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Abstract

Augmented Reality is a technology which superimposes digital objects over one’s
perception of the real world. Thus, captivating user experiences can be realized,
where digital artifacts can interact with real-world objects. Today’s smartphones are
capable of computing such experiences, due to their processing power and sensory
equipment. By providing capabilities for communication and navigation, these de-
vices are useful when traveling abroad. Furthermore, previous research showed that
users enjoyed Augmented Reality applications in the context of tourism, as they can
interact with historical artifacts and heritage sites in an intriguing way. In this thesis,
we present the design, development, and documentation of a framework for the
Apple iOS mobile operating system. This framework uses commercial technology to
realize an Augmented Reality experience. During conception, we evaluated several
tracking approaches, 3D rendering methods, and third-party Augmented Reality
frameworks. In a post hoc evaluation, we measured the framework’s rendering
performance on various devices. Although 3D rendering was stable, the results of
this evaluation showed that there is a possible need for optimization.
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Überblick

Augmented Reality ist eine Technologie, die digitale Inhalte über die Wahrnehmung
der realen Welt legt. Damit können fesselnde Erlebnisse umgesetzt werden, in
denen digitale Objekte mit solchen aus der Realität interagieren. Heutige Smart-
phones sind dank ihrer Rechenleistung und Sensoren in der Lage, solche Erlebnisse
umzusetzen. Indem sie nützliche Fähigkeiten für Kommunikation und Navigation
bieten, sind Smartphones nutzvolle Begleiter auf Reisen. Desweiteren hatten, wie
vorherige Forschung aufzeigt, Nutzer Gefallen an Anwendungen von Augmented
Reality: Im Tourismus werden neue Interaktionen mit historischen Gegenständen
und kulturellen Stätten möglich. In dieser Arbeit stellen wir das Konzept, die Imple-
mentierung und die Dokumentation eines Frameworks für das iOS-Betriebssystem
von Apple vor. Dieses Framework verwendet kommerzielle Software, um eine
Anwendung mit Augmented Reality umzusetzen. Während der Konzeptionierung
wurden mehrere Tracking-Verfahren, 3D-Rendering-Methoden und Augmented
Reality Frameworks Dritter untersucht. In einer abschließenden Auswertung wurde
die Rendering-Leistung des Frameworks auf verschiedenen Geräten getestet. Ob-
wohl das 3D-Rendering stabil war, zeigten die Ergebnisse der Auswertung einen
möglichen Bedarf nach Optimierung auf.
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Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off in
coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a written
text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English. We use the
plural form for the first person.
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Chapter 1

Introduction

Recent years have brought remarkable success in research
of Mixed Reality, a conception where reality and virtual
surroundings are merged gradually [Azuma, 1997]. This
continuum includes the concepts of Virtual Reality, where
one perceives purely virtual content, as well as Augmented
Reality, where reality is augmented by virtual content in Augmented Reality

merges reality with
digital content

one’s perception [Milgram and Kishino, 1994]. Augmented
Reality holds promising experiences while providing new
interaction techniques between the real world and virtual
artifacts [Wellner et al., 1993].

AUGMENTED REALITY:
While perceiving in Augmented Reality, “virtual objects
[are] superimposed upon or composited with the real
world” [Azuma, 1997]. In contrast to Virtual Reality, real
and virtual objects exist in the same sphere, while Virtual
Reality tends to focus on virtual content (figure 1.1).

Real 
Environment

Virtual 
Environment

Augmented Reality 
(AR)

Augmented 
Virtuality (VR)

Reality – Virtuality Continuum

Mixed Reality

Figure 1.1: The Mixed Reality continuum [Olsson et al.,
2013]

Definition:
Augmented Reality



2 1 Introduction

Handheld computing devices, such as smartphones, are
enjoying enormous popularity [Falaki et al., 2010]. These
devices are equipped with various sensors, some of which
facilitate the development of context-aware applications
[Lane et al., 2010, Olsson et al., 2013]. Thus, the technical
support for deploying an Augmented Reality system is quite
extensive.

Future Lab Aachen1 is an initiative which is organized by
the City of Aachen. The project aims to present scientific
research. Furthermore, it is intended to serve as a cultural in-
stitution, promoting university-related affairs to businesses,FLApp will bring a

modern touristing
experience for the

City of Aachen

tourists, as well as inhabitants of Aachen. The Future Lab
Aachen App (hereinafter designated as FLApp) is a mobile
application which will accompany this effort. The applica-
tion will provide rich media content and information about
pivotal places on the go [Future Lab Aachen Website].

FLApp will also include an Augmented Reality feature, which
shall provide unique experiences alongside traditional digi-
tal media. This feature will complement digital information
in form of text and pictures. Augmented Reality brings a
unique user experience [Olsson et al., 2013]. By building
upon this, we explore a new way of interacting with local
research and the city’s history.

The goal of this thesis is to provide an overview of existing
Augmented Reality frameworks and to create an easy to use
framework for the development of FLApp, called FLAppAR. To
realize this, we performed a small survey of various Aug-
mented Reality frameworks. Furthermore, we investigatedWe provide a survey

of Augmented Reality
frameworks and

developed an
Augmented Reality

feature

suitable tracking methods for our particular Augmented
Reality application. Therefore, we compared a selection
of Augmented Reality frameworks performance-wise and
designed a system that is capable of rendering interactive
3D content in an Augmented Reality context. This system
is powered by Vuforia2 on devices that run the Apple iOS
mobile operating system.

Subsequently, we implemented the system we designed
beforehand, taking our conceptions of 3D rendering and

1http://www.futurelab-aachen.de
2https://vuforia.com

http://www.futurelab-aachen.de
https://vuforia.com
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Augmented Reality tracking into account. We created a stan-
dalone framework that exposes an Application Program-
ming Interface which enables developers to use this frame-
work in an uncomplicated manner. We provide documen-
tation and guidelines on how to work with the system for
both application developers as well as designers.

In chapter 2 “Related Work” we review literature and soft-
ware that is related to our work. This covers fundamental
research of Augmented Reality as well as rather specific
topics—for example, deployment of Augmented Reality ex-
periences in tourism as well as user experience design for
Augmented Reality.

Our own work is discussed in chapter 3, which is divided
into three sections: After outlining the Augmented Reality
system design in section 3.1 “Designing the Augmented
Reality System”, we describe its implementation in the sub-
sequent section, 3.2 “Implementing the Application Design”.
This implementation is evaluated briefly in the third section,
3.3 “Evaluating the System Performance”.

A detailed explanation on how to use the system is provided
in chapter 4 “Guidelines for Developers and Designers”, to
assist both developers and designers through the process
of setting up an Augmented Reality experience using the
system presented here.

In the fifth chapter, “Summary and Future Work”, we con-
clude our research and implementation. We give an outlook
on how the system is going to be used, as well as possible
improvements for the technical implementation.
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Chapter 2

Related Work

Augmented Reality is a field with over 25 years of active
research: Over time, that branch developed into a state of
the art research field with applications in many areas, such
as medicine, communication and military [Azuma, 1997].
Fundamental research is discussed in section 2.1. Subse-
quently, research on the capabilitiy of Augmented Reality
to present contextual information is outlined in section 2.2,
while section 2.3 will provide an overview on deployment of
Augmented Reality in tourism. Section 2.4 deals with stud-
ies on User Experience Design (UX) in Augmented Reality
systems. The two latter sections, 2.5 “Augmented Reality
Frameworks” and 2.6 “Related Software”, will cover soft-
ware which is related to this thesis and Augmented Reality
specificially.

2.1 Fundamental Research in the Field of
Augmented Reality

Head-Mounted Displays (HMD) enabled early research on
changing one’s visual perception by presenting arbitrary
three-dimensional information [Sutherland, 1968]. Funda-
mental research projects performed first Augmented Reality
experiments using such devices in the early 1980s [Azuma,
1999]. The survey curated by Azuma [1997] examines such
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Figure 2.1: Head-Mounted Displays (HMD) have already
been used in early Augmented Reality research [Azuma,
1997].

research and represents one of the major research achieve-
ments in early history of Augmented Reality. Not only is
the terminology of Augmented Reality itself determined:
Furthermore, Azuma provides a detailed overview of early
Augmented Reality research, hardware and theoretical foun-
dations. Issues with tracking stability and the dialog of the
place of Augmented Reality in the Mixed Reality continuum
are being discussed.

In follow-up research, Azuma approached the issues Aug-
mented Reality exposed when used outdoors [Azuma, 1999].
Contemporary tracking approaches such as Electronic Com-
pass and GPS yield errors in their exactness, especially in
uncontrolled outdoor environments. Azuma discusses so-
lutions to these inaccuracy issues, e.g. a hybrid tracking ap-
proach that incorporates several tracking methods to over-
come their individual weaknesses.

Kato and Billinghurst [1999] proposed a system that was
capable of tracking special marker images—opposed to
tracking landmark images of the surroundings—to realize
an Augmented Reality conferencing system. With this vi-
sual approach, augmenting content is associated with these
marker images, and not reference images of the real world.
By using a Head-Mounted Display for their evaluation, Kato
and Billinghurst found that marker images may provide
good tracking results, but their tracking method lacked ro-
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Figure 2.2: View through a Head-Mounted Display with the
MARS system [Höllerer et al., 1999].

bustness.

