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Abstract

With the advent of ubiquitous computing devices and their associated capabili-
ties for capturing photos, videos, audio, and text, user-generated media content
and its large-scale distribution have become a reality. While then years ago the
production and dissemination of most digital media was practically restricted
to commercial content providers and a few enthusiasts, nowadays, most peo-
ple have the means to create, publish, and consume high-quality media. What
is interesting, however, is that despite this shift in paradigm, one of the most
fundamental underlying mechanisms—navigation in digital media—has hardly
changed at all and is in many cases still cumbersome and difficult.

Users’ navigation goals are mostly formulated in terms of the actual contents of
a medium; finding the point in a movie where two story lines finally meet or
accessing the part of a text where a certain argument is being made are useful
and clearly defined goals. Navigation interfaces, however, are still formulated in
terms of the generalizable form of a medium; they allow users to move to certain
timestamps or page numbers. This means that the goal of a navigation task is
rarely concerned with the functional entities that current navigation techniques
operate on. As a result, the users have to provide the capability to convert be-
tween their semantic navigation goals that refer to the content and a syntactic
expression of that goal that is compatible with the interface language. This con-
version, of course, is non-trivial and usually has to be found out by the users
through trial-and-error or exhaustive search.

One of the obvious reasons for this mismatch of languages between semantic
user intent and syntactic navigation interface is the analog heritage of the latter:
Interfaces to control and navigate analog media do not have access to the con-
tents of these media and, consequently, have to operate on the form as the com-
mon structure. Computer interfaces for digital media, on the other hand, could
have the ability to inspect the content and allow users to formulate in semantic
terms. Still, most of these interfaces are directly modeled after their analog coun-
terparts without leveraging this potential of the medium’s digital representation.



xxviii Abstract

In this thesis, we present an interaction model for navigation in digital media
that represents the interface together with the form and content of the medium.
This combination of structural representations of the interface and the medium
is novel. It gives us a holistic framework in which we can describe existing navi-
gation interfaces, analyze their shortcomings for semantic navigation goals, and
guide the creation of semantic navigation interfaces that allow to directly ex-
press such goals. In addition, we propose a simple four-step design guideline
that builds upon this framework and helps interface designers to create seman-
tic navigation interfaces.

The viability of both the interaction model and the design guideline is demon-
strated in the context of four research projects that each create and evaluate a
semantic navigation interface for a different type of medium. The interfaces and
navigation techniques that have emanated from these projects have already been
shown to outperform conventional methods as well in measured efficiency as in
perceived ease of use and subjective preference. While each thus is a contribu-
tion in itself to the respective field, their main purpose in the context of this work
is to each exemplify and illustrate one specific step of our four-step guideline in
detail.
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Überblick

Mediale Inhalte, die von Endnutzern erzeugt und bereitgestellt werden, sind ein
fester Bestandteil der Informationslandschaft geworden. Dies ist spätestens seit
der weitreichenden Verfügbarkeit von digitalen Aufnahmegeräten für Bilder,
Videos, Ton und Text der Fall. War die Erstellung und Verbreitung von digi-
talen Medien bis vor zehn Jahren noch kommerziellen Anbietern und einigen
wenigen semiprofessionellen Endanwendern vorbehalten, so können heute na-
hezu alle Benutzer Medien in hoher Qualität produzieren, verteilen und kon-
sumieren. Trotz dieses Paradigmenwechsels sind einige der grundlegenden In-
teraktionsmechanismen – insbesondere die Navigation innerhalb digitaler Me-
dien – weitgehend unverändert geblieben und damit nach wie vor unhandlich
und kompliziert.

Die Navigationsziele von Nutzern beziehen sich üblicherweise auf den
tatsächlichen Inhalt eines Mediums. An genau die Stelle eines Films zu sprin-
gen, an der zwei Handlungsstränge zusammenlaufen, oder den Teil eines
Textes zu finden, in dem ein bestimmter Sachverhalt erklärt wird, sind sin-
nvolle und klar definierte Ziele für Mediennavigation. Die Interaktion mit
gegenwärtigen Benutzerschnittstellen bezieht sich jedoch immer noch lediglich
auf die gemeinsame Form eines Medientyps. Benutzer können damit beispiel-
sweise zu Zeitstempeln oder Seitenzahlen navigieren. Somit stehen die Navi-
gationsziele der Nutzer und die Funktionsangebote der Benutzerschnittstellen
auf unterschiedlichen konzeptionellen Ebenen. Dies hat zur Folge, dass die
Benutzer selber ihre semantischen Navigationsziele, die sich auf den Inhalt
beziehen, in syntaktische Formulierungen, die mit den Ausdrucksmöglichkeiten
der Schnittstelle kompatibel sind, umwandeln müssen. Diese Umwandlung ist
weder intuitiv noch einfach und läuft daher oft auf eine erschöpfende Suche im
betreffenden Medium hinaus.

Ein Grund für diese vorherrschende Diskrepanz zwischen den Sprachen, in
denen sich Nutzerabsicht einerseits und Interaktionsmöglichkeiten anderer-
seits ausdrücken, ist die historische Entwicklung digitaler Navigationsschnitt-
stellen als Nachfolger analoger Aufnahme- und Abspielgeräte. Letztere haben
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traditionell keine Möglichkeit, das Medium inhaltlich aufzuschlüsseln, und
können daher gezwungenermaßen nur Eigenschaften des Medienträgers bee-
influssen. Diese Einschränkungen gelten für computergestützte Mediennaviga-
tion oft nicht; hier könnte der Medieninhalt durchaus analysiert werden, um se-
mantisch formulierte Navigationsziele zu verstehen. Dennoch sind die meisten
digitalen Navigationsschnittstellen immer noch direkte Abbilder ihrer analogen
Vorfahren.

Gegenstand dieser Dissertation ist die Erstellung eines Interaktionsmodells für
die Navigation in digitalen Medien, welches sowohl die Benutzerschnittstelle
als auch Form und Inhalt des Mediums zusammen darstellt. Diese Kombination
von strukturellen Repräsentationen des Mediums einerseits und der Benutzer-
schnittstelle andererseits ist neuartig: Sie ermöglicht eine einheitliche Beschrei-
bung existierender Navigationstechniken und die Bewertung dieser Techniken
im Kontext semantischer Navigation. Darüber hinaus lassen sich aus dem Mod-
ell Empfehlungen für das Design von semantischen Navigationsschnittstellen
ableiten. Ein weiteres Ergebnis dieser Arbeit ist somit eine derartige mod-
ellgestützte vierschrittige Anleitung.

Die Anwendbarkeit des Modells und der Designempfehlungen wird im Rahmen
von vier Forschungsprojekten demonstriert, in denen jeweils eine semantische
Navigationsmethode für einen anderen Medientyp entwickelt wurde. Die Be-
nutzerschnittstellen, die aus diesen Projekten hervorgegangen sind, sind nach-
weislich effizienter und einfacher in der Bedienung als konventionelle Tech-
niken zur Mediennavigation, und werden darüber hinaus von den Benutzern
präferiert. Obwohl jedes dieser Projekte somit einen eigenen Beitrag zu dem
jeweiligen Forschungsfeld darstellt, steht in dieser Dissertation der illustrative
Aspekt dieser Teilarbeiten im Rahmen des Modells und der Designempfehlun-
gen im Vordergrund.
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true for Jan-Peter Krämer and STACKSPLORER; without his help in running the
experiments and analyzing the data, our tools for efficient call graph navigation
would still be ideas only. Thanks also to all thesis students that have contributed
to this research, especially Alisa Novosad, Anne Kathrein, Andreas Nett, Chris-
tian Brockly, Joachim Kurz, Thomas Heß, and Xiaojun Ying.



xxxii Acknowledgements

Apart from the research that made it into this thesis, I worked on other projects
that were all either insightful, inspiring, necessary for funding, fun, challenging,
welcomely distracting from my thesis, or any combination thereof. I would like
to thank the people whom I could collaborate with in these projects (in no par-
ticular order): Moritz Wittenhagen, Leonhard Lichtschlag, Benjamin Walther-
Franks, Florian Heller, Till Quadflieg, Gero Herkenrath, Yvonne Jansen, Sarah
Mennicken, Chatchavan Wacharamanotham, Jonathan Diehl, Jan-Peter Krämer,
and Max Möllers. Working together with you has been an honor and a pleasure.

Thank you all!



xxxiii

Conventions

Throughout this thesis we use the following conventions.

In cases where material was published both as a thesis un-
der the guidance of this author and as a peer-reviewed pa-
per at a conference, the latter will be given preference in
terms of citation, because it is easier to get access to for the
reader.

Text conventions

Definitions of technical terms or short excursus are set off in
colored boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus
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Chapter 1

Introduction

If we, as computer scientists, look today at what people use The primary use of
digital devices has
changed.

their computers and other digital devices like smartphones
and tablets for, we might be surprised. What used to be the
tools of our trade—and, as such, primarily intended to help
us do our work—has become a part of people’s everyday
life. These devices are now being used not only for manag-
ing databases, keeping stock of large inventories, or solving
large numerical problems for simulations; their primary ap-
plication has shifted towards non-work activities like com-
municating with friends and family, listening to music, en-
joying a movie, or browsing through the latest gossip on
various social networks.

Nowadays, people use computers to consume digital me- People use
computers to
consume and create
digital media.

dia. What may be even more important is that in the last
few years one of the biggest promises of the computer
revolution is finally starting to be fulfilled: people now
have the ability to create digital media; they can share self-
created music, videos, and photos on YouTube or flickr, they
can share their opinion through web sites or social micro-
blogging platforms, and they can do it at a level of pro-
duction quality that would have been recognized as profes-
sional not many years ago. This is a stark contrast to how
media used to be created, distributed, and consumed when
they were still represented by their traditional analog forms
and were fast in the hands of professional authors, produc-
ers, and publishers.
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While some of the media we use today have actu-Interaction with digital
media resembles

interaction with
analog media.

ally evolved in a computerized environment—hypermedia
come to mind—most of the media we consume and create
on our digital devices are still just digital representations of
these traditional analog media: audio, video, text, images,
animations, and presentation visuals are just some exam-
ples. There is nothing wrong with that; these types of media
have informed, entertained, and served us well, and there
is no reason not to keep them around. Many of them, how-
ever, have inherited some of the limitations of their analog
ancestors that we have taken as granted for so long that we
often do not realize how much we restrict ourselves when
dealing with them.

One particular area where this is true is when we are nav-Navigation in media
has not changed

much between
analog and digital.

igating those media: however small the resemblance be-
tween buying a music cassette at a record store and sub-
scribing to a channel at a service like last.fm1—getting to a
location inside an audio or video track interestingly still re-
quires operating the same transport controls that have been
present on tape recorders since 1935 when AEG invented
the Magnetophon K1 (cf. Figure 1.1).

Admittedly, some additional elements have been added to
most interfaces like, e.g., timeline sliders or scrubbing in-
terfaces for time-based media. However, they have only
brought back capabilities that the original analog counter-
part already possessed by directly moving the physical ob-
ject the medium was stored on.

Over the years, of course, a large body of research hasOur goal is to
propose a theory for
navigation in digital

media.

been conducted to create interfaces that leverage the ad-
vantage of digital representations of media to facilitate new
and better forms of navigation (examples include [Ahlberg
and Shneiderman, 1994; Hürst and Jarvers, 2005; Lee, 2007;
Goldman et al., 2008]), but no overarching theory and con-
cept of why this is difficult and how navigation in digital
media should be designed has been defined. It is the goal
of this thesis to propose such a theory, together with an in-
teraction model [Beaudouin-Lafon, 2000] and a set of design
guidelines. These are intended to send a theoretical founda-
tion for creating digital media navigation interfaces that al-
low users to browse, search, and move through these media

1http://www.last.fm

http://www.last.fm
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Figure 1.1: Although the technical background has changed considerably, mod-
ern media player navigation interfaces are conceptually similar to traditional
navigation interfaces for analog media.

in a faster, easier, and more streamlined fashion than those
interfaces that follow the dominant design of the media’s
analog counterparts could allow.

The central idea in this context is to regard digital media Our theory is based
on the duality of
syntax and semantics
in digital media and
direct manipulation
interaction.

as dual structures that consist of syntactic and semantic
spaces, where the former are defined by the type of the
medium and the latter by its content and the navigation
task. Using this framework, we can set out to identify along
which syntactic or semantic subspaces existing navigation
techniques operate and along which—usually different—
subspaces possible navigation goals of users are collocated.
We will demonstrate that it is possible to create navigation
interfaces and techniques that allow access to those seman-
tic subspaces that are directly aligned with the navigation
goals of users for certain tasks. Additionally, if these sub-
spaces can be represented in a linear or planar euclidean
domain, we can apply the concepts of direct manipula-
tion [Shneiderman, 1982] to our navigation interface to gain
the benefits of orientation towards the goal and rapid re-
versibility of actions. The interfaces created this way turn
out to be more efficient and enjoyable to use, and they can
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offer creative interaction with digital media that would oth-
erwise not be possible.

1.1 Structure

In the following section, 2.1 “Background and Related
Work”, we will first describe in more detail the idea of
media as dual representations over syntactic and semantic
spaces and give a brief overview over the concepts and ad-
vantages of direct manipulation techniques. Then, we will
argue how most existing navigation techniques only allow
accessing the medium via a few select dominant domains
and propose how we imagine navigation in digital media
to be defined over non-dominant, typically semantic and
content-defined domains while respecting the principles of
direct manipulation in the associated interfaces. This will
lead to a theory and generative model of such navigation
principles, which we will introduce in chapter 2 “Theory”.

In the four main chapters, we report on four medium to
large research projects that were carried out to each analyze
a different aspect of the theory and model in the context of
a different type of medium:

• Chapter 3 “Time-based Media: Orchestral Music”
PERSONAL ORCHESTRA is a conducting simulatorPERSONAL

ORCHESTRA allows
semantic navigation

in music through
conducting.

where the user steps into the role of the conductor
and can control an audio/video recording of a real
orchestra by performing conducting gestures with an
infrared baton. Although the act of conducting is a
narrowly focussed and specialized case of media nav-
igation, it is almost impossible to perform with stan-
dard audio or video navigation techniques. As such,
PERSONAL ORCHESTRA is a good introductory ex-
ample to show how a conceptually subtle change in
navigation can lead to dramatic changes in the inter-
action and can require substantial technological ad-
vancement for its implementation. The latter point is
illustrated through the PHAVORIT time-stretching al-
gorithm.
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• Chapter 4 “Time-based Media: Video Scenes”
The DRAGON video player enables in-scene naviga- DRAGON allows

semantic navigation
in video by direct
manipulation of the
content.

tion by interacting with the objects in the video via
direct manipulation. Thus, the navigation paradigm
shifts from controlling time as an intermediate do-
main to directly controlling the constellation of objects
in the video scene by dragging them along their mo-
tion trajectories. DRAGON specifically illustrates how
mappings between the conventional dominant nav-
igation domains and the content-defined subspaces
can be established and how direct manipulation tech-
niques can be applied even in mixed-domain, e.g.,
spatio-temporal, navigation contexts.

• Chapter 5 “Hybrid Media: Presentation Visuals”
Presentation visuals are commonly created in the form FLY promotes a novel

format for
presentation visuals
to enable semantic
navigation.

of slide decks. These media are exemplary in how
the transfer from the analog to the digital represen-
tation has left the navigation possibilities limited to
a small subset of what could—and should—be possi-
ble with digital media. FLY is an alternative approach
for navigating visual supporting material for presen-
tations that uses direct manipulation and zoomable
UI approaches to leverage rapid exploration and spa-
tial memory. The research around FLY is focussed
on the evaluation aspect of navigation interfaces and
includes studies with different users—authors and
audiences—, different tasks—creation of presentation
visuals and learning from presentations—, and the
changes in presentation strategies that emerge from
the new navigation of the medium.

• Chapter 6 “Non-time-based Media: Source Code”
Source code is a digital medium in which efficient and STACKSPLORER and

BLAZE facilitate call
graph-based
semantic navigation
in source code.

easy navigation—or lack thereof—can have serious
economical impact. Our STACKSPLORER and BLAZE
plug-ins for the popular Xcode IDE offer quick and
direct navigation along the edges of the call graph
for C and Objective-C source code. Relaxing the con-
straints for true direct manipulation interfaces while
still keeping their core ideas allowed us to create a
navigation tool that compares favorably to established
call graph navigation methods, like call hierarchy tree
views. In the STACKSPLORER project we emphasize
the need to analyze existing task structures and work-
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flows of people using the medium to learn about their
conceptual models and goal subspaces.

In the remainder of the thesis we give a summary of all four
projects and conclude by reviewing our theory and gener-
ative model for navigation in digital media in the context
of these examples. We also draw parallels to some emerg-
ing commercial products and design concepts before clos-
ing with a brief outlook on possible future work in this area.

1.2 Scope

Before we can discuss how to change navigation in digital
media, we first have to ground our discussion on a couple of
definitions. In particular, we need to specify what is meant
by digital media (and what is not) and how these are built
on a syntactic and semantic level to show how most navi-
gation techniques offer access to the contents of a medium
only through the easy-to-implement but difficult-to-operate
syntactic domains. We also briefly revisit a definition of di-
rect manipulation to be able to see how this interaction con-
cept can be made a core part of our navigation techniques.

1.2.1 Definitions

Finding existing definitions for digital media—ideally, sci-There is no common
definition for ‘digital

media’.
entifically dependable ones—is more difficult than one
might think: Most commercial bodies that claim to deal
with digital media (e.g., the Digital Media Conference, the
Digital Media Association, or the Digital Media Alliance
Florida) do not offer a definition at all, and even theoret-
ical [McLuhan, 1964], technical [Feldman, 1997], or scien-
tific works [Buckingham, 2006] either take digital media as
a given or define it in terms of hardware or transmission
formats that act as containers for media content.

For the discussion to follow, we need a definition of the term‘Digital media’ should
capture three basic

properties.
digital media that captures a number of core properties and
requirements:
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• Firstly, and most intuitively, digital media should re-
late to computers or other digital devices; it is impor-
tant to distinguish them from traditional analog me-
dia such as a printed newspaper or physical projector
slides.

• Another vital point is that digital media are vessels
that carry content and that the kind of medium is de-
fined in terms of the structure of that content. This sets
our notion of digital media apart from the conception
of digital media as physical carriers of data such as
DVD-ROMs or hard disks.

• Also, we require digital media to be agnostic of any
form of storage strategy, storage location, source en-
coding, or channel encoding of the content they carry,
whereas content is only what is meaningful for hu-
mans. The medium thus constitutes itself as an appro-
priate human-readable representation of such content
together with a context in which the content is meant
to be used and a conceptual model of this context and
usage.

To exemplify: Two videos of soccer games, one a WebM
served through YouTube2 and one on a Blu-ray Disc en-
coded as H.264, are still both the same kind of digital
medium. Conversely, a photo of the last summer trip and
a map of Barcelona, both stored as JPEGs on a website, are
different types of media.

With these requirements in mind, we formulate the follow-
ing definition of digital media:

DIGITAL MEDIA:
Information stored in a computer system, represented in
a form that can be read and manipulated by humans for
a specific use

Definition:
Digital Media

Examples of digital media that fit both this definition and
our intended discussion are: text, images, geographical
maps, websites, videos, audio clips, typeset documents, or
presentation visuals, but also more structured media such

2http://www.youtube.com

http://www.youtube.com


8 1 Introduction

as spreadsheets, source code, or listings. While the defini-
tion could be extended to also include collections of digi-
tal media items—and a large body of research is directed
at supporting browsing of such collections—this is not the
focus of our work. As such, most of our experiments and
observations do not directly apply to the navigation of me-
dia collections.

1.2.2 Structures of Digital Media

In order to understand how navigation in digital mediaCurrent
representations of

digital media can be
modeled as vector

spaces.

commonly works, we propose to play fast and loose with
mathematical rigor for a moment and imagine an instance
of digital media—say, a video—as a subset of a multi-
dimensional vector space. For the technically inclined, the
dimensions of this space come to mind immediately: Since
a video can be represented as a stack of images shown
in some temporal succession, it can surely be fully repre-
sented as a discrete three-dimensional time-space volume
with added dimensions for pixel colors. Also, inside the
computer, videos are actually represented in a very similar
way; looking up a presentation time or frame number yields
a pixel buffer that can be rendered to the screen. Under-
standing any video as a subset of such a time-space volume
thus makes sense technically, it is mathematically sound
and consistent, and it generalizes to every type of video,
regardless of content.

What is important at this point, is to realize that while the
content of a video can be described in terms of the axes of
this vector space, very few people would actually do so;
for most instances of digital media, we would rather de-We talk and think

about media in terms
of our conceptual

models of the
content.

scribe their contents in terms of the conceptual models that
we build based on the real world concepts that the contents
represent. For a movie, we think in terms of characters, the
plot, maybe geographic locations (Figure 1.2); for a single
scene in the movie we might consider dialogues, the inter-
play between objects and persons in the scene, or how at-
mosphere and tension are built up. Regarding the content
only in terms of frame numbers, pixel locations, and color
values just does not fit well with our extensive human ca-
pabilities to interpret and describe the contents of digital
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Figure 1.2: An alternative representation of movie timelines. Instead of relying
on syntactic temporal measures, these are based on the actual content. (Image
courtesy of xkcd)

media, unless, of course, one is concerned with describing
video encoding or rendering.

Theoretically, however, all these rather non-technical prop- The content of a
medium is contained
but does not have a
concise
representation in this
space.

erties of the content of a digital medium are somehow still
located inside that mathematical vector space representa-
tion of that medium because that representation completely
defines it. They just are not aligned with the axes of the
space and may be incompatible with the sets over which
these axes are defined. The location of the ball in a soc-
cer match, for example, resembles a discontinuous set of
snake-like sub-volumes in the time-space volume of a video
that shows the match (Figure 1.3). Similarly, in animation
movies, the atmosphere is often partially conveyed by us-
ing a certain color palette for certain scenes, which results
in locally connected color ‘blobs’ when plotting the color
space of such a movie over its time 1.4.

To better distinguish between these two concepts of repre- We differentiate
between the
semantic structure
and the syntactic
structure of digital
media.

senting the content of digital media, we will call the former,
technical one the syntactic structure of a medium and the one
that is built upon a conceptual model—which usually de-
pends on people’s tasks and goals as we will see later—the
semantic structure. This distinction as well as these desig-
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Figure 1.3: Video volume of a soccer match. The position of the ball spans a
non-continuous subspace (orange) inside the volume. The discontinuity occurs
at the cut between different camera shots (blue arrows).

Figure 1.4: Color scripts, like this one from Pixar’s The Incredibles, define the
mood and atmosphere as conveyed by colors over the length of a movie.
Source: [Amidi, 2011]
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nations are closely related to similar concepts in existing
work on user interface models [Foley et al., 1997; Moran,
1981], direct manipulation interfaces, in particular, Shnei-
derman’s syntactic/semantic cognitive model [1976; 1977;
1982], the concept of semantic and articulatory distances
in interface languages by Hutchins, Hollan, and Norman
[1985], and Lee’s [2007] definition of syntactic and semantic
time in time-based media; a more detailed description and
comparison will be presented in chapter 2 “Theory”.

1.2.3 Navigation in Digital Media

With these different ways of understanding the structure of Current navigation
controls are tied to
the syntactic
structure.

the contents of digital media, we can now look at the estab-
lished navigation techniques and interfaces for digital me-
dia. Figures 1.5–1.8 show some current standard navigation
interfaces encountered on the OS X platform for common
types of digital media. One thing that is immediately ap-
parent is that most of these interfaces mediate the access to
the contents of the medium through its syntactic structure.

This, of course, has many advantages: such navigation tech- Controlling the
syntactic structure is
compatible with a
wide range of media
types.

niques are universally applicable for whole classes of digital
media that can be represented in the same syntactic spaces,
and they can be easily implemented because they are often
compatible with the storage, encoding, and memory struc-
tures inside the computer. On the other hand—and this al-
ready alludes to the central claim of this thesis—for many
navigation tasks, moving only along the ‘axes’ of the syn-
tactic structure can make navigating digital media unneces-
sarily difficult.

If the semantic structure of the medium, which is induced Users have to
re-formulate their
semantic goals in
terms of the syntactic
structure of the
medium before they
can start navigating.

by the user’s conceptual model, is not aligned with its syn-
tactic structure, any formulation of a navigation goal has to
be first mapped into syntactic space where the actual nav-
igation can be carried out. It is easy to see that this map-
ping alone is non-trivial and may in many cases even be
impossible to determine a priori! To give a simple example,
consider the task of navigating to this very example in an
eBook version of this thesis: Even with the knowledge that
it is an example that is meant to show how difficult it can
be to map a semantically formulated navigation goal into
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Figure 1.5: QuickTime X interface for navigating video or
audio.

Figure 1.6: iTunes interface for navigating audio.

a location in syntactic space, the task will not be straight-
forward. We might consult the table of contents and the
index or refer to a full text search for a query phrase pos-
sibly containing some subset of the words ‘example’, ‘se-
mantic’, ‘syntactic’, ‘goal’, and ‘mapping’. Other than that,
we are pretty much out of options barring a linear naviga-
tion through the medium, constantly checking if we have
reached our goal. In none of these cases, we have con-
structed the mapping of our goal ourselves: We have either
used a pre-made mapping from an intermediary syntactic
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Figure 1.7: Xcode interface for navigating source code.

Figure 1.8: Apple remote control interface for navigating
slide deck presentations.

structure that we hoped to be more closely aligned to the
semantic one and which was kindly provided together with
the medium. This is the case with the table of contents, the
index, and the space of search queries. Or we have reduced
our problem to evaluating the inverse mapping—which is
easier as we do it all the time—over the full range of the
navigable syntactic subspace.

From the example, we can see that representations of the Some media offer
pre-made mappings
of some semantic
goals into the
syntactic structure.

medium that are more closely related to the conceptual
model of the user and that come with a pre-made mapping
to the syntactic structure can help to navigate the medium;
they are even needed unless we want to resort to an exhaus-
tive exploration. Consequently, they are common not only
for books but also for other digital media, for example, as
site maps for websites or scene selection menus for DVD
and Blu-ray movies.
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There are, however, still some limitations with these ap-Such indexes can
only support a finite
number of semantic

goals but not the
whole possible

space.

proaches. In order to remain limited in size, these ‘in-
dex’ representations only offer access to the contents of the
medium at very sparsely sampled locations. This means, in
particular, that even if these representations are compatible
with the conceptual model, they cannot span the full seman-
tic space but are only disconnected ‘islands’. Thus, if the
navigation goal cannot be directly associated with any entry
in the intermediary structure, it does not help. Ideally, we
would need a navigation technique that allows the user to
move through the semantic structure in a meaningful goal-
oriented manner, with a sense of direction and distance to-
wards the goal, and with the ability to correct wrong navi-
gation actions on-the-fly. We will see in the next chapter that
these requirements are very close to the properties of direct
manipulation interfaces; most of the current direct manipu-
lation navigation interfaces, however, seem to be designed
in a way that assumes the goal to be expressed through the
syntactic structure.

Before we can formulate these observations and ideas into a
formal model for navigation interfaces, we will first sum-
marize a number of established interface and interaction
theories that will provide the framework for our own work.
These theories supply a clearer definition and a more thor-
ough explanation of the distinction between semantic and
syntactic parts of interfaces and of advantageous ways to
structure the interaction in a similar way.
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Chapter 2

Theory

Over the course of the lifetime of HCI as a science, a num-
ber of theories and models of how to design and structure
interfaces have emerged. These frameworks provide valu-
able guidance and a common vocabulary to classify and dis-
cuss interfaces and interaction techniques. In this chapter,
we therefore briefly recap a selection of existing theories in
the context of which we can then formulate our model for
navigation in digital media.

2.1 Background and Related Work

Among the established theoretical models and frameworks Helpful theories
include interface
structure models and
interaction modality
types.

in HCI, there are two basic ones that are especially helpful to
discuss higher level concepts, like, for example, direct manip-
ulation, that we need for our navigation model: The first is
the idea to formally represent the interface of any interactive
system as a stack of conceptually independent layers. The
second is the distinction between the two primary modal-
ities of how one can interact with such a system, which is
either by means of a form of conversation with the system
or by manipulating a model-world representation of some
problem space. These two approaches at classifying and de-
scribing interactive systems incidentally also represent the
two main viewpoints on the field of HCI—from the com-
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Figure 2.1: Open System Interconnection (OSI) layer model. Responsibilities are
divided in a way so that each layer serves the layer above and is served by the
layer below. The layers gradually change from being concerned with concrete,
physical aspects at the bottom to abstract, conceptual aspects at the top.

puter science side, describing the structure of the artifact,
and from the side of psychology, describing the nature of
the human activity.

2.1.1 Interface Layer Models

In computer science, one recurring approach for modelingLayer models are a
common structuring

approach throughout
computer science.

complex systems is to stratify the system into conceptu-
ally separate components. Ideally, these components build
upon each other but can be independently described and
analyzed, represent each a part of the system under a differ-
ent level of abstraction, and can be reasoned about in their
own contexts of formalization. Such models can be found
in software engineering [Gosling et al., 1989] or in commu-
nication networks, with the Open Systems Interconnection
(OSI) layer model [Zimmermann, 1980] (Figure 2.1) being
perhaps the most well-known and prominent example.

Layer models for user interfaces of interactive systems have
been proposed as well over the last decades; for the dis-
cussion at hand, it is helpful to introduce those by Foley



2.1 Background and Related Work 17

Physical

Communication

Conceptual

Lexical

Syntactic

Semantic

Conceptual

C
on
te
nt

Fo
rm Lexical

Syntactic

Semantic

Conceptual

Pragmatic
Spatial

Interaction

Task

Device

Semantic

Syntactic

Figure 2.2: Three different layer models representing the interface as a means of
communication between the user and the computer. From left to right they were
proposed by Foley et al. [1997], Buxton [1983], and Moran [1981].

et al. [1997] (Figure 2.2, left) and Moran [1981] (Figure 2.2,
right).

In their standard text book on computer graphics, Foley et Foley et al. propose a
four layer model for
user interfaces.

al. [1997] describe a layer model dividing the interface into
its conceptual, semantic, syntactic, and lexical levels. The
interface in their model consists of two languages: the in-
put language—expressed in the manipulation of input de-
vices or other modalities of issuing commands—in which
the user communicates with the computer, and the out-
put language—expressed in visual shapes, text, or sound—
in which the computer communicates with the user. Lan-
guages generally consist of a set of meanings, a set of forms,
and a mapping that connects the two [Fillmore, 2003]. Inter-
face languages being no exception, the layer model of Foley
et al. builds on that separation—while the conceptual and
semantic layers of an interface constitute the meaning or con-
tent of the communication between user and computer, the
syntactic and lexical layers capture the way of conveying that
meaning:

1. The conceptual layer captures the basic capabilities of The users’ mental
model is captured by
the conceptual layer.

the underlying application. This includes what kinds
of objects are used to represent the content, how these
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Figure 2.3: Interface of the QuickTime 7 media player.

can be operated on, their relationships, and which
tasks can be accomplished. It thus forms what is
sometimes called the ‘user model’ or ‘mental model’
of the system [Norman, 1988]. For a simple audio
player application like the one in Figure 2.3, for exam-
ple, the conceptual layer would include that pieces of
audio can be loaded into the player, that one piece can
be played back at a time, that users can fast forward
and rewind through the current piece, and maybe that
there is a way to navigate to a certain point in the
piece.

Shneiderman and Plaisant [2010] state that ‘decisionsThe conceptual layer
affects all lower

layers of an interface.
about mental models affect each of the lower levels’
of an interface. This is an important point: Since the
conceptual layer of the audio player does not include
the capability for, say, adjusting the tempo of the play-
back or adding musical expression by controlling the
micro-timing of a classical piece of music, the inter-
face will provide no means to facilitate these tasks. In
chapter 3 “Time-based Media: Orchestral Music” we
will see an audio player interface with a conceptual
layer that deals with exactly these capabilities.

The conceptual layer of an interface is often basedOften, the conceptual
layer is modeled after

that of a known
non-digital tool,

limiting the interface.

on a mental model of non-digital tools traditionally
used for the same or closely related tasks, with which
the user is familiar. Such interface metaphors are very
common—the interface of most operating systems has
been following the desktop metaphor for decades now—
and can help the interface designer to communicate
the mental model of the application to the user. There
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is, however, also the danger of users interpreting the
metaphor more literally than intended or of limiting
the theoretical capabilities of applications to the tech-
nical capabilities of the tools they imitate [Halasz and
Moran, 1982]. The latter point is especially true for
many media navigation interfaces; the audio player
example above limits the use of the application to
whatever was already possible with a tape recorder in
the 30s from which the interface metaphor was clearly
derived (cf. Figure 1.1). We will encounter this specific
problem again in chapter 5 “Hybrid Media: Presenta-
tion Visuals”.

2. The semantic layer contains the functional descriptions The functional
description of each
interface element is
part of the semantic

layer.

of the entities in the conceptual layer. It thus attaches
meaning to every expression in the language of the in-
terface and specifies the functional requirements, con-
text, and results of each possible action. In our au-
dio player, for example, users can play back a piece
of audio by invoking a ‘play’ command or by revok-
ing a ‘pause’ command; both require a piece of audio
to be loaded, the latter is only possible if a previous
play action has been paused at some position in the
timeline, and it is expected to start playing again from
that very position. The conceptual layer together with
the semantic layer comprise what we described above
as meaning and content of the communication between
user and computer.

3. The syntactic layer defines the sequencing rules for The grammar of
interaction is defined
on the syntactic layer.

the lexical atoms of the interface language. This con-
nects the temporal order and spatial layout of input
and output primitives to their corresponding func-
tions in the application. The command to move the
playhead of the audio player to the beginning of the
current piece might be constituted by the sequence of
‘move mouse pointer over the rewind button, click,
and quickly click again’. On the output side this could
be responded with by ‘briefly highlight the button,
move the graphical representation of the playhead to
the leftmost position on the timeline, and stop the
sound’.

The syntax of any language is usually a hierarchical
construct, and—on a larger scope—interfaces are usu-
ally hierarchies of languages. Highlighting a button
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to indicate activation is a syntactic concept in the lan-
guage that constitutes the interface of an application.
For a language that expresses only the button as an in-Depending on the

scope of analysis, the
boundary between

semantic and
syntactic layer is

fluid.

terface element, this may rather belong to the seman-
tic layer as the functional description of what a button
does to convey the meaning of ‘activation’. For that
language, the spatial arrangement of lines and sur-
faces that form the graphical shape of that button is
a syntactic concept. Foley et al. offer a definition that
allows that kind of dependence on scope and context:
The syntax is the temporal and spatial sequencing of
such units of meaning that ‘cannot be further decom-
posed without loss of meaning’ [Foley et al., 1997].

4. The lexical layer finally deals with how these units ofThe actual lexemes
of the interface

language reside on
the lexical layer.

meaning are precisely formed. On the input side, this
may include how the available input devices have to
be manipulated to produce location, activation, or text
input. On the output side, these are graphical, textual,
or aural primitives from which the semantic units of
meaning are assembled. The syntactic and lexical lay-
ers represent the form of the communication between
user and computer.

There exists a number of other user interface layer models
which are either very similar or extensions of this model:

Buxton [1983], for example, argues for a more differentiatedBuxton’s layer model
is similar but with

more emphasis on
input devices.

treatment of the lexical layer which mixes up the construc-
tion of units of meaning with their spatial embedding into
the context on the output side and the physical means and
gestures to do so on the input side. He proposes refactoring
that layer into two distinct components, one dealing with
the lexical issues, such as ‘the ordering of lexemes and the
nature of the alphabet’, and the other dealing with the is-
sues of pragmatics, such as ‘gestures, space, and devices’
(Figure 2.2, middle). Within this extended framework it be-
comes possible to extend the discussion about an interface
to the subtle differences in the physical operation of input
devices or their spatial arrangement in the work space, both
of which undoubtedly have a strong influence on how the
user perceives and uses a system.
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Moran [1981] proposes a stack model with three compo- The model by Moran
differs mostly in
terms of what
constitutes the users’
mental model.

nents, dividing the interface into the conceptual, communi-
cation, and physical components, each being built up by two
sublevels (Figure 2.2, right). In his nomenclature, the con-
ceptual entities of the system make up the semantic level,
which—together with the task level describing the user’s
task and its context—forms the conceptual component. The
communication component consists of the syntactic and the
interaction levels. The syntactic level defines the structure
of the language while the interaction level deals with the
mappings between the physical interactions of the user and
the logical interactions in the user interface. Finally, the
physical component is divided into the spatial level, which
deals with the layout of information or control elements on
the output side, and the device level, which is responsible
for input and output devices and their physical properties.

While the components and levels of Moran’s model can be
easily mapped to the four layer model by Foley et al., they
have different views on what constitutes the user’s mental
model of the system: In the four layer model, the mental
model is fully represented by the conceptual layer and thus
is believed to be formed by the objects of interest, their
properties, and their relations alone, and is independent of
the concrete functionality the system offers and its physical
bindings. In the three component model, the mental model
is the combined effect of the whole interface.

2.1.2 Activity and Interaction Models

A well-known and often quoted interaction model, Nor- The seven stages of

action describe the
steps during the
interaction with an
interface.

man’s seven stages of action [1988] takes a slightly different
approach. It focuses rather on the different layers of the pro-
cess of interacting with a system than on the interface itself.
Norman divides the cyclic pattern of action and perception
that users employ to reach a goal into seven stages; three of
them describe the execution of an action, three the evalua-
tion of its outcome, and one the goal itself (Figure 2.4):

1. Forming the goal
According to Norman, each interaction with a system
starts off by the user forming an abstract goal. This
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Figure 2.4: The Seven Stages of Action are an interaction model that is helpful for
discussing the individual steps of any communication between user and com-
puter and for categorizing breakdowns in such interactions.

goal will likely be expressed in terms of the user’s
mental model of the task and context; as such, it
does not necessarily correspond to any specific in-
terface command the system offers. In Foley’s four
layer model, this stage would thus correspond to the
conceptual layer of the interface. To stick with the
above-mentioned example of the audio player soft-
ware, a goal would be to navigate to the start of
the second movement of Beethoven’s Grande Sonate
Pathétique and listen to the wonderful adagio cantabile.

2. Forming the intention
This stage represents coming up with a plan to reach
the goal and includes assessing the functional require-
ments for each step of the plan as well as formulating
the sequences of steps of how to fulfill them. All steps
devised at this stage can be mapped to—possibly
complex—commands in the interface but may still be
formulated in abstract terms. Foley’s semantic layer
roughly captures the interface entities relevant for this
stage. In our example, the intention could be to load
the audio file containing the sonata, then to look up
the starting time of the second movement in a booklet,
to drag the playhead on the timeline slider to the posi-
tion representing that time, and to hit the play button.
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3. Specifying the action sequence
After the intention is formed, the steps of the plan
have to be reconstructed by sequences of those inter-
face commands the system offers. This stage is the
bridge between the semantic world of the ‘meaning’
of the action and the syntactic world of its ‘form’ as a
string of elementary inputs to a system. As such, the
stage acts on Foley’s syntactic layer and would result
in a defined sequence of click locations and precisely
specified drag operations in the audio player example.

4. Executing the action sequence
Finally, the action sequence is physically executed and
thus imposes some change on the world (or the sys-
tem the user is interacting with), to which the world
then reacts by altering its observable state in some
way. This stage corresponds to the lexical layer in the
four layer model, because every executed atomic ac-
tion can be expressed as a lexical token or lexeme in
the language that constitutes the interface

5. Perceiving the state of the world
The change in the state of the world is then observed
by the user, in the first instance only as changes in Fo-
ley’s lexical layer. These constitute what is normally
called feedback, and it can be conveyed through visual,
auditory, or haptic channels. It is important to keep
in mind that humans will only associate the feedback
given by a system with an executed action if the re-
sponse time of the system to generate that feedback is
very small1, usually in the order of 100ms.

6. Interpreting that perception
The type and the spatial and temporal order of the
individual lexical tokens that make up the perceived
feedback are used to derive a semantic meaning in this
stage. In this process, the users form an assumption
over the state of the system in terms of their mental
model as opposed to the perceived state of the sys-
tem, which is only syntactically defined. For the audio
player, for example, the observation of a playhead that
moves continuously on the timeline without manipu-
lation by the user may be interpreted as the system

1Most of the results regarding this kind of perceived causality are based
upon the early experiments of Michotte [1963], a detailed overview can be
found in [Scholl and Tremoulet, 2000].
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being in the playback state. In this case, of course, the
auditory feedback would be much more important.

7. Evaluate the outcome with respect to the original goal
The assumed state of the system in the user’s mental
model is compared to the desired state described in
the initial goal. If the two are congruent, the goal has
been reached, and the action is completed; if not, the
goal may be adjusted or not, and a new cycle of the
seven stages begins.

The most important difference between this model and theThe seven stages of
action can explain

the different phases
present in certain

interactions.

ones described above is that it gives us a framework to de-
scribe the interaction with a system during both open-loop
and closed-loop tasks. Also, we can use this model recur-
sively for hierarchical goal structures: For example, the po-
sitioning of the playhead on the timeline at a certain time
as described in the example above can be thought of as a
subgoal. We can imagine that during that dragging opera-
tion, while the user is homing in on the target position, the
same stages are traversed in rapid cycles on a lower cogni-
tive level, always checking if the target position has been
reached and coming up with new intentions how to per-
form the next submovement. Describing such closed-loop
tasks in terms of recursive planning, execution, and evalu-
ation is compatible with lower level models of user percep-
tion or action, such as Fitts’s Law [Fitts, 1954] or the human
processor model [Card et al., 1986].

Another advantage of the seven stages of action model isThe model gives a
classification scheme

for interaction
breakdowns.

that it gives us a terminology to classify interaction break-
downs. According to their location in the seven stages,
these are commonly called gulfs of execution if they occur
somewhere between the user’s goal and the physical ac-
tion that affects the world, or gulfs of evaluation if they occur
somewhere on the feedback and evaluation branch of the
model (Figure 2.5).

Of course, multiple gulfs are possible on each of the twoGulfs of interaction

can happen on both
sides of the model.

sides of the model: On the execution side, it may be dif-
ficult to formulate a plan to reach the goal because the se-
mantic functionality represented by the system is a poor fit
for the user’s mental model, it may be difficult to map an in-
tention to a sequence of actions in the interface because the
available syntactic actions do not map well to the semantic
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Figure 2.5: Depending on the side of the interaction cycle on which they occur,
the causes for interaction breakdowns can be classified as either Gulfs of Execution
or Gulfs of Evaluation.

steps the user has to undertake, or it may be difficult to ex-
ecute an action sequence because of physical properties of
the interface, like small buttons or timeouts. On the evalua-
tion side, a corresponding set of gulfs can arise, again being
caused by the respective differences between the physical,
syntactic, and semantic representations of the system and
the user’s expectations and abilities. Hutchins et al. [1985]
provide a very helpful formalism regarding these semantic
and syntactic gulfs of execution and evaluation in the con-
text of direct manipulation, which will be a central building
block for our model of media navigation interfaces (cf. 2.1.4
“A Theoretical Framework of Direct Manipulation” (p. 33)).

When looking at models to classify the interaction itself, in- Users either interact
with the computer as
a tool to manipulate a
representation of a
world or as an agent
in a conversation.

dependent of the layer structure of the interface, we can
see that there are two fundamentally different ways of how
users can interact with a computer or other interactive sys-
tems. The distinction comes from the two different ways to
understand the computer as an instrument to aid the users
in their task:
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One is to regard it as a passive tool that provides the facil-
ities to create, shape, and modify digital representations of
real-world concepts, data, or entities. These representations
exist in the context of a virtual world, and the user can di-
rectly change their relevant properties through appropriate
extensions of his physical capabilities into this world and
without any intermediate agency.

The other is to see the computer as a (pro-)active assistant
that can perform certain tasks on behalf of the users at their
command. This form of interaction resembles a conversa-
tion where one party expresses their intent in a way that
the other can understand, and the other acts upon it and
presents a result in response. Consequently, these two con-
cepts are usually referred to as model-world and conversation-
based interaction.

Historically, interaction with the first computer interfacesThe dominance
between the two

concepts has shifted
from

conversation-based
to model-world over

the years.

followed the conversation metaphor; the only way to inter-
act with a computer was by writing programs, feed them to
the computer (first in the form of punch cards, later directly
at terminals), and receive—after some waiting time—a re-
sponse. This kind of conversation was, of course, rather un-
satisfying with its long response times and essentially con-
text and state free character. Later, conversation interfaces
evolved to resemble the character of human conversation
more closely: The vocabulary changed to first mnemonic
and later natural language commands or consisted of pre-
defined commands that only had to be recognized and se-
lected instead of remembered and produced. The state-
ful nature of human conversation with its ability of self-
reference was adopted, so that dialogs could request addi-
tional information regarding the current established context
of the conversation. And the rate of turn-taking improved
to the point where it could accommodate human conversa-
tional habits (cf. [Miller, 1968] and [Card et al., 1991]).

Interfaces following the model-world metaphor were estab-
lished later, when the input and output capabilities of com-
puter hardware allowed a consistent representation of the
virtual world containing the objects or data of interest—
usually through computer graphics—and manipulation of
these objects at interactive rates—usually through posi-
tional locator devices. Sutherland’s Sketchpad [1963] is a
prominent early system adopting a model-world approach.
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This ‘new’ paradigm became vastly successful in a class
of interfaces that were first characterized by Shneiderman
[1982]. He coined the term direct manipulation for such
model-world interfaces that fulfilled certain criteria of visi-
bility, feedback rate, and choice of conceptual model.

There was an ongoing debate lasting the better part of Hybrid approaches
between the two
paradigms exist.

the 1990s about the strengths and limitations of the two
interface metaphors and about which of the two should
be followed in terms of interface design and research. A
good example of this debate are the panel discussions be-
tween Ben Shneiderman and Pattie Maes at IUI’97 and
CHI’97, excerpts of which have been published in the De-
cember issue of the Interactions magazine [Shneiderman
and Maes, 1997]. Today, both interface paradigms coexist
and have merged ‘into multimodal interfaces, virtual envi-
ronments, and ambient intelligence’ [Salvendy, 2005] appli-
cations with many hybrid forms between the two [Frohlich,
1993; Kwon et al., 2011].

2.1.3 Other Models

In addition to the four models presented, there exists a
number of other theoretical frameworks to classify and un-
derstand human-computer interaction and a plethora of
‘golden rules’ or other design guidelines for the creation
of good user interfaces. The ones introduced in this chap-
ter, however, are especially important for our work, because
they provide a clear boundary between the semantic parts
of the interface that are concerned with the conceptual rep-
resentation of the problem and task at hand and the syntac-
tic parts of the interface that give a form to these represen-
tations. This will later enable us to extend this stratification
from the interface to the data that is accessed and manip-
ulated through the interface—in our case, digital media—
and to show how this allows us to construct navigation in-
terfaces that can be more efficient and easy to use. The pre-
sented models also allow us to discuss in depth the ideas
behind and properties of direct manipulation, one of the most
important interaction concepts in HCI [Frohlich, 1993], a
cornerstone of many current user interfaces, and one fun-
damental aspect of our own interface model.
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2.1.4 Direct Manipulation

After examining a number of successful user interfaces thatShneiderman
identified the concept
of direct manipulation

as the common
characteristic of a

number of
well-designed user

interfaces.

were reported to ‘generate a glowing enthusiasm among
users’, Ben Shneiderman published a paper [1982], in which
he analyzed the common characteristics of these interfaces.
He proposes a design model based on these observations,
centered around three concepts:

• Continuous representation of the object of interest.

• Physical actions or labeled button presses instead of
complex syntax.

• Rapid incremental reversible operations whose im-
pact on the object of interest is immediately visible.

The idea is that such direct manipulation interfaces allow theDirect manipulation
interfaces directly

represent the objects
of interest from the

users’ mental
models.

users to directly act on virtual reifications of the objects rel-
evant to their tasks, and that these objects should be com-
patible with the users’ mental model. In this way, users
have a clear sense of context—in the sense of their own se-
mantic understanding of the task and data—regarding the
state of the system and regarding any action they can per-
form. Through the immediate display of the results of any
action a user performs, the relation to its context remains
intact, and it becomes immediately visible if that action
furthers the users’ goals; if not, each action can easily be
revoked—usually by the physically reversed action, which
also is an appropriate and natural way outside of computer
interfaces.

In his paper, Shneiderman [1982] offers a list of potential
advantages of interfaces with these properties:

• Novices can learn basic functionality quickly, usually
through a demonstration by a more experienced user.

• Experts can work extremely rapidly to carry out a
wide range of tasks, even defining new functions and
features.

• Knowledgeable intermittent users can retain opera-
tional concepts.
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• Error messages are rarely needed.

• Users can see immediately if their actions are further-
ing their goals, and if not, they can simply change the
direction of their activity.

• Users have reduced anxiety because the system is
comprehensible and because actions are so easily re-
versible.

Division of Semantic and Syntactic Layers

Shneiderman relates this approach of supporting the users The idea of
supporting tasks on
the semantic level
comes from the area
of programming
languages.

on the semantic level of their tasks to his earlier research on
the structure of programming knowledge and the under-
standing of source code [1977; 1979]. There, he presents ev-
idence that the knowledge of programmers can be divided
into hierarchies of semantic and syntactic layers: The hierar-
chy of semantic layers captures language-independent pro-
gramming concepts, ranging from knowledge about math-
ematical methodology on a high level, e.g., statistical anal-
ysis, to the sequences of logical statements that make up
algorithms to implement such methodology on the lower
levels. The syntactic layers contain language-dependent
knowledge on the syntax of tokens and the grammar of
statements.

Understanding and solving problems always happens at
the upper semantic and conceptual layers and is then prop-
agated down the semantic/syntactic hierarchies—first op-
erationalizing the solution, then solving the functional de-
pendencies of the individual steps, then transforming this
into a sequence of actions before finally performing the ac-
tions and checking the results. This methodology is similar
to that described by Pólya [1957], and it is compatible with
Norman’s seven stages of action.

In the context of direct manipulation, this means that if Interaction becomes
easier when users do
not have to translate
between semantic
and syntactic
representations of
objects and tasks.

the interface can indeed offer a representation of the users’
task or problem directly in the semantic domain and have
them manipulate the objects of interest in ways that directly
translate to semantic concepts, the whole traversal of the se-
mantic/syntactic hierarchy—or the seven stages of action—
becomes much easier: the decomposition of semantic con-
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cepts to syntactic tokens—when thought of as a mathemat-
ical transform—can be ideally the identity mapping. The
same is true for the output of the system, where syntactic
sequencing of the lexical tokens, their interpretation, and
their translation into the semantic domain of the task can
also be simplified. Direct manipulation in this form thus
has the potential of bridging Norman’s gulfs of execution
and evaluation all at the same time; and the closer the map-
ping between the problem domain and its representation in
the interface comes to the identity mapping, the faster a user
can iterate through the seven stages.

Criticism

As already mentioned above, the idea of model world in-
terfaces in general and the concept of direct manipulation
in particular have also been criticized to complicate certain
classes of tasks. Most of these could be solved much betterCriticism about direct

manipulation is
centered around its

lack of meta
representations that

can be referenced
again.

using interfaces following the conversation metaphor. The
central point is that there exists a tradeoff between the di-
rectness of actions including their being accessible on the
higher layers of the task structure and the descriptive power
of the interface language. In abandoning the indirection of
describing tasks and actions through some intermediary rep-
resentation, direct manipulation interfaces do not allow to
refer to these tasks or actions later but only to their results.
This lack of meta-expressiveness causes a number of tasks
to be difficult or tedious when using direct manipulation
and may be the main reason for conversation interfaces or
mixed-mode interfaces to be still dominant in areas like pro-
gramming, data retrieval, or statistics.

The following list of such tasks and other problems with
direct manipulation has been compiled from similar discus-
sions by Hutchins et al. [1985] and Frohlich [1993]:

• Repetitive tasks
Because there is no way to describe a task and then
use the description as an argument to an operation, in
a pure direct manipulation interface there is no way to
perform repetitive tasks short of performing the task
over and over again. Also, direct manipulation inter-
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faces forbid by their very design to employ some in-
termediary agency to perform the task for the user.

• Acting on sets or classes of objects
Closely related to the first point, direct manipulation
interfaces make it difficult to operate on groups of ob-
jects. Although many established interfaces, e.g., vec-
tor drawing programs or word processors, allow to
first make a group selection by subsequently adding
objects and let the user then manipulate all objects in
the group, this method introduces a conceptual am-
biguity: many operations could be performed on the
group itself or on its member objects, and it is often
not clear which will happen. Also, ‘filtering’ a set of
objects to create a group according to certain charac-
teristics requires to have some form of description of
these characteristics, which is difficult in direct ma-
nipulation interfaces.

• Acting on objects that are not visible
One defining concept of direct manipulation is that
users act directly on their objects of interest, mostly
through a visual representation of these objects. If the
model world exceeds a scale that can be displayed as
a whole, these objects may not be visible on the screen
at a time, which first requires a navigation to make
the object visible. One problem with that is that if the
navigation is a direct manipulation operation as well,
this becomes difficult too because the user cannot see
whether ‘their actions further their goals’ if the goal
is invisible; in such cases, direct manipulation may
actually open up a gulf of evaluation. Abstract con-
cepts that cannot be easily represented spatially—time
comes to mind—also present a challenge.

• Tasks requiring accuracy
Since every manipulation in the model world is di-
rectly controlled by the users’ physical actions, tasks
that require a certain degree of precision may be less
suited for direct manipulation. Some interfaces em-
ploy mixed mode concepts and try to interpret user
input according to the context to some degree; grid
snapping or smart guides in graphics applications are
widespread examples. The accuracy problem reveals
that not only the user should be able to work in the
semantic context of their mental model but also that
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their input should be processed with the appropri-
ate relative semantic granularity. A theoretical frame-
work dealing with such semantic granularity in audio
interfaces was, for example, proposed by Lee [2007].
Also, we present experimental approaches to auto-
matic adaption of semantic granularity in video nav-
igation in chapter 4.2.3 “Interactive Scoping and Tra-
jectory Filtering”.

• Tasks that refer to other tasks
Another effect of the lack of the possibility of self-
description is that in direct manipulation a task can
neither easily refer to itself nor to other tasks. This is
true both for previous tasks and tasks that should be
performed in the future. In such cases, the only way is
to create explicit representation of actions and tasks as
objects of interest. This, of course, only relocates the
problem to another level as the manipulations of these
task objects themselves are yet again not expressible in
the interface language.

• Performing multiple tasks at the same time
Because in direct manipulation the user is always ‘in
the loop’ and cannot delegate tasks to an agency for
asynchronous execution, the capacity for performing
a number of tasks at the same time is limited by hu-
man physiological (input) and cognitive (control) con-
straints.

• Direct manipulation discourages from providing new ways
of thinking and interacting with a domain
Direct manipulation allows users to manipulate ob-
jects of interest in the context of the problem domain;
this domain has to be familiar to the users in order
to solve the task. Hutchins et al. [1985] argue that di-
rect manipulation therefore might discourage users to
develop new models of understanding of the task do-
main.

• Direct manipulation transfers demands on task domain
knowledge to the user
Similar to the restrictions that apply for performing
multiple tasks, in direct manipulation interfaces users
will usually have to solve the cognitive aspects of the
problem or task themselves. One could say that while
they offer directness and control in performing tasks,
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these interfaces do provide less assistance in under-
standing and solving problems—the demands on do-
main knowledge are transferred to the user.

For the topic of media navigation interfaces, some of these
problems can be mitigated by adding conversation aspects,
thereby effectively creating a mixed mode interface, and
some just do not apply to navigation tasks. We will thus re-
visit the problems described here where such a discussion
is relevant in the context of the individual interfaces.

A Theoretical Framework of Direct Manipulation

Three years after Shneiderman’s original article on direct Hutchins et al. tried
to capture different
aspects of direct
manipulation in a
design space.

manipulation [1982], Hutchins et al. [1985] published a the-
oretical analysis of the interaction technique, trying to give
a ‘cognitive account of the advantages and disadvantages
of direct manipulation’. Their concern was to develop a de-
sign space that could formally capture the feeling of direct-
ness associated with this class of interfaces.

According to Hutchins et al., the two primary factors that The feeling of
directness is
influenced by
engagement and the
semantic and
syntactic distances in
the interface.

influence this feeling are what they call distance and en-
gagement. Distance, which is further divided into semantic
distance and articulatory distance, is a more formal concept
to describe the complexity of the transformations between
the different semantic and syntactic layers, which we have
mentioned earlier. Engagement, on the other hand, is much
less formalized and describes the ‘qualitative feeling that
one is directly manipulating the objects of interest’.

There are two exemplifying questions Hutchins et al. put
forward to illustrate the concept of semantic distance in an
interface language: “Is it possible to say what one wants to
say in this language?” and “Can things be said concisely?”.
Semantic distance is a measure of the answer to these ques-
tions, thus describing the closeness of the interface language
to the conceptual model of the task. This measure gives a
name to one the qualities of direct manipulation interfaces
that Shneiderman [1982] claims was required: the degree of
conceptual compatibility between the interface representa-
tion of the objects of interest and the users’ mental model of
those objects.
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Figure 2.6: The gulfs in the Seven Stages of Action model can also be formulated
in terms of the properties of direct manipulation. Direct manipulation interfaces
with low semantic and syntactic distances and rapid feedback allow fast cyclic
traversal of the stages, making them well-suited for control tasks such as navi-
gation.

At the same time, this idea solidifies our discussion onThe semantic
distance corresponds
to certain gulfs in the

seven stages of
action.

the connection between direct manipulation and Norman’s
seven stages of action; a large semantic distance means that
the gulfs of execution and evaluation are wider or more dif-
ficult to bridge for the user. On the execution side, a small
semantic distance lets intentions be formed more easily be-
cause the interface offers object representations that are di-
rectly expressed in the conceptual language of the user goal;
on the evaluation side, a small semantic distance reduces
the amount of processing the user has to do in order to de-
termine from the system’s output whether the goal has been
reached or not (Figure 2.6).

Systems with large semantic distance can, of course, still beInterfaces with a
small semantic
distance often

depend on the actual
task and thus may

suffer from a loss of
generality.

used effectively, but the users will have to develop compe-
tence and habituation to automate response sequences and
think in the system’s language [Hutchins et al., 1985]. Also,
creating systems with small semantic distance comes at a
cost: Transferring the burden to translate between the se-
mantic language of the user’s conceptual model and the
syntactic language of the system’s internal representations
from the user to the developer of the system makes the im-
plementation of such systems much more difficult (a point
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that we will explicitly pick up in our model for navigation
interfaces). The tailoring of the interface towards a certain
conceptual model obviously incurs a loss of generality—
offering functionality at a lower semantic level could ac-
commodate for a larger number of tasks. And it is impor-
tant to keep in mind that the semantic distance depends
heavily on the task itself. Hutchins et al. illustrate the latter
point through an example of musical instruments, compar-
ing a piano and a violin: If the task is to produce a certain
note on the instrument, the semantic distance of the piano
is much smaller—the concept of a note is perfectly repre-
sented by the keyboard of the piano providing one single
dedicated way for each note to produce it. The violin un-
doubtedly requires more cognitive effort to form the inten-
tion, offering four strings and practically an infinite num-
ber of positions for the fingers to modify the pitch for each
string. If the task, however, is to add expression to a note,
say, by producing a vibrato modulation, the violin possesses
a semantically much more direct embodiment of that con-
cept while the piano cannot really produce the effect at all.

The counterpart of semantic distance, articulatory distance, The syntactic
distance can also be
responsible for some
gulfs in the seven
stages of action.

describes the complexity of the transformation between the
semantic and syntactic representations of the objects and ac-
tions in the interface. A small articulatory distance means
that there exists a direct structural relationship between the
meanings of expressions in the interface language and their
physical forms. In terms of Norman’s seven stages of ac-
tion, this measure corresponds to the widths of the lower
level gulfs of execution and evaluation (Figure 2.6). While
reducing the semantic distance is solely a concern of inter-
face design, Hutchins et al. mention that reducing the syn-
tactic distance also depends on the technological capabili-
ties of the computer and its input and output devices.

