Design the
activated area is simply enlarged (by default, to four times
the size) and activation is then performed by using a bubble
cursor. This could be adapted to touch screens and would
certainly improve many situations.

However, one problem remains. Despite being designed
for the case of small targets tightly packed together, ad-
vanced area cursors still have a weakness when there are
many such targets close together. Similar to the Bubble Cur-
sor, the size of the area will shrink to encompass at most ten
targets. To activate these targets, then, movement has to be
more precise as a smaller area needs to be hit. Since the
Swabbing based aiming menu considers the whole screen

2.6 Enhanced Area Cursors 13

in all cases, the activation step is not affected by the num-
ber, size, or clustering of targets.

15

Chapter 3

Swabbing
implementation

For Swabbing-related definitions, see figure 3.1.

3.1 Visual design

The basic approach of Swabbing is to divide the screen edge
into segments (called “vector impact zones”), and assign
menu options to those segments. Hurtmanns [2011] tested
several visual designs and finally chose to display the op-
tions as equally sized segments of a circle (see figure 2.2).
A large area in the center of the circle would remain empty
to invite the user to place a finger there. Each option is
represented by an arrow pointing from the circle’s center
towards the appropriate vector impact zone. In addition,
dotted “corridor lines” provide information about the size
of the vector impact zones, and allow the user to see when
they are about to aim away from the intended target.

For this thesis, the design had to be changed in order to
work as an overlay. A black background with 30% opacity
shades the application to make the menu more visible. A
precomposed color layer, also with 30% opacity, contains
the pie segments (black), corridor lines (white), target ar-

16 3 Swabbing implementation

Gesture path

Corridor line Target arrowVector impact zone

Target point Target indicator

Regression line

Pie segmentCenter point

Figure 3.1: Swabbing-related definitions

rows (white) and target indicators (various colors). The
precomposition prevents a target indicator from blending
with the colored part of a pie segment since this would
make the color hard to recognize, a problem the prototype
had. Finally, a text layer with 100% opacity contains the
labels with their outlines.

Previous implementations of Swabbing ordered items in
clockwise direction. For this thesis, the order was reversed
to achieve a more natural mapping of the items in the tabs
menu to the tabs of the traditional interface. For this thesis,
several menu entries needed to be longer than one char-
acter. For the initial version of the prototype, an attempt

3.1 Visual design 17

was made to only rotate items when necessary, but in later
iterations, a more consistent approach was chosen by rotat-
ing all labels that are longer than one character. In addition
to labels, many entries feature icons. However, these are
merely unicode characters. In some cases the iPad replaces
the unicode characters with colored icons, e.g., for the ar-
rows used in the back and forward options.

During the main study, the full opacity of the text layer
turned out to be problematic since some of the words were
covered by a label, and therefore partially unreadable. In
most cases, using a web browser will not require the user
to transcribe a string, although there are exceptions, such
as captchas. Consequently, adding enough transparency
to still allow reading text below a label may be advisable.
Due to the application in the background, visual noise was
a concern, so the corridor lines are not dashed or dotted.

While previous Swabbing-related studies cropped the
screen to a square, this would have wasted valuable screen
real estate for the browser. Therefore, with the iPad’s aspect
ratio of 4:3, this design is the first non-square implementa-
tion of Swabbing. If the user starts the selection gesture
off center, it is vital that they aim towards the vector impact
zone, and not to the pie segment. Otherwise, the wrong op-
tion may be activated, which is more likely in non-square
designs. To emphasize the importance of the vector im-
pact zones, the corridor lines were extended all the way
to the edge of the screen. In addition, the target arrows
were added, providing a visible goal to aim at. See chap-
ter 6 “User study 2: Swabbing feedback” for a preliminary
study investigating the effectiveness of this approach.

For the feedback visualization, the prototype simply re-
duced the transparency of the active pie segment. But due
to the precomposition, this was not possible in the final de-
sign - the grey pie segments in figure 3.1 are actually com-
pletely black. Instead, magenta was chosen as a highlight-
ing color, as it is not often used in web sites and would
therefore usually stick out. The target point was also col-
ored magenta to indicate the shared nature with the pie
segment highlighting.

18 3 Swabbing implementation

Similar to the 270o and 180o designs by Huck [2012], the
top of the menu contains a gap, in response to findings by
Moscovich [2009] about fingers feeling stuck when moving
in the upward direction. The design here is 290o wide, a
size that grew organically. In an attempt to make a well
founded choice, it was considered to use the full 360o since
that produced the best results (Huck [2012]). However, by
then the text entry menus already included an area to show
the text the user is entering, since the actual input field may
be covered by the menu. Removing the gap would have
meant moving the text area into the center of the screen.
This might inhibit users when touching the center to start a
selection gesture, thereby impacting text entry speed nega-
tively. Furthermore, the typed text would often be covered
by the user’s hand, possibly leading to more errors. Lack-
ing a qualified alternative, the decision was made to keep
the design as is.

3.2 Gesture detection

In the simplest case, the user touches the screen, moves the
finger into the direction of the vector impact zone that be-
longs to the intended target, and lifts their finger off the
screen. If the distance between the first and last touch point
is at least 40.63mm (the same threshold Huck [2012] used)
the intended target is triggered after a delay of 250ms. Dur-
ing this time, the user could touch the screen again to con-
tinue the gesture - this counteracts the accidental lift-offs
that tremor sufferers are prone to.

As the user moves their finger, the system records the touch
coordinates and adds them to a path - a sequence of co-
ordinates. Every time coordinates are added, the system
analyzes the whole path using linear regression. Consider
the formula used for linear regression, n being the num-
ber of touch coordinates, with xi and yi being the x- and
y-coordinate, respectively:

x =
∑n

i=1 xi

n , y =
∑n

i=1 yi
n

3.2 Gesture detection 19

β =
∑n

i=1 (xi−x)∗(yi−y)∑n
i=1 (xi−x)2

α = y − β ∗ x

y = α+ β ∗ x

Assume that the user moves downwards, and also a little
bit to the right. The sign of xi − x will always be opposite
that of yi − y, consistently leading to (xi − x) ∗ (yi − y) ≤ 0
and therefore to a gradual decrease of β’s dividend. Since
(xi−x)2 ≥ 0 always holds, the line’s slope will be negative.

Now assume that the user continues their movement, mov-
ing downwards just as fast as before, but a little bit to the
left instead of to the right. Gradually, the calculated line’s
orientation should change from south east over south to
south west. Instead, the line will rotate in the opposite di-
rection. When moving to the left, xi − x will eventually be-
come negative when yi − y is negative, too. In those cases
(xi − x) ∗ (yi − y) > 0 holds, leading to a gradual increase
of the dividend where previously it would consistently de-
crease. Since (xi − x)2 ≥ 0 always holds, the slope will
gradually increase, leading to the observed effect.

Since this effect is not observed when moving mostly hor-
izontally, a simple remedy is rotating the coordinate sys-
tem to calculate the linear regression. In the current imple-
mentation, whether to rotate or not is determined for every
analysis depending on the first and last touch point: if the
horizontal distance is smaller than the vertical distance, the
movement is considered vertical and the coordinates are ro-
tated before calculating the vector.

When moving roughly diagonally, this can cause repeated
switching between using rotation and using the coordi-
nates as-is. In some cases, the target point calculated this
way can differ significantly between the two methods. If
the target point is visualized, it will seem to jump back and
forth when crossing the diagonal as the user continues to
move their finger. Therefore, it may be useful to stick to
one method once the target point is first visualized, though
this will re-introduce the original problem if the user ad-
justs the direction dramatically.

20 3 Swabbing implementation

As long as the first finger touches the screen, additional
touches are simply ignored. If the user lifts a single finger
off the screen and touches it again within 250ms, the new
touch point will be considered in the same way as if the
user had moved the finger there without lifting it off the
screen — the path used to calculate the Swabbing vector is
simply continued. For accidental lift offs, this is appropri-
ate, but occasionally the user would just briefly touch the
screen again by accident. To see how this can cause errors,
see figure 3.2.

Figure 3.2: Incorrect selection due to an accidental extra
touch within 250ms after letting go of the screen

Now assume that the touches interleave, i.e., the first finger
leaves the screen while other fingers are still touching it. If
any of the other fingers move within 250ms, the recogni-
tion path is continued with the location of the closest finger
still touching the screen1. Note that on the iPad all active
touches are reported if any one of them move, though some
may be marked as “stationary”. On other platforms, the lo-

1The requirement for the remaining touches to move was uninten-
tional — the path should continue with the closest touch right away,
even before it moves again (if ever). This way, the gesture would end
when all fingers have left the screen, not before. However, since tremor
users are unlikely to keep a touch stationary for 250ms, this will proba-
bly not have caused any problems in this thesis.

3.3 Toggling the overlay 21

cation of the other fingers may have to be retrieved from
memory. The closest finger will become the lead finger, i.e.,
as long as it touches the screen, other touches will be ig-
nored.

3.3 Toggling the overlay

The Swabbing overlay can be turned on and off by tapping
the screen with five fingers. This gesture is recognized as
soon as five fingers are simultaneously touching the screen,
i.e., they do not need to begin simultaneously. The gesture
is blocked from being recognized again for one second in
order to prevent accidental double tapping from undoing a
previous performance of the gesture.

The iPad has global gestures using four or five fingers to
switch between running apps by swiping left or right, bring
up the task bar by swiping upwards, or show the home
screen by moving the fingers inwards. While it is not
enough to just tap the screen for those gestures to be recog-
nized, a user with hand tremor will likely move his fingers
enough for the system to recognize the movement as swip-
ing, thus triggering the global gestures. On the iPad used
for this thesis, these gestures were simply deactivated.

To prevent other parts of the software from becoming less
responsive, the gesture recognizer for the five finger tap
runs in parallel to all other gesture recognizers. Conse-
quently, the touches can have other effects until the five fin-
ger tap is recognized, such as activating links on the page.
A Swabbing-only software would not have this problem.

This exact problem does not occur when the Swabbing
layer is visible, as single touches have no effect before cross-
ing the threshold distance. However, since for Swabbing
gestures a second finger is only ignored while the first fin-
ger is still touching the screen, briefly lifting the first finger
off the screen would cause the system to continue the recog-
nized path at the location of the second finger. If the result-
ing path is longer than the threshold distance, a Swabbing
entry may be activated. In the next paragraph, a related

22 3 Swabbing implementation

issue is discussed and the same remedies apply.

3.4 Improving multitouch handling

Figure 3.3: Red: first touch’s path, blue: a second touch
began, black: calculated vector

Figure 3.4: Since the first touch has not yet ended, the sec-
ond touch is ignored

In a small spontaneous experiment, the user was asked to
first put one finger on the screen deliberately, and then put
up to three additional fingers on the screen before starting
to move towards the intended menu option. This way, the
user’s hand rests on the surface and has more physical sup-
port, possibly reducing the tremor effects. By placing one
finger on the screen first, the user can determine the fin-
ger that the system uses to recognize the Swabbing gesture.
This worked rather well2, but revealed a problem with the
way additional fingers (see figure 3.3) are handled: when
moving multiple fingers (see figure 3.4) towards the edge
of the screen, not all of them will leave the screen at the

2The user was able to perform the gestures well, but mentioned
added cognitive effort due to consciously having to choose a finger to
start with. Consequently, this technique should not be a requirement.

3.4 Improving multitouch handling 23

Figure 3.5: The first touch has ended and the recognized
path is immediately continued by the second touch. Even
though the touches’ paths are parallel, the vector’s direc-
tion is altered

same time. If the lead finger is not the last finger to cross
the screen edge, the system will continue the recognition
path with the location of the closest finger still touching the
screen (see figure 3.5), possibly changing the recognized
direction so much that the wrong target is selected even
though the lead finger left the screen when the intended
target was selected.

Figure 3.6: Red: first touch’s path, blue: a second touch
began, black: calculated vector. The dotted line is the offset
of the second finger’s initial touch point from the current
location of the first finger

The problem described in the previous paragraph results
from respecting the origin of the second finger’s touch
points instead of just their direction and distance from the
second finger’s initial touch point. When the second fin-
ger is touching the screen (see figure 3.6), it can be assumed
to belong to the same hand and therefore should generally
move in the same direction as the first finger, just from a
different starting point (see figure 3.7). By translating the
touch coordinates of the second finger with the initial off-

24 3 Swabbing implementation

Figure 3.7: Red: Since the first touch has not yet ended, the
second touch is ignored

Figure 3.8: The first touch has ended, and the recognized
path is continued with the second touch, but translated us-
ing the initial offset from the first touch. As long as the
touches’ paths continue to be parallel, the vector’s direction
remains the same

set from the first finger’s location, the second finger’s touch
points would influence the vector exactly as if they had
come from the first finger (see figure 3.8). This would effec-
tively enhance the touchscreen’s recognition area since the
second finger would continue the first finger’s path long
after it has left the screen. Technically, this could be contin-
ued indefinitely - when the first finger has left the screen,
the second finger’s translated coordinates would be used
to calculate the offset of a third finger, resulting in a cumu-
lative extension of the recognized area.

3.5 What is the target size?

In order to maximize the reliability of using Swabbing, all
options should generally be equally difficult to select. On

3.5 What is the target size? 25

the surface, this seems to have been the case in all current
Swabbing implementations, since all options have the same
opening angle. But is that enough?

Usually, to perform a Swabbing selection, a user would
touch the screen in its center and move towards the screen
edge in the direction of the intended target. The more
touches can be recorded to calculate the regression line, the
more stable the target point, increasing reliability. Since the
screen edge is further away when moving diagonally (and
for non-square layouts also in the direction of the wider
side), more touch coordinates can get recorded, which
should make these more reliable to hit.

Now assume the user were to start the gesture as close to
the screen edge as when moving downwards from the cen-
ter. While this removes the advantage of additional data
for the calculation, the opening angle between the starting
point and its connections to the corners of the vector impact
zone is bigger than from the center, indicating a target size
that is bigger than when moving downwards - a geometri-
cal advantage.

But just how big is this advantage? We can draw some in-
spiration by looking at how Fitts’ law (see Fitts [1954]) is
used to assess the difficulty of moving a hand to a specific
location, as required for clicking tasks. To calculate the in-
dex of difficulty, Fitts’ law defines the width of the target as
the length of that part of the line in direction of movement
that is enclosed by the target area. In other words, for non-
circular targets, the target width differs depending on the
starting position.

Since Swabbing gestures can be started anywhere on the
screen, a useful definition of the target size should depend
on the origin as well. To highlight that importance, esti-
mate the difficulty of selecting the letter “s” in figure 3.9,
depending on the gesture’s origin.

Except in rare cases, such as a 360o menu with eight op-
tions, all current Swabbing implementations include this
bias. It is present most strongly in the implementations for
this thesis due to the non-square layout. However, without

26 3 Swabbing implementation

Figure 3.9: The selection difficulty depends on the origin of
the selection gesture

a clear definition of a target’s size it is unclear how to de-
sign menus that are objectively fair. The simplest solution
would be to clip the gesture recognition area to the menu’s
circle. Sadly, this would simply reduce overall accuracy by
shortening most gesture paths.

Figure 3.10 shows candidate definitions for measuring the
target size. From the starting point of the gesture, the an-
gles towards the corners of the vector impact zone are cal-
culated. In the example the starting point is the center of
the menu, therefore the angles coincide with those of the
corridor lines. The mean of the angles determines the an-
gle of the ideal gesture path, shown as the gray line in the
middle. A, B and C are lines perpendicular to this ideal ges-
ture path, clipped by the lines through the start point and
the corners of the vector impact zone. They all represent a
possible way to assess the target size relative to the starting
point of the gesture.