2.2 Contextual Information and Aug-
mented Reality

In recent research, several attempts have been made to show
the capability of Augmented Reality to provide useful con-
textual information to users. In their work, Feiner et al.
[1997] seeked to provide such context by developing an ap-
plication that presented contextual information about their
university campus. While using a Head-Mounted Display
and a handheld device, the system’s tracking capabilities,
however, have been prone to error due to computational
limitations [Feiner et al., 1997].

Also focusing on contextuality, Höllerer et al. [1999] propose
a system that presents information that is “spatially regis-
tered [in] the real world” [Höllerer et al., 1999]. By using
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mobile computing devices, a Head-Mounted Display, users
can annotate indoor and outdoor locations (figure 2.2).

Bergig et al. [2010], too, studied the concept of providing
contextual information with Augmented Reality. For their
approach, additional digital information about a real-world
object is encoded in this object’s appearance. The object then
offers both its physical and digital information, of which
the latter can be obtained by using an Augmented Reality
system. By adapting existing computer vision methods,
information about the augmented 2.5d data is extracted from
the graphical target—objects in 2.5d are not represented
fully three-dimensional, but rather use mimicking methods
to appear so. A study found that users performed better on
tasks regarding the information from such a target by using
the additional Augmented Reality information [Bergig et al.,
2010].

Ajanki et al. [2011] discovered that contextual information,
that is provided by an Augmented Reality interface, can
prove useful when performing certain tasks. They devel-
oped a system that runs on both a Head-Mounted Display
and handheld devices. When using the system, the user will
be presented contextual information as soon as certain ob-
jects or persons are recognized. The system performed well
in a user study, where participants found use in the addi-
tional virtual information while performing research-related
tasks [Ajanki et al., 2011].

2.3 Augmented Reality in Tourism

The use of Augmented Reality as a possibility to change
the tourist experience has already been proposed by Azuma
[1999]. While Virtual Reality gained a lot of popularity,
as Azuma states, Augmented Reality was prone to error
because of tracking issues. Due to the difficulty of visual
tracking in uncontrolled environments, such as outdoor
environments as opposed to controlled indoor settings, the
deployment of Augmented Reality in outdoor settings has
always been challenging. Achieving more stable optical
trackers and all-around Augmented Reality systems would
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Figure 2.3: Augmentation of 3D models of ancient greek
buildings [Vlahakis et al., 2001].

benefit visitors of heritage sites, where unique experiences
could be gained with Augmented Reality [Azuma, 1999].

In their research, Fritz et al. [2005] found out that while
most contemporary Augmented Reality systems had been
in an academic stage, tourists could gain a lot of additional
information by Augmented Reality systems. Especially at
cultural and heritage sites, artifacts such as historical build-
ings could be reconstructed. Visitors of these sites often yield
particular interest in their sourroundings which can be com-
plemented by gaining views of their initial outlooks [Fritz
et al., 2005]. Kounavis et al. [2012], too, encourage the use
of Augmented Reality in tourism. While such systems can
provide useful valuable information to tourists, presenting
digital content in an interactive manner can attract a wider
audience, as they state [Kounavis et al., 2012]. Kounavis
et al. furthermore provide an overview of Augmented Real-
ity software, as well as list up several deployments of Aug-
mented Reality systems in tourism and cultural institutions
like, for example, museums.

The ARCHEOGUIDE project pursued research on a system
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that can augment 3D objects, video and audio [Gleue and
Dähne, 2001, Vlahakis et al., 2002]. While some Augmented
Reality systems performed well with the use of digital mark-
ers, ARCHEOGUIDE was intended to work markerless. To
overcome the limitations of these marker, researchers devel-
oped an image recognition system that performs feature de-
tection on reference images [Stricker and Kettenbach, 2001].
An evaluation at Olympia, Greece showed that the partic-
ipants were capable of using the system and were inter-
ested in exploring other cultural heritage sites by using
Augmented Reality [Vlahakis et al., 2001].

In a follow-up research project to ARCHEOGUIDE, the LIFE-
PLUS project has been introduced as a modern Augmented
Reality experience at the site of ancient Pompeii [Papagian-
nakis et al., 2002, Vlahakis et al., 2003, Papagiannakis et al.,
2005]. With the goal of “push[ing] the limits of curent Aug-
mented Reality (AR) technologies” [Papagiannakis et al.,
2002], an approach with rich features in 3D augmentation as
well as audiovisual content has been developed and imple-
mented. Real-time camera tracking has been conducted to
estimate the user’s position, so 3D content can be positioned
within the real-world scene accurately. The concept does not
only include the augmentation of ancient buildings as part
of an Augmented Reality guide of the site: Detailed models
and animations of human beings have been developed to
recreate ancient life in an Augmented Reality storytelling
experience [Papagiannakis et al., 2005].

2.4 User Experience Design in Augmented
Reality

Augmented Reality, as an interface between physical and vir-
tual artifacts, can bring new interaction designs and unfore-
seen experiences. To better understand Augmented Reality
as medium, Macintyre et al. [2001] considered it as novelty
to media theory. They investigated on how to deploy nar-
rative Augmented Reality experiences, such as movie-like
formats. While characterizing it as a new medium, three
main features have been outlined: The blending of virtual
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and physical space, users’ control over the point of view,
and interactivity of Augmented Reality experiences [Mac-
intyre et al., 2001]. Furthermore, Macintyre et al. pointed
out that due to the user’s interaction with his surroundings,
even non-interactive digital content yields an interactive
experience in Augmented Reality.

In a study to gain insight about expectations and require-
ments of users of Augmented Reality systems, Olsson et al.
[2013] found that Mobile Augmented Reality (MAR) yields
“great potential of facilitating positive user experience and
emotions” [Olsson et al., 2013]. The study negotiated var-
ious expectancies of users to Augmented Reality services,
such as captivation, liveliness, and playfulness [Olsson et al.,
2013]. After analyzing these terms, Olsson et al. derived a
collection of such expectations, garnished with summarized
descriptions.

Han et al. [2013] approached a similar study, by investigat-
ing into expectations and requirements of possible users of
Augmented Reality systems. To gather insight on how to
realize a tourism Augmented Reality system in the city of
Dublin, a study with tourists has been conducted. The inter-
views showed that Augmented Reality is asked to serve as
interface to local information as well as to data from social
networks. Also, factors of usability, such as the application’s
responsiveness and multi-language features have been iden-
tified to be important [Han et al., 2013].

2.5 Augmented Reality Frameworks

Most Augmented Reality research from the 1990s and early
2000s has been realized with special hardware, such as mo-
bile PCs and Head-Mounted Displays, e.g. Feiner et al.
[1997], Billinghurst et al. [2001], Gleue and Dähne [2001].
These systems often were running proprietary software
that suited just the particular setup. With the popularity
of mobile computing devices, device-agnostic software for
Augmented Reality systems became evident and made de-
ployment of Augmented Reality experiences much more
prevalent.
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Emerged from research by Kato and Billinghurst [1999],
Kato et al. [2000], ARToolKit1 is an open source Augmented
Reality Software Development Kit. The software is avail-

Kanji marker
proposed by

ARToolKit

able, among others, for iOS and Android mobile operating
systems. Besides tracking of traditional imagery, ARToolKit
is capable of tracking specifically designed markers that are
similar to barcode markers and QR codes. These images
yield special properties, such as square and fixed size [Kato
and Billinghurst, 1999], for being able to recognize them
reliably by computer vision systems.

Vuforia2 and Wikitude3 are commercial contenders in the
Augmented Reality market. Both offer similar features, Im-
age Recognition and Natural Feature Tracking (NFT) among
them, and are offered for iOS and Android operating sys-
tems as well. Additionally to conventional 2D tracking,
both frameworks feature 3D object recognition and can be
powered by Internet-based services.

2.6 Related Software

OpenGL4 (Open Graphics Library) is an open source graph-
ics library that is supported on various different devices,
ranging from embedded systems to desktop computers. Its
descendant for embedded computing, OpenGL for Embed-
ded Systems (OpenGL ES), is supported by both Apple iOS
as well as Android mobile operating systems.

On iOS, SceneKit5 is a framework with a high-level 3D
graphics API. Development of 3D scenes is streamlined due
to a simplified API design, while a lot of functionality of
Open GL ES is maintained, such as shaders, materials, and
lighting. Due to its compatibility with OpenGL, SceneKit
content can seamlessly be rendered into OpenGL ES con-
texts. Furthermore, SceneKit is capable of importing 3D

1http://www.artoolkit.org
2http://www.vuforia.com
3http://www.wikitude.com
4https://www.opengl.org
5https://developer.apple.com/scenekit/

http://www.artoolkit.org
http://www.vuforia.com
http://www.wikitude.com
https://www.opengl.org
https://developer.apple.com/scenekit/
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Scene

Root Node

Box Cylinder Bone

Materials

Material 1

Texture 1
. . .

