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Abstract

This thesis presents an event detection software to accelerate search tasks on videos.
In areas like behavioral research, sports analysis, visual surveillance, ethnography
and video editing a lot of labor is investigated in video browsing and reviewing.
To shorten search time on the video data an event detection system is presented,
which enables users to select objects and define search criteria on them. The system
returns all video sequences, where search criteria are fulfilled.
Most presented approaches on event detection are fixed to a specific application
area and afford a large setup. To avoid this specificity, search patterns were clus-
tered from important events occurring in the application areas. Clustering was per-
formed with respect to shape and constellations of the according object trajectories.
The provided system implements seventeen recognition algorithms for the defined
patterns. Detection algorithms and their precision-recall-values are presented.
To evaluate the user-interface and acceleration of search time a user study was de-
signed, in which users were provided with search tasks on videos. Assignments
had to be completed on the event detection system and on a typical timeline-slider
system. The evaluation of the results shows that task-completion was performed
significantly faster using the event detection software.
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Überblick

Diese Arbeit präsentiert eine Ereignis-Erkennungs-Software, welche Such-
Aufgaben in Videos beschleunigen soll. In den Feldern Verhaltensforschung, Sport-
analyse, Videoüberwachung, Ethnographie und Videoschnitt wird ein großer An-
teil an Arbeit auf das Durchsuchen und Nachsuchen von Videomaterial verwen-
det. Um die Suchzeit auf Videodaten zu kürzen wird ein Ereignis-Erkennungs-
System präsentiert, welches den Nutzern ermöglicht Objekte innerhalb des Videos
auszuwählen und Suchkriterien darauf zu definieren. Das System liefert dann alle
Video Sequenzen, in denen die Suchkriterien erfüllt sind, zurück.
Die meisten bereits entwickelten Ansätze zu Ereignis-Erkennung sind auf ein
spezifisches Anwendungsgebiet fixiert und setzen ein relativ großes Setup vo-
raus. Um diese Spezifität zu vermeiden, wurden wichtige Ereignisse aus den
jeweiligen Anwendungsfeldern zu Suchmustern gruppiert. Das Clustern wurde
bezüglich den Formen und Konstellationen der berechneten Objekt-Trajektorien
vorgenommen. Die Implementierung des dargebotenen Systems enthält siebzehn
Erkennungs-Algorithmen für die definierten Muster. Erkennungs-Algorithmen
und die entsprechende Exaktheit der Algorithmen werden präsentiert.
Um die Benutzer-Schnittstelle und die Beschleunigung der Suchzeit zu bewerten,
wurde eine Nutzer-Studie entworfen, in der Nutzer Suchaufgaben auf Videos er-
hielten. Diese Aufgaben mussten auf der Ereignis-Erkennungs-Software, sowie auf
einem regulären Zeitleisten-Slider absolviert werden. Die Evaluierung der Ergeb-
nisse weist auf, dass Aufgaben mit Ereignis-Erkennung signifikant schneller gelöst
wurden, als mit dem Slider-System.
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Throughout this thesis we use the following conventions.

Text conventions

Definitions of algorithms are set off in coloured boxes.

ALOGRITHM:
HELLOWORLD() Definition:

Alogrithm

Parameters of pseudo codes are written in italic text.

parameter

The whole thesis is written in American English.
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Chapter 1

Introduction

Videos are well known as a medium for information
sharing, entertainment and capturing special moments as
in vacation videos. Apart from the average usage a whole
sector exists, where video data is utilized and processed
for research, commercial use and surveillance.

In behavioral research scientists observe the reactions Behavioral Research
and behavior of animals in test situations. Scientists film
experimental-setups to be able to review the test for anal-
ysis. The video material is beneficial, since the experiment
must only be surveilled by one person while important
scenes during the test can be reviewed innumerable times.

Video ethnography enfolds a field where analysts film Video Ethnography
people in different situations surrounded by their natural
environment. Important is that the subject does not feel
observed, thus the researcher is mostly not present during
the video tapings. Examples where video ethnography is
performed are market research (GIM) or medical research
(Babic [2010]), where the analysts want to find out how
consumers interact with the inspected products. Without
the produced video material the observers would not be
able to grasp people in their natural environment. Sports Sports Analytics
analytics is a sector, where video analysis is performed on
both a private and a commercial level. Players, coaches
and clubs review matches to improve their tactics, while
companies like the Sports Analytics GmbH (Spo) perform
immediate and professional sports analysis for commercial



2 1 Introduction

use like commentaries or support of professional sports
teams. The main goal in the field of video processing andVideo Editing
editing is to select and discard scenes and pace them to a
presentable movie. The editors often collect multiple takes
from the same action (Mackay and Davenport [1989]).
According to Mackay and Davenport [1989] the editor
browses through these multiple takes to select the best
composition to achieve a dramatic pacing. In visualVisual Surveillance

and Forensics surveillance and forensic analysis the analysts collect and
observe data from multiple cameras (Larry Huston and
Pillai [2004]) to be able to protect people or objects from hu-
miliation or damage. Mostly the surveillance is performed
by human beings. In forensic analysis the scientist tries to
reconstruct and interpret the events. Because of the high
number of cameras this task is rather complex, especially
when the forensic scientists are asked to perform real-time
guidance while the situation is developing (Larry Huston
and Pillai [2004]).

Everyday the amount of video data increases since re-
searchers perform experiments regularly, crime occurs
around the clock and sports matches are carried out nearly
each day. One only has to imagine the number of videosConsumed amount

of video data. that are uploaded onto platforms like youtube, where
the number increased by 200.000 per day, to understand
what problems small groups of scientists and analysts
face, when producing and reviewing video material.
Benjamin Zipser, M. Sc. Biol. from the department of
behavioral biology of the university of Münster, states that
they have diverse experimental situations, in which they
take videos of animals. This data needs to be annotated
and stored for analysis, if important situations like two
animals interacting or showing aggressive behavior occur.
The GIM (Gesellschaft für Innovative Marktforschung)
performs market research on the basis of ethnographic
video tapings (GIM). They search for influences from the
context the people come from on the interaction with the
analyzed product and for consumer habits. According to
Benjamin Dennig, research manager at GIM, a lot of data is
generated in video ethnographic market research projects
which needs to be compacted for analysis and presentation
of results.

The Phillips Research Group created the ExperienceLab. This
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is a house filled with cameras where multi-disciplinary
teams of psychologists, sociologist and designers can ob-
serve people’s behavior in interaction with products from
areas like lifestyle or healthcare, so that researchers get
insights into the customers needs (Exp). Another example
is a behavioral/ethnographic experiment by Roy et al. In
a study on language acquisition, they collected 230.000
hours of video data (Brandon C. Roy and Roy, Roy [2009]).
Joachim Gudmundssona [2010] states that an important
task in sports analysis is that players, coaches, and clubs
analyze football matches, so that with current technology
a lot of match data is collected. But also companies like
the sports analytics gmbh analyze tennis, soccer, or ice
hokey matches. During tournaments they provide their
customers with video data in different formats and with
immediate analyses (Spo).

Since data is not only recorded but often reviewed, Accelerate Search:
Current Methodsmultiple times for analysis, the produced amount of data

makes long search times in various scenes inevitable. With
appropriate search mechanisms the task which analysts
and scientists face could be accelerated. Already tracking
of objects is used in several of the described application
areas. Benjamin Zipser states that one software they use at
their department is AnyMaze (Any), which is a rather flex-
ible software where you can track almost any situation as
long as only one animal is involved. Already surveillance
cameras performing motion tracking are available (Sky).
And video annotation software which performs tracking
is being developed (Gregor Miller and Ilich [2011]). These
are examples how the task of video browsing is yet accel-
erated. If the users were offered more options for search,
finding important scenes in video tapings could probably
be performed even faster.

In this thesis I will present a software with which Accelerating
Search-Task with
Event Detection

users can find predefined events in videos. They are able
to select multiple objects, choose one of seventeen search
patterns, which are described in detail in chapter 3, and
browse through the results instead of searching through
the whole video manually. Several approaches on event
detection in videos already exist. Some of these approaches
are based on predefined scenarios (Gerard Medioni and
Bremond [AUGUST 2001], Ahmet Ekin and Mehrotra
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[July 2003], Tovinkere and Qian [2001]). They are mostly
quite precise in their domain, but afford a large effort in
setup. Another group of systems on event detection works
on user queries (Chen and Chang [2000]). I will present
some of these approaches in chapter 2. In this thesis I
will demonstrate an event detection system based on the
direct object navigation software DRAGON (T. Karrer and
Borchers [2008]). DRAGON tracks object positions and
generates object trajectories, so that the user is able to select
objects and items directly by clicking on them in the movie.
She then has the possibility to define search criteria on the
selected objects. After the system performed the search the
user is able to access all frames on which the criteria are
fulfilled.

1.1 Thesis Overview
Overview

This thesis holds information on related work, implemen-
tation and evaluation of event detection. The next chapter
deals with related work. Six different systems are presented
that perform event detection in various application areas.
In chapter 3 my own work is demonstrated. The function-
alities and application areas of the event detection exten-
sion are described. The system DRAGON created by Karrer
et al., which is the basis of the event detection software, is
presented in section 3.1. Further on I demonstrate the clus-
tering of relevant events in the respective application areas
and describe which situations users can find in videos. For
each event description the implementation and how search
algorithms are performed is presented in form of pseudo
codes. Finally the different components and functionali-
ties of the user interface are demonstrated. Chapter 4 deals
with the evaluation of the system. In section 4.1. the per-
formance of the system is presented in form of precision-
recall tests. A user-study with 12 subjects, where users per-
form search tasks on video data, is described in section 4.2.
Here test set-up acceleration time and SUS-Questionaire re-
sults are presented. Chapter 5 contains a summary and lists
some tasks in tracking, user interface and algorithm design
that should be accomplished in future.
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Chapter 2

Related work

Some approaches on event detection in videos exist, where
a previous object tracking step is applied before the event
detection is performed. A second group of event detection
frameworks are based on the detection of events by recog-
nizing cinematic features and object properties. Event De-
tection frameworks are often based on a special purpose,
e.g. supporting surveillance systems or sports video analy-
sis.

2.1 Automatic Soccer Video Analysis and
Summarization

Ahmet Ekin and Mehrotra [July 2003] propose a framework
for analysis and summarization of soccer videos. This ap-
proach focusses on the detection of events based on cine-
matic features and object-based features. By exploiting Event Detection

based on Cinematic
Features

color region detection, shot boundary detection, and shot
classification algorithms Ekin et al. are able to detect goal
events and actions that involve referees or penalty boxes
in real time. Goal detection is performed by assuming that
the occurrence of a goal is followed by a pattern of cine-
matic features. Ekin et al. state that a goal event leads to
a break in the game, in which emotions on the field and
slow motion replays are shown to the TV audience. Emo-
tions are captured by showing closeups of the players and
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Figure 2.1: The broadcast of a goal: (a) long view of the actual goal play, (b) player
close-up, (c) audience, (d) the first replay, (e) the third replay, and (f) long view of
the start of the new play. Ahmet Ekin and Mehrotra [July 2003]

the cheering audience. When these cinematic features oc-
cur the scene is recognized to involve a goal event. Such
a goal event can be seen in figure 2.1. To find interesting
referee events Ekin et al. filter out the medium or close up
shots. They exploit the distinguishable colored uniforms of
the referees to detect his occurrence. Penalty box detection
is reduced to the problem of searching three parallel lines.
Although this approach can perform summaries of inter-
esting events in real time it is very domain specific. Their
framework only functions in the field of soccer, to extend it
to other sports new events and new event detection algo-
rithms need to be defined. Ekin et al. focussed on the ex-
traction of very few events in soccer, which does not suffice
for the whole analysis of a sports match. The event detec-
tion software described in this thesis, will not be able to run
in real time as the approach by Ekin et al. does, since track-
ing needs to be computed beforehand. But since it is not
fixed to a specific domain, scenario definition, detection al-
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gorithm design, and setup-time are avoided. Furthermore
the events which can be found are more flexible even in the
field of soccer.

2.2 Detecting Semantic Events in Soccer
Games: Towards A Complete Solution

Tovinkere and Qian [2001] present a method for detecting Semantical
information in
ER-Diagramms

all possible soccer events, which can occur during a match.
These events are defined at a semantical level in form of
an entity relationship diagram which contains domain spe-
cific knowledge. Position information of the players and
the ball is required as an input for the event detection al-
gorithm. In a first step tracking data is extracted from the Object Tracking
analyzed video. The knowledge domain and the tracking
data conduce as input to the event detector. The detection
is performed in two phases. First, player motion and ori-
entation and player-ball interaction is computed. In the
second step the algorithm determines which rules from the
knowledge base are applied to the actions of the players
and the ball. With this framework Tovinkere et al. are able
to detect events like assist, block, header, interception, shot-
on-goal and so forth. Their event detection performance
shows convincing precision-recall values. This approach is
also very domain specific and applying it to other applica-
tion areas is elaborate since a whole knowledge base needs
to be created previously. The event-detection extension for Comparison to

DRAGONDRAGON can not be as precise in the domain of soccer as
the system designed by Tovinkere et al., because this would
afford additional domain based knowledge. On the other
hand the described approach is so exact in the domain of
soccer, that knowledge base creation affords a large setup,
thus the system is fixed to a certain domain. DRAGON’s
event detection extension affords no setup and can be ap-
plied in any application area, without changing the system.
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2.3 DOTS: Support for Effective Video
Surveillance

Andreas Girgensohn and Rieffel [2007] describe a real-timeEvent detection for
Surveillance
Systems

multi-camera surveillance system. Events are identified,
when objects appear or disappear, when people pass cer-
tain regions or when a lot of motion is detected. DOTS
detects foreground objects, associates them with a bound-
ing box and tracks these objects. An event is triggered if
a lot of motion occurs in a scene, i.e. when the ratio of
foreground and background pixels exceeds to a predefined
level. Region-based events are triggered when moving ob-
jects intersect ”hot spots”. This way events like opening or
closing doors can be detected. The user is able to define
hotspots by himself, so that all object trajectories that cross
this hotspot are recorded. Furthermore DOTS supports
externally generated events produced by sensors or RFID
tags. Although the amount of events that can be detected
are few, Girgensohn et al. state that the events offer a quick
access to the recorded video data. To use DOTS a hardwareHardware Setup
setup is affordable, which has both benefits and downsides.
Additional hardware like RFID tags provide supplemental
information that helps interpreting events. A large amount
of cameras is used to make localizing people in all rooms
possible. But this also means that the event detection soft-
ware only functions properly on videos recorded with the
hardware setup. DRAGON does not provide these obser-Comparison to

DRAGON vational functionalities and has no additional sensor infor-
mation. On the other hand it does not afford any hardware
setup and can be run on arbitrary video data. Furthermore
users can select up from 17 search patterns, which also in-
clude events like appearing and disappearing.