Figure 3.11 reveals two flaws of these approaches: As the
distance to the screen edge becomes shorter, the target size
changes, which is counterintuitive. Worse still, the angle of

3.5 What is the target size? 27

A

C
B

Figure 3.10: Candidates to determine the target size

the ideal gesture path changes as well.

The definition of the target size should only depend on the
points that intersect with the screen edge and the angle be-
tween the target and the starting point of the gesture. Com-
pare this to playing pool: the size of the pocket does not
change as the ball gets closer, although it is widest when
the line of sight is perpendicular to the line between both
ends of the pocket. A possible definition for the target size
therefore would be the diameter of the largest circle that
could fit between the corner points when moved towards
the target in a straight line from the gesture starting point
(see figure 3.12).

Assume (gx, gy) is the gesture starting point, while (cx1 , c
y
1)

and (cx2 , cy2) represent the corner points. Then, mx = cx1 +

28 3 Swabbing implementation

A

C
B

Figure 3.11: The definitions have two flaws: target size and
ideal gesture path would change with the distance to the
target

cx2−cx1
2 andmy = cy1+

cy2−c
y
1

2 represent the point in the middle
of the line connecting the corner points.

The line for the ideal gesture path can then be described
by g(x) = a1x + b1 with a1 = gy−my

gx−mx and b1 = gy − a1gx.
Note that for simplicity, special cases like vertical lines are
ignored.

Next, we need the line perpendicular to g, described by
s(x) = a2x + b2 with a2 = − 1

a1
and b2 = cy1 − a2cx1 . We can

use this to calculate the point where g and s intersect: ix =
b2−b1
a1−a2 and iy = s(ix). Finally, the target size is the doubled
distance between i and c1: t = 2

√
(cx1 − ix)2 + (cy1 − iy)2.

3.5 What is the target size? 29

Figure 3.12: Target size as the width of the widest possi-
ble corridor that still fits between the corner points of the
vector impact zone, starting from the gesture starting point
(red) and moving towards the mid point between the cor-
ner points (blue)

In order to get an equivalent of Fitts’ law for Swabbing, we
also need to take into account the distance between the tar-
get and the gesture’s starting point. However, there are sev-
eral difficulties when considering the distance. On the one
hand, it is harder to aim correctly right away at targets that
are further away. When starting the gesture at the center
point, this problem does not exist due to the equal open-
ing angles. But the further away the starting point from the
target, the harder it is to see with the naked eye how accu-
rately the finger is moving in the direction of the target.

On the other hand, due to the greater distance, the length

30 3 Swabbing implementation

of the gesture path can be increased, improving accuracy
by providing more touch coordinates to balance out Swab-
bing symptoms. Due to the linear regression, the reduction
in difficulty is probably not strictly linear - doubling the
gesture length may increase the accuracy more or possibly
also less than twofold. Finally, in contrast to tapping tasks,
the target does not have to be reached. Rather, the user de-
termines themselves how far they move. Therefore, when
attempting to calculate the difficulty of selecting a certain
target from a specific point, the maximum direct distance
to the target should only be used if the user plans on mov-
ing all the way to the target - otherwise, using the average
length of their gestures may be more appropriate.

Note that Huck [2012] grouped recorded gestures into eight
distinct directions and analyzed their differences in the er-
ror rate in order to assess whether users have more trou-
ble moving in one direction than in another. According to
the findings above, the error rates should be systemically
lower in the diagonal directions. However, no such trend
was found - whatever bias equal opening angles produced
is far exceeded by variances in the tremor strength depend-
ing on the direction of movement. For right handed users,
moving to the left had the lowest error rate of 4.44% while
moving diagonally in the lower right direction produced
the second highest error rate of 12.5%. The second lowest
error rate was 5.04% for the upper right direction — clearly,
the main contributor to errors is not simply whether the
movement is diagonal.

Consequently, while an objective definition of target size is
desirable, an objectively fair menu might not be the best
option when it comes to increasing Swabbing reliability. If
the directions of movements with higher error rates are sta-
ble over time for a given user, the size of the options most
afflicted could be increased instead. Since the user hardly
made any mistakes during the Swabbing-based text entry
tasks of the main study, it is unknown whether this is the
case.

Another option would be to discard the circular layout of
Swabbing menus entirely, and adopt list-like layouts that
stick to the directions with the highest accuracy (see 8

3.5 What is the target size? 31

“Summary and future work”). Note that this would require
a redesign of the aiming menu and its target indicators.

For this thesis, constant angles were used, maintaining vi-
sual uniformity. As a result, the distance between the op-
tions’ labels is always the same. When the user tries to es-
timate the position of an option that is part of a sequence
(such as a letter in the alphabet or a digit), the uniform dis-
tribution may lead to more accurate results than with vary-
ing label distances, as produced by using an ellipsis instead
of a circle or unevenly spaced menu options. It may also be
easier for the user to scan the available options. Further
studies are necessary to verify either hypothesis.

33

Chapter 4

Software Testbed:
Touchscreen Web
Browser

Originally it was considered to implement Swabbing in the
browser as a bookmarklet, i.e. a bookmark that, when
opened, injects JavaScript code into a web page to trans-
form it. This would still have required tapping to activate
the bookmarklet, and so an extension that would load au-
tomatically seemed more appropriate.

Sadly, only one browser for the iPad with support for ex-
tensions was found — iCab (see Clauss) — and extensions
were executed only once the entire page was loaded. On
many web pages this would have meant waiting for several
seconds until Swabbing support became available, which
was unacceptable.

Consequently a custom app needed to be developed, or an
existing one modified. Chrome for iOS was one candidate
as a starting point that was rejected due to a warning in
the build instructions saying that “it is not currently possi-
ble to build the actual browser binary”. The most promis-
ing choice was Foxbrowser (see Grätzer) since its code is
openly available on github.com. Unfortunately most of
the more complex features depended on Firefox Sync and

34 4 Software Testbed: Touchscreen Web Browser

would therefore have needed to be rewritten.

The final decision then was to write the iPad browser from
scratch.

4.1 General requirements

The most fundamental functionality of a web browser is
navigation: displaying websites at arbitrary locations and
following links to other pages at the request of the user.
Users should be able to enter and open arbitrary URLs,
as well as activate links and buttons on web pages. For
the user’s convenience, a browser should record a history
of visited locations and allow jumping back and forth be-
tween those. Users should be able to branch out by open-
ing a new tab, switching between tabs and closing old ones.
If users access a website by mistake, they should be able to
stop the page from loading. In case a website did not load
properly, or is suspected to be outdated, a reload function
should be offered. For convenience and memory support,
the browser should also offer the ability to add, load and
delete bookmarks.

When using search engines and websites that require user
credentials before granting access, support for filling out
forms is vital as well. Among other things this requires the
ability to focus input fields, toggle checkboxes, activate ra-
dio buttons, selecting options from a drop down list, and
submitting the filled out form. Filling in text input fields
requires the ability to enter and edit text.

Finally, the user needs to be able to scroll and adjust the
zoom level. This is especially important for users with bad
eyesight.

4.2 The traditional interface 35

4.2 The traditional interface

Loosely modeled after the iPad’s default web browser Sa-
fari (see figure 4.1), the custom browser’s traditional inter-
face (see figure 4.2) features a horizontal list of tabs, each
showing the title of the page in the tab and a button to close
the tab. On the right of the tab bar, there is a button to open
new tabs. Opening and closing tabs works by tapping the
respective buttons while tapping a tab’s title will make this
tab the current one.

Figure 4.1: Safari - the default browser on the iPad

Every tab has its own history that can be accessed by tap-
ping a back button or a forward button. These buttons are
disabled when the respective functions are not available. A
combined stop/reload button will allow stopping an ongo-
ing page load, or trigger a reload otherwise. There’s also a
button to change study related settings. It is normally not
used.

In addition, every tab features a URL bar — a text input
field showing the current page’s URL. When tapping the
URL bar, a cursor appears and a keyboard interface is dis-
played in the bottom half of the screen (see figure 4.3). Ad-

36 4 Software Testbed: Touchscreen Web Browser

Figure 4.2: The browser’s traditional interface

Figure 4.3: Changing the URL using the browser’s tradi-
tional interface

4.2 The traditional interface 37

Figure 4.4: Shift states on the iPad: Shift Off, Shift for letters
only, Full Shift (iPad native)

ditionally, if the URL bar is not empty, a tappable button to
clear its contents is offered on its right side. The keyboard
can be closed by tapping the button in its lower right corner
or by tapping the “Go” button to confirm the URL. Alterna-
tively, tapping outside of the keyboard area will also close
the keyboard.

The keyboard has two basic layouts, one for entering let-
ters and some punctuation marks, and another one for spe-
cial characters. Both basic layouts feature a shift mode that
changes some of the keys. The shift key can be tapped to act
as a mode, or dragged on other characters to insert their up-
percase variant without otherwise changing the keyboard
state. The buttons to switch between the basic layouts work
the same way. However, the letter key’s Shift key has a
third state that only applies to letters, not to punctuation
marks (see figure 4.4). For the studies, the automatic shift
key mode for letters only when starting a sentence was de-
activated. However, this mode made an appearance any-
way: when pressing the shift key, typing some letters (the
first being uppercase) and later deleting the typed char-
acters again, the shift state is automatically set to “letters
only” again. Caps Lock was deactivated for the studies.

There are some slight differences depending on the focused
element. For URLs, the space bar is replaced with but-
tons to enter a colon, slash, underscore, dash or a top level
domain like “.com”. For numeric input fields, the special
character layout is shown immediately since it features dig-
its. Also depending on the context, the confirmation but-
ton may have a different label (such as “Go” or “Return”).

38 4 Software Testbed: Touchscreen Web Browser

Figure 4.5: Long tapping a letter in iPad’s native keyboard
will open a pop over for accented characters

Screenshots of the different keyboard layouts can be found
in appendix A “iPad keyboard layouts”.

The characters on the keyboard are activated by tapping
them. For some keys, touching them continuously will re-
veal more buttons with accented or otherwise related ver-
sions of the selected key (see figure 4.5). To choose such a
version, the user has to slide a finger over the correspond-
ing button and lift the finger off the screen. Some keys can
also be inserted more quickly by sliding upwards (see fig-
ure 4.6).

The user can control the text cursor by touching and hold-
ing the screen at the intended location of the cursor. The
cursor can be moved by moving the finger accordingly (see
figure 4.7). When the URL bar is focused, tapping it again
will open a popover menu (see figure 4.8) with options to
select the word at the current cursor position or the whole
content of the URL bar. A paste button will allow pasting
the clipboard1’s contents. Once a part of the text is selected,

1The clipboard stores data in memory in order to facilitate copy &
paste functionality. On Apple’s operating systems it is usually called
pasteboard.

4.2 The traditional interface 39

Figure 4.6: Sliding upwards over a key is a shortcut for
some accented characters in certain iPad keyboard layouts

Figure 4.7: A lens appears above the touch point when
moving the cursor

the popover menu changes to allow the clipboard opera-
tions “cut”, “copy” and “paste”, as well as a “define” op-
tion that would open a dictionary app (see figure 4.9). All
these buttons are activated by tapping them. Furthermore,
the bars that mark the ends of the selection are augmented
by dots that can be held and dragged to adjust the selection
range, similar to moving the cursor.

To scroll the page, the user can touch the content area of the
screen, then move the finger to move the page accordingly.
For zooming, the same gesture is performed with two fin-
gers moving in opposite directions - outward to zoom out,
inward to zoom in. Alternatively the user can double tap
the page to change the zoom level — depending on the con-
text, this will zoom in or out.

40 4 Software Testbed: Touchscreen Web Browser

Figure 4.8: Cursor context menu without selected text

Figure 4.9: Cursor context menu with selected text

Simple tapping is used to activate links and buttons, focus
text fields, toggle checkboxes, select radio buttons and open
drop down lists. Doing the latter will display a list of items
that the user can select by tapping them (see figure 4.10). If
there are more items than fit on the screen, the list can be
scrolled in the same way as the web page.

Bookmark support was only implemented in the web-
based prototype to study the concept. The iPad version for
the main study does not offer bookmark support, allowing
more data to be collected regarding special character input.

4.3 Swabbing interface

Swabbing support is implemented via a translucent over-
lay that covers the entire application (see figure 4.11). When
the overlay is visible, it captures all touch events. It can be
shown or hidden by tapping the screen with five fingers.

4.3 Swabbing interface 41

Figure 4.10: Drop down list support in the browser’s tradi-
tional interface

The gesture is recognized as soon as five fingers are touch-
ing the screen simultaneously. After recognizing the ges-
ture, it is blocked for one second to prevent its effects from
being undone by accidentally tapping the screen again, a
problem common with users who have hand tremor.

Immediately after activation, the overlay will always show
the main menu, allowing to control the browser. When sub-
menus are opened, they are pushed onto a stack in memory,
while only the top one is being shown. All submenus of-
fer a cancel entry as the last option to remove them from
the stack and return to the previous menu. However, some
submenus replace the current one instead of being pushed
on the stack.

The active menus can also change depending on events on
the website: if a navigation event occurs, “content sensi-
tive” menus are popped from the stack to keep the state
intact. The three text menus and the aiming menu are con-
sidered content sensitive. The aiming menu will be closed
and reopened every time the page changes within the vis-
ible area or when it is scrolled. For the text menus, the fo-

42 4 Software Testbed: Touchscreen Web Browser

Figure 4.11: The main menu of the browser’s Swabbing in-
terface

cused element is monitored to keep the state in sync: if the
text is changed by a script on the web site, the change is
propagated to the Swabbing representation of the content.
If the element disappears, the current text menu is removed
from the stack.

The main menu features entries that directly correspond to
the back and forward button, the stop/reload button, the
close button of the current tab and the button to open a new
tab. Two more entries allow zooming in and out, respec-
tively. Furthermore, there’s an entry to focus the URL bar,
followed by a switch to the keyboard menu. Another en-
try will switch to a menu representing the currently open
tabs. A deactivated entry to manage bookmarks was left
in the main menu for consistency with the prototype. For
scrolling, there is no Swabbing alternative as the usual pan-
ning gesture works well enough even for users with hand
tremor.

4.3 Swabbing interface 43

Figure 4.12: The tabs menu to switch between the currently
open tabs

4.3.1 The text menus

There are three text menus that the user can switch be-
tween. Similar to the iPad, the default text menu allows
entering normal letters (see figure 4.13), while the special
character menu offers digits, punctuation marks and other
special characters (see figures 4.14 and 4.15). The third text
menu offers cursor and selection control, as well as access
to the clipboard (see figure 4.16). The Shift mode has to be
manually toggled by the user and is set to off when switch-
ing between text entry menus. In the letters menu, if a let-
ter is typed, the shift mode is reset as well. Menu entries
show the characters they would insert in the given mode,
whereas the iPad always displays uppercase letters.

When URL fields are focused (such as the URL bar, or
<input type="url"> tags on websites), the space key’s
position is switched with that of the submit option (other-
wise located in the special characters menu). For multiline
text field, the submit option is replaced with an option to
start a new line.