Lights

Light 1

Light 2
. . .

Figure 2.4: Possible structure of a Collada model; A scene contains, for example,
nodes, materials, and lights. Nodes, too, are structured as tree, and each node may
contain meshes and references to other properties, such as textures [Collada 1.4.1
Specification].

scenes in the Collada6 format—an open source, XML-based
file format for storing 3D scenes. In Collada, properties of
3D scenes, such as materials, nodes and lights, are structured
in a tree-like manner (figure 2.4).

JSON7 is a format for data interchange that is readable and
writable easily for humans as well as machines. Its support
in a lot of programming languages and systems facilitates
data interchange on different platforms. Structure of JSON
documents can be specified by JSON Schemata8, which em-
power the possibility of validating such documents. Kite-
JSONValidator9 is an open source library for Objective-C
that provides functionality for such validation.

A popular system for documenting C++ source code, among
others, is Doxygen10. For Objective-C, appledoc11 provides
similar functionality while adding further support for em-
bedding generated documentation of source code into Ap-
ple’s Xcode software.

6https://www.khronos.org/collada/
7http://www.json.org
8http://json-schema.org
9https://github.com/samskiter/KiteJSONValidator

10http://www.doxygen.org
11https://github.com/tomaz/appledoc

https://www.khronos.org/collada/
http://www.json.org
http://json-schema.org
https://github.com/samskiter/KiteJSONValidator
https://github.com/samskiter/KiteJSONValidator
http://www.doxygen.org
https://github.com/tomaz/appledoc
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Chapter 3

Developing an
Augmented Reality
Application

The work we faced during this thesis consists of three major
tasks. First, analyzing the Future Lab Aachen App project
requirements and designing an Augmented Reality system
that runs efficiently on the Apple iOS mobile operating sys-
tem. Secondly, implementing this design in such a way that We had to design and

implement an
Augmented Reality
application

it can be deployed on various Apple iPhone devices and
evaluate its performance. And third, providing documenta-
tion to both designers and developers that will work with
this system on how to use it and how to tune the settings to
achieve the system’s optimal performance.

This chapter discusses the first two tasks, Design and Imple-
mentation of the system. In section 3.1 “Designing the Aug-
mented Reality System”, we outline the design challenge we
faced. We present our decisions regarding the selection of a
suitable tracking method as well as an Augmented Reality
framework that is supported on iOS. Following that section,
section 3.2 “Implementing the Application Design” gives
a detailed description of the implementation of the design
that was pictured beforehand. We illustrate the software
design and its workflow, and highlight crucial components.
In section 3.3 “Evaluating the System Performance”, the
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performance of the software is evaluted and discussed.

3.1 Designing the Augmented Reality Sys-
tem

The Future Lab Aachen App, short FLApp, is intended as a
mobile companion to the Future Lab Aachen1 project—anFuture Lab Aachen

App is intended as
mobile tourist guide

application

initiative that aims to gain interest for local research projects
in the city of Aachen. The FLApp mobile application will offer
information to several POIs (Points of Interest) in the city
center, such as Aachen cathedral and buildings of university
chairs [Future Lab Aachen Website].

Regarding the Augmented Reality feature, several require-
ments were given:

Display 3D content The system should be capable of dis-
playing 3D objects in an Augmented Reality context.

Pursue a cross platform approach Since an application for
the Android mobile operating system with the same
functionality has been scheduled, porting the System
to Android should be as easy as possible. Hence, most
of the major software libraries used should be avail-
able cross platform.

Make it run on a range of iPhone devices Instead of opti-
mizing it for the newest generation of Apple iPhone
devices, the software should be available for Apple
iPhone 4S and newer.

Provide stable tracking Image targets should be recog-
nized reliably by the Augmented Reality system, and
the estimated pose of the augmenting 3D object must
be stable.

Recognize frame-like target images Originally, the system
was intended to be able to recognize frame-like targets,
i.e. images with a cut-out center. Augmenting content

1http://www.futurelab-aachen.de

http://www.futurelab-aachen.de
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Gather
sensor data

Evaluate
gathered data

Present
appropriate content

Figure 3.1: Augmented Reality cycle.

had to be displayed within that frame, while through
the frame, a certain landmark was visible. Therefore,
a certain distance will be between the user’s device
and the target. This requirement has been considered in
the design stage, but was dropped on a further iteration of
the project. It has been considered within the Design stage
nevertheless, see section 3.1.3 “Recognizing Frame-Like
Targets”.

We began by analyzing how Augmented Reality actually
works. It depicts a relatively simple cycle, as illustrated
in figure 3.1. Sensor data—for example, GPS position or
camera input—, that is continuously gathered will be an-
alyzed subsequently. Based on the results of the analysis,
appropriate digital content will be presented.

Derived from that cycle, there are three components to be
discussed. In the following, we outline several ways of sen-
sor input for Augmented Reality. Section 3.1.2 will explain We had to discuss

sensor input,
computer vision and
presentation of 3D
content

our choice and evaluation of different Augmented Real-
ity frameworks, that bring Computer Vision components
for evaluating device sensor data. The presentation of 3D
content, as the last component, as required, is discussed in
section 3.1.4.
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3.1.1 Comparing Augmented Reality Input Meth-
ods

While learning about the technical specifications of the de-
vices we targeted, namely Apple iPhone 4S and newer, we
gathered data about the device’s sensor and video specifi-
cations [iPhone 4S Technical Specifications]. Intuitively, we
gathered several of the device’s hardware components and
distinguished them into two categories:The targeted device

type contains suffient
hardware to perform

tracking for
Augmented Reality

Visual sensors The iPhone’s camera has 8-megapixel res-
olution and supports video streaming in Full HD
(1920× 1080 pixels) resolution with up to 30 frames
per second.

Non-Visual sensors The iPhone contains several sensors,
namely assisted GPS, a digital compass, a three-axis
gyroscope, and an accelerometer.

To realize in-place rendering of 3D objects robust tracking is
a necessary requirement. Sensors often bring inaccuracies,
for example, GPS due to connection failures and occlusions
as well as electronic compasses due to noise in the magnetic
field [Azuma, 1999]. Therefore, we tended to a visual ap-We settled with a

visual approach for
tracking

proach, by using live camera input. Feature recognition will
then be done by Computer Vision functionality. Yet, we still
considered a hybrid approach which has been proposed by
Azuma [1999], which embodies a combination of multiple
sensors for tracking.

Visual tracking comes in two types: With Marker Tracking
on the one hand, recognition is done by specifying certain
properties a trackable image has to include—these may be,
for example, color, shape and sizes. While these proper-
ties restrict the trackable image in its design, such tracking
systems may perform reliably due to their optimization for
these particular types of images. A sample marker image isNatural Feature

Tracking gives more
artistic freedom than

Marker Tracking

illustrated in figure 3.2 (a).

Natural Feature Tracking (NFT) on the other hand leaves more
freedom regarding the choice of the trackable imagery to
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(a) Kanji marker (b) Sample target image
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(c) Image features

Figure 3.2: Figure 3.2 (a) shows a marker image by ARToolKit. Figure 3.2 (b) depicts
a sample image intended for Natural Feature Tracking, and figure 3.2 (c) shows
a recreated analysis of features for Natural Feature Tracking by Vuforia Target
Manager. “+” depicts one or more features.

the designer. Images that are trackable by Natural Feature
Tracking are analyzed by certain features in their appearance,
such as corners and edges. The choice of imagery, however,
is limited by its trackability: distribution and amount of
such features may result in worse or better trackability. A
sample distribution of features on an image is depicted in
figure 3.2 (b).

3.1.2 Evaluating Augmented Reality Frameworks

From conducting the Wikipedia-like, crowd-sourced com-
parison platform Social Compare2, we obtained a selec-
tion of frameworks that met our needs: ARToolKit, Wik-
itude, and Vuforia. To gain further insight in the differ- We chose three

Augmented Reality
frameworks for
testing

ences between the frameworks—regarding performance and
usability—, we performed a small performance review. This
required us to work with each system, learn the sample code,
and perform target analysis.

The frameworks beared the following capabilities:

ARToolKit ARToolKit is a free and open source Augmented
Reality SDK. Among many desktop operating systems,
the software is also available for the iOS and Android

2http://socialcompare.com/en/comparison/augmented-reality-
sdks

http://socialcompare.com/en/comparison/augmented-reality-sdks
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operating systems. Besides tracking of natural fea-
tures, ARToolKit features special square-sized marker
images. The SDK comes with a selection of tools, no-
tably genTexData for creating Natural Feature Tracking
datasets [ARToolKit Documentation].

Vuforia Vuforia is a closed-source, commercial contender of
ARToolKit. The software, too, is available for iOS and
Android, among other platforms, notably Microsoft
HoloLens. Various tracking targets are offered, such
as text, images, and primitive three-dimensional ob-
jects. Recognition of targets can be computed either
locally or online, using Vuforia cloud services [Vuforia
Developer Library]. Analysis of targets is performed
with a web-based tool, Vuforia Target Manager, which
performes feature detection and provides download
and management of datasets.