Apart from the semantic and articulatory distance, Engagement is more
difficult to measure
and depends on
several factors.

Hutchins et al. [1985] state that engagement is the second
foundation for the feeling of directness in direct manipula-
tion interfaces. While engagement is meant more as a qual-
itative term, they do list a number of requirements for it:
First, semantic and articulatory directness facilitate the feel-
ing of engagement. Second, the interface language of the
system should be designed for inter-referential input and
output; this means that the result of an operation can be
used as an input for the next or another operation. Third,
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the interface should be responsive at all times and must be
unobtrusive in itself.

It has been debated if this feeling of engagement is exclu-Rapport is a parallel
concept to

engagement in
conversation-based

interfaces.

sive to model-world interfaces in general or even to direct
manipulation interfaces in particular, and the lack of a de-
pendable definition of the term does not help the discus-
sion. Frohlich [1993] argues that a closely related concept
can be attributed to certain conversation-based interfaces,
which he calls rapport. From this point of view, both serve
the same role as an interface characteristic of evoking a posi-
tive emotional stance towards the system—be it represented
by a model world or conversational agent.

In conclusion of their analysis, Hutchins et al. [1985] pro-The design space by
Hutchins et al. is
spanned by the

combined semantic

and syntactic

distance and the
classification into

model-world or
conversation type of

the interface.

pose a design space for interfaces based on two axes: The
first covers the different modalities and sorts interfaces into
the model-world and conversation paradigms. The second
is based on a combined measure of their semantic and ar-
ticulatory distances (Figure 2.7). They claim that for users,
the feeling of directness should increase over the diago-
nal, starting from traditional command line interfaces in the
lower left (conversation-based and large semantic and ar-
ticulatory distances) and leading up to direct manipulation
interfaces in the upper right (model-world-based and small
semantic and articulatory distances).

While the design space in this form may offer some valueFor our discussion, it
is helpful to adapt the

design space and
keep the two types of

distance separate.

for the discussion at hand, it does have a number of short-
comings: First, as Frohlich [1993] has pointed out, differ-
entiating between conversation and model-world interfaces
may not be appropriate when trying to attribute directness
to a system or interface; there are many classes of tasks,
like the ones stated above (2.1.4 “Criticism”), where model-
world interfaces fall short and which could be argued to be
solved in a much more direct way using a conversation-
based interface. Second, in combining the two distance
measures into one axis, the design space becomes an un-
necessarily ‘blunt’ instrument when it comes to classifying
interfaces and suggesting improvements. As we will see
later, many common interfaces for media navigation suc-
ceed in minimizing one of the two distances but neglecting
the other entirely. For an informed discussion about such
cases, it thus seems beneficial to keep the two distance con-
cepts separate. In the next section, we will introduce our
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Figure 2.7: The design space by Hutchins et al. categorizes interfaces by their
combined semantic and articulatory distances and their level of engagement.
Conversation-based interfaces with a large combined distance are considered the
least direct; direct manipulation interfaces are considered the most direct. Figure
adapted from: [Hutchins et al., 1985]

own design space for media navigation interfaces, which
builds upon that by Hutchins et al. but addresses some of
its shortcomings and is focused on navigation.

Edge Cases and Exceptions

In front of this background we can now discuss two classes
of interfaces that are often referred to as direct manipulation
but can be argued often not to fulfill all of the requirements
we have identified so far. This discussion is especially inter-
esting in the context of this thesis, because a large majority
of media navigation interfaces fall in either or both of these
classes, and we believe that they fall short in their promise
to provide efficient and direct support—in the sense of di-
rect manipulation—for media navigation tasks. The two
types of interfaces in question are interfaces that are based
on technical metaphors and interfaces that allow continuous
manipulation on the syntactic but not on the semantic layer.
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Direct manipulation is built upon the idea of allowing usersTechnical metaphors
can help in designing

direct manipulation
interfaces but impose
the risk of limiting the

interface.

to manipulate objects of interest that directly correspond
to entities of their mental models of the task. This is
achieved—as Hutchins et al. [1985] have pointed out—by
carefully designing the representations of these objects in
a way that reduces both the semantic and articulatory dis-
tances. Shneiderman himself notes, however, that finding
such a representation that allows for a trivial transforma-
tion between the semantic and syntactic structures is the
difficult part: ‘the trick in creating a DM system is to come
up with an appropriate physical model of reality’ [Shnei-
derman, 1982]. An often adopted approach is to employ
technical metaphors, mimicking the visual appearance and
functionality of physical artifacts from the real world that
could be used to solve a similar task and letting the user
manipulate their virtual counterparts in the model world.
This approach not only runs the risk of limiting the capabil-
ities of the computer to what physical—and sometimes very
old—technologies can provide [Halasz and Moran, 1982;
Ramos and Balakrishnan, 2003; Arment, 2010]; it also lim-
its the users to think about their problems in terms of these
tools—a number of good examples can be found in [Mathis,
2010]—, and, most importantly, it does not necessarily es-
tablish a direct manipulation system in a narrower sense.
On the contrary, these interfaces often sacrifice articulatory
directness to keep up the metaphor (Figure 2.8).

Interfaces that are modeled after technical metaphors onlyTechnical metaphors
are often linked to
traditional physical

tools that support a
task suboptimally.

represent the conceptual layer of the technical implemen-
tation of a tool for the task instead of the conceptual layer
of the task itself (Figure 2.9). The mental model of a task
or problem, however, does not need to include traditional
physical tools that can be used to solve it: Thinking of or-
ganizing one’s contacts does not involve images of leather
bound address books. Thinking about deleting information
is not irrevocably linked to the idea of a paper basket, as it is
commonly found in desktop user interfaces. And thinking
about visually supporting an oral presentation has nothing
to do with a slide transparency. We will come back to this
example in chapter 5 “Hybrid Media: Presentation Visuals”
(p. 185) and show how such technical metaphors can often
precisely counter any advantages that direct manipulation
aims to provide.
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Figure 2.8: The contact list application in Apple’s OS X 10.7 adopts the technical
metaphor of a physical address book. As a result, the interface breaks the visual
and interaction consistency of the platform. It also requires the user to unneces-
sarily re-adopt interaction techniques that are linked to the physical origin of the
metaphor: to change the current group of contacts, the user has to turn the pages
using the red book mark. This widens the articulatory distance compared to
older versions of the application that did not adopt the metaphor and displayed
a group selection list next to the contact list.

The second class of interfaces is similar in that these inter- Applying direct
manipulation to
abstract values does
not reduce the
semantic distance in
an interface.

faces are not representing objects of interest from the users’
mental model on their conceptual layer but usually abstract
objects that have their roots in technical implementations.
In contrast to metaphor-based interfaces, however, these ob-
jects are not skeuomorphisms in the sense that they do not
mimic any physical embodiment of tools but represent syn-
tactic or meta objects. A typical example of such an inter-
face is a slider to control the value of some variable: The
slider may be understood as a direct manipulation interface
for the value as a mathematical concept and, as such, is appro-
priate if the underlying semantic concept is either purely
numeric or the interface is used for a closed-loop control
task only. A volume slider would be a good example for
the latter. If the numeric value of the slider is used to rep-
resent a more complex semantic concept, e.g., the position
in a piece of music, the interface does not help to reduce
the semantic distance. In the four layer model, these inter-
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Figure 2.9: Interfaces that adopt technical metaphors (right path) may require
users to re-formulate their conceptual model of the task and problem in terms of
the represented tool. This may lead to a higher semantic distance than a direct
representation of the original conceptual model in the semantic layer (left path).
At the same time, the possibilities for interface design and choice of interaction
techniques are narrowed down to what fits the metaphor, potentially excluding
designs with a smaller articulatory distance.

faces cannot span the whole layer stack; they only replace
symbolic commands on the syntactic layer with continuous
input methods or, in other words, switch from linguistic in-
put to spatial input (cf. [Foley et al., 1997]) and remain es-
sentially conversation-based but not direct manipulation in-
terfaces (Figure 2.10).

Such interfaces are nevertheless very useful in many situ-These interfaces can
reduce the syntactic

distance, but the
results of actions

may become difficult
to predict.

ations, and they do effectively reduce the articulatory dis-
tance between the intention to quantify an abstract value
and the action of doing so; de-coupling the interface from
the semantic layer in this way, however, comes at a cost:
The range of the value and the granularity of its control
can only be determined if the semantic concept behind the



2.1 Background and Related Work 41

Syntactic Direct Manipulation 
Interface

Goal

Conceptual Model

Lexical Layer

Semantic Layer

Syntactic Layer

Semantic Distance

Articulatory Distance

Conceptual Model of 
abstracted Syntactics

Semantic Layer of 
abstracted Syntactics

Syntactic Layer of 
abstracted Syntactics

Figure 2.10: Interfaces that apply the concept of direct manipulation only to the
syntactic layer (right path) may benefit from a reduced articulatory distance. The
potential of direct manipulation to reduce the semantic distance, however, re-
mains unexploited.

value is available. Also, while higher dimensional seman-
tic concepts may be mathematically mapped to a lower-
dimensional numeric representation, the predictability of
such interfaces can be much worse than what a real di-
rect manipulation interface may be able to offer. Of course,
many common media navigation interfaces are designed
this way—especially those for time-based media where a
slider is used to manipulate the syntactic value of the cur-
rent presentation time. In chapters 3 “Time-based Media:
Orchestral Music” (p. 65) and 4 “Time-based Media: Video
Scenes” (p. 89), we will examine such interfaces and present
alternatives that allow direct manipulation navigation on
the semantic layer.
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2.2 A Model for Digital Media Naviga-
tion Interfaces

Many successful interfaces and interaction techniques can
be described in the terms of the theories above. Mapping
the interface language to one of the layer models or analyz-
ing the interaction using a model like the seven stages of
action usually gives us a very clear idea about which tasks
are supported at which semantic level, which of the gulfs
of execution and evaluation are bridged by the system and
which have to be crossed by the user, and what kind of con-
ceptual model is suitable for interacting with the system.
In this light, it is surprising that out of the group of stan-
dard media navigation interfaces so many convey a feeling
of clumsy and indirect interaction. To analyze why this is
the case and to develop a different way of designing these
interfaces, we propose a new model of media navigation
interfaces that combines parts of the existing theories with
our ideas from the introductory chapter about the internal
structure of the media themselves.

2.2.1 Interface Model and Design Space

For our design space, we adapt the scheme put forward byWe use a simple
three-layer interface

model.
Hutchins et al. [1985] by de-factoring one of its axes and re-
placing the other. A simple three-layer construct similar to
the layer models discussed above serves as the underlying
interface model (Figure 2.11).

Describing the interface as a stack of conceptual, semantic,
and syntactic layers with everything related to the lexical
layer being factored into the syntactic layer is sufficient for
our purposes and allows a more concise discussion; the
lower layers can, however, be split if necessary—for exam-
ple, for the analysis of the effects of different input devices
on media navigation.

In this way, we classify media navigation interfaces by their
semantic distance, syntactic distance, and control granularity;
the resulting space is depicted in Figure 2.12.
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Figure 2.11: We build our interface model for media naviga-
tion on a simple three-layer variation of the model by Foley
et al. [1997].
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Figure 2.12: Our design space for media navigation inter-
faces. In contrast to Hutchins et al. [1985], we distinguish
between semantic and syntactic distance in the interface
and replace the engagement axis with the control granular-
ity.

• semantic distance
Similar to the direct manipulation design space by
Hutchins et al., the semantic distance is the complex-
ity of the transformation from the users’ conceptual
model of the task to the objects of interest as subjects
of the interface language. Thus, the semantic distance
is closely correlated with the widths of the gulf of exe-
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cution that is located between the goal and the formu-
lation of an intention and the gulf of evaluation when
relating the interpreted result to the goal as described
in Norman’s seven stages of action model.

• syntactic distance
While the semantic and articulatory distances in their
sum span only one single axis according to Hutchins
et al., we regard them as separate in our design space.
As we will see in the chapters that analyze concrete
navigation interfaces, a small articulatory distance
does not imply a small semantic distance or vice versa.
Existing as well as our new interfaces can be described
much more precisely if these concepts are kept apart.

To be more consistent in our nomenclature, however,
we call the articulatory distance the syntactic distance;
it still describes the complexity of the transformation
between the objects of interest together with all pos-
sible actions on these objects and the syntactic repre-
sentations of both. In the seven stages of action, this
distance constitutes the gulf of execution between the
formulation of an intention and the construction of a
suitable action sequence and the gulf between having
perceived a result and interpreting it.

• control granularity
In contrast to the existing models described above, we
extrude the design space along a measure of control
granularity. Even with low semantic and syntactic
distances, it makes a difference at which granularity
any manipulation of the objects of interest can be per-
formed. The criticism about direct manipulation in-
terfaces being ill-suited for tasks that require a certain
accuracy is a direct result of many direct manipula-
tion interfaces operating on a granularity that is de-
termined by technical or syntactic factors instead of
semantic appropriateness.

Thus, there is a sweet spot for the control granularity
in every interface: If it is too high, each atomic ma-
nipulation will further a user’s goal only on a small
scale, resulting in a large number of cycles through the
seven stages of action. If it is too low, there is a danger
of overshooting the goal (or the goal being inaccessi-
ble altogether), which then requires the formulation
of a new intention for every necessary ‘correction cy-
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cle’ through the seven stages. Formally, the control
granularity can be defined as the logarithm of the ra-
tio between the input resolution on the syntactic layer
of an interface and its functionally mapped image on
the semantic layer. This measure is ideally zero, which
happens if one syntactic unit in the input space maps
to one semantic unit in the output space.

In contrast to the design space by Hutchins et al., we did We do not include
engagement,
responsiveness or
inter-referentiality in
our design space
because these
measures do not
represent interesting
tradeoffs.

not specifically include their concept of engagement. This
is for two reasons: First, engagement as such is very diffi-
cult to precisely define, capture, or measure. Parallels have
been drawn between engagement in model world interface
and rapport in conversational interfaces, and it seems that
engagement is rather an emergent than a designed quality
of an interface. As such it is not well-suited as an axis in
a design space. Second, Hutchins et al. state that engage-
ment as a quality relies on responsiveness of the interface
and on the input and output of the interface language be-
ing inter-referential. While both of these concepts are tech-
nically better suited to serve as axes in a design space be-
cause they can be measured, they are not helpful to charac-
terize media navigation interfaces: Responsiveness is a less
interesting property because it does not really apply to the
interaction design but rather to its implementation. Every-
thing else being equal, an interface that is more responsive
is always preferable to one that is less responsive, so we can
simply demand that every interface should be as responsive
as technically possible. Inter-referential input and output
can be seen as a given in navigation interfaces; the output
of any action is a change in location in the medium, and one
of the inputs of every navigation action is the current po-
sition. We thus replaced the engagement axis with an axis
measuring the granularity of the navigation actions, which
has more discriminative power in the space of navigation
interfaces, as we will see later.

2.2.2 Media Model

While for many types of interfaces an interface model as
the one introduced above is sufficient, the act of navigating
in digital media can usually not be described through the
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interface model alone. The reason for this is that a major-An interface model
alone is not enough

to describe the
interaction with digital

media.

ity of the navigation tasks are defined through the content
of the medium; such tasks become meaningless if they are
to be formulated only in terms of the interface. For exam-
ple, navigating to the scene in the original Star Wars movie
where the Death Star is being blown up is a task that is not
directly reflected in the interface model, unless the interface
is either designed specifically for this movie or it accepts a
conversational description of the navigation goal. Both of
these are entirely possible, although they do not reflect the
general case: Navigation by video tapestries [Barnes et al.,
2010] are one way to combine the media and interface mod-
els by using the content of a video for a navigation inter-
face. And performing navigation by giving conversational
descriptions of video content—albeit of a much more basic
kind—is something we have worked on ourselves, and we
will present such a system later in this thesis (see chapter
4.3.2 “Alternative Choices for the Conceptual Model”).

The important thing to understand, however, is that theWe propose a media

model to represent
the form and content

of the medium.

users’ conceptual model for the navigation task changes
with the semantic content of the medium. Therefore, to
completely model such tasks, we need a way to formalize
the structure of the medium in a similar way as we did for
the interface. This second model, the media model, is struc-
turally similar to the interface model; the difference is that
its sole purpose is to describe the semantic and syntactic
construction of the medium—the content and the form—
together with the semantic mapping between the behavior
of the semantic entities of the content and the syntactic rep-
resentation of this behavior (Figure 2.13). In this model, we
can now express the ideas from the first chapter (cf. 1.2.2
“Structures of Digital Media”) in a formal way.

• Syntactic Structure
The syntactic structure of a medium is defined byThe syntactic

structure consists of
the support domain

and the sample
domain; the content

is codified by a
mapping between the

two.

two domains: the sample domain over which the ‘sam-
ples’, abstract carriers for the content, are defined and
the support domain along which the samples are ar-
ranged. Samples, in turn, can often be again described
in this way, thus allowing the syntactic structure to be
nested. We can see that any digital medium can be
fully represented by a mapping from the support do-
main into the sample domain. Mathematically, this is
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Semantic Structure

Syntactic Structure

Semantic Mapping

Support Domain

Sample Domain

Sample Domain
Support Domain

Figure 2.13: Our media model reflects the idea that media
have both syntactic form and semantic content. Navigation
goals of users are usually expressed in terms of the seman-
tic structure of a medium while most navigation interfaces
only allow access to its syntactic structure.

the most simple way to describe a medium, and actual
implementations of digital media are mostly based on
this concept (Figure 2.14 shows the syntactic structure
of digital audio):

Images, for example, are defined as color samples—
often in an additive color space such as RGB—that are
arranged over a two-dimensional spatial support do-
main.In a video, such images serve as samples and are
arranged over a one-dimensional temporal support
domain as individual frames. Text documents are rep-
resented as groups of characters that form lines from
which, in turn, files are composed. And documents
for visual presentation support are often represented
by a linear stack of two-dimensional slides that can
contain text, images, and video.

It is important to note that this syntactic structure of The syntactic
structure depends
only on the type of
medium, not on the
content.

a medium is independent of its content. This allows
different media of the same type to be handled in the
same way, both in terms of implementing access to the
medium technically and in designing a user interface
that guarantees that every part of the medium is navi-
gable. Consequently, media navigation interfaces that
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Figure 2.14: The syntactic structure of linear PCM audio is
relatively simple. The samples are amplitude values that are
mapped to the temporal support domain of sample times
(often multiples of 1

44100s).

are based on the syntactic structure are still what Ut-
terback and Abernathy [1975] called the dominant de-
sign and thus remain unchallenged for the most part.

• Semantic Structure
The semantic structure of a medium is much less for-The content, together

with the context of
the user’s current

task, determines the
semantic structure.

malized and is defined by the content of the medium
and the context in which the medium is being used. It
is closely associated with the user’s conceptual model
of the medium for a given situation and can thus be
seen as a space that is spanned by all possible con-
ceptual navigation goals. If, for example, a user navi-
gates through a video that shows a soccer match, and
she is interested in finding the frame where a player
touches the ball with his hand, the semantic structure
would encompass all positions of the ball and could
look similar to Figure 1.3. The dimensionality of the
semantic structure can be very high, but we will see
later that in the context of most navigation tasks a low-
dimensional subspace is sufficient to contain most of
the navigation goal space. At the same time, not all
semantic structures have to span the full medium; of-
ten, the goals of navigation tasks only lie in a range of
what can be addressed by the supporting domain.
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For example, developers who have to understand
an unfamiliar piece of existing object oriented source
code for maintenance purposes commonly employ
a two-phase navigation pattern (cf. 6.2.1 “Analyzing
Navigation Behavior”): From a starting point that
is possibly related to the problem they are trying to
solve, they first follow the call structure of the code
in a linear sequence until they find a method that
they believe is involved in the problem. Then they
change their navigation behavior and start exploring
the callers and callees of that method recursively in
a depth-first manner [Sillito et al., 2008]. The seman-
tic structure of object oriented source code for main-
tenance tasks, which we found can be approximated
by a subset of the call graph, therefore differs consid-
erably from the syntactic structure of source code in
general, which is described in terms of files and code
lines.

• Semantic Mapping
As the syntactic structure can fully describe the The semantic

mapping associates
goals that are
expressed in the
semantic structure
with their position in
the syntactic
structure.

medium, we can see that any semantic structure must
also have a representation in the syntactic space. This
means that we can define a mapping (or, more pre-
cisely, a relation) from the semantic structure into
the syntactic structure, which transforms any seman-
tically expressed navigation goal into a syntactic lo-
cation in the medium. Such a mapping is needed
to facilitate accessing the semantic structure in cur-
rent technical representations of digital media, and it
also gives information about the navigation and ac-
cess granularity appropriate for the semantic struc-
ture.

Obtaining the mapping directly, however, is usually Determining the
semantic mapping is
not straightforward.

infeasible, because it already requires the semantic
structure as the domain of definition. Below, we will
propose different ways of first constructing a mapping
from the syntactic to the semantic structure and then
inverting it, which is much easier (cf. 2 “Generating
New Interfaces Using the Combined Model”).
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2.2.3 Combined Model

With the interface model and the media model at our hands,We combine our
interface and media

models.
we can now attempt to formulate a combined model for
navigation in digital media. This combined model will
allow us to describe navigation interfaces in the context
of common navigation tasks for different types of digital
media; it will also reveal potential mismatches in many
widespread media navigation interfaces and suggest ap-
proaches to resolve such problems.

The core idea of the model is to associate the conceptualInterfaces can have
their conceptual layer
either associated with

the semantic or the
syntactic structure of

the medium.

layer of the interface model with the according structural
component of the media model. Obviously, two different
associations are possible: Either the interface abstraction
builds upon the semantic structure of the medium, thus rep-
resenting in the interface the content-dependent objects of
interest relevant for the navigation task (Figure 2.15). Or
the interface abstraction is based upon a concept taken from
the syntactic structure of the medium and represents this
concept—usually a subspace of the support domain—in a
more universal, content-independent way (Figure 2.16).

This formulation of the model brings three advantages:
Firstly, including the media model allows us to determineThe real semantic

distance for a task
lies between the

semantic structure of
the medium and the

semantic layer of the
interface.

the semantic distance of the navigation interface much more
realistically, because the content and the navigation task is
included. We therefore define the real semantic distance as
the distance between the semantic structure of the medium
and the semantic layer of the interface. In the case of syn-
tactic association, this amounts to the sum of the semantic
distance of the interface as defined in the interface model
and the added semantic distance that results from the cogni-
tive burden for the user of transforming the content depen-
dent navigation goal into a location in the syntactic struc-
ture (Figure 2.16).

Secondly, this allows us to judge the technical complexity ofTo allow semantic
navigation, we need

to transform input
between the syntactic

layer and the
semantic structure.

the chain of transformations between the syntactic layer of
the interface and the syntactic structure of the medium that
has to be implemented to build the interface: the concatena-
tion of the syntactic mapping 'syn and possibly the seman-
tic mapping 'sem (Figures 2.17 and 2.18). As for most digital
media only the syntactic structure is represented technically,
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Figure 2.15: Combined media and interface model where the conceptual layer
of the interface is associated with the semantic structure of the medium. In this
case, the semantic layer of the interface is directly concerned with the objects
of interest defined by the navigation task and the content of the medium. The
semantic distance is determined by how well these objects are represented.

implementing this transformation is necessary to allow nav-
igation through the medium in the first place.

Thirdly, since this transformation maps every control input The control
granularity is
determined by the
derivative of this
transformation.

on the syntactic layer to a change in position in both struc-
tures of the medium, it also determines the control granu-
larity of the interface. This allows us to analyze the con-
trol granularity with respect to the granularity of the se-
mantically relevant behavior of the objects of interest in the
medium as defined by its semantic structure.

Another important characteristic of navigation interfaces The combined model
shows how the
advantages of direct
manipulation can be
leveraged for
semantic media
navigation.

can be analyzed with the help of this model. If the semantic
layer of the interface is associated with the semantic struc-
ture of the media model, the navigation goal and the way to
reach it can be made visible in the interface. Following the
above argument in the context of direct manipulation (cf.
2.1.4 “Direct Manipulation”), this allows users to perform
navigation control gestures much faster, because both input
and feedback are directly given in terms of the conceptual
model of the navigation, therefore making it immediately
clear if an action furthers a user’s progress towards the goal
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Figure 2.16: Combined media and interface model where the conceptual layer
of the interface is associated with the syntactic structure of the medium. In this
case, the semantic layer of the interface is concerned with the support domain of
the syntactic structure in a mostly content-agnostic way. The semantic distance
includes not only the semantic distance between the conceptual model of the
syntactic structure and its representation in the UI but also the cognitive effort to
transform the navigation goal into a location in the syntactic structure in the first
place.

or not. If, furthermore, the mapping I �'syn between the in-
put and the effect on the semantic structure of the medium
is predictable—ideally, this compound mapping is close to
the identity map—, true direct manipulation with all its
benefits can be achieved. An optimal point is reached when
most navigation tasks directly and without conscious effort
transform to very simple directed control gestures similar
to a typical Fitts task. Then, the largest part of the naviga-
tion can be quickly covered in a quick, open-loop control
action—the ballistic phase—, and only the last phase of hom-
ing onto the navigation goal—the homing phase—requires a
continuous closed-loop execution and evaluation behavior
(cf. [Woodworth, 1899] and [Nieuwenhuizen et al., 2010]).

For navigation interfaces that have their conceptual layer
associated with the syntactic structure of the medium, such
directness of control is not possible. In contrast, navigation
must either follow a trial-and-error pattern where the out-
come of each control input has to be newly interpreted and
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Figure 2.17: Implementation (blue) and mental model (orange) of a navigation
technique where the conceptual model of the interface is associated with the syn-
tactic structure of the medium. The implementation is relatively straightforward,
because every user action on the syntactic layer is first mapped to the semantic
layer and then to the syntactic structure. It is left to the user to figure out how
this influences the semantic structure.
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Figure 2.18: Implementation (blue) and mental model (orange) of a navigation
technique where the conceptual model of the interface is associated with the
semantic structure of the medium. The implementation is more complicated,
because it requires a programmatic implementation of the semantic mapping,
but the mapping in the user’s mental model is much simpler.
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Figure 2.19: If the users’ goal can be directly represented in the conceptual layer
of a navigation interface, the semantic distance—and consequently the effort for
a cycle through the seven stages—can be made small. The actual mechanics of
accessing the medium at the right location are transparent to the users and taken
care of by the application, which has access to an implementation of the semantic
mapping.

evaluated with respect to the goal, and the next control ac-
tion has to be intelligently guessed. Or, in cases where at
least the direction towards the goal is visible, execution and
evaluation of the control actions have to be run in a closed-
loop fashion for the whole duration of the navigation.

This argument becomes clearer if we overlay the modelThe combined model
can be combined

with the seven stages
of action.

with the seven stages of action as they are looped through
during the interaction with the navigation interface as
shown in Figures 2.19 and 2.20. With interfaces for syntactic
media navigation, we can see that for every cycle through
the seven stages the users have to transform their goal via
the semantic mapping into a conceptual model that was de-
rived from the syntactic structure of the medium. If we can
design interfaces for semantic media navigation, this step
becomes unnecessary, thereby reducing the semantic dis-
tance.

As the semantic and syntactic distances in the interface get
smaller, so do the gulfs of execution and evaluation. Con-
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Figure 2.20: If the users can only interact with the syntactic structure of the
medium, they have to perform the semantic mapping in the head for every cycle
through the seven stages. This widens the semantic distance, thus potentially
reducing the frequency of iterations and hurting navigation efficiency.

sequently, we can expect users to be able to predict the cou-
pling between their actions and the resulting progress to-
wards the navigation goal, resulting in a different, more ef-
ficient chunking of control gestures (cf. [Buxton, 1995]) like
we observe in well-designed direct manipulation interfaces.

With this combined model for media navigation, we can
now re-evaluate existing navigation interfaces and refine
their position in our interface design space. Different navi-
gation interfaces can thus be compared for different media
and navigation tasks. At the same time, the model can help
us to generate ideas for navigation interfaces that in many
situations are closer to the ‘ideal’ spot near the origin of the
design space.
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2.2.4 Descriptive, Comparative, and Genera-
tive Power of the Combined Model

We propose our combined model as an interaction model for
navigation in digital media following the definition for in-
teraction models by Beaudouin-Lafon [2000]:

“An interaction model is a set of principles, rules
and properties that guide the design of an in-
terface. It describes how to combine interaction
techniques in a meaningful and consistent way
and defines the ‘look and feel’ of the interaction
from the user’s perspective. Properties of the in-
teraction model can be used to evaluate specific
interaction designs.”

Interaction models must have the power to describe both
existing and new interfaces, to compare two such de-
scriptions in a qualitative or quantitative way, and to fa-
cilitate creating new interfaces or interaction techniques
[Beaudouin-Lafon, 2000].

For our model, we will first describe the generative aspect,We can use our
model to describe,

evaluate, and create

media navigation
interfaces.

offering a process for designing navigation interfaces that
follow our envisioned approach of navigating digital me-
dia through their semantic structure and by means of direct
manipulation techniques. The following four chapters will
then cover the descriptive and comparative aspects of the
model: Each will be discussing a different type of medium
with different navigation goals, in the context of which we
will describe the dominant design of existing interfaces.
Then we will use the generative aspect of the model to pro-
pose alternative interfaces and compare them to the existing
ones. The results—and thus the comparative power of the
model—will be verified by extensive experiments and user
studies.

Generating New Interfaces Using the Combined Model

In our combined model, generating a navigation interface
is divided into four steps. These cover all areas that are im-
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Figure 2.21: First step in creating interfaces for semantic navigation. After the
space of possible navigation goals for a class of tasks and a media type has been
determined, this space serves as a basis for the semantic structure. This also
defines the conceptual layer and informs the design of the semantic layer.

portant for creating an interface, including design, imple-
mentation, and analysis related sub-steps.

1. Find semantic structure and define conceptual layer
To find a good conceptual model for the interface that The semantic

structure is the
product of all
subspaces that
contain possible
navigation goals for a
task.

will allow us to achieve a small semantic distance, we
first need to know how and if the navigation goals that
the interface should support are related to the content
of the medium. This leads directly to a definition of
the medium’s semantic structure for that navigation
task; as detailed above, this structure is determined
by the combination of all subspaces that contain the
possible navigation goals. After the semantic struc-
ture has been identified, we derive from it the concep-
tual layer of the navigation interface and decide which
objects of interest will be represented by the semantic
layer (Figure 2.21).
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This step may be easy if the classes of navigation
goals that have to be supported are known and well-
understood; it also may even be pre-defined by the
character of the application, in which the navigation
interface is to be integrated. Examples for such cases
are the PERSONAL ORCHESTRA and DRAGON inter-
faces, which will be described in the next chapters (3
“Time-based Media: Orchestral Music” (p. 65) and 4
“Time-based Media: Video Scenes” (p. 89)).
In other cases, however, a considerable amount of re-
search, user interviews, or contextual inquiries may
be necessary to identify established navigation pat-
terns and classify them into a small number of abstract
goals from which the semantic structure can be deter-
mined. This approach has been taken with the FLY
and STACKSPLORER interfaces described in chapters 5
“Hybrid Media: Presentation Visuals” (p. 185) and 6
“Non-time-based Media: Source Code” (p. 271).

2. Determine and implement the semantic mapping
For the implementation of the interface, it is neces-The semantic

mapping often only
takes the form of a

relation and is
derived from its

inverse.

sary to define the mapping 'sem between the semantic
structure and the syntactic structure of the medium.
This task is non-trivial, because the semantic struc-
ture is not necessarily a connected definition domain,
and the mapping cannot be expressed in a closed
form. The mapping can still be approximated by first
constructing the reverse mapping '�1

sem from syntac-
tic space—which has all the properties necessary for
a domain of definition—by finding in the syntactic
space the non-linear, potentially discontinuous sub-
set of the navigation goals identified in the first step
(Figure 2.22). Reversing this mapping does not al-
ways yield a mathematically well-defined function,
because one point in the semantic space may be as-
signed multiple points in the syntactic space. Still, a
reverse lookup together with a set of heuristic rules
can act as a proxy for the semantic mapping as we will
see in the following chapters.
Constructing the initial mapping from the syntactic toWe demonstrate four

ways for arriving at
the inverse mapping.

the semantic structure, unfortunately, may also be dif-
ficult. Although it can be generated from the result
of a semantic search over the syntactic structure, this
requires choosing a suitable semantic query language
and implementing the search algorithm. In this thesis,
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Figure 2.22: Second step in creating interfaces for semantic navigation. Because
the semantic mapping can often not be determined directly, we initially define
its inverse by finding the syntactic locations of potential semantic navigation
targets. This can be done manually or automatically. Although the resulting
map is generally singular, an inverse relation can usually be defined through
heuristics and interpolation.

we will therefore demonstrate four alternatives for ac-
quiring the initial mapping in different ways:

(a) Manual definition of the initial mapping as external
part of the media authoring process
If the media content is not authored by the user, it
may be feasible to have the initial mapping con-
structed manually by and expert and added as
metadata to the medium in an extra step. Es-
pecially for prototypes or for systems tailored to
specific content, such as kiosk systems or inter-
active exhibits, this can be an efficient approach.
In our PERSONAL ORCHESTRA conducting sim-
ulator (cf. 3 “Time-based Media: Orchestral Mu-
sic”), the mapping from the syntactic to the se-
mantic structure of orchestras music is manually
defined in this way.

(b) Manual definition of the initial mapping as integral
part of the media authoring process
If the content is authored by the user, and com-
patibility to legacy formats is not required, the
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mapping between the syntactic structure and the
semantic structure of a medium can be explic-
itly made part of or can be derived transparently
from the authoring process. The order, timing,
and chunking of content during authoring pro-
vides strong cues about the semantic structure,
which can later be exploited for navigation. As
an example, our FLY presentation system (cf. 5
“Hybrid Media: Presentation Visuals”) affords
presentation authors to semantically cluster the
visual representation of the content; this leads to
a simple mapping between syntactic and seman-
tic structure, which become easily navigable.

(c) Automatic generation of the initial mapping through
approximate extraction of the semantic structure
In cases where manual identification of the se-
mantic structure is not possible or feasible, the
initial mapping has to be estimated automati-
cally. For this, we have to rely on algorithmic
approaches to extract the relevant parts of the
semantic structure; such algorithms are the fo-
cus of related fields, for example, computer vi-
sion or linguistic modeling. Our video naviga-
tion interface, DRAGON (cf. 4 “Time-based Me-
dia: Video Scenes”), uses computer vision meth-
ods to provide ad-hoc estimates of the semantic
mapping according to different navigation goals
of the user.

(d) Automatic generation of the initial mapping in se-
mantically structured media
For some types of media, the syntactic structure
is built up in a way that allows to directly derive
different semantic structures. This is often the
case for media in which the content acts as lin-
guistic descriptions of other higher-level content
or computational processes: examples are layout
description documents, source code, or certain
types of structured vector graphics. Semantic
mappings for these media can be generated auto-
matically and with higher fidelity than with the
approximation approach described above. We
demonstrate this method in our source code nav-
igation interface, STACKSPLORER (cf. 6 “Non-
time-based Media: Source Code”).
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Figure 2.23: Third step in creating interfaces for semantic navigation. The se-
mantic layer is fleshed out, and a suitable syntactic representation of the inter-
face is developed. This step is mostly ‘classic’ interface and interaction design
and has influence on both the semantic and syntactic distances of the navigation
interface.

3. Design the user interface
This step comprises the usual design process of the For semantic

navigation, the
interface design is a
central component.

visible part of the interface. While the semantic
layer has already been partly determined by the steps
above, one still has to find a way to create interface
elements and interaction techniques on the syntactic
layer that have a small syntactic distance. Other im-
portant points are guaranteeing a high feedback rate,
finding good representations for the semantic objects
of interest, and presenting obvious affordances for the
navigation (Figure 2.23).

4. Evaluate the interface
While our interaction model allows a comparison— Semantic navigation

interfaces sometimes
give rise to different
user behavior.

in terms of the location in the design space—between
different navigation interfaces in the context of the
medium and the navigation goals, an evaluation of
the interfaces is still necessary. It not only serves as
a verification of the advantages of a new interface
but may also reveal new navigation strategies that
emerge under the influence of the changed interac-
tion. These emergent user behaviors then, in turn,
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sometimes give rise to changes in the way the medium
is used (cf. 5.3.5 “Fly Case Study—Analyzing Canvas
Presentations in the Wild” (p. 249) and 6.2.3 “STACK-
SPLORER ” (p. 305)).

After proposing our interaction model for navigation in dig-
ital media and describing its generative aspect for the cre-
ation of navigation interfaces, we will now demonstrate the
descriptive and comparative aspects in the context of four
different types of digital media. The following two chapters
are concerned with orchestral music and video scenes, which
are both time-based media that are commonly navigated ei-
ther by rate-based controls or a linear timeline slider. The re-
maining two chapters describe the application of the model
to visual presentation support documents and Objective-C source
code where the established navigation paradigms are rooted
in the technical metaphors of slides for the former and files
and lines of text for the latter type of medium. Each of the
four examples is an example not only for a different way to
acquire the semantic mapping as described above, but each
also lays emphasis on one of the four steps needed to create
these interfaces (Figure 2.24).
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Chapter 3

Time-based Media:
Orchestral Music

The first example for a semantic navigation interface for A beat-based
semantic structure for
music is isomorphic
to the syntactic
structure.

digital media is concerned with music and one of the sim-
plest semantic structures in this type of medium: the beat or
meter of a musical piece. We will see that even though there
exists an isomorphic mapping between the temporal syn-
tactic structure of digital music and the continuous repre-
sentation of the musical timing of the meter, both technical
and design challenges arise when developing such seman-
tic music navigation interfaces.

This chapter will be shorter than the ones that follow, serv-
ing primarily as a demonstration of the applicability of
our model presented in the last chapter (2.2.3 “Combined
Model”). As part of the research that led to this particular
kind of audio interface has already been published in the
context of the author’s Diploma Thesis [Karrer, 2005], sev-
eral publications [Karrer et al., 2006; Lee et al., 2006a, 2007],
and Eric Lee’s dissertation [2007], some aspects of the in-
terface and the underlying system will only be presented in
summarized form.

After a short excursus on the properties and the structure
of digital music, we describe the navigation task the sys-
tem was developed for. We then describe two existing nav-
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igation interfaces in the framework of our model before
showing how the development of a new interface fits into
the four steps proposed above 2.2.4 “Generating New Inter-
faces Using the Combined Model”. At the end of the chap-
ter, we compare the models for the existing interfaces and
the new one.

EXCURSUS: DIGITAL AUDIO:
Technical Representation
Sans any encoding for compression or error correction, digital music usually
is represented as a file containing one of multiple audio channels. Each of
these channels contains an ordered list of samples, scalar values interpreted as
amplitudes. Also, the representation includes the sample rate, a scalar value
defining the linear mapping from time to sample index.

Syntactic Structure
The support domain of the syntactic structure for any kind of digital audio is
time, which is why audio is a time-based medium. As such, each point in time
is directly linked to a sample number with the sample rate as the connecting
factor. In contrast to some other time-based media, however, a single audio
sample cannot be meaningfully perceived; audio feedback can therefore only
be given by playing a continuous range of samples.

Semantic Structures
Possible semantic structure for audio whose content is music are, for example,
the musical structure of the piece, the meter, the turn-taking of different instru-
ments, changes in key, or even the mood conveyed by the music. Other kinds
of digital audio, for example, recorded speech could have semantic structures
including the spoken words, roles in a dialogue, or even higher level struc-
tures, such as the literary and argumentative structures of a read out essay or
report.

3.1 Describing Audio Navigation in
Standard Interfaces

Digital music is a medium that, in terms of navigation, hasApart from the
timeline slider,

navigation in music
still works like it did

with tape recorders.

not changed very much in the last decades. As the dom-
inant interaction context is linear consumption of a piece
of music, we are still using the stereotypical ‘tape recorder’
controls (cf. Figure 1.1): a play button to start playback, ei-
ther a stop or a pause button (or both) to suspend playback
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completely or temporarily, and buttons that manipulate the
temporal position in the audio by moving forward or back-
ward in time—usually at a higher rate than the standard
playback rate. The only new element commonly found is a
timeline slider, which is an abstract representation of moving
the tape manually to a different position. Of course, inter-
faces for non-linear editing (NLE) of audio offer more func-
tionality and often employ advanced navigation facilities,
but we will concentrate on playing back music for now.

An interesting observation is that once the play function of Simple play and
pause navigation is
good for passive
listening but
otherwise limited.

an audio player software is invoked, navigation through the
music is taken out of the user’s hands and handled auto-
matically: A fixed playback rate is being set, and the audio
samples are read, processed, and sent to the speakers at that
rate. On a stop or pause command, this rate is simply set to
zero. This is being done in a universal way for all pieces
of digital audio, independent of the content. For the task
of simply listening to a piece of music, such an interface is
completely adequate and easy to understand and use; for
other tasks, an interface that is so closely linked to the tech-
nical representation of the medium may pose problems.

Let us first analyze the standard task of listening to a
piece of music. The user’s semantic understanding of the
medium in the context of this task may well be described
as the audio just being played back or not. Therefore, the
model of the interface could look roughly like shown in Fig-
ure 3.1, and the resulting spot of a standard media player
interface would be as shown in Figure 3.2.

If the user’s task, however, involves having more control More expressive
control over how we
move through a piece
of music would
require an interface
that is less tied to the
syntactic structure.

over the playback of the music, this interface is unsuited.
Actively controlling the temporal aspects of the expression
of classical music, for example, like a conductor does, fun-
damentally changes the user’s conceptual model and thus
the semantic structure of the medium. The content, how
the notes in the music are arranged temporally, becomes
important—a structure that is much less rigidly connected
to the list of samples than could be expressed by a sin-
gle scalar factor. A conductor basically navigates through
a piece of orchestral music by deliberately placing the in-
dividual beats of the meter in time; the music temporally
evolves according to this series of navigation commands.
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Semantic
Mapping

Syntactic Structure

Support Domain = Sample Times

Sample Domain = Audio Samples

Conceptual Layer
[ Play | Pause ]

Semantic Layer

Syntactic Layer

Syntactic Distance

Real
Semantic Distance

Semantic Structure
playback rate = [ 0 | 1 ]

�
 

Figure 3.1: Combined navigation interface model of a minimal audio player in-
terface in the context of a standard listening task. The conceptual layer of the
interface is associated with the semantic structure, which is part of the syntactic
structure. Thus, the semantic mapping is a simple fixed function—in this case an
integration that constantly increases the sample time using the current playback
rate.
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Figure 3.2: Position in the design space of media navigation interfaces of a min-
imal audio player interface in the context of a standard listening task. For this
task, the interface is close to the sweet spot.
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Semantic Structure
Temporal Location of

Individual Beats

Syntactic
Structure

Unknown
Semantic Mapping

Support Domain

Sample Domain
Conceptual Layer

Playback Rate ∈ [ 0.0 .. 5.0 ]

Semantic Layer
Linearly Control Playback Rate

Syntactic Layer
Rate Slider

Navigation Task
Semantic Distance

Syntactic Distance

Interface
Semantic Distance

Real
Semantic
Distance

Playback Rate
�

Unknown
Inverse Mapping

Figure 3.3: Combined navigation interface model of an audio player interface
with rate control in the context of a conducting task. To conduct individual beats
of the music, a user would have to control the playback rate in a way that re-
quires knowledge of the inverse of the semantic mapping. Even if the syntactic
location of every beat in the piece and, therefore, the semantic mapping was
known—which is usually not the case—, it would have to be inverted on-the-
fly in the user’s head, creating an immense semantic distance. Also manually
controlling a rate slider in this way would be challenging.

This task is impossible to solve using just play and pause
buttons. Even if we designed an interface where the play-
back rate could be adjusted on-the-fly, the underlying prob-
lem would remain: the interface operates on the linear tem-
poral support domain of the syntactic structure, but the ob-
ject of interest for the task is the semantic time base of the
music. This fact makes the combined model of any inter-
face that operates only on the syntactic time—even if we
allow higher degrees of control, such as changing the play-
back rate on-the-fly or using the timeline slider—look quite
different for such a task (Figure 3.3).

On the conceptual layer of the interface, only the playback Directly controlling
the meter of the
music using
rate-based controls is
difficult.

rate of the medium and thus part of its syntactic structure is
represented; the extra transformations between the syntac-
tic and semantic structures of the medium have to be per-
formed by the user both for execution and for interpretation
of navigation commands, resulting in an increase in seman-
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Figure 3.4: Position in the design space of media navigation interfaces of an
audio player interface with playback rate control in the context of a semantic
navigation task, e.g., conducting.

tic distance (Figure 3.4). Even if the syntactic distance of the
interface was really small, because we found an excellent
way of representing and manipulating the playback rate,
the combined semantic and syntactic distances would still
be large and the interface difficult to use for the task.

We can argue that interfaces that operate on the syntac-
tic structure of digital media are therefore not really direct
manipulation interfaces (cf. 2.1.4 “Edge Cases and Excep-
tions”) in the context of semantic tasks like the conducting
example, because they do not allow users to act on the ob-
jects of interest. A thorough analysis of these differences
between the semantic and syntactic concepts of time in dig-
ital audio and how they influence the interaction can also
be found in [Lee, 2007].
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3.2 Creating an Interface for Expres-
sive Playback of Orchestral Music

Following the four-step-approach we have proposed in the Our four-step
approach guides us
through the
generation of a
semantic navigation
interface.

last chapter (2.2.4 “Generating New Interfaces Using the
Combined Model”), we can walk through the development
of an interface for the expressive playback of music that al-
lows interactive navigation through the semantic structure
of a musical piece. Our Personal Orchestra and PhaVoRIT
projects—an interactive conducting exhibit, which has been
installed at several museums around the world, and an effi-
cient high-quality time-stretching algorithm—will serve as
the illustrative examples in this chapter.

3.2.1 Finding a Conceptual Model

When people think of expressive playback of orchestral mu- The conceptual
model for orchestral
music is concerned
with beats instead of
sample timings.

sic, very few would describe it in terms of absolute time,
and even less would talk about the technical abstraction of
sample time in a digitally stored piece of audio: “At two
minutes and forty seconds into the piece, the next one and a
half seconds should actually be played gradually slower as
to take one point nine seconds,” or “The samples at indices
7056000 through 771750 should have their sample rate lin-
early decreased from 44100 to 34816.” Of course, they both
just mean to express the ritardando at the end of the first
movement.

A better conceptual model—and therefore a suitable seman-
tic structure of orchestral music given the task—is to rep-
resent music as a succession of beats [Lee and Borchers,
2005]. This representation transforms the necessary naviga-
tion steps into the well-known task of a conductor, the very
model of explicit control over how orchestral music is be-
ing played expressively. This conceptual model and seman-
tic structure are the basis for the PERSONAL ORCHESTRA
[Borchers et al., 2004; Lee et al., 2006a] project, which allows
users to interact with recorded orchestral music through the
act of conducting instead of manipulating the syntactic tem-
poral structures of time or samples.
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3.2.2 Determine the Semantic Mapping

Since digital music is not directly represented as a series ofThe semantic
mapping from beats

to sample times is
generated by

inverting a manually
created mapping

from sample times to
beats.

musical beats and can thus not be controlled by means of
this semantic measure, we need to provide a way of map-
ping beats to sample times. In the theory chapter (2 “Gen-
erating New Interfaces Using the Combined Model”), we
have discussed four ways to create an initial mapping be-
tween the syntactic and the semantic structure in a medium,
which can then be inverted to yield the desired seman-
tic mapping. For Personal Orchestra, we followed the ap-
proach of manually creating this initial mapping (2a “Gen-
erating New Interfaces Using the Combined Model”). This
was done for several reasons: On the one hand, although
algorithmic detection of the meter in a musical piece had
already been possible [Goto, 2001; Jensen and Andersen,
2003], these methods were still not perfectly reliable at the
time PERSONAL ORCHESTRA was developed—especially in
the presence of local temporal changes such as fermatae or
ritardandi. These and other variations in the timing or mi-
crotiming can, on the other hand, be easily detected and
correctly reproduced or annotated by people with musical
training. We therefore created a simple software, BeatTap-
per (Figure 3.5), which allows to annotate an audio file with
beat markers just by tapping a key alongside the music as it
is being played back.

The temporal position of each beat marker (green trianglesThe semantic
mapping can, in this

case, be represented
as a simple table.

in Figure 3.5) can be individually adjusted before the soft-
ware inverts this initial mapping and exports a beat file con-
taining the semantic mapping—each beat is assigned to a
time value or sample index—in tabular form. From this
discrete semantic mapping, a dense mapping can be de-
rived by linear interpolation or other low-pass filtering tech-
niques.

Implementing a conducting interface such as PERSONALAudio is an inherently
transient medium,

which makes its
presentation during

navigation more
difficult.

ORCHESTRA faces another difficulty that is inherent in the
way humans process auditory signals: music and other au-
dio have to be perceived over time—any single instant of
the signal is meaningless to us. Because of this, we cannot
just provide access to the samples of the music at the times
of the beats, but we must always present a succession of
samples over time in order to generate observable feedback.
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Figure 3.5: Interface of the Beat Tapper Extreme software for
manually creating semantic mappings between the musical
beats and the syntactic time stamps in digital audio. Beat
Tapper Extreme was written by Eric Lee [2006] and is the suc-
cessor of the original Beat Tapper software created by the au-
thor.

In other words, we have to control the rate of the playback
in a way that makes sure that beats occur precisely at the
points in time where the user wants them to.

Interactively adapting the playback rate in this way is, un- Unintended
pitch-shifting and
error cumulation are
challenges when
adjusting playback
rates.

fortunately, non-trivial because of two problems that occur:
First, the playback rate has to be constantly controlled in a
closed-loop fashion. Otherwise, prediction errors can ac-
cumulate, and the phase difference between the beats in
the music and the beats conducted by the user can grow
unbounded, defeating the purpose of the interface. Sec-
ond, the content of audio files is tightly interwoven with
the syntactic structure in a way that changing the rate of
the playback also changes the pitch of the music. Such im-
plicit modification of the content is, of course, unwanted,
and we therefore need a way to properly de-couple the tem-
poral progression of the content from the time base it was
recorded in.

The first problem was solved by Lee [2006a; 2007], who A closed-loop control
avoids accumulating
errors over time.

developed a closed-loop control mechanism for conduct-
ing input. In contrast to his original method, however, we
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extended the technique to avoid two phenomena that had
been observed with early PERSONAL ORCHESTRA proto-
types:

• At the beginning of a piece, a ‘spiral of death’ may
occur where the user waits for the music to pick up
the tempo and vice versa.

• Until enough beats have been conducted to reliably
estimate the tempo, the original control loop exhibits
strong ringing.

For the new control, we added a second, open-loop filter
on top of the inner closed-loop control that determines the
overall tempo v as a weighted affine combination of a pre-
defined standard tempo v

c

and the estimate v̂ of the closed-
loop.

v = ↵ · v
c

+ (1� ↵) · v̂

Through the parameter ↵, this mechanism weighs the pre-
defined tempo stronger until the point in time tstable when
enough input beats have occurred to stably estimate a
tempo. After tstable, it gradually starts phase locking the in-
put and output signals over a timespan ⌧ and finally hands
control over to the inner control.

↵ =

8
<

:

1 t < tstable

1� 1
⌧

(t� tstable) tstable  t < tstable + ⌧
0 else

The second problem of unintended pitch-shifting is moreTime-stretching
algorithms can

change the playback
rate of audio without

altering its pitch.

difficult to solve. Separating the user control over the con-
tent of digital audio from its syntactic structure requires
the use of a time-stretching algorithm. The goal of such an
algorithm is to re-arrange time-based data on the time-
line, thereby changing the speed of the contents’ evolu-
tion without changing the content in any other way [Kar-
rer, 2005]. Furthermore, for the envisioned task we need
a time-stretcher that can produce dynamic changes to the
playback rate over a large range of rate factors with high
fidelity. Only then can the users place the beats arbitrar-
ily closely or wide apart in time, and the syntactic timeline
of the music can be warped to make the user’s beats and
the beats of the musical piece coincide (Figure 3.6). We de-
veloped our own time-stretcher, PHAVORIT, with exactly
these goals in mind.



3.2 Creating an Interface for Expressive Playback of Orchestral Music 75

conceptual layer
(user beats)

conceptual
–semantic
association

semantic
mapping

time-
streching

semantic structure
(beats)

syntactic structure
(samples)

time-stretched
result

time

meter

sample
index

time

Figure 3.6: Sequence of mapped structures from the conceptual layer down to
the warped syntactic structure. Users can place musical beats at arbitrary posi-
tions in time through conducting, expressing their goal on the conceptual layer
(the actual conducting takes place in the syntactic and semantic layers of the in-
terface and has been omitted here for clarity). The beats are associated with the
actual beats of the music in the semantic structure of the medium; the semantic
mapping points to the respective samples in the syntactic structure. A time-
stretcher can control the playback rate of the music in a way that these samples
get played at the intended points in time.

PhaVoRIT: a Phase Vocoder for Real-time Interactive
Time-stretching

PHAVORIT is an extended variant of the well-known phase Phase vocoders
produce phase
adjusted blocks for
each frequency band
separately.

vocoder algorithm [Flanagan and Golden, 1966] and was de-
veloped by the author as part of his Diploma Thesis [Kar-
rer, 2005]. A phase vocoder is a time-stretcher that works
in the following way: It first divides the sampled audio
signal into short overlapping blocks. Then, the partials of
each block are extracted by means of a fast Fourier trans-
form (FFT), and the instantaneous frequency of each par-
tial is determined. The knowledge of the instantaneous fre-
quency allows the calculation of each partial’s phase at any
point during the length of the block. Since the initial phase
of each block is also known—and can be modified—, the
overlapping blocks can be re-assembled at a different spac-
ing with their initial phases matching the calculated phase
of the preceding block at the pasting point (Figure 3.8). The
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time

time

Figure 3.7: Time-stretching by granular synthesis: First, the audio signal is seg-
mented into blocks. The duration of each of these blocks is then shortened or
extended by truncation or repetition. Finally, the blocks are reassembled to form
the time-stretched signal. This technique is simple and efficient but produces
clearly audible artifacts caused by the phase mis-alignments at the block bound-
aries. Source: [Karrer, 2005].

phase modification eliminates the audible phase jump that
would otherwise occur (Figure 3.7), and the altered spacing
changes the duration of the two block compound. The lat-
ter is equivalent to a change in speed or playback rate, and,
since inside a block the frequency spectrum is left unaltered
except for the phase, the pitch of the signal stays the same
as in the original, non-time-stretched version.

For PHAVORIT, we introduced a number of improvementsPHAVORIT mitigates
the three problems of
the traditional phase

vocoder algorithm.

to the basic version of the phase vocoder. They were meant
to counter the typical audible artifacts that the algorithm is
known to produce:

• ‘Transient smearing’ occurs at transient sound events;
typical examples include drum shots, note onsets, or
burst sounds in speech like hard consonants. These
acoustic features are rendered much softer than they
should by a phase vocoder, so that drum shots, e.g.,
become short, slurred noises and miss the directness
and sharpness that originally characterized the sound.

• ‘Reverberation’ or ‘phasiness’ is the undesired effect of a
time-stretched signal seeming to be recorded in a very
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2nd 
partial

1st partial

signal
time

Figure 3.8: Time-stretching using a phase vocoder: In contrast to the simple ap-
proach shown in Figure 3.7, a phase vocoder splits the signal into its partials.
For each partial, it then re-aligns the starting phases of each block to match the
ending phases of the preceding block before summing up the individually time-
stretched partials to form the output signal. As a result of this phase alignment,
the audible artifacts are greatly reduced. Image from [Karrer, 2005].

small room but, at the same time, at a large distance to
the microphone. This ‘loss of presence’ also causes a
spatial recording, i.e., a stereo or surround sound sig-
nal, to lose spatial coherence, thus changing its spatial
characteristics erratically over time.

• ‘Warbling’ artifacts are melodic overtones primarily
present in passages where the signal is dominated by
a noise component. Examples are recordings of ap-
plause at the end of a musical performance or cymbal
shots on a drum set.
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The reason for these artifacts lies within the fact that thePhase vocoders
assume a signal

model that is violated
by noisy or transient

components.

phase vocoder algorithm implicitly assumes a signal model,
in which the input is composed of a finite number of sinu-
soidal, spectrally well separated components (cf. [Flanagan
and Golden, 1966]). In reality this is, of course, not the case
for any input signal of interest: For example, in orchestral
music, the harmonics of dozens of instruments may fall into
the same spectral area and overlap. Transients consist of an
arbitrarily high, not even necessarily finite, number of sinu-
soidal components. And noise signals do not satisfy either
of the two assumptions. Also, when performing the FFT,
one has to carefully choose a point on a tradeoff axis be-
tween temporal and spectral resolution: A poor temporal
resolution leads to a mis-treatment of transients; their tem-
poral location inside the analysis window becomes difficult
to determine, and they may become smeared over several
overlapping synthesis windows. A poor spectral resolution
leads to a mistreatment of harmonics; the harmonics and
center frequencies of distinct signal components may fall
into the same frequency ‘bin’, and the resulting synthesis
phase will be incoherent with the phases of the respective
components’ remaining harmonics.

Treating noise dominated signals as a sum of stationary si-PHAVORIT limits the
influence of noise on
the phase of locked

frequency band
groups by limiting the

locking range.

nusoids in the phase vocoder leads to a systematic phase
propagation over time, which destroys the phase random-
ness that is characteristic for these signals. This is the main
cause of the ‘warbling’ mentioned above. One possible so-
lution to this problem is separating the sinusoidal compo-
nents of the signal from the noise-dominated ones and treat
both signal path ways differently: the stationary sinusoids
can be processed by a phase vocoder, the noise can be as-
signed random phases or have their phases left untouched.
Another method is to limit the spectral ranges for phase
continuation and phase locking of the phase vocoder to
the spectral neighborhood of confirmed sinusoids [Karrer,
2005]. Such solutions, unfortunately, are either very run-
time expensive, because they require additional FFTs for
multibank filtering, or they are not robust enough to reli-
ably separate noise from steady state sinusoids.

Time-stretching transient events to a lower playback rate isPHAVORIT follows
Röbel’s approach for

treating transient
signal components.

already destined to fail from a conceptual point of view.
A transient, by its very nature, cannot be slowed down
itself—it has to be re-positioned in time and played back
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at the original speed to retain its transient quality. The basic
phase vocoder algorithm treats a transient event like a num-
ber of unrelated sinusoidals, stretching and phase align-
ing each of them individually. This not only distorts the
transient by trying to extend its duration, but it also dis-
perses the transient’s location in time over its frequencies.
Again, this can be mitigated or even theoretically avoided
by detecting transient events in the audio signal, locating
them in both the time and frequency domain, and separat-
ing these components from the rest of the signal for special
processing. Different ways to detect transients have been
proposed, among others, in [Levine and III, 1998; Masri and
Bateman, 1996; Bonada, 2000; Duxbury et al., 2001; Brossier
et al., 2004; Röbel, 2003a]. Methods for transient processing
can be found in [Masri and Bateman, 1996; Levine and III,
1998; Bonada, 2000; Hammer, 2001; Röbel, 2003a,b]. We give
an extensive overview together with added explanations in
[Karrer, 2005]. For PHAVORIT, we attack the problem of
transient detection and reconstruction in the time-stretched
signal by employing a modified version of Röbel’s [2003a]
approach. For details we, again, refer to [Karrer, 2005] and
to [Karrer et al., 2006].