44 4 Software Testbed: Touchscreen Web Browser

Figure 4.13: Text menu for entering letters with Swabbing

Figure 4.14: Text menu for entering special characters with
Swabbing, shift off

4.3 Swabbing interface 45

Figure 4.15: Text menu for entering special characters with
Swabbing, shift on

Figure 4.16: Text menu for controlling the cursor position,
selection and accessing the clipboard

46 4 Software Testbed: Touchscreen Web Browser

The text menus show the current value, cursor position
and selection of the edited field in a small area in gap of
the Swabbing menu. The text menus do not feature ac-
cented characters, including German umlauts. In most
cases ä/ö/ü/ß can be replaced with ae/oe/ue/ss and other
accented characters are rarely needed. However, how to
properly support accented characters other than by simply
adding more text menus remains an open question.

4.3.2 The cursor menu

The cursor menu allows moving the cursor to
next/previous character, word, line or content bound-
ary. If the select mode is active, moving the cursor selects
text like the cursor keys on a desktop keyboard would
when holding down the shift key. For convenience, the
cursor menu also features the backspace entry and and
entry to quickly select all text. Cut, Copy and Paste options
provide access to the normal iPad clipboard. For consis-
tency with the prototype, the cursor menu initially also
featured deactivated entries for undo/redo. At the request
of the user in the main study, those were later replaced
with entries for the top level domains “.de” and “.com”.
Finally, the cursor menu features an entry to submit the
current input, i.e. open the respective web page or submit
the form the edited field is in.

4.3.3 The aiming menu

Finally, there is the aiming menu (see figure 4.17). It scans
every eighth pixel of the visible area of the web page in
reading direction for tapping targets like links, buttons and
form fields. Hit testing is performed using the JavaScript
function document.elementFromPoint(x, y). The
first position an element is found at is recorded and later
used to display an arrow shaped target indicator pointing
at this position. This approach was chosen over positioning
the indicator in the middle of the found element to prevent
problems with multiline links. If a link starts at the end of

4.3 Swabbing interface 47

Figure 4.17: The aiming menu listing tapping targets on a
web page

one line of text and ends in the next, the bounding box re-
turned by node.getBoundingClientRect wraps both
lines of text entirely. Positioning the arrow in the middle of
that bounding box would make it very hard to find. A click
at that position would also usually not hit the link.

All elements using the following HTML tags are included:
<area>, <button>, <select>, <textarea>. In ad-
dition, <input> tags are included they are not of the
type “file” since the iPad does not support file fields.
<a> tags are included if they contain an “href” attribute
or have direct handlers for the “click” or “mousedown”
events. A direct click handler means that the element’s
onclick property is set. Sadly, event handlers regis-
ter via element.addEventListener() cannot be listed
programmatically, a current technical implementation. It is
possible that other operating systems than iOS offer more
elaborate APIs that include access to those event handlers
as well.

To support Google Maps, <div> elements of class “gsq a”,
“mb-icon-btn” or “mmh-btn” are also listed. Finally, ev-

48 4 Software Testbed: Touchscreen Web Browser

ery element’s “cursor” property is inspected. If the value
is “pointer”, the element is assumed to be clickable - this
value is used on systems with a mouse to indicate that
the element under the cursor is clickable by changing the
mouse cursor to a pointing hand. If a web site’s de-
signer added this visual hint, then likely because some
click related event handlers were registered as well. Some-
times this heuristic fails — for instance, the iPad version of
Google sets the pointer cursor for the <html> root object,
thus affecting all elements on the page. In the iPad version
of the browser, this curious choice is detected and the cur-
sor value changed to “auto”.

If more than twenty tapping targets are found, they are
grouped to prevent the menu from becoming unusable. For
even distribution, the number of chunks is calculated using
c = d |T |20 e, with T being the set of tapping targets. The num-
ber of items per group is calculated using n = d |T |c e.

To indicate which menu item belongs to which link, the tar-
get indicator that points at the link is shaped like the con-
tinuation of the option’s pie segment towards the center.
Therefore the indicator’s angle is the same as that of its
menu item. With many options, it can be hard to tell neigh-
boring items apart when using the orientation only. To
compensate, the target indicators and corresponding menu
items are colored the same way. The order of colors is cho-
sen so that neighboring colors are easy to tell apart even for
colorblind users. However, only one of the participants in
the user study was colorblind, so more testing is required.
Please refer to chapter 5 “User study 1: Link assocation” for
more details.

The big advantage of using these target indicators instead
of representing the targets via their labels is that the user
can find the appropriate menu entry without having to look
at all options in sequence. The shape and color of the indi-
cator basically provide an index to the menu. In addition,
screen clutter is reduced since the options to not need any
labels, making the web page easier to see through the over-
lay.

Since the user did not use any dropdown lists during the

4.4 The web-based prototype 49

sessions with the traditional interface, Swabbing support
for dropdown lists was not ported over from the prototype.
All elements that the aiming menu shows behave as when
tapped, except that when text fields are focused, text entry
is performed using Swabbing.

4.4 The web-based prototype

Developed as a web application, the prototype runs in
modern web browsers on the desktop or as a full screen
web app on the iPad. It is written in HTML 5, SVG and
JavaScript, using jQuery for the interaction and Raphael.js
to generate the SVG based menus.

While the iPad browser offers Swabbing as an enhance-
ment, the prototype was developed with the intent of pro-
viding two entirely distinct browsers. The screenshots
therefore only show tabs and a menu bar since no buttons
were needed.

4.4.1 First iteration

The first iteration didn’t provide any functionality. It could
only render different menu layouts to speed up the process
of designing them. There was no concept yet for transition-
ing between menus. The visual design was based on Huck
[2012], including the clockwise ordering of menu items. La-
bels were only rotated if they didn’t fit into the space be-
tween the corridor lines, sometimes producing inconsistent
results.

This version of the prototype had a main menu very similar
to the final design (see figure 4.18), and a home menu with
fewer options for the start page. The main menu allowed
directly toggling the bookmark for the current page, and
it featured two aiming menus — one for links and one for
form elements. There were two different text entry menus,
one for normal text and one for URLs. They had the same
options as the corresponding native iPad keyboard layouts

50 4 Software Testbed: Touchscreen Web Browser

Figure 4.18: Page menu, rendered by the first prototype

for maximum comparability of the native browser and the
Swabbing based one. There was no design yet for the tabs,
bookmarks and aiming menus.

4.4.2 Second iteration

Some basic interaction was introduced: Swabbing could
now be turned on and off by tapping the screen with three
fingers or clicking the middle mouse button. While the
original idea was to use five fingers for the gesture, the
three finger version was quicker to implement since the
chances of detecting all fingers at once are higher with
fewer fingers. In submenus, the last option was always
used to return to the parent menu. For consistency, all la-
bels were now rotated.

4.4 The web-based prototype 51

Figure 4.19: Support for drop down menus

In addition to the continuous outline of the circle, a dashed
inner circle was added with the same distance from the cen-
ter as the gesture detection threshold (4.19). The idea was
to inspire users to move their fingers at least that far. To im-
prove visibility against the noisy background of web pages,
the lines were made thicker, the labels were colored white
with a black outline and the background of the option’s seg-
ments were shaded with a transparent black background.

The tabs menu was introduced, revealing a problem with
the clockwise ordering of items. To improve the spatial
mappings of tabs to their items, a counter-clockwise order
was used instead. To increase consistency and ease of learn-
ing, the special home menu was removed, instead showing
the page menu on the start page, too.

The number of options on the main text menu was reduced
by removing all characters but letters and the space charac-
ter, favoring reliability of text entry over speed and similar-
ity to native iPad keyboard. To increase ease of learning, the
special URL menu was discarded as well, leaving one sta-
ble layout for all text input tasks. The menu for letters and
the menu for special characters now had the same number
of options, allowing for a smooth transition between them.

52 4 Software Testbed: Touchscreen Web Browser

A first design for the aiming menu was introduced. The
markers for targets were scaled versions of the correspond-
ing pie segments. This allowed a direct mapping of indica-
tors to menu options by simply matching their shape. Dif-
ferent colors were used to disambiguate items with simi-
lar shapes. Unfortunately it was difficult to tell which ele-
ment a marker belonged to, especially when the page con-
tained fewer links, resulting in bigger markers. In addition,
the markers were positioned in the center of the target ele-
ment. Since links that contained line breaks were detected
as one target, the marker would appear in the middle of the
screen, far removed from both ends of the link.

A revised design for the aiming menu used different mark-
ers. Instead of using a scaled version of the pie segment, its
continuation towards the center of the menu was used, re-
sulting in an arrow shape. The pointy end of the arrow now
clearly indicated the corresponding target. It was now po-
sitioned to point at the first scanned pixel belonging to the
target element, solving the problem with multi-line links.
Since the shape of the arrow indicated the position of the
corresponding menu item, rapid association was still pos-
sible, as the first user study proved.

4.4.3 Third iteration

When not starting the movement off the center of the screen
and aiming for the pie segment instead of the screen edge,
the user can end up selecting the wrong item. To make
it clearer that the target of the gesture is a segment of the
screen edge, the corridor lines between the items were ex-
tended to the edge of the screen and the inner and outer
border lines of the circle were removed. In addition, an ar-
row was shown in the middle of an item’s screen edge to
provide a visual clue about where to aim in order to select
a certain item.

To limit screen clutter and web page occlusion the corri-
dor lines were made transparent and the thickness of the
label outline was reduced. To make the colors of the arrows
in the aiming menu easier to recognize when they overlap

4.4 The web-based prototype 53

with a menu pie segment, only inner 10% of the pie seg-
ment were colored.

The arrows were enhanced with a shaded background re-
sembling the menu, enabling people to discover the signif-
icance of the arrow’s orientation on their own (see User
study: Link Association). In a second step, the size of
that background was lowered to reduce overlap with other
backgrounds. The arrow’s size was not changed to keep the
colors easy to recognize. The color sequence was changed
to make green and turquoise harder to mix up.

Lacking context from neighboring characters, some special
characters were hard to identify when rotated, so their ro-
tation was removed.

The text menu layouts are slightly different depending on
the text field that is being edited. For text fields on a web
page, the menu with letters offers the space character, but
for the URL bar an “Open Page” option is shown instead.
Consequently, the special characters menu shows a space
character option for the URL bar, an option to insert a new
line for multi-line text fields, and an option to submit the
field’s form for single-line text fields, mimicking the effect
of the Enter key in desktop browsers.

Since Google’s auto-complete suggestions were not de-
tected as targets by the aiming menu, adding a menu that
allows navigation like with a desktop keyboard was con-
sidered (see figure 4.20). The user could have simulated
pressing the “Up” or “Down” cursor keys to choose one of
the options, and pressing “Enter” to select it. In addition,
the menu would have offered the “Left” and “Right” cursor
keys, the tab keys to switch between form fields, “Home”
and “End” buttons to scroll to the top/bottom part of the
page and “Page up/down” buttons to scroll up or down by
the screen’s height. This idea was quickly discarded since it
would venture beyond what the native browser offered. In-
stead, the markup used for Google’s auto-complete options
was added as a special case to the detection routine.

The direction of the vertical cursor gestures was changed
to move diagonally towards the top left/bottom right cor-

54 4 Software Testbed: Touchscreen Web Browser

Figure 4.20: Discarded idea for a menu replicating naviga-
tion features provided by desktop keyboards

ner. Otherwise the user might expect that the gestures
behave like the “Up” and “Down” cursor keys on a nor-
mal keyboard, selecting the closest character in the line
above/below.

4.4.4 Fourth iteration

The tapping gesture to turn the menu on and off was
changed to require five fingers instead of three. This al-
lows distinguishing it from the cursor gestures by simply
counting the number of touches rather than analyzing the
movement of the touches, possibly induced by tremor only.
In addition, if the user accidentally touches the surface with
four instead of three fingers, no action is triggered instead
of hiding the menu.

A menu for cursor control was introduced as an alternative
to the cursor gestures (4.21). It adds an explicit mode for se-
lection rather than subtly using the “Upper case” menu en-
try for that purpose. It also features access to the clipboard,
similar to the iPad’s selection menu, and offers undo/redo

4.4 The web-based prototype 55

Figure 4.21: Cursor menu with semantically colored labels

functionality. It was placed on the same level as the menus
for letters and special characters. All text menus have en-
tries to switch to the other ones.

Since some sites style links to look like buttons (see fig-
ure 4.22), providing separate aiming menus for links and
form entries turned out to be problematic. Hence they
were merged into one general “Aim” entry. In addition, the
add/delete bookmark entry was integrated into the book-
marks menu and removed from the main menu. After-
wards, the options on the main menu were rearranged.

The special nature of some options was no indicated by col-
oring their labels: “Cancel” is red, “Submit” and “Open
page” are green, and the options to switch between the
three text menus (“Cursor”, “ABC” and “.?123”) are yellow.
In addition, active modes (“Upper case”, “Select”, “Open in
new Tab”) are highlighted with a yellow background.

As the screenshots indicate, this was the first version that
was also available in English.

56 4 Software Testbed: Touchscreen Web Browser

Figure 4.22: Three buttons on Amazon.com, one of which
is a link.

57

Chapter 5

User study 1: Link
assocation

A vital piece of functionality in any web browser is link se-
lection in order to navigate from one page to another. On
touch screens, links are usually tapped. When links are
very small or close to other links, hitting the right one can
be challenging, especially for tremor sufferers. Therefore,
the Swabbing interface needed to provide a way to activate
links.

From the beginning, the idea was to scan the visible area
of the page for tappable targets. Originally, the plan was
to re-arrange the website itself by pushing targets to the
edge of the screen directly. Due to incomplete semantics
of websites this approach is problematic. Sometimes the
labels of links only make sense in the sentence they are em-
bedded in, e.g., “Find out more here” — merely moving
the word “here” elsewhere would remove any clues about
the nature of the link. Similarly, the labels describing the
purpose of form fields may not use the semantic elements
HTML provides to describe their relationship, possibly re-
sulting in unlabeled text fields occupying the screen edge.
This would leave the user clueless about what to enter.

Instead, the decision was made to leave the layout of the
page intact and provide a different way of associating
tapping targets with menu items. Initial ideas included

58 5 User study 1: Link assocation

straight or curved lines connecting the targets with their
menu items, or even providing a path to follow from the
link to the center of the menu, and then to the target. Since
the user might want to touch the screen before reaching the
center, the change of directions in the gesture path would
need to be detected, which is made difficult by the user’s
tremor. There were also concerns that tracing a visible line
might be stressful for tremor sufferers, increasing the inten-
sity of their tremor.

The next idea, then, was to mark the targets with a colored
outline such that the color of the outline would match the
color of the menu entry. By always using the same sequence
of colors in the menu, the user might even learn to asso-
ciate different colors with certain angles, removing the need
to search the menu items in sequence until the right one
is found. However, the higher the number of targets, the
harder it is to tell individual colors apart. In addition, the
outline around multi-line links would span the complete
width of the paragraph they are in, possibly overlapping
the outlines of other links.

Intrigued by the idea of removing the need for scanning the
entire menu in order to locate the wanted item, the next ap-
proach was to exploit the unique appearance of each menu
item provided by its orientation. Each target would be aug-
mented with a scaled version of its menu item’s pie seg-
ment. The user would instantly have an idea of the menu
item’s location, and could simply match the shapes to fully
identify it. However, with many targets to choose from,
neighboring pie segments would look too similar to be told
apart merely by the shape. To allow the user to disam-
biguate similar items, the idea now was to also color them.
While the colors might eventually repeat, neighboring col-
ors should be as dissimilar as possible for maximum effect.