2.4 Left-Luggage Detection using
Bayesian Inference

Fengjun Lv and Nevatia [2006] present a system for Left-Left-luggage
Detection Framework Luggage detection. The left luggage event is based on sev-

eral constraints: When the luggage enters the scene, it is
owned by a person and the physical contact is interrupted
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Figure 2.2: Automaton for the Multi-State Scenario a the Car avoids the Check-
point. [Gerard Medioni and Bremond [AUGUST 2001]]

at some point. The luggage is defined as unattended if the
person moves further than 3 meters. An alarm is triggered
if the luggage remains unattended for more than 30 sec-
onds. To detect the occurrence of these constraints object
detection and object tracking steps need to be performed.
The events are then modeled and recognized in a bayesian
inference network by assigning probability values to cer-
tain events. These events include dropping the luggage,
luggage appears or does not appear and the distance of a
person to the dropped luggage is less than a certain thresh-
old. By combining the named events the probabilities for
the predefined constraints can be computed. This results
in convincing event recognition, even if the data is noisy.
Lv et al.’s approach performs a very precise detection of Comparison to

DRAGONthe left-luggage scenario. The event detection extension
of DRAGON includes a pattern, with which a constella-
tion where objects are close first, but then move away from
each other can be found. This pattern can not detect a left-
luggage scenario as exact as the approach of Lv et al. does,
but it offers the opportunity to detect this situation next to
many other trajectory patterns.
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2.5 Event Detection and Analysis from
Video Streams

Gerard Medioni and Bremond [AUGUST 2001] present a
system, which classifies patterns of moving regions and
object trajectories. In a first step their system detects and
tracks objects. The user needs to provide information onUser Input
spatial structures of the scene and expectations on scenar-
ios which might occur. Given the user information and the
trajectories, it is now possible to interpret the occurring sce-
narios. First, each object is classified by some properties
like width, height, or location. The behavior of the mo-
bile object is compared against a set of predefined scenar-
ios. After this analysis the system outputs the most likely
scenario. Medioni et al. define single state events as a set
of sub-scenarios that must be recognized at the same time
and multiple state events which are composed of several
sub-scenarios occurring in a temporal sequence. ScenariosEvent classification

via DFAs are classified in form of DFAs, where each node of the DFA
contains one sub-scenario and the transitions are computed
from recognition values and likelihood degrees of the sub-
scenarios. A multi-state DFA is shown in figure ??. Both
single state and multiple state events can be recognized by
the finite state automaton. An advantage of this systemComparison to

DRAGON is that it presents events on a semantical level, but on the
downside this affords an elaborate setup of the context in-
formation since slight deviations in the context make the
system unreliable. DRAGON on the other hand contains
no semantical information because it is designed for sev-
eral application areas. Thus a change of the domain has no
impact on the performance of the event detection extension
for DRAGON.

2.6 Motion Trajectory Matching of Video
Objects

Chen and Chang [2000] describe an approach for robustTrajectory Matching
motion trajectory matching. Here the user formulates a
query by drawing a sketch and assigning areas in the frame.
The user can also add color, texture, and shape informa-
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tion. This sketch is then tested against complex trajecto-
ries stored in a database. The trajectories are precomputed

Figure 2.3: Comparison beween trajectory data and input
query. [Chen and Chang [2000]]

by an automatic tracking algorithm. While the objects per- Smoothing complex
Trajectoriesform complex movements, Chen et al. state that it is more

likely that the user’s sketch describes the motion fairly sim-
ple. An example can be seen in figure 2.3. To bridge this
gap, three steps, smoothing, segmentation, and modeling
are applied. Since the trajectories are often noisy they are
smoothed in a first step by a wavelet based approach. Then
the trajectory is segmented into sub-trajectories with con-
stant acceleration. Finally the sub-trajectories are modeled Feature Vector
as feature vectors of acceleration, velocity, arc-length, or-
der, and multi-scale edge-points. The object based search
is then performed by measuring the distance between the
feature vectors of the trajectories and those of the query. A
list of possible candidates is returned. Their approach con-
cludes in convincing results in precision-recall values com-
pared to related methods like e.g. using B-splines for trajec-
tory matching. An advantage of this system is that the user Comparison to

DRAGONcan post clear search queries, but this also means that she
must know the characteristics of the object-trajectory she is
looking for. In many situations the trajectory-course is un-
known to the user and thus she is not able to put a query.
The trajectory-shape based algorithms of the event detec-
tion extension of DRAGON are designed relatively loose,
and the distance based algorithms do not assimilate shape
information. Hence the user does not need to know the tra-
jectory course beforehand.
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Chapter 3

Event Detection in
Videos based on Object
Trajectories

This thesis deals with the development of a software to
accelerate search tasks in videos by detecting one of sev-
enteen predefined events. In contrast to most of the ap-
proaches presented in related work, this event detection
system can be applied to arbitrary video data without af-
fording an elaborate setup, since a broad number of ap-
plication areas exists. The event detection is performed in
two steps. In the first step object trajectories are generated
from the video material. This object tracking step is ac-
complished by DRAGON, a direct object manipulation soft-
ware, which I will present in section 3.1. Second the actual
event detection takes place, where tracking data is evalu-
ated and recognized events are extracted and displayed to
the user. In chapter 1 I described diverse application ar-
eas, where people spend a lot of time watching videos. Af-
ter clustering relevant events from these application areas
to trajectory patterns, I was able to define search criteria
on the tracking data. The defined patterns include area-,
directional- and velocity dependancies, object motion and
object-object interaction. The trajectory patterns are de-
scribed in detail in section 3.2. To perform search tasks
the user can pick one of seventeen patterns. Then she is
able to select the objects which she wants to involve in the



14 3 Event Detection in Videos based on Object Trajectories

search task over the DRAGON-Interface by directly clicking
on them. After the search is performed the relevant frames
are marked beneath the timeline, so that the events can be
accessed easily. The interface is described at length in sec-
tion 3.3. To test the event detection software in performance
and usability I accomplished precision recall tests and per-
formed a user study with twelve subjects.

3.1 DRAGON: Object Tracking

DRAGON is an in scene navigation software presentedDRAGable Object
Navigation by T. Karrer and Borchers [2008]. The user can navigate

through a scene by clicking on an object and dragging it
along its object trajectory. Figure 3.1. shows the DRAGON-
Interface. The red line represents the object trajectory along
which the user can drag the selected object and by this
scroll through time. The trajectory generation is basedOptical Flow
on an approach by T. Brox and Weickert [2004]. In a pre-
computation step optical flow fields are generated. Flow-
fields contain information on the most likely pixel locations
in the succeeding and preceding frames. The white arrows
in figure 3.1 are examples for flow fields in forward direc-
tion. At runtime the precomputed flow fields are used to
compute the object trajectory of the pixel the user clicks on
(T. Karrer and Borchers [2008]). The computed trajectories
contain position information of the defined pixel for each
frame. To drag the object along its trajectory Karrer et al.
look for the frame with minimal (x,y,t)-distance to the cur-
rent mouse-pointer location. This means they calculate the
closest position in space and time. In user studies Karrer etUsers
al. show that participants found the use of DRAGON very
natural and that in-scene navigation was performed faster
using DRAGON. In this thesis I will exploit the trajectory
generation DRAGON performs and extend the DRAGON
interface by allowing the selection of multiple objects, on
which the search tasks can be defined. Navigating through
the found events can be performed in three manners. First
one can step through the events by clicking a ”next-” or
”previous event” button. Second the user can exploit the in
scene navigation tools offered by DRAGON and finally the
user can navigate via the conventional slider. Karrer et al.
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Figure 3.1: DRAGON-Interface

state that the participants of their user study on DRAGON
where interested in having multiple navigation techniques
to be able to navigate with alternating accuracies.

3.1.1 Limitations

Optical Flow based tracking performs the tracking of sin- Disadvantages of
Optical Flowgle pixels. This results in a lack of object awareness (Wit-

tenhagen [2008]). Since pixels are not clustered to objects,
occlusions of tracked pixels can not be handled. This also
results in the fact that objects can not be tracked beyond
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a scene cut. By using optical flow fields for tracking theCamera Motion
position of the object in the frame can be determined, but
it contains no information on the position of the object
in the scene. An approach by Wittenhagen exists where
DRAGON is extended by camera motion estimation. For
simplicity this work is limited to video material from still
cameras.

3.2 Object Trajectory Patterns

In a first step I gathered events from the application areas.Relevant Events in
the Application Areas Typical events from the area of visual surveillance are intru-

sion detection (Weiming Hu and Maybankt [12 Juli 2004],
Mac), crowd surveillance (Shobhit Saxena and Ma [2008]),
which includes deviating velocities or movement direction
of single people in crowds, traffic observation (collision
detection, speed control (Saunier and Sayed [2007], Ger-
ard Medioni and Bremond [AUGUST 2001])), or lost lug-
gage detection (Fengjun Lv and Nevatia [2006]). In the area
of behavioral research important events are animal-animal
and animal-object interactions, when animals leave certain
areas or when they show aggressive behavior. In market
research any interaction with observed products and hu-
man habits like cooking, cleaning, watching TV, or shop-
ping are relevant (GIM, Babic [2010]). Interesting sports
events include kick-offs, goals, passes, corner kicks, fouls
and so forth (Tovinkere and Qian [2001]). By clustering rel-Clustering of

Trajectory Patterns evant events from the application areas forensic analysis,
behavioral research, video editing, ethnography, and sports
analytics I defined seventeen patterns, which the users can
select. These patterns are grouped into the four main clus-
ters:

1. Area Dependancies

2. Objects ActFour Main Clusters

3. Objects Interact

4. Direction and Velocity
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Each of these clusters is described in detail in the following
sections.

3.2.1 Requirements

Figure 3.1 shows the DRAGON-Interface. The red line rep- Trajectory Properties
resents the object trajectory along which the user can drag
the selected object and by this scroll through time. The

Figure 3.2: Example of an object-trajectory, its properties
and its range.

object trajectories, which are computed by DRAGON con-
tain one trajectory vertex per frame. These vertices con-
sist of a frame number and the position of the object in
the respective frame given in (x,y)-coordinates. Trajec-
tory properties are depicted in figure 3.2. In the pseudo-
codes, describing the pattern recognition algorithms, the
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access of the trajectory properties are denoted with trajec-
tory.node.position and trajectory.node.frame. By calling the
function STOREDFRAMES(Trajectory trajectory) on a trajec-
tory it is possible to gain the frame range on which the tra-
jectory is defined. The returned range contains a location,
denoting the first frame and a length value describing the
number of frames, where the object appears in the video.Areas
Areas are defined in form of rectangles, which contain an
offset point, width, and height. If more than one trajectoryDependancies
is involved in the search, the user can define a dependence
variable, which can only take the values T1 or T2. This de-
pendance value can have different meanings, which will be
explained in every pattern description separately.

Functions

Several functions, used in the pseudo codes, have rather
simple implementations and are not explained in more de-
tail:

• FRAMESFROMRANGE(Range range): Returns a set
containing all the frames in range range.

• POSITIONFORFRAME(Trajectory trajectory,int frameNr):
Returns the location of the trajectory trajectory at fra-
meNr in (x,y)-coordinates.

• STOREDFRAMES(Trajectory trajectory): Returns the
the frame-range in which the trajectory is defined.

• GETFIRSTFRAME(Trajectory trajectory): Returns the
first frame where trajectory is defined.

• GETLASTFRAME(Trajectory trajectory): Returns the
last frame where trajectory is defined.

• INITWITHCAPACITY(Integer capacity): Returns an ar-
ray with size capacity.

• SIZEOF(Array a): Returns the number of entries in a.

• SETWITHOBJECT(Object object): Returns a set con-
taining object.
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• ARRAYWITHOBJECTS(. . . ): Returns an array contain-
ing the objects from the input.

• INTERSECTRANGE(Trajectory tA, tB): Returns the
frame range where both trajectories are defined.

• POINTSINRANGE(Trajectory t, Range range): Returns
an array, which contains the location points of t in
frame range range.

• UNIONRANGE(Array trajectories): Returns the small-
est coherent range where all ranges of the trajectories
from the input array are defined.

3.2.2 Area Dependancies

The interaction of objects with areas is an important and Cluster: Area-Object
Interactionoften searched event. An area can describe a special loca-

tion in the background or a still object which needs a lot of
space, e.g. a soccer goal. Area-events are searched in many
application areas. For example Benjamin Zipser states that
he often analyzes situations, in which an animal is brought
into a test situation, where he wants to find out how long
it takes until an animal leaves the safe area of the test
box, or how long an animal explores an unknown object.
Joachim Gudmundssona [2010] describes that corner kicks
and kick offs are interesting events and Ahmet Ekin and
Mehrotra [July 2003] sees goals as one of the main events in
soccer. Weiming Hu and Maybankt [12 Juli 2004] and Mac
describe intrusion detection and access control into special
areas like important government units or military bases as
relevant events in visual surveillance. Also, Benjamin Den-
nig from the GIM states that one example for an everyday
situation is cooking. Events like loading or looking into
the oven are important interactions, which need to be ob-
served. Each interaction close to the area of the oven is im-
portant. The described events can be found by defining an
area and searching for events where an object is located in-
side of the defined area or when it avoids the area. In this
group of patterns the user can define an area in form of a
rectangle and search for the patterns Object Crosses Area and
Object is Far from Area. An example is depicted in figure 3.3.
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Figure 3.3: Object trajectory of the knife with a selected area. (Video by Karrer et
al.)

Object Crosses Area

With the pattern Object Crosses Area the user is able to findPattern-
Implementation:
Object Crosses Area

frames, where the defined objects are inside of a selected
area. The algorithm 3.2.1 returns the set of frames where
a given trajectory crosses a user defined area by intersect-
ing the area pixel-positions (GETPIXELSAREA(Area area))
with those of the trajectory-nodes. Algorithm 3.2.2.
gets an area, an array of trajectories, and a depen-
dance value as input. For each trajectory the function
TRAJECTORYCROSSESAREA() is called. If the dependance
value is equal to T1 the trajectories need to be in the area at
the same time and the algorithm only returns those frames
where all defined trajectories are inside of the area. Other-
wise, if it is not necessary that the trajectories cross the area
at the same time, the algorithm returns all frames where a
trajectory-node location is inside of the area.
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OBJECT CROSSES AREA :
Algorithm 3.2.1: TRAJECTORYCROSSESAREA(area, trajectory)

local Set setOfFrames← {trajectory.node.frameNumber||GETPIXELSAREA(area)∩
trajectory.node.position| ≥ 1}

return (setOfFrames)

OBJECTS CROSS AREA:
Algorithm 3.2.2: TRAJECTORIESCROSSAREA(area, trajectories, dependance)

local Array arrayFramesInArea← NULL
local Set setOfFrames← ∅

for i← 0 to SIZEOF(trajectoryArray)
do arrayFramesInArea[i] = TRAJECTORYCROSSESAREA(trajectoryArray[i],area)

if (dependance == T1)
then{
for i← 0 to SIZEOF(arrayFramesInArea)

do setOfFrames = setOfFrames ∩ arrayFramesInArea[i]

else if (dependance == T2)
then{
for i← 0 to SIZEOF(arrayFramesInArea)

do setOfFrames = setOfFrames ∪ arrayFramesInArea[i]

return (setOfFrames)

Object is far away from Area

The pattern Object is far away from Area finds frames where Pattern-
Implementation:
Object is far away
from Area

objects are located outside of the selected area. Algo-
rithm 3.2.3. takes as input a trajectory, an area, and a dis-
tance value, which the user defines. It returns a set of
frames where the trajectory is not within distance distance
from the area. For each frame where the trajectory is lo- Distance

Computationcated outside of the area the algorithm checks the mini-
mum distance between the area and the current position
of the trajectory. The distance is computed by the func-
tion MINDISTANCETOAREA(), which performs an orthog-
onal projection of the trajectory position onto the edges of
the area-bounding box. This process is visualized in figure
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Figure 3.4: Distance Computations with Areas: Shows distance analysis of a trajec-
tory (left) with an area (right). Inside of area boundaries the orthogonal projection
is computed, outside of area boundaries the distance to the closest edge-point is
calculated.