Polyphonic sounds, even if they are not transient or noise- PHAVORIT uses
psycho-acoustics
and heuristics to
model how tomes
move through the
spectrum over time.

like, have their timbre and spatial characteristics deter-
mined by the relations between the phases of the main fre-
quency and its harmonics. Since the basic phase vocoder
has no notion of spectral areas belonging together, these
relations are quickly lost over time, causing reverberation
and phasiness. Re-establishing vertical phase coherence
over parts of the spectrum greatly mitigates this prob-
lem, with different approaches proposed by Puckette [1995]
and Laroche and Dolson [1997; 1999]. PhaVoRIT extends
Laroche’s and Dolson’s [1999] technique by refining the
peak-picking stage of their algorithm and introducing an
explicit model for sinusoidal trajectories across the time-
frequency domain [Karrer, 2005; Karrer et al., 2006]: Multi-
resolution peak picking accounts for the non-uniform fre-
quency resolution of the human auditory system. Sinu-
soidal trajectory heuristics constrain the set of spectral peaks
that are candidates for sinusoidal trajectory continuation.
This allows for a more informed decision in the algorithm
as to which frequency areas should be subject to verti-
cal phase coherence re-establishing, thus making synthesis
phase propagation along non-meaningful trajectories much
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less probable. Also, PHAVORIT detects silent passages,
such as pauses in music or speech, to hard-reset the phase
accumulators. This automatically re-instantiates the correct
phase alignment across the frequency spectrum periodically
and effectively reduces phase accumulation errors.

We performed a controlled study comparing PHAVORITThe quality of
PHAVORIT over a

wide range of music
genres was

confirmed in a user
study.

to five other state-of-the-art time-stretching algorithms:
two phase vocoder algorithms and three commercial time-
stretchers that rely on different algorithmic approaches. A
group of 60 users was recruited to rank the quality of the
six different time-stretchers with regard to audio fidelity
across six different music genres and six different stretching
factors. Although different algorithms performed best on
different music genres, only PHAVORIT was consistently
ranked among the top three. PHAVORIT thus was the al-
gorithm of choice for all newer versions of the PERSONAL
ORCHESTRA interactive conducting system. A detailed de-
scription of the time-stretching problem, the phase vocoder
algorithm, the theory and implementation of PHAVORIT,
and the user study can be found in [Karrer, 2005; Karrer
et al., 2006; Lee, 2007].

The PHAVORIT time-stretcher is an example of how the se-
mantic mapping that we determined earlier can be reified
in a working implementation. It takes the information from
the beat file and uses it to warp the syntactic time on-the-
fly, thus allowing direct semantic control over the playback
and providing semantic navigation through the medium for
our use case. With the media model in place both theoreti-
cally and functionally (Figure 3.9), we can now move on to
designing a suitable interface.

3.2.3 Designing the User Interface

The last layers of the user interface language remaining toFor the semantic
layer we must find a
way to interact with

musical beats.

be designed are the semantic and syntactic layers. As the
media model already allows us to interact with the medium
through the semantic concept of beats, it seems only natural
to choose the objects of interest in the interface accordingly:
we can design the interface in a way that it is concerned
with musical beats and then only have to find a syntactic
representation for this concept that can be easily manipu-
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Semantic Structure
(musical beats)

Syntactic Structure
(timed samples)

Semantic Mapping
Time-Stretching

Conceptual Layer
(conducted beats)

Semantic Layer

Syntactic Layer

Figure 3.9: Combined interface and media model for se-
mantic navigation in orchestral music up to the second step.
At this point, we are still missing the functionality and the
design of the syntactic and semantic interface layers.

lated by the user. Just as the task-dependent choice of se-
mantic structure in the medium helps to keep the overall
semantic distance in the interface small, a well-chosen syn-
tactic representation of the semantic layer will result in a
small syntactic distance.

There are, of course, many ways of interacting with music Conducting is a
natural way of
specifying beats in
orchestral music.

on the level of beats, with different cultures having estab-
lished different ways that seem natural to them. One mode
of interaction with beats in the context of orchestral music
that is particularly common in the western cultures is that
of conducting a piece of music. Although most people are
not proficient in the correct procedure of leading an orches-
tra by means of this language of expressive hand or baton
gestures, there is a certain laymen’s understanding of how
the up-and-down movements should correspond to certain
qualities of the music. Intuitively, most people will be able
to use this tool to express the tempo, placement of beats,
overall volume, and emphasis on a certain group of instru-
ments within the orchestra [Lee et al., 2006b]—not in ac-
cordance with the formal rules of conducting (cf. [Rudolf,
1980]), most certainly, but in a way that they feel confident
to have communicated their intention.

Following this argument, conducting has been taken up as
a mode of interacting with music in audio and audiovisual
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Time-Stretching

Conceptual Layer
(conducted beats)

Semantic Layer
(conducting gestures)
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Real
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Figure 3.10: Combined interface and media model for con-
ducting interfaces. The actual gesture set used for conduct-
ing will be defined in the syntactic layer.

form in a number of interactive systems, for example, [Mar-
rin and Picard, 1998; Borchers, 2001; Lee et al., 2004; Ar-
gueta et al., 2009]. These systems take a number of slightly
different approaches in lowering the syntactic distance be-
tween a musical quality and how it is expressed through
conducting gestures. The common ground, however, is that
the interface model has the conceptual layer associated with
the semantic structure of the medium and that the seman-
tic layer of the interface deals with conducting gestures to
represent beats and other expressive qualities of the music
to be played (Figure 3.10). For the discussion at hand, we
will focus on the PERSONAL ORCHESTRA systems, most of
which have been developed at our group.

Personal Orchestra: A Conducting Interface for Semantic
Control Over the Temporal Progression of Audio

The PERSONAL ORCHESTRA (PO) systems are a series ofPO is installed in the
HOUSE OF MUSIC in

Vienna.
conducting exhibits that had begun with the installation of
PO1 (Figure 3.13) at the house of music in vienna [Borchers
et al., 2002]. These exhibits allow visitors to ‘conduct’ one
of a number of world famous symphonic orchestras: Hold-
ing a baton, the visitor stands on a conductor’s pedestal in
front of a large digital video projection showing the orches-
tra. When she lifts the baton, the musicians in the video
take up their instruments and prepare to play. The visi-
tor can then move the baton in an up-and-down conduct-
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Figure 3.11: Piece selection menu screen in PERSONAL OR-
CHESTRA 6. The user touches one of the six partitures to
start conducting that piece.

ing gesture, dictating the tempo and volume of the piece
or emphasize certain groups of instruments in the ensem-
ble. The digital video and audio streams will be played back
and time-stretched to match those gestures, thereby ensur-
ing that the visitor always feels like she really is conducting
the orchestra. Additionally, in the current version, the cur-
rent progression of the piece in the partiture is displayed
and continuously updated on a digital note stand in front
of the conductor (Figures 3.11 and 3.12).

In the design of the original system [Borchers et al., 2002], The system
emphasizes
discoverability and
graceful degradation.

much care had been taken to ensure easy discoverability
of the interface by creating strong conducting affordances.
The digital baton, conductor’s pedestal, large screen pro-
jection of the interactive video showing the orchestra, and
the digital note stand with the interactive partiture all con-
tribute to conveying the conceptual model of the interface
and thereby further reduce the semantic distance. The syn-
tactic distance is kept low by relaxing the requirements for
‘correct’ conducting gestures (Figure 3.14); a set of different
gesture recognition engines [Gruell, 2005] allows the sys-
tem to be used with a range of conducting styles, from the
classic 4-beat-gesture to simple up-and-down movements
or just wiggling the baton in the air at different velocities.
As a result, everybody can walk up to the exhibit and start
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Figure 3.12: Live partiture screen in PERSONAL ORCHES-
TRA 6. The position and instrument emphasis as it is cur-
rently conducted by the user is shown on an interactive note
stand.

conducting a virtual orchestra. No training is required to
play back the video and audio recordings according to one’s
individual preferences in musical expression.

To deliver this interactive experience, a number of differ-
ent technologies must work in concert. The conducting ges-
tures must be captured, processed, and transformed into a
series of input vectors consisting of tempo, phase, ampli-
tude, and spatial direction. From this data, the desired point
in time for the video and the audio tracks has to be deter-
mined. The closed-loop control explained above calculates
the best playback rates for both video and audio, using the
desired point in time and the actual point in time. These
rates are then fed into the respective video and audio time-
stretching algorithms, and the resulting streams have to be
rendered to the projection screen and to the speakers. Of
course, all of the steps must be integrated into a software
package that can be operated without difficulties by non ex-
perts in the context of a museum or exhibition.

The implementation of the PERSONAL ORCHESTRA systemsPERSONAL

ORCHESTRA has
been refined over

many iterations.

has changed greatly over the different existing versions. A
schematic of the sixth and current version of the system,
dubbed PO6, is shown in Figure 3.15. It includes the ges-
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Figure 3.13: PERSONAL ORCHESTRA lets laymen conduct
the famous Vienna Philharmonics at the House of Music in
Vienna. Visitors can interactively navigate through audio-
video recordings of a selection of classical pieces. The tem-
poral position of each beat is indicated by moving a digital
baton through a simplified conducting pattern; the size and
direction of the gesture influences volume and instrument
emphasis as well.

Semantic Structure
(musical beats)

Syntactic Structure
(timed samples)

Semantic Mapping
Time-Stretching

Conceptual Layer
(conducted beats)

Semantic Layer
(conducting gestures)

Syntactic Layer
(set of simplified 

conducting patterns)

Syntactic Distance

Real
Semantic Distance

Figure 3.14: PERSONAL ORCHESTRA does not require the
users to perform the same conducting patterns as profes-
sional conductors do. A simplified set of gestures is recog-
nized just as well, reducing the syntactic distance.
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Figure 3.15: Schematic overview of the individual compo-
nents of PERSONAL ORCHESTRA version 6. The conducting
gestures performed by the user are detected, interpreted,
and transformed into a sequence of beat timestamps with
volume and instrument emphasis. The audio and video
streams are then time-stretched so that the temporal pro-
gression of the content matches the user input.

ture recognition framework, CONGA, developed by Ingo
Grüll [2005] to process the MIDI-encoded position data of
the baton, which comes from a Buchla Lightning II unit
[Buchla]. The beat propagation and closed-loop control was
devised by Eric Lee [2006a] and uses an early version of
his libSTF framework [2007] developed for PO3, an earlier
PERSONAL ORCHESTRA system. The PO6 version includes
modifications to the closed loop by Moritz Wittenhagen,
Leonhard Lichtschlag, and the author to allow faster phase
locking to the conductor’s gestures at the beginning of the
performance. High definition video and multi-channel au-
dio can be used with PO6; for this purpose, we employ a
number of parallelized PHAVORIT time-stretchers—one for
each instrument group—and a custom built video render-
ing pipeline on top of QuickTime 7. To provide additional
feedback to the conductor, PO6 also features MICON, a dig-
ital note stand [Borchers et al., 2006] that dynamically dis-
plays the orchestral score for the current part of the musical
piece (Figures 3.11 and 3.12). The software architecture was
developed by the author together with Moritz Wittenhagen
and Leonhard Lichtschlag.
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In 2009, PO6 has been installed at the House of Music in
Vienna, replacing the original PO1 system. Thousands of
visitors every year enjoy the opportunity to ‘lead the Vienna
Philharmonics’ and to explore different points in the space
of possible ways to conduct a symphonic orchestra.

3.2.4 Evaluate the Interface

If we compare the standard interfaces for audio naviga- The system offers a
kind of navigation
that timeline or rate
controls cannot.

tion from the introduction of this chapter with the conduct-
ing interfaces like Personal Orchestra (Figure 3.3 vs. Figure
3.14), it becomes clear why achieving expressive playback
of orchestral music with the standard UIs is extremely diffi-
cult. Users would have to construct the semantic mapping
in their head beforehand to conclude how to interact with
the semantic structure of the medium through its syntac-
tic structure. Even if the necessary information would be
available, for example in the form of a PO-style beat table,
evaluating the mapping in the head would be demanding.
Furthermore, the motor control required to either adjust the
rate according to this mapping or use a timeline slider di-
rectly would be above most people’s capabilities [Walther-
Franks et al., 2012]. These problems increase the seman-
tic distance using the standard UI up to a point where the
task cannot realistically be solved, even given the relatively
small syntactic distance between a timeline slider and the
concept of syntactic or sample time.

3.2.5 Conclusion

We have shown that for music we can navigate in a seman-
tically more meaningful way by mapping the syntactic do-
main onto a semantic domain defined in terms of content
features—in our case the musical beats of orchestral perfor-
mances. By following the four steps proposed in 2.2.4 “Gen-
erating New Interfaces Using the Combined Model”, we ex-
plained the rationale behind the design of our conducting
interface, PERSONAL ORCHESTRA. The focus of our discus-
sion lay on the second step, the definition of the semantic
mapping, and its ramifications regarding the implementa-
tion of such systems (cf. Figure 2.24). In this context, we
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briefly summarized the theoretical and technological diffi-
culties of time-stretching and our contributions to that field
in the form of the PHAVORIT algorithm.

We also compared PERSONAL ORCHESTRA to two estab-
lished interfaces for digital audio navigation and playback,
which constitute the dominant design approach in this do-
main, and argued that our approach of semantic navigation
facilitates navigation tasks that are extremely difficult or
even impossible to solve with the current interfaces that are
based on content-agnostic syntactic navigation paradigms.
This is true even in the case at hand where the semantic
and syntactic structures of the medium, both being repre-
sentations of time, are still isomorphic; we will see exam-
ples where the relationship between the structures of the
medium are not so well-defined in the following chapters.

PERSONAL ORCHESTRA, of course, remains a conceptuallyPERSONAL

ORCHESTRA is only a
first step in the

direction of semantic
media navigation

interfaces.

simple interface in the context of the discussion of media
navigation, because the kind of interaction that PO sup-
ports is only an edge case: On the one hand, it enables a se-
mantic playback control and thus allows a user to progress
through the media in a meaningful way that is related to the
contents. On the other hand, the user can only manipulate
the linear progression of the contents in a very limited way.
Still, this is all that is needed to make a recording of the Vi-
enna Philharmonics follow your lead, and it fits our overall
concept of media navigation along semantic domains (the
domain here is the axis of all possible ways to conduct a cer-
tain orchestral piece). In this regard, PO was our first sys-
tem to deliberately shift access to the medium away from
an existing dominant, syntactic domain.
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Chapter 4

Time-based Media:
Video Scenes

In contrast to our audio use case from the last section, where Our approach to
semantic video
navigation allows
direct manipulation
interaction with the
actual contents of the
scene.

we re-mapped the syntactic structure of a piece of digital
music to the semantic domain of musical beats, our focus in
this chapter lies in enhancing video navigation by making a
whole class of local semantic subdomains of the medium
accessible to the user. This time, we will not expose an-
other form of temporal control over the progression of the
video but utilize the video’s connection between temporal
and spatial information to allow fast, frame accurate nav-
igation by a positional direct manipulation interface: as a
result, users can move through the syntactic temporal do-
main of the video by grabbing objects in the video and drag
them along their movement trajectory in the scene. We will
see that, even though there are a large number of semantic
mappings to establish at any time—one for each object vis-
ible in the video scene—and these mappings are much less
well-defined in this example, such a semantic navigation in-
terface can make a number of video navigation tasks much
more efficient.

After listing the most important characteristics of video as
a time-based medium, we describe the navigation task and
have a look at a number of existing interfaces, their prob-
lems, and solutions proposed in related work. We then
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introduce DRAGON, our video navigation system, and ex-
plain its design along the lines of our four-step approach
(cf. 2.2.4 “Generating New Interfaces Using the Combined
Model”) for generating semantic navigation systems for
digital media. With DRAGON as an example, we define
the broader concept of direct manipulation video naviga-
tion (DMVN) and discuss its applications and limitations.

This chapter focuses on the third generative step of design-In this chapter, we
focus on the third

step: designing the
interface.

ing the interface and the interaction for semantic naviga-
tion. With less stringently defined semantic mappings, as
we will encounter in this case, situations can arise where
the mapping offers the wrong semantic granularity for effi-
cient navigation or where it becomes singular, and the nav-
igation concept can break down. We will show how such
problems can be mitigated by careful UI design in 4.2.3 “In-
teractive Scoping and Trajectory Filtering” and dynamic re-
interpretation of the semantic context in the interface lan-
guage in 4.2.3 “Object Pauses”.

4.1 Describing Video Navigation in
Standard Interfaces

Similar to the audio navigation interfaces described in theVideo navigation
interfaces are also

often modeled after
tape interfaces.

last chapter (3.1 “Describing Audio Navigation in Standard
Interfaces”), most video navigation interfaces are a direct
successor to tape control interfaces. Like mentioned before,
these interfaces usually consist of a number of fixed-gear
playback rate controls (play, ffwd, rwd, pause) and a time-
line slider that simulates directly positioning the playhead
over a specified position of the tape.

In the context of video editing in general, and today’s non-Existing semantic
navigation

techniques mostly
rely on timeline

annotations.

linear editing (NLE) video software packages in particular,
there exist, of course, a multitude of specialized navigation
tools that allow to manage collections of multiple clips, nav-
igate between them, and jump to cue points or marked re-
gions in the timeline (Figures 4.1 and 4.2). Such tools, how-
ever, all rely on metadata or annotations that have to be
added to the video first—if one wants to navigate in a video
scene that has not been processed (mostly manually) in such
a way, they do not help. Moreover, they behave rather like
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EXCURSUS: DIGITAL VIDEO:
Technical Representation
If we strip away any encoding, digital video is usually represented as an or-
dered list of samples, the video frames. Each frame is an image, and usually
all frames in a video share the same size, pixel count, and color depth. Frames
may be stored in the form of differential images from neighboring frames for
more efficient encoding, but for the discussion at hand, we treat each frame
as an individual human readable picture. Like most time-based media, a dig-
ital video needs a sample rate value, which is stored together with the list of
frames and determines the temporal succession of how the frames are being
displayed.
Many container formats for digital video allow the storage of additional video
and audio tracks that are mixed down and played back simultaneously in the
player software. Here, we are only interested in video as a medium in itself.

Syntactic Structure
The support domain of the syntactic structure for any kind of digital audio is
time, which is why video is a time-based medium. As such, each point in time
is directly linked to a sample number with the sample rate as the connecting
factor. The spatial dimensions of the video frame act as a second syntactic
structure, but time is the one usually used for navigation.

Semantic Structures
Video is a rich medium in terms of possible semantic structures: these struc-
tures can range from simple constructs like the presence of unknown objects in
a scene of a surveillance video to abstract concepts like the social connections
between characters in a movie. In this spectrum also live movie plots, po-
sitional constellation of objects, color palettes, atmosphere and emotion con-
veyed through the content, information spaces, and many others depending
on the type and genre of the video.

the index in a book in that they can only represent labeled
single points in time or time ranges as objects of interest;
the time-based nature of the content itself is not reflected.
These tools are therefore less suited for ad hoc navigation,
and they need other good navigation tools to do the anno-
tations in the first place.

Other interfaces require no such annotations and use au- Event-based DOI
navigation systems
are still a research
topic in computer
vision.

tomated approaches, for example computer vision, to gen-
erate sets of possible navigation targets according to some
degree-of-interest (DOI) function. These methods include
domain specific event detection algorithms (e.g., [Ekin et al.,
2003; Lv et al., 2006]), detection of cuts and scene changes,
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Figure 4.1: Apple’s iMovie is a modern non-linear video
editing software package. Individual shots or scenes of a
longer video clip can be accessed directly, and markers can
be assigned to special points in time. Navigation inside a
single scene, however, still relies on a scrubbing technique
using the playhead in the timeline.

Figure 4.2: ChronoViz [Fouse et al., 2011] is a tool for the
annotation of events in time-based data, e.g., videos. Once
interesting points have been marked and annotated, they
can be easily accessed.
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recognition of certain movement patterns [Chen et al., 2004],
or even more generic search queries. While such ap-
proaches are close to our goal of semantic navigation, very
few of these systems have grown past the prototype stage.
Apart from cut and scene boundary detection algorithms,
most of them are not yet robust enough to be implemented
in standard navigation interfaces, and they often require
training in specifying the DOI function through query lan-
guages or user supplied target patterns.

For these reasons, most video navigation interfaces in me- Even for specialized
tasks, the timeline
slider is the dominant
interface.

dia players or even in NLE software packages are still lim-
ited to the standard controls mentioned above. If one is to
find the perfect frame for a cut, for the extraction of a still
frame at the right moment in the video, or for placing an
annotation, the timeline slider is still the way to go. This
is true, unfortunately, for most areas where frame-accurate
navigation is needed: video forensics, traffic or security
surveillance, live analysis of sport events, market research,
video editing, or video ethnography.

We will therefore first take a closer look at the timeline slider
as the dominant tool for such in-scene video navigation. It
is immediately clear that, in our model, this interface must
be structurally identical to the timeline slider interface for
audio navigation but with a different semantic structure of
the medium and thus a different overall semantic distance.

Again, if the navigation task is defined in terms of the syn- For tasks with
syntactic goals,
current interfaces
seem suitable at first
glance.

tactic temporal structure of the medium, the semantic and
syntactic structures coincide, and the semantic distance for
the timeline slider becomes small as a result: Navigating to
a frame that is, for example, four minutes and six seconds
into the video is a direct manipulation task with the time-
line. This is because what is modified with the slider—the
time—is the object of interest in this task (Figure 4.3).

Unfortunately, we can easily imagine that most relevant For tasks with
semantic goals,
current interfaces are
less helpful.

navigation tasks for the application areas mentioned above
are seldom formulated in terms of the syntactic structure.
If the goal is to analyze what is happening in the video,
to demonstrate a process, or to find a specific frame for an
event to be annotated, it is normally not possible to directly
express this in the abstraction of time and without referenc-
ing the content. We will come back to this problem and its
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Figure 4.3: Combined navigation interface model of a standard video timeline
interface in the context of a temporal navigation task. The conceptual layer of the
interface is associated with the semantic structure, which is part of the syntactic
structure. Thus, the semantic mapping is a simple fixed function that linearly
converts a time description to a frame number.

implications on the semantic distance of timeline slider in-
terfaces later in this section.

4.1.1 Analyzing the Syntactic Distance of
Slider-based Navigation and Selection
Interfaces

Before we discuss the semantic distance, it should be notedThe syntactic
distance of timeline

slider interfaces can
be large because of

granularity
mismatches.

that even the syntactic distance in slider interfaces as men-
tioned above can be surprisingly large. Although they are
sometimes lauded as the archetype of a direct manipulation
interface—which they really only are if the conceptual layer
deals with linear values as the objects of interest—timelines
and other sliders have several shortcomings. These become
evident every time a slider is used for any kind of selection
task, i.e., a task where a slider is used to pick one element
out of an ordered list of unknown length where only the
currently selected element or a local neighborhood of this
element is visible at the same time. Such tasks comprise
navigation in video and audio timelines, where the slider
selects one sample over the temporal sample domain, oper-
ating scrollbars, where the slider selects one document po-
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sition over a spatial domain or a discrete syntactic structure
(like pages in a multi-page PDF document), or numeric se-
lection like using a slider for volume control.

The first and most obvious problem is one of the control
granularity of the interface, which we have already dis-
cussed earlier (cf. 2.2.1 “Interface Model and Design Space”
(p. 42)). It is obvious that the control granularity of a se-
lection slider depends on the cardinality of the set of ele-
ments that the slider selects from: if, for example, the set of
elements is larger than the set of positions the slider can as-
sume, the slider is not an accurate selection or navigation in-
terface. Since we are mainly concerned with on-screen rep-
resentations of sliders, this number is, given a sufficiently
expressive input device (cf. [Ballagas, 2007]), equal to the
number of pixels the slider occupies. Thus, if the number
of frames in a video, for example, surpasses the number of
pixels on the slider, not every frame in that video will be ac-
cessible via the timeline interface (Figure 4.4, bottom). But
the control granularity can not only be too low but also too
high; using a slider that is several hundred pixels in size
to select an item from a set of small cardinality loses much
of the feeling of directness that direct manipulation inter-
faces are supposed to convey (Figure 4.4, top). It starts feel-
ing like a ‘wasteful’ interface suffering from an expressive
mismatch between the large control space of the UI and the
small target space. This problem is not new, of course, and
has been acknowledged for decades. Consequently, there
exists a large body of related work that deals with the mis-
match of the control and syntactic spaces.

The Alphaslider [Ahlberg and Shneiderman, 1994] is an early The Alphaslider
explores different
ways of adjusting the
control granularity of
sliders.

attempt to solve the closely related problem of selecting el-
ements in long lists using a slider-based interface. In an ex-
periment, Ahlberg and Shneiderman explore four different
designs of giving the user control over the granularity of the
syntactic mapping:

Their position interface allows users to select between one of
three different granularities by dividing the thumb of the
slider into three distinct click targets, each of which stands
for one of the three granularity modes (Figure 4.5). The
multi-scale timeline slider interfaces by Richter et al. [1999]
are a continuation of this idea.
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Figure 4.4: Different control granularities of a timeline slider for video naviga-
tion. Top: If there are less frames in a video than possible positions of the slider,
multiple positions navigate to the same frame; the control granularity is too high.
Bottom: If there are more frames in a video than possible positions on the slider,
some frames (blue) do not correspond to any position; the control granularity is
too low.

The scrollbar interface resembles the current implementa-
tion of scrollbars in many window systems; the thumb is
dragged for coarse navigation—fine grained navigation is
available by advancing through the list, one item at a time,
by repeatedly clicking on arrow buttons on either side of the
slider (Figure 4.6).

The acceleration interface couples the syntactic granularity of
the slider to the velocity at which the user drags the slider
thumb (Figure 4.7). This method is related to current adap-
tive C:D ratio approaches for controlling mouse cursors on
large screens (cf. [Casiez and Roussel, 2011]). We also use
a variant of this technique for an adaptive syntactic granu-
larity approach of our own video navigation interface 4.2.3
“Interactive Scoping and Trajectory Filtering”.

The micrometer interface extends the essentially one-
dimensional control space of the slider along a second spa-
tial axis: moving the pointer perpendicularly to the slider
while dragging its thumb changes the syntactic granularity
on a continuous scale (Figure 4.8). This technique has since
been refined by Hürst et al. [2004a; 2005; 2008] and is part
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Coarse MediumFine

Figure 4.5: Position interface of the Alphaslider by Ahlberg
et al. [1994]. Different click targets on the slider thumb ex-
plicitly select different control granularities.

Figure 4.6: Scrollbar interface of the Alphaslider by Ahlberg
et al. [1994]. The slider is a regular slider; the control granu-
larity depends on the cardinality of the set that is navigated
via the slider. For fine grained navigation (one item at a
time), the two buttons on the side can be used.

High Dragging Velocity

Low Dragging Velocity

High Control Granularity

Low Control granularity

Figure 4.7: Acceleration interface of the Alphaslider by
Ahlberg et al. [1994]. The control granularity is proportional
to the dragging velocity of the slider thumb.

of a number of current standard video and audio timeline
slider navigation interfaces, for example, on Apple’s iOS1

mobile operating system.

Popup Vernier [Ayatsuka et al., 1998] is an interface that Popup Vernier allows
users to enter a
mode where the
effector space is
temporarily zoomed
in.

uses a quasimode (cf. [Raskin, 2000]) to change the syntac-
tic granularity of spatial direct manipulation—linear slider
control as well as two-dimensional canvas panning—in a
slightly different way: Not only is the ‘gain’ of the syntac-
tic mapping changed for the input control but also for a lo-

1http://www.apple.com/iOS
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Figure 4.8: Micrometer interface of the Alphaslider by
Ahlberg et al. [1994]. The control granularity is proportional
to the y-offset of the cursor from the slider axis while drag-
ging.

cal neighborhood of the visual feedback. The method can
be compared to the vernier scale on common caliper tools,
hence its name. The advantage of the popup vernier is that
both input and output of the space to be manipulated are
effectively zoomed to achieve the desired effect while still
showing the context at its original scale. A related tech-
nique for video navigation based on pen pressure as the
quasimode has been proposed by Ramos et al. [2003]. We
have used a variant of this to allow users to control the com-
bined syntactic and semantic granularity in one of our own
video navigation interfaces (see 4.2.3 “Interactive Scoping
and Trajectory Filtering” (p. 162)).

Another approach to solve the control granularity mismatchOther approaches fill
the gaps in the

control granularity of
the slider by

temporarily switching
to rate-based

controls.

problem of timeline sliders is to approach the positional di-
rect manipulation concept of the slider in a more flexible
way. Combined rate and position controls, for example,
use the positional slider thumb as a visual indicator of the
current location but explicitly de-couple the manipulation
aspect by only allowing rate-based control. The rate is ei-
ther directly set by the user, as in the simple classic inter-
faces for time-based media that commonly feature fast for-
ward and rewind buttons. Or the rate is adjusted by an auto-
matic closed-loop control to make the position in the target
space asymptotically approach a target position in the con-
trol space. One early example of this technique is the FineS-
lider [Masui et al., 1995]; similar interfaces for time-based
media such as video and audio have been proposed, among
others, by Hürst et al. [2004b; 2006; 2008].
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Figure 4.9: Possible mappings 'syn between a timeline
slider and the syntactic structure of a video. The exact map-
ping is difficult to predict for the user, because it depends on
the ratio between the length of the slider and the duration
of the video.

A second problem with timeline sliders for time-based me- The control
granularity of slider
interfaces can
change unpredictably
depending on the
size of the UI and the
duration of the
medium.

dia navigation arises when we look at how these inter-
faces change when the navigable space (the duration of the
medium) changes: in most implementations, the slider does
not change at all to reflect the change in cardinality of the
navigation space! This behavior is inconsistent and unpre-
dictable; if, for example, for one video, moving the slider to
the right for 100 pixels means advancing by one minute in
the content, the same control gesture can mean advancing
by any other arbitrary amount of time, depending on the
total length of this video. Moreover, most media navigation
interfaces are resizable on the screen; changing the length
of the slider again modifies the mapping 'syn between the
position of the playhead and the syntactic structure of the
medium (Figure 4.9).

In our model, this means that even if we assume a syntac- Even for syntactic
tasks, the mapping
can be unknown or
change frequently.

tic navigation goal along the lines of “I want to navigate to
the timestamp of 00:02:40:23 in the video.”, thus assuming a
small semantic distance and an identity semantic mapping,
the syntactic distance is still non-negligible (cf. Figure 4.3).
The reason for this is that even such a syntactic navigation
goal is not directly visible—unless the slider is labeled with
the exact navigation target, which is unlikely. Thus, a user
cannot know to which position on the slider their naviga-
tion goal corresponds. This position can only be determined
if the combined mapping from the control space of the slider



100 4 Time-based Media: Video Scenes

short video /
long slider

long video /
short slider

m
ou

se
 p

oi
nt

er
 p

os
iti

on

sy
nt

ac
tic

 s
tru

ct
ur

e
(v

id
eo

 ti
m

es
ta

m
p)

sl
id

er
 p

os
iti

on

mouse pointer position

sl
id

er
 p

os
iti

on

slider position

vi
de

o 
tim

e 
(fr

am
e 

#)

video time

vi
de

o 
tim

e

se
m

an
tic

 s
tru

ct
ur

e
(v

id
eo

 ti
m

es
ta

m
p)

inverse combined mapping

'syn2

'syn1

[I � 'syn � I]

�1

'sem

Figure 4.10: Combined mappings from the control space to the semantic struc-
ture. Even in the case of a syntactic navigation goal and thus an identity semantic
mapping ('sem = I), the combined mapping is not easily reversible because of
the variable control granularity of the slider. Users need to know the inverse
mapping in order to project their semantic navigation target into the control
space.

via the syntactic structure of the medium ('syn) to the se-
mantic structure ('sem) is known and can be easily inverted
(Figure 4.10).

In other words, even for a task where the semantic andThe mapping
between slider and
medium has to be

learned by the user.

syntactic structures coincide, the combined syntactic and
semantic mapping of a timeline slider—the mapping that
holds between the effector space of the user’s control ges-
tures and their impact on the target space of the domain of
interest—is not generally discernible for the user but has to
be guessed or learned. This hurts both the feeling directness
of the interface [Hutchins et al., 1985] and the efficiency with
which it can be operated.

Interpreting this process of navigating with a timelineThis learning process
is costly in terms of

iterations through the
seven stages of

action.

slider using the model of Norman’s Seven Stages of Action
(cf. 2.1.2 “Activity and Interaction Models”) reveals that, be-
cause of the unknown combined mapping, the ‘correct’ ac-
tion sequence cannot be initially formed directly from the
intention—instead an ‘estimate’ action sequence has to be
devised and executed first. From the result of that initial
action the users can then, hopefully, deduce or learn the
combined mapping—usually through a number of itera-
tions through the seven stages—before they have a chance
to formulate an action sequence that finally allows them to
navigate to their goal.
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In his Diploma Thesis, Andreas Nett [2012] found that this Experimental
evidence suggests
that learning the
mapping is slow and
that some mappings
may even not be
learnable.

learning process has a significant impact on task perfor-
mance times even for very simple targeting tasks. He con-
ducted a Fitts’ law experiment where users were asked to
perform a number of such 1D-targeting tasks using a phys-
ical slider. Even for an identity mapping between effector
space and target space and with the tasks thus being identi-
cal in motor space, the movement times of participants were
significantly slower when the mapping function was un-
known in the beginning.

For more complicated, non-linear mappings Nett observed
that these mappings would not be learned at all. In such
cases, the navigation strategy changed and was completely
changed to a linear search using a fine-grained iterative pro-
cess of trial and error where the result of every control ges-
ture had to be evaluated and compared to the goal.

Generally, if the mapping is linear and known, users per-
form an initial ballistic control gesture, similar to what we
see with Fitts’s Law tasks, followed by a short homing
phase of closed-loop control behavior [Woodworth, 1899].
With an unknown mapping, users seem to formulate a se-
ries of linear mapping hypotheses that are refined over mul-
tiple iterations. If the real mapping is not linear, these hy-
potheses are always wrong, causing the iteration deltas to
become smaller, thus making the whole navigation process
inefficient and tedious.

What we can see from this, is that the complexity and dis- If the combined
mapping is unclear
the benefits of direct
manipulation are lost.

coverability of the combined mapping directly influences
the users’ navigation strategy in terms of the seven stages
of action. What could be a single, directed control gesture
in cases where the mapping is known and simple enough to
invert, becomes an iterative dead-reckoning task where no
absolute but only relative comparisons between the current
result and the goal are possible. Because of this problem,
the timeline slider—and any interface that does not directly
reveal its combined mapping—misses the full potential of
direct manipulation.

It should be noted that, so far, we have assumed a naviga- The situation may
become even more
difficult for semantic
navigation targets.

tion task that is concerned with the syntactic structure of the
medium only, causing the semantic mapping to be the iden-
tity. Even in this special situation where the semantic dis-
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Figure 4.11: Timeline slider video navigation interface in
the context of a purely syntactic task. Because of the vari-
able syntactic mapping, the control granularity is unknown,
and the syntactic distance in the interface remains large.

tance must be small, we have seen that the task is difficult
when using a timeline slider because of its hidden syntac-
tic mapping and the resulting large syntactic distance (Fig-
ure 4.11). If we now look at navigation tasks that include
content-defined navigation goals, we will find that these
problems get only more severe.

4.1.2 Analyzing the Semantic Distance of
Slider-based Navigation in Videos

Most navigation goals are not formulated in a syntactic way,
as discussed above: when we navigate in a video, we are
rather interested in finding specific content than numbersFor semantic

navigation tasks, the
semantic mapping

has to be learned as
well.

on a timeline. Timeline interfaces, of course, do not directly
support semantic navigation; it is thus required that, in ad-
dition to the syntactic mapping of the slider, a user knows—
or discovers on-the-fly—the semantic mapping from the
video’s semantic structure into its syntactic structure to suc-
cessfully navigate the video (Figure 4.12).

The problem is that due to its very nature, the semanticSince the semantic
mapping depends on
the content, it cannot

generally be known
or predicted.

mapping is entirely dependent on the content of the video.
It therefore can only be learned through rote memorization
of the content and, generally, not be predicted at all if the
content is unknown (Figure 4.13). For many videos that
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Figure 4.12: Combined navigation interface model of a standard video timeline
interface in the context of a semantic navigation task concerned with the location
of objects in the scene. The conceptual layer of the interface is associated with
the syntactic structure. To plan their input for reaching a navigation goal, users
must know the semantic mapping.

show ‘real world’ content, a limited prediction in a small
local temporal neighborhood of the current position is often
possible. If the current frame shows a person running from
the left side towards the center of the scene, we can predict
the semantic structure regarding the position of that person
in the scene relatively reliably for a small number of sub-
sequent frames. There is no way, however, to predict the
complete semantic mapping that would allow us to know
where that person would be located—or if it would be off
the screen—for every frame in the video.

One result of this problem is that the same control gesture With the mapping
being unpredictable,
so is the outcome of
any control gesture
on the timeline slider.

performed on the timeline slider can have entirely differ-
ent semantic meanings, depending on the content of and
the position in a video. The objects or people visible in a
scene at a certain point may exhibit different behaviors if
the slider is moved, say, one centimeter to the right: they
may move a short or long distance to the right, they may
move to the left, or not at all. The mapping between the
slider and the semantic structure thus may be the complete
opposite of a natural mapping.
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Figure 4.13: Combined mappings from the control space to the semantic struc-
ture for a navigation task concerned with object position. Possible mappings
are influenced by the syntactic ambiguities of the timeline slider and by the con-
tent defined semantic structure. Users cannot know the combined mapping but
through rote memorization.

Reiterating our argument about the seven stages of action
from above, we can therefore state that under a combined
mapping that is a concatenation of the (usually linear) syn-
tactic mapping of the timeline slider and the highly non-In this situation,

semantic navigation
with the timeline

slider is more of a
search task than a

selection task.

linear semantic mapping induced by the content of the
video, the whole navigation process easily degenerates to
an exhaustive search over the length of the video. Every
control input on the timeline slider maps to a change of po-
sition in the semantic structure with arbitrary granularity
(Figure 4.14) and possibly even in an unpredictable direc-
tion. Thus, no initial ballistic movement can be made to
rapidly close the distance to the navigation goal without
the need of closed-loop control, but the whole navigation
must be performed in fine-grained control movements, al-
ways cycling through all seven stages.

This unpredictability of the effects of any control input isUsing a timeline
slider is not direct

manipulation.
also the reason why video navigation using a timeline slider
with semantic navigation goals violates the basic principles
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Figure 4.14: Design space position of a timeline slider video
navigation interface in the context of a semantic navigation
task. Both the semantic and syntactic distance are large: The
syntactic mapping is unknown and variable due to the me-
chanics of the slider. The semantic mapping is unknown
and variable due to the nature of the content.

of direct manipulation. In direct manipulation interfaces,
“users can see immediately if their actions are furthering
their goals, and if not, they can simply change the direction
of their activity.” [Shneiderman, 1982]. Due to the non-
linearity and possible non-monotonicity of the combined
syntactic and semantic mapping, this claim does not hold
true for timeline slider-based video navigation. This fact is
also visible if we place such interfaces into our design space
for media navigation.

4.2 DRAGON, an Interface for Seman-
tic Video Navigation

To create a true direct manipulation interface for seman-
tic video navigation, we again have to find a way to make
the semantic structure directly accessible to the user. Mov-
ing through the four steps proposed in the theory chap-
ter 2.2.4 “Generating New Interfaces Using the Combined
Model”, we will illustrate our design and development pro-
cess for DRAGON, our direct manipulation video navigation
(DMVN) interface. In this chapter, we will lay special em-
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phasis on the third step of designing a suitable UI for se-
mantic navigation.

Parts of the material found in this section have already been
published in conference and thesis papers: The original in-
terface idea, its design, and the results of an evaluation with
users was published by the author et al. at CHI 2008 [2008].
Technical improvements and extensions to the algorithm
have been proposed by Mortiz Wittenhagen in his Diploma
Thesis [2008]. Work on interface-level solutions to DMVN
interaction problems has been done by Christian Brockly in
his Diploma Thesis [2009]. A number of experiments on
allowing users to control the semantic granularity of the
DRAGON system have been carried out by Alisa Novosad
in her Master’s Thesis [2012]. Anne Kathrein has developed
a simple semantic query language in her Bachelor’s Thesis
[2011] for providing a search interface based on the seman-
tic structure that DRAGON navigates. An analysis of the
necessity to embed aspects of the syntactic structure into the
semantic navigation in certain situations, and thereby creat-
ing more task-dynamic semantic structures, has been pub-
lished by the author and Moritz Wittenhagen at CHI 2012
[2012]. For his Bachelor’s Thesis, Dennis Lewandowski has
performed experiments to enhance standard tracking algo-
rithms with 3d-information about the scene gathered with
a Microsoft KinectTM2 depth camera [2011]. All thesis work
referenced above has been conducted under the guidance
of the author. These publications will also be again cited
explicitly in the text below, where it is applicable.

4.2.1 Finding a Conceptual Model

Many navigation tasks in videos require the user to findSemantic navigation
goals in video scenes

often concern the
locations or

constellations of
objects or parts of

the scene.

and move to a certain moment or, more precisely, frame
in a video where something of relevance happens. Such
tasks cannot, as already discussed above, be easily formu-
lated purely in the syntactic terms of playback time codes
or frame numbers—especially not a priori, before seeing and
learning the mapping between content and timeline. Often,
however, they can simply be expressed in terms of the ob-

2http://www.microsoft.com/en-us/kinectforwindows

http://www.microsoft.com/en-us/kinectforwindows


4.2 DRAGON, an Interface for Semantic Video Navigation 107

jects visible in the scene and their absolute or relative spatial
locations or constellations [Karrer et al., 2008].

Examples include video analysis in traffic surveillance, Many examples for
such semantic
navigation goals
exist.

sports, or security, but also video debriefing processes in the
training of various skills such as presenting, artistic perfor-
mance, and other physical activities. Typical tasks in these
settings are: Checking if a car entered an intersection while
the light was still red, checking for fouls such as handballs
or offsides in a soccer match, finding the moment where an
object is removed from the scene, or analyzing ones posture
and position on stage when rehearsing an important talk.
Other goals and requirements that can be similarly reduced
to the spatial relations of videographed objects also exist
in other fields. Behavioral researchers and video ethnogra-
phers create statistics over reactions of humans and animals
to selected stimuli, and often these reactions are observable
by spatial movement or gestures; and finding movement
patterns of people in reaction to products by means of video
analysis is also an important tool for market researchers
[Kathrein, 2011]. Likewise, medical researchers use videos
to investigate sleeping and other disorders [Babic, 2010] and
possible treatments.

What is common to all of these areas, is that the relevant
questions are answered by navigating to the locations in a
video where the objects of interest in the scene occupy a cer-
tain position or are located in a special way relative to each
other. This is not necessarily limited to a single object of in-
terest but often is concerned with the interplay of changing
sets of objects: In the soccer match example, the constella-
tion of two players on the field is important for offside deci-
sions, determining if a handball foul happened, requires to
observe the relative position of a player’s hand and the ball,
and for analyzing situations like that of the famous ‘Wemb-
ley goal’, we need to know the location of the ball in relation
to the goal line, a static part of the playing field. Therefore,
the conceptual model for the aforementioned tasks must in-
clude the absolute location in the scene of any object; from
this we can deduce the relative locations of any two objects
at any point in time in the video.

Following this argument, a suitable semantic structure that
covers the conceptual model of how we want to navigate
in the video can be defined by the union of the locations at
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each point in time for all objects in the video. This structureAs our semantic
structure, we propose
the space defined by
all in-scene locations

of a set of designated
objects.

is easy to imagine as the set of the motion paths of all objects
(cf. Figure 1.3). The motion path of an object, of course, is
in itself a function between the location of the object in the
scene and the time in the video at which it occupies this lo-
cation. Being able to navigate this semantic structure would
mean that we could take one object and find the state and
the relative position of all other objects in the video for ev-
ery position of our object. In the traffic light scenario de-
scribed above, for example, we could check the status of
the traffic light in the moment the car enters the intersection
by specifying the car’s location as on the intersection. This
semantic structure thus changes navigation in the medium
from when something happened, which we cannot know a pri-
ori, to where or in which context something happened, which is
usually already defined by our task.

4.2.2 Determine the Semantic Mapping

To realize navigation through the semantic structure de-The semantic
mapping for our

semantic structure is
really a set of

mappings and has to
be derived via its

inverse.

scribed above, we need to establish the semantic mapping
from the spatial representation of the motion trajectory of
every object in the video to the syntactic timeline. It is im-
mediately clear that this mapping not only is actually a set
of mappings—one mapping for each object—but also that it
is infeasible to be created manually, e.g., by annotating the
full trajectory for each object. We thus have to follow the
approach of establishing an initial mapping '�1

sem from the
syntactic into the semantic structure in an automated way
by means of algorithmic approximate extraction of the se-
mantic structure, as described in 2c “Generating New In-
terfaces Using the Combined Model”. This initial map-
ping then specifies the location of each object in the frame
for every point in time and is best defined separately for
each object. Because they can be visualized by the three-
dimensional motion path of each object, we call these object-
specific mappings the objects’ trajectories.

For each object, we can invert the mapping by performingEach object in a
scene defines its own

time-invariant
semantic mapping.

a reverse look-up in the trajectory and implicitly warp the
syntactic structure of the timeline to normalize the tempo-
ral progression through the video to the object (Figure 4.15).
This allows us to specify a number of objects and their ab-
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Figure 4.15: The inverse semantic mapping '�1
sem in DRAGON describes for each

object its spatial position in the scene over time. The semantic mapping itself can
be implemented as an inverse look-up of this function, allowing us to know the
time when an object occupies a certain position.

solute or relative positions to directly find the point in time
where this constellation is given and then directly navigate
there.

Unfortunately, the initial mapping '�1
sem is generally not

injective—an object may occupy the same spatial location in
the video at two or more points in time—, thereby making
its inversion over the entire image of the map mathemati-
cally impossible (Figure 4.16).

This problem can be circumvented, however, for most real- The initial mapping is
invertible over a local
neighborhood at any
point as long as the
object is moving.

world video material, because the trajectory of an object
usually can be divided into continuous segments where it
does not self-intersect. Thus, we can almost always de-
fine the inverse of the initial mapping over a local neigh-
borhood of the current temporal position in the video if the
object is actually moving. In cases where an object of in-
terest pauses, '�1

sem becomes singular even in a local neigh-
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Figure 4.16: Singularity problem of the inverse semantic mapping '�1
sem. Often,

objects occupy the same location in the scene at more than one point in time; in
these cases, '�1

sem cannot be inverted over its entire image. As long as the object
does not pause, however, we can construct a semantic mapping '̂sem over a local
temporal neighborhood.

borhood3, and other measures, which will be explained in-
depth below 4.2.3 “Object Pauses”, must be taken to enable
semantic navigation.

What is still missing at this point is, of course, how we canAcquiring the initial
mapping is difficult

because of tracking
inaccuracies and the

ambiguity of scope.

establish the initial mapping in the first place. Acquiring
the trajectory of an arbitrary object in a video, however, is
relatively difficult and primarily so for two main reasons:

• Object scoping
Defining the scope of objects of interest is difficult and
usually imprecise: If someone points at a person, we
do not immediately know if the person, the upper
torso, the shirt the person is wearing, or just the ab-
stract concept of ‘human being’ is meant to be desig-

3Mathematically, this can be explained by the implicit function theorem,
which allows to express relations as functions on local neighborhoods. If
an object pauses, the partial derivatives of the trajectory at this point do
not satisfy the conditions under which the theorem holds.
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nated. Likewise, objects can consist of multiple parts
that all move and behave differently, like the limbs
of a person jogging, that may split off and join again
later, like a cap coming off a bottle and being attached
again, and that may change in appearance over time.
Without an ontology, a closed systematic vocabulary
of all describable entities and the relations between
them, this scoping problem is very difficult to solve.
Unfortunately, such ontologies are infeasible to con-
struct for every video or even just for every genre of
video.

• Object tracking
The most basic requirement when we want to create
trajectories for all objects in a video, of course, is that
we can reliably track each object and find out where
it is located spatially at any given time. Also, in order
to create a consistent trajectory, we need to identify an
object even if it temporarily leaves the frame, is oc-
cluded behind other objects, or changes appearance.
Otherwise, a trajectory may be split up into two un-
related ones in these situations, reducing our ability
to express certain semantic navigation goals. Objects
may additionally exhibit different motion patterns on
different scales, which makes tracking more difficult:
A rolling soccer ball, for example, should have a dif-
ferent trajectory as a whole than any of the black spots
on the ball each individually have. Lastly, the trajec-
tory of an object that is tracked ‘correctly’ can exhibit
spatial variations of high frequency that—depending
on the task—may not be important for the semantic
structure. These last two points are, of course, also
closely related to the scoping problem above.

Both of these problems basically require that the physical Solving these
problems means
solving computer
vision in general.

structure of the scene can be determined from the frame’s
visible two-dimensional projection of the camera frustum.
This is one of the goals of computer vision, which is a large
research field of its own; solving this problem is naturally
out of the scope of this thesis. For our purposes, it suffices
to work around these problems using a number of assump-
tions and approximative approaches. These will still enable
us to navigate through the semantic structure of a video
with only small limitations. In the following, we will de-
scribe several of these techniques for creating sets of object
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trajectories in a given video scene and discuss their respec-
tive advantages and disadvantages.

One main distinguishing factor between these methods is toWe look at four
approximative
approaches to

establish the initial
mapping.

what extend and how they try to solve the computer vision
problem of recovering the structure of the depicted scene.
We therefore divide the set into four classes:

1. Generating object trajectories in a structure-agnostic
way.

2. Generating object trajectories by (partly and approxi-
mately) recovering the structure.

3. Generating object trajectories by measuring the struc-
ture at capture time.

4. Generating object trajectories by letting the user give
cues about the structure.

Generating Object Trajectories in a Structure-agnostic
Way

One of the simplest approaches of generating object trajec-As a first attempt, we
can ignore the

structure of the scene
and rely on pixel

tracking alone.

tories for a video scene is, somewhat surprisingly, to com-
pletely ignore the spatial structure of all objects and the
scene itself. If we assume that objects are not occluded and
if we neglect the wish to recognize reappearing objects and
create trajectories across scene cuts, an object’s trajectory
will usually be approximated very well by the trajectory of
any pixel on the object. The high spatial and temporal co-
herence of pixel clusters forming objects in a typical video is
the reason why single pixel tracking instead of object track-
ing produces adequate results. This reduced problem can
be solved more easily, for example, by using optical flow al-
gorithms.

Optical flow, a concept originally described by GibsonOptical flow is an
approach to estimate

the motion field at
every pixel in a

scene.

[1950], is a measure to describe the apparent motion field
of the content relative to the viewpoint between two im-
ages of a scene (Figure 4.17). Although the apparent motion
field can deviate quite drastically from the real motion in a
scene for certain cases (Figure 4.18), it generally gives good
motion estimates between two temporally adjacent frames
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Figure 4.17: Optical flow of a scene with forward motion. Figure adapted from
[Gibson, 1950].

for many, if not most, real-world scenes. Because of the rel-
ative simplicity of the problem and the wide availability of
algorithms to solve it, the uses of optical-flow-based mo-
tion estimation are manifold and include areas like robotic
control [McCarthy and Barnes, 2004], video segmentation
[Galic and Loncaric, 2000], or input devices [Ballagas, 2007].

Mathematically, we treat an optical flow field as a function V
from the spatial support domain of a video frame image—
the discrete two-dimensional pixel space—into the continu-
ous space of two-dimensional spatial displacements:

V : Z2 ! R2


x
y

�
7!


u(x, y)

v(x, y)

�

To obtain this function for a pair of video frames I(x, y, t)
and I(x, y, t + 1), we make three assumptions:

• Constancy of brightness: the projection of a point in the
first frame looks identical to its projection in the sec-
ond frame.



114 4 Time-based Media: Video Scenes

Figure 4.18: Optical flow when the apparent motion deviates from the true mo-
tion in a scene. The apparent motion can be ambiguous: the pole rotates but the
stripes may appear as moving in the vertical direction. Similarly, the optical flow
cannot be uniquely defined.

• Small motion: points do not move very far from one
frame to the next. This assumption can be relaxed by
iteratively computing and refining the flow through a
scale space representation of the frames.

• Spatial coherence: the flow field is smooth in a local
neighborhood.

The first assumption can be formalized as

I(x, y, t) = I(x + u(x, y), y + v(x, y), t + 1).

Approximating the right hand side of the equation by its
first order Taylor expansion yields

I(x, y, t) ⇡ I(x, y, t) +

�

�x
I · u(x, y) +

�

�y
I · v(x, y) +

�

�t
I,

which can be written as

(rI)

T · V + I
t

= 0.
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We see that we can get one equation in two unknowns for The flow field
equation is not
uniquely determined,
thus requiring
additional
constraints.

each pixel. This is an under-determined system that has
no unique solution, a problem that is known as the aperture
problem in the context of optical flow. The constraints nec-
essary to solve for V can be gained from the two remaining
assumptions; a number of flow algorithms have been devel-
oped that do so in different ways: Lucas and Kanade [1981]
proposed a version that calculates a normalized weighted
sum of flows over a spatial window, thereby creating an
over-determined system of brightness constancy equations
and then finding a solution through least squares optimiza-
tion. Other algorithms employ global smoothness con-
straints on the flow field [Horn and Schunck, 1980] or ad-
ditionally try to minimize the error of the approximation by
delaying the linearization to a later point in the algorithm
[Brox et al., 2004].

For each pair of subsequent frames in a video, we can calcu- Object trajectories
are created by
following the flow
volumes in both
temporal directions.

late two different flow fields V : one in forward direction
�!
V

and one in backward direction
 �
V (Figure 4.19). To generate

a pixel trajectory from a set of dense flow fields for a video
scene, we can use a simple dead reckoning approach: from
a single seed pixel p

t0 = (x
t0 , yt0)

T in the current frame at
time t0 we follow the respective flow fields in both direc-
tions, accumulating the displacement vectors from the field
onto the pixel’s coordinates:

p
t0�1 = p

t0 +

 �
V

t0(pt0)

p
t0+1 = p

t0 +

�!
V

t0(pt0).

This step is then recursively applied to the two resulting lo-
cations using the next flow fields in forward and backward
directions

p
t0�n

= p
t0�n+1 +

 �
ˆV

t0�n+1(pt0�n+1)

p
t0+m

= p
t0+m�1 +

�!
ˆV

t0+m�1(pt0+m�1).
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video time
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b

Figure 4.19: Optical flow between adjacent frames of a video. Each pixel in a
frame is assigned a displacement vector that points to the location of the pixel in
the neighboring frame. This is done in both directions.

Note that the result of any evaluation of the flow functions
V are two-dimensional vectors in R2, but the input domain
of these functions is Z2; we thus have to construct wrapper
functions ˆV by bi-linearly interpolating between the four
nearest neighbors in Z2:

ˆV : R2 ! R2


x
y

�
7! dye � y

dye � bycH1(x, y) +

y � byc
dye � bycH2(x, y),

where

H1(x, y) =

dxe � x

dxe � bxcV (bxc, byc) +

x� bxc
dxe � bxcV (dxe, byc)

H2(x, y) =

dxe � x

dxe � bxcV (bxc, dye) +

x� bxc
dxe � bxcV (dxe, dye)

In this way, starting from the initial seed pixel position p
t0 ,

we get a list of sub-pixel precise coordinates for the point
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V

V

ˆV

(x, y)

(bxc, dye)
(dxe, dye)

(dxe, byc)

(bxc, byc)

p
t0

t0t0 � 1t0 � 2

Figure 4.20: Bi-linear interpolation ˆV of the optical flow function V allows the
flow field to be evaluated at non-integer coordinates (x, y). This is necessary
to recursively construct the trajectory of the seed pixel p

t0 through the video
volume.

in every frame (Figure 4.20). This list then represents the
trajectory of the seed pixel through the video volume.

Modern optical flow algorithms produce very precise flow Optical flow can
create long, stable
trajectories with high
precision.

fields that allow to follow a pixel—and thus creating the il-
lusion of tracking an object—over a large number of frames,
which is important for creating long, connected trajectories
of objects through a video scene. Also, the high density and
sub-pixel precision of these flow fields gives us the ability
to track very small objects that only consist of several pix-
els (cf. Figure 4.21). For the first prototype of our seman-
tic video navigation system, DRAGON [Karrer et al., 2008],
we therefore employed an adaptation [Weiß, 2007] of Brox’s
flow algorithm [Brox et al., 2004].

While this or very similar structure-agnostic approaches Optical flow also has
a number of
weaknesses.

of generating object trajectories for the semantic mapping
have been used in our early versions of DRAGON and other
existing DMVNs [Dragicevic et al., 2008], there are still a
number of disadvantages, some of which we have already
mentioned above:
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Figure 4.21: Optical-flow-based tracking of small objects in videos. The pigeon
covers less than 30 pixels in total (left); still, the optical flow field describes its
motion very precisely (right). Faster but less dense tracking methods have prob-
lems in such cases—the pigeon, for example, does not contain a single SIFT fea-
ture.

• Object Occlusion
If the object of interest is occluded temporarily, the
pixels belonging to the object cannot be tracked
through the occlusion with optical flow. Partially oc-
cluded objects can be tracked as long as the trajectory
of the seed pixel stays clear of the occluded area. Oth-
erwise, the tracking breaks down; or, even worse, as
the optical flow field is determined by the foreground
object, the resulting trajectory will switch over to the
occluding object.

• Aggregate Objects
Objects that consist of multiple parts, which may ex-
hibit differing movement patterns, are handled rel-
atively gracefully by optical flow tracking. Because
only pixels are tracked, the trajectory implicitly fol-
lows a ‘leaf’ node of the aggregate object, thus repre-
senting the combined movement of both scales (Fig-
ures 4.22 and 4.23). There is no way, however, to ex-
plicitly state that the trajectory should only show the
movement of the whole object.

• Apparent vs Real Motion
As explained earlier, optical flow only represents the
apparent motion field in a two-dimensional projection
of a potentially three-dimensional scene—the real mo-
tion of the objects cannot be recovered with this ap-
proach. This limitation is, however, unproblematic
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Figure 4.22: Trajectory of the person’s body as tracked with
optical flow. The steps of the stairway can be clearly seen in
the person’s motion.

Figure 4.23: Trajectory of the person’s hand as tracked with
optical flow. In addition to the motion of the body (Figure
4.22), the trajectory shows the swing of the arm.
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for semantic video navigation, because we expect the
navigation goal to be specified in the projected space
as well.

• Accuracy vs Speed Tradeoff
A disadvantage of this kind of dense optical flow es-
timation and tracking is that the process is computa-
tionally expensive. For an actual implementation of a
semantic video navigation interface, the optical flow
fields for all frame pairs in a video have thus to be
calculated in an off-line pre-processing step for the se-
mantic mapping to be available at navigation time. It
is possible to speed up the process up to interactive
rates by only calculating a sparse optical flow field—
for example, by finding and tracking scale invariant
feature transform (SIFT) points [Lowe, 2004]—and in-
terpolate between the flow vectors. Some existing
DMVNs, such as DimP [Dragicevic et al., 2008], fol-
low this approach at the cost of losing tracking accu-
racy and thus the ability to create trajectories for very
small objects (cf. Figure 4.21). On the other hand, there
are also tracking algorithms that are more precise than
dense optical flow, but which take even longer pre-
processing times. One example is the particle track-
ing [Sand and Teller, 2006] method employed in the
DMVN by Goldman [2008].

Generating Object Trajectories by (Partly and Approxi-
mately) Recovering the Structure

Some of the problems listed above can be alleviated if
the geometric structure of the scene is—at least partially—
estimated from the pixel content of the frame sequence. In
the context of video navigation, two methods have been
proposed by Kimber et al. [2007] and Goldman [2008], and
one has been developed at our own group by Moritz Wit-
tenhagen [2008] in his Diploma Thesis.