A quick informal study showed that this approach was
promising, although it required an explanation. There also
was a problem with using the pie segments as indicators.
The fewer links there are on the screen, the bigger the
(scaled) pie segments would be. For very small clustered
targets, like links to page numbers, the indicators would ei-
ther overlap or become too small to recognize their shape.

5.1 Study Design 59

Since the pie segments do not have a clearly defined start,
middle or end point, this would make it hard to tell which
target the indicator actually belonged to.

Instead of using the pie segment itself, its imagined con-
tinuation towards the center of the menu was used. This
shape looked like an arrow, providing a pointy and a flat
end. The pointy end could then be used to clearly mark the
indicator’s target as well as represent the center point of the
menu, while the angle towards the flat end would provide
the user with a clue about the corresponding item’s loca-
tion. The user would simply move from the center in the
same direction.

To find out how well users understand the concept, the first
user study was conducted.

5.1 Study Design

Informal pretests indicated that users tend to notice the
matching colors of target indicators and their menu items,
but not necessarily the shared orientation. A between-
group design was used to find out whether users would
form a different mental model if immediately exposed to
an aiming menu with duplicate colors or not. This is tested
using independent variable 1: the order of target counts.
Two levels were used — 1A: 5, then 20 targets and 1B: 20,
then 5 targets. Since the color palette was limited to six
colors, the aiming menus for five targets contained no du-
plicate colors, in contrast to the aiming menus for twenty
targets.

In response to the results from testing this design with four
users, the target indicators where augmented with a shaded
background in the shape of the menu’s silhouette (see fig-
ure 5.1). This resulted in independent variable 2: the vi-
sualization type. Two levels were used, namely 2A: arrow
only and 2B: arrow + menu silhouette.

The dependent variable was the mental model the user re-
ported.

60 5 User study 1: Link assocation

Figure 5.1: Target indicators with menu silhouette

5.2 Participants

All participants were male and had extensive experience
with computers.

1A x 2A Two subjects (both age 28)

1B x 2A Two subjects (age 24 and 25)

1A x 2B Two subjects (age 21 and 30)

1B x 2B One subjects (age 31, red/green weakness)

5.3 Measurements

The participants’ mental model about the aiming menu
and its purpose were measured directly through a ques-
tionnaire and tested indirectly by asking them to select a

5.4 Procedure 61

predefined target using the Swabbing menu, followed by
explaining their choice.

5.4 Procedure

See section C.1 “User study 1: Link association” for mate-
rial used to perform this study.

1. The instructor explains that the browser is designed
for users with hand tremors, and the basic idea be-
hind Swabbing

2. The user uses the system freely for three minutes
while the aiming menu is disabled

3. The instructor explains the purpose of the study — to
test the aiming menu

4. The instructor opens a sample page with five (1A) or
twenty (1B) targets

5. The instructor opens the aiming menu and selects a
target for the user

6. The user explains their mental model about the menu
and how to select the target using it

7. The instructor opens a sample page with twenty (1A)
or five (1B) targets

8. The instructor opens the aiming menu and selects a
target for the user

9. The user explains their mental model about the menu
and how to select the target using it

10. The instructor opens an article with twenty targets

11. The instructor opens the aiming menu

12. The user announces two targets they want to activate
and performs the selection, followed by explaining
their choice.

62 5 User study 1: Link assocation

Abbrechen ⇦

Abbrechen ⇦

Abbrechen ⇦

Abbrechen ⇦

Abbrechen ⇦

Abbrechen ⇦

Abbrechen ⇦

Abbrechen ⇦

Figure 5.2: Screenshots used to demonstrate the connection between target indica-
tors and menu options

13. The instructor explains how the aiming menu works
and the role of the target indicator’s color and orien-
tation using a series of screenshots (see figure 5.2)

14. The user explains their mental model about the menu

15. The instructor opens an article with five targets and
explains the role of the colors

16. The instructor opens an article with twenty targets
and explains the role of the target indicator’s orien-
tation

17. The user announces four links activates four links us-
ing the menu after announcing the intended target
and followed by explaining their choice

5.5 Results 63

5.5 Results

All of the users understood the purpose of the aiming menu
after the introduction — to allow users with hand tremors
to activate links in web pages. All of the users were able
to correctly identify which targets and target indicators be-
long together. All of the users understood that the color of
the menu option is the same as the color of the correspond-
ing target indicator.

However, without the menu silhouette, users only included
the arrow’s orientation in their decision process after the ex-
planation was given. The three users who were shown the
silhouettes were able to use the arrow’s orientation before
an explanation. One of those users only made the connec-
tion after noticing the color ambiguity when being shown
twenty targets, but came to the right conclusion without an
explanation.

Without the menu silhouette (condition 2A), three of the
four users noticed that the order of arrow colors in read-
ing direction corresponded to the order of menu option col-
ors. However, one user was still not sure whether the menu
would start on the left or the right side, since both the first
and the last item were red.

In most cases, the colors were sufficient to disambiguate
neighboring options. However, green and turquoise were
occasionally mixed up. In addition, the user with color-
blindness had trouble telling magenta and turquoise apart.

Finally, users were not sure whether the menu only shows
targets that are currently visible, or would also show targets
that can be scrolled to.

5.6 Discussion

The results indicate that most users would be able to use
the aiming menu correctly after getting an explanation. Vi-
sual clues like the menu silhouette increase the likelihood

64 5 User study 1: Link assocation

Figure 5.3: Initial color sequence

of understanding the aiming menu correctly even without
an explanation. This would be especially beneficial when
employing Swabbing in public settings.

Users who note that the target indicators and the menu
items are both sorted by the order of targets in reading di-
rection were able to use the menu without discovering the
significance of the indicator’s orientation. However, their
selection time will be lower since they need to resort to
looking at the options and indicators in sequence.

To address the color issues, the color sequence was
changed. See figures 5.3 and 5.4 for a comparison. Note
that a bug in the color selection code made the initial color
sequence somewhat irregular. Also, the new color sequence
has not been tested again.

Regarding the confusion about the scope of the aiming

5.7 Limitations 65

Figure 5.4: Improved color sequence

menu, it is possible that visualizing the line-by-line scan-
ning process would make it more clear that only the cur-
rently visible targets are included in the menu.

5.7 Limitations

Since only three users were shown the menu silhouette,
it remains unclear how effective this approach really is.
While it seems likely that younger users with extensive
computer experience will be able to use the menu after re-
ceiving an explanation, further tests should be performed
with older users and users lacking computer experience.

The positive result with the colorblind user is encouraging,
but since there are many variants of colorblindness, more
tests are needed here as well.

66 5 User study 1: Link assocation

Since the sexes score differently in cognitive spatial tests
(see Dabbs et al. [1998]), the study should be repeated with
female subjects.

Finally, the grouping functionality for more than twenty
targets was not tested in this study. The main study in-
dicates that more tests are advisable: When the user first
encountered a situation in which the link to select was in
the second group, he needed over three minutes to select it
while usually he needed less than 10s.

67

Chapter 6

User study 2: Swabbing
feedback

After first assuming that feedback for successful selections
would be distracting, Hurtmanns [2011] later implemented
a short green highlight for successful activations, mention-
ing a user who “waited for a long time, because she was
wondering, whether or not her selection was correct”.

The only feedback provided by the Swabbing implemen-
tation Huck [2012] used was the inserted character — for
that purpose, trailing space characters were even replaced
with a half open box to make them visible. However, in his
future work section, he clearly recommends implementing
more feedback mechanisms.

The feedback mechanisms above constitute open loop de-
signs — the feedback occurs after the user has performed
their selection. For this thesis, a closed loop feedback de-
sign was implemented. As soon as the user crosses the
threshold distance, the detected target is highlighted, as
well as the exact point the user is aiming at. This allows
the user to detect and correct an incorrect selection before it
is accepted by the system.

To find out whether this type of feedback is useful, a sec-
ond user study was conducted. In addition, this study ad-
dressed a concern that users might aim for the labels on

68 6 User study 2: Swabbing feedback

the circle instead of the actual targets on the edge of the
screen. If the starting point is anywhere on the line between
the center point and the target arrow, this would not make
a difference. But when starting off center — as can easily
happen due to the user’s tremor — aiming towards a label
can mean actually aiming to a different menu option.

However, initially there was no target arrow and the cor-
ridor lines did only extend to the outer edge of the circle,
leaving no visual clue at all about the actual location of the
targets the user should aim at. While the feedback mecha-
nisms might eventually help users to adjust their aim, ide-
ally the visual design inspires them to do aim correctly
right away.

The intention of the corridor lines was to make the vector
impact zones visible, while the target arrow should serve
as a visible target to aim at. Before introducing the feed-
back mechanisms, the effect of the design changes alone
was tested.

6.1 Study Design

To be able to react spontaneously to feedback provided by
the user, a single-subject design was chosen. The indepen-
dent variable was the combination of design and feedback
shown to the user. The levels were

1. Baseline: no graphic elements beyond the edge of the
circle, no feedback

2. Corridor lines and target arrows

3. Corridor lines and target arrows + highlighting the
background of the selected option’s pie segment

4. Corridor lines and target arrows + revealing the tar-
get point at the edge of the screen

5. Combination of 4 and 5

6.2 Participant 69

The dependent variables were the apparent target of the
user’s gestures, and the correctness of the selection.

6.2 Participant

The participant was a 60 year old woman with an essen-
tial tremor since age 14. The tremor first affected the right
hand, and later the left hand as well. Her tremor gets
more intense under stress and sometimes also affects her
head, mouth and legs. She did not use deep brain stimula-
tion - a brain implant that can greatly reduce tremor symp-
toms. She wears reading glasses. She was also afflicted by
a cataract, but had gotten an operation.

Most remarkably, the user has no prior experience with
computers. While she has a mobile phone (with normal
key size), she uses it for phone calls only. When she needs
information off the internet, she asks her husband.

6.3 Measurements

Before and after the session, her tremor strength was as-
sessed via spiralometry. During the session, the touch co-
ordinates and some screenshots were recorded. Sadly, the
screenshot recording code was in its early stages and didn’t
capture the feedback mechanisms in action.

6.4 Procedures

For all levels of the independent variable, the user was told
to select ten options starting at the center point and ten op-
tions starting anywhere else. In between, she was routinely
asked for her opinion of the software and given explana-
tions when it seemed appropriate.

70 6 User study 2: Swabbing feedback

L R

L R

Figure 6.1: The user’s spiralometry, before (top) and after
(bottom) the session. The distance between the lines is 1cm.

6.5 Results

According to the tremor intensities used by Huck [2012],
the user’s tremor can be categorized as slight since the
peak-to-peak distance of the drawn line in the spiralometry
is lower than 0.5cm (see figure 6.1). Due to the dampening
effect of the screen (see Wacharamanotham et al. [2011]) the
tremor is barely visible when looking at the gesture path in
the screenshots.

Initially, the user would have tapped the labels of the menu
items. After explaining that the basic input gesture was
moving in the direction of the menu option, the user aimed
for the labels, as expected (see figure 6.2). When starting off

6.5 Results 71

Figure 6.2: The user trying to select the “Vor” option, but
not from the center

center, this would often mean missing the actual target area
due to the incorrect angle.

In addition, when telling her to start off center, she avoided
the center point throughout the whole movement, rather
than just in the beginning. The result were curved lines of
movement and consequently incorrect selections (see figure
6.3).

When telling her to freely choose a starting point, she
would often move from the outside in (see figure 6.4).

After activating the corridor lines and the target arrows, she
first did not see the difference. After pointing it out to her,
when telling her to start off center, she would first move
to the center, and then to the target, to avoid crossing the
corridor lines (see figure 6.5). She said she would prefer the
lines to not be there, because she felt constrained by them.
This is, of course, part of the desired effect.

After telling her that in order to select an option, the move-
ment had to be performed in the direction of the segment of
the screen’s edge that belongs to an option, she made longer
movements to cross the screen edge (see figure 6.6). How-

72 6 User study 2: Swabbing feedback

Figure 6.3: The user trying to select the “Adresse” option
without crossing the center

ever, when starting off center, she would still first move to
the center and then towards the target rather than move to-
wards the target in a single straight line.

In the third condition, the background of the selected menu
option is colored differently. This allowed her to first no-
tice that she did not select the intended action, even before
completing the gesture. In the fourth condition, a pink dot
at the screen edge indicated the exact point the user was
aiming at, according to the system. She found this useful.

6.5 Results 73

Figure 6.4: The user trying to select the “Adresse” option
from the outside in

Figure 6.5: The user trying to select the “Zurück” option
while avoiding the corridor lines

The fifth condition combined the two types of feedback. As
a result she discovered for herself that she did not need to
cross the screen edge to select an option. The fifth condition
was her favorite. However, even in the end after several
explanations, the user would occasionally try to select an
option from the outside in, or would first move towards
the center point.

Finally, the user commented on how the contrast to the web
page was not high enough on visually noisy pages.

74 6 User study 2: Swabbing feedback

Figure 6.6: The user making longer gestures after an expla-
nation about the true location of the targets

6.6 Discussion

Before enabling the feedback mechanisms, the user did not
notice that she selected the wrong options. Most likely, the
semantics of the menu options were not clear to her due
to her lack of computer experience. She therefore was un-
able to verify the correctness of her choices. It is unclear
whether the setting provided sufficient motivation for the
user to actually select the correct options since merely re-
sponded to instructions and did not expect any particular
outcomes from performing the gestures. This might ex-
plain why even in the end, after realizing that her gestures
didn’t select the options she intended to select, she didn’t
alter her behavior. Nevertheless, the two feedback methods
have merit, as they provided the user with the information
she would have needed to correct her input.

It is also unclear whether it is possible to inspire users to
move towards the screen edge without providing any ex-
planations while keeping the labels and the actual targets
at completely different locations. Nevertheless, the corri-

6.6 Discussion 75

Figure 6.7: Due to the precomposition of the shade and the
pie segments, dark web site appeared less shaded in the pie
segments than outside, instead of making the labels more
readable

dor lines gave the user a strong incentive to move towards
the center, and then towards the target, because she did not
want to cross the corridor lines. This led to her preferring to
start the gesture in the middle in order to spare the effort of
first sliding there — a positive outcome. The corridor lines
have helped in using the system correctly, more so when
they extended all the way to the edge of the screen. Hence,
this design was also used in the main study.

In response to the statement about contrast, two changes
were made: the shade against the website was made darker,
and implemented as a layer that is independent of the back-
ground colors of the menu options. For this study, both the
shade and the pie segments were precomposed in the same
layer. Therefore, on dark backgrounds, the web site was ac-
tually more clearly visible in the pie segments than outside
of the circle.

76 6 User study 2: Swabbing feedback

6.7 Limitations

Different users may understand the instructions differently,
and may understand that the movement has to be per-
formed in a straight line. Users with more computer ex-
perience are also more likely to recognize that an incorrect
action was triggered as a result of their input. After a few
tries, they may discover on their own how the gesture is
interpreted.

While the user’s tremor intensity was relatively low, this
was not a problem for this study. From screenshots like
the one in figure 6.2 it is clear that the biggest contributor
to incorrect selections were incorrect mental models about
Swabbing. In addition, the tremor was still strong enough
for her to say that she would prefer the sliding movement
over having to tap the small toolbar buttons.

77

Chapter 7

Longitudinal Study:
Swabbing-based web
browser

7.1 Study Design

While Hurtmanns [2011] and Huck [2012] had already es-
tablished the suitability of Swabbing for users with hand
tremors in lab settings, it was unknown how Swabbing per-
formed when used on a regular basis for real-world tasks.
A longitudinal single-subject design was chosen to fill this
gap.