3.4. If this distance is less or equal to the input distance the
frame is removed from the set of resulting frames. Analog
to the algorithm 3.2.2 an extension for multiple trajectories
is computed in the same manner. The user can also provide
a dependance value indicating if the trajectories need to be
far away from the area at the same time.

OBJECT FAR AWAY FROM AREA :
Algorithm 3.2.3: TRAJECTORYFARFROMAREA(area, trajectory, distance)

local Set setOfFrames← FRAMESFROMRANGE(STOREDFRAMES(trajectory))
setOfFrames← setOfFrames\TRAJECTORYCROSSESAREA(trajectory, area)
for each frameNumber in setOfFrames

dolocal point← POSITIONFORFRAME(trajectory, frameNumber)
if MINDISTANCETOAREA(area, point) ≤ distance

then REMOVEFROMSET(setOfFrames, frameNr)

return (setOfFrames)
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3.2.3 Objects Act

The Objects Act cluster contains trajectory patterns, which Cluster: Objects Act
are not influenced by other trajectories, so that each tra-
jectory can be analyzed separately. This cluster contains
the patterns Objects Appear, Objects Disappear and Object-
Trajectory forms a Circle. The first two patterns are one of
the main events described in the DOTS surveillance system
(Andreas Girgensohn and Rieffel [2007]). Also, a software
for object tracking and notes insertion in videos developed
by Favalli et al. contains a special feature that alerts the user
when an object disappears [Lorenzo Favalli and Moschetti
[APRIL 2000]]. The behavioral researcher Benjamin Zipser
states that aggressive behavior of animals contains relevant
events for their research. According to the Denver Munici-
pal Code this includes animals encircling their victim (Den
[1950]). Furthermore a study on Gobiid Fish shows that
the fish ”circle” each other to attack their opponent (Yanag-
isawa [1982]). But also situations where a person returns
to a location, where he has been before, e.g. when she is
walking around an object of interest, can be found.

Objects Appear and Objects Disappear

The algorithms 3.2.4 and 3.2.5 get as input a trajectory. To Pattern-
Implementation:
Objects appear and
disappear

find out when the object appears or disappears the system
returns the first and respectively the last frame where the
trajectory is defined. The function is called on all defined
trajectories.

APPEARANCE AND DISAPPEARANCE :

Algorithm 3.2.4: OBJECTAPPEARS(Trajectory trajectory)

return (GETFIRSTFRAME(trajectory))

Algorithm 3.2.5: OBJECTDISAPPEARS(Trajectory trajectory)

return (GETLASTFRAME(trajectory))
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Figure 3.5: Object trajectory of a troll figure performing a circular motion.

Object-Trajectory forms a Circle

With the pattern Object-Trajectory forms a Circle the users arePattern-
Implementation:
Circle

able to find situations where object-trajectories form circle-
like structures as seen in figure 3.5. It is not important that
the object moves in a perfect circle, which is why there is a
relatively loose variability in the threshold values. I analyze
the points of the trajectory with respect to six constraints,
that a circular shaped polygon should satisfy. The recogni-
tion of the pattern Object-Trajectory forms a Circle consists of
the following seven steps.Identifying a Circle

1. Find intersection point: A trajectory only forms a cir-Self-Intersections
cle if the object returns to a position where it was lo-
cated before, so in a first step all self-intersections of
the trajectory are computed.

2. Remove Sub-Circles: If the trajectory holds sub-Remove Sub-Circles
circles (e.g. like trajectories that forms an 8), the sub-
circles are removed and examined separately. The
points that remain from the first two steps represent
the input for algorithm 3.2.6.



3.2 Object Trajectory Patterns 25

OBJECT-TRAJECTORY FORMS A CIRCLE:

Algorithm 3.2.6: ISCIRCLE(Array circlePoints)

if not CHECKBOUNDINGBOXSIZE(threshold)
then return ( false )

if not CHECKBOUNDINGRATIO()
then return ( false )

if not CHECKAREA()
then return ( false )

if not CHECKDISTANCEHISTOGRAMM()
then return ( false )

return ( true )

Figure 3.6: Visualization of Circle-Detection showing object trajectories (red) with
nodes ni, bounding boxes (blue), and a distance histogramm. xi denote the center
points and li the length of intermediate lines.

3. Check Bounding Box Size: A bounding box is created Bounding Box
around the trajectory. If this bounding box is smaller
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than a certain user defined threshold, the trajectory
nodes are not recognized as a circle.

4. Check Bounding Box w:h Ratio: If the bounding boxw:h ratio
does not show a rate less that 2:1 and greater than
0.5:1 in width:height the ”circle” is to flat and not rec-
ognized as a circle anymore.

5. Area Check: Checks if the trajectory areaA encloses atArea Check
least 60% of an area which a perfect ellipsoid located
inside of the bounding box would hold. The per-
centage 60 has been tested on several videos, which
showed satisfying results.

A ≥ 0.6 · π · width
2
· height

2
(3.1)

The area is computed with the marching corner cut-
ting algorithm (Sandip Sar-Dessai and Kobbelt). In
each step of the algorithm a convex corner (or respec-
tively a triangle) is cut off of a polygon, if there is no
other point contained in this triangle. This polygon is
constructed from the points of the trajectory that form
the circle in the order of their appearance. When only
three points are left the triangle surfaces are added.

6. Compute Center Point c = (xc, yc): In a first step theCenter Point
center points xi and the lengths li of the N edges of
the circle polygon are computed. From these points
the center point is computed by averaging the x and
y values for compound linear balance point computa-
tion (Cen).

xc =
1
L

N∑
i=0

xi · li (3.2)

yc =
1
L

N∑
i=0

yi · li (3.3)

L =
N∑

i=0

li (3.4)

This way all polygon nodes influence the center point
computation relative to the weight of their neighbor-
ing edges.
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7. Compute Distance Histogram to Center Point: A dis- Distance
Historgrammtance histogram containing the distances from each

point to the center point is computed. If at least 50%
of the points should lie in a similar distance from the
center point the histogram check is succeeded.

For explanatory the single steps are visualized in figure 3.6.
Algorithm 3.2.6. gives an overview of the described steps.
It returns true if the points in the input array circlePoints
form a circle-like geometry. Here the first two steps are al-
ready accomplished. The functions which are called in this
algorithm perform the checks described above.

3.2.4 Objects Interact

The interaction of objects include meaningful situations Cluster: Objects
Interactin many application areas, which is why Objects Interact

is the most extensive cluster. Most patterns in this group
analyze the trajectories based on their distance to each
other. In sports, events like fouls or backing, where two
people are close to each other, or when the ball is caught in
the goal are interesting events (Tovinkere and Qian [2001]).
According to Benjamin Zipser, behavioral researchers find
that all interactions of animals, e.g. when they are close,
far away, run away from each other, or follow each other
are relevant. Analysis examples are how long animals stay
together or remain far away from each other. Benjamin
Dennig states that every interaction with an analyzed
product is important in ethnographic market research.
Also, Babic [2010] states that the interaction of the patients
with medical products is relevant for their analysis. In
visual surveillance and forensics a person bumping into
someone else or showing aggressive behavior is evaluated
as suspicious or alerting behavior. There are several
forensic studies on aggressive behavior of people. For
example, in a study by D’Orio et al. on the reduction of
seclusion and restraint in a psychiatric emergency service,
the researchers found out that seclusion occurs due to
ineffective management of problematic situations. Violent
and aggressive behavior need to be recognized fast and
escalating situations need to be managed, which is why
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video surveillance was increased (Ori [2004 American
Psychiatric Association]). Furthermore collision detection
in traffic surveillance is an important event (Saunier and
Sayed [2007]).

To detect these scenes I defined several distance pat-Distance Patterns
terns. With the patterns Distance between Objects: Small,
Distance between Objects: Big, and Distance between Objects:
Increases, the user can find frames where objects are close,
far away, or when two objects move away from each
other. She has the probability to scale the minimum and
maximum distances. The pattern Objects meets additionally
allows to find frames where an object-trajectory is within
intersection distance of a different trajectory, independent
of time. This is especially useful if the user wants to search
for scenes where one object follows another object, or when
e.g. market researchers want to find points of interest,
which are observed by many people after an other. The
pattern Object meets several other Objects allows to define a
special object. Only its object trajectory is checked for in-
tersection points with the other defined object trajectories.
This kind of pattern is useful in settings as the Phillips
Research’s ExperienceLab [Exp], where the user wants
to find out which of the objects have been observed by a
person. The intersection of all defined object trajectories
in one point would not be very useful in this case. The
pattern Objects are visible in the same Frame enables the user
to find frames, where interactions of the defined objects are
possible at all. It only finds those frames where all objects
are visible. An other important crime pattern, that has alsoLeft-Luggage-

Detection been content of the Pets workshop 2006, is the left-luggage
scenario. Here the person carrying the luggage is close to
the object first and deviates at a certain point, while the
luggage stays still (Mac, Fengjun Lv and Nevatia [2006]),
which is why I defined the pattern Distance between two
Objects increases after a close Motion.

An other interesting topic in forensic analysis is crowdCrowd Surveillance
surveillance. In [Shobhit Saxena and Ma [2008]] the crowd
motion and behavior is analyzed to e.g. be able to perform
crowd management. Therefore the similarity of the crowd
motion is computed. A pattern to find similar motion
of objects is Objects have Parallel Object Trajectories, which
checks the similarity of the geometry of the trajectory-lines.
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Figure 3.7: Object trajectories of billiard-balls , being far away, then close when they
hit each other and then the distance increases. Each situation is recognized by the
respective algorithm. (Video by Karrer et al.)

Important events in sports are passes (Tovinkere and Qian Object Passing
[2001]). Here the object ball is at first close to a person.
After the pass it deviates from this person and arrives at a
different player. A similar pattern can be observed in visual
surveillance. One contribution in [Mac] is the analysis of
trajectories by detecting suspicious object transferring in
order to detect robbery situations. The object transferring
occurs in a similar manner, only with a smaller distance
between the involved objects. To detect these situations I
defined the pattern An Object Moves from one Object to an
Other.

Distance between Objects: Small

With the pattern Distance between Objects: Small, the user Pattern-
Implementation:
Distance between
Objects: Small

is able to find frames where objects are close to each
other. The implementation of this pattern is described
by Algorithm 3.2.7. It returns all frames of a video, in
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which the distance of all objects is less than or equal to
maxDistance. The value maxDistance is selected by the
user. In a first step the set of resulting frames is initial-
ized by all frames in which the first object-trajectory is
defined. Then the object-location is checked against the
other trajectories for each frame. As soon as one of the
trajectories is not within maxDistance to one of the other
trajectories in a frame or when a trajectory is not defined
on a frame this frame is removed. The first constraint
is checked by computing the magnitude of the vector
pointA-pointB. Additionally it needs to be checked if the
neighboring lines of the points intersect. This is done due
to the fact that trajectories can intersect even if their points
are far away from each other, when the objects move fast
enough. The intersection is computed by the function
POINTSINTERSECT(trajectoryA, trajectoryB, pointA, pointB). If the
norm is greater than maxDistance and the neighboring lines
do not intersect, the respective frame is removed from the
result set. The second constraint is checked by the func-
tion FRAMEDEFINEDONTRAJECTORY(trajectory, frameNumber),
which compares the frame-range of trajectory to the input
frameNumber.

DISTANCE BETWEEN OBJECTS: SMALL:

Algorithm 3.2.7: CLOSETRAJECTORIES(Array trajectories, maxDistance)

local Set resultFrames← GETFRAMESFROMRANGE(STOREDFRAMES(trajectories[0]))

for i← 1 to SIZEOF(trajectories)− 1

for each frame in resultFrames

if FRAMEDEFINEDONTRAJECTORY(frame, trajectories[i])
then

for j ← 0 to i− 1

local pointA← POSITIONFORFRAME(frame, trajectories[i])
local pointB← POSITIONFORFRAME(frame, trajectories[j])
local norm← NORM(pointA.x-pointB.x, pointA.y-pointB.y)
bool intersect← POINTSINTERSECT(trajectories[i],trajectories[j],pointA,pointB)
if not intersect and norm >maxDistance

then DELETEFROMSET(frame)
else DELETEFROMSET(frame)

return (setOfFrames)
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Distance between Objects: Big

The pattern Distance between Objects: Big finds frames in Pattern-
Implementation:
Distance between
Objects: Big

which objects are far away from each other. This function-
ality is achieved by algorithm 3.2.8. The implementation is
analog to that of algorithm 3.2.7. Here the variable minDis-
tance describes the minimum distance of the objects.

DISTANCE BETWEEN OBJECTS: BIG:

Algorithm 3.2.8: TRAJECTORIESFARAWAY(Array trajectories, minDistance)

local Set resultFrames← GETFRAMESFROMRANGE(STOREDFRAMES(trajectories[0]))

for i← 1 to SIZEOF(trajectories)− 1

for each frame in resultFrames

if FRAMEDEFINEDONTRAJECTORY(frame, trajectories[i])
then

for j ← 0 to i− 1
local pointA← POSITIONFORFRAME(frame, trajectories[i])
local pointB← POSITIONFORFRAME(frame, trajectories[j])
local norm← NORM(pointA.x-pointB.x, pointA.y-pointB.y)
if norm <minDistance

then DELETEFROMSET(frame)
else DELETEFROMSET(frame)

return (setOfFrames)

Distance between Objects: Increases

The pattern Distance between Objects: Increases finds frames Pattern-
Implementation:
Distance between
Objects: Increases

where two objects move away from each other. Its imple-
mentation consists of two main steps:

1. Compute intersecting range: First the range is com- Intersecting Range
puted where both trajectories TA and TB are defined.
The remaining points of trajectory TA are stored in the
array pointsTA

and those of trajectory TB are stored in
pointsTB

.

2. Recursive Call: The recursive function Recursive Function
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Figure 3.8: Shows steps performed by Distance between Objects: Increases-Pattern.

DISTANCEINCREASES(pointsTA
,pointsTB

,angle,precision,range)
is called. The precision value can be adjusted by the
user. It defines the minimum number of frames into
which the point arrays can be split to get higher
accuracy. The angle defines the minimum angle by
which the trajectories should deviate and range is the
frame range on which both trajectories are defined.
This function returns the frames where the two
selected objects move away from each other.