In their Trailblazing video surveillance tool, Kimber etTrailblazing tracks at
the object level and
can handle simple
unary and binary

operations.

al. [2007] create a structure of the scene by detecting peo-
ple, tracking their bounding rectangle, and classifying the
interactions between them into five distinct classes. The
video frames are first segmented per-pixel into background
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and foreground by employing a Gaussian mixture model
approach [Stauffer and Grimson, 2000] and then comparing
neighboring frames using a fast normalized cross correla-
tion [Lewis, 1995]. The interactions between the tracked ob-
jects are then classified and labeled as appearing, disappear-
ing, merging, splitting, and continuing. Objects are identified
for association across occlusions by a Bayesian segmenter
based on appearance features. The system is able to create
an integrated semantic structure over a number of synchro-
nized video feeds (e.g., multiple security cameras in a build-
ing) and, unlike other DMVNs, even allows the underly-
ing spatial domains of the semantic structures of each video
feed to be combined into a joint world-coordinate space.
For this feature, all cameras must be fixed, and the extrin-
sic calibration of each camera must be known in the world-
coordinate space beforehand. The integration is handled by
the dynamic object tracking system (DOTS) developed at FX-
PAL [Girgensohn et al., 2006]. The results are finally entered
into a database for lookup during the actual navigation in-
teraction.

Trailblazing is built to handle partial and full occlusions
of objects by maintaining an identity of the tracked ob-
jects, which is an advantage over the structure-agnostic ap-
proaches discussed above. The problem of object scoping
and aggregate objects is mitigated by the fact that trail-
blazing is designed to track objects only at the coarsest
scope and represents them through their bounding rectan-
gle. Also, certain scoping problems are directly addressed
by explicitly including object behaviors like merging and
splitting into the tracked object model. In terms of accu-
racy and speed of their method, Kimber et al. give no in-
formation in their paper, but the system architecture, which
depends on a relational database to hold the information
about the objects and their interaction classes, suggests that
Trailblazing, too, requires an off-line pre-processing step.

Another example for a system that estimates part of the Goldman’s DMVN
employs particle
tracking, a precise
but very expensive
algorithm.

scene’s structure is the video navigation and processing
tool by Goldman et al. [2008]. Instead of tracking each
pixel, their system is using a computationally expensive al-
gorithm that tracks particles to create a semi-dense field of
temporally very stable and consistent trajectories [Sand and
Teller, 2006]. Up to that point, this approach is comparable
to the optical flow method described above, only with the
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difference of sacrificing computational efficiency for added
accuracy of the trajectories.

In a second step, the particle trajectories are clustered inUsers need to give
hints about the

structure of the scene
by specifying the

number of particle
clusters.

affine motion space using the k-means clustering algorithm;
the parameter k, the number of clusters, is tuned by hand.
The resulting clusters each contain particles that follow a
similar affine motion model, and thus each approximately
represents either a part of the background or a part of a
moving object in the scene. This set of particle clusters is, of
course, only a very rough representation of the structure of
the scene, but the technique helps to overcome some prob-
lems of object scoping, partial occlusion, and tracking under
lighting changes.

DRAGONEYE [Wittenhagen, 2008] is our own attempt at cre-DRAGONEYE models
object motion and

camera motion
separately.

ating a trajectory algorithm that reconstructs parts of the
scene structure by using two models: one for the camera
motion and one for the shape and motion of objects. The
main motivation for developing a new tracking system was
to allow better occlusion handling than our optical flow
approach, while at the same time increasing the run-time
performance to a point where the semantic mapping can
be constructed without the need for a pre-processing step.
In most cases, the motion of the camera is not part of the
semantic structure—first person perspective videos are an
exception—, so we need a camera model that is separate
from the object motion model to treat these two possible
motion components in a scene differently. This factoriza-
tion of the absolute motion of objects in the scene into cam-
era motion and relative object motion is also beneficial from
an interaction standpoint for the final navigation user inter-
face, as we will see later in 4.2.3 “Designing the User Inter-
face for Semantic Video Navigation”.

The DRAGONEYE algorithm works as follows: In a firstThe models are built
from SIFT tracking

data.
step, SIFT features [Lowe, 2004] are calculated for every
frame, and an affine camera motion model is built by es-
timating background plane homographies from the largest
affine motion cluster of matched SIFT points in each ad-
jacent pair of frames. The SIFT algorithm is executed on
the GPU using an implementation by Wu [2006] for added
performance. For the homography estimation, we use the
OpenCV [2000] implementation of the direct linear trans-
form (DLT) algorithm and suppress the influence of out-
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liers using our own implementation of the random sample
consensus (RANSAC) algorithm [Fischler and Bolles, 1981].
The camera motion model is then used to warp all frames
for each scene of the video to a single common image plane.

From this step on, for each object of interest in the scene, DRAGONEYE learns
a set of feature
points.

a ‘bag-of-points’ model is learned, and a trajectory is gen-
erated on-the-fly (cf. Figure 4.24). Similar to the optical
flow approach detailed above, a single point on an object
of interest serves as a seed point from which the trajectory is
‘grown’ in both directions (Figure 4.24 (a)). In a small ra-
dius around the seed point, SIFT points that are believed
not to belong to the background—according to the already
generated background motion model—are added to the ob-
ject’s bag-of-points (Figure 4.24 (b)). These points are stored
together with a weighting score, which increases over time
if the point stays compliant with the model, and the spa-
tial offset vector between the SIFT point and the seed point.
This model and the estimated object position are then prop-
agated and adjusted in both directions through the video.

For each next frame, the algorithm tries to match all SIFT The feature points in
the model determine
the location of the
object through a
voting scheme.

points in the model to points in the new frame. The match-
ing pairs of points with a displacement matching the back-
ground motion are, again, ejected from the model. Each re-
maining match then votes for the new position of the object
indicated by its stored offset vector (Figure 4.24 (c)). This
approach of finding an object in an image through offset-
vector voting of feature points is conceptually very simi-
lar to a generalized Hough transform [Ballard, 1981]. The
points are clustered spatially by their voted-for positions,
and the clusters are weighted by the number, score, and
length of the offset vector of all points contained in each
voting cluster. By this weighting, we ensure that the voted-
for position of a cluster is considered a good estimate only
if it is supported by:

1. many SIFT features,

2. by features that have contributed to earlier iterations
of the model and thus have a higher chance to repre-
sent a distinguishing optical feature on the object, and

3. by features that are close to the tracked center of the
object.
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The object’s position in the new frame is finally determined
by interpolating the predictions of each point in the best
cluster.

Afterwards, all new SIFT points that have been detected inThe model is
evaluated and

updated in every
frame.

the frame and that do not have a match in the preceding
frame are analyzed. If they lie inside an ellipse determined
by the point cloud of the winning cluster, they are added to
the bag-of-points model (Figure 4.24 (d)). Existing points in
the bag have their scores increased if they were part of the
winning cluster. Those that were not part of the cluster have
their scores decreased; the same happens to those points
that could not be matched to any SIFT feature in the current
frame. Then, the next frame is loaded and processed in the
same way. The object’s trajectory is continuously formed by
appending the position estimates for each frame.

If at any point in time not enough points can be matched toIf the model fails, a
color-histogram-
based CAMShift

tracker takes over
temporarily.

ensure a clear vote for the position of the object, the tracking
is suspended for this frame. Because this mostly happens
in cases of extreme motion blur where it is difficult to find
strong SIFT points, a color-space-based CAMShift tracker
[Comaniciu and Meer, 2002; Comaniciu et al., 2003] is run in
parallel and takes over if that situation arises. In every fol-
lowing frame, an attempt is then made to re-start the DRAG-
ONEYE tracker in that direction using the position currently
predicted by the CAMShift tracker as the new seed. A more
detailed description of the algorithm and its mathematical
background can be found in [Wittenhagen, 2008].

The main advantages of using the DRAGONEYE algorithmDRAGONEYE trades
some precision for

greatly improved
speed and

robustness.

to create the trajectories of objects in the video scenes are
its ability to process videos taken with a non-fixed cam-
era setup, its resistance to partial and full occlusions even
over multiple frames (Figure 4.25), and its relative compu-
tational efficiency when compared to dense optical flow or
particle tracking. Since aggregate objects are not explicitly
modeled, it is difficult to track specific parts of such objects;
as soon as the object exhibits a similar motion in multiple
of its constituent parts, features of other parts than the ini-
tially specified are learned and integrated into the model,
which usually results in the object being quickly tracked as
a whole. Following small motion details with high spatial
frequencies is problematic for the same reason. Although
DRAGONEYE employs two tracking approaches in paral-
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Figure 4.24: The DRAGONEYE algorithm: Starting from a single seed point (a),
SIFT points in the neighborhood are collected into a bag-of-points model (b). In
the next frame, corresponding SIFT points are found; the offset vectors to the
original object center are applied, each voting for a new object position (c). The
highest scoring vote cluster is accepted as the new object position, new SIFT
points in the vicinity are added to the model, and points with low scores are
removed from the model (d).

lel for increased robustness, it is much faster than any of
the other trajectory generating methods discussed so far. If
tuned for a tracking quality that is comparable to that of
DRAGON [Karrer et al., 2008], exceeding that of DimP [Drag-
icevic et al., 2008], and just short of that of Goldman’s DMVN
[2008], the algorithm achieves a speedup factor of 58 over
DRAGON’s optical flow approach, thus making interactive
operation without pre-processing possible. The main rea-
son for the performance gain is that only a sparse set of
features are detected in each frame and only those in the
vicinity of the tracked object are actually considered for fur-
ther processing. Another benefit of this method is its im-
proved scalability with video resolution, following a less
than quadratic curve (see [Wittenhagen, 2008], p.85).
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initial

anchor point

Figure 4.25: DRAGONEYE compared to other tracking tech-
niques for DMVNs in the situation of object occlusion.
Both dense (DRAGON) and sparse (DimP) flow estimation
techniques are susceptible to losing the object; DRAGON-
EYE’s model-based approach is much more robust. Image
adapted from [Wittenhagen, 2008]

Generating Object Trajectories by Measuring the Struc-
ture at Capture Time

The approaches for estimating parts of the geometricEven better
trajectories could be
created if the scene

structure was
completely

determined.

scene structure discussed above help to generate better
trajectories—even through phases of occlusion of objects or
optical sampling artifacts like motion blur. They therefore
allow us to establish a more precise semantic mapping than
the structure-agnostic methods, and some even do so at
greater run-time efficiency. Still, it seems a valid argument
that this idea can be pushed even further towards com-
pletely recovering the scene geometry and thus towards
a solution of the object scoping and spatial trajectory fre-
quency problems. Finding suitable ways to recover the
structure of uncalibrated video scenes, however, has long
been an unsolved problem and still is an active research area
of computer vision (cf. [Hartley and Zisserman, 2003]).

With the relatively recent advent of available hardware toDepth measuring
cameras can give

reliable hints about
the geometric

structure.

acquire not only a full color shot of a scene but also an ac-
companying depth map, this situation may be remedied in
the near future. Devices like the Microsoft KinectTM4 now
allow such capturing of videos and geometry at the same
time while being affordable and easily obtainable. In the
next years, we may even see standardized video formats

4http://www.microsoft.com/en-us/kinectforwindows

http://www.microsoft.com/en-us/kinectforwindows
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that include a depth track like most videos today include
audio tracks. We hypothesize that, with the geometry infor-
mation these depth cameras provide, standard image space
tracking algorithms like the ones described above could
be improved in terms of both speed and accuracy; object
scoping, occlusion, and interactions could be detected and
modeled much better using the depth map data. First ap-
proaches in this direction, for example, [Izadi et al., 2011]
and [Newcombe et al., 2011], are certainly promising.

We conducted a formative study to gain insight into the pos-
sibilities of adding depth channel information to textbook
tracking algorithms. The study was carried out by Dennis
Lewandowski in the context of his Bachelor’s Thesis [2011]
under the guidance of the author. Two different approaches
were tested; both were extensions to the OpenCV [2000] im-
plementation of the CAMShift [Comaniciu et al., 2003] algo-
rithm, where we injected the depth information at different
stages into the processing chain.

The first includes the depth channel into the color histogram Augmenting
CAMShift histograms
with an additional
depth channel can
help disambiguating
similar colors.

as another independent color component. The mathemati-
cal structure of the algorithm allows, in theory, to work on
an arbitrary amount of data channels as long as a number
of assumptions hold: for example, that the object can be
characterized by a histogram over these channels and that
directed distances in the combined histogram space can be
defined. While this naive modification of the algorithm will
clearly have some drawbacks—the depth value of an object
in the scene already violates the constraint that it should be
characteristic for the object if it moves from the back to the
front of the scene—it can help us to understand if and how
the added depth component changes the algorithm in oc-
clusion situations or when objects have similar colors.

The second approach uses the depth channel to find the Using the depth
channel to separate
object from
background can
improve the
performance of
CAMShift.

boundaries of the tracked object in the histogram creation
stage of the original CAMShift algorithm. It thus allows to
classify the pixels in the selected region of interest (ROI) into
pixels belonging to the object and pixels belonging to the
background; the color histogram can then be defined us-
ing only pixels that have been classified to lie on the object
while the background pixels are being masked out. Addi-
tionally, the same mask can be used to reject areas in the
histogram’s back projection that indicate a high probability
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of the object due to image noise but are in the wrong depth
range [Lewandowski, 2011].

Lewandowski evaluated both techniques with eight differ-Both approaches
could be shown to

enhance CAMShift
tracking, but both still

have drawbacks.

ent videos and showed that for most scenes the tracking
performance of the standard CAMshift algorithm without
depth information could be significantly enhanced by ei-
ther of the depth-augmented versions. Especially the sec-
ond approach generated promising results, while the first—
as already predicted above—did not improve the tracking
if the object significantly changed its position in the scene
along the optical axis of the camera. A full report of the re-
sults and detailled explanations of the data can be found in
Lewandowski’s Bachelor’s Thesis [2011].

This approach of using advanced hardware to measure theFurther research is
necessary to

integrate depth
information with

standard tracking
algorithms.

scene geometry at the same time as capturing the video it-
self seems very promising. The benefits that we can expect
from this or similar techniques include better handling of
occlusions, resolution of object scopes, and better tracking
in difficult lighting situations. Extending other standard al-
gorithms than CAMshift through depth data, for example, a
depth-discontinuity respecting optical flow like the one de-
veloped by Weiß [2007], remains for future work. Similarly,
integrating the depth-enhanced tracking into our existing
DMVN algorithms [Karrer et al., 2008; Wittenhagen, 2008]
is yet to be done.

Generating Object Trajectories by Letting the User Give
Cues About the Structure

The fourth and last method to generate the object trajecto-
ries for establishing the semantic mapping that we will dis-
cuss here, is to offload the burden of giving hints about the
scene structure to the user. While at first, this sounds like an
idea which is contrary to a number of usability concerns, we
argue that keeping the user ‘in the loop’ by giving them this
bit of additional control can actually be beneficial if the re-
sulting trajectories are closer to the user’s conceptual model
of the task at hand.

Goldman’s particle-tracking-based DMVN [2007; 2008], for
example, allows users to paint over the object of interest
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in a frame of the video, thus allowing the particle cluster- In Goldman’s DMVN,
users have influence
on the particle
clustering by making
more expressive
object selections.

ing algorithm (cf. 4.2.2 “Generating Object Trajectories by
(Partly and Approximately) Recovering the Structure”) to
merge the clusters that belong to the object. This reduces
the tendency of objects to fall into multiple clusters. Simi-
larly, the initial selection of an object of interest in DRAG-
ONEYE [Wittenhagen, 2008] can optionally accept not only
a single point location but also a bounding box to obtain a
better estimate about which feature points to include in the
object’s bag-of-features model (cf. 4.2.2 “Generating Object
Trajectories by (Partly and Approximately) Recovering the
Structure”). Both are examples where users provide extra
information about the structure of the scene through more
complex selection mechanisms; and in both cases the infor-
mation is used to generate trajectories that better reflect the
users’ intent.

In her Master’s Thesis, Alisa Novosad [2012] formally an- Novosad coalesces
multiple single-pixel
trajectories inside a
bounding box
selection for added
robustness.

alyzed the effect such a bounding box or paint-over selec-
tion of objects has on the generated trajectory in contrast to
single point object selections like we use in DRAGON. We
developed a version of the DRAGON DMVN for this pur-
pose where multiple seeds can be inserted into the optical
flow field at the same time, generating multiple pixel tra-
jectories simultaneously. An area that has been selected by
the user through either of the above techniques is stochasti-
cally sampled and optical flow trajectories of the individual
pixel samples created. These trajectory fragments generated
from each sample are then clustered in affine motion space
and fragments belonging to the background rejected. The fi-
nal object trajectory is a weighted average of the remaining
foreground trajectory fragments. Unlike Goldman’s cluster-
ing approach [2008] that tries to group all particle traces in
the frame, this localized clustering has the advantage that
the number of clusters can be limited to two—foreground
and background—, better justifying the use of a simple k-
means algorithm with a fixed number of clusters. Novosad
showed that, with her approach, the additional selection in-
formation supplied by the user considerably increases the
tracking robustness of the optical flow tracking in the pres-
ence of input noise [Novosad, 2012] (Figures 4.27 and 4.28).

This result shows that such methods that rely on user-
defined structural cues can help with improving the track-
ing quality. The other aforementioned problems of scop-
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Figure 4.26: Two sample videos used in the experiment by
Novosad. The synthetic test video shows two non-convex
polygons—a frame and a star—that perform circular mo-
tions. The real test video shows a soccer ball rolling through
the scene. Source: [Novosad, 2012]

Figure 4.27: Average point wise distance between the gen-
erated trajectories and hand labeled ground truth data for
a synthetic test video (Figure 4.26) for point and bounding
box selections. In both cases, the trajectory deviates more
strongly from the ground truth for less precise selections
(simulated by AWGN overlaying the location/size of the
selections). The overall error is much smaller with the area
selection techniques. Source: [Novosad, 2012].
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Figure 4.28: Average point wise distance between the gen-
erated trajectories and hand labeled ground truth data for a
real test video (Figure 4.26) for point and bounding box se-
lections. In both cases, the trajectory deviates more strongly
from the ground truth for less precise selections (simulated
by AWGN overlaying the location/size of the selections).
The overall error is much smaller with the area selection
techniques. Source: [Novosad, 2012].

ing and occlusion are also mitigated: Scoping is changed Allowing users to give
structural cues
improves DMVN
tracking in terms of
semantic scoping,
robustness, and
trajectory quality.

from an implicit mechanism of the tracking algorithm to
something the user does on her own accord by selecting
the relevant parts of an object. This is ideal, because in
this way, the generated trajectory is much more likely to
represent a semantic mapping into the ‘correct’ and there-
fore task-relevant semantic structure of the medium. At
the same time, the averaging or smoothing that happens
in all algorithms above, when areas are selected instead of
mere points, often leads to a much better trajectory repre-
sentation of objects with strong internal motion like, e.g.,
the rolling soccer ball in Figure 4.26. Excessive high spa-
tial frequency motion in the trajectories that is caused by
noise naturally occurs to a lesser degree as a side effect. This
smoothing effect, however, is implicit and thus cannot be
controlled by the user except through the selection of larger
or smaller regions, which may be a disadvantage. The same
averaging mechanism also helps to track objects across par-
tial occlusions, whereas full occlusions remain a problem
that can only be solved by building up a stateful model of
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the scene structure as described in some approaches above
(cf. 4.2.2 “Generating Object Trajectories by (Partly and Ap-
proximately) Recovering the Structure”).

All these techniques, of course, require the interaction to be
adapted to the extended information input needs of the al-
gorithms. As such, they are directly tied in with the design
of the interface; we will discuss the implications regarding
the interaction in the section 4.2.3 “Interactive Scoping and
Trajectory Filtering” below.

4.2.3 Designing the User Interface for Seman-
tic Video Navigation

After we have identified a suitable conceptual model for the
users’ task and facilitated functional access to the accord-
ing semantic structure of the medium by establishing the
semantic mapping, we can now design the interface and
interaction technique that allows the users to semantically
navigate a video. We will first describe how the interac-
tion works across most existing DMVNs, and then analyze
how each of these systems solves some common interaction
problems that arise during semantic video navigation. In
this context, we specifically discuss the solutions that we
have developed for our DRAGON DMVN system.

DVMN Interfaces and Interaction Techniques

If we recall the setting outlined at the beginning of thisDMVNs must allow to
specify at least an

object and its target
location.

chapter, our goal was to allow semantic navigation through
specifying the spatial configuration of an object of interest
inside the video scene. Naturally, any interaction technique
that serves to accomplish this must allow the user to specify
at least two things: it must be possible to indicate the object
of interest through some selection mechanism, and it must
be possible to express the desired spatial location of this ob-
ject, either as an absolute position or in relation to another
object in the scene.

We can easily see that these two information needs for the
semantic navigation user interface are exactly fulfilled by
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standard direct manipulation dragging interfaces, support- This is compatible
with standard direct
manipulation
interfaces.

ing our arguments regarding the suitability of direct manip-
ulation for semantic navigation interfaces from the theory
chapter (2.2.3 “Combined Model” (p. 50)). Consequently,
such a simple point-and-drag interaction technique is em-
ployed in most DMVNs ([Kimber et al., 2007; Dragicevic
et al., 2008; Karrer et al., 2008]):

First, the user clicks on the object of interest, thereby select- After selecting an
object, its trajectory is
generated as a list of
time-space tuples.

ing one of the set of possible object trajectories that repre-
sent the semantic mapping functions.As explained above,
there exist a number of valid approaches of how this single-
point selection can be interpreted and how a trajectory is
generated from this information—injecting a trajectory seed
at the pixel coordinates for the current frame into the optical
flow volume and growing the trajectories in both directions
through bi-directional flow vector interpolation is what we
use for the standard implementation of DRAGON. Indepen-
dent of the technique to generate the mapping, the resulting
trajectory can be represented as an ordered set T of (t

f

, t
p

)-
tuples that indicate the position t

p

= (x, y) of the object for
each frame time t

f

of the video scene. The trajectory can op-
tionally be visualized as a path that is overlaid on the video
by projecting the three-dimensional structure onto the two-
dimensional X ⇥ Y -plane of the frame (Figure 4.29). We
will discuss different ways of visualizing the trajectory later
in section 4.2.3 “Visualization Options”.

After the object has been clicked on and its trajectory has While dragging the
object, the semantic
mapping determines
the correct frame to
display.

been generated, the user can now specify its desired spatial
location by dragging the object along its trajectory. This is
the point where the semantic mapping is needed to asso-
ciate the correct video time or frame number with each new
dragging event location: While the object is being dragged,
the video’s current time is adjusted in such a way that the
object stays as close as possible to the desired location.

This is done by repeatedly minimizing some distance mea- The distance
between the
spatio-temporal
dragging location and
the trajectory is
continually
minimized.

sure d over the full length of the object’s trajectory to deter-
mine the next frame f that should be displayed during the
interaction:

f(p, T ) = [argmin

t2T

(d(p, t))]
f

where p is the screen position the user is dragging the ob-
ject to and T ✓ F ⇥ P is the object’s trajectory consisting
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Figure 4.29: Trajectory of an object in the scene projected onto the currently vis-
ible frame. The three-dimensional trajectory of the ball (middle) can be visually
represented as a path overlay over each frame. The top image shows the first
frame, the bottom image the last frame of the scene.
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dmin

dmin

Figure 4.30: Continuous minimization of the distance between the object and the
dragging position. In response to each dragging event, the video displays the
frame where the distance between the event location and the object’s trajectory
is minimal with respect to some distance measure d. The euclidean line-point
distance shown here is simple to compute but can cause problems with self-
intersecting trajectories.

of tuples (t
f

, t
p

) of a frame number and a position [Karrer
et al., 2012]. For each dragging event, the new frame to be
displayed is determined by this formula before the naviga-
tion is performed by updating the video view and updating
the context of the calculation to reflect that the currently dis-
played frame has changed. This procedure is then repeated
for the next dragging event but in the context of the new
temporal position (Figure 4.30).

Common Interaction Problems

The ‘ideal’ interaction, one might assume, would have the The object cannot
generally follow the
dragging precisely.

object following the dragging position precisely. This, how-
ever, is possible only if the dragging operation follows the
trajectory exactly—other locations may not have been oc-
cupied by the object at any time in the video and are thus
obviously not navigable.

This observation gives rise to at least two interaction design Interaction problems
occur at points where
the semantic
mapping is not
uniquely defined.

problems, both corresponding to cases where the semantic
mapping, which should be the inverse of mapping consti-
tuted by the object trajectory, is mathematically ill-defined:

1. The indicated location is not covered by the object’s
trajectory.
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2. The indicated location is part of the object’s trajectory
more than once.

In the first case, the initial mapping cannot be reversed be-
cause it is not a surjective function; generally, an object does
not occupy every location in the scene at some time. As
mentioned above, we therefore use a distance measure d to
navigate to a point in time where the object comes as close
as possible to the indicated location p.

In the second case, the initial mapping cannot be reversedIf the semantic
mapping associates

two points in time
with the same object

location, this
temporal ambiguity

has to be resolved.

because it is not an injective function. Objects often oc-
cupy the same location at different points in time; an inverse
lookup over the trajectory thus yields temporal ambiguities.
In [Karrer et al., 2012], we have reported on three typical ob-
ject motion patterns that lead to this behavior (Figure 4.31):

1. “Recurring movements, e.g., the rotating hands of a
clock or a ball bouncing up and down.” (Figure 4.31,
left)

2. “Self-intersecting trajectories, e.g., a looping roller
coaster or a car heading straight towards the camera.”
(Figure 4.31, middle)

3. “Pauses, e.g., a model walking down the catwalk,
striking a pose and holding it for a few seconds before
moving on.” (Figure 4.31, right)

All three examples illustrate situations where a position an
object is being dragged to will resolve to multiple points in
time with our suggested semantic mapping.

Clearly, we have to find some way to disambiguate betweenIn some cases, the
distance measure

can be augmented to
allow disambiguation.

these results: For the first two motion patterns from the list
above, we can do this by incorporating the current tempo-
ral context into the distance measure d that we minimize
to find the video frame to navigate to. Below, we will ex-
amine possible distance measures and how they affect the
semantic navigation behavior of a DMVN to demonstrate
different solutions. For the third case—where objects pause
their movement and thus remain at the same location for an
extended period of time—, we will see later (cf. 4.2.3 “Ob-
ject Pauses”) that we need to make some alterations to the
basic DMVN interaction.
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Figure 4.31: Three different examples of temporal ambiguities that can arise
from object motion patterns: recurring movements (left), self-intersecting trajecto-
ries (middle), and pauses (right). In all three cases, the semantic mapping is ill-
defined.

Distance Measures and Their Influence on Temporal Am-
biguities

We have explained above how in all DMVNs the next frame The most basic
distance measure
relies on euclidean
spatial distances
only.

to be shown when dragging an object through the scene is
determined by a distance function d. The most straightfor-
ward way to choose such a distance function is probably to
define it purely in spatial terms. Goldman’s [2008] DMVN
implementation, for example, uses such a simple euclidean
distance in image space:

d1(p, t) ⇠
=

kp� t
p

k

With this distance measure, the system will always display
the frame where the object’s position is closest to the mouse
cursor. Note that this function does not depend on the tem-
poral location of the frame that is displayed at the time the
function is evaluated.

Interaction problems may arise, however, if the object is An euclidean
distance measure
does not guarantee
temporal coherence
during the interaction.

dragged along its trajectory, and the dragging point moves
closer to a part of the trajectory that maps to a much later
or earlier time point in the video. In these cases, the video
does not ‘follow’ the spatial and temporal progression of
the object through the scene, but the navigation exhibits in-
coherent temporal jumps (Figure 4.32). While this behavior
enables a user to quickly reach the time for a certain loca-
tion of the object, the jumps are almost always confusing
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video time

object space

Figure 4.32: Purely spatial distance measures may cause temporal jumps in the
video during the interaction. If the object in the image is dragged straight to the
right, the spatially closest positions never include those on the loop; the accord-
ing frames are consequently dropped during the navigation, and jumps occur.

and accompanied by a loss of context on the side of the user
regarding what happens around the object in the scene [Kar-
rer et al., 2012; Brockly, 2009].

Another problem can occur when the object exhibits any ofEuclidean distance
alone cannot resolve
temporal ambiguities.

the motion patterns described above that cause the trajec-
tory to self-intersect or fold back on itself. Minimizing the
euclidean spatial distance measure may then yield multi-
ple time points, and there is no reliable way to select the
single one that would correspond to the user’s conceptual
model of the object’s motion. Again, this can result in seem-
ingly random temporal jumps during the navigation or in
unintended reversal of the temporal direction of the naviga-
tion: dragging the minute hand of the clock in Figure 4.31 to
the far right side of the clock’s face, for example, can result
in any of the multiple temporal locations where the time is
15 minutes after the full hour. A similar temporal ambigu-
ity presents itself when dragging objects away from cusp
points, where the direction of the trajectory is suddenly re-
versed (Figure 4.33).
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video time

object space

? ?

Figure 4.33: Purely spatial distance measures may cause directional ambiguities
during the interaction. When dragging an object out of a cusp point in the trajec-
tory, a spatial distance measure cannot consistently pick any of the two temporal
directions. The video may move forward or backward through time, taking the
incoming or outgoing branch of the trajectory, or it may arbitrarily switch be-
tween the two.

Other DMVNs use different distance measures that make Arc-length distance is
still spatial but can
guarantee directional
continuity and
temporal coherence.

such frame jumps and direction reversals less likely in or-
der to create a more coherent navigation experience. The
authors of DimP [Dragicevic et al., 2008], for example, pro-
pose ‘directional continuity’ and ‘arc-length continuity’ as
two requirements for this kind of semantic video naviga-
tion. Consequently, they introduce appropriate terms into
their distance function:

d2(p, t) ⇠
=

kp� t
p

k+ karclen(t
p

, o
p

)k+ k
D

with o
p

being the object’s position in the currently displayed
frame and a bias offset k

D

> 0 being added whenever the
arc-length changes signs from the last step.

Although the distance measure technically does not include
any temporal terms, the arc-length distance between the
current position and the target position of the object spa-
tially reflects the temporal ordering of the object locations
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along the trajectory. The euclidean distance measure above
ignores this information. The result of these modifications
is that the navigation is far less likely to ‘lock on’ to tempo-
rally distant parts of the trajectory if they are spatially close
or even if they are intersecting like in the looping balloon
example in Figure 4.31. Also, the directional term addresses
the problem of reversing the direction of the navigation at
cusp points like in Figure 4.33.

While both of these distance measures, d1 and d2, are onlyIn addition to spatial
terms, we can

include temporal
terms in the distance

measure.

defined in terms of spatial positions, the latter already
makes use of the temporal information in the trajectory—
albeit through a spatial encoding—in using an arc-length
distance. The two remaining existing DMVNs, DRAGON
[Karrer et al., 2008] and Trailblazing [Kimber et al., 2007], are
different in that regard as they use this temporal informa-
tion directly in the distance function. We can therefore clas-
sify distance functions as either purely spatial measures that
depend only on the positional projection t

p

of the trajectory
mapping or spatio-temporal measures that depend on both
the positional component t

p

and the temporal component
t
f

[Karrer et al., 2012].

The approach used in our DRAGON DMVN defines theDRAGON uses a 3D
spatio-temporal

distance measure
that allows handling

of temporal
ambiguities and

avoids frame jumps.

distance measure over the spatio-temporal video volume
constructed as the direct sum of the pixel-based image
space and the frame-based timeline (Figure 4.34). As such,
DRAGON belongs to the spatio-temporal class of DMVNs,
with each calculation including the current frame number
o

f

:

d3(p, t) ⇠
=

k[p
x

� t
p

x

, p
y

� t
p

y

, ↵ · (o
f

� t
f

)]

T k,

where ↵ is a cross-weighting factor that is tuned according
to the resolution and the frame rate of the video. Interac-
tion with DRAGON does not suffer from problems with self-
intersecting or recurring movement trajectories, because
the temporal component disambiguates possible navigation
target candidates.

The effect of this combined spatio-temporal function is thatThe object can be
dragged around

trajectory concaves
like it was attached to

the pointer with a
rubber band.

the user perceives the object to be attached to the mouse
pointer with a ‘rubber band’: The temporal component
o

f

� t
f

of the distance term forces the navigation to hap-
pen temporally continuous and in the correct order. If the
trajectory forms a bulge like in Figure 4.35, the object first
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time object
trajectory

Figure 4.34: Spatio-temporal distance measure in DRAGON. The image shows
a top view of a ‘stack’ of video frames with an object trajectory. The distance
measure corresponds to the radius of a spatio-temporal hypersphere that has its
center spatially at the drag location and temporally at the current frame.

gets caught in the bend until the spatial part of the distance
outweighs the temporal part; then the object ‘snaps’ around
the bulge until the distance is minimized again (Figure 4.35
(d)). The system also exhibits this behavior at points where
the object pauses.

The lack of a directional term, however, means that the di- DRAGON resolves
directional
ambiguities through
different interaction
techniques.

rectional ambiguity problem in the presence of trajectory
cusps remains and needs to be handled separately in the in-
terface. We have developed three possible solutions to this
problem for DRAGON, which have been described by Chris-
tian Brockly in his Diploma Thesis [Brockly, 2009]:

1. Directional continuity
When the object reaches a cusp in its trajectory dur- Cusps segment the

trajectory, and
segment transitions
are unidirectional.

ing the navigation, the search space for the mini-
mization of d is truncated; the part of the trajectory
that has just been navigated will be skipped until
the next cusp—or the same cusp, but from the other
direction—is reached. The result is similar to that of
including a directional term into the distance func-
tion, like DimP does, but computationally more effi-
cient, because only parts of the trajectory have to be
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a)

b)

c)

d)

Figure 4.35: DRAGON’s spatio-temporal distance measure at non-convex points
in the trajectory. Where a purely spatial distance measure would cause the video
to skip the ‘bulge’ when the object is dragged across the lower part, interaction
with DRAGON feels more like controlling the object through a rubber band. As
long as the distance can be minimized trivially, the object stays fixed to the mouse
cursor (a). At trajectory concaves (b), the object fist ‘hangs’ (c) before the spatial
component in the distance measure outweighs the temporal one, and the object
snaps towards the mouse cursor (d).

inverted. On the other hand, this approach is more
difficult to implement, and it relies on cusps to be de-
tected reliably.

2. Temporal navigation inertia
Being the method we initially implemented inObjects are given

virtual inertia, and
they can be ‘thrown’

through cusps and
across occlusions.

DRAGON, temporal navigation inertia adds a layer of
physical simulation to the interaction. When an ob-
ject is dragged along its trajectory and then released, it
temporarily continues to travel in that direction while
losing momentum all the time and finally coming to a
halt. The technique is—and feels—similar to the iner-
tial scrolling mechanism that can be found in a num-
ber of current graphical user interfaces, for example
in table views on Apple’s iOS5. In this way, users can
drag an object towards a cusp, release it, let it travel
through the cusp while retaining the desired tempo-
ral direction, and re-acquire it again after the cusp to
continue the navigation by dragging again.

5http://www.apple.com/ios

http://www.apple.com/ios
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Figure 4.36: Temporal navigation inertia in DRAGON helps to navigate gaps in
the trajectory. When temporal inertia is enabled, objects can be ‘thrown’ over
gaps (left and middle) as they are caused by occlusion problems. After ‘catching’
the object again (right), the trajectory is re-calculated so that it shows the object’s
path after the gap.

An added beneficial side effect of this technique—and
one of the reasons why this is the method we im-
plemented in DRAGON—is that navigation inertia can
also mitigate the interaction problems in the presence
of malformed trajectories caused by tracking errors.
If, for example, a trajectory ends prematurely, because
the object was occluded in a scene for a number of
frames, the object can be ‘thrown’ over this gap in the
mapping (Figure 4.36). When it is re-acquired after
the gap, the new click on the object selects a new tra-
jectory to define the semantic mapping for the contin-
uing dragging navigation. This new trajectory is not
impeded by the tracking gap in the direction of the
navigation.

3. Explicit direction selection through temporary overlays
The third solution to the ambiguity problem at cusp Directional

ambiguities are
explicitly resolved by
the user via a
crossing-based
interface.

points relies on a temporarily overlaid crossing-based
interface that lets the user explicitly choose the tem-
poral direction in which to leave the cusp. When
the object is located at the cusp position, two semi-
transparent crossing targets, each representing a pos-
sible temporal direction, are faded in (Figure 4.37).
The user can then drag the object out of the cusps by
dragging the pointer across either of the overlays to
indicate the desired direction.
This technique is inspired by Flow Menus [Guim-
bretiére and Winograd, 2000] and possesses the same
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Figure 4.37: Temporal direction made explicitly selectable
by overlaid crossing labels. The labels are arranged in a way
that a clockwise circular motion always means temporally
forward while anti-clockwise motion means backward.

advantage of turning into a gesture-based interface
without the need for visual feedback through habitu-
ation. However, it requires the user to explicitly in-
dicate the desired temporal direction in a syntactic
way. This means, of course, that she must know the
current temporal direction beforehand; such knowl-
edge of the syntactic structure, on the other hand,
is exactly what we seek to render unnecessary with
semantic video navigation interfaces. Brockly thus
proposed an alternative way to visualize the direc-
tional choices by making the part of the trajectory that
lies in the currently selected direction visually distinct
and optionally hiding the crossing area labels. This
change again embodies the idea of semantic video
navigation by making the syntactic temporal structure
of the medium accessible by spatial direct manipula-
tion. Also, with the changed visualization, user per-
formance in controlled experiments increased dramat-
ically [Brockly, 2009].

A fourth spatio-temporal distance measure was proposedTrailblazing uses a
spatio-temporal

distance measure
that also enforces

directional continuity.

by Kimber et al. [2007]; it combines temporal and direc-
tional terms to avoid frame jumps during the navigation
and to ensure directional continuity at cusps.

d4(p, t) ⇠
=

c
✓

· kp� t
p

k+ ko
f

� t
f

k+ k
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with k
D

defined in the same way as in DimP’s distance mea-
sure d2. Generally, this approach behaves like d3 but in-
cludes a time-dependent term c

✓

that makes the tendency
to ‘snap’ across trajectory bulges or object pauses depend
on the interaction time: the longer the dragging takes, the
more likely the object is to move across the interfering ge-
ometry.

Object Pauses

As we have shown above, the different distance measures Temporal ambiguities
due to objects
pausing have not
been discussed so
far.

that existing DMVNs employ in the optimization process
governing the dragging interaction can take care of some of
the temporal ambiguities that arise in semantic video nav-
igation. One special case, however, was left out of the dis-
cussion deliberately: that of an object being located at the
same location at multiple points in time because the object
pauses its movement (cf. 4.2.3 “Common Interaction Prob-
lems” and Figure 4.31). We describe this situation in [Karrer
et al., 2012]:

“Ideally, when interacting with an object, a
DMVN technique should allow access to those
parts of the video where the object is pausing:
In our example from above—a model walking
down the catwalk, striking a pose and holding
it for a few seconds before moving on—, as-
sume that we drag the model into the pose and
then want to navigate to a frame inside that pause
where the lighting is perfect or the model as-
sumes a certain facial expression. This is a situa-
tion in which most strategies of existing DMVN
systems fail.”

It is clear that a pause only occupies a single pixel on the Object pauses are
neither visible nor
navigable in most
DMVNs.

movement trajectory but extends indeterminately in the
temporal space (Figure 4.38). Therefore, a pause is neither
represented explicitly in the visualization nor in the navi-
gation interaction: in most DMVNs it is invisible and non-
navigable. We will first briefly revisit the four distance mea-
sures d1��4 in the context of this problem before analyzing
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Figure 4.38: Schematic relationship between space and time in object trajecto-
ries. We can influence the temporal position of an object in the video through its
spatial location as long as it moves. During pauses, the spatial projection of the
trajectory collapses into a single point.

two approaches that require modifications to the interaction
at higher layers of the interface language.

Both purely spatial distance measures (d1 [Goldman et al.,Spatial distance
measures skip the

pause entirely.
2008] and d2 [Dragicevic et al., 2008]) obviously cannot
model the concept of a pause, because they do not even ac-
cess the temporal structure of the trajectory: The two pixels
on the trajectory spatially ‘before’ and ‘after’ the pixel that
marks the location of the pause directly map to points in
time temporally ‘before’ and ‘after’ the pause. The mapping
of the pixel at the location of the pause is, of course, unde-
fined (cf. 4.2.3 “Distance Measures and Their Influence on
Temporal Ambiguities”). Thus, those time ranges where an
object pauses are not accessible—users have to resort to us-
ing other tools, like the timeline slider, to navigate inside a
pause. When dragging the object along the trajectory across
the pause location, the pause is skipped completely and can
only be detected by the user through the sudden changes
in the rest of the frame that may be caused by the tempo-
ral jump. This means that in the presence of pauses, purely
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spatial distance measures do not allow to access the frames
inside the pause, and the frame jump disorients the user.

The two spatio-temporal distance measures (d3 [Karrer et al., Spatio-temporal
distance measures
can acknowledge the
presence of the
pause but cannot
navigate it.

2008] and d4 [Kimber et al., 2007]) can model temporal
concepts and therefore can acknowledge the existence of
pauses. The two pixels on the trajectory spatially ‘before’
and ‘after’ the pixel that marks the location of the pause
again map directly to points in time temporally ‘before’
and ‘after’ the pause, just like with the purely spatial dis-
tance functions. However, when dragging the object across
the pause position, the temporal component of the distance
function will initially outweigh the spatial component—the
dragged object will ‘stick’ to the beginning of the pause.
Dragging the object further, the spatial distance component
outweighs the temporal one, and the object will ‘snap’ to a
position some time after the pause [Karrer et al., 2012]. Ac-
cessing the frames directly after the pause is therefore only
possible by first overshooting and then backtracking along
the trajectory.

Some different approaches have been tried regarding the Timeout-controlled
mode changes do not
deliver an optimal
user experience.

exact weighting balance between temporal and spatial dis-
tance, including adaptive weighting factors that change ac-
cording to interaction timeouts like d4 [Kimber et al., 2007]
or the time scale timer proposed by Brockly [2009]. Dur-
ing user tests performed by Brockly, however, such timeout
driven interfaces have—somewhat unsurprisingly—led to
confusion and decreased performance on the users’ side.

In summary, for spatio-temporal distance functions, the Both kinds of
distance measures
do not solve the
problem satisfactorily.

pause is a barrier that cannot be crossed instantly, which
allows users to recognize it without effort but also requires
additional controls to access content inside the pause and
extra effort to navigate to points directly after the pause.
Thus, with all proposed distance measures, users either
miss everything that is happening in the video while the ob-
ject stops, possibly failing to notice the existence of a pause
at all, or they have to switch to another means of naviga-
tion, like the timeline slider, to access the video frames in
the pause. Although pauses structure a scene temporally—
which should help with navigation—DMVN systems can-
not implicitly leverage this advantage but are hindered by
them [Karrer et al., 2012].
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Figure 4.39: Conceptual model spanning multiple domains, depending on the
behavior of the object of interest. During a pause, the object only exhibits vari-
ation in the temporal domain. There is no reason why temporal concepts like
‘waiting’ should not be part of semantic navigation.

We can see that there is no easy way to address this situa-The real problem lies
with the restriction of

the direct
manipulation

interaction
exclusively to the

spatial domain.

tion only by adjusting the distance measure. The reason for
this is that the actual problem is caused by the very interac-
tion paradigm we chose for our concept of semantic video
navigation: direct manipulation. So far, we have regarded
direct manipulation only in terms of changing the spatial
locations and constellations of objects in the video scene.
From this point of view, an object that pauses and does not
move gives us no leverage to navigate this purely tempo-
ral phenomenon (Figure 4.38)—we have to take a step back
instead and realize that during a pause it may not be the
spatial but the temporal progression of an object that forms
the conceptual model (Figure 4.39). We thus need to take
a wider view of the semantic structure of the medium and,
consequently, of the way we are using direct manipulation
to navigate this structure. The important part is that the
conceptual model, and therefore the semantic structure, is
not necessarily fixed to a certain domain but can dynami-
cally shift to another domain depending on the behavior of
the objects of interest.

The naive approach to solve this dilemma—to offer an ex-
tra tool, for example a timeline slider, that allows to directly
manipulate the temporal structure—is clearly not what we
should aim for. There is nothing wrong in offering a slider
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in parallel, thus allowing access to the syntactic structure as If the primary domain
of the object of
interest in the
conceptual model
changes, our direct
manipulation
interface should
reflect that change.

an option; but requiring the user to change tools in mid-
navigation just because the semantic structure temporar-
ily unfolds along a different domain than its dominant one
seems unnecessary. A better idea would be to dynamically
adapt the semantic mapping to reflect this shift of domains:
during a pause, the user could still spatially manipulate the
object, but the result would be applied to the temporal do-
main.

We have developed three methods to navigate pauses in
DMVNs that follow this idea:

1. Velocity Slider [Brockly, 2009]
This approach was inspired by the fine slider [Masui Integrating

rate-based controls is
one way to navigate
pauses.

et al., 1995] and the PVSlider [Ramos and Balakrish-
nan, 2003], which both introduce rate-based control to
a positional input element. For a DMVN, this concept
can be applied to the positional direct manipulation of
the trajectory space: Whenever the user crosses the lo-
cation of a pause on the trajectory during the naviga-
tion, the object initially ‘sticks’ to the pause position,
but the time of the video is advanced at a rate rela-
tive to the distance between the object position and the
current dragging position (Figure 4.40). At that point,
the interaction follows a syntactic navigation model.
Once the object has ‘caught up’ with the mouse cursor,
the system switches back to our semantic navigation
model that uses spatial direct manipulation.

This method has the advantage of mitigating the loss- Combining direct
manipulation and
rate-based controls
would require a mode
switch.

of-context problems that occur when the pause is
skipped [Karrer et al., 2012] and that it can be used
to navigate inside the pause. Its disadvantages in-
clude the automatic change from direct manipulation,
position-based input to the rather indirect rate-based
input, which requires some training and can be diffi-
cult to master. Also, with the maximum rate being de-
pendent on the position of the pause on the screen—
and the rate being rather limited—it can be time con-
suming to cross longer pauses, and it can be difficult
to navigate precisely to the end of the pause where the
object just starts moving again.
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Figure 4.40: Velocity slider interface for pause navigation in DMVNs. Once the
object reaches the pause position, the input mechanism changes from spatial di-
rect manipulation to temporal rate-based. At the end of the pause, the interface
switches back, and the object re-aligns with the mouse cursor.

2. Embedded Timeline [Karrer et al., 2012]
A straightforward attempt to get rid of the indirect-A timeline slider can

be embedded into
the trajectory at the

location of the pause.

ness of the rate-based control offered by the velocity
slider is to spatially reify the purely temporal construct
of the pause, thereby returning direct manipulation
spatial control over the progression of the video to
the user. For this purpose, we have proposed to re-
purpose a small segment of the projected trajectory,
both leading up to the pause and following it, to rep-
resent a weighted mix of spatial and temporal control
(Figure 4.41): Near the location of the pause, the seg-
ment is mapped to temporal navigation, thus acting
as a timeline slider that is embedded into the projected
shape of the trajectory. Near the seams of the segment,
it is mapped normally to the location of the object, like
the rest of the trajectory is. In between, the segment
represents a weighted affine combination of these two
mappings with the weighting factors linearly interpo-
lating between the two aforementioned extremes (Fig-
ure 4.42).

When dragging the object towards its pause position,Over the trajectory,
control gradually

changes from spatial
to temporal towards

the pause location
and then back again.

it thus stays at a minimal distance to the dragging po-
sition until the special trajectory segment around the
pause is hit (Figure 4.43, top). From there, the object
will start to overtake the dragging location, moving
towards its pause position until it arrives there (Fig-
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Pause

Figure 4.41: Embedded timeline interface for pause navigation in DMVNs. The
pause is extended spatially form a single point to a range of the trajectory’s visual
representation. While this introduces spatial inaccuracies—the object will not
follow the mouse pointer precisely in the vicinity of the pause—it dynamically
allows full direct manipulation access to the temporal domain.

can now be 
manipulated spatially!

can be
manipulated spatially

can be
manipulated spatially
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Figure 4.42: Schematic relationship between space and time with the embedded
timeline interface. The association between time and space is skewed in a way
that any spatial input in the region around the pause location has an effect in
both the spatial and the temporal domains.



152 4 Time-based Media: Video Scenes

Pause Embedded Timeline

Figure 4.43: Navigation behavior at pause points with the
embedded timeline. Since the spatial representation of the
pause is extended from a single point to a range on the tra-
jectory, the spatial coupling between control location and
object location is less tight across the embedded timeline.

ure 4.43, middle); at this point, there is still enough
space left on the trajectory towards the pause location
to map it to the first half of the temporal extent of the
pause (Figure 4.43, bottom). The second half of the
special segment works analogically but in reversed or-
der.

The advantage of this approach is that by using theThis method is
especially suited for

short, frequent
pauses but—similar

to the timeline
slider—increases the

syntactic distance.

existing navigation control space on the trajectory, we
do not have to introduce any additional control el-
ements to navigate pauses. This makes re-homing
times between UI elements or different navigation
tools, like trajectory and timeline slider, unnecessary.
The method is ideally suited for short pauses of just
a few frames where the introduced discrepancy be-
tween the expected direct manipulation mapping and
the actual weighted combination of spatial and tem-
poral mappings remains small. For longer pauses, it
is still superior to the standard DMVN approaches,
because the embedded timeline does allow to navigate
pauses, but the visual salience of the shift in the se-
mantic mapping might distract the users. Also, if the
object pauses its motion multiple times in short spatial
intervals, there can be very little room on the trajec-
tory to assign to the special segments; in such cases,
the syntactic distance of the embedded timeline suffers
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in a very similar way as that of a regular timeline
slider, like we have discussed above in 4.1.1 “Analyz-
ing the Syntactic Distance of Slider-based Navigation
and Selection Interfaces”.

One should keep in mind that these disadvantages are
merely due to the fact that we are re-purposing exist-
ing control space on the trajectory, thereby ambiguat-
ing the interaction in these areas. It is not a conceptual
problem of our claimed necessity that the interface re-
flects the shift in domain exhibited by the semantic
structure at object pauses.

3. Loop [Brockly, 2009; Karrer et al., 2012]
An alternative approach to offer a spatial direct ma- Instead of utilizing

space on the
trajectory, temporal
control can be
spatially located off

the trajectory.

nipulation representation of the temporal semantic
structure inside of object pauses is to make use of the
space next to the trajectory instead of the trajectory it-
self. This, of course, opens up a vast set of possibilities
regarding the location, shape, and visual gestalt of this
space and the interaction element that it contains.

We can define a number of restrictions that ensure a There are some
restrictions on the
design of the loop
control.

smooth integration into the DMVN interaction tech-
nique and thus narrow down our search for a suitable
design: First, we want to have that space topologically
reflect the temporal semantic structure; this means
that we should restrict ourselves to a linear space.
Second, we want to guarantee a smooth transition
in terms of the interaction between the trajectory—
the interaction element that normally navigates the
semantic structure—and the interaction element that
navigates time during the pause. Third, we want to
allow the user to optionally skip the pause easily in
cases where the navigation target clearly lies beyond
the pause, and the loss of context caused by the skip
is acceptable.

With these restrictions in mind, we have designed the A loop shape fulfills
the requirements and
can be flexibly
attached to the
trajectory.

loop interaction element that takes over the navigation
every time the domain of the semantic structure shifts
from spatial to temporal. The loop element is an ex-
tension to the shape of the trajectory itself, thereby be-
ing compatible with both the visual shape and appear-
ance of the trajectory and the topology of the seman-
tic structure it can navigate. It is a circular loop that
starts—and ends—exactly at the location of the pause,
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Pause

Figure 4.44: Loop interface for navigating object pauses in DMVNs. The loop
interaction element makes use of the space next to the trajectory, thereby leaving
the time-space mapping on the trajectory intact. The temporal range of the pause
is fully mapped to the attached loop. As navigation in the loop is controlled by
the same distance function as on the trajectory, the loop acts like a radial con-
troller, with the control granularity being dynamically adjustable via the radius
of the circular dragging motion.

which allows the user to smoothly drag the object to
this point, then continue in a circular motion, and fi-
nally resume dragging along the trajectory at the end
of the loop (Figure 4.44).

Because the loop is laterally attached to the trajectoryThe loop integrates
well with the existing
interaction paradigm

of DMVNs.

and the interaction handled by the same distance mea-
sure minimization process, users can also just con-
tinue dragging along the trajectory, which makes the
object ‘snap’ to the cursor after a short delay and
causes the pause to be skipped. Also, because of the
distance measure, the loop can be used as a linear an-
gular control whose granularity can be continuously
adjusted by changing the radius of the control gesture
[Hürst and Götz, 2008]; it therefore does not suffer the
same syntactic distance penalties as a timeline slider
or the embedded timeline when used with pauses of dif-
ferent lengths.

While the loop approach remedies most of the disad-The loop is especially
suited for longer, less

frequent pauses.
vantages of the embedded timeline, it is naturally more
suited for less frequent but longer pauses because of
the visual clutter generated by the trajectory exten-
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sion. In [Karrer et al., 2012], we thus argue that a
combination of both techniques—using the embedded
timeline for short pauses and using the loop for longer
pauses—may be the best way to handle the pause-
implicit shift of the semantic structure domain.

Visualization Options

After having discussed the interaction concept for semantic
video navigation as well as a number of problems and our
solutions, we will now have a closer look at the different vi-
sualization options in the interface. Clearly, the video itself
should be the main visible element in any video navigation
interface, as it is both interaction surface and the main feed-
back channel that allows users to check if they have reached
their navigation goal. There are, however, a number of fac-
tors to consider with regard to how we can incorporate af-
fordances or extra information channels into the UI.

Probably the most important information that we have to There are many
options how to
visualize trajectories.

think about is if and how the trajectory of an object—and
thus a representation of the currently selected semantic
mapping—can be visualized. This, of course, first and fore-
most pertains to the spatial progression of the selected ob-
ject’s path; additional information and data, like the veloc-
ity of the object or, as a special case, if the object pauses its
motion, can then be incorporated into the trajectory visual-
ization or conveyed through other channels.

In his Diploma Thesis, Christian Brockly [2009] analyzes Brockly analyzed
different trajectory
visualizations

three trajectory visualizations by comparing how well they
can guide users during the interaction in the presence of
different spatial trajectory features: Trajectories that form
straight lines are the baseline case for evaluating the visu-
alizations, because they are the simplest form of a trajec-
tory and can be described with very little visual informa-
tion. Also, dragging an object along a linear trajectory
does not cause any problems with temporal ambiguities
or irregularities—such as discontinuities—in the distance
field defined by the distance function (cf. 4.2.3 “Distance
Measures and Their Influence on Temporal Ambiguities”).
Curved trajectories can already exhibit discontinuities in the
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b) c)a)

Figure 4.45: Different visualization options for object trajectories. The trajectory
information can be visualized in various degrees: invisible (a), only cardinal di-
rection indicator (b), or the full trajectory in a local neighborhood of the current
location. Source: [Brockly, 2009]

distance field (cf. Figure 4.35). Therefore, it is more impor-
tant for the user to drag the object in a precise fashion, and
we need to check how well the different visualizations fa-
cilitate this. Angular trajectories happen when objects collide
or ricochet off each other or static parts of the scene (cf. Fig-
ure 4.33). Users tend to overshoot their dragging move-
ments toward these points dependent on how the trajectory
is shown. Waves—trajectories that progress along a general
direction but exhibit frequent spatial deviations from that
direction—are also handled differently depending on the
visual feedback.

The first—and probably the most simplistic—trajectory vi-For the first version of
DRAGON, we did not

visualize the
trajectories at all.

sualization is to not give any visual indications about the
motion path of the object of interest at all (Figure 4.45 (a)).
This also was the visualization option we chose for the first
experimental evaluation of DRAGON, which was the basis
for our initial publication on DMVNs [Karrer et al., 2008].
Of course, the possible motion patterns of many real world
objects in typical video scenes are physically and cultur-
ally constrained (cf. [Norman, 1988]) and thus can be antici-
pated by the users up to a certain extent. This is also the rea-
son why users are able to drag objects along their (invisible)
trajectories with surprisingly high precision: Straight line
trajectories are followed easily, waves may even—if they
correspond to some characteristic movement of the object
of interest—be over-pronounced (Figure 4.46). Dragging
along curved and angular trajectories, however, often suf-
fers from some ‘corner cutting’ and overshooting (Figure
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Figure 4.46: Original motion of the object (red) and user
dragging path (blue) for non-visualized straight and wave
trajectories. Users interpreted the scenes and easily antic-
ipated the motion of the objects even without explicit vi-
sualization of the trajectory. In the case of very character-
istic movements, these were sometimes overemphasized.
Source: [Brockly, 2009]

Figure 4.47: Original motion of the object (red) and user
dragging path (blue) for non-visualized curve and edge tra-
jectories. In both examples, the motion has been predicted
correctly but the dragging path exhibits corner-cutting and
overshooting. Source: [Brockly, 2009]

4.47) if the trajectories are not shown. This may cause drag-
ging paths to potentially cross distance field discontinuity
boundaries, which can result in confusing temporal skips.

The second visualization Brockly [2009] looks at is to indi- The trajectory can
only be visualized in
a small local
neighborhood.

cate only the directions of the incoming and outgoing tails
of the trajectory at the current point (Figure 4.45 (b)). This
is basically a simplified form of the starburst manipulator
widget that has been proposed by Goldman et al. [2008] as
a form of trajectory visualization (Figure 4.48). The starburst
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Figure 4.48: The starburst indicator by Goldman [2008]. The
polar coordinates of all points on the trajectory are accumu-
lated in a radial histogram and the bins represented graph-
ically by arrows. Source: [Goldman et al., 2008]

manipulator basically is a weighted polar coordinate his-
togram of the points on the trajectory relative to the current
location: The points on the trajectory are weighted accord-
ing to their distance and binned according to their angle
from the current location. Instead of this negative exponen-
tially scaled distance weighting, Brockly’s arrow indicator
uses a boxcar function on the trajectory neighborhood. The
result is that only the cardinal directions in the immediate
frame neighborhood are visualized.

Showing only the direction of the trajectory tails works well
for trajectories that form straight lines (Figure 4.49). If the
motion of the object describes a curve or a more complex
shape, users again start to ‘cut corners’ in their dragging
path. At the cusps in angular trajectories or waves, users
tend to severely overshoot with the arrow visualization;
this, however, usually does not produce any frame skips or
cause the navigation to fail (Figure 4.50).
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Figure 4.49: Original motion of the object (red) and user
dragging path (blue) for straight and curved trajectories
with visualized direction. The dragging trails are relatively
close to the original trajectories; some corner cutting still oc-
curs. Source: [Brockly, 2009]

Figure 4.50: Original motion of the object (red) and user
dragging path (blue) for edge and wave trajectories with
visualized direction. Severe overshoots still occur, but the
trajectories were followed faster than without any visual-
ization. Source: [Brockly, 2009]

In contrast to the arrow method, which gives only local in- Showing a large
neighborhood or the
full trajectory is the
best option to guide
the users’ dragging
motion.

formation about the shape of the object’s motion path, a
third method is to show the image space projection of the
complete trajectory (Figures 4.51 and 4.52). This method re-
sults in the best performance of users following the object’s
path [Brockly, 2009], the distance between the real trajec-
tory and the dragging path is much smaller than with the
other two visualizations. We therefore used this visualiza-
tion option for all later prototypes of our DRAGON DMVN,
rendering the full trajectory of an object as soon as it has
been selected by the user.
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Figure 4.51: Original motion of the object (red) and user
dragging path (blue) for straight and edge trajectories with
fully visualized trajectory. The dragging trails are faster and
closer to the original trajectories than in the other visualiza-
tion conditions. Source: [Brockly, 2009]

Figure 4.52: Original motion of the object (red) and user
dragging path (blue) for curve and wave trajectories with
fully visualized trajectory.The dragging trails are faster and
closer to the original trajectories than in the other visualiza-
tion conditions. Source: [Brockly, 2009]

A disadvantage of this solution is that very long and com-A disadvantage is
that the full trajectory
may clutter the video

frame.

plex trajectories—or trajectories with a large number of
pause loops (cf. 3 “Object Pauses”)—can produce excessive
visual clutter. This problem could be overcome by showing
only a local neighborhood, either measured temporally or
by arc-length, and fading out the rest of the trajectory.