The long duration of the study would allow to assess
the learning curve of using the tested input techniques,
and reveal problems that only occur with regular or pro-
longed use. For instance, one user of the hierarchical Swab-
bing menu (Huck [2012]) expected to “go mad” given the
prospect of typing a whole letter with this technique. It is
possible that with Swabbing the user might become frus-
trated or fatigued more quickly, limiting its suitability for
every-day use. By using Swabbing for real-world tasks
over a long period of time, problems specific to certain tasks
are more likely to be revealed than during short term use or
when defining the task upfront.

78 7 Longitudinal Study: Swabbing-based web browser

Performing studies with multiple participants requires a
standardized treatment schedule to maintain comparabil-
ity of the results. Often this means measuring data that can
easily be compared between participants, thereby neglect-
ing effects unique to individuals, even though they may
provide valuable insight as well. A single-subject design
allows the study to evolve as new information comes to
light, so unexpected findings can be explored more easily.
Since comparability to other users is not an issue, qualita-
tive analysis can be used more easily to gain a deeper un-
derstanding of how the tested input techniques impact the
user.

For this study, two independent variables were modified:
Swabbing support, and the number of characters per Swab-
bing menu entry. As a baseline for comparison with tra-
ditional interfaces, the user first performed six sessions
without Swabbing support. Then, Swabbing support was
turned on. While in general the user could choose freely
whether he wanted to use Swabbing or not, he was re-
quired to use it for the training tasks at the beginning of
every session (starting with the seventh). After six sessions
with Swabbing support, a change request by the user was
incorporated into the software.

In order to make the options in the text menu easier to hit,
every option should feature two characters instead of one,
increasing the opening angle and therefore the target size.
The outer character would be selected as before while the
inner character would be selected by performing the Swab-
bing gesture in the opposite direction, i.e., from the outside
in. To make it easier to know in which direction the gesture
would have to be performed, the alphabet was split in half,
using the first half on the outside and the second half on the
inside. This way, familiarity with the alphabet might speed
up the learning process. This design was used for six more
sessions, while the Swabbing menus unrelated to text, as
well as the cursor menu, remained unmodified.

See table 7.1 for a schedule of the individual sessions.

7.2 Setup 79

Figure 7.1: The user at his desk, using the browser in the
typical configuration

7.2 Setup

For the study, a 16 GB iPad 2 with iOS 6.0.1 was used. Its
dual core processor proved essential to process screenshots
in the background while keeping the interface responsive.
On the iPad 1, the software would frequently crash by
exhausting the available memory because the screenshots
couldn’t be processed quickly enough.

According to the user, the iPad was used in the same sit-
ting position for every session (see figure 7.1). He would
put the iPad straight in front of him, while his arms were
unsupported.

Since the user is German, the iPad was set to German as
well (see figure 7.2). All auto correction features were dis-
abled (see figure 7.3), since only the effect of the mechanics
on the user should be tested, not how well the raw input
is manipulated. While this makes the Swabbing based key-
board and the native keyboard more comparable, see figure
7.4 for one case in which the iPad still showed special be-

80 7 Longitudinal Study: Swabbing-based web browser

Figure 7.2: iPad Settings — Language: German

havior.

The keyboard layout was set to German, but using the
QWERTZ layout (see figure 7.5). Otherwise, the keyboard
would have featured keys for umlauts, which the user was
discouraged to use for better comparability with Swabbing,
lacking support for special characters.

Finally, the multitouch gestures were turned off to prevent
conflicts with the five-finger tapping gesture to toggle the
visibility of the Swabbing overlay (see figure 7.6).

7.3 Participant

The user was a 66 year old male classic car enthusiast, as
made apparent by the web sites he visited. Since age 12 he
is near sighted and wears glasses.

He suffers under a severe essential tremor / intention
tremor that causes his hands to tremble when deliberately
interacting with his environment. It was first noticeable at
age 20, and periodically increased in intensity since. He
does not use deep brain stimulation. He is right-handed,

7.3 Participant 81

Figure 7.3: iPad Settings — Keyboard features: off

and says the tremor is slightly more intense in that hand.
His voice is also noticeably affected by the tremor.

The intensity of his tremor increases when he is nervous
or stressed, e.g., when he’s around people. Alcohol con-
sumption can temporarily decrease the tremor’s strength
— according to the user, this is true for essential tremors
in general. However, the following morning the tremor in-
tensity would usually be worse than otherwise. Drinking
coffee increases the tremor strength as well. According to
the user, the tremor intensity is not affected by his level of
fatigue.

82 7 Longitudinal Study: Swabbing-based web browser

Figure 7.4: After accidentally pressing the Shift key without noticing (top left), a
capital “A” is inserted (top right). After noticing the error and pressing backspace
(bottom left), the iPad puts the Shift key in its letter-only state (bottom right). As a
result the user repeated the mistake before noticing the behavior.

Figure 7.5: iPad Settings — Keyboards: German (QWERTZ
layout)

7.3 Participant 83

Session Date Typing Words Aiming Links Total
1 2013-04-16 0:07:55 50 0:02:12 10 0:48:31
2 2013-04-17 0:07:59 50 0:01:31 10 0:51:59
3 2013-04-18 0:07:41 50 0:01:10 10 0:13:04
4 2013-04-19 0:07:00 50 0:01:48 10 0:36:42
5 2013-04-20 0:06:47 50 0:01:35 10 1:00:16
6 2013-04-22 0:05:43 50 0:01:14 10 0:28:14
Sum 0:43:05 300 0:09:30 60 3:58:46
7 2013-04-28 0:12:13 20a 0:05:42b 10 0:55:09
8 2013-04-30 0:09:24 20 0:08:25c 10 0:43:12
9 2013-05-02 0:09:27 20 0:01:45 10 0:31:42
10 2013-05-04 0:09:06 20 0:01:58 10 0:31:47
11 2013-05-05 0:18:58d 20 0:01:25 10 0:51:03
12 2013-05-06 0:07:11 20 0:01:13 10 0:32:03
Sum 1:06:19 120 0:20:28 60 4:04:56
13 2013-05-12 0:08:44 20 0:01:47 10 1:03:38
14 2013-05-13 0:06:16 20 0:01:08 10 0:43:40
15 2013-05-14 0:05:55 20 0:01:41 10 0:54:48
16 2013-05-17 0:06:37 20 0:01:44 10 0:40:30
17 2013-05-19 0:08:19 30e 0:01:13 10 1:01:50
18 2013-05-21 0:05:56 20 0:01:31 10 0:45:22
Sum 0:41:47 130 0:09:04 60 5:09:48

Table 7.1: Session schedule listing the duration of the training tasks with the num-
ber of presented words and links. The sessions are grouped by their Swabbing
conditions: no Swabbing, one character per entry, two characters per entry.

aSince the typing speed with Swabbing was expected to be lower, the number of presented words
was reduced to leave enough time for free usage of the browser

bThe user needed over three minutes to select the second link because this was the first time a
target was not part of the first group in the aiming menu

cThe user was interrupted by a phone call for over seven minutes
dThe user was interrupted by a phone call
eAfter completing one round of the typing task, the user accidentally pressed the home button,

ending the recording. He started over right after, resulting in three completed rounds.

Figure 7.6: iPad Settings — Multitouch gestures: off

84 7 Longitudinal Study: Swabbing-based web browser

The user first came in touch with computers in 1979, men-
tioning a Sharp computer with cassettes and telling stories
about physically huge 25 MB hard drives. Today, he is still
actively using computers for three to twelve hours a day.
His activities include programming his own website, using
desktop publishing software, surfing the internet, writing
e-mails, editing videos and more. All his computers (desk-
top, netbook and web server) are running Windows XP.
Aside from using Microsoft Office, he prefers open source
software, mentioning Gimp, Scrybus and Firefox as often
used programs.

On his desktop PC, he is using a classic IBM keyboard and
a normal, symmetrical mouse with two buttons. For his
notebook, he has a smaller mobile mouse. Since the tremor
intensity is lower in his left hand, he uses it to control the
mouse, even though he is right-handed. However, he did
not switch the order of the mouse button. To dampen the
tremor he holds his left hand with the right one while using
the mouse.

While he was taught how to touch type on type writers at
young age, he never used that technique. When typing
on a hardware keyboard today, he uses multiple fingers,
possibly pressing the same key with different fingers or
even fingers of the other hand. While typing, he frequently
switches between looking at the keys and the screen, occa-
sionally continuing to type while looking at the screen.

The user also has a phone that he uses daily for phone calls,
text messages, reminders, listening to music and watching
short video clips. The phone does not have a touch screen
and the buttons are of normal size. He has been using mo-
bile phones since 1993.

Other than trying the pinch & zoom gesture on a friend’s
tablet he had no experience with either tablets or touch
screens prior to this study. When asked about expected
problems, he anticipated problems with typing on the key-
board due to the size of the buttons and accidental double
taps.

He started using the internet in 2000 and has a lot of ex-

7.4 Measurements 85

perience doing so. He likes to use it for shopping, home
banking, searching for information, discussions in car re-
lated sites and maintaining the web site of the car club he is
in.

When asked about remaining difficulties of using comput-
ers as a tremor sufferer, he mentioned often hitting key-
board keys twice in a row by accident, or hitting the wrong
key due to the tremor. While he finds it difficult to hit tar-
gets with the mouse, he prefers not to reduce the cursor
speed. As one of the most difficult things to use he men-
tioned drop down menus, especially when they include
submenus.

Previously, the user participated in a study where he was
asked to move his finger in predefined directions and type
on a hardware keyboard. His finger’s motions were filmed
with a camera for analysis.

7.4 Measurements

After interviewing the user about his demographics, bodily
ailments and experience with technology (see the previous
section), he was asked about his mental model of the soft-
ware after seeing it for the first time.

Before and after each session, the user was asked to re-
port his emotional state using self-assessment mannikins,
describing emotions through the three axes valence, activa-
tion and dominance. Quoting Grimm and Kroschel [2005]:

Valence describes the positive or negative
strength of an emotion. Activation details the ex-
citation level (high vs. low). Dominance refers
to the apparent strength or weakness of the
speaker.

In addition, the user reported how tired he was on a scale
of one to ten, ten being the highest.

86 7 Longitudinal Study: Swabbing-based web browser

Next, his tremor intensity was measured using spiralome-
try.

After each session, the user was asked to rate the following
using a Likert scale:

• Satisfaction with the software

• Input precision

• Input speed

• Difficulty of entering text

• Difficulty of opening links

• Difficulty of controlling the browser

Finally, he was asked to provide additional comments us-
ing the voice recorder.

During each session, the user was asked to think out loud
while his voice was recorded.

The software saved screenshots after important events that
might result in changes on the screen. For backup, addi-
tional screenshots were taken one second after all touches
ended and at least every five seconds.

In addition, the software created a log file with the follow-
ing information (and more) along with a timestamp:

• Touch coordinates for all touch phases (began,
moved, ended)

• The view and layer at these coordinate (began, ended)

• The layouts of the Swabbing menus

• The Swabbing menu stack

• Results of the Swabbing analysis, like the selected tar-
get and the length of the gesture path

7.4 Measurements 87

• External events of web pages (e.g., URL change,
scrolling, zooming)

• Internal events of web pages (e.g., focus, blur, click,
mousedown)

• Detailed information about the state of the typing and
aiming tasks

• The value, selection range and position of edited text
fields

For the text entry task, we define the presented string as the
words the user was asked to type, separated by a space
character. The transcribed string is the actual input provided
by the user. To analyze the error rate, we also need the in-
put stream: the sequence of all keys pressed, including the
backspace key. For both the native touch keyboard and for
Swabbing, a key press refers to a manipulation of the text
field, i.e., inserting or deleting a character. Keys that were
touched but did not alter the text field (e.g., because the
touch ended too far outside of the key’s area), are not con-
sidered key presses.

Analyzing the log files allowed measuring the number of
words per minute (WPM) that the user typed during the
text entry task, as well as the uncorrected and corrected
error rates. The definitions of these measures, taken from
MacKenzie and Tanaka-Ishii [2010], are as follows:

WPM = |T |−1S × 60× 1
5 with |T | being the length of the tran-

scribed string and S being the number of seconds from the
start of the first touch that resulted in a key press to the start
of the last touch that resulted in a key press. Note that this
does not include the time it took to type the last character,
taken into account by subtracting 1 from the length of the
transcribed string.

Uncorrected error rate = IF
C+INF+IF and corrected error rate

= INF
C+INF+IF , with IF being the number of incorrect char-

acters that were inserted, but subsequently fixed, and INF
being the number of incorrect characters that were inserted,
but not fixed. C is the number of correct characters in-
serted. For details about this classification, please refer to

88 7 Longitudinal Study: Swabbing-based web browser

MacKenzie and Tanaka-Ishii [2010]. The analysis was per-
formed using StreamAnalyzer (see Wobbrock and Myers
[2006]) by creating the appropriate XML files from the log
files.

The recorded touches were matched with recorded events
like changing the value of a text field or scrolling the web
page. This allowed a more precise measurement of the
user’s performance than merely looking at the logged edit-
ing events would have, since random load-induced delays
between touching the screen and the software interpreting
the touch as a key press are bypassed this way. This also
makes other measures produced by the StreamAnalyzer
more meaningful, such as gestures per character. Only
counting changes in the value of a text field would not take
into account extra touches during text entry that did not
result in such a change.

For the aiming task, the user needed to select a link cho-
sen at random by the software (selection step), followed by
selecting the continue button (confirmation step). By ana-
lyzing the log files, selection and confirmation times were
measured. The selection time describes the time between
the software presenting a link and the end of the touch to
select it successfully. The confirmation time describes the
time after successfully selecting a link until the end of the
touch to select the confirmation button.

For Swabbing, the continue button is a special case since its
location in the aiming menu is always the same. Therefore,
the time to confirm a selection does not include matching
the target indicator to the corresponding menu entry, ex-
cept for the first few rounds. In addition, the number of
touches per selection and per confirmation were extracted
from the log files.

The important difference between the selection and confir-
mation step is that the first one requires the user to search
the page for the link to click and, for Swabbing, find the
corresponding menu entry. The confirmation step always
referred to the continue button that was always at the
same known position on the screen as well as the same
known position in the Swabbing menu (first entry in the

7.5 Procedures 89

first group). The confirmation time therefore measures the
raw speed of the input techniques, though this can include
switching to the first group of links before selecting the con-
tinue button.

Finally, by listening to the audio logs and investigating
some of the session recordings, an attempt was made to
identify problems with using Swabbing in the wild, or in
web browsers, specifically.

7.5 Procedures

Before each session, the user filled out the first part of the
questionnaire, performed a spiralometry with both hands
and turned on the voice recorder. The questionnaire can
be found in appendix C.3 “Longitudinal Study: Swabbing-
based web browser”.

Next, the user unlocked the iPad, and started the test soft-
ware, first showing the text input task. For this purpose,
ten words were shown above an input field (see figure 7.7).
The input field was automatically focused, triggering ei-
ther the display of the native touch keyboard (sessions 1-
6), the Swabbing text menu for letters using one character
per entry (sessions 7-12) or the Swabbing text menu for let-
ters using two characters per entry (sessions 13-18). After
five rounds (native touch keyboard) or two rounds (Swab-
bing), respectively, the text selection task was complete.
The user needed to confirm each round by activating the
continue/skip button.