Wikitude Similar to Vuforia, Wikitude is a commercial
product. Powering recognition of 2D and 3D targets
as well as cloud services for target recognition, Wiki-
tude’s set of features resembles Vuforia’s capabilities.
Additional to a native API, a Java-Script powered API
enabled developers to create Augmented Reality expe-
riences using web technologies [Wikitude Documen-
tation]. Notably, this web-powered code runs cross
platform without modification.

While ARToolKit attracts with being free of charge and open
source, commercial options Vuforia and Wikitude temptThe commercial

frameworks provide
many tools and good

usability

with rich ecosystems, such as cloud services. While Vuforia
is promoted with high performance [Vuforia Developer Li-
brary], the cross platform approach Wikitude provides may
ease the development of Augmented Reality experiences on
multiple platforms.

Comparison of Image Recognition Features

Since reliable tracking on a distance as well stable rendering
was a project requirement, we conducted a small survey to
evaluate performances of the frameworks we introduced
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(a) QR-A (b) QR-B (c) QR-C

Figure 3.3: Images with a frame-like appearance used for comparison; Figure 3.3 (a)
contains many features with high detail and distortion (achieved by bending it
perspectively), figure 3.3 (b) consists of a simple geometrical shape with quite even
distribution, and figure 3.3 (c) adds bending to uneven this distibution.

1

2

4

3

Figure 3.4: Setup of the framework evaluation; The user (4) points his smartphone
(3) at the specified target image (1). While keeping the target image in focus, he
approaches it from a distance (2) where the system is not capable to recognize the
target.

in section 3.1.2. With this survey, we intended to gain an We conducted a
survey to compare
the frameworks’
performance

overview of the systems’ tracking stability and tracking
range. Furthermore, we investigated in setting up tracker
imagery and importing such into each framework’s Aug-
mented Reality.

Therefore, we created a collection of image targets, ranging
from ARToolKit’s Hiro and Kanji markers to own designs We designed markers

specificially for this
comparison

that followed our requirements, such as having a frame-like
appearance. Such designs are illustrated in figure 3.3. A list
of all target images used is provided in appendix A.

We set up a testing environment as depicted in figure 3.4.
The target image to be recognized was positioned at eye
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Figure 3.5: Results of the framework comparison; Detailed results are available
in table B.1 of appendix B. A distance value of zero centimeters indicates that the
device was not capable of recognizing the target, using the respective framework.

level, on, for example, a wall. Standing in front of that
image, we started moving towards it. We began moving
from a distance from which the current framework to be
tested was not capable of recognizing the image from. As
soon as the image had been recognized and virtual content
appeared, we stopped and conducted our distance measure
to note the distance. The results of this test are listed in
table B.1. These results are to be considered as estimates
with a precision of ±5 centimeters.

As illustrated in figure 3.5, Vuforia and Wikitude both per-
formed well, achieving recognition distances from 1 meter
and upwards. ARToolKit, however, was not capable of rec-Vuforia outperformed

Wikitude as well as
ARToolKit

ognizing the targets properly—in contrast to prior tests with
the default marker images, where tracking had been very
reliable. Even when the latter frames, F-S and F-W, had
been recognized, the image projection was unstable and
flickered. Vuforia, however, exceeded our expectations and
was capable of detecting targets from up to 2.5 meters, while
rendering of the sample 3D object was reliable and stable.
Wikitude achieved good results throughout, but was outper-
formed by Vuforia.
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3.1.3 Recognizing Frame-Like Targets

The project’s requirements asked to realize an approach
where 3D objects are rendered within the cut-out center of We were asked to

realize a window-like
approach for image
targets

an image target. The window-like target was supposed to
keep visual focus on a building located behind the frame,
while displaying Augmented Reality context.

Unfortunately, we were not able to find official resources
regarding transparency in image targets. However, by test-
ing in Wikitude and Vuforia, we learned that due to the
feature recognition system, transparent parts can be easily
included. Continuously, the system tracks position and den- Blank areas do not

contain features and
may be considered
transparent

sity of features—that are, for example, edges and corners
[Vuforia Developer Library]. During tracking, those features
of the input image that are not included in the reference im-
age are omitted. The feature distribution of such an image is
illustrated in figure 3.2 (c). Hence, supposed transparent ar-
eas of a target image can be realized by filling the area with
solid color to prevent feature recognition in this particular
area.

3.1.4 Displaying 3D Content

Nowadays, 3D content can be rendered on mobile devices by
a range of technologies—one of which is OpenGL3. OpenGL
is an open source technology which is available on a range of
devices. Its descendant for embedded systems, OpenGL for
Embedded Systems (OpenGL ES), is provided as the default
3D framework on iOS as well as the Android operating
system. Therefore, OpenGL is the fundamental layer of our
3D rendering system.

While Vuforia does not ship a feature of rendering 3D objects
itself, this has to be performed in the application. Having OpenGL was

mandatory to be used
with iOS and Vuforia

the OpenGL ES support on iOS in mind, we phrased several
requirements that our 3D rendering system should follow:
The system should be capable of rendering the given content
in a considerable amount of time, bringing no visual or com-

3https://www.opengl.org

https://www.opengl.org
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putational lags to the system. Integration with iOS’ OpenGL
context is necessary, since Vuforia feeds the captured camera
content via the OpenGL context onto the screen. Lastly, the
system should bring no or just little overhead to our setup.We seeked simpler

approaches than
using plain OpenGL

It is rather encouraged to simplify the OpenGL workflow
by relying on frameworks that apply shaders and further
3D adjustments in a straightforward manner.

From this perspective, we did research and conducted sev-
eral open source 3D rendering frameworks. Simplified, our
goal was to find a 3D framework that performs well on iOS,
runs within an OpenGL context and simplifies the OpenGL
workflow. Finally, we settled for three possible solutions for
our design approach:

1. Purely relying on OpenGL and do not using any ad-
ditional frameworks in the rendering system. SinceOpenGL does not

provide functionality
to import 3D objects

OpenGL ES does not provide any functionality for im-
porting 3D models from various formats, e.g. Collada4,
model import has to be done by oneself. Assimp5, an
open source library which supports import of various
3D formats, Collada among them, has been considered
for this task.

2. Relying on a third party 3D framework that is capable
of rendering 3D content and importing such content.
We considered NinevehGL6 and the open-source Ir-
rlicht Engine7, which both run under iOS.

3. Using features that are built-in into the iOS operat-
ing system, namely the low-level graphics framework
Metal8 and the high-level 3D framework SceneKit9.Metal and SceneKit

are 3D frameworks
provided on iOS

Both frameworks are developed by Apple and bring
less overhead to the application. While Metal is
kept low-level to provide good performance in both
games and 3D applications, SceneKit is built on top of
OpenGL ES as a high level, simplified framework. Still,

4https://www.khronos.org/collada/
5http://assimp.org
6http://nineveh.gl
7http://irrlicht.sourceforge.net
8https://developer.apple.com/metal/
9https://developer.apple.com/scenekit/

https://www.khronos.org/collada/
http://assimp.org
http://nineveh.gl
http://irrlicht.sourceforge.net
http://irrlicht.sourceforge.net
https://developer.apple.com/metal/
https://developer.apple.com/scenekit/
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SceneKit provides similar extended functionality to
OpenGL ES, such as shaders and physics [Rönnqvist,
2014]. Furthermore, import functionality of Collada
models is supported in SceneKit.

Considering these three options, we chose SceneKit as our
primary solution, adhering to the third option. Its simple We settled with a

combination of
OpenGL and
SceneKit

API makes setting up a 3D scene for both us and developers
who work with the system a pleasant experience, while
features such as animation, physics and scene import are
provided [SceneKit Framework Reference]. Since SceneKit
is based on OpenGL ES, rendering into an arbitrary OpenGL
context can be achieved easily—but unfortunately, further
steps have to be done to make SceneKit render its 3D content
properly onto a target that has been recognized by Vuforia.
These steps are discussed in section 3.2.3.

3.2 Implementing the Application Design

The application is implemented using the Objective-C and
Objective-C++ programming languages. We used Apple’s
Xcode Software10 for development and debugging of the
software. Hardware-wise, iPhone 4S, iPhone 5 and iPhone
6S11 devices have been used for testing the software.

In the following, we will outline the structure of the im-
plementation and the purpose of each component in chap-
ter 3.2.1. Furthermore, we will discuss particular aspects
of the implementation: Section 3.2.2 illustrates the system’s
lifecycle and possible delegation techniques for responding
to lifecycle events as well as providing 3D scenery to the
system. Section 3.2.3 shortly discusses a programmatical
approach to combine Vuforia and SceneKit rendering. In sec-
tion 3.2.4, we detail configuration capabilities for provided
3D scenery, including an approach to normalize scaling of
such scenery automatically. Section 3.2.5 “Improving Ren-
dering Stability” covers approaches to improve the stability

10https://developer.apple.com/xcode/
11http://www.apple.com/de/iphone/

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
http://www.apple.com/de/iphone/
http://www.apple.com/de/iphone/
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Session

ViewView Controller

Tracker Manager

Renderer

Figure 3.6: Structure of the implementation; arrows high-
light dependencies.

of the pose matrices which are estimated by the Vuforia
engine.