Information other than just the object’s path, for example,It is possible to
augment the

visualization to show
additional information

like object velocity.

its velocity can also be conveyed by modifying the visual-
ization of the trajectory. Brockly [2009] has experimented
with representing object velocity with the trajectories in two
ways:
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Figure 4.53: Visualization of object velocity through vari-
able line width of the trajectory. Some users associated thin
lines with faster motions, some associated thick lines with
faster motion. Source: [Brockly, 2009]

• as dotted lines where a dot is placed along the path ev-
ery n-th frame, thus indicating higher object velocities
through sparse placements of dots and lower veloci-
ties through denser dotting (Figures 4.46–4.52 use this
technique to visualize the velocity of the objects and
the user dragging paths), and

• as lines of variable width where the trajectory is
drawn as a thin line in places where the object moves
fast and as a thick line in places where it moves slowly
(Figure 4.53).

He could show that both approaches convey the informa-
tion of object velocity in a way that is understandable by
most, but not all, users by measuring the participants agree-
ment on either of the possible interpretations. In the case of
the variable line width method, however, 14% of the partic-
ipants were undecided about the meaning of the visualiza-
tion while the dotted-line method always invoked a clear
decision for ‘faster’ or ‘slower’. A disadvantage of the lat-
ter technique is, though, that dots may be placed so sparsely
that the trajectory is not discernible any more or so densely
that individual dots cannot be distinguished.
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Another technique to convey velocity information to theAdditional information
can also be given

through other
channels, e.g., audio.

user is an auralization variant of the dotted-line method.
Instead of drawing a series of dots along an object’s motion
path, we can draw the trajectory normally and play back a
short tick sound on every n-th frame. Since the direct ma-
nipulation navigation technique warps the regular timeline
of the video to ‘normalize’ time relative to the object of in-
terest and does it in a way that is transparent to the user, this
added information channel can help to understand how the
scene context around the object behaves temporally. The
auralization of object velocity is the technique that is imple-
mented in DRAGON, because it possesses the advantages
in terms of interpretability but not the graphical disadvan-
tages of the dotted-line approach.

Interactive Scoping and Trajectory Filtering

In the discussion about how the semantic mapping can tech-The scoping problem
is also present during

the interaction.
nically be established via object recognition and tracking al-
gorithms, we have already identified the difficulty of iden-
tifying and scoping the semantic objects of interest (cf. 4.2.2
“Determine the Semantic Mapping”). The same problem, of
course, also poses itself on the interaction and user interface
side of a DMVN. Most DMVNs [Karrer et al., 2008; Dragice-
vic et al., 2008; Kimber et al., 2007] let the user specify which
object in the video scene should become the reference object
for the semantic mapping by a single mouse click on the ob-
ject in the scene: they use the common selection techniques
long-known from desktop computing for the semantic se-
lection process.

This technique works well in standard WIMP interfacesSelecting objects via
a single click in an

unstructured medium
leaves many degrees

of freedom open.

where most of the objects or elements—such as Icons,
Menus, Windows—have a simple and well-known struc-
ture and are separate logical entities to the system; every
pixel on the screen of a window system belongs to a certain
window and can be mapped to the according input element
or widget [Scheifler and Gettys, 1986]. An indication of a
single point in 2D screen space, usually conveyed through
a click, is thus enough to specify an object.

For most types of visual media, such as drawings, photos,
or videos, the situation is much more complicated; these
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media generally do not possess an explicit syntactic repre-
sentation of semantically meaningful content elements. A
digital photo, for example, usually is only a collection of
pixels—perhaps with some associated metadata describing
the context in which the photo was taken—and does not
contain any information about the structure of the scene it
depicts.

Also, some software packages designed for the creation of
visual media, for example vector drawing programs like
Adobe Illustrator, try to preserve the structural information
inherent in the creation process of these media. In the com-
plete absence of structural information like we usually en-
counter in photos or videos, however, selection and repre-
sentation of objects becomes a difficult process. Pointing
at a certain location in an image or video is not any longer
enough to associate this action with an object depicted in
the medium.

The reason why DMVN systems like DRAGON [Karrer et al., Single click selection
relies on the spatial
and temporal
coherence of objects
to do the scoping.

2008] or DimP [Dragicevic et al., 2008] still work for many
cases with single-click selections is that they exploit the im-
plicit spatial and temporal coherence of objects in videos.
As explained above in 4.2.2 “Determine the Semantic Map-
ping”, the respective flow tracking algorithms of these sys-
tems just track the selected single pixel through the flow
fields, using a dead-reckoning approach. Only the fact that
the pixel cloud that constitutes the real object of interest
exhibits relatively little changes in its spatial configuration
over time—most objects tend to have similar shape and lo-
cation between adjacent frames in a video—suggests that
the object itself is being tracked and manipulated.

It is easy, however, to imagine numerous scenarios where For some classes of
objects or some
types of motion, the
implicit scoping is not
the intended one.

this ‘illusion’ breaks down: Objects that change their shape
or color significantly over time are likely to have erratic or
interrupted trajectories. Partial or full occlusions of objects
will regularly cause the trajectory to end abruptly or, even
worse, to stay with the occluding object, which is often a
part of the stationary scene background. But even in the ab-
sence of rapid changes or occlusions, a single point selection
is sometimes not enough to specify the user’s intention; ag-
gregate objects or such that have differing motion fields and
optical flow fields can exhibit unexpected behavior when
selected in DMVNs.
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hand

knee

torso

Figure 4.54: Different trajectories for different selection
scopes of a climber. The trajectory for the torso differs con-
siderably from the trajectory for the hand or the knee.

The rock climber in Figure 4.54 is an example for an aggre-Aggregate objects
may violate users’

expectations about
the resulting
trajectories.

gate object. While a click on the torso yields a trajectory
that progresses upwards the rock face in what is more or
less a straight line, a click on an arm or leg results in a very
complicated and maybe overly detailed trajectory describ-
ing the movement of the limb. Without a technical under-
standing of the underlying algorithms, users are likely to be
surprised by the result of their one-point selection, which
violates the principle of least astonishment [James, 1986], a
fundamental rule in the design of user interfaces.

A similar problem is evident in the examples of a rolling
soccer ball (Figure 4.55) or a barbershop pole (4.18): each
single pixel describes an (apparent) movement that is very
different from the movement of the whole object.

These examples show that, in the absence of additionalA more explicit scope
control mechanism is

needed.
cues, single-point selection can be insufficient for DMVNs
to capture the user’s intention. In the case of aggregate ob-
jects, we need to give users a way to specify which part or
parts of an object they want to interact with. These prob-
lems are also related to the difficulties when navigating very
complex object trajectories (cf. 4.2.2 “Determine the Seman-
tic Mapping”): often, users are not interested in following
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Figure 4.55: Differences in the trajectories of a soccer ball and one of its black
spots. While the trajectory of the ball in full represents what most people would
intuitively describe as the motion of the ball, each of the black spots on the ball
follows a rather chaotic trajectory. Source: [Novosad, 2012]

all the nooks and high-frequency details of such trajectories,
which may only reflect the detail motion of an implicitly se-
lected part of the actual object of interest, but want a way to
quickly and easily displace the object across larger distances
on the screen. This has been partially addressed by design-
ing the distance measures of the DMVN algorithms in a way
that the parts of the trajectories with high spatial frequen-
cies can be skipped or ‘slipped through’ (cf. 4.2.3 “Distance
Measures and Their Influence on Temporal Ambiguities”),
but the users have no explicit control over this behavior and
no way to express their intention in this regard.

Considering these problems, we can propose three possible
solutions:

1. Let the user gives cues about the structure of the ob-
ject.

2. Find the structure of the object automatically.

3. Ignore the structure but emulate interactive object
scoping by giving the user implicit or explicit control
over the shape of the trajectory.

We have already discussed the first two of these solutions
in the second step of our four-step-approach to generat-
ing semantic video navigation interfaces 4.2.2 “Determine
the Semantic Mapping”: Allowing the user to give cues
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about the structure of the object of interest is most easily
accomplished by offering area selection mechanisms such
as paint-over selection [Goldman et al., 2008] or bound-
ing box selection [Goldman et al., 2008; Wittenhagen, 2008;
Novosad, 2012]. Automatically determining the structure
of the scene and of the object is still either an active re-
search topic of computer vision or still in its infancy when
measuring the structure directly with appropriate hardware
[Lewandowski, 2011]. This approach would make a single-
point selection of the object of interest feasible again for
some cases, and it would allow to interactively refine or re-
define the selection while respecting object boundaries or
offering assistance to select parts of objects. This class of se-
lection techniques that are guided by algorithms that know
the spatial structure of the scene thus remains a prospective
area for future work.

For the third solution, we have studied two different ap-Even for single-point
selections, we can

offer ways to control
the selection scope

during the interaction.

proaches that emulate interactive control over the semantic
granularity of single-point selections a user has made dur-
ing the interaction with our DRAGON DMVN: one adjust-
ing the granularity implicitly and one where the granular-
ity is controlled explicitly by the user. The underlying idea
of both is to remain with the convenience of a single-point
selection of the object of interest but to allow some adjust-
ments to the object scope and dynamically adjusting or gen-
erating the appropriate trajectories:

• Using Pressure for Explicit Scope Control
To allow users to actively and explicitly determineWe can use pressure

as an additional input
channel to control the

selection scope.

the scope of the object selection after only indicat-
ing a single point—and possibly during the drag-
ging navigation—we need an additional input chan-
nel. The input parameter space of a regular computer
mouse is mostly reserved for the dragging gesture,
leaving only possible extra mouse buttons for other
uses. Since we aim for an additional linear control to
be able to control the scope in a continuous way, we
employ a pressure sensitive input device, for example
a digital pen and tablet. Using pen-based input for
video navigation has been successfully demonstrated
in earlier work, for example in [Ramos and Balakrish-
nan, 2003]. In our prototype [Novosad, 2012], the ini-
tial single-point selection represents the finest scope



4.2 DRAGON, an Interface for Semantic Video Navigation 167

of a single pixel trajectory like it is generated by our
dense optical flow approach. Exerting a higher pres-
sure while dragging the object gradually selects larger
scopes until the selection represents the whole object.

• Using Dragging Velocity for Implicit Scope Control
As an alternative approach that does not require the We can try to derive

the scope from the
velocity of the
dragging motion.

explicit extra input, we have experimented with infer-
ring the appropriate scope from the users’ dragging
behavior. From existing basic perception and motion
models, like CMN [Card et al., 1986] or Fitts’s Law
[Fitts, 1954], we know that most simple, targeted mo-
tions start with a large ballistic movement, which cov-
ers most of the distance, followed by multiple correc-
tive ‘homing’ movements that decrease in size and
increase in frequency. If we assume that dragging
an object—or parts of an object—for direct manipu-
lation video navigation follows a similar mechanism
and exhibits similar patterns (cf. [Nett, 2012]), we can
increase the scope of the selection during the ballis-
tic phase and decrease for the fine tuning of the ob-
ject position. Implicitly controlling the selection scope
with the velocity of the dragging gesture, similar to
the acceleration interface of the Alphaslider [Ahlberg
and Shneiderman, 1994], is close enough in its behav-
ior to be employed as a reasonable first approach.

Implementing this kind of dynamic change in the scope of For the
implementation, we
need the trajectories
on different scopes.

the object selection, of course, is difficult—especially when
we only have a single-point selection to begin with. A
possible solution would be to generate a set of trajectories
around the initial single-point selection and filter this set
through hierarchical clustering in affine motion space, sim-
ilar to [Goldman et al., 2008] and [Wittenhagen, 2008]. The
same set could also be generated by pre-calculating a hier-
archical set of flow fields for the full video volume pyramid
where each frame is a scale space representation of the pro-
jected scene, usually in the form of an image pyramid (Fig-
ure 4.56). Different object scopes could then be realized by
taking different layers in the hierarchy, the trajectories in the
current layer being averaged to form a single trajectory rep-
resenting the object’s motion [Novosad, 2012]. While this
solution works, it is also very costly in terms of computa-
tional power.
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Downsampling

Figure 4.56: A hierarchical set of trajectories that approximate the object’s move-
ments in different scopes can be created using an image pyramid for each frame
of the video.

We therefore chose to implement an alternative solution toIt is more efficient to
approximate the

coarse trajectories by
filtering.

the problem by only generating and then modifying the—
possibly imprecise and wrongly scoped—trajectory result-
ing from the first single-point selection. For this purpose,
we generate the trajectory at the maximum possible detail
so that it contains all variations in the high spatial frequency
bands, ideally by employing our dense optical flow tech-
nique 4.2.2 “Generating Object Trajectories in a Structure-
agnostic Way”, which is—together with particle tracking—
the most precise pixel tracking available across all existing
DMVNs. After this, we emulate more coarsely scoped ob-
ject selections by dynamically filtering the trajectory by ap-
plying an adjustable spatial low-pass filter mechanism.

This idea is based on the assumption that the semanticWe rely on the
assumption that
object size and

motion frequency are
anti-correlated.

scope of the object of interest—or the part thereof that is
important for the navigation—negatively correlates in its
size with the spatial frequency of the resulting trajectory.
In the climbing video shown above, for example, the trajec-
tory of a limb possesses a high degree of spatial detail; the
trajectory of the torso is, in contrast, much more featureless.
But since the limb is a part of the climber, the general low-
frequency progression of its trajectory is very similar to that
of the torso—in fact, a low-pass filtered version of the limb
trajectory is very similar to that of the torso (cf. Figure 4.57).
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Figure 4.57: Comparison between a low-pass filtered trajectory of the arm (right)
and a trajectory of the torso (left). Both trajectories are very similar; the unfiltered
trajectory of the arm is shown in Figure 4.23.

Similar assumptions can be made for objects with inter-
nal motion, like a rolling soccer ball. From these observa-
tions, we can create an interface that ‘cheats’ by seemingly
offering a post-hoc selection of object scope while keep-
ing the computational cost of its implementation at a min-
imum. The precise details of the implementation of both
methods—explicit, pressure-based scope control and im-
plicit, dragging-velocity-based scope adjustment—can be
found in Alisa Novosad’s Master’s Thesis [2012].

We have analyzed both techniques and compared them to
a regular single-point selection DMVN interface in a con-
trolled experiment. Across four videos, each containing ob-
ject trajectories of a different complexity (Figure 4.58), we
measured the time it took our test users to perform a simple
navigation task in each of the three conditions.

While for the first two videos, which contained only rela- Users could complete
navigation tasks with
complex trajectories
faster with the
scoping control
techniques than
without.

tively simple trajectories, we could find no significant dif-
ferences in the users’ task completion times, we found that
for the more complex trajectories, users were significantly
faster using either of the dynamically scoped interaction
techniques than with the conventional DMVN interaction
[Novosad, 2012]. Regarding the differences between the ex-
plicit, pressure-based and the implicit, velocity-based tech-
niques, the latter was both quantitatively faster and quali-
tatively preferred by our test users [Novosad, 2012].
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Figure 4.58: The four different test videos featuring four trajectories of varying
complexity. Source: [Novosad, 2012]

4.2.4 Evaluate the Interface

The basic conceptual ideas of semantic direct manipulationAll of our findings
above have been

verified in controlled
experiments and user

tests.

video navigation described in this chapter as well as all of
the proposed extensions to the interaction technique—such
as trajectory visualization alternatives, methods to dynami-
cally adapt the direct manipulation paradigm to the chang-
ing domains of the semantic structure, approaches to user-
controlled semantic granularity, and others—and algorith-
mic advancements in establishing the semantic mapping
have, of course, all been thoroughly analyzed and evaluated
in a number of user studies and controlled experiments.
These evaluations constitute the fourth step in our gener-
ative model for semantic navigation interfaces 2.2.4 “Gen-
erating New Interfaces Using the Combined Model” and
are necessary to ascertain that the design goal of creating a
better way to navigate digital media has been met. The ex-
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act descriptions of the apparatus and methodology of each
of these tests, however, would not add to the discussion at
hand; we will therefore only recap some of the most im-
portant results together with our interpretations and con-
clusions in the context of the model proposed in the theory
chapter (cf. 2.2.3 “Combined Model” (p. 50)). For further
details on these experiments, we refer the reader to the in-
dividual publications referenced in this chapter.

The core concept of the DMVN technique is to replace The main advantages
of DMVNs are the
direct representation
and manipulation of
the objects of interest
and the simple
mapping between
effector space and
target space.

the syntactic navigation that is offered by conventional
timeline-based user interfaces by a navigation method that
utilizes a spatial direct manipulation interface to interact
with the semantic structure of the video scene. As explained
in the first part of this chapter, this concept was envisioned
to have two main benefits: First, the users of a DMVN sys-
tem can interact with entities that correspond to their con-
ceptual model of the task; the manipulators and control el-
ements of such an interface are exactly the objects visible
in the video scene and thus the objects of interest in many
navigation tasks. Users can therefore concentrate on adjust-
ing object locations and spatial constellations and do not
have to perform the conversion of these concepts to the syn-
tactic temporal structure of the video themselves. Second,
the mapping between manipulating these control elements
and the effect of this manipulation in the syntactic struc-
ture of the medium is kept as close to the identity map-
ping as possible—it is, in fact, the identity for most cases
but for pauses and other singularity points in the seman-
tic mapping (cf. 4.2.3 “Object Pauses”). This is a stark con-
trast to the syntactic timeline navigation where the mapping
between manipulating the temporal position and its effect
on the constellation of objects depends on many factors—
including the geometric shape of the slider, length of the
video, and content of the video—and is hence generally
unpredictable (cf. Figure 4.10); users can infer knowledge
about this mapping only through rote memorization of the
contents of the video or, in a limited scope, through seman-
tic constraints inherent in the content.

One way to conceptually analyze these beneficial proper- We can analyze the
interaction with
DMVNs in terms of
the seven stages of
action.

ties of DMVNs is to check how they can affect the dif-
ferent steps—and gulfs—in Norman’s seven stages of action
model [Norman, 1988]. In the case of syntactic navigation
using the timeline slider, we have already discussed in sec-
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tion 4.1.2 “Analyzing the Semantic Distance of Slider-based
Navigation in Videos” that the interaction can be problem-
atic, and several gulfs of execution and evaluation can arise:

First, there is a gulf between the goal and the intention stages,With the timeline
slider, several gulfs of

execution are
evident.

as the intention is difficult to formulate using the available
concepts in the interface. These neither represent the ob-
jects of interest from the user’s conceptual model, in terms
of which the task or goal are formulated, nor do they of-
fer meaningful operations on such objects. Second, there is
a gulf between the intention and action sequence stages, be-
cause a precise action sequence cannot be formulated with-
out knowing the effect of each action. This, however, is
precisely the point where knowledge of the mapping be-
tween the syntactic and the semantic structures would be
required. Third, depending on the ratio between the length
of the slider and the length of the video, execution of any
action sequence might be difficult or even impossible be-
cause the size of the pointing targets may shrink to sub-
pixel scales. Changing the geometry of the slider or loading
a video with a different length additionally changes the con-
trol gain, which is a problem of its own [Jenkins and Con-
nor, 1949].

On the evaluation side of the seven stages, perception andOn the evaluation
side, the direction

and distance to the
goal are not visible.

interpretation remain conceptually simple, as they are di-
rectly reflected through the video image. Also, the compar-
ison with the goal is straightforward. One important aspect,
however, is that the outcome of this comparison can only be
binary in the case of syntactic navigation; either the goal
has been reached or not. Very little or no information can
be gained regarding the remaining distance or direction to-
wards the goal—the following seven-stages-cycle thus has
to be traversed in exactly the same way as the current one.

The result of this latter insight in particular is that the onlyUsers must resort to
alternative interaction

strategies to reach
their goals.

viable strategy for syntactic navigation is a linear search
through the syntactic structure of the video, always check-
ing if the goal has been reached. This also means that the
full length of the interaction is performed in a closed-loop
fashion; the characteristic two-phase approach to interac-
tions where the target is visible and directly approachable—
a ‘ballistic’ open-loop phase to get close to the target fol-
lowed by a closed-loop ‘homing’ phase [Woodworth, 1899;
Buxton et al.]—is not applicable.
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Figure 4.59: Combined navigation interface model for DRAGON and a semantic
navigation task based on object constellations.

With our semantic video navigation model (Figure 4.59), DMVN interaction
eliminates the gulfs
that are present
when navigating via
the timeline.

none of the aforementioned gulfs is present. This, together
with the fact that both the goal is visible and the map-
ping between the control space and the semantic structure is
fixed to be the identity mapping, should allow the task to be
performed in a classic steering-law [Accot and Zhai, 1997]
fashion. Direct manipulation video navigation essentially
short-routes the seven stages by formulating one intention
and action sequence for the ballistic phase and one for the
homing phase. Only the latter is then run in closed-loop
mode but with a much easier, gulf-less cycle.

These considerations strongly suggest that video navigation User tests support
these theoretical
considerations.

tasks can be accomplished much faster with a DMVN as we
have described it than with a traditional syntactic timeline
interface and that the cognitive load for the user should be
reduced at the same time. We, as well as other groups, have
conducted several studies to check if and how these the-
oretical advantages are reflected measurably when testing
semantic video navigation with users [Karrer et al., 2008;
Dragicevic et al., 2008; Brockly, 2009]. These studies have
reported significant quantitative and qualitative improve-
ments to task performance, user satisfaction, and system
usability:

Dragicevic et al. [2008] compared task performance times
and navigation error between their DimP DMVN and a reg-
ular timeline slider interface. They used two synthetic video
scenes containing stylized objects moving independently
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Figure 4.60: Experiment setup in [Dragicevic et al., 2008]. The users were given
these two synthetic videos for the navigation tasks. Figure taken from [Dragice-
vic et al., 2008].

over a solid colored background (Figure 4.60); their tasks
included navigating to the points in time where certain ob-
jects occupied a designated position or where certain objects
changed their behavior (e.g., started moving).

They measured the time between the first mouse down
event of the interaction and the last mouse up event and
the navigation error as the frame offset in a video between
the intended goal frame and the one navigated to by a par-
ticipant. Their results support our argument for direct ma-
nipulation semantic navigation being easier for the user and
much more efficient: Participants could complete the tasks
at least 250% faster with DimP than with the timeline slider
with high statistical significance (p < 0.0001). Also, partic-
ipants felt that the DMVN interaction was both easier and
faster and that it led to higher user satisfaction. This was
also reflected quantitatively in the fact that the average nav-
igation error was less in the DMVN condition.

We performed a similar experiment [Karrer et al., 2008]
comparing navigation using DRAGON with a regular time-
line slider interface. In contrast to the study by Dragicevic
et al., we used real video footage (Figure 4.61) and a wider
range of tasks including navigating to the point in the video
where: a certain object was located at a designated posi-
tion, two certain objects were in a designated spatial con-
stellation, a certain object interacted with a static part of the
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Figure 4.61: Two of the five video scenes from the DRAGON user test in [Karrer
et al., 2008].

scene, and a certain object changes its behavior (e.g., stops
moving). The task completion time was measured in the
same way.

Our results are consistent with the predictions we have
made above regarding the advantages of semantic naviga-
tion and direct manipulation under an identity mapping;
users could complete all tasks significantly faster (p < 0.01)
using DRAGON than using the conventional timeline slider
interface. The speedup factors in task completion times
ranged between 24% and 75% depending on the task and
video.6 Our explanation for the difference in task efficiency
increase between the DRAGON and DimP studies is that
some of our tasks were more difficult and that the reduced
visual clutter and ‘perfect’ trajectories of synthetic videos
may have biased the results towards unrealistically short
task completion times.

During the experiment, we could also observe a number Users found efficient
DMVN-specific
strategies for certain
events and object
locations.

of emerging navigation strategy patterns that were unique
to the DMVN condition. The rubber-banding effect of the
DRAGON distance measure (cf. 4.2.3 “DVMN Interfaces and
Interaction Techniques” (p. 132)), for example, was used to
exploit the constraints for the object’s location offered by
some spatial features of the trajectory: To quickly navigate

6Note that in the paper [Karrer et al., 2008], we reported the ratio of
the task completion time delta and the slower task completion time. The
numbers in this text denote the ratio between the task completion times in
the two conditions. This was done to be compatible with how the results
are reported in [Dragicevic et al., 2008].
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to a position in the video where two objects collide, users
found that they could just drag one object towards the other
and carelessly overshoot. The spatial constraint imposed
on the object’s trajectory by the two objects changing direc-
tion after the collision would then keep the dragged object
in place precisely at the collision point. Users also quickly
discovered successful strategies for navigating to locations
where objects start or stop moving by utilizing the temporal
component in DRAGON’s distance function. Some of these
strategies, however, would not work with the purely spa-
tial distance measures employed in DimP [Dragicevic et al.,
2008] or Goldman’s DMVN [Goldman et al., 2008].

We also collected qualitative feedback in a post-sessionVideo navigation with
DMVNs was

preferred over
timeline navigation

and was considered
quicker and easier to

use.

questionnaire, finding that the majority of our users pre-
ferred DRAGON as the technique for navigation in video
scenes. Likewise, DRAGON was perceived to be both
quicker and easier to use than the standard timeline sliders
for the tasks given in the user test (Figure 4.62). There was a
strong agreement among the users that a DMVN would also
be the preferred system for video navigation in the context
of video editing and that using DRAGON in the study felt
natural and always behaved like they expected. The ques-
tionnaire, however, also revealed some of the limitations
of semantic video navigation: Simple video consumption—
like watching a movie from the beginning to the end—and
similar tasks do not benefit from the semantic navigation ca-
pabilities. Also, the systems discussed so far are only useful
for fast and precise navigation inside a single video scene; at
cuts or scene changes, as they happen frequently in movies,
the trajectories end, thus prohibiting semantic navigation
across these deliberate breaks in the medium. This last lim-
itation, however, is merely technical in nature—some exist-
ing systems, for example Trailblazing [Kimber et al., 2007],
already employ an object recognition database to continue
the trajectories across scene boundaries and different cam-
eras.

4.3 Summary and Conclusion

In this chapter, we have demonstrated how we can use our
interaction model (cf. 2.2.3 “Combined Model”) to design
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Figure 4.62: Questionnaire evaluation for the DRAGON experiment from [Karrer
et al., 2008]. Most of the 31 test users perceived DRAGON to be quicker and easier
to use for video navigation than the timeline slider.

a semantic navigation interface for video. After review-
ing and analyzing the status-quo of video navigation inter-
faces, and the timeline slider in particular, in the framework
of our model of navigation in digital media, we described
the concept for DRAGON, our semantic direct manipulation
video navigation system. For this, we followed our pro-
posed four-step approach:

We first identified the conceptual model of the semantics We designed our
semantic video
navigation interface
according to our
proposed interaction
model.

for common video navigation tasks, resulting in the defi-
nition of the set of spatio-temporal subspaces representing
the locations over time of all objects in the video as a suit-
able semantic structure of the medium. Then, we analyzed
and discussed a number of different possibilities to access
this semantic structure through the concept of motion tra-
jectories of potential objects of interest in the video scene.
The result is a semantic mapping that is defined by the con-
tent of the medium itself, thus allowing users to directly in-
teract with a representation of the objects of interest. The
third step, our focus in this chapter, was concerned with the
implications of the interaction and interface design. It in-
troduced a number of extensions to the basic DMVN idea,
which allow to mitigate or negate limitations like temporal
ambiguities, tracking problems, or selection scoping. We
found that the usability problems that arise at temporal am-
biguities indicate domain shifts in the semantic structure,
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so we proposed ways to reflect these shifts in the seman-
tic mapping. This also led to a more open interpretation
of the direct manipulation idea: instead of the traditional
restriction to a single domain, we found that we could in-
clude changes across different control domains in a consis-
tent way. To address the scoping problems stemming from
the aggregate structure of objects and their motion patterns,
we demonstrated approaches to dynamically select a se-
mantic mapping resulting in a continuous spectrum of con-
trol granularities. In the final step, we presented results of
the experiments conducted to evaluate the benefits of this
approach to semantic video navigation.

4.3.1 Non-Navigation Applications of DMVN

This application of our interaction model to the problem
of video navigation has proven to be successful for a wide
class of use cases. Apart from the positive results of user
studies with various DMVN prototypes, the concept of
video navigation by direct object manipulation has also
been shown to be applicable to a number of related prob-
lems:

Shah and Narayanan [Shah and Narayanan, 2011], for ex-Video content can be
edited on the basis of

object trajectories.
ample, have introduced a powerful video manipulation tool
based on modifying the same semantic structure. They ex-
tend the object trajectories by defining them as a function
from the temporal domain not only into the domain of lo-
cations but into the domain of bounding rectangles, turn-
ing object trajectories into object ‘tubes’. These tubes can
then be removed from the video volume, shifted along the
temporal axis, or linearly transformed along the temporal
axis. Where such an operation leaves gaps in the volume,
these are filled by means of frame-wise background syn-
thesis. Manipulating the semantic structure of a video in
this manner allows users to easily alter the contents on a
very high semantic level. Removing an object from a scene
or reversing the order in which two objects pass through
the scene while not affecting the behavior of a third ob-
ject that is visible at the same time—both editing operations
that are extremely difficult to perform with only access to
the semantic structure—can thus be applied in an easy and
straightforward way.
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Another example for the application of the concept is to Direct manipulation
of object locations
along their motion
trajectories can be
used to interactively
re-time computer
animations.

generalize the interactive semantic navigation through a
video to higher dimensional visual data that is arranged
along a timeline, such as 3D computer animation. Record-
ing the temporal progression of navigation runs through
spatially pre-defined animation paths offers an intuitive
way to define the animation timing by example—an oper-
ation that normally has to be performed by means of fill-
ing out detailed timing data in numerical form for each
key frame, followed by automatic or manual ‘tweening’.
We have built DRAGIMATION [Walther-Franks et al., 2012]
as a demonstration system for this kind of interaction and
could show that it can be used easily even by anima-
tion novices and that it significantly outperforms timeline-
based performance animation in terms of measured preci-
sion as well as user assessment regarding ease of use, men-
tal load, and overall preference. DRAGIMATION thus is
on par precision-wise with the existing sketching technique
[Terra and Metoyer, 2007] for performance animation but
was likewise rated as being significantly better regarding
ease of use, mental load, and user preference.

Commercial applications that use semantic video naviga- DMVN has already
been used for
commercial
purposes.

tion by direct manipulation can already be found. In
one of their advertising campaigns, the fashion company
WranglerTMembedded short DMVN-enabled video clips on
their online shop website. Users could pull zippers of the
advertised garments and make the (male) models interac-
tively dress and undress. While there was ever only one
active dragging handle in each video that represented a pre-
defined object of interest and while the implementation was
done in FlashTMand ActionScriptTMwith hard coded trajec-
tories for each clip, the rest of the semantic navigation con-
cept was essentially the same as in our DRAGON DMVN.
Reportedly, the technology is planned to be deployed on
Wrangler’s mobile iOS App as well [Novosad, 2012]; a short
video of their 2010 prototype is available on YouTube7.

7http://www.youtube.com/watch?v=2zuOdJQiljw

http://www.youtube.com/watch?v=2zuOdJQiljw
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4.3.2 Alternative Choices for the Conceptual
Model

For other video navigation tasks that do not fit the concep-One can also
generate semantic

video navigation
interfaces based on a

different conceptual
model.

tual model that we have identified in the first step and used
for our DRAGON system, we can use the interaction model
to design appropriate interfaces by starting from a differ-
ent semantic structure that better reflects the nature of these
tasks. As a proof of concept, we have done this and created
an alternative semantic video navigation system that caters
to a different conceptual model.

The idea was to offer a higher semantic layer than DRAGON,Kathrein created an
event-based

semantic video
navigation system.

allowing to directly access a structure consisting of events of
interest instead of the spatio-temporal structure induced by
the motion of objects of interest in the video. Thus, the ex-
pressiveness of the supported navigation goals would ex-
pand from a first-order concept, i.e. concerned with the be-
havior of objects, to a second-order concept, i.e. concern-
ing the behavior of sets of objects. The system that realizes
this idea was designed and implemented by Anne Kathrein
for her Bachelor’s Thesis [2011] under the guidance of the
author. From a number of interviews with behavioral re-
searchers and video ethnographers, she learned that for
their tasks, it was typically very important to quickly nav-
igate to a situation that could be described in very concise
terms before precisely navigating inside that video scene.
They were missing a macro-level navigation tool to com-
plement DRAGON, which in comparison works on a micro-
level scale with higher temporal locality, in order to support
their two-tiered conceptual model of video analysis: first,
find the set of interesting situations; then, explore each of
these situations interactively.

Taking a large number of example navigation targets fromFor the semantic
structure, we created
a hierarchical system

of events.

the interviews and from related literature on several areas
of video analysis (surveillance [Hu et al., 2004; Saxena et al.,
2008; Medioni et al., 2001; Lv et al., 2006], market research
[Babic, 2010], sports analysis [Tovinkere and Qian, 2001;
Ekin et al., 2003]) and clustering them, Kathrein created a hi-
erarchy of spatial behaviors, in which each of the examples
can be described. From there, she defined a semantic macro-
structure of the medium as a language of possible events
where the micro-structure of DRAGON’s object trajectories
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serves, together with a small number of spatial primitives,
such as locations and areas, as the alphabet. Her language
consists of four main classes (from [Kathrein, 2011]):

1. Area Dependencies denotes the set of events where the
relative location of one or multiple designated objects
and a static area defines the navigation task. Typical
patterns of this class include object crosses an area or
object is far away from area.

2. Objects Act is the second class of events describing ob-
ject trajectory patterns that do not depend on other
objects or spatial primitives but can be described by
certain characteristics. Examples are object appears, ob-
ject disappears, and object moves in a circle. The first
two are widely recognized behaviors in object track-
ing software packages (e.g., [Girgensohn et al., 2007]
or [Favalli et al., 2000]), the latter plays an impor-
tant role in the behavioral analysis of animals [Zipser;
Yanagisawa, 1982]).

3. Objects Interact is the class of events representing bi-
nary and ternary operations on designated objects.
In contrast to the other classes, these events have no
temporal invariant—all participating objects must be
collocated in space and time to fit any of the event
patterns. The class is further structured into two
subclasses, distance patterns and correspondence pat-
terns: The former contains both thresholded distance
functions—for example small distance, large distance,
objects meet, one object meets others, and objects are visible
at the same time—and temporal sequences of distance
functions—for example distance increases and distance
increases after objects meeting. The latter describes char-
acteristic multi-object motion patterns like objects move
in parallel or object moves from one object to another. Con-
taining events that are defined on a high semantic
level, this class can describe complex behavioral pat-
terns of interest like the left-luggage scenario [Lv et al.,
2006] or ball-passing in soccer [Tovinkere and Qian,
2001].

4. Direction and Velocity is a class of similarly high-level
events, describing situations that are defined by a sin-
gle object deviating some larger movement pattern;



182 4 Time-based Media: Video Scenes

object moved in a different direction than other objects, ob-
ject moves at a different velocity than other objects, and
object moves at a different velocity than its own average ve-
locity all describe typical situations that are important
in a security or surveillance context [Siebel and May-
bank, 2004; Saxena et al., 2008].

A detailed description together with implementation de-
tails of the different algorithms that detect these events in
a given DRAGON trajectory set can be found in Kathrein’s
Bachelor’s Thesis paper [2011].

The interface for this event-based navigation is an exten-The interface for
navigating this

discrete semantic
structure is not direct-

manipulation-based
but follows the

conversation
metaphor.

sion to the DRAGON interface described earlier in this chap-
ter (cf. 4.2.3 “Designing the User Interface for Semantic
Video Navigation” (p. 132)) and adds an augmented time-
line where the detected events are represented visually in
a way similar to the interface of ChronoViz [Fouse et al.,
2011], and a side pane where the navigation target can be
formulated using a simple query ‘language’. A query in this
language is formed by combination of graphical function
selectors and interactive object selection for the arguments
(Figures 4.63 and 4.64).

Kathrein conducted a user study to compare task comple-For navigation tasks
concerning events,

the system
outperformed the

timeline slider
significantly.

tion times for two complex first-order and one second-order
navigation tasks between her system and standard timeline
slider navigation. Consistent with our other studies on se-
mantic video navigation (cf. 4.2.4 “Evaluate the Interface”),
she found that, on average, participants were able to com-
plete all three navigation tasks significantly faster (p < 0.01)
using her event-based semantic navigation interface. The
average resulting speedup factors ranged between 150%
and 160%.

4.3.3 Closing Remarks

The successful application of our proposed semantic navi-
gation model for digital media on two different conceptual
models for video navigation supports our argument for the
feasibility of creating such content defined semantic navi-
gation interfaces and demonstrates the positive impact of
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Figure 4.63: User interface for semantic video navigation using an event-based
conceptual model. The type of event is specified from a hierarchical list; the
‘arguments’—objects, locations, or areas in the video scene—are directly speci-
fied in the video frame. Source: [Kathrein, 2011]

such interfaces on the users’ ability to navigate easily and
efficiently through a medium. It also underlines the gen-
erative power of the model when following the four-step
approach to designing these systems.

In these first two system chapters, we have discussed our
model in the context of audio and video, which are both
time-based media. Also, both cases mainly required a se-
mantic mapping between structures of the same dimension-
ality: For PERSONAL ORCHESTRA, we established a map-
ping between the original timeline and a semantically re-
parametrized version of time. For DRAGON, each trajectory
mapping connected the timeline with a one-dimensional
subspace of the video volume, which was projected into a
two-dimensional plane.

The event-based navigation that was built on top of
DRAGON (cf. 4.3.2 “Alternative Choices for the Conceptual
Model”) was already a first step into semantic structures of
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Figure 4.64: Overview over the different event types supported by Kathrein’s
prototype. Source: [Kathrein, 2011]

higher dimensions. In the next two chapters, we will move
away from time-based media entirely and investigate how
we can offer higher dimensional semantic navigation spaces
for other digital media. In particular, we discuss Presen-
tation Visuals, which are defined over very limited syntac-
tic structures where the common syntactic navigation inter-
faces are not expressive enough in chapter 5 “Hybrid Me-
dia: Presentation Visuals”; and we investigate the medium
of Source Code, which is defined over higher dimensional
and fragmented syntactic structures where syntactic navi-
gation is too unconstrained to be helpful, in chapter 6 “Non-
time-based Media: Source Code”.
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Chapter 5

Hybrid Media:
Presentation Visuals

Presentation visuals are a hybrid type of media insofar as Presentation visuals
are a hybrid medium;
they are
non-time-based
during authoring and
time-based during
presentation.

they—in the form they are usually employed—seem to live
somewhere between time-based and non-time-based me-
dia. The reason for this is, of course, that the current practice
of supporting talks and presentations with slide decks im-
poses a temporal constraint on the visuals: only one slide
can be shown at a time. While this limitation is widely ac-
cepted during the actual presentation, there is no obvious
need that all navigation at all times, e.g. during the author-
ing process, is bound to the syntactic linear domain of the
slide deck. After discussing the status quo and identifying
some of its problems and drawbacks, we explore alterna-
tive ways of structuring and navigating presentation visuals
and investigate how this influences the authoring process,
the presentation delivery, and the ability of the audience to
perceive, process, and remember the content of a talk.

After giving a short overview over the characteristics of The predominant
format of
presentations as
slide decks is due to
historical reasons
and causes
interaction problems.

presentation visuals as a medium, we give a short expla-
nation how and why today’s slideware format has emerged
from the historical context. We then analyze the status quo
of navigation in slide-based presentation systems and dis-
cuss some of the problems that come from current interface
designs but also the technical metaphor of the format it-



186 5 Hybrid Media: Presentation Visuals

self. Some of these problems have already been identified
and solutions proposed in related work; we will summarize
these findings and extend them by proposing FLY, our own
interpretation of how the medium can be represented in a
way that respects the semantic structures required to reify
the conceptual models of different user groups. This will,
again, be done by following the four steps of our interac-
tion model for semantic navigation in digital media (cf. 2.2.4
“Generating New Interfaces Using the Combined Model”).

This chapter focuses on the fourth step of our model toWith three equally
important user roles

for presentation
visuals, we focus on

the evaluation step in
this chapter.

generate semantic navigation interfaces, explaining in de-
tail how the concept and actual system have been evalu-
ated with different user groups and their respective tasks.
The individual expectations of these groups—represented
by the author, the presenter, and the audience—towards the
medium and the methods to navigate it to facilitate the cre-
ation, mediation, and consumption of its contents require
different forms of experiments and analyses. We present
the body of studies we have conducted for this purpose and
also point out where additional work remains to be done in
the future.

Parts of the material found in this chapter have already
been published in conference and thesis papers: The orig-
inal idea of how we could navigate presentation visuals in a
semantically more meaningful way was devised by the au-
thor and a first draft published by David Holman [2006].
In his Diploma Thesis, Leonhard Lichtschlag concentrated
on the authoring aspect of presentation visuals, conducting
two user studies and iteratively developing the first fully
functional FLY prototype [Lichtschlag, 2008]. A combined
presentation and video navigation system, which uses the
semantic structure of the FLY presentation format to navi-
gate through videos taken during the presentation, was cre-
ated by Christian Corsten for his Bachelor’s Thesis [Corsten,
2009]. Thomas Heß refined the FLY software prototype for
his Master’s Thesis and performed both an extensive study
on the influence of the new presentation format on the audi-
ence and a survey on emerging authoring strategies [Hess,
2011]. A mobile version of the FLY presentation system
for the iPadTMwas implemented by Claude Bemtgen for his
Bachelor’s Thesis [Bemtgen, 2012]. All thesis work regard-
ing FLY has been done under the guidance of either the
author alone or in cooperation with Leonhard Lichtschlag.
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These publications will also be again cited explicitly in the
text below, where it is applicable.

EXCURSUS: PRESENTATION VISUALS:
Technical Representation
Presentation visuals are today usually represented by a succession of slides,
which are static or animated frames of text and imagery. The whole presen-
tation document therefore consists of a single linear list of such slides, and
each slide consists of a single linear list of staged build stops—in the most
simple case, there is just one stop, and the slide can be represented by an im-
age. While the slides and their builds are presented strictly sequentially, there
is still a major difference to a video in that there usually is no fixed playback
rate; the temporal structure can be pre-determined by the presentation author,
but usually each upcoming sample is navigated to manually by the presenter.

Syntactic Structure
The support domain of the syntactic structure for the kind of slide-based pre-
sentation visuals we are concerned with here is the linear, sequential list of
slides. We will not consider staged slide builds explicitly, because they can
also generally be realized by using multiple slides. The slide frame itself is
a second-tier syntactic structure that supports the spatial arrangement of a
slide’s actual content. While the slide list is the main syntactic structure for
navigation inside a presentation document, the spatial arrangement is com-
monly used to sequentially refer to individual bits of content that are visible
at the same time.

Semantic Structures
Maybe like for no other medium, the semantic structure of presentation visu-
als is tied to the contents of the presentation. Since it is the singular purpose of
the visuals to help conveying, explaining, teaching, or convincing an audience
to believe the content, McLuhan’s often quoted “the medium is the message”
[McLuhan, 1964] is especially appropriate here. The semantic structure thus
has to be a reflection of the structure of the topic that is to be presented: logical
or referential links between subtopics, different views onto a topic, and repre-
sentations of the content on different scales of interpretation are all part of the
semantic structure.
It should be noted that, because of this special relationship between content
and semantic structure, the latter will potentially be different for different
‘users’ of a presentation document. In particular, we must closely examine
the roles of the presentation author, the presenter, and the audience to find a nav-
igation technique that is adequate for all three.
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5.1 A History of Presentations

Giving good talks and convincing presentations is consid-Presentation quality
is often associated

with the quality of the
visual support.

ered an important skill for today’s career paths, in aca-
demics as well as in other professional fields. While there
are speakers that rely on oral presentations alone, most
will accompany their talk by some form of visual support
such as blackboard sketches, flip-chart diagrams, or digi-
tally projected slides. Especially the latter has become al-
most the canonical form for a presentation: preparing a talk
often means creating a deck of digital slides. Similarly, the
perceived quality of a presentation is often strongly influ-
enced by the perceived quality of the slide deck [Tufte, 2003;
House et al., 2005].

Earnest [2003] describes in his chronology of presentationPresentations have a
long history. visuals that the task of presenting a topic to inform or illus-

trating a point of view to convince others has been a recog-
nized skill for more than 2000 years; in the early republics
of the Greek and Roman cultures, public speech was what
could sway the political opinion in one direction or another.
Consequently, the art of rhetoric had already been studied
extensively in both Greek (e.g. in [Plato, 380 BC] and [Plato,
370 BC]) and Roman (e.g. in [Unknown Author, approx. 90
BC]) literature. No mention of visual presentation support
is found in these documents, however—they focus solely on
the spoken word and the supporting body language.

It was not until the industrialization that presentation vi-Visual presentation
support emerged just

over 200 years ago.
sualizations appeared: After blackboards had been intro-
duced in 1801, their use quickly spread and was widely
established in the middle of the century. Leveraging the
ability to reproduce real world imagery through photogra-
phy, 35mm color slide projection became a popular means
for visualization in the 1930s. Overhead projectors, as they
are still being employed in classrooms, saw their first (mili-
tary) use in 1945. And by 1960, Television CRT screens were
widespread in the US (CRT projectors lacked the necessary
brightness for large screens until Advent Corporation re-
leased a 7 foot system in 1972 [Hornbeck, 1998]). Today,
most of these technologies have been succeeded by digital
projectors of various design or by large-scale digital display
panels, which are used to show the output of some pre-
sentation software—usually a series of (possibly animated)



5.2 Describing Slide Navigation in Standard Interfaces 189

slides that can contain text, images, and even video or audio
clips.

The first commercially available presentation software Digital presentation
software was
originally a tool to
design physical
slides.

package, PowerPoint, is still the most widespread today
[Parker, 2001]. It was originally designed by Forethought
for the Macintosh platform in 1987 but bought by Mi-
crosoft in the same year to be re-released as part of Mi-
crosoft Office in 1990. At that time, PowerPoint’s main pur-
pose was still to aid the design and productions of physi-
cal slides—either as 35mm diapositives or printed-out over-
head slides. Today, PowerPoint and similar software pack-
ages are mostly used in conjunction with digital projection
or display technology, thus—in theory—liberating the tool
from the rigid restrictions of the physical slide format. The
format, however, prevails; most presentation software is
still slideware, deeply rooted in the slide metaphor and in-
heriting its technological limitations (cf. 2.1.4 “Edge Cases
and Exceptions”). Therefore, presentations that consist of
a linear sequence of images and bullet points grouped into
equally shaped rectangular regions are not an exception but
the rule.

5.2 Describing Slide Navigation in
Standard Interfaces

Slide-based presentation visuals are a series of rectangu- The strength of slides
is creating a linear,
sequential narrative;
but often topics are
more complex than
that.

lar information snippets, usually filled with visual media
such as sketches, videos, photos and text, and shown in
a pre-defined sequence. For some forms of content, this
may be completely acceptable; telling a story with just one
plot line, for example, or presenting a single-track sched-
ule for a project works well when using slides. In these
cases, the content has a linear dominant structure (here, it
is temporal), and the projection onto the linear, sequential
slide format is compatible with that (Figures 5.1 and 5.2).
Other kinds of content, for example the explanation of com-
plex and highly interconnected topics, are more difficult to
project onto this one-dimensional, linear container. Regu-
larly providing overviews over subtopics or the whole talk
to give context to the content currently in focus, as it is
recommended, does not come naturally when using slide
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A B C D E

A B C D
1 2 3 4 5

E E

Figure 5.1: Content with a dominant linear structure mapped to a sequence of
slides. Since the semantic structure of the content and the structure of a slide
deck are topologically compatible, the mapping is easy. The semantic chunking
of the content, however, may already not be representable in the single, fixed
chunk size that slides offer.

decks. Also, visualizing cross-links between different parts
of a subject or even just following branching or merging
lines of explanation can require an immense amount of care
and deliberation on the sides of both the slide author and
the presenter to do well with slides. In media like thisProjecting complex

topics into the slide
format requires

multiplexing and
deliberate

redundancy.

that possess a possibly high-dimensional semantic struc-
ture, which, during the authoring, had to be projected onto
a one-dimensional syntactic structure, multiplexing is often
the only way to deal with these situations. For slide decks,
this means repeatedly inserting copies of overview slides
and frequently switching between related topics that possi-
bly had better been shown in parallel to allow direct com-
parisons (Figures 5.3 and 5.4).

Apart of the linearity of slide decks, another point is theSlideware divides
content and

navigation into
chunks that are

defined by the
available space on

one slide.

granularity at which information can be navigated and
shown at a time. With slides, content chunking is often not
determined by natural grouping of the content or even the
human capabilities of the intended audience (cf. Figure 5.1).
Instead, the decision of navigation granularity, and thus of
what to show during the presentation at any given time,
is mainly governed by what fits the rectangular frame of a
slide. Slides, in other words, effectively localize design and
decision making to arbitrary chunks of content.
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Figure 5.2: Combined navigation interface model for a regular slideware when
presenting a purely linear topic like, for example, a story with a single plot. The
semantic mapping of how the stages of the topic are represented on the slides is
comparatively simple.
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Figure 5.3: Content with a complex structure mapped to a sequence of slides.
The semantic structure of the content and the structure of the slide deck are topo-
logically different. Mapping the content onto the slides in a way that is optimal
for the audience takes a great amount of care and deliberation. Content has to be
repeated in different contexts, and overviews have to be inserted regularly.



192 5 Hybrid Media: Presentation Visuals
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Figure 5.4: Combined navigation interface model for a regular slideware when
presenting a complex topic with many semantic relations. The semantic map-
ping of how the different parts of the topic—as well as overviews or side-by-side
comparisons—are represented as a sequence of slides has to be determined by
the author and becomes an immutable part of the slide deck.

5.2.1 Common Problems of Slideware

As giving talks or presentations can be a very stressful situa-Slideware has been
subject to vocal

criticism.
tion [Moscovich et al., 2004], and nobody likes to find them-
selves unprepared at that time, presentation authors often
spend a considerable amount of time and effort to prepare
the presentation visuals. They need powerful and reliable
software for this task, and, unsurprisingly, current slide-
ware packages are among the most frequently used com-
puter applications overall [Parker, 2001]. Yet, there seems
to be a consensus that slideware-driven talks often are of
minor quality, and there is a vocal group of slideware crit-
ics who claim that PowerPoint and similar software are to
blame for this (e.g., [Gopal and Morapakkam, 2002; House
et al., 2005; Parker, 2001; Tufte, 2003]). Edward Tufte is
only one prominent member of this group with his well-
known entertaining and sometimes polemic writings about
the influence PowerPoint has on presentation quality [Tufte,
2003]. Next to him, a large body of slideware-related criti-
cism by other authors exists:
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House [2005] states that instead of supporting the talk, Slides often take
precedence over the
talk and homogenize
presentations.

slides often substitute the talk, with the presenter being
degraded to just orally supporting what is shown on the
slides. Also, talks that are projected onto the concept of
slides would often become more similar, because the con-
straints and limitations of the format would narrow down
the possible variations of expressing ones ideas.

Farkas [2005] criticizes how with slideware, presenters of- Slides may take
control over the talk
or become its subject
rather than its
support.

ten rather talk about their slides than the topic itself. The
slides, again through their linearity and their pre-defined
pacing, take control over the presentation away from the
presenter. This can be observed especially at slide changes
when a presenter pauses for an instant to re-orient to the
‘new’ content that appears on the slide.

Johnson [2005] and Craig [2006] share the view that using Slides may truncate
the creative space,
because they are
tedious to change
after they have been
authored.

slides for a presentation creates a finalized mindset, com-
prising only those parts of a topic that have made it into the
slide deck. This discourages making ad hoc changes to the
structure or the content of the talk and inhibits discussions
about related topics that are not part of the final set.

Another widespread point of criticism [Wright, 1983; Slides invite
micro-scale
beautification instead
of getting the big
story right.

Parker, 2001; Tufte, 2003; Good, 2003; Li et al., 2003] is that
presentation authors often concentrate of the beautification
of single slides instead of communicating the gestalt of the
topic or making high level decisions about the structure of
the talk. Slides narrow the focus during both authoring and
presenting the talk to a ‘slideful’ of content, hiding away the
relations with and connections to other subtopics.

Parker [2001] as well as Johnson and Sharp [2005] believe Slides are a poor tool
for education.that the static nature of slide decks makes them not well

suited for education. Slides typically are used to present re-
sults, not to illustrate the process of obtaining them, which
is a crucial point in teaching.

Opposing views exist, of course. And ultimately, it is not Many points of
criticism could be
avoided if slides were
used properly.

the tool which is to be blamed but the author or presenter
who uses it—often not to the best of the tool’s capabilities.
This is why recently a number of researchers—among them
Holmes [2004], Brown [2007], Norman [2005], and Kjeldsen
[2006]—advocate media literacy [Buckingham, 2006] and the
need for proper training for presentation authoring and de-
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livery. Although this is undoubtedly a valid argument, we
still argue that presentation software could do a better job
in helping non-professional authors and presenters to com-
municate their ideas to an audience effectively.

It should also be noted that the aforementioned points ofSome of the criticism
is generally

applicable to poorly
prepared visual

support for talks.

criticism about slides being bad presentation visuals are not
exclusive to PowerPoint but apply to most other presenta-
tion software as well. An interesting fact, however, is that
such arguments had already been brought forward as early
as in 1950 by Van Pelt [1950]:

“We have seen overcrowded slides projected by
machines that could not be focused. We have
watched while speakers in a large room tried to
use maps or charts that could not be read be-
yond arm’s length. We have listened in vain
as able scholars talked confidentially to a black-
board while writing illegible symbols with in-
visible chalk. We have fidgeted, mentally if not
physically, as the remarks of a renowned sci-
entist came to a dead stop while he readjusted
some ill-arranged piece of apparatus or hunted
for a scientific specimen to illustrate his point.
The habit of using bad visual aids is rampant
among those who ‘speak to inform’.”

The similarity of the lamented problems suggests that some
of the weaknesses of PowerPoint that have been repeatedly
pointed out over the last decade are actually rather rooted
in the technical metaphor of slides that most presentation
software still adheres to.

These points of criticism mostly apply to the presentation asIn the context of
presentation

authoring, slides
exhibit three

problems.

well as the creation of presentation visuals; in Lichtschlag’s
Diploma Thesis [2008], he explicitly analyzed the potential
problems of slideware in the context of the latter. In par-
ticular, three major problems can be observed [Lichtschlag,
2008]—content cutting, time dominance, and falling into the de-
tail trap—that may force authors to adopt the sequential and
discrete conceptual model of slideware [Parker, 2001; Lov-
gren, 1994].
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Content Cutting

Slide decks are sequential collections of discrete, equally Content cutting

happens when the
chunking of the
content is influenced
by the syntactic
constraints of its
form.

sized containers. Thus, they separate the content into a se-
ries of discrete chunks, acting like folders into which the in-
formation has to be sorted [Good, 2003]. Since the amount
of content that fits any single slide is solely determined by
the spatial size of its visualization, this separation and sort-
ing of information chunks has to follow constraints that are
independent of the content. Slide design guidelines that
ask for a visual balance of the graphical layout on a slide
and discourage authors from creating overloaded or very
empty slides only add to this situation. The result is that
the chunking often will be arbitrary in terms of the seman-
tic structure of the content. This, in term, leads to a whole
series of problems:

• Since content cannot physically span slide bound-
aries, it has to be repeated—in parts or as a whole—
when referred to again later in the talk.

• If the visualization of a semantically coherent chunk
of content overspills the slide frame, the slide either
has to be left in a visually unpleasing state (and is
likely difficult to parse and comprehend) or the chunk
has to be split up between neighboring slides, effec-
tively always hiding half of it.

• Similarly, comparing two aspects of a topic side-by-
side requires either flipping back and forth between
two slides or a special slide where both aspects are
visualized next to each other. Due to the limited
space on a slide, this often requires a miniaturized
and therefore simplified visualization which dilutes
the learned relationship between the signifier and the
signified (cf. [Saussure, 1916]) and makes it difficult to
retain the association between a topic and its visual-
ized shape.

• Content that does not fit the regular visual chunk-
ing of slides—either because it would overspill a slide
or leave it underpopulated—is often dropped entirely
from a talk [Parker, 2001]. This is probably the most
severe case of content cutting.
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• Complex topics spanning a range of slides with only
one slide visible at a time are reportedly difficult to
present and difficult to understand as a whole [Good,
2003].

• Transitions between slides usually abruptly substitute
one chunk of information with another. The granular-
ity of how upcoming content is revealed is again fixed
through the concept of slides. This makes transitions
often neither calm nor predictable.

• Transition effects should only be used in a way that
they are semantically meaningful and illustrate the
content. Slides make this difficult [Zongker and
Salesin, 2003].

Time Dominance

Due to the linearity of slide decks, the timeline of a talk isTime dominance

causes non-linear
relations between

topics to be
sequentialized to fit
the linear syntactic

structure.

syntactically hard-coded into the presentation visuals at cre-
ation time. Non-linear semantic structures have to be pro-
jected onto this linear domain and may lose their structural
gestalt; in order to mitigate this effect, overview slides have
to be deliberately inserted, and content has to be repeated
to present non-linear relations between topics (Figure 5.3).
This Time Dominance leads to a number of undesired effects
for the author:

• Relations between topics can be presented at most in
linear form, and the only possible ‘gestalt laws’ to ex-
press these relations are closure when being on the
same slide or proximity when being temporally close
in the slide deck, e.g., on neighboring slides. Some
slideware systems offer hyperlinks on slides that al-
low to connect topics in a non-linear fashion; these
connections, however, are opaque to the audience un-
less a link is invoked. Also, navigating hyperlinks on
slides requires the presenter to acquire a pointing de-
vice, bring up a mouse cursor, aim it at the link, and
click, which can easily interrupt the flow of the pre-
sentation and is a burden on the presenter (and often
the audience).
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• The Time Dominance of slides worsens the problem of
Content Cutting: not only content that does not fit the
slide frame is often excluded from a presentation, also
content that does not fit the singular trail of explana-
tion is more likely to be pruned. This hinders proto-
typing and exploration during the authoring process
[Gopal and Morapakkam, 2002; Good, 2003], discour-
ages from preparing several alternative explanations
of a topic, and brings the danger of oversimplifying
topics by communicating a streamlined and linearized
mental model.

• Similarly, it is difficult to include optional material
into the linear structure of a slide deck. Extra slides
will either have to be skipped over during the talk if
the presenter opts to not show them—which is often
confusing to the audience [Moscovich et al., 2004]—or
they have to be added into an ‘appendix’ after the last
slide, which is then difficult to bring up at the right
time.

• Content repetitions, like they are necessary for
overviews and for multiplexing or revisiting ideas in
slide decks, make later changes to the talk more diffi-
cult and prone to inconsistencies.

• Reusing a slide deck for a different talk, e.g. for a dif-
ferent audience or with a slightly shifted focus, will
likely result in the need for a re-projection of the con-
tent onto a new timeline. This means that the slide
deck has to be either jigsaw-puzzled together from
salvaged fragments of the existing talk, which can eas-
ily result in poor consistency and a non-ideal ‘story’
arc, or that the deck has to be completely re-created,
which is a waste of time. In any case, it is the author’s
burden to implement a system of version control for
slide decks to manage these situations [Drucker et al.,
2006; Moscovich et al., 2004].

Detail Trap

In most authoring environments for slideware, the edit-
ing scope for the visual design of a slide is determined by
that single slide’s frame. Thus, the author is visually and
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interaction-wise locked in at the detail level without visualSlideware authoring
interfaces show only
a local neighborhood
of the content, luring

the author into the
detail trap.

reference or easy access to the overall layout of the talk. She
has no context for the current slide available to ensure it
fits a consistent line of narration or explanation in the talk
[Gopal and Morapakkam, 2002]; there is no ‘stepping back’
to look at the shape of the whole. Problems that result from
the Detail Trap include:

• Limiting the focus to a single slide during authoring
often results in authors basing their decision making
only on this local chunk of information. This ‘beau-
tifying’ of slides instead of refining the overall shape
of the talk has been repeatedly observed and reported
(e.g., in [Good, 2003; Li et al., 2003; Parker, 2001; Tufte,
2003]).