The text entry task was followed by the aiming task. Here,
a mockup web page was shown to provide a realistic ex-
ample for typical distributions of tapping targets on web
sites. It featured a vertical and a horizontal list of links,
as well as several paragraphs of text containing links. The
link select was marked with a circle (see figure 7.8). If the
user selected a link, feedback was provided whether the se-
lection was correct or incorrect (see figure 7.9). For other
selections, accidental scrolling, etc. no feedback was pro-
vided. After ten rounds with one link each the aiming task

90 7 Longitudinal Study: Swabbing-based web browser

Figure 7.7: The text entry task

Figure 7.8: The aiming task. The link to click is marked.

was complete. The user needed to confirm each round by
activating the continue/skip button.

For each round of both tasks, the continue button was deac-

7.5 Procedures 91

Figure 7.9: Incorrect (left) and correct (right) selection dur-
ing the aiming task

tivated for five seconds. During aiming tasks, it would con-
tain a red label reading the German word for “Skip” after
the five seconds, or a green label reading the German word
for “Continue” once the correct link had been selected.

After the aiming task, a thank you note was shown for one
second, after which the tab was replaced with a new tab
to start with a fresh page history. New tabs automatically
load googleċom. The user was now free to use the browser
as he wished. He was asked to aim for a session length of
roughly an hour, but could end the software at a time of his
choosing.

To stop the software, he needed to press the home button.
The software was configured to exit in this case, making
sure the software was in a consistent state at the beginning
of each session.

Finally, the user completed the second part of the question-
naire and another round of spiralometry. He was asked
to provide more comments using the voice recorder or the
back of the form, and to turn the voice recorder off when
done.

92 7 Longitudinal Study: Swabbing-based web browser

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
V
al
en
ce Before

After

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
ct
iv
at
io
n

Before

After

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

Session

D
om
in
an
ce

Before

After

Figure 7.10: The user’s emotional State (see Grimm and
Kroschel [2005]) before and after each session

7.6 Quantitative Results

7.6.1 Results from the questionnaire

The questionnaire captured the user’s emotional state (fig-
ure 7.10), level of tiredness (figure 7.11), tremor intensity
(figures 7.12 and 7.13), satisfaction with the software and a
self-assessment of input precision and speed (figure 7.14),
and ratings of text entry, link selection and general browser
control difficulty (figure 7.15).

The user’s emotional state was usually the same before and
after the session. Occasionally he would report having been
calmer afterwards by rating his activation lower. Since the
user always reported the same value for valence and domi-
nance, it is possible that the meaning of the self-assessment
mannikins were not clear to the user. It is also possible that

7.6 Quantitative Results 93

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Session

T
ire
d
ne
ss

Before

After

6

7

8

9

10

Figure 7.11: The user’s tiredness before and after each ses-
sion (10 being most tired)

he preferred not to report his emotional state in the first
place. During meetings with the user, he was always very
friendly, calm, patient and understanding, so it is also pos-
sible that he was simply not easy to affect. However, the
audio log clearly indicated moments of frustration. It is
possible that the frustration had subsided by the time the
session was over, leaving no impact on the emotional state.

After session 10, the user reported being slightly less tired
than before, otherwise the levels reported before and after
each session were the same. Given that the user routinely
uses computers for several hours a day, it is very possible
that he did not find the sessions exhausting. He may also
not have considered reporting exhaustion when asked for
his level of tiredness.

While the user is right-handed, the measurements regard-
ing his left hand are noteworthy. Here, his tremor inten-
sity varied strongly from session to session, sometimes be-
ing moderate (5-10mm) and sometimes being severe (>
20mm). In half the cases, the left hand’s tremor intensity
also varied before and after the session, sometimes being
lower after the session, but more often being higher. Espe-
cially after using the browser with two characters per menu

94 7 Longitudinal Study: Swabbing-based web browser

L R

L R

Figure 7.12: Spiralometry of the user before (top) and after
(bottom) the first session. The distance between the lines is
1cm.

entry, the tremor was often more intense than before. In
general, tremor intensity varies with stress, so this could
point to higher stress levels during this condition. Since the
user rated was very satisfied with the browser in this con-
dition (see figure 7.14), it is unlikely that frustration was
the source of the change in intensity. However, it conceiv-
able that the double character layout increased the cogni-
tive load and thereby affected the tremor intensity.

The right hand, however, showed a remarkably consistent
tremor intensity, before and after each session as well from
session to session. While the right hand’s tremor intensity
usually was marked (10-20mm), it never appeared to be se-
vere (> 20mm), as opposed the the left hand with multiple

7.6 Quantitative Results 95

<n5mm

5-10mm

10-20mm

>n20mm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18T
re

m
or

ns
ev

er
ity

n(
L)

Before

After

<n5mm

5-10mm

10-20mm

>n20mm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Session

T
re

m
or

ns
ev

er
ity

n(
R

)

Before

After

Figure 7.13: The user’s tremor intensity before and after
each session, measured via spiralometry, using the peak-
to-peak value of the drawn line. Left hand on the top, right
hand on the bottom. The user is right-handed.

occasions of severe tremor strength. This is especially re-
markable since the user originally reported that his tremor
is stronger in the right hand.

There is a possibility that the user mixed the spirals up,
drawing them with the other hand. It is also possible that
the dominant hand is generally more stable for tremor suf-
ferers, or that actively using a hand stabilizes its tremor
intensity. Finally, please note that the categorization of
the spiralometry results was done by hand, and that other
people might disagree with the ratings, possibly changing
these findings.

Generally, the user was “relatively satisfied” with the soft-
ware, but “very satisfied” after the sessions with two char-
acters per menu entry, and “somewhat dissatisfied” after
the first session with Swabbing, commenting on it being
“partially too slow”.

Self-assessed precision was mostly “relatively precise”, and
“very precise” after four of the six sessions with two charac-
ters per menu, again showing that this configuration is the
user’s favorite. The self-assessed input speed was usually
reported as “relatively high”, with only three exceptions.

96 7 Longitudinal Study: Swabbing-based web browser

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

--

-

o

+

++

S
at
is
fa
ct
io
n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P
re
ci
si
on

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

S
pe
ed

Session

--

-

o

+

++

--

-

o

+

++

Figure 7.14: The user’s satisfaction with the software, and
self assessment of input speed and precision, measured on
a Likert scale, from very dissatisfied/imprecise/slow (–) to
very satisfied/precise/fast (++)

For the single character Swabbing layout, input speed was
rated “neutral” two times, whereas the double character
layout was rated “very fast” once. At least among the
Swabbing layouts, the user’s preferences are clear.

As we will see later, the user entered significantly fewer
words per minute when using Swabbing for text entry in-
stead of the native touch keyboard. This is hardly reflected
in his self-assessed speed. He also specifically claimed at
one point that his input speed was on par with that of us-
ing the touch keyboard. The most probable explanation for
this discrepancy is that the number of words of the text en-
try task was reduced from 50 to 20 for the Swabbing ses-

7.6 Quantitative Results 97

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

--

-

o

+

++

T
ex

tGE
nt

ry
GD

iff
ic

ul
ty

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
im

in
gG

D
iff

ic
ul

ty

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18G
en

er
al

GB
ro

w
se

rG
D

iff
ic

ul
ty

Session

--

-

o

+

++

--

-

o

+

++

Figure 7.15: The user’s rating of the text entry, link selection
and general browser control difficulty levels measured on
a Likert scale, from very easy (–) to very difficult (++)

sions to leave enough time for free-form browser use. As
table 7.1 shows, the text entry sessions ended up being sim-
ilarly long this way, as intended. Maybe the user was more
aware of how long he took to finish the typing task than of
his actual input speed. It is also possible that he paid more
attention to his speed during the Swabbing sessions, and
overestimated his absolute typing speed based on noticing
relative improvements.

Finally, the assessment of difficulty levels show that in gen-
eral, the user found the software least difficult to use during
the double character Swabbing condition. However, since
his rating of the text entry difficulty changed far less than
his rating of the aiming difficulty and general browser con-

98 7 Longitudinal Study: Swabbing-based web browser

trol difficulty, it’s probably more appropriate to attribute
perceived ease of use to having learned to control the Swab-
bing interface well enough. This indicates that the number
of sessions per condition may have been too low to reach
the end of the learning curve, but that two weeks or twelve
sessions of near daily use could be sufficient. Measuring
the link selection time by analyzing the log files confirms
this observation, with the learning curve stabilizing during
the second half of the Swabbing condition, i.e., from session
13 onwards.

7.6.2 Results from analyzing the log files

All results presented her refer to the text entry and aiming
tasks the user performed at the beginning of every session.
The data from the free form browser usage was not ana-
lyzed quantitatively.

The average selection time per session was initially lower
for tapping (see figure 7.16) even though the number of
touches needed for this task was higher than one (see fig-
ure 7.17), indicating that the user unsuccessfully touched
the screen a few times. However, over time the selection
time using Swabbing was greatly reduced, reaching as lit-
tle as 4s compared to 3s for the native condition.

Since the continue button is always in the same place, re-
moving the need to search for it, the gap between the selec-
tion and confirmation times when using Swabbing repre-
sents the overhead of having to first locate the menu entry
that belongs to the marked link. When looking at the con-
firmation times when using Swabbing, it becomes clear that
the technique itself is slightly superior to tapping, at least
for the user of this study: with Swabbing, he repeatedly
managed to need about two seconds per confirmation step,
whereas he consistently needed more than 2.5 seconds with
tapping.

Session 16 contains a 40s long outlier in that the user for-
got to first switch to the first group of links before confirm-
ing the selection, causing him to select an incorrect link (in

7.6 Quantitative Results 99

Mean Link Selection & Confirmation Times per Session

Se
le

ct
io

n
&

Co
nfi

rm
at

io
n

Ti
m

e
(s

)

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Session

Step / Technique
Selection / Tapping
Confirmation / Tapping
Selection / Swabbing
Confirmation / Swabbing

Figure 7.16: Average selection and confirmation times per session for the aiming
task

addition to the correct one), followed by waiting and won-
dering why no new link was shown. Removing this point
would result in an average confirmation time of just 1.67
seconds for session 16, the lowest of all. However, since
the reason for the outlier can be seen as a weakness of the
aiming menu, I decided not to remove it.

Session 8 contains another outlier, this time in the selec-
tion time’s curve. Here, the user was unable to tell right
away which target indicator belonged to the marked link.
He assumed there was none, and searched for it in group
two. There, he incorrectly decided that the target indicator
of the link below was the one he had to use (see figure 7.18).
Without this outlier, the average selection time for session
8 would be 6.71 seconds. Since this definitely points out
a weakness of the current design, the outlier was kept as
well.

Note that a similar gap can be seen between selection and
confirmation times during the tapping condition. It is pos-

100 7 Longitudinal Study: Swabbing-based web browser

Mean Link Touch Counts per Session

To
uc

h
C

ou
nt

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Session

Step / Technique
Selection / Tapping
Confirmation / Tapping
Selection / Swabbing
Confirmation / Swabbing

Figure 7.17: Average selection and confirmation touch counts per session for the
aiming task

sible that this represents the advantage achieved by increas-
ing the button size. However, the irregular shape of the
two curves suggest that there are other factors that have a
stronger impact on the tapping performance for tremor suf-
ferers. One candidate for such a factor would be variances
in the tremor strength, although the spiralometry data does
not support this assumption. However, tremor intensity
can change very quickly, so this is inconclusive.

The number of touches needed for the selection and con-
firmation steps indicates the error rate (see figure 7.17).
For tapping tasks, only one touch is needed for each step,
whereas with Swabbing two touches may be needed if the
link is in a different group. As the graph shows, the average
touch count for Swabbing does not exceed two, indicating
a low error rate. Further analysis would be needed to dis-
tinguish required touches from superfluous touches.

In contrast to the findings by Huck [2012], the user was

7.6 Quantitative Results 101

Figure 7.18: Left: The red arrow within the circle would
have been the correct target indicator. Right: Instead, the
user searched for the indicator in group 2, and used the one
from the link below.

much faster when using the native touch keyboard than
when using Swabbing (figure 7.19). While he also made
a lot more mistakes then with Swabbing, he corrected
enough of them to achieve an uncorrected error rate that
is comparable to Swabbing. This means that for the user
of this study, the native touch keyboard is a viable option,
despite his strong tremor. Nevertheless he preferred Swab-
bing over the native keyboard, in particular the layout with
two characters per menu. It is possible that the sheer num-
ber of errors to correct with the touch keyboard make the
typing task more exhausting, as the user would have to
watch out for errors much more closely.

Note that the graph for the text input error rate originally
looked very different (see figure 7.21). The original data
contained numerous problems that would skew the results
quite heavily. To produce the graph in figure 7.20, the data
was cleaned:

• During the first sessions, the presented string dur-
ing the text entry task sometimes contained spe-
cial characters, like German umlauts. However, the
user had been instructed to replace ä/ö/ü/ß with
ae/oe/ue/ss. Sadly, this was originally counted as
an error. Consequently, the presented string used to
calculate the error rates was adjusted to contain the

102 7 Longitudinal Study: Swabbing-based web browser

Mean WPM + Variance per Session
W

or
ds

 p
er

 M
in

ut
e

(W
PM

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Session

Swabbing Type

Double

None
Single

Figure 7.19: Text entry speed, measured in words per minute

replacements the user produced

• Sometimes the user forgot to enter an entire word,
resulting in one uncorrected error per character of
the missing word. There was no point in testing the
user’s reading skills, therefore the missing word was
removed from the presented string used for the anal-
ysis

• When using Swabbing for the text entry task, the
word to transcribe was occasionally covered by a la-
bel of the Swabbing menu. Initially, the user tried to
close the Swabbing menu using the five finger tap-
ping gesture, to read the word and then return to
the text field. However, when he first tried this, the
continue button was triggered, cutting his typing ses-
sion short. The words thusly skipped where removed
from the presented string. Later, the user would just
guess the word to type and frequently guess incor-

7.6 Quantitative Results 103

Mean Text Input Error Rates per Session (cleaned data)

Er
ro

r R
at

es

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

13%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Session

Error Type / Swabbing Type

Uncorrected / Double
Corrected / Double

Uncorrected / None
Corrected / None
Uncorrected / Single
Corrected / Single

Figure 7.20: Error rate using the cleaned data

Mean Text Input Error Rates per Session (original data)

Er
ro

r R
at

es

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

13%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Session

Error Type / Swabbing Type

Uncorrected / Double
Corrected / Double

Uncorrected / None
Corrected / None
Uncorrected / Single
Corrected / Single

Figure 7.21: Error rate using the original data

104 7 Longitudinal Study: Swabbing-based web browser

rectly. Since he always announced his guess using the
voice recorder, it was possible to alter the presented
strings used for the analysis such that it would fea-
ture the word the user guessed, removing those errors
from the results as well.

• Finally, the user got into the habit of adding a space
character after entering a word even if it was the last
word to be entered. This would also result in an un-
corrected error. Since this is no indication of a prob-
lem with the input techniques, the final keystroke was
removed from the input data, and the space charac-
ter was removed from the transcribed string used for
analysis. Note that this change also slightly affects the
number of words per minute. However, figure 7.19
contains the unaltered data.