3.2.1 System Structure

Originally, the system’s structure draws several implications
from Vuforia sample applications12. By iterating over the
initial structure, we found a design more suited for our
particular approach, where communication with external
components by using delegates and rendering are incorpo-
rated.

The structure is illustrated in figure 3.6. The view controller
serves as entry point to the system, upon whose creation the
backend components—session and tracker manager—are
initialized. To overcome components’ thickness in the initial
approach, we separated tracker management and rendering
into each their own component.

3.2.2 System Lifecycle

Major calls to the Vuforia API—such as initialization, launch-
ing the camera, and shutdown—are handled by the system’sARSession is the

system’s central
component

central component, ARSession. By responding to the Vufo-
ria API, a certain lifecycle consisting of initialization and
pausing is enforced. Figure 3.7 illustrates that lifecycle.

12https://developer.vuforia.com/downloads/samples

https://developer.vuforia.com/downloads/samples
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Uninitialized
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Initialized

pause

Paused
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Figure 3.7: Lifecycle of the system

Initially, the Augmented Reality system is not initialized.
The start transition causes ARSession to initialize the Vufo-
ria engine, start the tracker, and load its tracking database. The system’s lifecycle

consists of three
states

A temporary pause of the system is handled by the pause
respectively resume transitions. The stop transition will shut
down the system, making Vuforia free all its resources and
uninitialize its components.

To handle such events, FLAppAR exposes several del-
egates. The lifecycle delegate, which is of type
ARLifecycleDelegate, consists of methods that are called
on each lifecycle transition. In addition to lifecycle delega- The system

communicates its
lifecycle through
delegates

tion, a delegate of type ARErrorDelegate can be supplied to
catch possible errors and respond accordingly—therefore,
several error types with distinct levels of severity are pro-
vided. Both delegates can be set via the view controller’s
lifecycleDelegate respectively errorDelegate properties.
All delegates are discussed more detailed in section 4.1.6.

To ensure a seamless execution within FLAppAR, all lifecy-
cle and error delegate methods are called in a background
thread. It is noteworthy that updates to the user interface
have to be dispatched from the main thread, for example by
using Grand Central Dispatch [iOS Developer Library].

Scene Delegation

In addition to lifecycle and error delegation, FLAppAR dele-
gates requests for scene content to a given scene delegate. 3D objects are

supplied by a scene
delegate

This design empowers developers to handle scene allocation
and release independently of the Augmented Reality system,
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for example, by relying on GPS data or iBeacon13 technology.
Other than lifecycle or error delegates, a scene delegate is re-
quired for the system to work—therefore, ARViewController
holds a strong reference to it.

The ARSceneDelegate protocol consists of one method,
provideSceneForTarget:. As soon as the Renderer detects a
new target, the Scene Delegate is asked to provide a match-
ing scene for the given target. The target’s name may be set
at the Vuforia Target Manager. To be able to handle possi-
ble errors gently during scene allocation, this step should
be performed before an appropriate target may possibly be
recognized. This can be achieved by either relying on spa-
tial data (GPS, etc.) or by simply loading all scenes upon
initalization of the system.

3.2.3 Joining Vuforia and SceneKit

SceneKit is built on top of OpenGL ES, hence arbitrary
SceneKit content can be rendered into an existing OpenGL
ES context, EAGLContext [SceneKit Framework Reference,SceneKit and Vuforia

can not be integrated
ad-hoc

OpenGL ES Framework Reference]. Therefore, taking ad-
vantage of SceneKit’s features such as SCNScene and physics
in FLAppAR is not conceptually impossible, yet combining it
with Vuforia yielded some difficulties.

The traditional approach to translate coordinates of the three-
dimensional space onto the camera consists of the multipli-
cation of three matrices, namely model matrix, view matrix,A coordinate in 3D

space is projected
onto the camera by

matrix multiplication

and projection matrix. While the model matrix describes
translation, rotation and scaling of an object in 3D space, the
view matrix transforms these coordinates from the model’s
own perspective into a global coordinate system. Subse-
quent to that, the projection matrix projects the coordinates
onto points of the 2D camera plane.

Figure 3.8 illustrates said approach that is used by Vufo-
ria in conjunction with OpenGL: The extrinsic matrix here
describes translation and rotation of the tracked target—
scaling is dispensable here—, and is multiplied onto the in-

13https://developer.apple.com/ibeacon/

https://developer.apple.com/ibeacon/
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Figure 3.8: Coordinate translations in 3D [Iwaya, 2016]; K is the intrinsic matrix,
which describes properties such as focal length. [R|t] is the extrinsic matrix and
describes the camera’s position in global coordinates, as well as its rotation.

trinsic matrix that describes camera-specific attributes, such
as focal length. The extrinsic matrix is also named pose ma-
trix. While the extrinsic matrix represents the view matrix,
the intrinsic matrix depicts the projection matrix.

When a target has been recognized by Vuforia, its
pose matrix can be acquired by calling getPose() of Vuforia provides an

extrinsic matrixVuforia::TrackableResult [Vuforia API Reference]. This
matrix represents the extrinsic matrix. The translation to
camera coordinates is still required.

SceneKit, however, does not expose such matrices. Since
its approach to set up and render 3D content is simplified, SceneKit does not

expose intrinsic and
extrinsic matrices

a SCNNode object’s model matrix can rather be adjusted by
setting its position, rotation, scale or transform proper-
ties. SceneKit’s representation of a viewport, SCNCamera, is
attached to a SCNNode as well. OpenGL’s approach from
figure 3.8 is not applicable here.

- (void)setCameraMatrix:(Vuforia::Matrix44F)matrix {
SCNMatrix4 extrinsic =
[self SCNMatrix4FromVuforiaMatrix44:matrix];

SCNMatrix4 inverted = SCNMatrix4Invert(extrinsic);

self.cameraNode.transform = inverted;
}

Listing 3.1: Transforming SceneKit’s camera[Iwaya, 2016]

Rather than following the traditional approach, we pursue
to derive the camera’s position and rotation in the 3D scene
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and assign them to the camera node’s transform property.We rather assign the
extrinsic matrix to the

camera’s position
This is achieved by first transforming the model view matrix
into a SceneKit 4× 4 matrix, SCNMatrix44. Then, inverting
the extrinsic matrix will result in the camera’s pose matrix
(listing 3.1) [Iwaya, 2016].

Vuforia::Matrix44F modelViewMatrix =
Vuforia::Tool::convertPose2GLMatrix(result->getPose());

[self setCameraMatrix:modelViewMatrix];
[self.renderer renderAtTime:CFAbsoluteTimeGetCurrent()];

Listing 3.2: Rendering SceneKit content [Iwaya, 2016]

By then using SceneKit’s SCNRenderer in our rendering loop,
SceneKit content will be rendered into the OpenGL ES con-
text at each render call, as seen in listing 3.2.

3.2.4 Scene Configuration

Scenes from different vendors not only differ in their size—
they yield differences in rotation, position and size. Hence,We approached

normalization of 3D
models

normalization of those models was required. Since we in-
tended the framework’s API to be as simple as possible, we
introduced configurable scenes, whose settings are encoded
in the JSON format.

{
"rotation": [0, 1, 0, 90],
"autoscale": true,
"scale": 0.6,
"visibleNodes": ["licht", "_01.5_-_animiert"],
"sceneName": "Scenes.scnassets/Kunstherz.dae"

}

Listing 3.3: Sample configuration of a scene

Such a configuration, as depicted in figure 3.3, can easily
be created and read by both humans and machines, due3D objects can be

configured with JSON
files

to the text-based approach of the JSON format. Alterna-
tively to creating a new ARScene by providing a file name
or a scene that has already been imported, scenes that are
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preconfigured can be initialized with the initWithConfig
constructor.

To validate the correctness of such a configuration file, we
provide a JSON Schema that describes the configuration
properties. This schema contains definitions of the following
properties:

• autoscale (boolean value, optional). Whether to nor-
malize the scene’s size by automatically re-scaling it
to target dimensions. The autoscale value defaults to
true.

• offset (3-element vector of integers, optional). Posi-
tion offset added to the scene’s position.

• position (3-element vector of integers, optional). Po-
sition of the scene. Since the position of all imme-
diate children of the scene’s root node is set to this
value, it is recommended to use this property only if
one child node is present—for example, by setting the
visibleNodes property.

• rotation (4-element vector of integers, optional). If
supplied, the scene is rotated by the provided three- or
four-dimensional vectors – according to the number of
array items. The first three items describe the rotation
direction (either 0 or 1), and the fourth item describes
the rotation angle, in degree. If omitted, the rotation
angle is set to 90°.

• scale (decimal number, optional). Additional scaling
to be applied to the scene. Since autoscale will fit the
scene to the image target’s dimensions, an augmenting
3D scene may occlude the target. Setting an additional
scaling of 0.5 to 0.8 will avoid that.

• sceneName (character string, required). The relative
path to the Collada scene file within the main bun-
dle.