The recursive function described by algorithm 3.2.9 and vi-
sualized in figure 3.8 performs the following steps:Implementation of

the Recursive
Function

1. Approximating Trajectories by Linear Regression: InLinear Regression
a first step the regression lines of the points of trajec-
tories TA and TB are computed (Cramer and Kamps
[2008]). This step is performed by the function
INITREGRESSIONLINEWITHPOINTS(). The linear re-
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DISTANCE BETWEEN OBJECTS: INCREASES:

Algorithm 3.2.9: DISTANCEINCREASES(Array pointsTA
,pointsTB

,angle,precision,range)

local Set resultSet← ∅
if SIZEOF(pointsTA

)<precision
then return (resultSet)

local RegressionLine lineA← INITREGRESSIONLINEWITHPOINTS(pointsTA
)

local RegressionLine lineB← INITREGRESSIONLINEWITHPOINTS(pointsTB
)

local errorA← STABILITYINDEX(lineA)
local errorB← STABILITYINDEX(lineB)

if errorA <MAX ERROR or errorB <MAX ERROR
then

local errorFrame
if errorA<errorB

then errorFrame← MEANVALUEFILTERING(pointsTA
)

else errorFrame← MEANVALUEFILTERING(pointsTB
)

local Range rangeI← NEWRANGEFIRST(range, errorFrame)
local Range rangeII← NEWRANGELAST(range, errorFrame)
local pointsTA1 ← GETFIRSTHALFOFPOINTS(pointsTA

, errorFrame)
local pointsTA2 ← GETLASTHALFOFPOINTS(pointsTA

, errorFrame)
local pointsTB1 ← GETFIRSTHALFOFPOINTS(pointsTB

, errorFrame)
local pointsTB2 ← GETLASTHALFOFPOINTS(pointsTB

, errorFrame)
resultSet← DISTANCEINCREASES(pointsTA1 , pointsTB1 , angle, precision)
resultSet← resultSet ∪ DISTANCEINCREASES(pointsTA2 , pointsTB2 , angle, precision)
return (resultSet)
else

local realAngle← GETANGLEFROMLINES(lineA, lineB)
local Array distanceHistrogram

for i← 0 to SIZEOF(pointsTA
)

do{
distanceHistogramm[i]←

NORM(pointsTA
[i].x-pointsTB

[i].x, pointsTA
[i].y-pointsTB

[i].y)

local RegressionLine distance←
INITREGRESSIONLINEWITHPOINTS(distanceHistorgram)

if distance.slope >0 and realAngle≥ angle
then resultSet← resultSet ∪ GETFRAMESFROMRANGE(range)

return (resultSet)

gression is used to evaluate if the trajectories deviate
by a certain angle.
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2. Error Computation and Recursion: The sta-Stability Index
bility index R is computed by the function
STABILITYINDEX(). R is a value between zero
and one, the higher this value is, the better the
approximation.

R = 1−
(∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

)
(3.5)

ŷi = â+ b̂ · xi (3.6)

The yi denote the y-values of the trajectory-points
and n is the total number of points used for regression
[Brete]. â and b̂ constitute the regression-line model
and ȳ denotes the mean-value of the y-coordinates.
According to Brete [2004] there is no defined stan-
dard maximal error value. Thus I tested the data for
several error values on noisy and non-noisy video
material. An error value that excepts both can not
exceed 0.85. Should the resulting error values drop
below this predefined threshold MAX ERROR the
point arrays are split, to achieve higher precision by
performing a recursive call and by this approximat-
ing the trajectory by two regression lines. The point
where the trajectories are split is computed by a mean
value filtering of the point array with the smaller
stability index. This process is visualized in figure
3.9. In each step of the filtering the point whichMean Value Filtering
has the smallest distance to its orthogonal projection
on to the line connecting its two neighboring points
is removed until only one interior trajectory point
is left. This is the point where the trajectories are
split. The function DISTANCEINCREASES() is thenRecursive Call
called on the defined subarrays, which are com-
puted by the functions GETFIRSTHALFOFPOINTS(),
GETLASTHALFOFPOINTS(), and NEWRANGE()-
functions.

3. Angle and Distance: If the error values of the lin-Angle and Distance
ear regression are admissible the angle between the
trajectories in movement direction is computed and
tested against the input angle. Second a distance
histogram of the points in the arrays pointsTA

and
pointsTB

is created and a linear regression is per-
formed on the distances. If the slope s of this regres-
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Figure 3.9: Steps performed by the function
MEANVALUEFILTERING(Array points). To find the largest
extent, step by step the point with the smallest distance
to its orthogonal projection on the connecting line of the
neighboring points is removed. In the last step, the interior
point denotes the separation point.
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sion line is s ∈ R+, the distance between the two tra-
jectories increases with ascending frame numbers. If
both tests are successful the frames in the range where
both trajectories are defined can be added to the re-
sult.

Objects Meet

With the pattern Objects Meet the user is able to findPattern-
Implementation:
Objects Meet

frames where all objects are within intersection distance.
The intersection distance is defined by 5% of the movie
size width, which shows satisfying results. To com-
pute an exact intersection tolerance one would need to
compute the average object size in a video. Algorithm
3.2.10 returns the frames where all trajectories in the
input array intersect. The user has the possibility to
select a dependance value. If she chooses T1 algo-

OBJECTS MEET:

Algorithm 3.2.10: TRAJECTORIESINTRESECT(Array trajectories, dependance)

if dependance == T1

then{
return (CLOSETRAJECTORIES(trajectories,movieSize.width*INTERSECTION RATIO))
else

local Set arraysOfFrames← ∅
local Array frames← INITWITHCAPACITY(SIZEOF(trajectories))
arraysOfFrames←

GETFRAMESOFINTERSECTINGPOINTS(frames, trajectories, -1, 0)
local Set resultSet← ∅
for each array in arraysOfFrames

dofor each set in array
do{
resultSet← resultSet ∪ set

return (resultSet)

rithm 3.2.10 returns all frames, where the trajectories
intersect in the same frame. In this case the function
CLOSETRAJECTORIES(), which was described above, is
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OBJECTS MEET:

Algorithm 3.2.11: GETFRAMESOFINTERSECTINGPOINTS(Array frames,t,tNr,pointNr)

local Set resultSet← ∅
if not tNr == −1

then

if tNr == SIZEOF(t)
then return (SETWITHOBJECT(frames))

local currentFrame← pNr + STOREDFRAMES(t[tNr]).location
for i← 0 to t− 1

do
local Point point← POSITIONFORFRAME(t[i], frames[i])
local Point thisPoint← POSITIONFORFRAME(t[tNr], currentFrame)
bool intersect← POINTSINTERSECT(t[i], t[tNr], point, thisPoint)if not intersect

then return (∅)
frames[i]← currentFrame

tNr++
if tNr<SIZEOF(t)

then
for i← 0 to STOREDFRAMES(t[tNr]).length

do{
resultFrames←

resultFrames ∪ GETFRAMESOFINTERSECTINGPOINTS(frames, t, tNr, i)
else resultFrames←

resultFrames ∪ GETFRAMESOFINTERSECTINGPOINTS(frames, t, tNr, 0)
return (resultSet)

called for the intersection distance. When she picks T2

algorithm 3.2.11 is called. This algorithm searches for all
trajectory intersections independent of the frame number.
In the following I will describe the steps of the function
GETFRAMESOFINTERSECTINGPOINTS(frames, t, tNr, pointNr).
This algorithm functions in a back-tracking-like manner.
The first call gets as input an empty array frames, that
contains as many entries as the array t, which holds the
defined trajectories. So each entry in frames is reserved
for a frame number of its corresponding trajectory in t.
At each call the function checks if the point of trajectory
t[tNr] in frame pointNr+STOREDFRAMES(t[tNr]).location
is in intersection distance to all other points which have
already been checked against their preceding trajecto-
ries. If the point at currentFrame is close to all the points



38 3 Event Detection in Videos based on Object Trajectories

Figure 3.10: Trajectories of pawns. The red pawn moves between the green pawn
and the blue one. This is regonized by the pattern Object meets several other objects,
when the red pawn is selected as special object.

corresponding to the frames in the array frames, which
are defined up to index tNr-1 the new frame is inserted
into frames[tNr]. Should this not be the case ∅ is returned,
and this branch is abolished. To find all intersections
GETFRAMESOFINTERSECTINGPOINTS() is called on every
frame of every trajectory. But since branches are discarded
early the number of function calls is reduced strongly.
The filled array frames is added to the result set if for
each trajectory tx a point was found that is close to all
other locations of the trajectories ti at the respective frame
frame[ti].

Object meets several other Objects

The pattern Object meets several other Objects finds frames,Pattern
Implementation:
Object meets several
other Objects

where the trajectory of a special predefined object inter-
sects the trajectories of all other selected objects. An ex-
ample is depicted in figure 3.10. Algorithm 3.2.12 de-
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scribes this functionality. The input index is an inte-
ger value, which denotes the index of the selected ob-
ject. To find the respective frames algorithm 3.2.12
calls the function CLOSETRAJECTORIES() on each couple
of trajectories (trajectories[index], trajectories[i]), with i ∈
{0, . . . , SIZEOF(trajectories)}\{index}.

OBJECT MEETS SEVERAL OTHER OBJECTS:

Algorithm 3.2.12: TRAJECTORYINTRESECTSTRAJECTORIES(Array trajectories, index)

local Set resultSet← ∅
for i← 0 to SIZEOF(trajectories)

do
if not i == index

thenlocal Array inputArray← ARRAYWITHOBJECTS(trajecories[index], trajectories[i])
resultSet← resultSet ∪

CLOSETRAJECTORIES(inputArray, movieSize.width*INTERSECTION RATIO)
return (resultSet)

Distance between two Objects increases after a close Mo-
tion

The pattern Distance between two Objects increases after a close
Motion identifies scenarios like the lost-luggage event. An Pattern

Implementation:
Distance between
two Objects
increases after a
close Motion

example is depicted in figure 3.11. At first the two ob-
jects with trajectories tA and tB are within distance dist
and at a certain frame they deviate from each other. This
functionality is described by algorithm 3.2.13. The user
has several options. She is able to adjust precision val-
ues, as in the function DISTANCEINCREASES(), she can de-
fine which percentage of frames shall be close, before ob-
jects deviate with the value lenClose, and she can choose
if the left object needs to be still after it was abandoned
with the parameter isStill. Additionally the stability in-
dex for the function call DISTANCEINCREASES() can be ad-
justed in this pattern, since a strict definition of the line-
precision could refuse correct results. In a first step the
algorithm extracts all frames where the objects deviate
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Figure 3.11: Object trajectories of two pawns where the distance between the two
objects increases after they moved together.

from each other and are within distance dist. The func-
tion GETNUMBEROFFRAMESCLOSEBEFOREFRAME() calcu-
lates the number of frames in which the input trajectories
tA and tB are close before frame frame. After checking
if the objects where close before they increased distances,
the optional check for still objects is done. The function
STILLAFTERFRAME() checks the variance of the trajectory
points, after the deviation.

Objects are visible in the same Frame

The pattern Objects are visible in the same Frame enables thePattern
Implementation:
Objects are visible in
the same Frame

user to find all frames, in which all selected objects are vis-
ible. These frames are returned by algorithm 3.2.14. by in-
tersecting all frame sets of the single trajectories.
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DISTANCE BETWEEN TWO OBJECTS INCREASES AFTER A CLOSE MOTION:

Algorithm 3.2.13: DEVIATEAFTERCLOSEMOTION(tA, tB , isStill,precision,dist,lenClose)

local Set resultSet← ∅
local Range range← INTERSECTRANGE(tA, tB)
local Array pointsTA

← POINTSINRANGE(tA, range)
local Array pointsTB

← POINTSINRANGE(tB , range)
local Array input← ARRAYWITHOBJECTS(tA, tB)

resultSet← DISTANCEINCREASES(pointsTA
, pointsTB

, angle, precision, range)
resultSet← resultSet ∩ CLOSETRAJECTORIES(input, dist)
for each frame in resultSet

do

local int count← GETNUMBEROFFRAMESCLOSEBEFOREFRAME(frame, tA, tB)
if count<lenClose

then REMOVEFROMSET(resultSet, frame)
else if isStill
then{
if not ISSTILLAFTERFRAME(tA, frame) and not ISSTILLAFTERFRAME(tB , frame)

then REMOVEFROMSET(resultSet, frame)

return (resultSet)

OBJECTS ARE VISIBLE IN THE SAME FRAME:

Algorithm 3.2.14: VISIBLEINSAMEFRAME(Array trajectories)

local Set resultSet← FRAMESFROMRANGE(STOREDFRAMES(trajectories[0]))
for i← 1 to SIZEOF(trajectories)− 1

do resultSet← resultSet ∩ FRAMESFROMRANGE(STOREDFRAMES(trajectories[i]))
return (resultSet)

Objects have Parallel Trajectories

The pattern Objects have Parallel Trajectories searches for Pattern
Implementation:
Objects have Parallel
Trajectories

frames in which the selected trajectories have similar char-
acteristics (see figure 3.12). To evaluate the resemblance of
each two trajectories, the system performs a scale invari-
ant mesh registration on the object-trajectories. The algo-
rithm 3.2.15 functions analog to algorithm 3.2.9 with the
call DISTANCEINCREASES(), which has been explained in



42 3 Event Detection in Videos based on Object Trajectories

Figure 3.12: To people moving parallel to each other. Most frames are recognized
by the pattern-recognizer Objects have parallel trajectories.(See chapter 4 for more
detail.)

detail in one of the previous sections. The mesh reg-Mesh registration via
SICP istration is computed via the scale invariant closest point

algorithm (SICP) (Shaoyi Du and You [ICIP 2007]). Main
SICP operations are depicted in figure 3.14. As input the
SICP-algorithm gets two point sets M = {mi}Ni=1 and P =
{pi}Ni=1, where the points mi and pi are two dimensional
points in the (x,y)-space and N is the number of points in
each set. Since I only regard points where both trajecto-
ries are defined, both sets have the same size. The goal of
the SICP algorithm is to find the minimum of the following
least squares problem:

sicpError = mins,R,t

N∑
i=1

‖(RSpi + t)−mi‖22 (3.7)

S denotes the scaling matrix, where the scaling factor
shall not be greater than 3. R represents the rotation ma-
trix and t describes the translation vector. The mesh reg-
istration is performed by iteratively converging against
the solution which minimizes equation (3.7). All itera-
tive steps are described in detail in [Du:2007]. After the
SIPC computation is performed, the SICP properties, like
rotation and scaling matrix and the SICP error (3.7) are
checked. If these values are below the predefined thresh-
olds, the corresponding frames can be added to the result.
Otherwise the arrays are split at the point which maxi-
mizes the SICP-error. This point is computed by the func-
tion GETINDEXOFINTERIORMAXERRORCONTRIBUTION(). The
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Figure 3.13: Parallel Trajectories Algorithm. Shows two trajectories which are
checked to be parallel. After sicp a split is performed because the error is too large.
The second sicp discards the left part of the trajectory because of the rotation by 45
degree.

course of the recognition algorithm is visualized in figure
3.13.