There are two more things to note about the error rates in
figure 7.20. During five of the corresponding text entry ses-
sions, the user decided to correct his mistakes by first mov-
ing the cursor using the cursor menu. While it is a posi-
tive result that he was able to use the cursor menu success-
fully, and did so repeatedly, the text input measures used
here break down as soon as cursor movement is involved.
Consequently, the sessions involving the user of the cur-
sor menu could not be used for the analysis, resulting in
just one round of the typing task to contribute to the results
for sessions 7, 8 and 9, and no results for session 12. It is
obvious that these results would have contained corrected
errors if this concept were well-defined for cursor move-
ments. It follows that the corrected error rate for the single
Swabbing condition is too low.

Consequently, the seemingly higher corrected error rate for
the double character Swabbing condition has to be taken
with a grain of salt. Instead of assuming that this condi-
tion increased the error, the opposite is conceivable as well:
had the user made as many or more mistakes as with the
single character Swabbing condition, he likely would have
used the cursor menu to correct them as well. Instead, the
cursor menu wasn’t used at all during this condition, pos-
sibly indicating a lower error rate. In addition, an analysis
of the errors produced in the last six sessions revealed that

7.7 Qualitative Results 105

only one mistake was made that directly indicates a prob-
lem with this layout: the user typed an “r” instead of an
“e”, and both characters are located on the same menu en-
try. The user had selected the right option, but in the wrong
direction. The other errors were typical Swabbing errors:
selecting a character next to the correct one, and selecting
the delete option instead of the space option and vice versa.
It is likely that the switch from the single to the double char-
acter layout contributed to these mistakes, as the user was
by then used to one layout and needed to now learn a dif-
ferent one. In addition, the German labels for Delete and
Space (“Löschen” and “Leerstelle”), are equally long when
taking their icons into account, and both start with an L,
possibly making them easier to mix up.

Nevertheless, the user also selected an “f” instead of an “e”.
This was a frequent mistake with the single swabbing lay-
out, indicating that this direction of movement was partic-
ularly troubling for the user (see also Huck [2012] for an
investigation into error rates depending on the direction
of movement). Since the new layout moved these charac-
ters to a different position, it was surprising to see the user
make this particular mistake again.

7.7 Qualitative Results

After completing the typing and aiming tasks in the first
Swabbing session, the user accessed his personal home-
page successfully. To protect his privacy, this session can-
not be shown, but figures 7.22, 7.23 and 7.24 show him us-
ing the same techniques equally successfully to search for
auctions related to his hobby.

In alignment with findings by Huck [2012] according to
which movements in certain directions produce more er-
rors than movements in other directions, the user reported
that his tremor would usually be lowest if he can perform
the gesture out of his shoulder, using his arm as a static
appendix. If he needs to use additional muscles for the
movement, the tremor would get stronger. This was no-
ticeable quite quickly: the user frequently selected the letter

106 7 Longitudinal Study: Swabbing-based web browser

Figure 7.22: Using the cursor menu to clear the address field

“f” when trying to enter the “e”, but was able to hit delete
very reliably. The delete option, located in the upper right
corner, apparently was right on the circle his arm would de-
scribe when only using the muscles in the shoulder to per-
form the gesture, while for the “e”, located in the bottom
left corner, the user needed to combine various muscles to

7.7 Qualitative Results 107

Figure 7.23: Opening a URL and focusing the search field on the page

effect a straight movement in the proper direction.

The user suggested abandoning the circular layout alto-
gether, in favor of a two column, multiple rows layout that
would work similar to the double character Swabbing de-
sign by offering two options per menu slot.

108 7 Longitudinal Study: Swabbing-based web browser

Figure 7.24: Entering a search term, closing the Swabbing overlay and scrolling the
page

The user reported having improved his tapping accuracy
to 70-80% by not pressing the screen firmly like a hard-
ware button, but as lightly and briefly as possible. When
he later demonstrated this technique while filming the mo-
tions of his hands, he seemed to employ a yo-yo-like ap-

7.7 Qualitative Results 109

proach, namely almost “throwing” a finger onto the screen
while starting to pull back just before actually touching it.
In some cases, he would miss the screen entirely this way,
but often, this technique allowed him to limit the time dur-
ing which the finger would actually touch the screen, re-
sulting in better gesture recognition. This approach would
likely also reduce the number of accidental double taps and
thereby reduce the amount of errors the user has to correct.
Looking at the corrected error rate (figure 7.20), there is a
sudden drop in the error rate for the native touch keyboard
that may be explained by this discovery.

The user also discovered on his own that he could more
successfully click links by zooming before clicking. For
this, he used the pinch and zoom gesture. He reported that
zooming this way felt very uncontrolled, even “nasty” —
the tremor symptoms in this case are huge, probably be-
cause it required the coordination of many muscles. This
could be different for other tremor types than his intention
tremor.

He was unaware of the double-tapping gesture for zoom-
ing, although he had occasionally used it by accident. How-
ever, he could not make sense of the behavior of the iPad
in those cases. Nevertheless, after demonstrating the tech-
nique to him, he sounded very interested, saying it seemed
useful to him.

Another positive discovery the user made was noticing that
he could prevent incorrect selections by considering the
feedback, deliberately moving in a different direction to
then wait until the target point reached the desired option
(see figure 7.25).

Some cause for concern is the finding that the user some-
times made mistakes by only checking whether he selected
the menu entry he intended to select, but not whether this
menu entry would then actually trigger the intended ac-
tion. Especially for the aiming tasks, this is a problem —
for instance, at one point the user was absolutely convinced
that he had confirmed a link selection during the aiming
task. While he did indeed select the first menu entry, the
aiming menu was still in group two. Consequently, a link

110 7 Longitudinal Study: Swabbing-based web browser

Figure 7.25: Course correction during a Swabbing selec-
tion, based on the closed-loop feedback

was selected, not the continue button. Even though incor-
rect links were marked (see figure 7.9), the user did not no-
tice his mistake, waiting for a new link to be marked by
the system, until finally discovering that he could press the
continue button. However, he thought that this had been
a new round during which, for some reason, no link was
shown — rather than realizing that he had never actually
ended the previous round in the first place. This problem
should be addressed in future work, possibly by extending
the closed-loop feedback to also highlight the represented
element (i.e., a link on the web page) while the user per-
forms a Swabbing gesture.

7.8 Discussion 111

7.8 Discussion

The user’s high satisfaction with the third condition may be
the result of higher input speed, generally becoming more
accustomed to Swabbing, or the fact that the main idea for
allowing characters to be selected from outside came from
the user himself, making him personally involved in the
outcome.

Allowing two characters per menu entry seems to have
lowered the user’s typing speed at first, but this was ex-
pected. Not only were the characters in different places
than before, he also had to adjust to selecting options from
the outside in. However, the user also paused (i.e., did not
type for 17 seconds) to remark on how he liked that in the
word “attraktiver”, the last two pairs of letters (i+v and e+r)
were also pairs in the letter menu, easing text entry.

The last finding also indicates that there are three possi-
ble sources for the generally higher input speed during the
third phase: not every character insertion requires a hom-
ing movement, the targets are bigger, allowing the user to
be less precise and therefore faster, and general adaptation
to Swabbing. The curve suggests that input speed might
improve further, possibly due to learning not just the posi-
tion and direction of individual characters, but even whole
sequences of movements for more frequent character com-
binations.

Typing with Swabbing allows preventing errors in a way
not possible with the native keyboard: it is possible to no-
tice one chose the wrong letter (as opposed to having cho-
sen the right one, but not aiming correctly) and still cor-
rect (or abort) the gesture before it is final. With the iPad
keyboard, the gesture can be aborted by moving far away
from the pressed key. Note that Huck [2012] actually imple-
mented his touch keyboard so that the user could first touch
the screen and then move towards the intended character.

112 7 Longitudinal Study: Swabbing-based web browser

7.9 Limitations

The main limitation of this study is the single user. Dif-
ferent types of tremor produce problems in different areas,
so it is possible that positive results here might be negative
for other users. In addition, the user’s extensive experi-
ence with computers may allow him to understand com-
plex user interfaces better than other users would, possibly
masking some existing problems. He also was remarkably
tenacious when problems arose, occasionally spending sev-
eral minutes of trial and error until the system reacted the
way he wanted to. Since one motivation for Swabbing in
general is that touch screens need to be usable for older
users to better cope with cognitive decline, tests with users
who show such symptoms might turn out less favorable.

This user also was not interested in more sophisticated web
apps, like webmail interfaces or social networking sites.
Whether the Swabbing-enabled web browser can be used
for more serious tasks, like ordering products in an online
shop or doing home banking, remains to be seen.

Another problem is that some of the text input data had
to be discarded because of accidental (first condition) or in-
tentional (second and third condition) changes of the cursor
position, since the used measures only allow for inserting
characters and deleting them from the end of the input. For
this reason, the actual error rates for the second condition
are unknown.

It would be interesting to see whether users can provide
more meaningful ratings of the software after having seen
all conditions.

As the learning curves have shown, it may be advisable
to let the user grow accustomed to an input technique for
more than six sessions. It would also be interesting to see
whether the Swabbing condition with one character per
menu entry would remain slower than the double letter
condition if used last.

113

Chapter 8

Summary and future
work

By making a complete web browser controllable via Swab-
bing, a lot was achieved.

The closed-loop feedback design is a response to previous
work by Hurtmanns [2011] and Huck [2012]. It has been
shown to allow users to assess the accuracy of their input
while performing the gesture and helps in learning to aim
for the edge of the screen instead of the menu labels, if the
visual design doesn’t achieve this on its own.

Allowing users to enter lowercase letters and special char-
acters is one part of making Swabbing usable in real-world
text entry scenarios. The other is controlling a text cursor
using Swabbing, including support for selections and ac-
cess to the clipboard. This allows Swabbing to be used to
edit existing text, possibly leading to more interesting re-
search. The user used both capabilities successfully.

One of the most important contributions may be the aiming
menu, since it is adaptable to other tapping based interfaces
as well. It can augment them without necessarily having
to change the underlying application. This could lead to
Swabbing being implemented as a general input method
on the system level.

114 8 Summary and future work

This thesis is the first to compare Swabbing with estab-
lished technology like the touch keyboard on the iPad,
revealing that such sophisticated implementations can do
surprisingly well even for users with a hand tremor. It
might inspire research to directly address the tremor re-
lated problems when using the touch keyboard, like fil-
tering double taps, possibly leading to a technique that
matches Swabbing’s outstanding error rates while surpass-
ing it in term”s of speed. Alternatively, this result can pro-
vide a challenge to increase achievable input speeds with
Swabbing.

Furthermore, the first longitudinal study using Swabbing
provides insight into the learning curve when using swab-
bing for text entry and aiming tasks. Specifically for aiming
tasks, Swabbing provides a reliable and quick way to acti-
vate targets on a screen. For known targets such as those in
the home menu or for the confirmation step in the aiming
task, Swabbing

The double character Swabbing design shows how the pre-
vious capacity of Swabbing menus can be significantly
increased, though further studies are necessary to show
whether the input is equally precise in both directions.

By employing Swabbing in a non-square layout, the need
for a useful definition of the target size was brought up,
with a suggestion for such a formula. This could eventually
help to improve the reliability of Swabbing by providing an
objective measure to evaluate Swabbing implementations.

115

Appendix A

iPad keyboard layouts

116 A iPad keyboard layouts

Figure A.1: Letters for plain text

Figure A.2: Letters for URLs

117

Figure A.3: Special characters for plain text, shift off

Figure A.4: Special characters for URLs, shift off

118 A iPad keyboard layouts

Figure A.5: Special characters for plain text, shift on

Figure A.6: Special characters for URLs, shift on

119

Appendix B

Log file player

To make the recorded data more accessible, a player ap-
plication was created (see figure B.1). It turns the log file,
the screenshots and the audio recording into an augmented
video showing the user’s session. The player allows jump-
ing to arbitrary points during the session and offers play-
back control via keyboard controls.

It shows active touches in green, and fades out ended
touches after turning them red. It visualizes all the detec-
tion results by the Swabbing algorithms and can show the
current Swabbing menu hierarchy.

Missing from the screenshot is the player’s ability to show
the state (value, cursor, selection, location) of whatever text
field is focused, be it the URL bar or a text field on web site,
regardless of whether it is edited with the native keyboard
or via Swabbing. This was useful to validate that text entry
by the user is properly captured.

120 B Log file player

Fi
gu

re
B

.1
:L

og
fil

e
pl

ay
er

121

Appendix C

Material for the user
studies

C.1 User study 1: Link association

Short instructions for preparing the user study (“Prepa-
ration”), instructions for performing the study with one
participant (“Execution”) and the form used to record the
user’s replies (“Survey Response”).

Userstudy: Link Association

Preparation
1. Install the prototype

2. Test the prototype

3. Add bookmarks for the following links:

1. Galileo Galilei (5)

2. Galileo Galilei (20)

3. Jeanne d’Arc (20)

4. Albert Einstein (5)

5. Simone de Beauvoir (20)

Userstudy: Link Association

Execution
1. Open three tabs (1: Prototype (?1,1), 2: Prototype (no parameters), 3: links.html)

2. Enter fullscreen mode

3. Explain the software: „This is a prototype of a web browser for the iPad that is designed for people
with hand tremor, i.e. trembling hands“

4. Let the user fill out and sign the consent form

5. Assign a number and variant to the user on both the consent form and the survey response form

6. Explain the Swabbing UI: „The more your hand is shaking, the harder it is to hit small targets on
the screen. As it turns out, your sense of direction when moving longer distances is not affected.
The browser uses Swabbing to exploit that fact.
You control the browser with a circular menu of commands. To activate a command, you locate the
side of the screen that it belongs to, and slide your finger in the direction of that edge.
When you stop touching the screen and have moved far enough away from the initial touch point,
the command associated with the edge of the screen that you pointed to is activated.
To interact with the web page, you can hide the menu by tapping the screen with three fingers, or
in this case by pressing the middle mouse button. The same gesture brings back the menu.“

7. Tell the user to play with the system for up to three minutes

8. Switch to tab #2 (prototype without any parameters)

9. Tell the user the purpose of this study: „We also use such a menu to select links and form elements
on a web page. The purpose of this study is to find out how users think they have to use the link
menu, before and after an explanation.
I will now show you two examples of the link menu and I will ask you what you think you have to
do to select any of the links.“

10. Open A1/B2 - Galileo Galilei (A: 5 / B: 20) and click on Links

11. Ask the user about his mental model (Mental Model #1)

12. Open A2/B1 - Galileo Galilei (A: 20 / B: 5) and click on Links

13. Ask the user about his mental model (Mental Model #2)

14. Open 3 - Jeanne d’Arc (20) and click on Links

15. Ask the user to select two links using the menu - announce, choose, explain (Selection task #1)

16. Explain the menu to the user: „The software scans for clickable elements on the web page by
looking at single points on a raster, line by line. For each clickable element, a menu item is shown
with a corresponding hint at the first pixel the element was seen at.“

17. Switch to tab #3 (links.html): „The hint is shaped like the continuation of the menu item's pie
segment toward the center of the screen. To disambiguate items with a similar angle, and therefore
shape, both the pie segment and the hints are color coded. To find the menu item that belongs to a
hit, you have to slide over the screen in the same direction as when starting on the pointy end of the
hint and moving towards the round end.“

18. Switch to tab #2 (prototype)

19. Ask the user about his mental model (Mental Model #3)

20. Open 4 - Albert Einstein (5) and click on Links, then explain: „There are only five links, so the there
is no duplication of colors and you could select the menu item by looking at only the color.“

21. Open 5 - Simone de Beauvoir (20) and click on Links, then explain: „Here we have twenty links and
therefore every color occurs multiple times. Here you have to look at the shape of the hints first,
and only use the color to not choose a neighboring item instead.“

22. Ask the user to select four links using the menu - announce, choose, explain (Selection task #2)

Userstudy: Link Association

Survey Response
Version: A / B Subject number: ___ Age: ___ Color blind?