• The absence of a ‘big picture’ view, barring thumbnail
collections of slides, in current slideware not only im-
pedes the author’s ability to create contextually con-
sistent presentations but also requires her to manu-
ally create such overviews and context visualizations.
This, of course, is not only a lot of work but also re-
quires changes to other slides being reflected on these
overviews as well, which leads to inconsistencies if
forgotten.

• Although this creation of overviews is considered
good practice and helps the audience later [Good,
2003], it is often neglected, as the authoring software
does not offer the affordance.

In summary, we see how these limitations, which slidewareThese problems are
all related to the

dominant syntactic
structure of the

medium.

inherits, because it is constrained to the technical possibili-
ties of physical slides, adversely affect not only the author-
ing process itself but also how authors are able to design
and think about presentations. In this context, content cut-
ting and time dominance both actively separate where hu-
mans associate. They are examples for how offering naviga-
tion only in the syntactic structure of a medium makes the
navigation inefficient and difficult. Maybe even more im-
portantly, it also influences the mental model of the medium
and, thus, its creation process and ultimately its content.
With the technical constraints that required content to be
presented on slides long gone, we will try to abandon this
re-mapping of the mental model of a topic onto the rigid
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structure of a slide deck. In the remainder of this chapter,
we describe the design of FLY, our presentation software
that allows semantic direct manipulation navigation of pre-
sentation visuals, and how it affects the authoring, present-
ing, and learning processes.

5.3 Fly, a Semantic Presentation Tool

Developing a concept for semantic navigation in presen- Semantic navigation
interfaces from
time-based media
are not applicable
here.

tation visuals cannot be done in the same way as for au-
dio (cf. 3 “Time-based Media: Orchestral Music” (p. 65)) or
video (cf. 4 “Time-based Media: Video Scenes” (p. 89)) be-
cause of two main differences in how we use these media:

Firstly, for video and audio, the syntactic structure reflects
a fundamental property of the medium and its content—
everything that happens in these media happens over time,
so the fact that the syntactic structure coincides with the
temporal support domain is not only suitable but necessary
to be able to represent the content. Therefore, it was a valid
approach to provide a mapping between the semantic struc-
ture and the syntactic structure for semantic navigation.

Slide-based presentation visuals are different; the syntactic The syntactic
structure of slides is
a technical relic.

structure of this medium is not a reification of any concept
that would be inherent to the content. In a lecture, for exam-
ple, the knowledge that should be transported by means of
the presentation and its visual support does not necessarily
share any structural characteristics with the linear, sequen-
tial, and discretely chunked slide deck. In many cases, it can
rather be represented as a hierarchical network of seman-
tically related bits of information, like a concept map or a
hypertext document. Insofar, the temporal linearity and se-
quentiality of the syntactic structure are artifacts of the act
of presenting the content and not of the content itself. The
technical implementation and the user visible representa-
tion of the medium, unfortunately, have already embedded
these concepts.

This difference negates our straightforward approach of just
modifying an interface layer to represent the semantic struc-
ture and then constructing a semantic mapping to leverage
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the existing syntactic navigation facilities. While we can still
follow our four-step-approach, we will need to change the
syntactic structure of the medium as well in the process.

Secondly, in the last two chapters, we did not have to dealWe have to consider
different user roles:

author, presenter,
and audience.

with the different user roles pertaining to the medium. In
the case of user A navigating a video scene, for example, we
paid no attention to the implications DRAGON might have
for another user B, who is watching the process. Similarly,
the idea of navigating video is simply not applicable to the
act of creating or shooting a video, only to editing it later.

With presentation visuals, we have another situation; nav-
igating the presentation visuals means different things in
the context of the three stages of the medium’s ‘lifecycle’—
authoring, presenting, and learning and understanding—and
for the respective groups of users who perform these tasks.
And while specialized views on the medium and additional
navigation techniques exist for, say, the author of a presen-
tation, all three groups are usually faced with the same ba-
sic representation of the medium. This, again, calls for a
more comprehensive approach in redesigning the naviga-
tion. And changing the established syntactic structure is
one way to gain the necessary flexibility for offering appro-
priate views on the content and navigation techniques that
support the primary tasks for all three user roles.

5.3.1 Finding a Conceptual Model

As outlined above, we have to understand the tasks of three
distinct user roles if we aim for a unified conceptual model
that is useful to all of them. Therefore, we start by reviewing
the three aspects of this medium’s ‘lifecycle’ and the three
agencies that act as users in those aspects:

• the creation or authoring of the presentation visuals,
performed by the author,

• the actual presentation of the topic by a presenter who
is using the visuals,

• and understanding, remembering, learning, and enjoying
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the content of the presentation, which the audience has
to do.

Authoring—Author

A mistake that is sometimes made when talking about pre- Author and presenter
are separate roles.sentations is that the author of the talk and the presenter

are viewed to be the same person. While this may often be
the case, this perspective leads to a conflation of the differ-
ent roles; the task and context of the author and those of
the presenter are distinct, as they differ in factors like time
constraints, undoability of work steps, and persistence of the
results. Therefore, we will analyze and discuss them sepa-
rately.

In our definition, the author is the one to design the struc- Authors research the
supporting material
and create or
compose the
visualizations.

ture of a talk, select any material to be presented, prepares
the medial support for the talk (visuals, audio, handouts),
and—maybe together with the presenter—composes any
presenting aids like presenter notes or cue cards. The re-
sult of her work may in turn be the input for one or many
instances of presenting. While for some presentations there
may be no visual medial support necessary, we will restrict
our examinations to the cases that are relevant for the dis-
cussion at hand.

The author of a presentation should be an expert in the do- Experience levels
and work practice are
very diverse for
authors.

main of the presentation topic, and researching and sense
making of related material may be necessary before begin-
ning to work on a presentation. When creating visual sup-
port for the talk, employing slideware is most common, but
authors also use graphics packages, text processors, and
even specialized animation software. In his analysis of pre-
sentation authoring practice, Johnson [1996] distinguishes
between different types of authors: those who are profes-
sional slide authors, those who create slides peripherally
for their main job, and ‘slide clericals’ with less training
who often create run-of-the-mill presentations. He found
out that with increasing expertise, authors tend to employ
larger tool repositories. For very polished presentations,
each slide may be designed separately in graphics software
or an animation suite and then only composed into a slide
deck by means of slideware.
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The authoring process has been studied in detail by GoodTypical authoring is
an iteration of:

collection of material,
organization,

composition, and
revision.

[2003]. He found that typically the authoring begins with
a collection of visualization materials—often even before a
plan for the final layout, order, or arrangement has been
made. Then, the process enters an iterative cycle of generat-
ing ideas, organizing them, composing the materials that il-
lustrate the idea, and revising the results. For this, both top-
down and bottom-up strategies for the design of the topic’s
gestalt are common. Good concludes from his observations
that the ability to explore design alternatives is critical for
successful presentation authoring: “The more difficult it is
to explore alternatives, the fewer alternatives the presenter
is likely to consider” [Good, 2003]. He also states that this
exploration happens to a far lesser degree if the authoring
environment lacks support for these activities: “In addition,
formal structures can introduce modification costs that re-
duce the chances that an author will explore alternative or-
ganisations” [Good, 2003].

Presenting—Presenter

The task of the presenter is, according to Holman etThe presenter must
deliver the

information
understandably;

many different
presentation styles

exist.

al. [2006], to present a topic clearly and understandably and
to answer questions from the audience during or after the
talk. There is no single best way to achieve this, and a
plethora of different practices and styles exist, ranging from
very speaker centered presentations with no or very little
visual support, over minimalistic slide support—for exam-
ple, the well-known Lessig Method (cf. [Buttigieg, 2010])—
to talks that center around the visual presentation of the
topic. The latter can often be observed in the context of
teaching, like in lectures and classrooms.

Presenting is usually a stressful task, because the whole au-Presenting is a
cognitively

demanding task that
leaves little free

resources for
complex navigation.

dience is focused on the speaker, so it is very important that
any technological support (visuals, clicker, audio) does not
‘get in the way’ and does not require an undue amount of
cognitive resources. For presentation visuals such as slides
that offer no content-based navigation, this often means that
navigation is restricted to linear, incremental advancement
in forward and backward directions. These limitations are
also mirrored in the available selection of presentation re-
motes or clickers; a detailed discussion on and comparison
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Figure 5.5: Physical slides with presenter notes written onto
the individual slide frames (source: [Lichtschlag, 2008]).

between presentation control devices for slides and for FLY
can be found in [Bemtgen, 2012]. Another aid for the pre-
senter are written cues: Traditionally, these were sometimes
directly written onto the plastic frame of 35mm slides (Fig-
ure 5.5). Today, most software packages support displaying
these presenter notes on an auxiliary display that is only
visible by the presenter.

Presenters often have to present a topic multiple times in Presenters may have
to adjust the scope or
style of the
presentation
according to the
audience.

different contexts: different audiences may have differ-
ent levels of prior knowledge or different information de-
mands, and the time frame allotted for the talk may vary.
Sequential linear media like slides thus usually require re-
authoring of a presentation to make it appropriate for an-
other context. This leads to the need for a stringent and
disciplined versioning system of the different slide decks
[Drucker et al., 2006; Moscovich et al., 2004], which is a
problem of its own nature.

Understanding, Learning, and Enjoying—Audience

The role of the audience is to understand what is being pre- The audience should
understand the topic
and enjoy the
presentation.

sented, to learn something from the content, and—ideally—
to enjoy the presentation. From these three, the learning
aspect is the one that is deemed most important and con-
sequently has been studied in the most detail. Learning
through media is a research field in its own regard; how-
ever, the question if media can have an influence on learn-
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ing performance at all has been the subject of an ongoing
debate for decades.

Prominent voices in this debate are, among others, ClarkIf the medium can
have an influence on
learning success is a

heavily debated
question.

[1983; 1994; 2001], who opposes the idea of improving learn-
ing of students and audiences through media, and Kozma
[1991; 1994], a strong proponent of that idea. Clark repeat-
edly states that “media do not influence learning under any
conditions” and that “[...] media are mere vehicles that de-
liver instructions but do not influence student achievement
any more than the truck that delivers our groceries causes
changes in our nutrition.” While he dismisses the positive
results found by some studies on the matter to be produced
rather by better methods of instruction than different me-
dia, Kozma (together with Reiser [1994]) and Brown [1992]
claim that they found different students to perform better
or worse depending on the employed media. What is un-
doubtedly true is that there are successful teaching and edu-
cation methods that depend on certain media. Clark’s state-
ments also seem not to fit to some of today’s interactive me-
dia that allow dialog learning rather than just be vessels of
information. The question remains unanswered, although
a number of more recent studies [Hoyt, 1999; Russell, 1999;
Ramage, 2002; Joy II and Garcia, 2000; Clark, 2001] mostly
could not find significant influences (see Table 5.1). Rus-
sell still maintains a public database1 of research articles and
papers under the name of ‘no significant difference’ where
authors can register their published experiments on the in-
fluence of media on learning.

Significantly better with technology 46
Significantly better in the classroom 3
Mixed results 7
No significant Difference 299

Table 5.1: Distribution of studies with effects on learning as
categorized by Thomas Russel [1999].

1http://www.nosignificantdifference.org

http://www.nosignificantdifference.org
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An Information Landscape Model

It seems clear that while a well-prepared linear slide deck Creating an optimal
experience for the
audience requires
extensive preparation
from author and
presenter; even then,
integrating ad hoc
questions or
demands of the
audience remain a
challenge.

can probably be a suitable medium for the audience, this
puts the burden of didactically arranging the material to be
presented into this limited structure on the author of the
presentation. The presenter then has to stick to this order
of topics and to the line of explanation envisioned by the
author, which, again, requires extensive preparation. Ques-
tions from the audience require ad hoc navigation through
the sequential information space, often accompanied by the
less than desirable visual experience of flicking through a
large slide deck until the topic of the question has been
found. Similarly, the presenter usually is not able to adapt
the presentation to different audiences on-the-fly apart from
rapidly skipping over sections of the slide deck.

When looking for a conceptual model that does not suf- Adding an extra
spatial dimension
helps with some of
the problems.

fer so much from the aforementioned problems of linear-
ity and chunking, more flexible and interlinked structures
come to mind. And defining these structures over more
than one dimension suddenly allows concepts like paral-
lelism or branching to be easily and conveniently expressed
in a spatial way. Arranging information in such a manner
not only adds an extra dimension along which we can navi-
gate, it is also free of a dominant direction, possesses a more
intuitive concept of scaling and granularity, and is easily
compatible with the ideas of direct manipulation.

One widespread method to structure information outside Mind maps follow a
similar concept.of presentations are mind maps: related information is ar-

ranged in a tree structure around a single central topic at the
root, creating a spatial layout. Similarly, one could imagine
the conceptual model for presentation visuals to be struc-
tured this way, where navigation through the information
space would be aligned with the edges of the tree.

Of course, since not all presentation topics are strictly hi- A semantic scale
space representation
could enable scoping
and abstraction of
details.

erarchical, a tree structure might be too restrictive, and a
free placement of information along both spatial axes seems
more useful. Such a structure is then called a concept map
[Novak and Gowin, 1984; Novak, 1990]. Also, to respect
the concept of subtopics of varying complexity and to in-
clude the idea of topic overviews, we can make use of the
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scalability of space and allow distance to the plane of in-
formation as an additional navigation axis. The resulting
scale space model should ideally reflect the scale semanti-
cally, automatically abstracting groups of information bits
or whole subtopics if they would become information clut-
ter in that scope of the scale space.

A conceptual model for presentation visuals that is definedThe gestalt of the
topic can be directly

visualized, more
easily navigated, and

information more
flexibly chunked and

presented.

in such a continuous spatial domain, instead of the discrete
temporal domain of slides, would have several advantages:
First and foremost, now the gestalt of the topic can be rep-
resented directly in the model, which makes the spatial ar-
rangement of information semantically meaningful, lever-
ages spatial memory, and thus helps information retention
[Dillon et al., 1996]. Second, a spatial arrangement of in-
formation can later be easily represented graphically and
navigated in a continuous way by using established spa-
tial direct manipulation techniques. In contrast to switching
between slides, this could give us seamless transitions be-
tween related subtopics, which prevents losing the context,
because it is constantly being visualized. Zooming out for
overviews could be done ‘on the fly’ whenever needed, fur-
ther aiding spatial memory. And, in the same way, a presen-
ter can always choose to alter the path of the talk through
this space or deviate from a planned order of topics to ac-
commodate for different audiences, meet time constraints,
or show extra material in answer to questions. Third, the
scalability of a spatial layout enables a much more liberal
use of gestalt laws to chunk individual items of content. In-
stead of being pre-determined by the syntactic frame of a
slide, groups of information items can now be built by giv-
ing them similar shape, placing them close together, or ar-
ranging them along geometric entities.

Most importantly, however, this idea factorizes the concep-The temporal aspect
of the presentation

order can be
completely

de-factorized from
the spatial aspect of

the information
arrangement.

tual model for presentation visuals into two orthogonal sub-
spaces: that of the semantic structure of the topic, which can
be represented spatially, and that of the temporal ordering
of the talk during the presentation. Both can be manipu-
lated separately, and navigation through the medium is de-
termined by the layout of the content and not by the fixed
ordering and chunking of content that slides impose.
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5.3.2 Related Work

Parts of this idea of a more flexible model of information
arrangement or the inclusion of an explicit semantic scale
have already been proposed in earlier projects, some dat-
ing back to the early 90s. The following is a short list of
the most important related work and by no means com-
prehensive. For more detailed discussions, we refer to
[Lichtschlag, 2008] and [Hess, 2011].

Controlling Presentation Flow by Physical Interaction

The problem of slideware presentations being inflexible Physical proxies for
slides can break time
dominance and can
give the presenter a
better overview.

with regard to the order in which the material is presented
has been identified before. One possible solution is to use
physical proxies for the slides during the talk. These have
the advantage that they can easily be re-arranged or spread
out on the presenter’s table for a quick overview (unfortu-
nately just for the presenter, of course). Using physical slide
proxies thus allows better random access navigation to spe-
cific parts of the talk; normal presentation software usually
only offers navigation to the next and previous slides, or
random access via the slide number, which, as explained
above, is usually not related to the semantics of the con-
tent and thus of limited use. One has to note, however, that
employing slide proxies links the presentation visuals even
more closely to the technical metaphor, with all the conse-
quences discussed in the beginning of this chapter.

Palette [Nelson et al., 1999; Pedersen et al., 2000] was one Palette uses barcode
augmented paper
slides to trigger the
slide projections.

of the first systems that included slide proxies printed on
paper cards to control the presentation. Every printed card
automatically contained a barcode that identified the rep-
resented slide inside the deck. During a talk, the presenter
scanned the barcode using a scanner mounted to the presen-
ter’s desk to advance to the respective slide. Advantages of
the system were, as already stated above, the possibility to
restructure the talk ad hoc within certain limits (e.g. skip-
ping slides) as well as easier overview of and random ac-
cess to the upcoming slides. The paper proxies were also
helpful for the presenter to take notes of questions or com-
ments from the audience. Resembling a deck of classical
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Figure 5.6: PaperPoint slide proxy (left) and digital projection (right). The slide
deck can be navigated by tapping each slide’s individual show button with a
digital pen. Also, annotations made on the paper version of the slide propagate
directly to the digital projection. Source: [Signer and Norrie, 2007]

cue cards, a widely used technique to aid the presentation,
the slide proxies were easily accepted by presenters. They
also were reported to facilitate discussions between presen-
ter and audience, because cards could be quickly shared
and passed around. Drawbacks of Palette included the lim-
ited re-usability of printed out slides—the barcode was only
meaningful in the context of the slide deck it was created for,
so slides could not be re-used for overlapping decks—and
the fact that the presentation itself was still a normal slide
show for the audience.

PaperPoint [Signer and Norrie, 2007] was an extended ver-PaperPoint uses
Anoto paper to

trigger slides and to
annotate them

on-the-fly.

sion of that idea using AnotoTM2 digital pen technology. A
proxy version of the slides was printed on dot-coded paper,
and the proxy contained printed buttons: a ‘show’ button
for each slide and a set of global command buttons, similar
to what can be found on most presentation ‘clicker’ devices.
Using a Bluetooth Anoto pen, the presenter could tap on the
buttons to directly invoke these commands. The second fea-
ture of PaperPoint was that sketches and inkings drawn onto
the proxy could automatically be updated on the audience-
visible projection in real-time (Figure 5.6). Thus, it com-
bined the flexibility in the order of the presentation with the
ad hoc augmentation capabilities of tablet presentation sys-
tems like Classroom Presenter [Anderson et al., 2004, 2007].

2http://www.anoto.com

http://www.anoto.com
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Concept Maps and Graph Layouts

A different way to break up the strictly linear and pre- There are already a
number of
presentation systems
that are based on
concept maps.

defined order of slide presentations has been pursued by
systems that organize the content in structures with higher
connection degrees. For this purpose, we make no dis-
tinction between mind-maps [Buzan, 1991], concept-maps
(cf. [Novak, 1990; Carnot et al., 2001; Wiegmann et al., 1992;
Chau, 1998]), hierarchical maps or other graph structures
and layouts; all have in common that the syntactic struc-
ture can be designed to represent the semantic structure of
the topic and that we can use them as frameworks to nav-
igate through a talk. This also allows different traversal
paths of a network of connected topics; presentations can
thus be altered according to the occasion, or multiple paths
pre-planned for different audiences or time frames [Ship-
man et al., 1996, 1998]. The concept of offering different
ways to traverse and information structure is also an estab-
lished paradigm in the related areas of hypermedia [Zell-
weger, 1989] and distance learning [Goyal et al., 2006].

One system that allowed to arrange slides in a graph struc- Moscovich proposed
laying out PowerPoint
slides in a graph to
enable different
presentation paths.

ture was proposed by Moscovich et al. [2004]. The slides
were first authored in PowerPoint and then, in a second
step, imported into the graph tool where they could be con-
nected to form a directed hierarchical graph (Figure 5.7).
During the presentation, the presenter could always choose
after each slide which of the outgoing edges in the graph
should be taken. Together with the hierarchical structure,
this provided an easy way to choose between short expla-
nations and in-depth discussions of a subtopic or allowed to
skip it entirely. The graph was only visible at the presenter’s
display, however; for the audience, the presentation visuals
resembled a normal PowerPoint slide deck.

A similar prototype system by Gopal and Morapakkam The graph shows
how far the talk has
progressed.

[2002] gave the presenter the possibility to show the graph
of slides to the audience. Through a set of Visual Basic
macros in PowerPoint, the slides could be assembled in a
graph and the graph be visualized in a side column or as
a fullscreen overview for the audience. Slides that had al-
ready been visited were shaded gray to give the audience
a perspective on how far the talk had progressed through a
topic. The system was tested in the class room with stu-
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Figure 5.7: Moscovich’s tool allowed authors to arrange
PowerPoint slides in a graph structure and then present
them by navigating this graph. Source: [Moscovich et al.,
2004]

dents and received broad acceptance among the partici-
pants: over 70% reported that they felt it made learning
easier and that they liked this form of presentation. Also,
referring back to a certain subtopic for questions or addi-
tional explanations was reported to be very easy thanks to
the visible overview map of the talk. Observed problems in-
clude the amount of extra work needed to author the graphs
using the prototype system and the abrupt transitions be-
tween content and meta-content when switching between
content slides and map view.

Zoomable Presentation Interfaces

As discussed in 5.3.1 “Finding a Conceptual Model” above,Zoomable interfaces
for presentation are
less structured but
allow the author to

semantically scope
the material.

we not only want to exploit the beneficial properties of spa-
tial layouts but also want to facilitate easy overviews and
seamless transitions between subtopics and different infor-
mation hierarchy levels. One class of interfaces for the
exploration of such structures are zoomable user interfaces
(ZUIs), pioneered by Bederson, Hollan, and Perlin in the
early 90s [Perlin and Fox, 1993; Bederson and Hollan, 1994].
In contrast to graph layouts, they don’t use edges but the
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spatial layout itself over a range of scales to convey these re-
lations. A number of zoomable presentation interfaces have
been proposed, with Prezi3, a fairly recent one that succeeds
some of our work on FLY, being one of the first commer-
cially successful presentation applications of this kind.

CounterPoint [Good and Bederson, 2001, 2002; Good, 2003] CounterPoint is a
presentation ZUI but
is still based on
slides.

is a presentation ZUI where authors can arrange slides spa-
tially and at different scales on a canvas. Similar to the
systems by Moscovich et al. [2004] and Gopal and Mora-
pakkam [2002], the slides are first created in PowerPoint.
While the main structuring element of information is still
a slide, CounterPoint allows to place simple text labels on
the canvas next to single slides or groups (Figure 5.8). The
layout can also be created automatically if a tree-hierarchy
of slides is given. The final presentation is a sequence of
viewports at different scales onto the canvas, whereby each
viewport can show a single full slide, the whole arrange-
ment, or anything in between. For the audience, the tran-
sitions between these viewports are smoothly animated,
helping to retain the context and understand the shape of
the topic through the visual layout. Authors can create
multiple independent sequences over the same informa-
tion canvas. In an experiment, feedback from 73 presen-
tations delivered with CounterPoint revealed that the ability
to show overviews as well as focus on details was appreci-
ated by the presenters. Also, the smooth transitions helped
the audience to stay oriented, especially when jumping be-
tween subtopics.

A system very similar to CounterPoint, but provided by Mi- The pptPlex plug-in is
less flexible.crosoft as a plug-in for PowerPoint, is pptPlex4. A special

background slide takes the role of the canvas in Counter-
Point, the actual slides of the talk are filled into pre-defined
placeholders on that background. Further nesting of slides
is not possible. While users can modify these included back-
ground templates and even create their own, very little flex-
ibility is offered when it comes to presenting: The viewport
is automatically zoomed and panned to the next slide in the
linear order of the original deck—changing this order or op-
tionally branching to a different sequence are not directly
supported. Overviews can be given, however, by zooming
out, and the talk can be resumed at a different slide by click-

3www.prezi.com
4www.officelabs.com/projects/pptPlex

www.prezi.com
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Figure 5.8: CounterPoint allows the author to arrange PowerPoint slides freely
on a zoomable canvas. Additionally, labels can be placed next to single slides
or clusters, and the software supports multiple different presentation paths over
the same slide arrangement. Source: [Good, 2003]

ing on it. The latter, of course, requires a pointing device to
be available during the presentation.

Prezi (formerly ZUIPrezi) is, as already mentioned above,Prezi, a slide-less
presentation ZUI,
already embodies

most of our ideas for
FLY.

a commercial web application implementing a ZUI to au-
thor and show presentation visuals. The most important
point that sets it apart from CounterPoint and pptPlex is that
it follows our idea of completely abandoning the concept
of slides: In Prezi, content elements are freely pasted onto
an infinite, zoomable canvas. Frames can be placed on that
canvas as alignment hints for a certain viewport to be be
shown in a presentation, but that is optional (Figure 5.9).
Authoring a presentation consists of two steps: First, the in-
formation landscape is created by arranging the content me-
dia (text, images, videos, sketches, and alignment frames)
on the canvas at different positions, angles, and zoom lev-
els. Second, the author defines a presentation path over this
information landscape by creating a series of viewport stops
at the desired locations. These stops are created either by
setting the viewport via direct manipulation pan and zoom
to show a part of the canvas and then taking a ‘snapshot’
or by selecting an object or alignment frame on the canvas
directly, which creates a viewport stop that is aligned with
the respective bounding box. Multiple paths or branching
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Figure 5.9: Prezi is a web-based presentation system that builds upon the same
canvas metaphor as FLY. Information is laid out on an infinite plane at arbitrary
zoom levels. In this way, authors can represent complex topics through their
distinct visual gestalt.

paths are not supported. At presentation time, the author
can choose to freely navigate over the presentation canvas,
again via direct manipulation pan and zoom, or to advance
on the pre-defined presentation path. Advancing on the
path results in automatically created, smooth transition an-
imations between the saved viewports.

Parts of our own work on FLY predates the first release of Some studies were
conducted using
Prezi.

Prezi, and some of our studies could have been conducted
with either system. Because it is so close to our idea of how
to structure and navigate presentation visuals, and because
today Prezi is in widespread use, we also used it for one of
our later field studies (cf. 5.3.5 “Fly Case Study—Analyzing
Canvas Presentations in the Wild”).

The last system in this list of related work is the first pro- The first fly prototype
was based on a less
flexible tree structure.

totype of FLY [Holman et al., 2006], our own approach at
investigating a different navigation paradigm for presenta-
tion visuals. The prototype was developed to run a first
formative proof-of-concept study, checking if spatially ar-
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Figure 5.10: The first prototype of Fly. This version only represents a small subset
of the ideas for canvas-based presentations; it was mainly used to conduct a
formative study. Source: [Holman et al., 2006]

ranged presentations could be understood by the audience
as well as the conventional time-multiplexed slide decks. In
contrast to all later versions of FLY, the talk is always tree-
based, the individual nodes are authored using slideware,
and the nodes are laid out on the presentation canvas au-
tomatically (Figure 5.10). Navigation through the presen-
tation is either direct manipulation pan and zoom or auto-
matically animated smooth transitions between viewports
that show single nodes or overviews. Holman et al. con-
ducted a study in which they compared content retention
between two groups of HCI students after attending a talk
with either FLY or PowerPoint presentation visuals. While
they found that FLY slightly outperformed PowerPoint on
average, the results were not significant.

The previous work presented here mainly addressed theContent cutting can
only be solved by

abandoning the
spatial rigidity of the

slide frame.

problems of time dominance and detail trap by allowing to
arrange slides in graph structures and by offering explicit
visualizations of the context. The conceptual model for
our FLY navigation additionally questions the information
chunking imposed by the rigid structure and hard bound-
aries of the slide frame, which can lead to content cut-
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ting. Our idea is that in breaking the linearity of the slide
deck and the boundaries of the slide frame, FLY could help
authors to visualize their flow of ideas, communicate the
structural gestalt of complex topics, and not be discouraged
from exploring emerging ideas.

5.3.3 Determine the Semantic Mapping

In the last two chapters on audio and video navigation, we
always used the construct of the semantic mapping to facil-
itate navigation through the semantic structure, which rep-
resents the conceptual model of the medium; we did this
by transforming the users’ navigation gestures, which re-
ferred to the semantic structure, through the mapping into
the syntactic domain. Then we leveraged the existing soft-
ware infrastructure, i.e., the technical representation of the
medium together with its syntactic navigation capabilities,
to perform the actual navigation and presentation of the re-
sult (cf. 2.2.2 “Media Model” (p. 49), 3.2.2 “Determine the
Semantic Mapping” (p. 72), and 4.2.2 “Determine the Se-
mantic Mapping” (p. 108)). The impression for the user thus
was always to directly interact with a representation of the
semantic structure.

One core mechanism of this idea was that we could, in Finding an initial
syntactic to semantic
mapping is difficult
for information
canvases.

some way, construct the semantic mapping by inverting—
sometimes globally, sometimes only locally—an initial
mapping from the existing syntactic structure into the se-
mantic structure. In the theory chapter, we presented dif-
ferent possible ways to arrive at this initial mapping (cf. 2
“Generating New Interfaces Using the Combined Model”).
In the case at hand, the combination of the existing syntactic
structure and the envisioned semantic structure of presen-
tation visuals does not lend itself very well to this approach.
The reason for this is twofold:

First, since we want the semantic structure to reflect the con- The syntactic
structure with the
slide sequence as
the support domain is
unsuited for more
flexible navigation
approaches.

ceptual model of the information space, the initial mapping
would have to map the slide structure of a presentation doc-
ument to that space; this mapping would be extremely diffi-
cult to define (cf. Figure 5.3). Automatic construction of the
mapping is out of the question, and manual construction
of the mapping basically requires the whole semantic struc-
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Figure 5.11: Semantic mapping in Fly. Instead of defining a semantic mapping
into the syntactic structure of the medium, in FLY, we let the semantic structure
be created explicitly in the authoring process. After this, it is easy to overlay a
syntactic structure like the temporal order (blue path).

ture to be manually created first. Moreover, the initial map-
ping would be almost the opposite of being surjective—
resulting in a semantic mapping that is defined only locally
at sparsely distributed locations in the semantic structure.
Such a semantic mapping, however, is almost useless for
the semantic navigation that we intend to achieve. Also,
this whole process would still leave us with the slide as the
smallest navigable syntactic unit—which we have already
identified as one of the things we want to change with FLY
in the first place.

Second, we also want the authors of presentation visualsWe want the medium
to be authored in a

representation of its
semantic structure.

to be able to express their ideas directly in the semantic
structure—ideally, the whole authoring process takes place
in this space and then defines a mapping to the syntactic
space of a linear presentation sequence after the fact (Figure
5.11). An explicit and tangible representation of the seman-
tic space would also benefit the audience in terms of spatial
memory utilization and knowledge conveyed by the visual
gestalt of the spatial information layout.

Both of these points suggest to change the medium in aIf we author the
medium in a

representation of the
semantic space, it

can also be
syntactically

structured in this way.

more radical way than just designing a semantic naviga-
tion interface on top of its existing representation. We thus
turn the process around like outlined above; we change the
representation of the medium to a direct reification of the
semantic structure (Figure 5.12) and have the author of a
presentation document also create the semantic mapping
in its final direction—essentially following the pattern of
‘manual definition of the initial mapping as integral part of the
media authoring process’, which we have proposed in the the-
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Figure 5.12: Combined navigation interface model for FLY. In this case, the
medium is altered in its format to have the semantic and syntactic layers of the
interface directly mirror the semantic and syntactic structure of the content.

ory chapter (2b “Generating New Interfaces Using the Com-
bined Model”), just in the reverse direction.

The author can create her work directly in a higher dimen- Our new syntactic
structure can
explicitly represent
the spatial and
temporal factors
separately.

sional space—as a spatial information landscape with op-
tional semantic scaling—without any of the restrictions im-
posed by the slide format and then define one or many pre-
sentation sequences as a sequence of locations in this space.
Thus, we can get a multitude of syntactic structures: Each
of them is determined by projecting the semantic structure
through one of the semantic mappings (Figure 5.11). And,
more importantly, each of them can cater to the needs of a
different audience or respect different time or complexity
constraints on the presentation that may arise when the fi-
nal talk is held by the presenter.

5.3.4 Designing the User Interface for FLY

To ensure that the interface facilitates our goal of hav- The FLY interface
should allow users to
interact with the
syntactic structure of
the canvas and
presentation paths
using direct
manipulation.

ing the visual gestalt of the content resemble the semantic
gestalt of the presentation topic, we chose FLY’s underly-
ing interface metaphor to be that of a directly manipulat-
able, layered collage or continuous arrangement of infor-
mation atoms on an infinite canvas (Figure 5.13). We tried to
avoid any syntactic—and therefore content-independent—
granularity constraints, orderings, borders, or separations
unless they were conscious design decisions by the author
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Figure 5.13: Screenshots of all four FLY prototypes. Our idea of canvas-based
presentations has consequently been extended and refined through several itera-
tions. Sources: [Holman et al., 2006; Lichtschlag et al., 2009; Hess, 2011; Bemtgen,
2012]

and were meant to communicate a fact or quality inherent in
the content. The hierarchical graph structure of the first pro-
totype (cf. 5.3.2 “Zoomable Presentation Interfaces”), which
was based on concept maps [Holman et al., 2006], was there-
fore dropped.

This interaction technique of pasting content—digital me-FLY differs from other
ZUIs by providing

semantic zooming
and a fixed zoom

depth.

dia such as text, images, or videos—freely onto an infi-
nite canvas at different scales is, of course, akin to exist-
ing zoomable presentation interfaces like the ones discussed
above (cf. 5.3.2 “Zoomable Presentation Interfaces”). How-
ever, two important differences set the FLY interface apart
from most other ZUIs:

First, we decided against an unrestricted range of zoom
levels to access the scale space of the semantic struc-
ture. Instead, similar to a city map, we created a ‘ground
plane’, a level on which the most detailed representations
of subtopics can be placed. We hoped that with this limi-
tation we could counter the feeling of disorientation or get-
ting lost that users often report when using regular ZUIs
[Furnas and Zhang, 1998; Hornbæk et al., 2002; Bederson,
2010]. Also, allowing infinite zoom-ins might again im-
pose the risk of the detail trap, which we want to avoid. On
the other side of the granularity spectrum, FLY has a max-
imum ‘overview level’, which is the furthest distance from
the ground plane that authors can place information on. A
finite number of discrete semantic levels between those two
extremes are directly accessible through the UI, the space
in between can be accessed by continuously zooming in or
out.
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Second, FLY supports semantic zooming, a term coined by
David Fox [1993], by placing different representations of in-
formation on top of each other, each at a different layer.
An overview at a high level thus can reflect the shape of
the topic without the distracting effect of scaled down de-
tails dissolving into indistinguishable noise. This can be
compared to semantic zooming UIs like GoogleMapsTM5,
where city names, which are visible when zoomed out, van-
ish when zooming in on the city and are replaced by streets
and other infrastructure that was not visible before.

Design Goals

In contrast to the slide format, which forces authors to di- De-factorizing
information space
and presentation time
allows creating
different talks on the
same topic.

rectly project the content of a presentation onto a timeline,
we reverse this principle in FLY and let the author project
any number of timelines onto the content—thereby creating
the semantic mappings. This allows the information land-
scape of the content to be created, revised, and modified
until the author is content with the topic before any tempo-
ral order of presentation is assigned. Thus, the topic can
be completely and faithfully reflected in the visualization
first without any need for content cutting. Paths that repre-
sent the temporal component of a talks can then be defined
over the canvas, independent of each other. Creating an in-
formation collage on one large topic, e.g., for a university
course and then defining the individual paths for the re-
spective lectures is a typical way of working with FLY as
an author. In this scenario, it is easy to create recaps at the
beginning of a lecture by first visiting the core concept of the
last lecture, perhaps at a higher semantic zoom level. Also,
including overviews and back-references comes naturally.

Another advantage of this principle is that modifying a Changing the
information canvas is
consistent across all
presentations.

chunk of information on the canvas, for example to add
an image or to fix a mistyped formula, causes all presenta-
tion paths or talks to become automatically updated at once.
Managing separate versions of presentation documents for
different audiences (which at some point will possibly be
in different states of updated content) is no longer needed.
To stay with the example of university courses, one could
even imagine to aggregate the content of multiple courses

5maps.google.com

maps.google.com
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into one document, facilitating cross-references and excur-
sus into related topics. Also, these documents could be co-
authored between experts in different domains or dissemi-
nated after a talk to encourage self tutoring and exploration
of additional material.

The goal of Fly’s design is to leverage our proposed changesChanging the
medium changes the
user experiences and
workflows for all user

roles.

to the technical representation of presentation visuals and to
help all three user groups in their tasks by giving them an
interface that coincides with their conceptual model. Such a
drastic shift in the way a medium is represented, however,
has to be examined carefully in the light of all aspects of
usage of the medium; helping the authoring of presentation
visuals is meaningless if presenting the material or learning
from a presentation becomes more difficult in the process.
In the following, we describe how we envision the work
processes for all three groups to look like in FLY.

Authoring with Fly

As explained above, the interplay of semantic structure,
semantic mapping, and syntactic mapping allows to de-
factorize the creation of the content as a faithful visual rep-
resentation of the topic from the creation of the presentation
path. This clear separation changes the workflow of the
author from the combined interaction model of slideware,
where the semantics of the content and syntactics of the pre-
sentation order had to be considered at the same time, to
a more structured and focused three-step-model. The first
two steps are interchangeable, depending on if the author
follows a top-down or bottom-up design strategy; the order
in which the steps are presented here is more suitable for
the latter way.

Information Collection and Arrangement
First, the author collects information about the topic—Authors start by

creating a collage of
information atoms on

the canvas that
reflects the topic’s

spatial gestalt.

everything that can be represented visually may be used:
text, photos, video clips, images, or diagrams. These infor-
mation atoms can directly be placed on the canvas where
they can be sorted, clustered, laid out, and re-arranged any
time. The order of presentation does not matter at that time,
the author can focus on how the layout best represents the
overall shape of the topic and how the relations between
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subtopics can be expressed through the gestalt of their spa-
tial arrangement. She is encouraged to try out variations
and to experiment; the content items can be easily moved
around via direct manipulation, while the big picture is al-
ways visible and allows to evaluate every local layout deci-
sion in the context of the whole. With no automatic layout,
and the author thus being always in the loop, the canvas
only reflects the design decisions of the author. This also
facilitates orientation in the information landscape for the
author and, later, for the audience [Buzan, 1991].

Providing Abstractions and Layering Where Needed
After the layout of the ground level is finished, the author Authors then create

semantic
abstractions or
details on the other
zoom levels.

can create the higher levels for the semantic zooming fea-
ture. More abstract or just visually less detailed versions of
singular information atoms or whole groups and subtopics
can be stacked on top of their detailed counterparts. When
zooming out for overviews or summaries, the representa-
tion changes as a function of the zoom level; the details be-
low gradually fade out, and the abstract visualizations be-
come visible. If the author follows a top-down approach,
she would probably begin by designing these overview lev-
els first and then drill down into the detail levels by adding
refined representations and visualizations.

Creating Presentation Paths
The last step that is needed is to finally design a presenta- Lastly, authors can

define multiple
temporal structures
by creating a number
of different
presentation paths
over the canvas.

tion path through the three-dimensional scale space infor-
mation landscape that is the result of the first two steps. The
author can create such a path by adjusting the viewport by
panning and zooming to show the desired part of the can-
vas at the desired zoom level; then, she takes a ‘snapshot’
of this view. A presentation path consists of a series of such
snapshots and can be stepped through by the presenter like
a regular presentation. In each step, the according snap-
shot view is shown to the audience. When presenting such
a path, the transitions between these views are animated
automatically—they are always smooth and continuous like
a cinematographic camera flight over a real landscape and
connect the two views in a meaningful, physically plausi-
ble way. Unlike previous presentation systems that employ
the concept of paths [Good, 2003; Moscovich et al., 2004], in
FLY the author can choose if there should be a visual repre-
sentation of the path—e.g., a line or curve—visible for the
audience during the presentation.
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Presenting with Fly

Presenting a FLY document allows for much flexibility andPresenters start by
selecting or

modifying one of the
authored

presentation paths.

ad hoc adjustment of the planned course of a talk. In the
general case, presenters will start out by choosing an appro-
priate path through the information landscape from a list
before they start the actual presentation. The list of avail-
able paths ideally contains a selection of different durations,
complexities, and focus topics; but that, of course, depends
on what the author—who can be the same person as the
presenter—has prepared beforehand.

During the talk, the presenter can stick to the selected path,When presenting,
one can stay on the

path, freely stray from
the path for excursus,

or branch off to a
different path.

advancing through the path stops one at a time, or he can
switch to another path on-the-fly if he finds that the time
budget for the talk has unexpectedly changed or a different
level of detail and complexity is better suited for the audi-
ence at that time. It is also possible to leave the path and
interactively navigate through the semantic structure of the
medium to offer additional explanations or points of view
on a topic; this is especially helpful to react to questions
from the audience. Overviews over the topic, a subtopic,
or the progression of the talk can be given with little effort
at any time by just zooming out; advancing to the next stop
of the current path smoothly zooms back to the level of ab-
straction indicated for that stop.

The seamless transition between the pre-sequenced naviga-The added flexibility
and direct

manipulation
navigation ask for a

more expressive
input device than a

clicker.

tion on a path, the selection of such paths, and the spatial
direct manipulation navigation through the semantic scale
space gives the presenter a flexibility that is impossible to
achieve with the slide format. Utilizing these capabilities of
the canvas format to their full capacity, however, may re-
quire additional training on the side of the presenter. Also,
the most widespread type of presentation control devices,
often dubbed ‘clickers’, falls short in offering adequate in-
put methods for the direct manipulation parts of the navi-
gation; a multi-touch enabled mobile device would be more
fitting for controlling FLY presentation visuals [Bemtgen,
2012]. The screen on these devices can then alternatively
show the presenter’s notes or provide a view on the in-
formation canvas with direct manipulation pan and zoom
touch input.



5.3 Fly, a Semantic Presentation Tool 223

Learning and Understanding with Fly

The reasons why the canvas-based presentation format may The calm viewport
transitions and the
semantic visual
clustering help the
audience too.

be beneficial for the audience are similar to why the format
can help authors in their work: Increased expressiveness
for semantic relations between clusters of information, bet-
ter context visualization and overviews, and the tendency
to exhibit less of the authoring slips that are too common
in slide presentations are desirable properties of presenta-
tions from the audience’s point of view. Abandoning the
slide frame makes spatial and temporal fragmentation of
continuous topics unnecessary, and the semantically moti-
vated spatial arrangement can leverage the audiences spa-
tial memory to make learning easier—this might be true
especially for spatial learners [Good and Bederson, 2002].
Without slides, the visual result of a presentation can al-
ways be a calm and smooth ‘flight’ over the canvas without
the ‘jarring experience’ [Moscovich et al., 2004] of flipping
quickly back and forth in a slide deck.

Since multiple connections and relations of content items Canvas-based
presentations
facilitate object
consistency and
cross-modal
information delivery.

can be expressed visually through the use of gestalt laws
(cf. [Sternberg, 2002]), there is less need to have the pre-
senter make them explicit verbally. This could reduce the
cognitive load for the audience—shifting load from the ver-
bal to the visual channel enables usage of a larger part
of one’s memory resources [Good and Bederson, 2002]—
and exploits the benefits of cross-modal information deliv-
ery [Mayer and Gallini, 1990]. Also, making the presen-
tation follow a path through a continuous space and al-
lowing smooth transitions between overlapping viewports
helps the audience, together with the spatial nature of the
information representation, to track semantic connections
without actively having to think about it, thanks to the per-
ceptual phenomenon of object consistency [Walsh and Ku-
likowski, 1998]. All this applies especially in long presen-
tations (e.g., lectures), where a narration has to be continu-
ously followed and processed for information.
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FLY Interface Prototype I

For his thesis, Lichtschlag [2008] implemented a first soft-Lichtschlag
implemented the first

FLY software
prototype.

ware prototype, which realized a subset of the design as-
pects outlined above. The user interface was kept delib-
erately simple (Figure 5.14): the prototype is a document-
based application, each window consisting of a toolbar
(5.14.A), a zoom indicator column (5.14.B), the main can-
vas view (5.14.C), and a tree view containing the ‘viewport
path stops’ for the projected timelines of all talks through
the semantic structure of the current canvas (5.14.D).

The toolbar contains icons to create new informationNavigation on the
canvas is direct-

manipulation-based;
presentation paths

are created by
demonstration.

atoms—text- or image-based—on the canvas, which will
then be inserted at the current position and abstraction level
(5.14.E). The position of the item can be adjusted by sim-
ply dragging it on the canvas, the abstraction level can be
changed via a toggle button on the toolbar (5.14.F). The
remaining icons control how a talk timeline is projected
onto the content: users can create a new timeline or ‘route’
through the information landscape (5.14.G), add a viewport
snapshot or ‘landmark’ to the current route (5.14.H), or start
presenting (5.14.I).

The zoom indicator column (5.14.B) shows the current zoomThe ZUI controls give
direct access to the

two levels of
semantic abstraction

in the prototype.

level using a vertical slider. Three buttons next to the slider
allow zooming directly to one of the two abstraction lev-
els or to a full overview of all content on the canvas. The
relative arrangements of these elements shows which zoom
levels are associated with which semantic abstraction levels.

To give authors guidance when designing the content forThe inactive zoom
level is blurred and
semi-transparent.

the two semantic zoom levels, we restricted the choice of
font sizes in each level to what would be readable at the
respective zoom ranges. Depending on the current zoom
level, either the overview or the detail level is fully opaque
and in focus and thus clearly visible—the other level is
semi-transparent and blurred. This gives a notion of the
other semantic level at all times, offering a sense of continu-
ity, physical plausibility, and orientation, without distract-
ing too much from the content currently in focus. Moreover,
the introduction of a visual background on the ‘ground
level’ helps staying oriented by always having a visual cue
to judge the ‘altitude over ground’ of the current viewport.
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Figure 5.14: Screenshot of the user interface in the first FLY software prototype.

The central canvas view is the main work area for the pre- Navigation and
editing direct
manipulation
commands are
similar to major
graphics software
packages.

sentation author. Information atoms can be dropped onto it
(as an alternative way to the toolbar button or the menu en-
try) or re-arranged via direct manipulation dragging. FLY
also supports the interaction concepts known from other
direct manipulation software interfaces, such as viewport
panning, mouse-centered zooming via the mouse wheel or
two-finger-scroll, as well as the standard keyboard editing
shortcuts and commands (cut, copy, paste, etc.). Double-
clicking an object allows to modify its content, e.g., chang-
ing the resource for an image or editing the text for a text
box. Similar to the ‘document in hand’ navigation metaphor
or Apple’s ‘natural scrolling’ direction, the canvas is panned
in two dimensions also by dragging. To avoid conflicts with
dragging objects on the canvas, dragging the canvas is done
with the right mouse button. This way of solving the dis-
ambiguation between direct manipulation of objects or di-
rect manipulation of the context or scene is used in many
software packages and is especially common in computer
games.
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Figure 5.15: Topic indicators in FLY. These semi-transparent
directional hints can be optionally faded in to visualize the
spatial context of the current position when zoomed in.
Source: [Hess, 2011]

Context visualization in ZUIs is known to be difficult [Pook,To help finding one’s
way at closer zoom

ranges, FLY can
optionally display City

Lights indicator
overlays.

2001]. Therefore, when navigating the canvas at closer
zoom levels, the user can optionally have the context visu-
alized by overlaying topic indicators that point to nearby
semantic clusters (Figure 5.15), a technique similar to City
Lights by Zellweger et al. [2003]. These signs become more
opaque when the topic is closer and morph into the topic
cluster itself when it enters the viewport (either because the
canvas is moved or zoomed out for an overview). Alterna-
tive visualizations that have been proposed for displaying
off-screen items in the context of maps on mobile devices
include Halo [Baudisch and Rosenholtz, 2003] and Wedge
[Gustafson et al., 2008] would likely work as well.

The actual presentation paths or ‘timelines’ are hosted inFLY offers extensive
path editing

capabilities in the
right column of its UI.

the tree view inside the right column (5.14.D). Each time-
line contains a list of ‘path stops’ or ‘landmarks’. The pre-
sentation path interpolates these stops; a visual representa-
tion of the path on the canvas can be optionally displayed
in the form of a semi-transparent spline curve. Path stops
are created by aligning the viewport of the central view so
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that it shows the desired content and then pressing the ‘Add
Landmark’ button on the toolbar—a screen flash and cam-
era shutter sound is given as feedback that a snapshot has
been taken. The stops can be freely re-ordered, renamed, or
deleted in the tree view. Also, a path can be navigated by
either stepping through the list or directly clicking on any
stop in the list.

When presenting, a path can be selected before the canvas Paths guide the
presenter’s
progression over the
canvas but can
always be left to
navigate freely.

is shown in full screen without the authoring tools and con-
trols. The presenter can either navigate freely by means of
normal spatial direct manipulation or advance to the next
stop of the current path by pressing the arrow keys or via
mouse clicks.

There are, of course, a number of limitations in this proto- Being created for
testing purposes
only, the first
prototype could not
include videos as
information atoms,
did not support
branching paths, and
did not include
presenter notes.

type, so that it can only represent parts of the whole FLY
concept (cf. 5.3.4 “Design Goals” and 5.3.1 “Finding a Con-
ceptual Model”): First of all, the software supports only
a very limited selection of media types to be placed on
the canvas as information atoms. Dynamic media, such
as videos or animations, and incremental revealing tech-
niques, such as building up a list or image, should be em-
beddable in a final implementation of FLY. Second, while
this prototype allows authors to create any number of pre-
sentation paths to prepare multiple different talks on the
same topic, having paths branch for on-the-fly decisions
about optional material is not possible. Third, the proto-
type misses features that benefit the presenter during the
talk, for example, presenter notes, presentation timing aids,
an input device for easy wireless navigation (cf. 5.3.4 “Mo-
bile FLY Interface Prototype”), or presenter-only visible pre-
views of the next stop. These limitations do not prohibit
the effective use of the FLY prototype in real world presen-
tation scenarios—it has been used, for example, to present
our work at CHI 2009 [Lichtschlag et al., 2009]—but defi-
nitely hinder it. The prototype, however, was mostly meant
as a testbed for the canvas authoring process and thus only
has to represent the author’s experience of the FLY concept
sufficiently well.
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FLY Interface Prototype II

A second iteration on the FLY prototype—done by ThomasA more refined
second prototype

was implemented by
Heß for our audience

study.

Heß for his Master’s Thesis [Hess, 2011]—addressed some
of these limitations and incorporated some of the user feed-
back we received from Lichtschlag’s authoring study (see
below in 5.3.5 “Evaluation of the Authoring Process with
FLY ”). Apart from being a complete re-implementation that
uses modern frameworks and APIs, this second version of
FLY was designed to respect the established interface guide-
lines and UI patterns for OS X applications (Figure 5.16).
As such, some ideas from the original prototype, for exam-
ple mouse-centered zooming and panning using the right
mouse button, which had caused some problems with test
users, were abandoned and replaced by more conventional
controls. This prototype also offers a larger number of user
definable preferences for visualization and interface behav-
ior.

More importantly, however, this new version also intro-
duced some fundamental design changes:

• Instead of offering two separate semantic zoom levelsSemantic
abstractions are now

explicitly linked to
detail content.

that can be used to label subtopics and groups of in-
formation items, the software now explicitly supports
subtopics; a subtopic can be given a label and a back-
ground color. Users can assign each information item
to a subtopic, which makes the item inherit its color
and label. The latter is then what is shown on higher
zoom levels (Figure 5.16, top left).

• Path stops now maintain an internal link to the infor-Path stops are
flagged if the

originally visible
content is later

moved out of their
viewport.

mation items that are visible in the stop’s associated
viewport. Should the items be re-arranged in a way
that they would not be visible in this stop any more,
the stop is flagged as needing revision. This makes in-
terleaved authoring of the canvas and the paths much
easier for authors.

• The path stop UI is no longer represented textually, asThe path stop UI
visualizes more
information, e.g.
viewport areas.

a list, but graphically, as a stack of (possibly branch-
ing) lines. The actual stops are depicted as circles
with their radius dependent on the zoom level of the
stop (Figure 5.16, bottom). Also, the aspect ratio of
the viewport can be set separately for each path. This
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Figure 5.16: Screenshot of the second FLY software prototype. Most notably,
the interface now explicitly includes topic management (left), an advanced path
visualization (bottom), and is more compatible with established Mac OS X inter-
action patterns. Source: [Hess, 2011]

allows to easily author the same presentation for an
external projector or wall display.

• Heß had planned and designed additional changes to More features exist
as wireframes but
have not yet been
included.

the interface, which have not yet been implemented.
Among these are support for animated builds and
video, the actual ability to navigate branching paths,
and an extensive list of design ideas for the presenter’s
screen during a presentation [Hess, 2011].

This second prototype was primarily created for a study
that analyzes the effect of the new presentation format on
the audience. Additional information on the design can be
found in Heß’s Master’s Thesis [2011], the experiment is
also described below in 5.3.5 “Understanding and Learning
from Fly Presentations”.
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Mobile FLY Interface Prototype

Our most recent FLY prototype was developed by ClaudeTo analyze the
presenter’s need for

more expressive
input, Bemtgen

created a mobile
version of FLY.

Bemtgen for his Bachelor’s Thesis [Bemtgen, 2012]. Its pur-
pose is to analyze the suitability of the canvas as the explicit
representation of the semantic structure for the remaining
user role: that of the presenter.

To allow the presenter to freely navigate the canvas or to se-
lect between branching path alternatives, a more expressive
input device than a standard ‘clicker’ is required. Conse-
quently, we decided to utilize a portable multitouch tablet:
its screen can be used to display presenter notes or the
canvas—or both—, while the canvas can be navigated using
the standard gesture repertoire for spatial direct manipula-
tion .

An added benefit of the platform is that current tablets, likeCurrent tablets are
powerful enough to

run FLY in full.
the iPadTMused for our experiments, have enough process-
ing power and sufficient ways to connect to external dis-
plays to make it possible to run FLY entirely on the mobile
device. We are still in the process of investigating if the
content creation environment of the presentation author can
and should also be moved to the tablet or if it should remain
centered around a classic computer.

5.3.5 Evaluate the Interface

In this fourth step of creating semantic navigation interfacesWe have to evaluate
FLY with all three

user roles: author,
presenter, and

audience.

according to our interaction model 2.2.4 “Descriptive, Com-
parative, and Generative Power of the Combined Model”,
we have to evaluate if our changing the technical represen-
tation of the medium in a way that it represents the seman-
tic structure derived from the three conceptual models of
the identified user groups (cf. 5.3.1 “Finding a Conceptual
Model”) actually benefits all of these groups. For this analy-
sis of the FLY idea in all three contexts—authoring, present-
ing, and learning—, we need different prototypes and dif-
ferent experiments: We will first describe the experiments
that we have conducted to evaluate the implications on
the authoring process and compare how authors work with
FLY to how they use PowerPoint (cf. 5.3.4 “Authoring with
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Fly”). Since the subsequent steps of presenting and learning
greatly depend on the quality of the authoring process, this
deserves a careful and extensive analysis. The findings will
then be complemented by the results of a later case study
where we have investigated how authors change their visu-
alization and structuring strategies when they use canvas
presentation systems like FLY for their real work outside
a lab setting (cf. 5.3.5 “Fly Case Study—Analyzing Canvas
Presentations in the Wild” below). In the second half of the
section, we describe our experiments to investigate the in-
fluence of the changed presentation format on the audience
by measuring the learning performance of students (5.3.4
“Learning and Understanding with Fly”). We have not fin-
ished our analysis of FLY’s impact on the role of the presen-
ter, yet. A short summary of our plans in this regard can be
found in 5.4 “Conclusion”.

Evaluation of the Authoring Process with FLY

In the beginning of the section, we have discussed the con-
cept and design of canvas presentations (cf. 5.3.1 “Finding a
Conceptual Model” and 5.3.4 “Designing the User Interface
for FLY ”) and their theoretical advantages for presentation
authors. To analyze the impact of the canvas format and the
associated navigation concept on the authoring process, we
conducted three studies:

The first study employs paper prototypes of both a slide- A basic analysis of
authoring strategies
was performed using
paper prototypes.

based system and FLY to collect data about how authoring
strategies, resulting presentation layouts, amount and de-
gree of communicated semantic interconnections of com-
plex topics, and time needed for authoring differ between
the two paradigms.

The second study verifies these results by performing a sim- The results from the
paper study were
confirmed in a refined
software prototype
experiment.

ilar comparison between Microsoft PowerPoint, represent-
ing the most widespread commercial slideware package,
and our first FLY software prototype as described in 5.3.4
“FLY Interface Prototype I”. Both studies were designed and
carried out by Leonhard Lichtschlag for his Diploma Thesis
[2008] under the guidance of the author, and they have been
published at CHI 2009 [Lichtschlag et al., 2009]; this text is
a summary of the methodology and results.
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Figure 5.17: Paper prototype of a slideware presentation authoring system. The
left picture shows the slide master with a centered title, the middle and right
pictures show two typical finished slide layouts. Source: [Lichtschlag, 2008]

The third study was conducted two years later when—dueAn in-the-field
verification of the
earlier lab-based

results was
conducted two years

later.

to the wide availability of Prezi as a public and free canvas
presentation tool—we could analyze a large body of can-
vas presentation documents that authors had created ‘in the
wild’, without our supervision, and sans the confounding
factors always present in a lab setting. This study was a
part of Thomas Heß’s Master’s Thesis [2011], which was co-
supervised by Leonhard Lichtschlag and the author; it also
has been published as a case study at CHI 2012 [Lichtschlag
et al., 2012b].

Paper Prototype Study

For this first study, we created paper prototypes of both aThe paper prototypes
for slideware and

canvas-based
presentations used
paper for slides or
canvas and sticky

notes for information
atoms.

slideware system and FLY as a canvas-based presentation
system. The slideware system was represented by a stack
of A5 paper sheets, which already contained a pre-printed
standard footer: the presenter’s name and the name and
logo of our group (Figure 5.17). The FLY system consisted
of a large (A0) paper canvas and a rigid cardboard frame—
with the presenter’s name and the name and logo of our
group printed on—to simulate the viewport (Figure 5.18).
Holding the frame over the canvas at varying distances
simulates zooming; with this simple version of the zoom-
ing feature, however, the prototype does not offer seman-
tic zooming. For both systems, we created a large number
of information atoms on sticky notes to be placed onto the
slides or the canvas. Those information atoms included fig-
ures, text snippets, and bullet points; the text was scaled to
resemble a font size of at least 20pt on the slides, which is a
common guideline for a standard font size in presentations.
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Figure 5.18: Paper prototype of FLY for the authoring study. The cardboard
frame simulates the viewport that can be panned and zoomed by moving the
frame or holding it at a distance from the surface. Source: [Lichtschlag, 2008]

Experiment
The participants’ task in this study was to create presenta- The participants were

asked to author talks
about the history of
HCI.

tion visuals for two talks on the history of HCI. The two
topics and the respective material were adopted from the
course on Designing Interactive Systems I of the CS pro-
gramme at RWTH Aachen University, held by Prof. Borchers:
both dealt with the historical development of window sys-
tems and included material on Engelbart’s Online System
(NLS) [Engelbart and English, 1968], the Alto (cf. [Smith and
Alexander, 1988]) and Star (cf. [Johnson et al., 1989]) sys-
tems developed at Xerox PARC, the Lisa (cf. [Birss, 1984]),
Macintosh (cf. [Freiberger and Swaine, 1984]), and OS X
(cf. [Singh, 2006]) systems by Apple, the early variants of the
UNIX shell, a number of Microsoft WindowsTM(cf. [Win])
versions, and NeXTStep (cf. [Singh, 2006]) as well as a se-
lection of applications that influenced user interface or ap-
plication design (e.g., VisiCalc [Grad, 2007]), input devices
(e.g., the mouse), and interaction paradigms (e.g., WYSI-
WYG [Myers, 1998]).
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Both topics were selected in scope and shape to be of similarWe selected two
topics that were

similar in terms of
complexity, semantic
connectedness, and

size.

complexity; they both contained multiple semantic connec-
tions and relations. Meaningful orderings or arrangements
thus included: by date, by innovation, by institution, by
commercial success, by research contribution, or by inher-
itance. Since such a number of different layers of connec-
tions and relations are difficult to convey in a linear slide
deck, these topics seemed good candidates to investigate
possible benefits of the canvas-based format.