An Object Moves from one Object to an Other

The pattern An Object Moves from one Object to an Other Pattern-
Implementation: An
Object Moves from
one Object to an
Other

identifies events like passes, where a defined object
is passed between the other objects. Algorithm 3.2.16
searches for frames, where a predefined object arrives at or
leaves one of the other objects in the array trajectories. The
integer value index denotes the index of the passed object
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OBJECTS HAVE PARALLEL TRAJECTORIES:

Algorithm 3.2.15: FRAMESFROMSICP(Array pointsTA
,pointsTB

,angle,precision,range)

local Set resultSet← ∅
if SIZEOF(pointsTA

)<precision
then return (resultSet)

local SICP sicp← INITSICPWITHPOINTS(pointsTA
, pointsTB

)

if sicp.scaleCoefficient >3 or sicp.scaleCoefficient <0.3
or sicp.error >SICP ERROR*movieSize.width
or sicp.rotationAngle >angle
then

local errorFrame← sicp.GETINDEXOFINTERIORMAXERRORCONTRIBUTION()
local Range rangeI← NEWRANGEFIRST(range, errorFrame)
local Range rangeII← NEWRANGELAST(range, errorFrame)
local pointsTA1 ← GETFIRSTHALFOFPOINTS(pointsTA

, errorFrame)
local pointsTA2 ← GETLASTHALFOFPOINTS(pointsTA

, errorFrame)
local pointsTB1 ← GETFIRSTHALFOFPOINTS(pointsTB

, errorFrame)
local pointsTB2 ← GETLASTHALFOFPOINTS(pointsTB

, errorFrame)
resultSet← FRAMESFROMSICP(pointsTA1 , pointsTB1 , angle, precision)
resultSet← resultSet ∪ FRAMESFROMSICP(pointsTA2 , pointsTB2 , angle, precision)
return (resultSet)
else
then resultSet← resultSet ∪ GETFRAMESFROMRANGE(range)return (resultSet)

and the variable mLength describes the length of the input
video in frames. As in DEVIATEAFTERCLOSEMOTION() the
stability index is adjustable by the user to avoid too strong
filtering. First the algorithm computes all frames where one
of the trajectories is close to the trajectory trajectories[index]
and where the distance increases after this frame. Since
I want to filter out the first and the last frame of each
trajectory intersection the frames are stored in the array
frames in ascending order, by writing them into a data-
structure trajectoryFrames=(frameNumber, trajectoryNum-
ber). The superfluous frames are deleted by the function
DELETEIFPREVIOUSANDCONSECUTIVEFROMSAMETRAJECTORY().
GETSETOFFRAMESFROMTRAJECTORYFRAMEARRAY() invokes
that the set of resulting frames is computed from the array
containing the trajectoryFrames.
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Figure 3.14: Shows the three operations performed by the sicp-algorithm: scaling,
rotation, and translation.

3.2.5 Direction and Velocity

In the areas behavioral research, visual surveillance, and
forensic analysis a forth cluster, Direction and Velocity, is Cluster: Direction

and Velocityof interest. This cluster includes the patterns Objects move
in an opposing Direction compared to the average Object Mo-
tion, Velocity Differs from Own Average Velocity, and Veloc-
ity Differs from Average Velocity of all Trajectories. An exam-
ple is the ADVISOR (Siebel and Maybank [2004]), an auto-
mated visual surveillance system for metro stations, which
automatically detects dangerous situations. One task of Counter Flow
the ADVISOR is to perform crowd analysis, by detecting
counter-flow (Siebel and Maybank [2004]), where people
are moving against the main flow or in opposite directions
in one-way paths. Also, Shobhit Saxena and Ma [2008]
state that people moving in counter direction is an im-
portant pattern in crowd analysis. Furthermore, surveil-
lance cameras exist that support counterflow detection like
the CCTV Equipments from Karthik Energy Technologies
(Kar). According to JBN [June 24, 2010] in traffic surveil-
lance, motorists represent a threat, which should be rec-
ognized fast. These examples can be found by the cluster
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AN OBJECT MOVES FROM ONE OBJECT TO AN OTHER:

Algorithm 3.2.16: OBJECTPASSEDBETWEENOBJECTS(Array trajectories, index, mLength)

local Array intersectionArray← INITWITHCAPACITY(SIZEOF(trajectories))
for each t in trajectories

do

if t==trajectories[index]
then continue

local Range range← INTERSECTRANGE(t, trajectories[index])
local Array pointsTA

← POINTSINRANGE(t, range)
local Array pointsTB

← POINTSINRANGE(trajectories[index], range)
local Array input← ARRAYWITHOBJECTS(t, trajectories[index])

intersectionArray[i]←
DISTANCEINCREASES(pointsTA

, pointsTB
, angle, precision, range)

intersectionArray[i]← intersectionArray[i] ∩
CLOSETRAJECTORIES(input, movieSize.width*INTERSECTION RATIO)

local Array frames
for f ← 0 to mLength

do

for t← 0 to SIZEOF(trajectories)
do
if f ∈ intersectionArray[t]

then{
local trajectoryFrame tF← INITWITHFRAMEANDTRAJECTORY(f, t)
frames.ADDOBJECT(tF)

for i← 0 to SIZEOF(frames)
do{
DELETEIFPREVIOUSANDCONSECUTIVEFROMSAMETRAJECTORY(i, frames)

local Set resultSet← GETSETOFFRAMESFROMTRAJECTORYFRAMEARRAY(frames)
return (resultSet)

Objects move in an opposing Direction compared to the average
Object Motion. Robert Bodor and Papanikolopoulos [2003]
developed methods to detect situations where people are
in need. They define running or moving erratically and loi-
tering as suspicious behavior. According to Saunier andVelocity
Sayed [2007], speed detection in traffic surveillance is an
important task. Also, an animal being chased by an other
animals or when animals move faster or slower than usual
are interesting events. These situations can be found with
the two patterns Velocity Differs from Own Average Velocity,
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Figure 3.15: Video from the PETS-workshop 2009. Object trajectories of 3 people.
One is moving into an opposing direction.

and Velocity Differs from Average Velocity of all Trajectories.

Objects move in an opposing Direction compared to the
average Object Motion

The implementation of the pattern Objects move in an
opposing Direction compared to the average Object Motion Pattern-

Implementation:
Objects move in an
opposing Direction
compared to the
average Object
Motion

finds frames, in which a certain percentage of trajectories
deviates by at least ninety degrees from the average
course. An example is depicted in figure 3.15. Al-
gorithm 3.2.17 identifies this trajectory-behavior. The
user has the ability to adjust the minimum percent-
age value. First the algorithm calculates the trajectory
angles for each frame and stores them in the two dimen-
sional array angleArrays[trajectory][frame]. Afterwards
angleArrays contains the angles of each trajectory at
every frame. This step is performed by the function
GETARRAYSOFANGLESFROMTRAJECTORIES(Array trajectories).
Second the average direction and the average filtered
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direction of the trajectories are computed for each
frame. Resulting values for all frames are stored in
the array averageDirection[frameNr] by calling the func-
tion GETAVERAGEDIRECTIONINROW(angleArray, frameNr).
Algorithm 3.2.17 mere shows the computation of the
mean direction, since the filter-checks occur in the same
manner. The filtering takes trajectory-angles of its two
neighboring frames and computes the mean direction
of the trajectory in these three frames. Applying fil-
ters reduces the presumption of false positives due to
noisy data or when objects move very slow. Next the
percentage of trajectories, which’s directional aberration
is greater than ninety degrees from the mean direction,
is calculated. If this value exceeds the user-defined
percentage the respective frame is added to the results.
When a trajectory is identified, having differing direc-
tions in frame i, the mean-direction is updated by calling
UPDATEAVERAGEDIRECTION(averageDirection[i], trajectoryNr),
which recomputes the average direction by not considering
the direction at index trajectoryNr.

Velocity Differs from Own Average Velocity

The pattern Velocity Differs from Own Average VelocityVelocity Differs from
Own Average
Velocity

searches frames, where an object’s pace differs from its
own average speed. Figure 3.16 shows a car that gets
slower when turning left. This is a situation that is rec-
ognized by the algorithm. For each trajectory algorithm
3.2.18 first computes the mean value in distance

frame of all
trajectory-lines l = (POSITIONFORFRAME(trajectories[i], j),
POSITIONFORFRAME(trajectories[i], j+1)), which is achieved by
calling GETAVERAGEVELOCITYFROMTRAJECTORY(trajectory).
By adjusting the percent value the user defines the tol-
erance by which the pace per frame may differ from the
mean velocity. Each trajectory section l is tested against
the tolerance values deviationUp and deviationDown and
added to the result if the respective velocity exceeds these
boundaries.
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OPPOSING DIRECTION:

Algorithm 3.2.17: OPPOSINGDIRECTION(Array trajectories, percent)

local Set resultSet← ∅
local Range range← UNIONRANGE(trajectories)
local Array angleArrays← GETARRAYSOFANGLESFROMTRAJECTORIES(trajectories)
local Array averageDirection← INITWITHCAPACITY(range.length)
for i← 0 to range.length

do averageDirection[i]← GETAVERAGEDIRECTIONINROW(angleArrays, i)
for i← 0 to range.length

do

local int count← NUMBEROFDEFINEDOBJECTSAT(i)
local int countDeviating← 0
for t← 0 to SIZEOF(angleArrays)

do

if not TRAJECTORYDEFINEDINFRAME(t, i)
then continue

if averageDirection[i]-angleArrays[t][i] >90
then{
countDeviate ++
UPDATEAVERAGEDIRECTION(averageDirection[i], t)

if countDeviate ≤ count*percent*0.01
then resultSet. < ADDOBJECT(i)

return (resultSet)

Velocity Differs from Average Velocity of all Trajectories

The pattern Velocity Differs from Average Velocity of all
Trajectories selects frames, where an object’s pace differs Velocity Differs from

Own Average
Velocity

from the average velocity of the other trajectories. Al-
gorithm 3.2.19 operates similar to algorithm 3.2.18. The
additional input variable frames is an integer value that
denotes the number of frames held by the input video. For
each frame the average pace in distance

frame is computed calling
AVERAGEVELOCITYINFRAME(Array trajectories, int frameNr).
Finding a trajectory, which exceeds or goes below the
tolerance value specified in percentage by the user at a
certain frame, adds this respective frame to the result.
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Figure 3.16: Object trajectories of a car, which is slower when turning left. (Video
by Karrer et al.)

3.3 User Interface
User Interface

A User Interface for event detection software which bene-
fits video analysts needs to provide easy access, overview
of the discovered events, and a comprehensible depiction
of the search criteria. Before presenting the user interface,
designed for event detection, I will adumbrate the state of
the art video browsing in behavioral research and video
ethnography and describe a new video annotation software
which addresses this target group.

3.3.1 Video Browsing: State of the Art

At the moment, video browsing is accomplished on differ-
ent levels of technical support. Benjamin Dennig, researchVideo Browsing and

Analysis manager at the GIM states that the GIM uses nearly no tech-
nical aid for video browsing. Fouse et al. recognized this
gap (Adam S. Fouse and Hollan [2011a], Adam S. Fouse
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VELOCITY DIFFERS FROM OWN AVERAGE VELOCITY:

Algorithm 3.2.18: VELOCITYDIFFERSFROMOWNVELOCITY(Array trajectories, percent)

local Set resultSet← ∅
for i← SIZEOF(trajectories)

do

local float averageVelocity←
GETAVERAGEVELOCITYFROMTRAJECTORY(trajectories[i])

local float deviationUp← averageVelocity+averageVelocity*percent*0,01
local float deviationDown← averageVelocity-averageVelocity*percent*0,01
local Range range← STOREDFRAMES(trajectories[i])
for j ← range.location to range.length-2

do

if not TRAJECTORYDEFINEDINFRAME(trajectories[i], j)
then continue

local Point pointA← POSITIONFORFRAME(trajectories[i], j)
local Point pointB← POSITIONFORFRAME(trajectories[i], j+1)
local float norm← NORM(pointA.x-pointB.x, pointA.y-pointB.y)
if norm<deviationDown or norm>deviationUp

then resultSet.ADDOBJECTS(j, j + 1)

return (resultSet)

VELOCITY DIFFERS FROM OWN AVERAGE VELOCITY:

Algorithm 3.2.19: VELOCITYDIFFFROMAVERAGEVELOCITY(trajectories, percent, frames)

local Set resultSet← ∅
for i← 0 to frames-1

do

local float averageVelocity← AVERAGEVELOCITYINFRAME(trajectories, i)
local float deviationUp← averageVelocity+averageVelocity*percent*0,01
local float deviationDown← averageVelocity-averageVelocity*percent*0,01
for t← 0 to SIZEOF(trajectories− 1)

do

if not TRAJECTORYDEFINEDINFRAME(trajectories[t], i)
then continue

local Point pointA← POSITIONFORFRAME(trajectories[i], j)
local Point pointB← POSITIONFORFRAME(trajectories[i], j+1)
local float norm← NORM(pointA.x-pointB.x, pointA.y-pointB.y)
if norm<deviationDown or norm>deviationUp

then resultSet.ADDOBJECTS(j, j + 1)
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Figure 3.17: FinalCutPro User Interface. Fin [b]

and Hollan [2011b]). They indicate, that researchers can-
not afford the time to see all the recorded video material.
Therefore they propose ChonoViz, a video annotation soft-
ware, which I will describe below. The analysis process atCompacting Videos

for Analysis the GIM is build on three steps. In a first step videos are
assorted and thematically ordered. For the resulting data
video time codes are created, that contain the important
scenes, i.e. which part of the video is cut out. Finally the
video material is cut with software like Final Cut (Fin [a]) or
Adobe Premiere (Pre), an example of the Final Cut Pro user
interface is shown in figure 3.17. In behavioral researchVideo Annotation
the benefits of tracking software and video annotation are
exploited. Behavioral researcher Benjamin Zipser reports
that their institute uses two kinds of software. For journal-
izing, interpretation and analysis of videos they use video
annotation software like the Observer from Noldus (Obs [a])
or Interact from Mangold (Int). Userinterface examples are
depicted in figure 3.18 and 3.19. Noticeable are the ex-
tensive multiple timeline visualizations, where important
scenes are marked. The second group of software, whichObject Tracking
the Department of Behavioral Biology from the University
of Münster applies, are tracking systems to automate test-
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Figure 3.18: Observer from Noldus. Obs [b]

ing alike AnyMaze from Stoeling (Any). According to Ben-
jamin Zipser this software enables them to find any test sit-
uation, where only one animal is involved. The user inter-
face of AnyMaze is depicted in figure 3.20. Fouse et al.
developed the software ChronoViz, a system to support vi- ChronoViz
sualization and analysis of time coded data (Adam S. Fouse
and Hollan [2011a], Adam S. Fouse and Hollan [2011b]).
Supporting observational research, their main target group
is composed of researchers, behavioral scientists and ethno-
graphers. Users are able to store various kinds of informa-
tion in the video data. After data collection the time coded
information is visualized in multiple timelines, as seen in
figure 3.21. This enables the users to depict information in
different categories. A quick access of the data snippets is
achieved by showing popovers in the timeline when click-
ing on a ’time event’ in the multiple timelines. ChronoViz
was successfully tested in various domains (Adam S. Fouse
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Figure 3.19: Interact from Mangold. Int

Figure 3.20: User-interface of AnyMaze from Stoeling. Any

and Hollan [2011b]). It shows that it allows fast and easy
navigation and accelerates data collection and analysis.
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Figure 3.21: Video annotation in ChronoViz. [Adam
S. Fouse and Hollan [2011a]]

3.3.2 Visualizing and Navigating through Results

Each named software type contains a standard video-
player. Annotation software additionally offers options User Interface:

Navigation and
Results

for multiple timelines, that contain information on the
video frames, and tracking software provides features for
automated testing, e.g. like viewing the object trajec-
tories (see figure 3.20). Considering the described soft-
ware types shows that the event detection extension for
DRAGON should fulfill certain constraints for easy navi-
gation through the results. As in each described system,
the event detection extension will hold a standard video
player. A predominant number of the named software Timeline-

Visualizationtypes exploits multiple timelines for visualizing important
data and helps the user structuring time coded data into
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Figure 3.22: User Interface of event detection software where results are calculated.