Mental Model #1
Purpose of the menu:

How to select link #___:

How does it work:

Mental Model #2
Purpose of the menu:

How to select link #___:

How does it work:

Selection task #1

Mental Model #3
Purpose of the menu:

How to select link #___:

How does it work:

Selection task #2

C.2 User study 2: Swabbing feedback 125

C.2 User study 2: Swabbing feedback

Spiralometry form used for the study.

C.3 Longitudinal Study: Swabbing-based web browser 127

C.3 Longitudinal Study: Swabbing-based
web browser

The questionnaire and spiralometry form the user filled out
before and after each session.

Vor der Sitzung am __________
Stimmung
Bitte pro Zeile das Bild markieren, mit dem Sie sich am ehesten identifizieren können:

Körperliches Befinden
Auf einer Skala von 1 bis 10, wie müde fühlen Sie sich (10 = extrem müde)? _____

Spiralzeichnung
Bitte auf einer frischen Kopie der Spiralzeichnungen das Datum eintragen und pro Hand eine Zeichnung
anfertigen.

Diktiergerät starten
Bitte schalten Sie das Diktiergerät ein. Starten Sie die Aufnahme, indem Sie auf den roten Knopf drücken.
Überprüfen Sie, dass unten im Display des Diktiergeräts REC angezeigt wird. Sagen Sie zunächst bitte das
aktuelle Datum und die Uhrzeit.

Benutzung der Software
Wichtig: Falls Ihnen irgendetwas auffällt (positiv wie negativ), bitte in das Diktiergerät sprechen. Wenn
eine Eingabe erfolglos war, reicht auch ein kurzes Falsch. Jeder kleinste Kommentar hilft mir!

Bitte nehmen Sie nun das iPad. Um den Startbildschirm anzuzeigen, drücken Sie den Knopf unterhalb des
Bildschirms, und schieben Sie den Knopf mit dem Pfeil auf dem Bildschirm nach rechts. Um die Versuchs-
Software zu starten, tippen Sie bitte unten in der Mitte des Bildschirms auf den Eintrag Swabbing, bis der
Bildschirm dunkel wird und die Software startet.

Zunächst bitte die dargestellten Worte eingeben und anschließend auf Weiter tippen. Nach fünf
Durchläufen mit jeweils zehn Worten sind Sie mit diesem Schritt fertig.

Danach bitte die eingekreisten Links antippen. Sie haben dazu beliebig viele Versuche und beliebig lange
Zeit. Wenn Sie den Link erfolgreich angeklickt haben, tippen Sie bitte auf Weiter. Nach fünf Sekunden
ohne Erfolg haben Sie zusätzlich die Möglichkeit, den aktuellen Link zu überspringen. Es werden insgesamt
zehn Links zufällig ausgewählt.

Nun können Sie den Browser frei benutzen! Die gesamte Nutzung der Software (inkl. der Aufgaben zu
Beginn) sollte insgesamt ca. eine Stunde dauern.

Nach der Sitzung am __________
Beenden der Software
Bitte drücken Sie den Knopf unterhalb des Bildschirms, um die Software zu beenden und zum iPad-
Startbildschirm zurückzukehren.

Spiralzeichnung
Bitte auf einer frischen Kopie der Spiralzeichnungen das Datum eintragen und pro Hand eine Zeichnung
anfertigen.

Stimmung
Bitte pro Zeile das Bild markieren, mit dem Sie sich am ehesten identifizieren können:

Körperliches Befinden
Auf einer Skala von 1 bis 10, wie müde fühlen Sie sich? _____

Zufriedenheit
Wie zufrieden waren Sie mit der Software?
() Stark unzufrieden () Leicht unzufrieden () Neutral () Relativ zufrieden () Sehr zufrieden

Wie präzise fanden Sie Ihre Eingaben?
() Sehr unpräzise () Leicht unpräzise () Neutral () Relativ präzise () Sehr präzise

Wie fanden Sie die Ihre Eingabegeschwindigkeit?
() Sehr langsam () Etwas langsam () Neutral () Relativ schnell () Sehr schnell

Wie schwer fanden Sie es, Text einzugeben?
() Sehr leicht () Relativ leicht () Neutral () Relativ schwer () Sehr schwer

Wie schwer fanden Sie es, Links zu öffnen?
() Sehr leicht () Relativ leicht () Neutral () Relativ schwer () Sehr schwer

Wie schwer fanden Sie es ansonsten, den Browser zu steuern?
() Sehr leicht () Relativ leicht () Neutral () Relativ schwer () Sehr schwer

Kommentare
Falls Sie einen der obigen Punkt erleutern möchten oder Verbesserungsvorschläge haben, sprechen Sie diese
bitte ins Diktiergerät oder schreiben Sie auf die Rückseite dieses Blattes. Vielen Dank!

Diktiergerät stoppen
Sagen Sie zunächst bitte das aktuelle Datum und die Uhrzeit. Danach bitte die Aufnahme stoppen, indem
Sie auf den roten Knopf drücken.

Datum:

Nach der Sitzung

Vor der Sitzung

Bitte von außen nach innen
einen Strich zwischen die Linien setzen

Linke Hand Rechte Hand

Linke Hand Rechte Hand

131

Bibliography

Alexander Clauss. http://www.icab.de/.

James M Dabbs, E-Lee Chang, Rebecca A Strong, and
Rhonda Milun. Spatial ability, navigation strategy,
and geographic knowledge among men and women.
Evolution and Human Behavior, 19(2):89–98, 03 1998. URL
http://linkinghub.elsevier.com/retrieve/
pii/S1090513897001074?showall=true.

Leah Findlater, Alex Jansen, Kristen Shinohara, Morgan
Dixon, Peter Kamb, Joshua Rakita, and Jacob O. Wob-
brock. Enhanced area cursors: reducing fine pointing
demands for people with motor impairments. In Pro-
ceedings of the 23nd annual ACM symposium on User in-
terface software and technology, UIST ’10, pages 153–162,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0271-
5. doi: 10.1145/1866029.1866055. URL http://doi.
acm.org/10.1145/1866029.1866055.

Paul M. Fitts. The information capacity of the human motor
system in controlling the amplitude of movement. Jour-
nal of Experimental Psychology, 47(6):381–391, 1954.

Eric J. Frett and Kenneth E. Barner. Accuracy and fre-
quency analysis of multitouch interfaces for individuals
with parkinsonian and essential hand tremor. In Pro-
ceedings of the 7th international ACM SIGACCESS confer-
ence on Computers and accessibility, Assets ’05, pages 60–
67, New York, NY, USA, 2005. ACM. ISBN 1-59593-159-7.
doi: 10.1145/1090785.1090799. URL http://doi.acm.
org/10.1145/1090785.1090799.

Simon Grätzer. http://git.graetzer.org/foxbrowser/.

http://linkinghub.elsevier.com/retrieve/pii/S1090513897001074?showall=true
http://linkinghub.elsevier.com/retrieve/pii/S1090513897001074?showall=true
http://doi.acm.org/10.1145/1866029.1866055
http://doi.acm.org/10.1145/1866029.1866055
http://doi.acm.org/10.1145/1090785.1090799
http://doi.acm.org/10.1145/1090785.1090799

132 Bibliography

M. Grimm and Kristian Kroschel. Evaluation of natural
emotions using self assessment manikins. In Automatic
Speech Recognition and Understanding, 2005 IEEE Work-
shop on, pages 381–385, 2005. doi: 10.1109/ASRU.2005.
1566530.

Tovi Grossman and Ravin Balakrishnan. The bubble cursor:
enhancing target acquisition by dynamic resizing of the
cursor’s activation area. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’05,
pages 281–290, New York, NY, USA, 2005. ACM. ISBN 1-
58113-998-5. doi: 10.1145/1054972.1055012. URL http:
//doi.acm.org/10.1145/1054972.1055012.

Niels Huck. Touchscreen text input for users with hand
tremor. Diploma thesis, RWTH Aachen University, Jan-
uary 2012.

Jan Hurtmanns. Swabbing: touchscreen input for users
with hand tremor. Bachelor thesis, RWTH Aachen Uni-
versity, May 2011.

Zhao Xia Jin, Tom Plocher, and Liana Kiff. Touch screen
user interfaces for older adults: button size and spac-
ing. In Proceedings of the 4th international conference on
Universal access in human computer interaction: coping
with diversity, UAHCI’07, pages 933–941, Berlin, Hei-
delberg, 2007. Springer-Verlag. ISBN 978-3-540-73278-
5. URL http://dl.acm.org/citation.cfm?id=
1766311.1766419.

Simeon Keates, Faustina Hwang, Patrick Langdon, P. John
Clarkson, and Peter Robinson. Cursor measures for
motion-impaired computer users. In Proceedings of
the fifth international ACM conference on Assistive tech-
nologies, Assets ’02, pages 135–142, New York, NY,
USA, 2002. ACM. ISBN 1-58113-464-9. doi: 10.
1145/638249.638274. URL http://doi.acm.org/10.
1145/638249.638274.

Elan D Louis and Joaquim J Ferreira. How common is the
most common adult movement disorder? update on the
worldwide prevalence of essential tremor. Mov Disord, 25
(5):534–541, Apr 2010. ISSN 1531-8257 (Electronic); 0885-
3185 (Linking). doi: 10.1002/mds.22838.

http://doi.acm.org/10.1145/1054972.1055012
http://doi.acm.org/10.1145/1054972.1055012
http://dl.acm.org/citation.cfm?id=1766311.1766419
http://dl.acm.org/citation.cfm?id=1766311.1766419
http://doi.acm.org/10.1145/638249.638274
http://doi.acm.org/10.1145/638249.638274

Bibliography 133

I Scott MacKenzie and Kumiko Tanaka-Ishii. Text entry sys-
tems: Mobility, accessibility, universality. Morgan Kauf-
mann, 2010.

Anne Collins McLaughlin, Wendy A. Rogers, and
Arthur D. Fisk. Using direct and indirect input
devices: Attention demands and age-related differ-
ences. ACM Trans. Comput.-Hum. Interact., 16(1):2:1–
2:15, April 2009. ISSN 1073-0516. doi: 10.1145/
1502800.1502802. URL http://doi.acm.org/10.
1145/1502800.1502802.

Alexander Mertens, Nicole Jochems, Christopher M.
Schlick, Daniel Dünnebacke, and Jan Henrik Dornberg.
Design pattern trabing: touchscreen-based input tech-
nique for people affected by intention tremor. In Pro-
ceedings of the 2nd ACM SIGCHI symposium on Engineer-
ing interactive computing systems, EICS ’10, pages 267–272,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0083-
4. doi: 10.1145/1822018.1822060. URL http://doi.
acm.org/10.1145/1822018.1822060.

Tomer Moscovich. Contact area interaction with sliding
widgets. In Proceedings of the 22nd annual ACM symposium
on User interface software and technology, UIST ’09, pages
13–22, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-745-5. doi: 10.1145/1622176.1622181. URL http:
//doi.acm.org/10.1145/1622176.1622181.

Timothy A. Salthouse. When does age-related cognitive de-
cline begin? Neurobiology of Aging, 30(4):507 – 514, 2009.
ISSN 0197-4580. doi: 10.1016/j.neurobiolaging.2008.
09.023. URL http://www.sciencedirect.com/
science/article/pii/S0197458009000219.

Chat Wacharamanotham, Jan Hurtmanns, Alexander
Mertens, Martin Kronenbuerger, Christopher Schlick,
and Jan Borchers. Evaluating swabbing: a touchscreen
input method for elderly users with tremor. In Proceed-
ings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’11, pages 623–626, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0228-9. doi: 10.
1145/1978942.1979031. URL http://doi.acm.org/
10.1145/1978942.1979031.

http://doi.acm.org/10.1145/1502800.1502802
http://doi.acm.org/10.1145/1502800.1502802
http://doi.acm.org/10.1145/1822018.1822060
http://doi.acm.org/10.1145/1822018.1822060
http://doi.acm.org/10.1145/1622176.1622181
http://doi.acm.org/10.1145/1622176.1622181
http://www.sciencedirect.com/science/article/pii/S0197458009000219
http://www.sciencedirect.com/science/article/pii/S0197458009000219
http://doi.acm.org/10.1145/1978942.1979031
http://doi.acm.org/10.1145/1978942.1979031

134 Bibliography

Jacob O. Wobbrock and Krzysztof Z. Gajos. A compari-
son of area pointing and goal crossing for people with
and without motor impairments. In Proceedings of the
9th international ACM SIGACCESS conference on Comput-
ers and accessibility, Assets ’07, pages 3–10, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-573-1. doi: 10.
1145/1296843.1296847. URL http://doi.acm.org/
10.1145/1296843.1296847.

Jacob O. Wobbrock and Brad A. Myers. Analyzing the in-
put stream for character- level errors in unconstrained
text entry evaluations. ACM Trans. Comput.-Hum. In-
teract., 13(4):458–489, December 2006. ISSN 1073-0516.
doi: 10.1145/1188816.1188819. URL http://doi.acm.
org/10.1145/1188816.1188819.

Aileen Worden, Nef Walker, Krishna Bharat, and Scott
Hudson. Making computers easier for older adults
to use: area cursors and sticky icons. In Proceed-
ings of the ACM SIGCHI Conference on Human factors in
computing systems, CHI ’97, pages 266–271, New York,
NY, USA, 1997. ACM. ISBN 0-89791-802-9. doi: 10.
1145/258549.258724. URL http://doi.acm.org/10.
1145/258549.258724.

http://doi.acm.org/10.1145/1296843.1296847
http://doi.acm.org/10.1145/1296843.1296847
http://doi.acm.org/10.1145/1188816.1188819
http://doi.acm.org/10.1145/1188816.1188819
http://doi.acm.org/10.1145/258549.258724
http://doi.acm.org/10.1145/258549.258724

Typeset June 6, 2013

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related work
	TRABING
	Swabbing
	Goal Crossing
	Area Cursor
	Bubble Cursor
	Enhanced Area Cursors

	Swabbing implementation
	Visual design
	Gesture detection
	Toggling the overlay
	Improving multitouch handling
	What is the target size?

	Software Testbed: Touchscreen Web Browser
	General requirements
	The traditional interface
	Swabbing interface
	The text menus
	The cursor menu
	The aiming menu

	The web-based prototype
	First iteration
	Second iteration
	Third iteration
	Fourth iteration

	User study 1: Link assocation
	Study Design
	Participants
	Measurements
	Procedure
	Results
	Discussion
	Limitations

	User study 2: Swabbing feedback
	Study Design
	Participant
	Measurements
	Procedures
	Results
	Discussion
	Limitations

	Longitudinal Study: Swabbing-based web browser
	Study Design
	Setup
	Participant
	Measurements
	Procedures
	Quantitative Results
	Results from the questionnaire
	Results from analyzing the log files

	Qualitative Results
	Discussion
	Limitations

	Summary and future work
	iPad keyboard layouts
	Log file player
	Material for the user studies
	User study 1: Link association
	User study 2: Swabbing feedback
	Longitudinal Study: Swabbing-based web browser

	Bibliography