At the beginning of each trial, the experimenter handed theEach participant was
asked to author one

talk for each topic
using each of the

systems; the
experimenter took

notes and videotaped
the authoring

process.

authoring system prototype—the canvas and frame or the
stack of slide templates—as well as one set of sticky infor-
mation atoms—depending on the topic—to the participant.
The information atom sticky notes contained content from
the original course slides and were prepared by the exper-
imenter beforehand to equalize the material collection step
(cf. 5.3.4 “Authoring with Fly”) between participants and
keep the duration of the experiment manageable. Partic-
ipants could, however, create additional items during the
experiment if they wanted to. After explaining how the
authoring system worked, the experimenter instructed the
participants to “prepare visual aids for an upcoming talk
to the best of their ability” and encouraged them to think
aloud during the authoring, outlining their design decisions
and how they would imagine the talk to be given later. The
participants were told that the prepared visuals were explic-
itly not meant for later dissemination, so there was no need
to include material that would not fit the scope of an oral
presentation. This was important to ensure that the created
visuals would not have to stand on their own but should
be suitable for presentation support. Any questions the
participants had during the trial regarding the topics were
answered by the experimenter. Each trial was videotaped
and the resulting presentation documents photographed for
later analysis; the experimenter also took notes on the think
aloud part of the study. After a presentation document was
finished, each participant was additionally asked to fill out
a questionnaire (Figure A.1 in appendix A “Questionnaires”
(p. 335)) regarding their impressions of the interaction.

The experiment was a within subjects study over two con-
ditions, FLY and slideware. The order of the conditions for
each participant was randomized, as was the assignment of
the topics to the conditions. Apart from the notes the ex-
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perimenter took for the think aloud aspect of the study and The dependent
variables were
authoring time and a
score reflecting the
amount of semantic
information made
explicit in the
authored
presentation
documents.

the questionnaire, we measured the time it took each par-
ticipant to author each presentation and determined a visu-
alization score depending on how many relations and con-
nections between subtopics were made explicit in the cre-
ated visuals. The observed relations included:

• temporal relations, e.g., in which temporal order the
presented systems had been developed or published,

• heritage, e.g., which system was designed under a
dominant influence of another system,

• institutional relations, e.g., groups of systems devel-
oped or sold by the same company,

• commercial or academic success, e.g., contrasting com-
mercially successful and commercially unsuccessful
systems.

For any instance of these implicit orderings that was incor-
porated visibly in the presentation document, the visualiza-
tion score was increased by one point or a half point, up to
a maximum total score of seven points (see Table A.1 in ap-
pendix A “Questionnaires” (p. 335)). A higher score thus
indicated a more explicit visualization of the inter-subtopic
connections and relations.

We invited 13 participants for the experiment. Since they all All participants had
prior knowledge on
the presentation
topic.

needed to qualify as authors for presentation visuals in the
context of History of HCI, we selected a number of HCI pro-
fessionals and faculty as well as some graduate and under-
graduate students. All participants had advanced knowl-
edge in both topics, and four of them had held university
lectures in HCI history before.

With the assumed ability to visualize more connections and We hypothesize that
canvas-based
presentations can
visualize more
semantic relations
but take more time to
author.

relations through the 2D arrangement, we expected the can-
vas visualizations to achieve higher scores. At the same
time, we predicted that the unfamiliar format and author-
ing process would cause the participants to need more time
creating the FLY presentations. The within subjects format
of the study may have resulted in learning effects between
the first and the second trial. Regarding the two topics, we
believed, however, that they were similar in difficulty and
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thus unlikely to introduce additional side effects. To for-
mally capture these points, we formulated a number of hy-
potheses for the paper prototype experiment:

H1 The canvas-based presentation visuals exhibit a
higher degree of connectedness between subtopics,
thus reaching higher visualization scores than the
slide-based presentation visuals.

H2 Authoring canvas-based presentations takes longer
on average than authoring slide-based presentations.

H3 The second trial will, on average, be completed faster
than the first.

H4 The presentation visuals created in the second trial
will, on average, reach higher visualization scores
than those created in the first trial.

H5 The individual topics are comparable in how well pre-
sentation visuals for them can be created, thus, visu-
alization scores for the individual topics are roughly
equal.

Results
The resulting visualization scores lie in the range 2–5 (µ =The FLY documents

scored higher, and no
evidence for learning

effects the topics
differing in difficulty

could be found.

2.85) for slides and in the range 3–6 (µ = 4.62) for FLY. A
paired t-test reveals that the difference in the means of the
scores (µ = 1.77) across the two conditions is highly sig-
nificant (p = 0.00004), thus allowing us to accept H1. We
found no significant differences in the visualization scores
between the two chosen topics (mean difference µ = 0.31,
paired t-test p = 0.619), which supports H5. Also, the visu-
alization scores were not significantly higher (mean differ-
ence µ = 0.31, paired t-test p = 0.603) in the second trial for
each participant, rejecting H4 and suggesting that the learn-
ing effects between the trials were small compared to the
influence of the main factor (FLY vs. slideware).

The authoring process took slightly longer (6.37 %) in theNo significant
difference in

authoring times could
be observed.

canvas condition than in the slide condition; this difference
is not significant (paired t-test, p = 0.519), also we found
that 6 of our 13 participants were, in fact, faster with FLY.
We therefore cannot accept H2. There was, however, an
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indication of an influence of the routine, which the partic-
ipants got from the first trial, on the duration of the pro-
cess in the second trial; on average, the participants com-
peted the second trial faster (mean relative difference µ =

12.62%). Although the difference is not significant (paired
t-test p = 0.081), and we cannot accept H4, the influence
of the learning effect on the time taken to author the visu-
als was stronger than the influence of the format, which is a
positive result.

Regarding the participants’ qualitative assessment of the We used a
questionnaire to get
qualitative feedback
from authors.

different approaches to authoring presentation visuals, we
tried to find out three key aspects in our questionnaire
(cf. Figure A.1 in appendix A “Questionnaires” (p. 335)):

• Does the syntactic structuring element of the slide
frame limit the author or does it provide guidance and
is constructively used (questions Q1 respective Q2)?

• Does the absence of any structuring element in the
canvas condition initially inhibit—like a writer’s fear
of the blank page—the first authoring steps (question
Q3)?

• Does the absence of syntactic structure lead to unor-
ganized or chaotic arrangements (question Q4)?

• Do authors perceive the slideware condition or the can-
vas condition as a better ground for easily expressing
their ideas (question Q5)?

• Do authors prefer using slideware or FLY (question
Q6)?

Having evaluated the ability to explicitly visualize relations
and connections between content elements in the quantita-
tive analysis—supporting our initial arguments for break-
ing up the sequential linearity inherent in the navigation
of slide decks—, these qualitative questions are targeted at
getting insight on the authors’ perception of the slide con-
cept and its limitations and benefits for them. The questions
Q1–Q4 were based on 5-point Likert scales; for the last two
questions, the participants could answer Slides, Canvas, or
None.



238 5 Hybrid Media: Presentation Visuals

The results, with the exception of Q5, did not reveal anyQualitative results
were inconclusive. statistically significant or even clearly visible trends. The

questions about the slide as a fixed container for content
yielded centered Likert score distributions with large stan-
dard deviations (Q1: µ = 2.54, � = 1.20; Q2: µ = 3.23,
� = 1.17)—in the end, the answers seemed to be mainly
influenced by the participants’ personal opinion. The ques-
tions about the effects of absent syntactic structures in the
canvas condition possibly reflect the unfamiliarity of the par-
ticipants with the new format (Q3: µ = 2.23, � = 1.30;
Q4: µ = 2.62, � = 1.45); the results indicate a slight ten-
dency towards feeling lost at the sight of the empty can-
vas and mixed opinions on the ‘messiness’ of the finished
visuals. Regarding the expressiveness of the two presen-
tation paradigms, participants clearly preferred the canvas
format (Q5: slides=2, plane=10, none=1). However, most did
not generally prefer one over the other but stated that they
would choose the format dependent on the topic to present
(Q6: slides=3, plane=4, none=6).

Observations
What was more interesting, were the notes about the think
aloud part of the study and the observations made by the
experimenter:

In the slide condition, all test users tried to implement whatIn the slide condition,
we saw authors

cutting content or
being locked in the

detail trap.

can be described as a self-chosen set of style guidelines to
keep the visual appearance of the slides consistent. Six of
them were observed either revising their layout of some
slides, because parts did not fit the slide frame or could not
be made consistent with the style, or leaving material out
of their document, because they felt that there was no space
for it: both are instances of content cutting (cf. 5.2.1 “Content
Cutting”). The typical way for slide authoring was to pick
one subtopic that was deemed suitable as a starting point
according to some possible ordering, e.g., the earliest of the
computer systems, and then designing a slide for it. In the
majority of the cases (7 participants), this slide was then
considered finished and not revised—in some cases even
not looked at—again during the authoring until the whole
deck was completed. Material on the current subtopic that
did not fit the slide any more could either ‘overflow’ to a
new slide or was set aside and left out of the talk. Then,
that process was repeated until the end. Revising and re-
arranging of material was only done on the slide currently
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Figure 5.19: Example of a canvas layout in the FLY paper
prototype study. The pictures were placed first, creating the
overall semantic layout. Then, the titles and bullet points
were added.

under construction; the authors exhibited the exact Detail
Trap behavior described in 5.2.1 “Detail Trap”.

In the canvas condition, participants typically started by sort-
ing and clustering the material by subtopics; some did so
directly on the canvas, some took up to two minutes of
planning time before placing the material there. A com-
mon strategy was to start with a number of images—one
for each subtopic—and arranging them in a way that their
relative spatial location reflected some semantic relation be-
tween the respective subtopics. Then, other material (more
images, headlines, text, figures) was grouped around these
central nodes (Figure 5.19).

We also analyzed the resulting documents of presentation
visuals to see if there were common structuring and layout
strategies within each condition:

In the slide condition, the layouts of the individual slides Slides mostly
adhered to one of two
structural archetypes.

were mostly derivatives of one of two archetypical designs
(see Figure 5.17 middle and right) from which most slides
differed only marginally. Either a slide featured a picture
prominently—possibly together with a heading, a caption,
or both—or it was primarily a list of bullet points that was
occasionally illustrated by an image. Images were often re-
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Group A            Group B

time line

Group A            Group B

time line

time line

Group A

Group B

Figure 5.20: Conflict between temporal and group ordering. In the slide condition,
participants had to decide which semantic relation they mapped to the sequen-
tial syntactic structure (top). In the canvas condition, such conflicts of forces could
be more easily resolved (bottom). Adapted from: [Lichtschlag et al., 2009]

peated across a number of slides acting as ‘icons’ to graphi-
cally indicate the slides belonging to one subtopic.

The conflicting forces in finding a good ordering for theParticipants noticed
that it was difficult to

express multiple or
non-linear relations.

subtopics, which was partly provoked by our selection
of highly interconnected topic clusters for the experiment,
were evident to our participants and often commented on.
The linear sequential structure of the slide decks required
them to make a choice of either keeping groups of related
subtopics together but losing any other linear ordering in
the content or vice versa (Figure 5.20). Usually, they de-
cided on one dominant linear domain, for example a time-
line, along which the subtopics could be arranged, and said
that they would expect other relations to be made clear ver-
bally in the talk. Some but not all participants also cre-
ated overview slides to visualize inter-topic connections
(e.g., the timeline in Figure 5.21) that they felt could not
be expressed otherwise. These observations together with
the lower visualization scores of the slide decks support
our statements on the problem of Time Dominance (see 5.2.1
“Time Dominance”).
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Figure 5.21: Timeline overview on a single slide. In order
to resolve grouping conflicts, participants sometimes pro-
vided overviews on inter-topic relations on a single slide.
Adapted from: [Lichtschlag, 2008]

The presentation documents from the canvas condition were In the canvas
condition,
participants created
meaningful spatial
arrangements of
information.

of much greater diversity than the slide decks; they also
contained more detail information, overall. Most partic-
ipants made use of the affordances given by the absence
of a rigid slide frame and created information clusters for
each subtopic that then would be ‘scanned’ by more than
one viewport (Figure 5.22). They also visualized compar-
isons between subtopics by having viewports overlap two
clusters or opposing points of view. As we expected, the
canvas visuals contained more relations and connections,
which were often expressed through spatial configurations;
the problem of conflicting forces in the ordering was thus
elegantly solved using the extra dimension FLY offers. Par-
ticipants often started arranging the material according to
one ordering or grouping aspect and then extended and
modified the layout over the second dimension to include
other aspects. This strategy led to a number of very differ-
ent emerging arrangements (see Figures 5.20 bottom, 5.23,
and 5.24), which we all observed multiple times.
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Figure 5.22: Different viewports on a section of the can-
vas. This participant planned an overview (green) followed
by two detail views (red) that share parts of the material.
Source: [Lichtschlag et al., 2009]

Group A Group DGroup CGroup B

time 
line

Figure 5.23: Pillar layout in the FLY condition. This layout represents time flow-
ing vertically from top to bottom and uses arrows and the horizontal axis for
other semantic relationships. Source: [Lichtschlag et al., 2009]
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Group A

Origin

time 
line

Group B

Figure 5.24: Circular layout in the FLY condition. This lay-
out revolves around a central idea with time spiraling out-
wards. Other relationships are expressed through spatial
proximity of the items. Source: [Lichtschlag et al., 2009]

An unforeseen consequence of the planar arrangement was Sometimes content
would accidentally be
pre-revealed, which
may be a problem of
the format.

that sometimes a viewport would, in addition to contain-
ing the items it was supposed to, overlap parts of currently
unimportant, non-referenced chunks. Some participants
were aware of this but stated that they did not consider it
a problem if the visible unrelated snippet had already been
introduced earlier in the presentation. This behavior, of
course, does not occur with slides. We discuss the implica-
tions of such unrelated or pre-revealing in connection with
our follow-up study in 5.3.5 “Software Prototype Study”.

Additional feedback and suggestions by the participants Users asked for a
semantic zooming
feature.

were often concerned with the desire for a semantic zoom-
ing facility with separate abstraction levels, which the paper
prototype, of course, could not offer. Also, the ability to ex-
plicitly delineate regions on the canvas, e.g., by textured or
colored areas on the background, was requested. Both ideas
were later included in the subsequent software prototypes
(see 5.3.4 “FLY Interface Prototype I” and 5.3.4 “FLY Inter-
face Prototype II”).
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Discussion
This first paper prototype study confirmed most of our hy-Most of our

assumptions on the
two formats could be

confirmed.

potheses regarding the problems of slideware and how the
canvas format that is based on content aligned navigation
and direct manipulation of the semantic structure can solve
these problems. Overall, the FLY visualizations could rep-
resent more connections and relations of the complex topics
explicitly. The different workflow allowed to keep the lay-
out flexible longer through the process of authoring; at the
same time, authors are less prone to fall into the detail trap
and lose the connection of details with the larger context.
Time dominance was also less of a problem with FLY, as all
canvas presentation documents made use of the additional
degrees of freedom to de-factor the presentation time from
the semantic structures of the topics. Through the ability to
define continuous content areas that could be easily shown
as an overview or in detail through a sequence of partially
overlapping viewports, the content cutting problem could be
reduced: We observed no instances of discarding relevant
material because of syntactic constraints, and it seemed that
authors were more likely to see the content of a topic as a
whole instead of a series of chunks. In the end, the FLY
presentations could accommodate more material in total. A
surprising result was that the authoring process in the can-
vas condition did not take significantly more time, although
all participants were less familiar with the format and in
some instances spent more time on planning the presenta-
tion. The clear consensus on FLY being the tool that enabled
easier expression of ideas in comparison to slideware was
especially encouraging.

Software Prototype Study

To verify the positive results from the paper prototypeThe results from the
paper prototype

study must be
confirmed with a

software prototype.

study, we developed the first FLY software prototype, which
we have already introduced above (5.3.4 “FLY Interface Pro-
totype I”). This was essential, since a software presentation
authoring system is subject to a number of constraints that
are not present in the paper setting: First, the cardboard can-
vas was always completely visible and not truncated by the
boundaries of a computer screen—it was unclear how nega-
tively this limitation of a software version would impact the
authoring process and experience. Second, the paper pro-



5.3 Fly, a Semantic Presentation Tool 245

totype was, of course, a tangible representation of the FLY
system; interaction with the software would build upon the
traditional desktop paradigm of single point interaction us-
ing mouse and keyboard, which can be argued to limit the
authors expressiveness.

For the verification study, we mostly followed the same The study design
was similar, the two
conditions were FLY

and PowerPoint.

experiment design as the paper prototype study to keep
the results comparable. The two conditions for the par-
ticipating presentation authors were using the FLY soft-
ware prototype representing the canvas-based model or Mi-
crosoft PowerPoint 2004 for Mac representing the slideware
model. The selection of PowerPoint as a control condi-
tion, of course, means that the comparison might be skewed
by factors like different software quality (production level
vs. prototype), participants’ familiarity (most users had ex-
perience with PowerPoint, none had experience with FLY),
and the vastly different feature set in the favor of the slide-
ware. Since these points do not unfairly promote the canvas
condition, however, they do not threaten the validity of the
study.

As with the paper prototype study (cf. 5.3.5 “Paper Pro- We selected widely
known topics from
popular culture.

totype Study”), we pre-selected information material—this
time in digital form—on two topics of similar size and com-
plexity. Both topics were taken from cinematic pop culture:
One revolved around the conflict of light and dark in Lu-
cas’s Star Wars and their representing agencies, the Jedi and
the Rebellion on the one side and the Sith and the Empire
on the other. The other topic was identically structured and
referred to Rowling’s Harry Potter. The material prepared
by the experimenter included, like in the first study, a col-
lection of images and text snippets. We kept the within-
subjects format of the study, thus participants authored a
presentation on one topic in PowerPoint and on the other
topic in FLY; the order and the condition-topic assignment
was randomized.

We used the same measurements as in the first study: the vi-
sualization score scheme for quantitative assessment of the
expressiveness of the authoring tool and a questionnaire for
qualitative analysis of the authoring experience. The ques-
tionnaire was adapted from the first study (Figure A.2 in
appendix A “Questionnaires” (p. 335)).
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For the second study, we recruited 18 participants: ten stu-
dents, five lecturers, one engineer, one architect, and one
quality assurance professional. Five of them were computer
scientists, and none had participated in the first study.

We predicted the overall results to be consistent with theBecause of familiarity
with PowerPoint, we
expected to see less

distinct results.

first study—albeit less pronounced because of the unbal-
anced setup comparing an established presentation soft-
ware with the FLY prototype. Also, we expected the result-
ing documents to exhibit similar layout and design strate-
gies as we could observe in the paper study.

The visualization scores for the slide condition lay in theFLY documents also
scored significantly

higher in the software
study.

range of 2–4 (µ = 2.78), those for the canvas condition in the
range of 1–7 (µ = 3.75). The difference was, as we had an-
ticipated, smaller than for the paper prototypes (µ = 1.97,
� = 1.96) but still statistically significant (paired t-test,
p = 0.009). We can thus accept H1 also in the case of
software implementations of the two presentation formats.
Testing for learning effects and bias from the given topics
did not reveal any significant influences from these poten-
tially confounding factors.

When asked about how satisfied they were with the result-Participants were
more satisfied with

the visuals that they
had created in FLY.

ing documents (questions Q7 and Q8), participants tended
to give positive answers for both conditions. Satisfaction
with their own work in the FLY condition (µ = 4.22, � =

0.81), however, was significantly higher (paired t-test, p =

0.008) than in the Powerpoint condition (µ = 3.67, � = 0.91).
The questions about which tool allowed for more ease of
expression and about the authors’ general preferences were
answered consistent with the first study: a large majority of
the participants attributed better expressiveness to FLY (Q9:
PowerPoint=4, FLY =10, none=4) and also preferred it overall
(Q10: PowerPoint=3, FLY =10, none=5).

Again, we asked our participants to think aloud during theParticipants’ think
aloud comments

indicated that they
appreciated how the

canvas format helped
with common

authoring problems.

authoring process to help us understand their decision mak-
ing and their mental model of both systems. In the slide
condition, seven authors noted the extra work necessary to
create overview slides. FLY, on the other hand, was thought
by one participant to “create overviews by itself.” Six par-
ticipants noticed a mitigation of the content cutting prob-
lem when switching from PowerPoint to FLY. Most found
the two semantic abstraction layers to be sufficient for the
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given topics, though there are indications that more com-
plex topics might need more abstraction layers (cf. 5.3.5 “Fly
Case Study—Analyzing Canvas Presentations in the Wild”
(p. 249) below). FLY helped them be more creative, said
seven of the participants. All found the way how paths are
defined by demonstration—through adjusting the viewport
and taking a ‘snapshot’—easy to understand and to per-
form.

During the experiment, we could observe how certain as- Certain aspects of
the UI were
problematic for our
users.

pects of the FLY UI influenced the user experience for the
authors: Most of them being new to zoomable interfaces,
mouse centered zooming posed a problem or was confus-
ing for some of our users. Also, our coupling of the in-
sertion layer (overview or detail) to the current zoom level
sometimes produced mode errors. We could again observe
some instances of the ‘pre-revealing’ of upcoming content
that we first saw in the paper prototype study (cf. 5.3.5 “Pa-
per Prototype Study”); this time, however, it was consid-
ered problematic by four of the users. They tried to cir-
cumvent the situation by widening the gaps between the
affected subtopic areas, which meant that the problem had
an influence on the final layout of the document—an effect
we neither wanted nor anticipated and which needs further
study. Interestingly, partial revealing of unrelated material
that had already been covered in the talk at that time was
not considered problematic by these authors.

Similar to the procedure of the paper prototype test, we an- Most of the
PowerPoint
presentations were
strictly linear without
overviews.

alyzed the resulting presentation documents with regard
to layout, structure, and presentation sequence. From the
body of PowerPoint documents, a large part (14 of 18)
was structured in a strictly linear fashion, without any
overviews or back-references through repetitions of mate-
rial. One document was linearly structured but featured
one overview slide at the beginning; the remaining three
documents just clustered all content on a very small (< 3)
number of slides.

From the FLY documents, in contrast, only three had a se- We found the same
document layout
types from the paper
prototype study and
only a few sequential
layouts.

quential structure; half (9 of 18) followed the approach of ar-
ranging the information atoms in meaningful clusters (Fig-
ure 5.25), e.g., good versus evil. Two were laid out in a way
resembling the pillar design observed in the previous study
(cf. 5.3.5 “Paper Prototype Study”), and two used a circu-
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Figure 5.25: Typical layout in the FLY condition showing semantic spatial clus-
ters. Source: [Lichtschlag et al., 2009]

lar layout, positioning semantic groups of items on a spiral
around a main character of the movie. The remaining two
canvas presentations resembled semi-structured collages,
expressing semantic relationships through proximity alone
and not implying any linear order of the material.

While the majority of the FLY presentations (15 of 18) usedZooming was used
for creating

overviews but less for
semantic structuring.

the zooming feature to produce meaningful overviews at
several places in the talk, only one of them made use of the
explicit overview level to overlay semantically abstracted
information representations. Although this feature had
been asked for multiple times in the paper prototype study,
in the software study, most participants seemed to prefer a
strictly planar layout. Possible reasons for this include the
limited scope of the topics as well as the unfamiliarity with
the concept of canvas presentations and the FLY software
tool itself.

In conclusion, the software prototype study confirmsThe software
prototype study

confirms the positive
effects of the canvas

format on
presentation

authoring.

the encouraging results from the paper prototype study,
thus supporting our claim that the canvas presentation
paradigm with its explicit representation of the seman-
tic structure of the medium has, indeed, advantages over
the syntactic-structure-based slideware for presentation au-
thors. In both experiments, we could show that the three
main problems of modeling presentation visuals after the
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slide metaphor—content cutting, time dominance, and the
detail trap—were markedly mitigated or could be entirely
avoided. One has to keep in mind, however, that both ex-
periments are subject to a number of limitations: the con-
trolled environment of the lab, the pre-defined selection of
presentation topics, and the participants’ unfamiliarity with
the tools are just a few examples. To make sure that our re-
sults have not been skewed by these factors, a field study
with ‘real world’ presentation visuals is needed.

Fly Case Study—Analyzing Canvas Presentations in the
Wild

After the first two experiments on the effect of the can- Prezi became widely
available and was
very similar to FLY in
most regards.

vas paradigm on authoring, which we presented above
(5.3.5 “Paper Prototype Study” and 5.3.5 “Software Proto-
type Study”), the commercial zoomable presentation web
tool Prezi (cf. 5.3.2 “Zoomable Presentation Interfaces”) had
been released. This tool implements a concept for presenta-
tion visuals that is, in large parts, congruent with our ideas
for direct manipulation navigation in the semantic structure
of the medium. In fact, it functions almost identical to FLY
with some exceptions: First, Prezi is a classic ZUI and nei-
ther includes semantic zooming nor does it limit the zoom-
ing space, unlike FLY which provides a ‘ground plane’ to
offer guidance and orientation and allows information to
be placed on top of each other in different levels of seman-
tic (and visual) abstraction. Second, Prezi allows, in addi-
tion to the direct manipulation zoom and pan navigation
over the canvas, to also rotate the viewport around the vi-
sual axis. FLY does not support viewport rotations; when
we designed the software, rotations were difficult to repre-
sent as true direct manipulation interactions. While this has
changed with today’s ubiquity of devices with multi-point
input—where two points can define any arbitrary affine 2D
transformation—we have still deliberately left rotations out,
because they can impede the mental formulation of spa-
tial information maps [Schacter and Nadel, 1991] and might
therefore diminish the advantage of arranging information
in map like structures instead of sequences. Third, Prezi
supports only a single projected presentation timeline for
each information landscape while FLY allows an arbitrary
number of such presentation paths. Prezi consequently does
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not offer branching paths either, which is a feature we have
planned and already designed for FLY the next iteration of
our current software prototype (cf. 5.3.4 “FLY Interface Pro-
totype II”).

With Prezi gaining popularity and seeing much use, a largePrezi being widely
available, created an
opportunity to study

canvas-based
presentation

documents outside
the lab.

body of presentation documents that have been authored
using this web platform has become available. And with
the relative similarity of the media navigation and struc-
turing concepts of Prezi and FLY, there was an opportunity
to analyze ‘real world’ presentation visuals for the emerg-
ing structure and layout strategies we could observe in the
lab setting. Specifically, we were interested to see if the
tendencies to visualize multiple orderings and relations of
connected subtopics had manifested in regular use of can-
vas presentations and if the overall structure was visualized
more explicitly by overviews and the spatial shape of the ar-
rangement.

The work in this section was done mainly by Thomas Heß
in the context of his Master’s Thesis [Hess, 2011] under the
guidance of the author and Leonhard Lichtschlag. A sum-
mary of this work has been presented by the author as a
case study at CHI 2012 [Lichtschlag et al., 2012b].

For the study, we examined 73 presentation documents thatWe examined 50
publicly available

presentation
documents.

were drawn from the ‘popular’ section of the public online
repository of Prezi presentations6 on July 1st, 2010. When
using a free Prezi account, every authored presentation is
publicly accessible in this repository—for paid accounts,
private documents are possible, but public is still the de-
fault setting. From the selected documents we excluded any
that were clearly unfinished, not meant as visual presenta-
tion support, or were instructional presentations on how to
use Prezi. We analyzed the remaining 50 documents with
regard to four aspects—two that represent similarities be-
tween Prezi and FLY, and two that represent important dif-
ferences:

• Layout Strategies: how the spatial arrangement is used
to communicate the semantic structure of the topic or
if the layout is governed by other forces, for example
aesthetics.

6http://prezi.com/explore/popular/

http://prezi.com/explore/popular/
http://prezi.com/explore/popular/
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• Overviews: if and how often the zooming capability
of the system was used to create overviews over the
current subtopic or the whole talk.

• Scale: how the infinite and continuous scale space of
the ZUI was used to structure the material of the pre-
sentation.

• Rotations: how often and in which cases authors used
viewport rotations.

Every of the 50 analyzed documents exhibited a unique We could observe a
multitude of different
canvas layouts in the
field.

overall layout; this is in contrast to slide presentations
where recurring patterns and established deck structures
are commonly used. Consistent with our earlier observa-
tions of FLY, the authors had used viewport transitions in
all three dimensions to highlight element groups of varying
sizes, from showing overviews down to single information
atoms.

Layout Strategies
We observed three primary, and fundamentally different, The layouts could be

clustered into three
types.

classes of strategies according to which the information
was laid out on the canvas, which we call Sequential Lay-
outs, Structural Layouts, and Decorative Layouts. The first
two classes were what we expected to see as they had also
been found in the FLY experiments (5.3.5 “Paper Prototype
Study” and 5.3.5 “Software Prototype Study”); the third one
was new.

The set of documents that employed a structural layout was Most documents
exhibited structural

layouts.
the largest; in 32 of the 50 presentations, the spatial arrange-
ment and shape of the content items reflected the structure
and shape of the topic. This was either achieved by cluster-
ing the information atoms to form spatially coherent topic
areas (29 documents, see Figure 5.26 for an example), which
is consistent with our observations from the lab studies, or
by repeatedly nesting content using deep hierarchies to fa-
cilitate incremental idea development (3 documents).

Presentation paths in documents structured through topic In one type of
structural layout,
subtopics are
explored top-down,
one after the other.

areas typically followed a characteristic pattern: First, a
topic area or cluster would be shown as an overview, then,
the area would be explored in a top-down fashion. After
the cluster had been exhausted, another overview—either
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Figure 5.26: Two Prezi documents showing structural layouts of the type topic
area. Source: [Lichtschlag et al., 2012b]

a recap of the last or a preview on the next cluster—would
be shown before moving on the next topic area. This pat-
tern was often used recursively for hierarchies of topics and
subtopics.

The mechanic of the documents following the incremen-Another type uses
the zoom feature

extensively to present
the development of

an idea incrementally.

tal idea development approach worked just the other way
around. Those would usually start at the most detailed scale
and progress by zooming out step-wise to develop a com-
plex idea in a bottom-up way (Figure 5.27). Their structure
was deeply nested, such that higher level content would
be incrementally revealed by the continuous zoom-out—a
strategy that is especially facilitated by ZUIs without a lim-
ited zoom range. To be discernible, content appearing later
in the presentation has to be presented at larger scales, the
presentations end with an overview of the whole canvas.
Because of the large scale differences of current and past
content, these documents use fewer overviews.

Only a small part of the overall number of documents (4 ofSequential layouts

resembling slide
decks were the

minority.

50) used sequential layouts with structures resembling that
of slide decks. These presentations were restricted to a
very small range of zoom levels while traversing a linear
arrangement of material. Little or no overviews and little or
no overlaps between viewports were also characteristic for
this layout strategy. Judging from the content of these pre-
sentations it seemed that they were rather used to support
strictly ordered narrations, such as telling a story, than for
explaining a topic.
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Figure 5.27: Prezi document showing a layout of type incre-
mental idea development. Source: [Hess, 2011]

We could observe a new layout strategy that was used in We did not encounter
decorative layouts in
any of our prior
studies.

roughly one third of the documents (14 of 50), which we
called decorative layout. These presentations consist of a
large graphic that covers the whole of the canvas with all
other content elements placed on top at the same lower scale
(see Figures 5.28 and 5.29). The arrangement of these con-
tent elements follows the visual shape of the background
graphic into which they are embedded. This strategy pro-
duces an overall aesthetic information collage; expressing
semantic relationships through the spatial placement of the
individual items, however, seems more an occasional side
effect than the primary concern of the authors that follow
this style.

Overviews
Confirming our results from the FLY studies, a majority of More than two thirds

of the presentation
documents used
zoom-outs for
overviews.

the analyzed Prezi documents (34 of 50) made use of the
zooming capabilities to produce overviews in their presen-
tations. Half of those (17 of 34) created overviews for both
recap of past subtopics and preview of new ones; of the rest,
16 zoomed out to preview upcoming content, and only one
exclusively employed overviews for recapitulating parts of
the presentation.
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60 3 Related Work

Figure 3.17: Prezi Canvases with Decorative Layouts (Top: AIESECa ; Middle:
Mathematweetsb ; Bottom: Discover IE University!c )

ahttp://prezi.com/si0gkpgk6lq-/aiesec/
bhttp://prezi.com/nsu8izuq8jxs/mathematweets/
chttp://prezi.com/wxv6uhgee4sr/discover-ie-university/

Figure 5.28: Example for a decorative layout as observed in
our Prezi study. Source: [Lichtschlag et al., 2012b]

60 3 Related Work

Figure 3.17: Prezi Canvases with Decorative Layouts (Top: AIESECa ; Middle:
Mathematweetsb ; Bottom: Discover IE University!c )

ahttp://prezi.com/si0gkpgk6lq-/aiesec/
bhttp://prezi.com/nsu8izuq8jxs/mathematweets/
chttp://prezi.com/wxv6uhgee4sr/discover-ie-university/

Figure 5.29: Example for a decorative layout as observed in
our Prezi study. Source: [Lichtschlag et al., 2012b]

Zooming
The authors used zooming together with viewport po-Zooming was

otherwise used for
framing important

information or hiding
optional items.

sitioning to bring the currently relevant part of the
arrangement—usually, single elements or small clusters of
items—into focus. Also, viewport zoom was used to em-
phasize important points by focusing on single words in
text blocks or to illustrate details of larger graphics by
zooming in on parts of diagrams or screenshots. One ap-
plication of the zoom feature, which is again typical for
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ZUIs, was to hide optional or marginal content (e.g., cita-
tion sources) by scaling it down to be almost invisible. Such
information could then be revealed by a dramatic zoom-in.

As explained above, Prezi differs from FLY in that it does not Even with
unrestricted zoom
depth, most authors
only used a moderate
number of distinct
zoom levels.

limit the zoom depth. Nevertheless, most of the examined
documents (36 of 50) made only moderate use of this feature
and placed content on at most three distinct zoom levels.
The majority of the remaining ones (12 of 50) still stayed at
or below six levels; only two presentations—both of which
followed the incremental idea development layout strategy—
went above six zoom levels.

Rotations
Another difference is Prezi’s ability to rotate the viewport More than 60% of the

documents contained
viewport rotations,
but in a vast majority
these were only
decorative.

along the optical axis; we found this feature being used in
32 of the 50 documents. Using rotations in a meaningful
way that communicates some semantic aspect or property
of the content seems to be hard: For three of the documents,
which used circular layouts, it helped to underline the struc-
ture. For the remaining 29, rotation was mainly a means to
achieve a decorative effect—especially in conjunction with
decorative layouts where it helped to align items with the
background—or provoke impressive viewport transitions.
This latter case often meant that the camera would be ro-
tated by 90

� or more (Figure 5.30); if the resulting effect
helps the audience to retain the context or to understand
the structure is debatable (cf. [Schacter and Nadel, 1991]).

Discussion
The analysis of the 50 Prezi documents (Figure 5.31) largely Overall, we could

observe similar
document layouts as
in the lab studies,
which supports the
generalizability of our
earlier results.

confirms the results from both lab studies: The de-factoring
the semantic spatial structure of the content from the syn-
tactic temporal component of the talk gives the affordance
for authors to move away from imposing linear, sequen-
tial structures onto their content and rather let the lay-
out directly mirror their conceptual model of the topic. A
majority of the examined documents were created using
such structural layouts. However, the added expressiveness
can also be (ab)used for purely aesthetic purposes, demon-
strated by the relatively large number of decorative layouts
we observed. We also found support for our claim that
canvas format and navigation paradigm facilitates generat-
ing overviews—most documents included previews of up-
coming material, recapitulated material already covered, or



256 5 Hybrid Media: Presentation Visuals

Figure 5.30: Example for a Prezi document that makes ex-
tensive use of viewport rotation. Source: [Lichtschlag et al.,
2012b]

both. Offering a way to explicitly model semantic abstrac-
tions, as we have in FLY, proves useful; authors of the Prezi
documents mimicked this capability with regular ZUI fea-
tures, especially so in the cases where we found incremen-
tal idea development layouts. Rotations, which are not sup-
ported in FLY, were mainly used for eye-catching rather
than to inform about the content. Considering that spatial
knowledge acquired from maps is not robust against orien-
tation manipulation [Schacter and Nadel, 1991], and canvas
presentations were designed to follow a mental model sim-
ilar to that of maps, the decorative benefit of viewport ro-
tations seems not worth the potential cost in cognitive load
for the audience and the risk to lose much of the advantage
of spatial memory.

Closing Remarks on the Authoring with FLY

Shifting the navigation domain of presentation visualiza-FLY helps to avoid
the three authoring

problems of
slideware.

tions away from the temporal progression of the talk and
basing it on the semantic structure of the content is the main
idea behind the FLY project. We investigated the implica-
tions this idea has for the authoring of presentation docu-
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29 4 314
Layout Strategies

developing of idea

structural layouts

dramatic topic areas slidelike

17 116 16
Use of Overviews

nonefor preview both for recap

36 12 2
Amount of Hierarchies

1–3 4–6 >6

Figure 5.31: Summary of the study results. We can see that for most
canvas-based presentation documents, authors make use of structural layouts,
overviews, and a small number of zoom levels. Source: [Lichtschlag et al., 2012b]

ments in three independent studies with consistent results.
Canvas presentation tools, such as FLY or Prezi, provide
affordances that help authors to avoid the three common
problems of slide-based presentation authoring identified
in the beginning of the section: content cutting, time domi-
nance, and the detail trap [Lichtschlag et al., 2009].

The first is addressed by eliminating the restrictions that Canvas-based
presentations relieve
authors of the
temporal and spatial
chunking forced upon
them by the slide
format.

the rigid syntactic structure of the slide frame imposes on
the form of the content. The slide frame was meant to spa-
tially partition content for presentation in discrete, sequen-
tial chunks, catering to the technical limitations of physical
transparencies. With these limitations long gone, we can al-
low authors to design continuous structures with meaning-
ful shape for their content. The decision whether some piece
of information should be included in the talk now depends
less on the available space in or visual balance of a rectan-
gular region and more on the question if the information
can be embedded into the visual gestalt of the topic. Also,
overviews can evolve naturally through continuous zoom-
ing, possibly aided by carefully designed semantic abstrac-
tions, and do not have to be constructed artificially inside a
slide frame.

De-factoring the temporal domain of the talk from the spa-
tial domain of its content has proven a successful way to
break the time dominance of slide decks. By adding an ex-
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tra dimension to the design space of presentation visuals, itThe temporal and
spatial separation of

presentation order
and topic gestalt

allows more efficient
visualization and

change
management.

has become much easier to visualize semantic relations and
connections between subtopics through the use of structural
layouts and spatial gestalt laws. Traditional slide decks
only offer temporal adjacency to express grouping, thus
requiring orthogonal relations to be laboriously expressed
through repetitions and temporal interleaving. FLY presen-
tations, in contrast, facilitate visualizing multiple connec-
tions at the same time. Since the timeline is authored sep-
arately from the ‘information landscape’ of the canvas, it
becomes trivial to include optional content or to define mul-
tiple talks on the same subject with different focuses or for
different audiences. Likewise, repetitions or overviews can
be included at any time without changing the content of the
document. This also makes syntactic duplication of content
for the purpose of authoring slightly different presentations
obsolete, thereby reducing the risk of introducing inconsis-
tencies.

The planar arrangement of information atoms and the con-Semantic zooming
and a limiting ground

plane help to retain
the context.

tinuous zooming capability of FLY provide context at all
stages of the authoring process. This is critical in avoid-
ing the detail trap and in creating visually and semanti-
cally coherent presentation documents. For the author, it
is easy to step back at any time to get an overview over the
‘big picture’ she has designed so far—or to incorporate that
overview into the talk—regardless of following a top-down
or bottom-up approach.

From the three aspects of the presentation visuals’ lifecycle,
we have now analyzed the way authors can create presenta-
tion documents. This still leaves the process of actually giv-
ing the talk and the implications on how the audience can
understand and learn from it to be investigated. While the
evaluation of the first of these two remaining aspects is still
in its early stages, and presenting will be thoroughly exam-
ined in the future, the remaining aspect of presentations—as
a medium to transfer knowledge—is the subject of the next
study.
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Understanding and Learning from Fly Presentations

After having shown that the change from digital slide
presentations—a format that is dominated by its syntactic
structure—to canvas-based presentations—a format, which
allows an explicit representation of its semantic structure—
can help authors to create better presentation visuals, we
now have a closer look at the role of the audience regarding
this medium. As we have discussed above in 5.3.1 “Under-
standing, Learning, and Enjoying—Audience”, the presen-
tation visuals should help the audience to understand and
learn the presented topic as well as give them guidance to
refer to the contents of the talk for questions.

We therefore conducted a user study to find out if these as- We need to ascertain
that FLY has no
negative influence on
learning or
understanding.

sumed advantages for the audience exist to a scientifically
measurable degree; at the very least we must make sure that
our proposed changes in the presentation medium, and the
resulting changes in the way presentations are authored, do
hot have any adverse effects on the understandability and
learnability of the presentation content. For this purpose,
we measured recall of facts and recall of the topic macrostruc-
ture as well as the subjective assessment of two groups of pre-
sentation attendees under two conditions: traditional slide
presentations with PowerPoint and canvas-based presenta-
tion visuals with FLY.

We have already explained in 5.3.1 “Understanding, Learn- The influence of
media on learnability
is disputed.

ing, and Enjoying—Audience” that such studies are re-
garded as somewhat controversial: Experiments that try to
evaluate how a change in medium influences learning and
understanding are very difficult to design, and it has been
debated extensively if these effects can be shown—or even
exist—at all. Also, it is possible that people have fundamen-
tally different learning strategies and that not all strategies
may benefit from a spatialization of information as we ad-
vocate with FLY; presentation attendees who are not spatial
learners might even be overburdened by the shift of infor-
mation load to the visual channel. This variable, which is
difficult to control for, can skew the results of such learn-
ability studies.
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Learning Study Using FLY Prototype II

To be able to describe the effects of the canvas-based presen-We tested the
retention of facts and

macrostructure for
participants exposed

to either a FLY or a
PowerPoint talk.

tation format with respect to a baseline, we compared the
learning performance of an audience after being exposed to
each of two instructional talks, one given with the second
FLY prototype 5.3.4 “FLY Interface Prototype II” and one
with Microsoft PowerPoint as a control. Both talks were
kept to a short time frame of 15 minutes to avoid fatigue,
and both covered different, unrelated topics. Since learn-
ing effects between the two conditions across different top-
ics are unlikely, we used a within-subjects study design for
greater leverage. This study was designed and carried out
by Thomas Heß for his Master’s Thesis [Hess, 2011], the
work was guided by Leonhard Lichtschlag and the author.

Based on the discussion on potential benefits of the canvas
format for the audience above, we formulated a number of
hypotheses [Lichtschlag et al., 2012a]:

H1 Fact retention will be similar for both the canvas and
the slide deck conditions.

H2 Regarding recall of the macrostructure of the talk, the
audience will perform better in the canvas condition
than in the slide deck condition.

H3 The canvas visuals will provide the audience with a
better orientation of talk progression.

H4 The attendees of the talks will find the structure of the
canvas presentation easier to understand.

H5 For the audience, the amount of information shown
on the screen at a time will be perceived as more ade-
quate in the canvas condition.

Participants
For the study, we recruited students from an introductoryOur sample groups of

13 participants each
were stratified

according to spatial
learning ability.

course on HCI at RWTH Aachen University. To avoid bias,
students who were not native speakers (the experiment
talks were given in German language) and those who had
prior knowledge or experience in the presented topics were
excluded from participation, leaving us with 26 students (23
male, 3 female) aged 23–35 (median 27). The participants
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were divided into two balanced groups of 13, which were
stratified depending on their spatial cognitive ability. We
measured the latter using a card rotation test [Ekstrom et al.,
1979].

Setup
We had two independent talks prepared for the experiment: Four test talks were

authored by an
external professional,
two topics as each a
FLY and a PowerPoint
presentation.

one on Fixed-Gear-Bicycles and one on Convergent Evolution;
the materials for both are available for download7. It was
important to homogenize the quality of the visuals for both
talks and in both conditions; ideally, both should contain
the same information and exploit the respective capabilities
of the formats to a maximum. With such different formats,
this is a very difficult task. All four presentation documents
were thus authored by an externally hired, uninvolved pre-
sentation author (age 31) who was an expert on both content
domains. As he had, of course, less experience with FLY
than with PowerPoint, we supported him in the process by
explaining the software and answering any questions. We
allowed the author to interleave the creation of the presenta-
tions with both tools, so that he could transfer visualization
ideas from one format to the other if desired. This also mit-
igated any learning effects on the author’s side that might
potentially have resulted in the second documents for each
topic containing better visualizations, structuring concepts,
or layouts.

An informal analysis of the four presentation documents The results of the
authoring step were
as predicted by our
earlier studies.

confirmed most of the findings of the authoring studies
in 5.3.5 “Evaluation of the Authoring Process with FLY ”:
The FLY documents were overall more verbose and used a
large number of different viewport layouts, while the Pow-
erPoint documents mainly contained the typically small va-
riety of common slide arrangements (e.g., bullet points plus
one image). Overviews in the canvas format were spa-
tially structured and showed context and detail in paral-
lel, while overviews in the slide format tended to be more
text-based and linear (Figure 5.32). A small number of vi-
sualization constellations were unique to FLY, as they could
not be reproduced on slides; for the convergent evolution
talk, for example, the historical evolution and present day
geographical distribution of marsupials was shown as a
viewport-spanning annotated timeline with a parallel se-

7hci.rwth-aachen.de/fly
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Figure 5.32: Comparison between PowerPoint slides and
a FLY canvas for a subtopic from the convergent evolution
talk. The slides were mostly text with an occasional image,
while the canvas presentations offered a higher degree of
contextual integration. Source: [Lichtschlag et al., 2012a]

ries of geographical area overviews. In PowerPoint, the
same content had to be presented sequentially, interleav-
ing textual explanations with geographical maps on sepa-
rate slides each.

For an audience, the perceived quality of a talk depends to aBoth conditions
shared the same

pre-recorded audio
material for their

narratives.

large extent on the performance of the speaker [Lichtschlag,
2008]. Controlling for this multivariate quantity is ex-
tremely difficult; we therefore tried to eliminate this in-
fluence altogether by playing back pre-recorded narration
together with the presentation visuals for all talks. As it
has been shown that learning performance is not affected
by the choice of live or recorded audio in presentations
[Ellis and Mathis, 1985], this is an effective measure to
minimize bias by speaker performance, personal affinity,
speaker-audience-interaction, and similar factors. For the
voice track, we hired a professional broadcast speaker to en-
sure a well-pronounced and engaging narration. The style
of language was chosen to be simple and informal, match-
ing that of a normal academic presentation.
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Pre-questionnaire

Presentation Delivery

Short-Term Knowledge Test

Long-Term Knowledge Test

Topic 2 with Fly

Group A

Topic 2 with PowerPoint
Topic 1 with Fly

2nd
1st

Group B

Topic 1 with PowerPoint

4 days

Card Rotation Test

1 week

Attitude, Satisfaction and 
Preference Questionnaire

Figure 5.33: Schedule for the different parts of the FLY audi-
ence study. After the students were sorted into two groups
according to their spatial learning ability, both groups were
exposed to one talk of each delivery condition, PowerPoint
and FLY. Subsequently, they were given a questionnaire
and were tested for short-term fact retention. Another long-
term retention test was conducted four days later. Source:
[Lichtschlag et al., 2012a]

For each topic, both the slide deck and the canvas condi-
tions shared the same audio material to ensure consistency.
This way, we could control and balance the exact amount
of time and detail in which any single aspect of a topic was
covered by the vocal explanations. We did, however, re-
arrange the order of some spoken paragraphs to better fit
the presentation visuals.

Procedure
The procedure of the experiment is summarized in Figure
5.33. Both groups attended one talk on one topic held with
FLY and the other talk on the other topic held with Power-
Point. Learning effects between the topics were unlikely, so
the order of topics was the same for both groups of partic-
ipants. The assignment of presentation format to topic was
counterbalanced.

After each talk, the participants immediately took a short- Both groups had to
sit short-term and
long-term retention
test exams.

term knowledge test, filled out a questionnaire regarding
their personal preferences, and could freely comment on
their experience with the presentation. A second knowl-
edge test on the topic, to asses long-term knowledge acqui-
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short-term test long-term test combined tests

macro-
structure

fact
questions

macro-
structure

fact
questions

macro-
structure

fact
questions

transfer

transfer

transfer

∑
80

60

40

20

0

%

Figure 5.34: Results for the short-term and long-term fact retention and problem
solving tasks, individually and combined. The chart shows the percentage of
correct answers by presentation method (canvas: dark purple, slideware: light
yellow, error bars ±1 SE). Both techniques performed equally well in terms of re-
taining facts, structure, and transferring knowledge. Only the short-term knowl-
edge transfer question shows a significant difference. Source: [Lichtschlag et al.,
2012a]

sition, was performed four days later. Both knowledge tests
included retention questions on content and macrostructure
facts as well as problem solving and transfer questions to
check content understanding. The questionnaires for the
qualitative part of the study contained mostly Likert scale
questions (see Table A.2 in appendix A “Questionnaires”
(p. 335)).

Results
The results of the retention and transfer question tests are

summarized in Figure 5.34.

For the short-term fact retention questions, the students
scored consistently higher in the canvas condition. These
results are, however, not statistically significant. For the
questions regarding the macrostructure of the talks, no clear
trend is visible. The problem-solving questions show higher
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mean scores for the slides condition (paired t-test, p=0.029),
but that trend is not visible in the long-term test.

For the long-term fact retention questions, the students
scored consistently higher in the canvas condition. These
results are, again, not statistically significant, nor are the re-
sults for macrostructure and transfer questions.

Comparing the results of the long-term and short-term tests,
we can find a significant deterioration of the scores for
group A in the slide condition (paired t-test, p=0.003). Both
topics were designed to be equal in terms of content and
difficulty—consequently, there were no significant differ-
ences between the mean scores for each topic in short-term,
long-term, or total.

The participants’ subjective assessment of the different for-
mats showed a significant preference for FLY in questions
A4 (p = 0.047), S5 (p = 0.048), S6 (p = 0.006), and S7
(p = 0.001). All other results were not significant. More
details can be found in [Hess, 2011] or [Lichtschlag et al.,
2012a].

Although the groups were stratified samples with regard to
sex, age, and spatial or verbal learning types, we observed
some interactions of group membership with other results:
Members of group B scored consistently higher by a small
margin in both short- and long-term questions. Members
of group A found the presentation visuals significantly less
distracting overall (paired t-test, p=0.043).

Regarding the spatial ability of our participants, we did
not observe any interactions between this characteristic and
any of the test scores or any preference for either of the
presentation formats. Interestingly, however, higher spa-
tial ability correlated with the Likert score on question S2,
dealing with the perception of the amount of content be-
ing shown on screen. Spatial learners showed a signifi-
cant tendency to judge the viewport as being too crowded
(pearson

0
sr = 0.468, p = 0.003).

Discussion
Overall, there was very little evidence that our proposed
change of technical representation and navigation for the
presentation visuals—which is primarily a change for the
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author and presenter, as the audience does not actively par-The influence of the
presentation format

on retention and
problem solving was

mostly
non-significant.

ticipate in the non-linear navigation—has any influence on
the performance of the audience with regard to content re-
tention. Given that we properly controlled for all other fac-
tors, which we took great care to do, we thus can accept
H1, meaning that a change of format from PowerPoint slide
decks to FLY canvases does not hurt the learnability of the
content. Similar results for macrostructure understanding
mean that H2 is not supported; while people felt that the
structure of a topic was easier to understand in FLY (S5,
see below), there was no measurable evidence that this also
manifested in better test scores. Either format thus seems to
be equally suited to transfer information to the audience.

When it comes to the subjective experience of the partici-The FLY talks were
rated significantly
better in terms of

orientation and ease
of understanding.

pants, however, there were significant differences. Spatial
(S6) and temporal (S7) orientation were both rated signifi-
cantly higher for the canvas-based talks than for the slide
deck-based ones (related samples Wilcoxon signed rank
tests, p

S6 = 0.006, p
S7 = 0.001); we thus can confirm our

hypothesis H3.

The answers to the question if the structure of a talk was
easy to understand (S5) were also distributed differently
across the two conditions: While understanding the struc-
ture of the slide deck was perceived to be neither easy nor
difficult (median = 3), participants found the structure of the
canvas presentations very easy to understand (median = 1).
This difference was significant (related samples Wilcoxon
signed rank test, p = 0.048). This is interesting because, as
mentioned above, we could not measure any objective im-
provement on the retention of the talks’ macrostructures.

The participants’ opinion on the amount of content being
shown on screen at the same time (S2) was, on average, fa-
vorable for the FLY presentations. Although this supports
our hypothesis in that regard, the difference was only signif-
icant to the 10% confidence level (related samples Wilcoxon
signed rank test, p = 0.058), therefore we cannot regard H5
as confirmed. Still, it can be viewed as an indicator that the
audience’s experience of a talk is influenced by the author-
ing problems of slideware we had identified earlier. Too
much content on screen is a typical result of content cutting
and the detail trap discussed above 5.2.1 “Common Prob-
lems of Slideware”; FLY presentations suffer much less from
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these problems, allowing for a better balance of the amount
of content in the viewport at any time.

Closing Remarks
We analyzed the learning performance of the audience for
both slide deck and canvas-based presentation formats by
measuring short-time retention and long-time retention of
content and topic macrostructure as well as understand-
ing of the topic through problem-solving transfer questions.
Consistent with a large number of earlier studies [Hoyt,
1999; Russell, 1999; Ramage, 2002; Joy II and Garcia, 2000;
Clark, 2001], we could not observe a significant effect of
changing the media structure and navigation on the learn-
ing success of two groups of students. The preference of the
audience, however, lies with FLY and the canvas presenta-
tion format; our participants found it significantly easier to
stay oriented and understand the structure, and they pre-
ferred the amount of content shown at a time.

We have to keep in mind that while the results of the exper- Differences in
familiarity and the
controlled test
environment could
have had an
influence on the
results.

iment are encouraging, the study has a number of limita-
tions. FLY presentations, and the canvas format in general,
had been new for all of our participants, with the excep-
tions of a very small number of students who had known
Prezi before the study already. The difference in familiar-
ity between this visualization concept and the traditional
slide deck may have had an influence on how the audi-
ence perceived and processed the material. Also, the par-
ticipants knew that they would have to take a test after the
talks; this and the related Hawthorne effect [Adair, 1984]
are known risks of skewing the results of such studies. The
short length of the talks, which weakens the applicability
to, e.g., the case of a full time lecture, and the focus of the
presentations, which were informative rather than motiva-
tional, emotional, or persuasive, are additional sources of
possible confounding effects.

5.4 Conclusion

Overall, we could show that our underlying idea of offer-
ing navigation through the medium not only along the syn-
tactic structure of its technical representation but through
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its content-defined semantic structure has immense benefits
for some of the relevant usage scenarios. For the medium of
presentation visuals, we have extended the technical rep-
resentation to directly reflect the semantic structure and
gave authors the power to define multiple syntactic time-
lines through this structure. The new canvas-based repre-
sentation of the visuals also means a change from a dis-
crete, one-dimensional to a continuous, three-dimensional
support domain, which made the established concepts of
spatial direct manipulation applicable for navigation in the
medium.

While for presentation visuals we have to respect at leastAuthors are the user
role that may be

influenced most from
the canvas format we
introduced with FLY.

three different usage aspects and, consequently, three dif-
ferent user roles—authors, presenters, and audience—, it
is the author who we can consider the primary ‘client’ of
the navigation interface. Authors are the users that have
the strongest need for the rapid generation of design al-
ternatives and the quick reversal of layout micro-decisions
the most. They therefore can benefit best from the re-
alignment and the direct manipulation capabilities. In the
usual case, the role of the presenter is much more pas-
sive when it comes to navigation in presentation visuals—
she will mostly follow the projected timeline through the
content and occasionally make navigation decisions when
showing optional material, answering a question, or adding
extra overviews for recapitulation. The audience, finally,
has no direct but only indirect influence on the navigation
of the medium; it is still extremely important to investigate
the effects of canvas presentations on this role, because they
are the main clients of the process that is supported by the
visuals.

So far, we have analyzed the concept of canvas presenta-For authors, FLY

reduces some
problems of

slideware and offers
a more flexible

workflow.

tions in the context of only the first and the third aspect
of usage: that of the author and that of the audience. For
authors, where the impact should be the biggest, we could
demonstrate that with systems like FLY or Prezi some com-
mon problems that can regularly be observed in the context
of traditional, slide-based presentations are mitigated or
even eliminated. Visualizing complex structures of related
topics comes more easily using a canvas, and the results
are more powerful in expressing connections and relations
between subtopics. The authoring process itself becomes
more flexible, supporting both top-down and bottom-up
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approaches and allowing rapid exploration of design and
layout ideas. No special training is needed to reap these
benefits from the changed paradigm; a sample of Prezi doc-
uments that were created on the web without supervision
showed very similar traits to those created with FLY in the
lab.

As mentioned above, without a verification that intro- For the audience, we
found only few
significant effects on
learning performance
but a positive
subjective
assessment.

ducing canvas presentations does not hurt the experience
of the audience, we cannot claim the concept to be an
improvement—no matter the advantages for the author. In
a carefully prepared study with two groups of 13 students,
we could not find any significant influences on the learning
performance with the exception of a negative impact on the
scores of a short-term transfer questions test 5.3.5 “Learn-
ing Study Using FLY Prototype II”. Although troublesome,
this result could not be repeated or confirmed in the subse-
quent long-term test. This negative result is contrasted by
a range of positive significant results regarding subjective
preference of the participants.

Overall, we are confident that canvas presentations are a
format that has the potential to solve many of the problems
of slide deck presentations. The encouraging results we ob-
tained from our experiments on the authoring and audience
roles are confirming this. An investigation on how this pre-
sentation paradigm affects the presenter, however, still re-
mains to be done. We plan to conduct such a study in the
future using our iPad prototype of FLY (cf. 5.3.4 “Mobile FLY
Interface Prototype”).
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Chapter 6

Non-time-based
Media: Source Code

As the last of the four different kinds of media, and as an
example for the static nature of non-time-based media, we
discuss source code in this chapter. Similar to our discussion
on three preceding media types, we will show that changing
the interaction for navigation in the medium according to
our proposed model—from the syntactic structure of source
code to a content-defined semantic structure—has signifi-
cant benefits for the users who work with source code.

Source code is especially interesting for media navigation Source code has
explicitly encoded
semantics in its
syntactic structure.

studies, because it has a property that sets it apart from the
other types of media we have discussed so far: Its under-
lying semantic structure can be algorithmically derived, be-
cause, in fact, the semantics of the code are expressed syn-
tactically. This is necessary, of course, because otherwise, it
could not be compiled and run by a computer. Source code
thus is an example for the fourth class of medium when it
comes to navigation along content-defined structures. In
audio, video, and presentation visuals we had to construct
a mapping from the semantic, content-based structure into
the syntactic structure manually, through heuristics, or ex-
plicitly through the creation process of the medium (see 2
“Generating New Interfaces Using the Combined Model”);
we will see that the rigid structure of source code allows au-
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tomatic generation and easy reversal of this initial mapping.

Apart from the interesting structural properties of sourceThe efficiency of
source code

navigation has great
economic impact.

code, there are economical reasons to investigate new meth-
ods to navigate this medium: Of the total costs of any soft-
ware project, up to 70% [Pressman, 2010] are spent just on
software maintenance. Typical maintenance tasks comprise
fixing bugs, adding features, or refactoring parts of the code
to be used in other projects. Source code navigation is an in-
tegral part of these tasks: the code has to be read and under-
stood, places for modifications in the code have to be found,
and side effects of changes have to be identified and tracked
through sections of the program. Consequently, impressive
numbers regarding developers’ time spent on—and rela-
tive costs of—code navigation have been reported: Erlikh
[2000], for example, found evidence that 60–90% of the costs
of software development in general involve reading and
navigating source code as part of maintenance tasks. Ko
et al. [2005] found that navigating code dependencies and
investigating task-irrelevant code account for 35% and 46%
of developers’ time, respectively.