categories. Thus I will provide multiple timelines for all
patterns where objects are analyzed independently, as seen
in figure 3.22. Each object can be labeled and is assigned
to its respective timeline. Patterns where the recognition
is intertwined among the trajectories are depicted in a sin-
gle timeline. These timelines contain colored ranges, which
indicate the relevant frames. As in ChronoViz, the event de-
tection system facilitates the user to easily access the con-
tent of the identified events by clicking on them and by this
opening a popover showing a miniature of the respective
frame. Navigation can be performed in three different ac-Navigation
curacies. First, the standard video player offers common
timeline navigation. Second, the in scene navigation pro-
vided by DRAGON allows the user to wind on a very fine
grained level. Last, the user can step through the detected
events by clicking on the left and right arrows located next
to the play/pause button depicted in figure 3.22.
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3.3.3 Pattern Selection Menu and Visualization

Before the user can search for events she needs to select a
pattern from seventeen choices. Since the menu mere con-
tains keywords to describe the patterns, a simple textual
description is not sufficient to enable a fast pattern selec-
tion. Thus each pattern is underlined with a comic-like
image, describing a scenery of this pattern. The user can
perceive the object constellation at a glance and decide if
this pattern is suited for the event she seeks. According to Pattern Visualization
[Cloud], a book on comic design by Scott Mc Cloud, even
rough sketches should enable the user to understand the
action clearly. They state that for simple actions only one
image is required for the reader to understand the action.
Furthermore the image-content is supported by motion-
arrows which indicate the trajectory course. Dan B. Gold-
man and Seitz [2006]] state that motion arrows are often
used by story board artists to describe and clarify motion
paths. From the main menu the user can enter one of the
four cardinal clusters Areas, Objects Act, Objects Interact, and
Direction and Velocity. The main clusters are visualized by
the four images depicted in figure 3.23. Clicking on these
images opens a popover containing the respective gather-
ing of patterns. The four sub-menus are shown in figure
3.24. Selecting one of the pattern images navigates to an
event definition screen, visible in figure 3.26. By enabling
the Select Object-Button, entering a label into the textfield
below and clicking on an object in the screen adds the re-
spective object for the event detection. Likewise the area
is selected, if the search includes a defined region. An ob-
ject can also be deleted by selecting it in the combo box and
pressing the Delete Object-Button. Further options can be
adjusted by the slider and the check boxes, depending on
the selected pattern, as described above. Clicking on Search
enables the search and depicts the corresponding results.
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Figure 3.23: User Interface of event detection software: Main Menu. Video by B.
Zipser.

Figure 3.24: Submenus for pattern selection of the event detection software.
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Figure 3.25: Submenu for pattern selection of the event detection software
overview. Video by B. Zipser.

Figure 3.26: Selection criteria after a pattern has been chosen. Video by B. Zipser.
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Chapter 4

Evaluation

DRAGON’s event detection extension was tested in perfor- Evaluation
mance and usability. To test performance I accomplished
precision-recall tests with a total of 26 videos, which are
presented in section 4.1. Usability was checked in a user-
study with 12 subjects. Experiments and results are demon-
strated in section 4.2.

4.0.4 Precision Recall Tests

To approximate precision recall values I tested the seven- Precision-Recall-
Teststeen algorithms on a minimum of three videos each from

26 recorded videos. The recordings where constituted of
19 real video tapings recorded by different cameras and 7
synthetic videos composed on the PC. Each video contains
sequences in which the patterns occur. Precision was
measured by calculating the percentage of frames from the
correct sequences, which were identified properly by the
pattern-recognizer. Recall values were computed by deter-
mining the portion of false positives, which where detected
by the pattern recognizer compared to the total number
of frames. Tests where tracking was too noisy were not
considered in the results. The test material shows various
scenes, which are described below. Video data was derived
from different sources. Besides the synthetic material, I
taped everyday-life situations, e.g. a woman cooking.
I also used video material Karrer et al. created for the
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DRAGON-studies and data, which was published by the
PETS-workshop [PET]. Following up each video-sequence
is presented. The total number of frames is specified in
brackets behind each movie title.

Real Videos:Test-Videos

1. figuresMeet.mov (684 f), figures2.mov (132 f), fig-
ures3.mov (269 f), figuresParallel.mov (345 f): Movies
showing ludo pawns performing different move-
ments.

2. Volleyball.Dragon (350 f), Volleyball 4.mov (358 f):
Sequence of a volleyball match.

3. Kitchen.Dragon (1843 f): Shows a woman working in
the kitchen.

4. ParallelIndependant.Dragon (796 f), Parallel1.Dragon
(722 f), Parallel2.Dragon (512 f): Two pedestrians
walking along a street in different constellations.

5. Troll1.mov (454 f), Troll2.mov (239 f), Troll3.mov (251
f): A toy troll moving circular. The movement is
adapted from the motion of mice, seen in video mate-
rial I gained from Benjamin Zipser on behavioral re-
search of mice.

6. Mayersche.Dragon (276 f): Shows the top view of a
street, with passing cars, bicyclists and pedestrians.

7. Billiard2.Dragon (87 f): Sequence of a billiard party.

8. Band.Dragon (386 f): Shows a band-conveyor of a
canteen.

9. Pedestrian.Dragon (257 f): A pedestrian walking out
of a building.

10. Pyramide.mov (23 f): Wooden cubes, which are hit by
a tennis ball.

11. Pets 2006:MulticameraPersonTracking.mov (1205 f):
Top view of people moving in a rail-way-station hall.

12. 2D-PersonTracking.mov Pets 2009 (62 f): Shows
pedestrians on a street.
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13. Tracking in a Parking Lot (545 f): Shows cars and
pedestrians walking or driving through a parking lot.

Synthetic Videos:

1. Passen.mov (120 f): A circle which is passed between
two other circles.

2. Kreisvideo.mov (325 f): A circle performing a circular
motion.

3. Kreisvideo8.mov (219 f): A circle performing an 8-like
motion.

4. deviate.mov (99 f): Two circles moving away from
each other, with imperfect trajectories.

5. parallel3.mov (156 f): Two circles moving nearly par-
allel.

6. differentDirection.mov (114 f): Shows four circles;
one moves into the opposite direction compared to
the other three.

7. lostluggagestill2.mov (161 f): Two circles which are
close first. After a certain amount of frames one circle
stays still and the other one moves away.

Results: Area Dependancies

The cluster Area Dependancies shows very precise results
and gives no false positives. Findings are listed in table 4.1.
Total recall values of 0% and precision of 100% derive from Results: Area

Dependenciesthe fact that users define areas by themselves and trajectory
points are checked against these areas.

Results: Objects Act

The cluster Objects Act also shows very precise results, de- Results: Objects Act
scribed in table 4.2. The appearing and disappearing is
already defined in the trajectories. A circle is recognized,
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Pattern Video Precision Recall Options
In Area Band 107

107 = 100% 0
386 = 0% 1 Object

0
0 = 100% 0

772 = 0% 2 Objects, independent
40
40 = 100% 0

386 = 0% 2 Objects, dependent
Billiard2 67

67 = 100% 0
174 = 0% 2 Objects, independent

Volleyball 24
24 = 100% 0

700 = 0% 2 Objects, independent
0
0 = 100% 0

700 = 0% 2 Objects, independent
0
0 = 100% 0

350 = 0% 2 Objects, dependent
Far from Area Kitchen 9

9 = 100% 0
1843 = 0% 1 Object

Band 183
183 = 100% 0

368 = 0% 1 Object
295
295 = 100% 0

772 = 0% 2 Object, independant
112
112 = 100% 0

368 = 0% 2 Objects, dependent
Pedestrian 0

0 = 100% 0
257 = 0% 1 Object

ParallelIndependent 0
0 = 100% 0

796 = 0% 2 Objects, dependent

Table 4.1: Precision-Recall Results of Cluster Area Dependencies

when at least one starting point of a circle is returned. Due
to the loose threshold settings in the pattern Object Trajec-
tory forms a Circle all tested circle-like structures are recog-
nized. Images of the respective trajectories are depicted in
appendix A.

Pattern Video Precision Recall Options
Objects Disappear Band 3

3 = 100% 0
386 = 0% 3 Objects

Billiard2 2
2 = 100% 0

87 = 0% 2 Objects
Volleyball 4 1

1 = 100% 0
358 = 0% 1 Objects

Objects Appear Volleyball 4 1
1 = 100% 0

358 = 0% 1 Objects
Billiard2 3

3 = 100% 0
87 = 0% 3 Objects

Kitchen 1
1 = 100% 0

1843 = 0% 1 Object
Circular Motion Kreisvideo 1circle

1circle = 100% 0
325 = 0% 1 Object

Kreisvideo8 2circle
2circle = 100% 0

219 = 0% 1 Object
Troll1 1circle

1circle = 100% 0
454 = 0% 1 Object

Troll2 1circle
1circle = 100% 0

239 = 0% 1 Object
Troll3 1circle

1circle = 100% 0
251 = 0% 1 Object

Table 4.2: Precision-Recall Results of Cluster Objects Act
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Pattern Video Precision Recall Options
Objects Meet Mayersche1 196

206 = 95.14% 0
552 = 0% 2 Objects,

independent
176
176 = 100% 0

552 = 0% 2 Objects,
independent

0
0 = 100% 0

276 = 0% 2 Objects,
dependent

Billiard2 3
3 = 100% 0

87 = 0% 2 Objects,
dependent

ParallelIndependent 541
541 = 100% 0

1592 = 0% 2 Objects,
independent

figuresMeet 85
85 = 100% 0

684 = 0% 2 Objects,
dependent

Meet Several figures3 51
71 = 71.83% 0

269 = 0% 3 Objects
passen 48

49 = 97.95% 0
120 = 0% 3 Objects

Mayersche1 83
83 = 100% 0

276 = 0% 3 Objects
Objects Close figures2 41

41 = 100% 0
132 = 0% 2 Objects

Mayersche1 22
22 = 100% 0

276 = 0% 3 Objects
Billiard2 3

3 = 100% 0
87 = 0% 2 Objects

Objects Far Billiard2 40
40 = 100% 0

87 = 0% 2 Objects
Band 386

386 = 100% 0
386 = 0% 2 Objects

237
237 = 100% 0

386 = 0% 2 Objects
figures3 77

77 = 100% 0
269 = 0% 3 Objects

Objects Deviate figures3 22
55 = 40% 0

269 = 0%
deviate 96

96 = 100% 3
99 = 3.03%

mayersche 115
117 = 98.29% 0

276 = 0%
billiard 42

42 = 98.29% 2
87 = 2.3%

Same Frame figuresMeet 135
135 = 100% 0

684 = 0% 3 Objects
Billiard2 85

85 = 100% 0
87 = 0% 2 Objects

Volleyball 4 50
50 = 100% 0

358 = 0% 2 Objects
Parallel Motion Parallel1 187

187 = 100% 0
722 = 0% 2 Objects

Parallel2 78
143 = 54.54% 0

512 = 0% 2 Objects
Parallel3 28

52 = 53.84% 0
156 = 0% 2 Objects

ParallelFigures 238
249 = 95.58% 0

345 = 0% 2 Objects
Object Passed passen 6

6 = 100% 0
120 = 0% 3 Objects,

stability 0.11
figures3 1

4 = 25% 0
269 = 0% 3 Objects,

stability 0.57
Billiard2 2

2 = 100% 0
87 = 0% 3 Objects,

stability 0.5
Deviate after Close TrackingParkingLot 33

33 = 100% 0
545 = 0% 2 Objects

lostluggagestill2 63
63 = 100% 0

161 = 0% 2 Objects
figuresParallel 74

74 = 100% 22
345 = 6.37% 2 Objects

Table 4.3: Precision-Recall Results of Cluster Objects Interact
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Results: Objects Interact

Test results of the cluster Objects Interact are depicted in ta-Results: Objects
Interact ble 4.3. Recall tests of Objects Meet and Object Meets Several

other Objects show an occurence of 0%. The precision val-
ues are less perfect: Objects Meet results in a precision of
99.19%; Objects Meets Several other Objects’s precision adds
up to 89.92%. This derives from the problem that average
object sizes are not estimated for this calculation, therefore
the precision of this algorithm is limited. The patterns Dis-
tance Between Objects: Close and Distance Between Objects:
Far return satisfying results, since the user is able to ad-
just minimum and respectively maximum distance. Abso-
lute precision of Distance Between Objects: Increases accounts
84.57%. The outlying precision-value of figures3 occurs
because one of the tracked objects does not move, which
causes that linear regression does not return useful results.
To improve this algorithm the test could be extended by
checking if the objects move. In this case results are more
sufficient, when only distance computation is performed.
The measured total recall value accounts 1.33%. Variations
in both values are caused by the setting of the stability in-
dex. To improve this value an analysis of the regression
model needs to be performed in advance. Also the preci-
sion value of An Object moves from one Object to an Other ac-
counts 75% and recall-tests of Distance between two Objects
increases after Close Motion result in 2.12%, since these pat-
terns are derived from the patterns described above. The
pattern Objects are visible in the same Frame shows satisfying
results. The Objects have parallel Trajectories-Precision result
accounts 75.99%, since parallel moving objects do not nec-
essarily create parallel trajectories. The maximal sicp-error
is dependent on the intersection distance, by tracking object
sizes this value could be improved likewise.

Results: Direction and Velocity

The analysis results of cluster Direction and Velocity areResults: Direction
and Velocity demonstrated in table 4.4. Total precision of the pattern

Objects move into opposing directions compared to the average
Object Motion adds up to 90.5%. Missed frames can result
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Pattern Video Precision Recall Options
Different Directions Mayersche1 57

69 = 83.6% 0
828 = 0% 3 Objects

differentDirections 92
96 = 95.8% 0

456 = 0% 4 Objects
MultiCameraPersonTracking 84

84 = 100% 0
3615 = 0% 3 Objects

2D-PersonTracking 19
23 = 82.6% 0

182 = 0% 3 Objects
VelocityOthers Mayersche1 32

32 = 100% 0
828 = 0% 3 Objects

Pyramide 8
8 = 100% 0

69 = 0% 3 Objects
TrackingParkingLot 25

37 = 67, 57% 0
1635 = 0% 3 Objects

differentDirections 4
4 = 100% 1

114 = 0.87% 3 Objects
VelocitySelf Mayersche1 121

121 = 100% 0
276 = 0% 1 Object

Band 284
284 = 100% 55

368 = 14.95% 1 Object
DifferentDirection 76

76 = 100% 0
114 = 0% 1 Object

Table 4.4: Precision-Recall Results of Cluster Direction and Velocity

from noisy data, when the trajectories, do not follow the ob-
ject’s path correctly, or when a part of the object is tracked,
which performs a separate motion, e.g. tracking an arm of
a person while she is walking. The pattern Velocity differs
from average Velocity of all Trajectories holds a total precision
of 91.89%. Here frames can be omitted because of strong
differences compared to still objects, if there are only few
objects traced, as it is the case. Total recall of the pattern Ve-
locity differs from own average Velocity accounts 4.98%. Since
average values are used in this pattern the results are only
meaningful if the object is traced over many frames, or if
the difference between frames is less significant. To im-
prove these patterns the comparison with the average value
should be extended by further tests, where frames with too
high deviation are discarded. All other analysis-outcomes
were satisfying.