• visibleNodes (array of character strings, optional). In
Collada, a model is structured like a tree—beginning
with the root node, each node may have its children.
If supplied, only a subset of immediate children of
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the scene’s root node remains after import; all other
children are removed. Therewith, particular parts of a
model may be dismissed during presentation.

These properties may be changed after import by their re-
spective class properties in ARScene. All elements with char-
acter string values are of type NSString, while vector values
are represented by SCNVector3 respectively SCNVector4.

Animation of objects as well as material transparency are
supported by SceneKit out-of-the-box. If a Collada scene
contains animated objects, SceneKit will by default start
performing the animations in a loop.

Automatic Scaling

When importing several sample scenes into our system, we
discovered that their sizes differed from each other: Since the
vendors of these scenes worked with various scales, someSize normalization

was necessary due to
different sizes of 3D

models

models appeared very small and were hardly visible, while
others exceeded the viewpoint of the Augmented Reality
window and occupied the device’s whole screen. To prevent
such incidents an automatic scaling functionality has been
implemented. This feature anticipates manual calculation
of appropriate scaling of scenes and can be applied to every
scene that is imported into the system.

The default dimensions of an image target are calculated
automatically when uploading an image for processing
to Vuforia Target Manager. Vuforia’s C++ API exposes

The minimum
bounding box of the

infamous Utah Teapot

the method getSize() of QCAR::ObjectTarget that returns
a three-dimensional float vector, QCAR::Vec3F [Vuforia
API Reference]. Although being a 3-element vector, a
QCAR::ImageTrackable only uses the x and y parameters for
X respectively Y axis.

The minimum bounding box of a three-dimensional object
is the quboid with the smallest size, in terms of volume,
containing the whole object . By calculating this box, we can
determine the size of any scene and scale it appropriately. By
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using getBoundingBoxMin:max: [SceneKit Framework Refer-
ence] of the SceneKit API, we receive two vectors describing
the corners of the bounding box. From these corners, we
can easily derive the bounding box’ size with arithmetical
operations.

By acquiring the sizes of both the image target and the 3D
scene we can finally calculate their respective scaling factor
and perform appropriate scaling of the scene.

3.2.5 Improving Rendering Stability

Although pose estimation of the Vuforia engine appeared
quite reliable, rendered objects often had some jitter in their
appearance. Applying Extended Tracking—a tracking mode
that takes as well into account features of the environment—
resulted in just some slight improvements. Altough the de- Rendering was

instable, therefore we
introduced filtering

vice is held quite stable in a person’s hand, the presented 3D
object’s position yields small changes. Vincent et al. [2013]
were aware of this inaccuracy and conducted a study to
understand said jitter in different user pointing techniques.

To overcome this jitter, we conducted two filtering tech-
niques:

Filtering of small differences By applying a discrete filter
that omits small changes in position, the object’s pose
can be stabilized under certain circumstances. Small
inaccuracies due to hand tremor may be filtered, yet at
the cost of lags appearing during rendering when mak-
ing slight hand movements intentionally. We tested this
approach as ad-hoc solution to this problem, but dismissed
it due to the rendering lag issues.

Filtering of different movement directions Intuitively, jit-
ter yields movement of an object into two different
diretions. By applying a directional filter, intentional Cosine similarity

brought a fitting
approach to filter
unintended
movements

movements can be detected by providing an appropri-
ate threshold angle, while unintended noisely move-
ments will get filtered. This filtering is powered by
using the cosine similarity between the last (~a) and the
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current (~b) movement direction:

cos(θ) =
~a ·~b
|~a| · |~b|

While cos(180°) = −1 predicts totally diverging direc-
tions, a result between zero and one (i.e., a difference
between 0° and 90°) will describe a movement in a
similar direction. Testing by filtering changes with
cos(θ) ≤ 0.2 showed quite stable results.

We settled with the second approach, which relies on cosine
similarity and filters more selective than the ad-hoc approach.

3.3 Evaluating the System Performance

Although SceneKit is supposed to integrate into OpenGL ES
seamlessly, we experienced a performance decrease whenWe experienced a

performance
decrease in 3D

rendering

using the approach introduced in section 3.2.3 compared to
rendering directly with OpenGL ES. To get an more detailed
overview of the performance issue, we considered Apple’s
Core Animation Instrument [iOS Developer Library].

Therefore, we used two devices—an iPhone 5 and an iPhone
6S—to evaluate their rendering performance. In a well-
illuminated setting, we used these devices to recognize the
flapp-frame target image (figure A.8).

Using the “CoreAnimation” instrument, we gathered com-
parative video performance data by measuring frames per
second over a duration of 20 seconds: While the iPhoneiPhones rendered

stable with an
average of 53 frames

per second

5 had an average of 53 frames per second, the iPhone 6
also achieved an average frame rate of 53 frames per second.
This frame rate is scheduled internally by Vuforia [Vuforia
API Reference], hence this is no actual performance indi-
cation. However, we also compared runtime durations of
the render function, which will give insight of how fast the
devices are able to perform rendering.
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Figure 3.9: Rendering performance of FLAppAR in the sample application during
intended use: After focusing an image target (samples 1—70), it is recognized
immediately and the smartphone is used to view the augmented 3D object; therefore,
reder computation duration increases. The yellow area depicts a duration which
should be avoided; otherwise, the current render call might interfere with the next
one.

Having an overall average frame rate of
53 frames per second, we can derive that a single ren-
dering of 3D content is supposed to happen in less than
1 second ÷ 53 ≈ 18.87 milliseconds. By achieving this
performance, each individual rendering will not interfere
with others. We declare a buffer zone of 8 milliseconds
within each render which should be avoided to prevent this
interference.

We then calculated runtime durations of the render func-
tion. After saving timestamps before and after method call,
we calculated the timestamps’ differences and compared
the data. Results of this comparison are illustrated in fig-
ure 3.9. iPhone 5 achieved an average of 5.12 milliseconds
(min. 0.1 ms, max. 52.29 ms) and iPhone 6S achieved an aver-
age of 2 milliseconds (min. 0.09 ms, max. 26.39 ms). Further-
more, an amount of 1.44 % of all iPhone 5 samples is higher
than 18.87 ms, which is higher than an average rendering iPhone 5 lacks

performance; need
for improvement

loop duration. In addition, 10.91 % of all iPhone 5 samples
are located in the buffer area of 10 to 18.87 milliseconds.

These results show that, while iPhone 6S performs well,
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iPhone 5 yields a possible need for optimization—prospects
for such improvements are discussed in section 5.1, “Sum-
mary and Contributions”.
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Chapter 4

Guidelines for
Developers and
Designers

We provide guidelines for developers as well as designers
who are working with FLAppAR. This chapter is divided into
two parts: Section 4.1 will give detailed descriptions on how
to set up an iOS application that uses FLAppAR to provide
an Augmented Reality service. We will give hints on which
components of the Application Programming Interface to
use and detail several approaches to import of 3D content.
Section 4.2 provides insight on the design of trackable im-
ages and we conduct suggestions by the Vuforia Developer
Library for designing well-trackable target images.

4.1 Development Guidelines

The FLAppAR Application Programming Interface has been
designed with common Objective-C patterns in mind, such
as delegates, views and property lists, while preserving
some amount of flexibility for easy porting to other operat-
ing systems, e.g. the Android mobile operating system. The
framework itself, FLAppAR, is intended to run on iOS 8.3 and
newer.
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For ad-hoc development, a pre-built version of FLAppAR is
available. Alternatively, current versions of the code may
be obtained from the official repository, as detailed in sec-
tion 4.1.1.

All code—that is, framework, sample application, and
documentation—is licensed under the MIT License1. ThisFLAppAR is released

as open source allows developers to freely use the system or copy parts of it
for their own use, as long as the original license is included.

In the following, we will cover setting up the Vuforia library.
Sections 4.1.2 and 4.1.3 provide an overview of how to ac-
complish the necessary prerequisites. Furthermore, com-
mon tasks for building an Augmented Reality application
with FLAppAR are discussed: Import of scenes in section 4.1.4,
and setup of an Augmented Reality view in Sections 4.1.5
and 4.1.6.

4.1.1 Repository Structure

Instead of using a pre-built version of the FLAppAR frame-
work, its source code can be acquired by cloning the official
Git2 code repository. This repository contains an Xcode
project which consists of three different targets.

FLAppAR The framework itself can be built by running
this target.The Xcode project

consists of
framework, sample

application and
documentation

FLAppAR Sample Alongside the FLAppAR framework, we
developed a sample application that provides a simple
Augmented Reality experience using self-designed
image targets and freely available 3D objects. The
application is designed to show different features of
the framework and provide insight for developers on
how to approach an Augmented Reality application
with FLAppAR.

FLAppAR Documentation The code documentation can
be generated by building this target. A local version of

1https://opensource.org/licenses/MIT
2https://git-scm.com/

https://opensource.org/licenses/MIT
https://git-scm.com/
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the Appledoc software is required. The generated doc-
umentation is embedded into Xcode as well as stored
in the “Documentation” folder of the repository.