4.0.5 User Study

To test usability of the event detection extension of User Study
DRAGON I performed a user study with 12 subjects. Main
goals of this first user study was to find out if the event
detection system accelerates search on videos and which
UI-elements should be improved, changed, or added to the
system. Acceleration was measured by performing a paired
students t-test on the null-hypothesis and measuring sig-
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nificance of the results. Users evaluated the system by an-
swering the questions of the System Usability Scale.

Test Set-Up

I hypothesized that search tasks in videos would be solvedHypothisis
significantly faster using the developed event detection
system than searching with a typical timeline-slider soft-
ware. To test significance I designed a user study in which
task completion time of both systems was measured and
compared. 12 probands, 9 male and 3 female, at the ageTest Set-Up
of 20 to 27 participated in the user study. Each regularly
uses computers and had low to medium experience in
video processing and analysis. All subjects were familiar
with standard timeline sliders. Every user had to perform
three search tasks in videos on two different systems. The
first system was the event detection software, where user
interface and functions were reduced, to elements the user
needed for this study. Users were able to select one of
the three search patterns: Objects in Area, Objects Far from
Area, and Object Meets several other Objects. The interface
is depicted in figures 4.1 and 4.2. Tracking of relevant
objects was performed beforehand and functions for
adding and deleting objects were disabled. First users were
provided with information on the three search patterns.
When the user felt familiar with the system, after a period
of vocational adjustment, I presented the second system:
a simple timeline-slider system, as shown in figure 4.4,
which the user could test before solving search tasks as
well. One after another I presented the search tasks and
measured completion time. The task was to find specified
situations on tapings of ludo matches:

Task 1:
Find all situations in which one of the blue pawns entersTasks
the start-area.

Task 2:
Find all situations in which one of the blue pawns leaves
the start-area.

Task 3:
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Figure 4.1: Reduced test interface of DRAGON for user-study containing only pat-
terns Objects in Area, Objects Far from Area, and Object Meets several other Objects

Find all situations where purple meets red1, red2 ore green.
(see figure 4.3)

All six combinations in ordering these tasks were tested.
Each of the three tasks was performed on an individual
ludo-video. First the users had to perform one of these
tasks on the event detection software. After that they
solved the same problem with the timeline slider system.
The user was asked to click on start when she stated that
she understood the given task and press stop when she
believed to have found all relevant situations. Time was
measured in this interval.

Significance and Acceleration Results

In 31 out of 36 cases users performed tasks faster using Individual Results
the event detection software. Individual completion times
for each task can be viewed in table 4.5 to table 4.7.
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Figure 4.2: Submenu and results of reduced test interface of DRAGON for user-
study.

ID Dragon Slider Ratio: Dragon/Slider Difference
1 90 s 135 s 0.6667 45 s
2 22 s 64 s 0.3438 42 s
3 23 s 34 s 0.6765 11 s
4 17 s 23 s 0.7391 6 s
5 24.8 s 45.5 s 0.5451 20.7 s
6 49.6 s 58.9 s 0.8421 9.3 s
7 51.8 s 40 s 1.295 -11.8 s
8 19.2 s 61.7 s 0.3112 42.5 s
9 22.4 s 29.7 s 0.7542 7.3 s
10 16 s 42 s 0.381 26 s
11 35 s 46.5 s 0.7527 11.5 s
12 16.8 s 42.3 s 0.3972 25.5 s

Table 4.5: User-Study Results of Task 1 (Enter Surface)
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Figure 4.3: Start positions of involved pawns in task 3.

Assuming the null-hypothesis, I performed a paired stu-
dents t-test on the three data sets to find out if the perfor- Significance: Paired

Students t-testmance time of the systems differs significantly [tTe]. Table
4.8 shows the results of the paired student’s t-test. p de-
notes the probability that the null-hypothesis holds true. In
all cases the difference between the data sets was signifi-
cant (p ≤ 0.01). Mean completion times and mean differ-
ence are listed as well. Obviously users perform faster on
the event-detection system in average, even though event-
locations were already presented in the first task. Since
the values hold strong variance, the mean ratios comple-
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Figure 4.4: Test-Interface of timeline-slider system.

ID Dragon Slider Ratio: Dragon/Slider Difference
1 42.9 s 74 s 0.5797 31.1 s
2 36 s 69 s 0.5217 33 s
3 55 s 119 s 0.4622 64 s
4 28.4 s 37 s 0.7676 8.6 s
5 25.7 s 58.5 s 0.4393 32.8 s
6 56.8 s 42.6 s 1.3333 -14.2 s
7 38.2 s 40.8 s 0.9363 2.6 s
8 31.3 s 52 s 0.6019 20.7 s
9 34.1 s 27.9 s 1,2222 -6.2 s
10 24.7 s 44 s 0.5614 19.3 s
11 32 s 48.2 s 0.6639 16.2 s
12 24.5 s 39.6 s 0.6187 15.1 s

Table 4.6: User-Study Results of Task 2 (Leave Surface)



73

ID Dragon Slider Ratio: Dragon/Slider Difference
1 126 s 139 s 0.9065 13 s
2 34 s 136 s 0.25 102 s
3 58 s 79 s 0.7342 21 s
4 37 s 67 s 0.5522 30 s
5 44.3 s 63.03 s 0.7028 18.73 s
6 67 s 141 s 0.4752 74 s
7 60 s 58.2 s 1.0309 -1.8 s
8 49.4 s 100.3 s 0.4925 50.9 s
9 58 s 72.2 s 0.8033 14.2 s
10 44.5 s 63.7 s 0.6986 19.2 s
11 108 s 91 s 1.1868 -17 s
12 23.5 s 98.3 s 0.2391 74.8 s

Table 4.7: User-Study Results of Task 3 (Meet)

tion time dragon/ completion time slider are itemized. Using
the event detection software users required averaged only
62%-72% of the completion time that was needed for the
slider system. In three tests users missed an event using the

Video Length Mean Time Dragon Mean Time Slider Mean Ratio Mean Diff. p

1 140 s 32,3 s 51,8833 s 0,64203 19,5833 s 0,002
2 152 s 35,8 s 54,3833 s 0,72569 18,5833 s 0,01
3 134 s 59,1417 s 92,3942 s 0,6209 30,6946 s 0,007

Table 4.8: Average Values and Result of Paired Student’s t-test

Failures
timeline-slider system and often false positives were identi-
fied, because users lost the overview of the involved pawn
locations, since object trajectories were not visible using the
timeline-slider software. Users performed faster using the
timeline-slider system in five cases. There were three rea- Faster on Slider
sons for these occurrences. In some cases users were un-
sure defining areas, multiple deletion and re-selection of
the area delayed completion. Second some users were not
sure if they could trust the results of the system. They
found the results quite fast, but kept stepping forwards and
backwards until feeling confident completing the task. A
third reason was that the event detection system was tested
first in every task. This way one of the users thinking he
could remind himself of the event-locations only skipped
to two results and left out the third.
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SUS Results

The system usability scale contains ten questions giving an
overall view of subjective assessments of usability (Brooke).
Participants can answer questions in form of likert charts
on 5 point scales. Results are presented in table 4.9. Ta-
ble 4.10 shows the respective evaluation. According to

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
1 4 1 5 2 5 1 5 1 5 1
2 4 1 5 1 5 1 5 1 5 1
3 5 2 5 1 5 1 4 1 5 2
4 2 1 5 1 5 1 4 2 5 1
5 2 1 5 1 4 1 4 1 3 2
6 4 2 4 1 5 1 4 2 5 1
7 5 2 4 1 5 1 4 1 5 1
8 3 4 2 4 4 1 4 1 5 3
9 4 2 4 1 4 1 4 2 4 3
10 2 4 3 3 2 1 4 2 4 3
11 2 2 4 1 4 2 4 2 4 1
12 4 1 5 1 4 1 5 1 5 1

Table 4.9: Results System Usability Scale

Aaron Bangor and Miller, products with scorings in the
high 70’s to upper 80’s have acceptable SUS-scores, but are
not truly superior and can thus be improved. The event
detection system is rated with a SUS-Scale of 82. Lewis et.
al describe how the SUS-Scale can be divided into usability
and learnability factors (Lewis and Sauro). Both scales are
located at 82-86. One main critique of the users was thatUser’s Impressions
they were not sure if they could trust the event detection
system. An animation which visualizes the transition of the
events when stepping through the results would be benefi-
cial. Furthermore it is not quite clear in which area of the
result frame the events occur. This should be clarified either
by assigning different colors to the object markers or by vi-
sually emphasizing the event-location in the frame rectan-
gle. Furthermore users where confused by area selection,
because no selection rectangle is shown while performing
area definition. Some adjustments in the choice of the UI-
elements should be done, e.g. users had the opinion that
they had to click to many buttons before the actual search
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ID SUS Score Usability Learnability
1 92,5 93,75 87,5
2 97,5 96,875 100
3 92,5 93,75 87,5
4 87,5 84,375 100
5 80 78,125 87,5
6 87,5 84,375 100
7 92,5 90,625 100
8 62,5 68,75 37,5
9 77,5 78,125 75
10 55 56,25 50
11 75 68,75 100
12 95 93,75 100
Mean 82,92 82,29 85,42
Standard Deviation 13,39 12,66 21,21

Table 4.10: Evaluation System Usability Scale

was performed. This costs time and should be adjusted.
The search button could for example be replaced by an au-
tomatic search after all search constraints are defined. Area
selection could be selected automatically when entering the
pattern. One has to keep in mind that the users were mere
provided with a reduced interface. Furthermore object se-
lection was already accomplished. The performed study
was basically focused on acceleration time. Thus before
changing buttons a usability study in which users need to
accomplish all steps should be arranged. Most users stated
that they felt confident using the system and would pre-
fer to use the event detection software over the traditional
timeline-slider to execute search tasks. Especially when the
event location in time is unknown most users stated that
they would strongly dislike searching through the video
with the timeline slider. Users also stated that button icons
made it easier to select the respective pattern. Often frame
stepping and timeline-sliding were used in combination
to understand the event detection results, thus browsing
in different accuracies was a useful feature. According to
these results the event detection software must be designed
more trustful. Users already prefer to use the event detec-
tion system over the timeline slider. Thus the user’s im-
pression, that she has found a correct event, needs to be
tightened, first by giving her a feeling for the semantical lo-
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cation of the returned frame by visualizing transitions and
second by indicating the spatial in frame location of the re-
sult.
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Chapter 5

Summary and future
work

In the final chapter I present an overview of this thesis and
an outlook on the research that should be performed in the
future. This contains improvements in pre calculation of
tracking data as well as advancements that result from pre-
cision tests and the user study.

5.1 Summary and contributions

This thesis presents a software, which accelerates search
tasks on videos by automatically detecting predefined
events in scenes. In the area of video processing and analy- Acceleration of

Search Taskssis I filtered out five areas in which researchers and editors
spend plenty of time watching videos to find important
scenes. These areas are video ethnography, sports analysis,
behavioral research, video editing, and visual surveillance
or forensics. As presented in chapter 2, research on event
detection has already been performed for some of the
described areas.

To create an event detection software which is ap- Clustering and
Pattern-Designpropriate to find a great amount of scenes in all these

application areas, I gathered important events and scenes
from these fields by questioning involved people, review-
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ing related work on the field, and reading up contributions
released by representatives of the respective application
area. Based on this analysis I clustered the gathered
events by comparing trajectory patterns, that occur in the
corresponding scenes, to 17 event detectors. For pattern
recognition on an input-video I describe 17 algorithms
which are based on predefined object trajectories and
rectangular areas, with which the described scenes can be
found. Precision-recall tests show that results of event de-
tection are reliable in most cases. To create a user interfaceUser-Interface
that is well known or beneficial for the users I gathered
information on software, which is currently in use, in some
of the described application areas. Based on the findings I
designed the user interface described in section 3.3.

To test the user interface and the acceleration of searchUser Study
task completion I designed a user study in which the
event detection system was tested against a standard
timeline-slider video player. Users were provided with
search tasks on each video system. After completing a task
on the event detection system they were asked to perform
the same search with the slider system. In each test task
completion time was measured. Results were compared byResult: Acceleration

of Search Tasks performing a paired students t-test under the assumption
of the null-hypothesis. It turned out that task completion
time of the two systems differed significantly. In average
users only needed 62%-72% of the time for task completion
with event detection compared to the slider-search. SUS-
Results (average score of 82) and user comments show, that
the system is easy to use. Furthermore users stated that
they preferred using the event detection software over the
slider-system.

The main contributions of this thesis are:Contributions

• Clustering scenes from the application area to compa-
rable trajectory patterns.

• Designing detection algorithms for the defined pat-
terns.

• Designing a user interface for event detection.

• Testing precision and recall values of the imple-
mented algorithms.
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• Accomplishing a user study to demonstrate usability
and acceleration of search tasks on the event detection
system.

5.2 Future work

This thesis presents a first prototype for event detection
software based on DRAGON. Extensions and improve-
ments can be made in pre-calculation of tracked data, in
user-interface-, and algorithm design. First I will present
critique and adjustments proposed by the user. Additional
tracking information which would benefit the reliability of
the algorithms is described. Finally algorithmic improve-
ments are presented, which are partially based on the ad-
ditional tracking information and should be added and ad-
justed in the future.

5.2.1 User Interface

One main critique point, which arouse during the user Trust Results
study was that users were not sure if they were able to
trust the results of the event-detection software. When us-
ing the system they wished for an animation, which makes
the transition of the results comprehensible. One improve-
ment would be blending in an arrow depicting the course
of movements the respective objects perform. Furthermore
it was hard to distinguish the selected objects, thus they
should have different colored markers. Users found it hard Emphasize Results
to find the location of the event in the frame, thus the in
frame location should be emphasized visually. Another
mentioned critique point was that users felt that they had
to push too many buttons before performing search, conse-
quently the button-interaction and preselection of buttons
should be adapted. A second user study should be per- Reduce button

pressesformed where the whole system is in use. Here the users
should be familiar with the system beforehand. When the
system is designed more trustful and the event location is
clarified, the users should be able to perform search even
faster. Finally, a user study with users from the target
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groups should be performed, so that the software can be
adjusted according to their opinion.

5.2.2 Automatic Object Recognition and Computa-
tion of Object Sizes

At the moment the event detection is based on flow-field
tracking of pixels. The user needs to select the pixel sheAutomatic Object

Recognition wants to track and then define search criteria. An automatic
object recognition and detection of object sizes would be
beneficial for several reasons. First, object selection time be-
comes negligible. Second, the user is able to perform event
detection on all recognized objects. This is especially bene-
ficial in areas like visual surveillance, when the surveillant
needs to be alarmed when something unusual happens.
She is not able to click on all objects beforehand. Further-
more, by detecting objects, the whole object can be tracked,
not only a single pixel. Thus the tracking data is less noisy
and the event-detection algorithms show more reliable re-
sults. Finally, by performing object recognition one is ableObject Size

Computation to approximate object sizes. This information enables to im-
prove algorithms like Objects Meet, by computing exact in-
tersection distances.

5.2.3 3D-Information

Some event detection algorithms would benefit from 3D-
location-information of the objects. The pattern Objects haveAlgorithmic

Improvement by
3D-Information

Parallel Trajectories performs a mesh-registration accepting
scalings from 0.3 to 3 due to perspective foreshortening. If
the 3D position of the objects were known this scaling could
be computed precisely or respectively the object trajecto-
ries could be adjusted to the 3D-information and nearly no
scaling is affordable. Also other algorithms like deviation
computations would benefit from 3D information, since it
is possible to make them more precise based on this data.
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5.2.4 Camera Motion Adjustment

At the moment the described algorithms can only be used
on still frames. But especially in fields as sports analysis Camera Motion
the camera is not still. Thus a camera motion adjustment
should be added. Wittenhagen [2008] presented an ap-
proach for camera motion adjustment in DRAGON. A com-
parable camera adjustment should be added to the event
detection extension.