In the repository, Git tags are used to identify versions.
Therefore, fallbacks to certain versions are easily possible Git tags are used to

identify versionsby issuing git checkout tags/<tag>. Versions and their
respective tag names are structured as v<major>.<minor>.
Since version 0.10, we began using Semantic Versioning3

for declaring the severity of changes in the version number-
ing.

The lab branch contains changes used to gather measure-
ments for, for example, the performance evaluation (sec-
tion 3.3).

4.1.2 Vuforia API Key Acquisition

To either run the sample application or use the
FLAppAR framework, a valid Vuforia license key is required. A license key is

required to run
Vuforia

Before acquiring such license key, a registration for the Vu-
foria Developer Portal4 is needed. Several pricing plans are
available on the Vuforia pricing website5—including the free
Starter plan, which brings a watermarked Vuforia engine
but is free of charge.

After successful registration, the license key must be placed
in the main configuration file of FLAppAR. The property list
file FLAppAR.plist is supposed to be placed in the root di-
rectory of the application’s main bundle. Setting the charac-
ter string value of the key VuforiaLicenseKey to the given
license key will enable FLAppAR to properly initialize the
Augmented Reality system.

3http://semver.org
4https://developer.vuforia.com
5https://developer.vuforia.com/pricing

http://semver.org
https://developer.vuforia.com
https://developer.vuforia.com
https://developer.vuforia.com/pricing
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4.1.3 Management of Image Targets

For analysis and compilation of image targets, Vuforia pro-
vides a web-based tool, Vuforia Target Manager6. By using
the web interface, images can be uploaded and grouped intoImage targets can be

managed with a
web-based tool

databases. Once a selection of image targets is finished, the
database containing these images is available for download
and may be, afterwards, loaded by a Vuforia application.

FLAppAR is capable of loading a single database file. This
database can be referred to by setting the TargetDatabase
key’s value of the main configuration file, FLAppAR.plist.
The key’s value is considered as path, relative from the
application’s main bundle’s root directory.

4.1.4 Importing 3D Scenes

In FLAppAR, 3D scenes are represented by the ARScene class.
This class offers three initialization methods for various
allocation strategies. ARScene has been designed with three3D scenes may be

loaded using multiple
approaches

strategies in mind:

Programmatical allocation Initialize the scene, but allocate
and assign the SceneKit scene programmatically. This
can be done by using default constructor, init, and
setting the scene property either by yourself, or by
calling the importSceneNamed: method.

Implicit allocation By using the initWithSceneNamed: con-
structor, the given scene is automatically loaded.

Pre-configured allocation Initializing the scene with a
given configuration, as outlined in section 3.2.4. The
third constructor of ARScene, initWithConfig:, can be
used to let ARScene conduct such a configuration file
with initial adjustments, such as scaling and offsetting.
The referenced scene file is loaded implicitly.

6https://developer.vuforia.com/target-manager

https://developer.vuforia.com/target-manager
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Furthermore, there are several configuration properties pro-
vided which are described in section 3.2.4. These properties
can be set either in a configuration file, or after initialization,
via their class properties.

4.1.5 Setting up an Augmented Reality View

As described in section 3.2.2 “System Lifecycle”, the sys-
tem’s view controller, ARViewController, serves as entry
point to FLAppAR. By setting a UIView’s view controller to
ARViewController, or an extension of ARViewController, the
view then will become capable of presenting Augmented
Reality content. As soon as the view controller’s loadView
method is called, the Augmented Reality system will get
initialized. Be aware of properly setting up the view con-
troller’s delegates, as outlined subsequently in section 4.1.6.

4.1.6 Setting up Delegates

FLAppAR brings three delegates to provide asynchronuous
interactivity between the system and the application encap- Delegates are used

to communicate with
the application

suling it: Lifecycle, error, and scene delegates. Each delegate
corresponds to a separate property of ARViewController:
lifecycleDelegate, errorDelegate, and sceneDelegate.

These properties are supposed to be set before initialization
of the view controller, by either overloading the view con-
troller’s loadView method, or by setting the properties upon
transitioning into the view controller, for example during
prepareForSegue:.

In the following, we will detail the protocols, which are sep-
arated into two categories: The lifecycle and error delegates Delegates inform

about events and
request data

function just as handlers for receiving events perform on
their own, independently from the remaining system. The
scene delegate, on the other hand, actually interacts with
the system by returning 3D scene data.
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Lifecycle and Error Delegates

As outlined in section 3.2.2 “System Lifecycle”, FLAppAR fol-
lows a certain lifecycle at runtime. To update elements ofThe lifecycle delegate

informs about
updates in the

framework’s status

the user interface or handle internal resources, the error del-
egate provides functionality to keep track of the system’s
current state.

@protocol ARLifecycleDelegate <NSObject>
@optional

- (void)handleARInitBegin;
- (void)handleARInitDone;
- (void)handleARDeinitBegin;
- (void)handleARDeinitDone;

- (void)handleARSceneLoad;
- (void)handleARSceneLoadDone;
- (void)handleARSceneUnload;

@end

Listing 4.1: LifecycleDelegate protocol

The methods provided by this delegate are listed in
listing 4.1. While the first set of methods, including
handleARInitBegin, are called upon actual changes in the
system’s lifecycle, the second set of methods is called in
response to 3D rendering events.

Since complexity of 3D objects and device performance may
vary, loading such content may result in small delays. To
inform the user about possible loading times, user interface
elements, such as loading indicators, can easily be presented
in such situations using said methods.

@protocol ARErrorDelegate <NSObject>
@required
- (void)handleARError:(NSError *)error;
@end

Listing 4.2: ErrorDelegate protocol

The error delegate, sketched in listing 4.2, is designed to
respond in events or error. Since error fallbacks are handledErrors are catched

with the error
delegate
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internally, either in FLAppAR or Vuforia, this approach en-
ables developers to handle errors in the user interface and
return to previous views or recover and restart the system.

The code property of the supplied error parameter contains
appropriate error codes which are of various severities. For
their respective details, we refer to the documentation of
FLAppAR.

Scene Delegate

The purpose of the scene delegate was already outlined in
section 3.2.2: To support dynamic allocation of 3D scenes, The scene delegate

provides on-demand
3D scenes

the renderer of FLAppAR asks for such scenes on-demand.
Therewith, unused scenes may be deallocated asynchronu-
ously to save memory and computation time.

@protocol ARSceneDelegate <NSObject>
@required
- (ARScene *)provideSceneForTarget:

(NSString *)targetName;
@optional
- (void)dismissSceneForTarget:(NSString *)targetName;
@end

Listing 4.3: SceneDelegate protocol

The scene delegate’s ARSceneDelegate protocol is out-
lined in listing 4.3: While the provideSceneForTarget:
method is called if a certain scene is desired, the optional
dismissSceneForTarget: method is called if the currently
recognized target changed and the renderer switched scenes.

4.2 Image Target Guidelines

To ensure optimal tracking capabilities, image targets have
to fulfill certain constraints: On the one hand, their designs Image targets must

yield to certain
constraints

should conform with the feature detection methods used.
On the other hand, the physical appearances of these targets
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+ +

++
(a) Square shape (b) Circle shape

+

+
(c) Corner features

Figure 4.1: The feature detection method of Vuforia recognizes features on an edge-
and corner-based approach. Figure 4.1 (a) shows how a simple square shape is
recognized, where all four corners each depict a feature. Round shapes, as shown in
figure 4.1 (b), do not feature corners, and hence will not have features. Figure 4.1 (c)
shows a combination of both round and square shapes. Here, “+” depicts a feature.
[Vuforia Developer Library].

imply certain properties, such as glossiness, which affect
tracking as well.

Although particular feature recognition methods are not
detailed, as Vuforia is proprietary software, several recom-
mendations are provided in the Vuforia Developer Library
to optimize tracking performance.

Regarding the shape of a particular image target, the follow-
ing properties should be considered:

Features Features are details in an image which yield to cer-
tain constraints—preferably edges and corners, which
have appropriate mathematical implications for com-Features are details

that are combine
edges and corners

putational detection [Li and Allinson, 2008]. Features
are described similarly in the Vuforia documentation,
as depicted in figure 4.1. Designers are encouraged to
omit “organic shapes” and rather incorporate “sharp,
spiked, chiseled detail[s]” in target images [Vuforia
Developer Library]. High amounts of features are de-
sirable.

Contrast While low contrast will result in blurry images,
higher contrast increases the differences in color be-Higher contrast can

increase the number
of features

tween areas of an image [Vuforia Developer Library].
Therefore, high contrast might increase the amount
of features by enabling details classified as edges and
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corners.

Feature distribution After acquiring a set of features for
a given image, their distribution within the image
creates a unique footprint. Therefore, an uneven yet A unique feature

distribution is
important

not centralized distribution of these features across
the image canvas is mandatory for a good trackability.
Hence, repetitive patterns decrease the uniqueness of
such a distrubution and are obliged to avoid [Vuforia
Developer Library].

In essence, rich details, high contrast, and a well-distributed
set of features are good conditions to facilitate good tracking
performance.

Since feature detection in Vuforia is achieved with a cloud-
based tool, Vuforia Target Manager, supplied images are
obliged to be in “8- or 24-bit PNG and JPG formats” with
“less than 2MB in size”, while “JPGs must be RGB or
greyscale (no CMYK)” [Vuforia Developer Library]. Vufo-
ria Target Manager provides performance results of feature
detection with a non-detailed 5-star rating system, where
zero stars represent a non-trackable image and five stars Vuforia provides a

star-rating system for
estimated tracking
quality

mean an optimal condition. Since a feature-exclusion buffer is
applied to an uploaded image to enable tracking of details
in surfaces with continuous patterns, an area of 8% of the
image’s width is excluded from feature tracking and should
be considered for feature distribution [Vuforia Developer
Library].

Additionally, a target’s physical appearance may also affect
its tracking quality. While its surface may have certain impli-
cations such as, for example, to reflect lights, the following
physical properties should be considered:

Solidness and Flatness Vuforia performs best if a surface
actually is flat [Vuforia Developer Library]—therefore,
it is encouraged to use solid materials that hardly bend Flat and properly

sized targets are
important

or get wrinkled, such as thin paper.

Size The image target’s size should be selected thoroughly,
taking the estimated distance between the scanning
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device and the target into account. Since the amount
of recognizable features shrinks with decreasing im-
age quality, the target should be sized appropriately
[Vuforia Developer Library].

Surface finish Glossy surfaces should be avoided if direct
light sources, such as the sun, are present. Glossy re-Glossy surfaces

might reflect light flections will affect the tracking quality similar to an
occlusion and can create issues with feature recogni-
tion [Vuforia Developer Library].

If a target image is designed carefully and its physical ap-
pearance is realized with said guidelines in mind, its track-
ing quality should be considerably increased.
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Chapter 5

Summary and Future
Work

In this chapter, we summarize the contents and contribu-
tions of this thesis. In section 5.1 “Summary and Contribu-
tions”, we conclude previous chapters and briefly discuss
our findings. The last section, 5.2 “Future Work”, outlines
possible future prospects regarding our work.

5.1 Summary and Contributions

In this thesis, we presented our process of developing
FLAppAR. In section 2 “Related Work”, we discussed research
related to our context of Augmented Reality experiences in
tourism. This includes fundamental research in Augmented
Reality (section 2.1), research regarding Augmented Reality
in tourism (section 2.3), and related software (section 2.6).

Section 3 “Developing an Augmented Reality Application”
outlines the work we did on the application. This work
is divided into three parts: First, in section 3.1 “Design-
ing the Augmented Reality System”, we describe our ap-
proach to design the Augmented Reality application. Dur-
ing examination of Augmented Reality tracking methods
(section 3.1.1), we took visual and non-visual tracking meth-
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ods into account, favoring a visual approach. Relying on
Natural Feature Tracking instead of Marker Tracking was
appealing for us, since artistic freedom for target images
was ensured that way. We then performed an evaluation of
several Augmented Reality frameworks for the Apple iOS
mobile operating system (section 3.1.2). The evaluation’s
results revealed that one particular framework, Vuforia, out-
performed the other frameworks regarding the maximum
distance between the device and the target image. After-
wards, in section 3.1.4, we discussed our approach to present
3D content: A combination of OpenGL ES and iOS’ SceneKit
framework provided enough flexibility.

The second part, section 3.2 “Implementing the Application
Design”, consists of multiple descriptions of implementa-
tional details: Foremost, we detail general concepts such as
the structure (section 3.2.1) and the lifecycle (section 3.2.2)
of the system. In addition, we discuss particular solutions
to the issues we faced: Joining OpenGL ES and SceneKit for
3D rendering is outlined in section 3.2.3. Furthermore, nor-
malization of 3D scenes via configuration files is portrayed
in section 3.2.4 and a solution to distortions in the estimated
pose matrix of 3D scenes is provided in section 3.2.5.

Facing slight performance issues, we shortly evaluate our
own system in section 3.3 “Evaluating the System Perfor-
mance”. With the intention of identifying possible causes
for this decrease in performance, we analyzed graphics per-
formancce and system performance.

Accompanying the implementational details of FLAppAR, we
formulate multiple guidelines for developing applications
with the system as well as design image targets to be used
with Vuforia in section 4 “Guidelines for Developers and
Designers”. Several recommendations for developers (sec-
tion 4.1) cover tasks such as acquiring an API Key for Vuforia
(section 4.1.2) and importing 3D scenes into FLAppAR (sec-
tion 4.1.4). In section 4.2, we congregated guidelines for
improved Vuforia tracking performance, such as improving
contrast in imagery and paying attention to target images’
physical appearance.

Recalling the performance issues we faced, the evaluation in
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section 3.3 showed that there is a possible need for optimiza-
tion in the rendering method. Although iPhone 5 renders
3D content reliably, observations and measurements demon-
strated that 10 % of render calls should finish faster. This
may be, partly, due to the processing power of iPhone 5—the
2016 iteration of iPhone, iPhone 6S, performed significantly
better in the evaluation. To solve this issue, FLAppAR might
be further optimized. We are convinced that by analyzing
and tuning the approach how 3D content is rendered in-
creased performance may be achieved. Alternatively, the
integration of SceneKit and OpenGL ES could be discarded
in favor of more efficient solutions, using, for example, iOS’
Metal1 framework.

5.2 Future Work

We see possibilities of future work in three distinguished do-
mains: Design, implementation and physical deployment.

Although we partly evaluated our approach and the result-
ing application, all work was based on an implementation
that was derived from several requirements given (as listed
in section 3.1). Research from Kounavis et al. as well as the
ARCHEOGUIDE project [Vlahakis et al., 2002] showed that
tourism provides an interesting application for Augmented
Reality and is well received by users [Vlahakis et al., 2001].
However, we did not evaluate the user experience from
either our setting or from FLAppAR itself—mainly, because
the main contribution of this thesis is the technical imple-
mentation of a framework, not a particular application. In
a follow-up study, though, the user experience of the Aug-
mented Reality experience of FLApp could be investigated.

As we remarked in the performance evaluation (section 3.3),
FLAppAR yields a possible need for increased 3D rendering
performance. In the summary (section 5.1), we already re-
ferred to possible solutions: By either opting for more per-
formant devices or optimizing the 3D rendering approach,
a significant increase in performance may be achieved. The

1https://developer.apple.com/metal/

https://developer.apple.com/metal/
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latter, optimization of 3D rendering, could be realized by
using purely OpenGL ES or taking iOS’ Metal framework
into account, which is supported in Vuforia since version
5.5.9, which has been released this spring [Vuforia Devel-
oper Library].

With a possible deployment in the center of the city of
Aachen in the near future, the physical realization of
FLApp (and, therewith, FLAppAR) could also contribute to
interesting follow-up research. With the guidelines given in
section 4.2, actual Augmented Reality tracking stability in
outdoor settings could be evaluated, as well as the compari-
son of multiple surface materials.
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Appendix A

Sample Image Targets

We created several shapes and images to learn about frame-
works’ performance when using different image targets. Im-
age markers (figure A.1) have been used to test recognition
of such targets. Sample image targets from Vuforia’s sample
applications provided well-distributed image features for
testing of Natural Feature Tracking capabilities. To get in-
sight in even and uneven distributions of such features, we
designed target images based on QR codes (figures A.3, A.4,
and A.5). With figures A.6 and A.7, we created a combina-
tion of both frame-like targets and well-distributed image
features.

(a) Hiro (b) Kanji

Figure A.1: Image markers from the ARToolKit sample application [ARToolKit
Documentation].
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(a) Stones (b) Wood

Figure A.2: Sample target images with different patterns, taken from the Vuforia
sample application [Vuforia Developer Portal]

Figure A.3: QR-A features a combination of multiple QR codes to create an uneven
distribution of edges and corners.
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Figure A.4: QR-B features a relatively even and small distribution of edges and
corners.

Figure A.5: QR-C features some edges corners, whose distribution is uneven due to
warping.
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Figure A.6: F-S is based on the Stones pattern image from the Vuforia sample
application (figure A.2 (a)), but features a window-like cutout.

Figure A.7: F-W is based on the Wood pattern image from the Vuforia sample
application (figure A.2 (b)), but features a window-like cutout.
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Figure A.8: flapp-frame is based on previous image targets, like figure A.5, but
contains colors and a more arbitrary pattern.
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Appendix B

Results of the
Framework Comparison

Target Image Wikitude ARToolKit Vuforia

Hiro* 135 80 120

Kanji* 95 0 0

Stones† 95 80 160

Wood† 80 0 140

Pinball† 100 0 160

QR-A‡ 150 0 260

QR-B‡ 155 0 220

QR-C‡ 130 0 210

F-S‡ 160 80 235

F-W‡ 185 80 230

Table B.1: Results from the framework performance com-
parison survey
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The the results of table B.1 are discussed in section 3.1.2
“Comparison of Image Recognition Features”. All values are
measured in centimeters. The results are to be considered as
estimates with a precision of±5cm. For the individual target
images, the following settings have been used for printing:

* Tags: Printed on DIN A4
† Images: Printed on DIN A4
‡ Frames: Printed on DIN A3 (held on white back-

ground, for cut-out parts)
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