5.2.5 Algorithmic Improvement

Some of the demonstrated algorithms can still be improved.
As described above Objects Meet and Object Meets several Improvements:

Objects Interactother Objects can be advanced by calculating object sizes.
Objects have Parallel Trajectories and Distance between Objects:
Increases can be enhanced by integrating 3D-information.
Furthermore Distance between Objects: Increases should be
improved regarding still objects. Some of the patterns like
Distance between two Objects increases after a close Motion are
based on the algorithms which need advancement. These
should be tested again after the basic patterns are adjusted.
Velocity and Distance algorithms work on average values. Improvements:

Distance and
Velocity

When there are only few objects selected or when the video
is short, very large values, which can also be caused by
noisy data, distort the results. Thus further analysis should
be performed where frames with too high deviation are dis-
carded.
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Appendix A

Images of
Precision-Recall-Tests

Appendix A shows several screenshots as examples for ex-
perimental results taken during the precision-recall tests.

Figure A.1: Movie Troll1, where a troll-figure performs a
circular motion.
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Figure A.2: Results of the pattern Objects deviate after close
motion on the video figuresParallel.

Figure A.3: Results of the pattern Distance between Objects:
Increases on the video mayersche1.
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Figure A.4: Results of the pattern Objects far away from Area
on the video billiard2.

Figure A.5: Results of the pattern Object meets several other
objects on the video mayersche1.
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Figure A.6: Results of the pattern Object meets several other
objects on the video figuresMeet.

Figure A.7: Results of the pattern Object moves from one Ob-
ject to an Other on the video billiard2.
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Figure A.8: Test-Results on parallel trajectories, where two
objects are defined. (Video Parallel1)





89

Bibliography

Stoelting any-maze. www.anymaze.com.

Sports analytics gmbh. http://www.umwelt-campus.de.

Denver, Colorado Municipal Code. 1950.

Philips research experiencelab. www.research.philips.com.

Final cut, a. www.apple.com.

Finalcut, b. www.cancom.de.

Gesellschaft fuer innovative marktforschung. www.g-i-
m.com.

Mangold interact. www.mangold-international.com.

Traffic surveillance system has capacity to catch offend-
ers. Jamaica National Building Society, June 24, 2010.
www.jnbs.com.

karthik energy technologies.
http://karthikenergytech.tradeindia.com.

On the use of video content analysis in its: A review from
academic to commercial applications.

Noldus observer, a. www.noldus.com.

Behavioral observation research group, b. sazcsufborg.org.

Reduction of episodes of seclusion and restraint
in a psychiatric emergency service. Psychiatric
Services, 2004 American Psychiatric Association.
www.ps.psychiatryonline.org.

Pets workshop. www.cvg.rdg.ac.uk.



90 Bibliography

Adobe premiere. www.adobe.com.

Skyway security. www.skywaysecurity.com.

Schwerpunkt - umwelt-campus birkenfeld - mechanik ii.
www.sports-analytics.de.

Paired student’s t-test. mlsc.lboro.ac.uk/resources/statistics/Pairedttest.pdf.

Philip T. Kortum Aaron Bangor and James T. Miller. An
empirical evaluation of the system usability scale.

Edwin Hutchins Adam S. Fouse, Nadir Weibel and
James D. Hollan. Chronoviz: A system for supporting
navigation of time-coded data. 2011a.

Edwin Hutchins Adam S. Fouse, Nadir Weibel and
James D. Hollan. Supporting an integrated paper-digital
workflow for observational research. 2011b.

A. Murat Tekalp Ahmet Ekin and Rajiv Mehrotra. Au-
tomatic soccer video analysis and summarization. In
IEEE Transactions on Image Processing, volume Vol. 12, July
2003.

Don Kimber Andreas Girgensohn and Thea Turner Eleanor
Rieffel. Dots: Support for effective video surveillance.
In MM’07, September 23–28, 2007, Augsburg, Bavaria, Ger-
many, 2007.

Edvin Babic. Ethnografische videodokumentationen in der
pharma- und gesundheitsbranche. Planungs-handbuch
OTC 2010 Media Spectrum, 2010.

Michael C. Frank Brandon C. Roy and Deb Roy. Exploring
word learning in a high-density longitudinal corpus.

Daniel Brete. Computerpraktikum im gp ii: Lineare regres-
sion, 2004.

John Brooke. Sus - a quick and dirty usability scale.

William Chen and Shih-Fu Chang. Motion trajectory
matching of video objects. In Proc. SPIE, volume Vol.
3972, p. 544-553, 2000.

Scott Mc Cloud. Making Comics: Storytelling secrets of comics,
manga and graphic novel. Harper.



Bibliography 91

Erhard Cramer and Udo Kamps. Grundlagen Der
Wahrscheinlichkeitsrechnung Und Statistik. Springer, 2008.

David Salesin Dan B. Goldman, Brian Curless and
Steven M. Seitz. Schematic storyboarding for video vi-
sualization and editing. In SIGGRAPH ’06 ACM, ACM
Transactions on Graphics (TOG), volume Volume 25 Issue
3, 2006.

Bo Wu Fengjun Lv, Xuefeng Song and Singh Ramakant
Nevatia. Left luggage detection using bayesian inference.
In In PETS, 2006.

Isaac Cohen Gerard Medioni and Francois Bremond. Event
detection and analysis from video streams. In IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MA-
CHINE INTELLIGENCE, volume VOL. 23, NO. 8, AU-
GUST 2001.

Abir Al Hajri Gregor Miller, Sidney Fels and Michael Ilich.
Mediadiver: Viewing and annotating multi-view video.
In CHI 2011, 2011.

Thomas Wolle Joachim Gudmundssona. Towards auto-
mated football analysis: Algorithms and datastructures.
Preprint submitted to MATHSPORT 2010, 2010.

Jason Campbell Larry Huston, Rahul Sukthankar and Pad-
manabhan Pillai. Forensic video reconstruction. In VSSN
’04 Proceedings of the ACM 2nd International Workshop on
Video Surveillance and Sensor Networks, 2004.

James R. Lewis and Jeff Sauro. The factor structure of the
system usability scale.

Alessandro Mecocci Lorenzo Favalli and Fulvio Moschetti.
Object tracking for retrieval applications in mpeg-2. In
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
FOR VIDEO TECHNOLOGY, volume VOL. 10, NO. 3,
APRIL 2000.

Wendy E. Mackay and Glorianna Davenport. Virtual video
editing in interactive multimedia applications. In Com-
munications of the ACM, volume Volume 32 Number 7,
1989.



92 Bibliography

Bennett Jackson Robert Bodor and Nikolaos Pa-
panikolopoulos. Vision-based human tracking and
activity recognition. In Proc. of the 11th Mediterranean
Conf. on Control and Automation, pages 18–20. Kostrzewa
Joseph, 2003.

Deb Roy. New horizons in the study of child language ac-
quisition. Invited keynote paper, Proceedings of Interspeech,
2009.

Mario Borth Sandip Sar-Dessai and Leif Kobbelt. Lec-
ture Notes on Computer Graphic 1. Rheinish-Westfaelische
Technische Hochschule Aachen, Department for Com-
puter Graphics and Multimedia.

Nicolas Saunier and Tarek Sayed. Automated road safety
analysis using video data. In Paper Submission to the 2007
TRB Annual Meeting, 2007.

Shihui Ying Shaoyi Du, Nanning Zheng and Qubo You. An
extension of the icp algorithm considering scale factor.
In 2007. IEEE International Conference on Image Processing,
volume V - 193 - V - 196, ICIP 2007.

Monnique Thonnat Shobhit Saxena, Francois Bremond and
Ruihua Ma. Crowd behavior recognition for video
surveillance. In Proceeding ACIVS ’08 Proceedings of the
10th International Conference on Advanced Concepts for In-
telligent Vision Systems, 2008.

Nils T. Siebel and Stephen J. Maybank. The advisor visual
surveillance system. In in ECCV 2004 workshop Applica-
tions of Computer Vision (ACV, volume V 193 - 196, 2004.

N. Papenberg T. Brox, A. Bruhn and J. Weickert. High accu-
racy optical flow estimation based on a theory for warp-
ing. In European Conference on Computer Vision (ECCV),
volume volume 3024 of LNCS, 25–36, 2004.

E. Lee T. Karrer, M. Weiss and J. Borchers. Dragon: a direct
manipulation interface for frame-accurate in-scene video
navigation. In CHI ’08: Proceeding of the Twenty-Sixth
An- nual SIGCHI Conference on Human Factors in Comput-
ing Systems, volume pages 247–250, New York, NY, USA,
2008.



Bibliography 93

Vasanth Tovinkere and Richard J. Qian. Detecting semantic
events in soccer games: Towards a complete solution. In
2001 IEEE International Conference on Multimedia and Expo,
2001.

Liang Wang Weiming Hu, Tieniu Tan and S. Maybankt. A
survey on visual surveillance of object motion and be-
haviors. In Transactions on Systems, Man, and Cybernetics,
IEEE, volume Part C: Applications and Reviews, 12 Juli
2004.

M. Wittenhagen. Dragoneye: Fast object tracking and cam-
era motion estimation. Master’s thesis, RWTH Aachen
University, 2008.

Yasunobu Yanagisawa. Social behavior and mating system
of the gobiid fish. In Japanese Journal of Ichthyology, vol-
ume VOL. 28, NO. 4, 1982.





95

Glossary

Adobe Premiere Video Editing Software
Area A rectangle defined by an offset (x, y), width,

and height

Behavioral Research All disciplines that explore the activities of
and interactions among organisms in the nat-
ural world

Bounding Box Smallest rectangle, which incloses a geomet-
ric object

Camera Motion Estimation Computation of the camera motion to adjust
trajectory coordinates to real world coordi-
nates

ChronoViz Video annotation software
Cinematic Features Camera calibration, colors, and edge features

in a frame
Cinematic Features Cinematic Features
Cluster: Area-Object Interaction Cluster containing all patterns in which ob-

jects interact with areas
Cluster: Direction and Velocty Cluster containing all patterns in which the

objects velocity or direction is peculiar
Cluster: Objects Act Cluster containing all patterns of objects per-

forming independent motion
Cluster: Objects Interact Cluster containing all patterns where objects

interact with each other

Dependency Value Variable used in the clusters Objects Interact
and Area Dependencies, which can only take
the values T1 and T2

Distance Histogramm Clustering of distances
DOTS Event detection surveillance system



DRAGON DRAGable Object Navigation: In scene navi-
gation software

Event Detection Software Software detecting predefined scenarios or
sequences which fulfill given contraints

ExperienceLap House filled with cameras created by the
Phillips Research Group for ethnographic
studies

Feature Vector Vector describing attributes of an object
Final Cut Video Editing Software
Forensics Broad spectrum of sciences to answer ques-

tions of interest to a legal system. This may
be in relation to a crime or a civil action.

GIM Gesellschaft für Innovative Marktforschung:
Company performing market research based
on ethnographic studies

Interact Video annotation Software

Linear Regression Interpolation of a line through a point set
Lost-Luggage-Szenario Scenario containing a person abandoning her

luggage

Marching Corner Cutting Algorithm to compute the surface of a poly-
gon by itterativly cutting off corners.

Meen Value Filtering Filters n values to a single one by computing
their mean value

Mesh Registration Assimilation of a polygon-mesh to an other
mesh

Motion Arrows Arrows depicting the motion of objects on a
still image. Often used by story board artists

Null-Hypothesis Assumption that there is no difference be-
tween the analyzed subjects

Object Tracking Automated computation of object postions in
a video

Object Trajectory Data-structure holding position information
for each frame at which the object is visible

Observer Video annotation Software



Optical Flow Fields Contain information on the most likely pixel
locations in the succeeding and preceding
frames

Orthogonal Projection Projection onto a geometry by 90 degrees

Paired Student’s t-Test Significance test to check the difference of
two subjects

Precision Measures the correctness of an algorithm

Range Data-structure containing an offset (location)
and a length-value

Recall Measures false positives of an algorithm
RFID Radio-frequency identification: A technol-

ogy that uses radio waves to transfer data
from an electronic tag

SICP Scale invariant closest point algorithm: Per-
forms a scale invariant mesh registration

Sports Analysis Analysis, advice, and commentary of sports
matches

Stability Index Value between 0 and 1. Denotes the correct-
ness of a linear regression model

System Usability Scale Ten questions on a five point scale to evaluate
the user interface of a system

Trajectory Pattern Trajectory constellation or shape fulfilling
predefined constraints

Video Editing The process of editing segments of motion
video production footage, special effects, and
sound recordings in the post-production pro-
cess

Video Ethnography The video recording of actors in their natu-
ral environment and context with the aim of
eliciting insights, and applying that knowl-
edge to process development, product de-
velopment, new product development and
product design

Visual Surveillance The monitoring of the behavior, activities, or
other changing information
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Index

3D, 80

abbrv, see abbreviation
Adobe Premiere, 52
An Object Moves from one Object to an Other, 43
Angle, 31
Areas, 18

Behavioral Research, 1
Bounding Box, 24

Camera Motion Estimation, 81
ChronoViz, 50
Cinematic Features, 5
Cluster: Area-Object Interaction, 19
Cluster: Direction and Velocity, 45
Cluster: Objects Act, 23
Cluster: Objects Interact, 27

Dependency Values T1 and T2, 18
Distance between Objects: Small, 29
Distance between two Objects increases after a close Motion, 39
Distance Histogramm, 26
DOTS, 8
DRAGON, 14

evaluation, 61–76
Event Detection, 3
ExperienceLab, 3

Feature Vector, 11
Final Cut, 52
Finite State Automaton, 10
Forensics, 2
future work, 79–81

GIM, 2

Interact, 52
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Least Squares Problem, 42
Linear Regression, 32
Lost-Luggage-Szenario, 39

Marching Corner Cutting, 26
Meen Value Filtering, 34
Mesh Registration, 42
Motion-Arrows, 57
Multiple Timelines, 53

Null-Hypothesis, 69

Object Crosses Area, 20
Object is far away from Area, 21
Object meets several other Objects, 38
Object Tracking, 53
Object Trajectory, 17
Object-Trajectory forms a Circle, 24
Objects Appear and Objects Disappear, 23
Objects Meet, 36
Objects move in an opposing Direction compared to the average
Object Motion, 47
Observer, 52
Optical Flow, 14
Orthogonal Projection, 21

Paired Student’s t-Test, 69
Pattern-Implementation: Distance between Objects: Big, 31
Pattern-Implementation: Distance between Objects: Increases, 31
Precision, 61

Range, 18
Recall, 61
RFID, 8
Rotation, 42

Scaling, 42
SICP, 42
Significance, 69
Sports Analytics, 1
Stability Index, 33
System Usability Scale, 74

Trajectory Patterns, 16
Translation, 42

User Interface, 50

Velocity Differs from Average Velocity of all Trajectories, 49
Velocity Differs from Own Average Velocity, 48
Video Editing, 2
Video Ethnography, 1
Visual Surveillance, 2
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