These figures have been published relatively recently, andSemantic navigation
could help

developers to move
more quickly and
intuitively through

code.

they are the results of studies that use modern IDEs with the
current standard syntactic navigation capabilities of file hi-
erarchies, full-text search, and similar features. As with the
other types of media described in the preceding chapters,
however, offering only syntactic navigation leaves the users
with the problem of continually mapping their conceptual
model of the source code with respect to their tasks to the
syntactic structure (cf. 2.2.3 “Combined Model” (p. 50)).
Therefore, our goal is to reduce the time and cost factors
introduced by standard syntactic source code navigation in-
terfaces and offer more efficient ways by applying our con-
cept of elevating the dominant navigation paradigm from
the syntactic to the semantic structure of the medium.

It should be noted that different programming languagesWe focus on the
Objective-C

programming
language.

call for different representations of source code and, con-
sequently, may be predisposed for different navigation
paradigms. To disambiguate this situation, we will restrict
our investigations to statically typed, C-style languages
(cf. [Kernighan, 1988]) in general and the Objective-C lan-
guage in particular. The reason for this choice of language
is twofold: Firstly, it is becoming an increasingly popular
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language; iOS apps as well as applications for the relatively
widespread OS X platform are programmed almost exclu-
sively using Objective-C. The language follows the pre-
dominant object orientation paradigm, thus representing
the—currently—most relevant class of programming lan-
guages. Secondly, Objective-C is a language with features
that greatly help the aforementioned automatic deduction
of code semantics. Apart from the class introspection ca-
pabilities that come with the language, excellent tools for
static analysis of Objective-C source code are available as
part of the standard toolchain with the LLVM1 compiler and
its Clang2 parser frontend.

This chapter is structured as follows: After a brief recap of
the relevant characteristics of the medium, we describe a
selection of the known conceptual models for navigating
source code and show that most of the widely used inte-
grated development environments (IDEs) for source code
lack suitable interaction techniques for navigating the se-
mantic structures derived from these models. We then in-
troduce STACKSPLORER, our code navigation plug-in for
Apple’s Xcode IDE, using the same four-step-approach 2.2.4
“Generating New Interfaces Using the Combined Model”
as in the preceding chapters. With the results from our
studies on STACKSPLORER, we were able to refine our un-
derstanding of the conceptual model for code navigation,
leading us to develop BLAZE, a similar plug-in that follows
this model more closely. We close this chapter with some
suggestions for future work on code navigation.

Describing the last of our four exemplary navigation tech- This chapter focuses
on the first generative
step: finding a
conceptual model for
the navigation.

niques, this chapter focuses on the first generative step of
finding the users’ conceptual model 1 “Generating New In-
terfaces Using the Combined Model” of code navigation
for typical code maintenance tasks. Formulating such a
model needs to build upon the related research areas of
code understanding, code maintenance strategies, and be-
havioral modeling of programmers or developers. The first
step therefore consists of a survey of the related literature
in these areas as well as a summary of our own formative
study on developers’ navigation behavior and their own
perception thereof.

1http://llvm.org
2http://clang.llvm.org

http://llvm.org
http://clang.llvm.org
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EXCURSUS: OBJECTIVE-C SOURCE CODE:
Technical Representation
Objective-C source code as a purely text-based medium has perhaps the sim-
plest technical representation of all media investigated in this thesis. The code
for an application or library written in this language is contained in a number
of header and implementation files, which follow relatively strict syntactic
rules. The contents of these files, however, are pure text and are interpreted
as such; any textual formatting, for example by means of indentation, line
breaks, or comments, is purely optional and has no direct functional effect.

Syntactic Structure
The support domain of source code is two-tiered: on the top level, the code
is usually organized in pairs of files—header and implementation—, and on
the bottom level, the individual statements are located at certain text positions
inside these files. These positions often correspond to the line structure of the
text file, but this is rather a convention than a strictly enforced syntactic rule.
This simplicity of the syntactic structure and the fact that there is very little
connection between this structure and the location of code statements or even
elements of higher level patterns—with some exceptions, e.g., that some state-
ments are illegal in header files—also suggests that the medium is relatively
old and that it should be possible to find better ways of navigating source code
than through this syntactic structure.

Semantic Structures
Object-oriented source code represents the structure and relations of and be-
tween objects; examples for possible semantic structures are therefore the
classes with their methods, the static class hierarchy, calling relations, or the
system of roles in standard software design patterns such as Model-View-
Controller (MVC) [Krasner and Pope, 1988]. For most tasks, these structures
are much better suited for navigation and orientation in the source code than
the standard syntactic representation.

6.1 Source Code Navigation in Stan-
dard Interfaces

Successful modification of software—for the purpose of fix-Navigation through
source code is

important for code
understanding and
therefore for every
maintenance task.

ing bugs, adding features, or refactoring the code—involves
three phases [Boehm, 1976]: the existing source code has to
be understood in parts or in whole, locations for the modifi-
cations have to be identified and the modifications applied,
and the changes have to be revalidated in the context of
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the full code base. The first phase of code understanding3

may be the most important of the three, because the time
spent on understanding code and locating features repre-
sents a significant proportion of maintenance, debugging,
and reuse of code [Storey et al., 1997; Ko et al., 2006; Rev-
elle et al., 2010]. Also, the result of this first phase is largely
responsible for the success of the other two. The most im-
portant aspect of code understanding, in turn, is the ability
to navigate through the code and analyze the relationships
of its different parts [Tilley et al., 1996].

Unfortunately, the technical representation of source code Current code
representations are
purely file and
text-based and
cumbersome to
navigate.

is still the same as it was decades ago: code usually is
distributed over simple ASCII files which can be viewed
and modified using standard syntactic text editor interfaces.
Navigation in such a file is mostly accomplished by full-
text search or by manually scrolling through the code; this
is acceptable if the task is to read every statement in every
source file in order (Figure 6.1). For content-based naviga-
tion, however, syntax highlighting and commands for di-
rectly jumping to a method or function by name are often
the only tools that are available.

In order to understand a piece of unfamiliar code, there The fragmented,
linear structure of the
medium facilitates a
high locality of
changes, which is
often suboptimal.

clearly exist better navigation strategies than just reading
each file from top to bottom—but that is exactly what may
be implied by the text file representation. Similarly, the fact
that usually each class has its own header and implemen-
tation file only marginally helps in tracking down bugs or
finding the best location for a code change. On the con-
trary, the high locality of changes that is encouraged by the
syntactic structure of ‘text-file collection’ source code often
leads to poor choices of change locations [Robillard et al.,
2004].

Another hint at the inadequacy of standard text file nav- Developers quickly
adopt even very
simple navigation
aids.

igation for source code is that even very simple UIs that
offer content-related navigation are preferred by develop-
ers over the standard interfaces. One prominent example
is Code Thumbnails by DeLine et al. [2006]. It gives devel-
opers a miniature overview of the current source code file
that acts like a focus-plus-context view or a graphically en-
riched scrollbar, thus allowing to leverage spatial memory

3In the related literature, both code understanding and code comprehension
are used interchangeably.
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Syntactic Structure

Support Domain = Source Files

Sample Domain = Classes

Conceptual Layer
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Semantic Layer
File List and Text 

Scrolling

Syntactic Layer
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View

Syntactic Distance

Real
Semantic Distance
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Classes and Methods

Support Domain = Text Lines

Sample Domain = Statements

Figure 6.1: Combined navigation interface model of an IDE with standard text
and file navigation capabilities. If the task is to select source files and read the
statements from top to bottom, the overall syntactic and semantic distances re-
main small.

for quicker intra-file navigation (Figure 6.2). This concept
is not unlike Fly (cf. 5 “Hybrid Media: Presentation Visu-
als” (p. 185))—although individual items or text cannot be
made out, the shape of the content and its visual landmarks
are used for orientation—but with one important difference:
with Fly, this visual gestalt of the content is explicitly de-
fined by the author and reflects its semantic structure, while
Code Thumbnails has to rely on characteristic visual patterns
of the syntactic textual representation of the source code.
While this method of giving a visual overview over a piece
of source code is not new—a similar system, Seesoft (Figure
6.3), was already proposed in 1992 by Eick [1992]—Deline
et al. were the first to utilize the concept to aid in code nav-
igation. Code Thumbnails also includes an additional higher
level syntactic overview, the Code Thumbnails Desktop, which
is a user arrangeable collage of code thumbnails of individ-
ual source code files (Figure 6.4). This is meant to allow
quick inter-file navigation, again by recognizing the visual
shape of the code.
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Figure 6.2: Screenshot of Code Thumbnails. The scrollbar of
the code editor window is augmented with a miniaturized
view of the actual content. Developers can thus identify
specific locations inside the code through their visual gestalt
and quickly navigate there. Source: [Deline et al., 2006]

Even such simple augmentation of the standard syntactic
navigation in source code was much appreciated by devel-
opers in a user test. They quickly adopted the technique so
that Code Thumbnails accounted for roughly 40–90% of all
intra-file navigation [Deline et al., 2006]. The Code Thumb-
nails Desktop idea was similarly well received. These results
support our claim that better alternatives to the standard
text-file interfaces for source code navigation are needed.

Many modern IDEs, of course, already support some ways Modern IDEs offer
rudimentary semantic
navigation that often
lacks a consistent
conceptual model or
is not well integrated
with the code editor.

of semantic navigation in source code. For object-oriented
languages like Java, C++, or Objective-C, it could be argued
that a representation of the semantic concept of classes and
methods is common. The pervasiveness of syntactic naviga-
tion, however, is again evident in a similar way as with the
example of slide decks (cf. 5 “Hybrid Media: Presentation
Visuals” (p. 185)): classes are commonly associated with in-
dividual files, which allows to use the traditional syntactic
navigation capabilities of file lists for a crude form of se-
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Figure 6.3: Screenshot of Seesoft. Each source code file is
represented by a miniaturized view of its content. The in-
dividual code lines are colored according to a number of
selectable filter criteria. Source: [Eick et al., 1992]

mantic navigation (Figure 6.5). Likewise, methods are as-
sociated to certain line ranges in files and often mapped to
linear, table-of-contents-styled lists (Figure 6.6). Overall, in
most existing IDEs, supporting navigation of the semantic
structure of the code seems more like an afterthought than
a central interaction concept, if it is offered at all. Class hier-
archy browsers or tree views of caller relationships (Figure
6.7) are widespread but often clumsily hidden in submenus,
difficult to invoke, and not well-integrated with the code
editor itself. Programmers thus sometimes rely on full-text
search to navigate to semantically related parts of the code,
which is a rather indirect and error-prone (name ambigui-
ties, etc.) method and requires extensive knowledge in the
head about the code, its structure, and its naming schemes.
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Figure 6.4: Screenshot of the Code Thumbnails Desktop. Simi-
lar to Seesoft (Figure 6.3, miniature views of all code files can
be shown and arranged on a desktop. Clicking in one of the
thumbnail views takes the developer to that location in the
source code.) Source: [Deline et al., 2006]

6.2 Two IDE Extensions for Semantic
Source Code Navigation

To create a system for semantic source code navigation,
we again follow our four-step-approach as outlined in the
theory chapter 2.2.4 “Generating New Interfaces Using the
Combined Model”, explaining the design rationale for our
STACKSPLORER and BLAZE navigation tools along the way.
The emphasis in this chapter lies on the first step of finding
a conceptual model and deriving a suitable semantic struc-
ture from it. Similar to the other chapters, the remaining
three steps are covered in less detail for the sake of brevity.

Additional information on the implementation and evalua-
tion of both STACKSPLORER and BLAZE can be found in a
number of publications, some of which also contain parts
of the material presented in this text: The original idea and
design of STACKSPLORER was conceived by the author and
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Figure 6.5: Class and file navigator views in Xcode. While the class navigator
(left) allows for some kind of semantic navigation, most developers prefer the
file navigator (right), because it can be better tailored to their conceptual model
of the code by sorting the files into groups with descriptive names.

Figure 6.6: Method navigation popup in Xcode. The list is populated with the
methods defined in the current file in their order of appearance in the source
code. Any structuring elements, such as the section title and divider bar, have to
be manually created using special #pragma statements.
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A

B

Figure 6.7: Class hierarchy browser (A) and call hierarchy tool (B) in Eclipse.
Both are not contextually linked to the source code editor and have to be specifi-
cally invoked for a symbol.

then implemented and evaluated by Jan-Peter Krämer for
his Diploma Thesis [Krämer, 2011] under the guidance of
the author. The implementation has been presented at UIST
2010 [Krämer et al., 2010] as a poster and published together
with an evaluation as a full paper at UIST 2011 [Karrer et al.,
2011]. BLAZE, an adaptation of STACKSPLORER, which is fo-
cused on supporting certain navigation behaviors, was cre-
ated by Joachim Kurz for his Bachelor’s Thesis [Kurz, 2011]
under the guidance of both Jan-Peter Krämer and the au-
thor. We published an extensive analysis of the influence of
navigation interfaces in the IDE on the navigation behavior
of developers at CHI 2013 [Krämer et al., 2013].

6.2.1 Finding a Conceptual Model

To find out which semantic structures would be ideal to There exists an
extensive body of
related work on code
understanding,
conceptual models,
and code navigation.

align navigation possibilities with, an analysis of how de-
velopers understand, think of, and navigate through source
code is necessary; we need to know which objects of interest
are involved, which subspaces inside the source code con-
tain the developers’ search paths to their goals, and along
which paths they move through the code when they are
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trying to understand it or to apply changes. For this pur-
pose we will first revisit some of the early related work on
code understanding and conceptual models before we look
at more recent work on semantic code navigation including
our own formative study.

Code Understanding

Scientific investigation of how programmers understandInvestigating how
programmers

understand source
code has been an

active area of
research since the

1970s.

unfamiliar source code already started in the mid-70s. The
goal at the time was rather to help the creation of new
programming languages and to find out which intellectual
skills were relevant for writing code [Shneiderman, 1976]
than to inform the design of code navigation techniques and
tools, and the individual results have lost some of their rel-
evance in the context of contemporary code bases, which
are much larger and use more refined and better structured
languages and programming paradigms. Yet, they already
developed a number of theories or cognitive models for how
developers formulate conceptual models of source code.

These theories can be divided into three groups:

• Bottom-up Model Formulation
Proposed by Shneiderman [1976], this theory claims
that the developers’ conceptual model of source codeShneiderman and

Gould say that
developers read the

code first, then chunk
it semantically with

increasing
abstraction.

is formed by first reading it completely—an obser-
vation also made earlier by Gould [1975]—and then
decoding the syntax into semantic chunks. In accor-
dance with his syntactic/semantic model [Shneiderman,
1979] (cf. 2.1.4 “Division of Semantic and Syntactic
Layers” (p. 29)), he proposed that these chunks are
then iteratively aggregated into a smaller set of new,
more abstract chunks that represents a higher seman-
tic level. The outcome of this process, at the top of the
hierarchical structure, is the conceptual model of the
code.

Pennington [1987] later supported the theory byProgrammers’
conceptual models
depend mainly on

control and data flow
abstractions.

showing in two experiments that the abstraction level
of how programmers think about code increased over
time. She found that the evolving conceptual mod-
els are a combination of data-flow abstractions on the
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one hand and functional abstractions on the other hand.
The control and data flow relations between code frag-
ments, however, dominate programmers’ conceptual
models of source code rather than the functional rela-
tions that correspond to the purpose or goals of such
fragments.

• Top-down Model Formulation
An alternative theory as to how conceptual models According to Brooks,

programmers start
with abstract problem
domain knowledge,
which is then
formulated as
hypotheses and
checked against the
code.

of code are formed has been proposed by Brooks
[1983]. According to this theory, programmers work
top-down by iteratively mapping levels of problem
domain knowledge to the code in decreasing order
of abstraction. They start by formulating initial high-
level hypotheses, which are then refined through ver-
ification and rejection of sub-hypotheses based on ev-
idence from the source code. This evidence often
comes from ‘beacons’, salient code features such as
control structures or symbol names.

Soloway and Ehrlich [1984] observed that program- Understanding
happens top-down,
combining the
structure of the code
with the conventions
of plans and
programming rules.

mers used this mechanism to orient themselves in
familiar code. They proposed that the conceptual
model resulting from such top-down understanding
is a combination of structure and conventions repre-
sented by a hierarchy of ‘programming plans’ and
‘rules of programming discourse’, respectively.

A study on problem solving strategies of expert pro- Developers have
been observed to
classify code
top-down using
beacons to verify
their hypotheses.

grammers by Koenemann et al. [1991] supports the
top-down theory for the initial understanding of the
code. They observed that when faced with a modi-
fication task, developers use code beacons to quickly
classify parts of the code into those that fit their high-
level hypotheses about the problem and those that do
not. The former are then more closely examined, al-
beit in a bottom-up fashion, and the latter are mostly
ignored.

• Other Approaches
A third theory suggests that the question between Other work claims

that the approach
depends on the code
and the task.

bottom-up or top-down model creation may be less
relevant. Several studies found developers to use
both approaches depending on the code and the task
[Letovsky, 1987] or that there may be a shift in weight
over time between the two [Corritore and Wieden-
beck, 2001].
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They also argue that a much more fundamental dis-Another possible
code understanding

strategy distinction is
between structured

and opportunistic
approaches.

tinction of different strategies to understand code is
that between structured and opportunistic approaches.
Where the former usually includes following the con-
trol flow of the code prior to planning and execut-
ing any modifications, the latter consists of localizing
likely places for the change and then only understand-
ing those [Littman et al., 1986]. These two behaviors
have also been observed in other studies [Soloway
et al., 1988; Robillard et al., 2004], with the structured
approach mostly being more successful in solving the
code modification tasks.

Whatever the mechanics of formulating it, we still need toA better way to find a
conceptual model is
to actually observe

developers
navigating through

source code.

find a conceptual model that we can exploit for our goal
of offering semantic navigation in source code. Singer et
al. [1997] were one of the first to suggest that the knowl-
edge of the cognitive model—the model of how and in
which way a conceptual model is created [Storey et al.,
1997]—does not automatically reveal a conceptual model
and, hence, does not help to create better tool support for
working with source code. They proposed a different ap-
proach; to derive such a model, they actually observed
the navigation behavior of developers during code main-
tenance tasks and tried to find recurring patterns. In a long-
term experiment with a large code base, they found that
the work practice of the participants showed such a pattern:
The developers seemed not to be able at all to build a con-
ceptual model of the whole code base and retain it for long.
Instead, they performed searches until they found a location
of interest followed by an exploration phase around this lo-
cation. This exploration mainly included navigation along
the semantic structural relationships of the source code, giving
a hint about a possible conceptual model.

Analyzing Navigation Behavior

This approach of observing developers during different
code maintenance tasks and then mapping their navigation
behavior onto different possible semantic structures to find
the best fit has become an accepted and widely used tool:
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Robillard et al. [2004] found that developers who try to un- Developers who
navigate along
semantic structural
relationships are
more successful.

derstand unfamiliar source code by navigating in a struc-
tured way and along semantic structural relationships, for
example inheritance or caller-callee relationships, are more
successful at certain maintenance tasks than developers
who just browse the code in an opportunistic way along the
syntactic structure, for example scrolling through a class im-
plementation file.

A similar semantic structure is suggested by the results of a Similarly, developers
tend to follow the
control flow when
navigating.

study by Sim et al. [1998]. They analyzed the search behav-
ior of developers and found that their participants followed
the control flow to understand the code. Consequently,
the most common search targets resolved to places where
a function that was called from the location a participant
was currently investigating was defined (callee relationship)
and to places where the current function was used (caller
relationship).

A more specific description of a similar behavior was found Code locations are
explored through
semantic
relationships.

by Ko et al. [2005; 2006] in a study of the navigation be-
havior of JAVA-developers using the Eclipse IDE for code
maintenance tasks. Their participants started out by col-
lecting code fragments or locations in the source code into
a mental working set and then mainly navigated along the
semantic relationships inside the combined set. Only after
they had developed an understanding of the working set,
they set out to modify the code. An interesting observa- Navigations are often

just quick, glancing
referrals directly
followed by a
navigation back to
the last place.

tion was that 27% of these navigations followed a ‘glance’
pattern, following a structural relationship and then imme-
diately navigating back. This could mean that the neigh-
borhood of the semantic structure induced by structural re-
lationships is important for developers to gather context in-
formation for potential modifications.

More evidence for a conceptual model that consists of a set Questions asked by
developers suggest a
local conceptual
model with a focus
location and a
semantically
connected
neighborhood.

of focus locations together with a semantically related neigh-
borhood has been uncovered by Sillito et al. [2008]. They in-
vestigated the questions that developers asked when tasked
with making modifications to relatively large (20K SLOC
and >1M SLOC4) code bases. The questions could be clus-
tered into four categories that roughly outlined the devel-
opers general approach:

4SLOC: source lines of code
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1. Find a set of focus locations to begin investigation.

2. Explore the context of these focus locations by travers-
ing the neighborhood in star-shaped or sequential pat-
terns.

3. Understand the structure of the induced subgraph of
the call graph around each focus location.

4. Understand the relationships between these sub-
graphs.

The frequency of the questions in these clusters already
shows that being able to navigate the immediate call graph
neighborhood of a focus location is important. Also, it es-
tablishes the call graph as a promising candidate for being
part of the conceptual model for many code maintenance
tasks. This is further supported by the fact that the three
most asked questions in the experiment were all concerned
with relationships along the call graph.

LaToza et al. [2010a; 2010b] extended this idea by suggest-Some of the
semantic relations
can be reduced to

reachability
questions.

ing that certain questions can rather be reduced to reachabil-
ity questions. Reachability is a much more precise concept
than call graph connectedness, because the call graph does
not model more dynamic methods of control flow, such
as notifications, callbacks, or event posting mechanisms,
which all cannot be traced by static analysis. Their paper
contains a good summary of call graph limitations in this
regard. To facilitate up- and downstream searches in the
reachability graph, they created REACHER, a tool to graph-
ically explore the answers to a wide range of reachability
questions.

Rather a model for developers’ navigation behavior itselfParts of the
navigation behavior

of developers can be
modeled by an

information foraging
process.

than for the underlying conceptual model, Lawrance et
al. [2007; 2008; 2010] and Piorkowski et al. [2011; 2012]
conducted studies that support the idea that navigation in
source code follows patterns known from information forag-
ing [Pirolli and Card, 1995]. They argue that with modern
large code bases, complete conceptual models of the source
code cannot be built by the developers, anyway. Instead,
they are forced into foraging strategies, evaluating possible
navigation and exploration alternatives by information scent,
the perceived likelihood of proximal cues—symbol names,
for example—leading to the prey.
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Following the theory of the top-down cognitive model, The foraging
approaches suggest
semantic relations to
be a combination of
call graph
neighborhood and
linguistic similarity.

Lawrance et al. [2008] assumed that developers create high-
level hypotheses and then look for information ‘prey’ to re-
fute or confirm them. Since these hypotheses must be lin-
guistically related to the words in the maintenance task de-
scription, for example a bug report, they computed the in-
formation scent for their PFIS foraging model as the word
similarity between this description and the proximal cues
given by method names and other identifiers. The underly-
ing topology that connects the nodes of information or code
locations was determined by the affordances of the IDE; if
the IDE offered a way to get from one code location to an-
other in one click, these locations were considered as being
connected.

They found that this foraging model was able to predict the Foraging models
have some success
in predicting actual
navigation behavior.

aggregated behavior of 12 professional programmers bet-
ter than each of the individual traces and better than both
a similar model without the topology graph and a similar
model without the information scent. An extensive analy-
sis of the performance of such multi-factor models in com-
parison with a number of single factor models, for example
recency, linguistic similarity, or forward call depth, performed
by Piorkowski et al. [2011] produced similar results but was
based on the navigation transcription of a single developer
only.

Formative Study on Navigation Behavior

The studies mentioned above already give first directions We verify the
relevance of the
existing theories for
Objective-C
developers in our
own study.

towards finding a suitable conceptual model and semantic
structure for source code navigation. Most of the related
work agrees on the importance for developers to follow the
control flow when trying to understand unfamiliar code, of-
ten coupled with another factor like linguistic models or re-
cency measures. One thing to keep in mind, however, is that
the majority of these experiments were conducted in a JAVA
and Eclipse environment. To gain a better understanding of
the behavior of Objective-C developers and to confirm that
the underlying mechanics of understanding and navigating
source code are similar enough to those of JAVA developers,
additional studies are required.
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We conducted such a formative study with experienced
Objective-C software developers using the Xcode IDE; this
was done in the form of a contextual inquiry and a ques-
tionnaire. The study was designed and carried out by Jan-
Peter Krämer for his Diploma Thesis [2010], whose work
was guided by the author. Parts of the contents of this sec-
tion have also been published at UIST 2011 as a full paper
[Karrer et al., 2011].

Six participants were observed during their maintenanceWe conducted a
contextual inquiry
with Objective-C

developers working
on a variety of

projects.

work on different code bases, comprising both large and
smaller projects and a range of degrees of familiarity with
the sources. All had studied or were studying computer sci-
ence, five were male, one female, and their average age was
26.2 years.

The developers all rated their expertise with the program-
ming language to be above average (Median = 2, 5-point
Likert, 1 was best) and had at least six months of experi-
ence with Cocoa, Apple’s main framework for GUI applica-
tions, and Objective-C (M = 1.22 years). Most of them had
worked with C or similar languages before (M = 6.92 years
of experience); all were exclusively working on Objective-C
projects for OS X or iOS at the time. The tasks they were per-
forming during the contextual inquiry covered a large part
of the spectrum associated with code maintenance: three
were adding features to existing applications, two were fix-
ing bugs in larger code bases, and one was performing
refactoring tasks.

Contextual Inquiry
In the contextual inquiry, we asked the developers to thinkDuring the

observation,
developers explained

the reason for each
navigation action.

aloud while performing their work and to shortly name
or explain their reason each time they moved their locus
of attention to a different part—at the function or method
granularity—of the code. Additionally, we were allowed
to take screen recordings and annotated them later to de-
termine the characteristics of each navigation step with re-
gards to

• the structural relation between the navigation source
and its destination, e.g., from variable assignment to
variable definition or from method call to the imple-
mentation of that method,
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• the tool or command used to perform the navigation
step, e.g., the shortcut for switching between header
and implementation file or <ctrl>-clicking on a sym-
bol to jump to its definition in the code,

• and the time taken to perform the navigation step,
e.g., from the beginning of using the scroll wheel up
to the moment where the destination was visible and
scrolling stopped.

To help clustering the different kinds of navigation the de- We clustered the
navigation events into
seven distinct
categories.

velopers performed during their work, we defined two
groups of six basic navigation classes that are typical for
working with Objective-C code [Krämer et al., 2010]: The
first group comprises the navigation types that are not
based on semantic structural relationships of source code
entities.

N1 Navigating to a specific location in the source code—
either in the current file or elsewhere, as long as the
location of the destination can be specified as and
reached by a pre-planned sequence of syntactic nav-
igation steps.

N5 Navigating between the interface part and the imple-
mentation part of classes—usually this means switch-
ing between a header file, which contains the interface
of a class, and an implementation file containing its
implementation.

The second group contains those types of navigation that
are defined in terms of semantic structural relationships.

N2 Navigating along the call graph—either the source
calls the destination part of code (through a standard
function call or the invocation of a method via an
Objective-C message) or vice versa.

N3 Navigating between instances of access to a variable—
source and destination are both statements in which
the same variable is read or written.

N4 Navigation between poster and recipient of a
notification—for both explicit notification posting or
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implicit notification posting via key-value-observing
in Cocoa.

N6 Navigating between classes participating in one in-
stance of the delegation software design pattern—apart
from the relatively recently introduced possibility of
closures in the language, this pattern is commonly
used to replace callback mechanisms in Objective-C,
so that this navigation type also applies to navigating
between ‘normal’ C-style callback functions and their
invocation locations.

We collect all other types of navigation that do not fall un-
der any of the aforementioned classes or groups under a
separate label, N7.

From our own experiences, and from Ko’s [2006] analysisWe were interested in
a frequency ranking
of the different kinds

of semantic
navigation.

of the maintenance work of Java developers, we expected
to see a large number of navigation events of types N1 and
N5 and hoped to observe a clear order between types N2,
N3, N4, and N6. Apart from the fact that the participants
had a general knowledge about the code they were work-
ing on and thus could build knowledge about the locations
of interesting code segments, navigation that does not rely
on semantic structural relationships is what is needed to ex-
plore sections of code, asking for N1 navigations.

In Objective-C, header and implementation files need to be
kept consistent according to a set of rules defined by the
language. This requires manually synchronizing these files
and, hence, produces a fair amount of navigations of type
N5, almost regardless of the developer’s task. If a developer
needs contextual information about a certain segment of
code or if a change spans multiple methods or even classes,
we expected to see navigation along semantic axes through
the code. This was, of course, the class of navigation events
we were especially interested in to identify the most useful
semantic structures along which we could design new nav-
igation techniques.

Such a contextual inquiry is naturally limited in what canAs the observations
are influenced by the

affordances of the
IDE, we added a

questionnaire.

be observed [Wixon et al., 1990]: Navigations that are not
afforded by the set of tools in the IDE may occur less fre-
quently or are mapped to other navigation types. Further
inaccuracies can be anticipated because of the relatively
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short time span and small number of participants, which
both pose the risk of over-weighting observations of spo-
radic non-typical behavior. For these reasons, we decided to
back up the study with an additional questionnaire, which
we asked our participants to fill out after the contextual in-
quiry session.

Questionnaire
The web-based questionnaire was composed of five blocks
of questions: demographic information and expertise as-
sessment (Q1–Q11), frequency of use of the six navigation The questionnaire

assessed how
frequently the seven
navigation types are
used and how well
they are supported
by the IDE.

types in the context of different maintenance tasks (Q12–
Q14), overall ranking for the navigation types independent
of the task (Q15), asking how well the developers thought
that the different navigation types are supported by the
tools the Xcode IDE offers (Q17–Q18), and how important
each of these tools was for them (Q19–Q21). Details and a
re-print of the actual questionnaire can be found in [Krämer
et al., 2010].

We hoped for the results from the questionnaire to sup- We expected to hear
about missing tool
support for the
semantic navigation
types.

port and refine our observations from the contextual in-
quiry. Consequently, we expected to find an overall higher
frequency of use for the syntactic navigation types and to
identify a clear ordering of the importance of the different
semantic navigation types. At the same time, we presumed
that the existing tool support for such semantic navigation
would be rated as insufficient.

Observations and Results
In the contextual inquiry, we could observe that there were Developers who

preferred structured
navigation often
relied on semantic
relations to explore
the code.

two distinct strategies for how developers navigate source
code: One group relied mostly on syntactic navigation
using the file browser and conventional text scrolling to
rapidly scan large parts of the code until they found a part
they deemed important or worthwhile investigating. The
other group employed a much more structured approach—
sometimes even sketching a plan of approach to the prob-
lem with pen and paper before touching the code—and
exploited the semantic relations between segments of the
sources to a much greater extent. This observation is consis-
tent with Robillard’s [2004] descriptions of developers us-
ing either structured or opportunistic code browsing strate-
gies. In our study, opportunistic browsing behavior was
correlated with higher familiarity of the developer with the
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code at hand, which seems logical, because a good generalOpportunistic
navigation was

employed by
developers who

already had a sound
understanding of the

code.

knowledge about the structure of the code is required for
this strategy to be successful. Structured browsing behavior
was observed more often if the developers were less famil-
iar with the code but also with the developers that were the
most experienced with programming in Objective-C over-
all. We may hypothesize that this strategy can both help
to incrementally build up a mental model of the code—
making it a better approach for unknown or unfamiliar code
bases—and allow to work more efficiently if more possibil-
ities of semantic relationships in the language are known.

Apart from these two distinguishing global strategies, weNavigation along the
call graph was used

to gather context
information around

locations of interest.

could also observe that the use of ‘advanced’ navigation
tools that operate along semantic relationships depended
on the concrete subtask: When trying to find a place in the
code to start with a task, developers used mostly basic tools,
like the file navigator and scrolling. When looking for con-
textual information of a certain part of the code, which was
believed to be relevant to the task, the participants increas-
ingly used the jump-to-definition shortcut and the project-
wide search to explore semantically connected code sections,
independent of their syntactic location of files and text po-
sition inside a file. Of special interest was the observation
of some users using the project-wide-search window to ex-
plore parts of the call graph (cf. 6.2.1 “Navigation along the
Call Graph”) starting from some method of interest.

In the questionnaire, we asked our participants how often
they thought that they performed each of the six (plus one
extra ‘other’ category) types of navigation. The results are
summarized in Figure (6.8).

As expected, the developers reported to navigate betweenSyntactic navigation
was still dominant,

especially for known
sections of code.

header and implementation files most often, followed by
general syntactic navigation. It seems that developers are
able to build solid mental models of how the parts of the
code are laid out when working with familiar sources and
then use syntactic navigation together with that knowledge
to navigate the code. A possible reason for this could be the
universal applicability of (and, consequently, the high de-
gree of training with) syntactic navigation methods in text-
based media.
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Regarding the navigation types that are based on seman-Variable-based data
flow and

call-graph-based
control flow were the

most-navigated
semantic relations.

tic relations, our participants reported that they navigated
most frequently between instances of access to a variable
and along caller-callee relationships. While the latter was
more associated with bug-fixing tasks, the former was be-
lieved to be more important in conjunction with refac-
toring. Two things, however, have to be kept in mind:
First, in more modern Objective-C code, instance variable
access—barring global variables, the only variable access
that crosses method boundaries—is almost exclusively en-
capsulated by accessor methods, which may even be auto-
matically synthesized. In the current recommended style of
writing Objective-C code, navigating access to these vari-
ables is thus in most cases equivalent to navigating the call
graph. Second, the remaining cases of access to block local
variables naturally exhibit a much higher degree of locality;
in many instances, they will be visible on screen at the same
time. Under these circumstances, we argue that a transient
visual marking scheme to highlight the parts of the code
where those variables are accessed might be more appro-
priate than a full-fledged navigation technique. Xcode even
offers such a marking mechanism (Figure 6.9); the visual
highlight, however, seems to be not prominent enough or
its rendering delay too long; most of our participants had
never noticed this feature.

Taking all of our participants’ top-five-lists (Q15) and look-There was
agreement across all
participants that call
graph navigation is

among the most
important types of

navigation.

ing at the intersection, only call graph navigation remains,
next to both the syntactic navigation types. Navigating the
delegation design pattern or Cocoa notification was, over-
all, considered to be of use less often. The extra navigation
category of ‘others’ also was believed to be invoked less fre-
quently, even though this included navigating to graphical
interface definitions (xib files) or switching to the documen-
tation. This shows that results from such self assessments
need to be taken carefully; in contrast to what users be-
lieved, we could observe them to, e.g., access the documen-
tation much more often than they reported in the question-
naire.

When being asked how well they thought that the differ-Tool support for
syntactic navigation

was deemed best.
ent types of navigation were supported through the tools
supplied by Xcode, the developers clearly felt that the tool
set was better geared for syntactic navigation (Figure 6.10).
From the navigation types that are based on semantic rela-
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Figure 6.9: Transient highlighting of local variables in Xcode. When the caret is
inside a variable name, this and all other occurrences of the variable are under-
lined. This also allows the name to be changed in all occurrences simultaneously.

tions, call graph navigation was still perceived as being sup- Semantic call graph
navigation was
supported well in one
direction only.

ported best. It can be navigated, albeit only in the caller-to-
callee direction, by using the jump-to-definition tool; for the
other direction, navigation can only be achieved through a
manual workaround using the project wide search feature.
The developers’ subjective ratings of the importance of dif-
ferent tools in Xcode mirror these findings (Figure 6.11).

The questionnaire also contained free form fields (Q18 and
Q21) to collect suggestions for improvements regarding
code navigation in Xcode. Most notably, the participants
mentioned that they would find it beneficial if they had
a way to retain the current work context when exploring
related sections of code and a clear way to get back from
where they started the exploration. A second common re-
quest was to have graphical overviews of semantic struc-
tures including the call graph, notification channels, and
delegate relationships.
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N1: Navigating to a known

part in the source code

N2: Navigating the call stack

N3: Navigating variable access

N4: Navigating between poster

and recipient of a notification

N5: Navigating between

interface and implementation

N6: Navigating between

objects and their delegates

N7: Other navigation

1

very useful support

2 3 4 5

no support

Figure 6.10: Users’ assessment of the level of tool support in Xcode for the dif-
ferent types of navigation. Source: [Krämer, 2011]

Navigation along the Call Graph

In our formative study to find a suitable semantic subspaceThe call graph, or a
substructure thereof,

is a promising
candidate for a

semantic structure of
source code.

for source code navigation, we could observe that a large
part of the navigation events where the source and destina-
tion have a semantic structural relationship happen along
the edges of the call graph. This result is consistent with the
majority of the navigation studies outlined above and sup-
ports the findings by Ko et al. [2006], who showed the im-
portance of call graph navigation for Java developers. Also,
this kind of navigation appears to be the most important
type when context information is required while working
on a certain method, and it has only partial tool support
in Xcode through the jump-to-definition tool. When we ac-
cept the call graph as the semantic structure, we can imme-
diately see that standard text navigation methods—as they
are offered by virtually every IDE—and even bookmark-
style navigation helpers, like method lists of the currently
open file (cf. Figure 6.6), again suffer from a large overall se-



6.2 Two IDE Extensions for Semantic Source Code Navigation 297

File Browser

Jump to Definition

Project wide search

Find selected text in Project

Search Documentation

Find selected text in Documentation

Switch to Header/Source File

Class Browser

File History

Bookmarks

Open Quickly

Single step advance in debugger

Call stack from debugger

1
essential

2 3 4 5
unnecessary

Figure 6.11: Users’ rating of the importance of different tools in Xcode. Source:
[Krämer, 2011]

mantic distance (Figures 6.12 and 6.13). Similar to the other
media types in the preceding chapters, the tools for naviga-
tion can thus be potentially improved by directly offering
semantic navigation techniques: in our case, this would be
a direct access method to the call graph or parts thereof.

Of course, there are studies that advocate more complex More complex
semantic structures
have been proposed
but may be too
complicated to be a
good conceptual
model.

structures be used for the semantic structure. The work
on code navigation as an information foraging process
[Lawrance et al., 2008, 2010; Piorkowski et al., 2011], for ex-
ample, suggest that some form of information scent should
be used to overlay a measure of preference on the call graph
topology. And Chen et al. [2000] propose that feature lo-
cation in source code can be performed using the abstract
system dependency graph, a graph-based structure that not
only contains the calling relationships between methods
and procedures but also the data flow inside of these entities
together with additional levels of abstraction. While these
approaches may be able to mathematically predict develop-
ers’ current navigation behavior better than using only an
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Semantic Structure
Call Graph

Syntactic Structure

Semantic Mapping

Files and Text Lines

Statements

Conceptual Layer
Methods in Classes

Semantic Layer
File List and Text 

Scrolling

Syntactic Layer
Tree View and Text 

View

Navigation Task
Semantic Distance

Syntactic Distance

Interface
Semantic Distance

Real
Semantic Distance

Figure 6.12: Combined navigation interface model of an IDE with standard text
and file navigation capabilities. To navigate along the call graph, a user would
have to find the caller or callee method by selecting the appropriate file or class
from a list and then finding the method through scrolling, search, or a method
list pop-up.

Sy
nt

ac
tic

 D
is

ta
nc

e

Semantic Distance

Control Granularity

Figure 6.13: Design space showing semantic call graph navigation with standard
IDE file and line browsing tools. Apart from the large semantic distance, the
control granularity is either too coarse (file-based) or too fine (line-based).
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MainController
    convert

MainController
    init

MainController
   convertClicked

AppDelegate
applicationDidFinish
Launching

Converter
    init

MainController
    inputP

MainController
    converterP

Converter
    c2f:M

MainController
    update:M

M
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M
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Figure 6.14: Call graph of the source code for a very simple currency converter
application. The method convert, for example, is a callee of init and a caller of
udate:.

unscented call graph [Piorkowski et al., 2011; Krämer et al.,
2013], none of them represents a conceptual model that
is transparent and understandable to the user. Our strat-
egy, however, is to offer navigation along semantic struc-
tures that are derived from the way developers think about
source code, and that they can grasp easily as a conse-
quence. Thus, we decided to design a semantic navigation
technique for source code along the semantic structure that
is defined by the call graph of the program.

In this context, we formalize the call graph as the directed
graph

G = (V, E
u

, E
d

)

with V being the set of all functions and methods in the
source code, and E

u

, E
d

✓ V ⇥V being the sets of ‘upgraph’
and ‘downgraph’ edges, where

(A, B) 2 E
d

() (B, A) 2 E
u

() B is called from the implementation of A.

In this constellation, we call A the caller of B and B a callee
of A. An example is depicted in Figure 6.14.

Having an interface that makes navigation in the call graph
explicit and allows to traverse it interactively in both direc-
tions (Figure 6.15) has a number of benefits:
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Semantic Structure
Call Graph 

Syntactic Structure

Semantic Mapping

Files and Text Lines

Classes and Statements

Conceptual Layer
Call Graph Logical 

Frame

Semantic Layer
Caller and Callee Lists

Syntactic Layer
List View

Syntactic Distance

Real
Semantic Distance

Figure 6.15: Combined navigation interface model for a call-graph-based seman-
tic tool. Users can directly navigate through a representation of the call graph or
parts thereof. The semantic distance in the interface is significantly reduced com-
pared to standard navigation interfaces (cf. 6.12).

• Learning how a certain aspect of a program works
and understanding the code that implements this as-
pect can be easier, because the responsible call path
through the code can be directly followed. Such ex-
ploring of unfamiliar source code was one activity
where we could observe developers following struc-
tural relationships, especially the call graph.

• Estimating possible side effects and assessing the
scope of changes developers make to a method can
become easier, because the upgraph edges at the cur-
rent method directly represent the context in which
that method will ever be called.

• If each navigation action along an edge of the call
graph is quick to invoke and to backtrack, the notion
of what is closely located in the developer’s mental
model of the code becomes similar to what is closely
related in the semantic structure. This would allow
better context retention when exploring the semantic
neighborhood of a piece of code (cf. [Ko et al., 2006]),
especially compared to when the developer has to use
syntactic navigation like, e.g., scrolling to the target
method or searching for it.
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6.2.2 Determine the Semantic Mapping

Our general approach to create semantic navigation
techniques—finding a sufficiently well-defined initial map-
ping from the syntactic domain to the semantic domain and
reversing that mapping as discussed in chapter 2 “Generat-
ing New Interfaces Using the Combined Model”—is much
simpler for source code than for the other media we have
discussed so far: For audio, the semantic structure had to
be extracted manually (see 3.2.2 “Determine the Semantic
Mapping” (p. 72)), and for presentation visuals the form of
the medium was altered in a way that the semantic structure
was mirrored in the syntactic structure and thus explicitly
defined in the authoring process (see 5.3.3 “Determine the
Semantic Mapping” (p. 215)). For video, it was necessary
to derive—or rather approximate—the semantic structure
automatically through computer vision techniques, because
this structure is not explicitly encoded in the technical rep-
resentation of the medium at all (see 4.2.2 “Determine the
Semantic Mapping” (p. 108)).

Most instances of source code are different in that regard; For source code, the
initial inverse
semantic mapping
can be algorithmically
derived.

our designated semantic structure, the call graph, can the-
oretically be algorithmically recovered in full from the syn-
tactic representation. The reason for this is obvious: source
code is nothing but a syntactic encoding of a program’s se-
mantics. As such, all semantic relations and the semantic
structures they can induce, including the call graph, must
be explicit in the technical representation of the medium—
if they weren’t, source code could not be compiled and run
by a computer. We can thus take the fourth and last of the
approaches for constructing the initial mapping, “Automatic
generation of the initial mapping in semantically structured me-
dia”, from the list that we compiled in the theory chapter
(see 2d “Generating New Interfaces Using the Combined
Model”).

We concentrate our studies, as discussed above, to sources A full Objective-C call
graph can only be
recovered at runtime.

written in the Objective-C language in connection with the
Cocoa API. Being a dynamic language, some of the afore-
mentioned statements on the full recoverability of struc-
tures like the call graph are thus only applicable to some de-
gree because of features like dynamic binding: in Objective-
C, the full call graph is only determined at runtime and can
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even change over the course of a program’s execution. In
a majority of programs, however, a good approximation to
the call graph can be extracted by static analysis methods
directly from the sources.

In the case of STACKSPLORER, we settled with a conserva-We use a static
analysis to create an
approximation to that

structure.

tive heuristic to construct a superstructure of the actual call
graph. Since the STACKSPLORER prototype is designed as a
plug-in for Xcode 3, we can utilize the internal data struc-
tures and undocumented SPI of Xcode’s lexer, tokenizer,
and syntax autocompletion engine for our purposes. The
full procedure is explained in Krämer’s Diploma Thesis
Krämer et al. [2010]; here, we only summarize the impor-
tant steps:

First, we create the set V by asking the internal project in-The list of symbols
and their location in
the source code are

extracted from
Xcode’s internal

project index.

dex data structure of Xcode for a list of all methods. Each
method is encapsulated in an object, also providing infor-
mation about the class it belongs to and its location in the
source code. We then proceed by iterating over the meth-
ods and finding all callees for each of them. This is a multi-
step process that starts out by traversing the syntax tree
generated by Xcode’s own lexer and collecting all expres-
sions and sub-expressions that are either a Smalltalk-style
message send or a property-style call by means of a ‘dot’-
expression.

For the messages, the bracket expression is parsed for the
name of the selector; this selector is then fed to the autocom-
pletion engine together with the context of the encapsulat-
ing expression to have the engine output the class that the
selector belongs to. With these two pieces of information—
selector name and according class—the method called in the
message sending expression can be identified.

The process for the ‘dot’-expression works in a similar way
but has to include checks for it being used as an lvalue or
rvalue: in the case of the former, the expression must resolve
to a call to the property setter method; in the case of the
latter, the expression represents a call to the getter. Again,
the code completion engine is used to reveal the class for
the accessor name, which identifies the method.

In the next step, the call locations are associated with the
identified method objects, and the method objects are made
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sure to point to the definition site of the method and not the
declaration site. This is followed by the final step of adding
the inverse caller relationship to each of the callee edges that
we have found.

The resulting structure is—as explained above—only an ap- Our call graph
contains some
spurious edges,
which are
unproblematic.

proximation to the true call graph. Some spurious edges
may be detected, thereby adding additional possibilities for
navigation in the semantic structure that do not have a se-
mantic correspondent. This, however, can be easily spotted
by the developer and thus is not critical for our use case.

6.2.3 Designing the User Interface for Seman-
tic Source Code Navigation

After we have identified a suitable conceptual model for For the actual
navigation interface,
visualizing the full call
graph is not possible.

the users’ task and facilitated functional access to the ac-
cording semantic structure of the medium by establishing
the semantic mapping, we can now define the interface and
integration into the Xcode IDE to allow users to semanti-
cally navigate source code. Designing such a navigation
technique that allows easy and efficient browsing of the call
graph of a program is challenging. An initial idea might be
to visualize the call graph as a whole; the number of meth-
ods in a program—and therefore the number of nodes in the
graph—may become exceedingly large, however, and call
graphs often also have very high degree nodes. This makes
graphical representations of the graph infeasible both com-
putationally and in terms of readability (Figure 6.16). A
possible solution is to only make relevant parts of the call
graph directly accessible. In our STACKSPLORER and BLAZE
projects, we have investigated two different strategies to do
so.

For both designs, we first identified a number of key re- We explored two
different designs that
each make a different
part of the call graph
accessible.

quirements from unstructured interviews with the partic-
ipants of our formative study (cf. 6.2.1 “Formative Study
on Navigation Behavior”), our own experience, and a thor-
ough review of the related work on other source code navi-
gation systems that are integrated into an IDE [Oman, 1990;
Čubranić and Murphy, 2003; Janzen and De Volder, 2003;
DeLine et al., 2005b; Singer et al., 2005; Kersten and Mur-
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Figure 6.16: Even for small code bases, call graph visual-
izations quickly become difficult to parse and read. Source:
[Munzner, 1997]

phy, 2005; DeLine et al., 2005a; Deline et al., 2006; Hill et al.,
2007]:

• The parts of the call graph that are accessible in our
interface should include and be centered around the
focus method, which is the method that is currently
edited in the source code editor. This is consistent
with how Herman et al. [2000] propose incremental
exploration of graph structures; the accessible part of
the call graph corresponds to their concept of a logical
frame, the focus method corresponds to the focus node
in the logical frame [Huang et al., 1998] (Figure 6.17).

• Navigation and exploration of the call graph as the se-
mantic structure should work by selecting a new focus
node from the logical frame, thereby re-defining the
latter. If another form of navigation is performed that
changes the focus method, the focus node and logical
frame should be updated automatically (Figure 6.18).
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MainController
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MainController
   convertClicked
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Figure 6.17: Logical frame inside the call graph. The focus method—the method
currently being edited in the source code editor view of the IDE—defines which
other nodes belong to the logical frame. Source: [Karrer et al., 2011]

This ensures that the logical frame is always current
and relevant.

• The visual part of the UI should be integrated with
the source code editor as closely as possible to keep
the developers’ locus of attention at the code and not
at a ‘tool’. Unlike suggested by the model of instru-
mental interaction [Beaudouin-Lafon, 2000], we try to
allow users to directly interact with the objects of in-
terest from their conceptual model of the task at hand
(see 2.2.1 “Interface Model and Design Space” (p. 42)).
Therefore, our goal is to make our interface be per-
ceived as part of the code instead of an instrument.

STACKSPLORER

The first decision we have to make to design a UI for We need a suitable
topological layout for
the logical frame.

STACKSPLORER in accordance with the requirements de-
tailed above is to define the topological layout of the logi-
cal frame, the part of the semantic structure that should be
directly visible and accessible. Obviously, there is a trade-
off between the number of methods that we can visualize as
navigation targets and the available screen real estate inside
the IDE; we want to show as much information and allow as
much navigation interaction as possible without overload-
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Figure 6.18: Moving the logical frame over the call graph. When changing the
focus method, the logical frame and thus the part of the call graph that is being
visualized changes with it. Source: [Karrer et al., 2011]

ing the UI or drawing attention from the source code. Thus,
we start our search for a suitable choice for the logical frame
by reducing the complex topology of the call graph.

Since one of the reasons for our initial choice of the seman-We first restrict the
full call graph to a

dual tree structure of
a caller tree and a

callee tree, both
rooted at the focus

method.

tic structure was that developers follow the control flow of
a piece of source code in order to understand it [Penning-
ton, 1987; Sim et al., 1998], we can first prune all edges from
the call graph that can only be reached by reversing the di-
rection of traversal when viewed from the focus method.
The resulting structure can be modeled as two independent
trees that both have the focus method as their root: one rep-
resents the caller tree and contains only edges in caller di-
rection, the other analogously represents the callee tree that
contains only edges in callee direction 6.19. In this way,
the structure precisely contains all possible call-paths that
travel through the focus method. This dual tree structure
obviously depends on the current focus method and has to
be re-built from the call graph every time the focus method
changes.

For STACKSPLORER, we decided to include the full direct
neighborhood of the focus method into the UI. This allows
us to keep the number of navigation targets and their visu-
alization manageable while still supporting the ‘glancing’
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Figure 6.19: Pruning of the call graph to only include all possible call-paths
through the current focus method. From the initial full call graph with possi-
ble recursions unrolled (top), all methods that are not reachable from the focus
method by a sequence of only caller or callee steps are removed (middle). The
remainder of the graph can be modeled as two trees, both with their roots at the
focus method.
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    return self; 
}

// convert temperature
// from celsius to fahrenheit
-(void)convert {

    //read input value
    float c = [self.input intValue];

    //convert temperature
    float f = [self.converter c2f:c];

    //write output value
    [self update:f];

}

NSButton
! convertClicked

MainController
! init

MainController
! NSTextField* input

MainController
! Converter*  converter
Converter

c2f:

MainController
update:

P

P

M

M
M

A

Figure 6.20: Sketch of the STACKSPLORER user interface. The direct neighbor-
hood of the focus method in the call graph is accessible through the side columns
next to the source code editor.

navigation pattern observed by Ko et al. [2006]. The meth-In STACKSPLORER,
the direct

neighborhood of the
focus method forms

the logical frame;
these methods are
accessible through

two side columns in
the interface.

ods in the two partitions of this subgraph, upstream and
downstream of the calling direction, are then displayed in
two side columns to the left and to the right of the main
source code editor view inside Xcode (Figure 6.20). In this
way, we can keep the presentation of the syntactic structure
of the code in the usual way—as a text file, scrolling ver-
tically from top to bottom—while at the same time adding
our semantic structure on the horizontal axis 6.21. The re-
sulting interface could also be interpreted as a fisheye view
Furnas [1986] for the semantic structure: The focus method
is completely visible with its source code, the neighborhood
only through the abstraction in the side columns, and the
rest of the call graph is faded out.

To navigate the call graph in the STACKSPLORER UI, a de-Clicking on a method
in one of the side

columns shifts the
logical frame over the

call graph and then
updates the UI.

veloper can simply click on one of the methods in the side
columns next to the editor; this causes the clicked method
to smoothly move to the central view, which then shows the
file in which the method is implemented, centered on the
method. The former focus method moves over to the left
and becomes an entry in the caller column. The callees of the
new focus method move in from the border of the screen,
replacing the old right hand side column.

As soon as the cursor in the editor view is positioned insideThe logical frame is
always synchronized
to the edit location in

the code editor.

another method, the STACKSPLORER UI is automatically
updated. Also, scrolling through a lengthy focus method
causes the entries in the side column to move as well, al-
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-(id) init
{
self = [super init];
    if (self) {
        converter = [[Converter 
alloc]init];
    }
    return self;
}

-(void) update:(float)newTemp
{
 [outputTextField setFloat-
Value: newTemp];
}

    return self; 
}

// convert temperature
// from celsius to fahrenheit
-(void)convert {

    //read input value
    float c = [self.input intValue];

    //convert temperature
    float f = [self.converter c2f:c];

    //write output value
    [self update:f];

}

MainController
! convertClicked

MainController
! init
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Figure 6.21: Semantic navigation concept in STACKSPLORER. The well-known
syntactic navigation through source code files is preserved on the vertical axis,
while the semantic navigation through the call graph is mapped to the horizontal
axis.

ways minimizing the spatial distance between their location
in the side column and the occurrence of the respective call
in the source code editor. This simplifies grasping the con-
text of the focus method [Karrer et al., 2011]. It also makes
the right hand column provide an abstract overview over
the content of the focus method; during our evaluation ex-
periments, we could observe some developers who tested
the prototype to often refrain from reading the code of a
method in full but relied on the summary they could gather
from the callee method list.

For the actual implementation of the STACKSPLORER proto-
type (Figure 6.22), we also refined the design in a number
of places to make the UI cleaner and to provide information
scent to the developer:

Firstly, following the idea of wear-based filtering [DeLine STACKSPLORER

supports ‘glancing’
by highlighting visited
methods.

et al., 2005b], the history of method nodes that have been
visited is visualized by adding a color-shaded background
to the representation of the methods in the side columns.
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This again facilitates the glancing navigation pattern as well
as it helps the local graph exploration patterns observed by
Sillito et al. [2008]. The shading intensity gives a hint about
the recency of the last visit to the method.

Secondly, to facilitate quick association of the side columnFrame overlays
visually associate
entries in the side

columns with
locations in the code.

entries with the source code in the center view, we offer op-
tional frame overlays that graphically link the method calls
in the code with their occurrence in the side column. Also,
we allow to optionally emphasize the horizontal semantic
navigation over the vertical syntactic navigation by visually
toning down the rest of the code in the center view that is
not part of the current focus method.

Thirdly, STACKSPLORER allows to attach tags to individualMethods can be
tagged and

color-coded to
document call paths.

methods. These can be used to mark important call paths,
for example the full path of the methods involved with a
screen re-draw in a graphics application. They therefore ful-
fill a double role, acting both as self-generated information
scent for one developer and as a form of documentation be-
tween different developers working on the same code base.
Tags consist of a name and color, which can be defined in a
separate editor window 6.23. In the main UI, they are visi-
ble as a colored icon next to the tagged methods in the side
columns. If the graphical overlays linking the code and the
side columns are enabled, the tags are instead visualized by
drawing the frames in the respective color.

BLAZE

For BLAZE, we defined the topological layout of the logi-For BLAZE, we tried
to tailor the

topological structure
of the logical frame to

larger navigation
patterns.

cal frame in a different way. Instead of catering to breadth-
first-search exploration of the focus method’s local neigh-
borhood inside the semantic structure, as we did with the
STACKSPLORER design, we tried to focus on larger naviga-
tion patterns. In particular, our aim was to explicitly sup-
port the navigation strategies observed by Sillito et al. [2008]
and ourselves [Karrer et al., 2011], which are characterized
by alternating phases of linear searches through the code
and local cluster exploration.

BLAZE therefore makes a different local neighborhood of
the focus method accessible; it consists of a single linear call
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Figure 6.22: Screenshot of the STACKSPLORER user interface. In this example,
the overlay frames that connect the method entries in the side columns with
the actual location of the methods in the source code are enabled. The chain of
methods that is framed in red has been tagged before and given a common label
(cf. Figure 6.23) Source: [Karrer et al., 2011]

path through both halves of the dual tree structure (see 6.2.3 The logical frame
contains one full path
through the call graph
in both directions.

“STACKSPLORER ” (p. 306)) and, naturally, through the fo-
cus method (Figure 6.24). Thus, the common behavior of
exploring and backtracking along one special call path is
supported very well and can be accomplished very easily
[Kurz, 2011].

There are a number of subtle side effects that this change This kind of logical
frame has more
degrees of freedom,
which have to be
controllable in the UI.

of the topology of the logical frame brings. First, while
there is only one direct neighborhood of the focus method
at any time, there are multiple—and possibly many—paths
through the focus method. This means that the logical
frame is not determined by the choice of the focus node
alone but depends on a vector of parameters, representing
a hierarchy of choices between subtrees. The length of this
vector is equal to the length of the path minus one, and each
entry can take as many values as the respective method’s
fan-in or fan-out degree. This makes the parameter space We need separate

ways to relocate the
logical frame and use
it for navigation.

for the logical frame rather large. Second, as switching
the focus method via the semantic navigation interface is
limited to the logical frame, we cannot navigate the whole
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Figure 6.23: Screenshot of the STACKSPLORER tag editor
window. Methods can be tagged to signify that they be-
long to certain special call paths. This can be seen as a quick
and lightweight form of documentation: developers can, for
example, tag all methods that are responsible for screen re-
draws, helping them and others to later find these locations
in the code again.

call graph with this technique. We must therefore allow to
reconfigure the logical frame without changing the focus
method; in other words, each of the parameters mentioned
above must be settable in the interface. Third, we must
be careful when designing the behavior of the interface for
when the focus method changes. Since a new focus method
basically invalidates the current parameter vector, we have
to guess which path through the call graph and new focus
method to set the logical frame to. And last, there must be
a way to navigate through the logical frame without chang-
ing it to reap the benefits of investigating the code along the
path and always being able to backtrack to a safe location.
This means, of course, that the focus method must not auto-
update to the current location in the code for these cases.
As a result of these requirements, the interface for BLAZE is
somewhat more complex than that of STACKSPLORER.

We decided to represent the currently selected call path as
a stack of methods in one single side column next to the
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Figure 6.24: Different topologies of the logical frame in
STACKSPLORER (top) and BLAZE (bottom). While in STACK-
SPLORER only the direct neighborhood of the focus method
in the call graph is accessible, BLAZE shows a single full
path through the call graph.

editor view in Xcode 6.25. The focus method is drawn vi- The logical frame is
visualized in one side
column as a
double-stack around
the focus method.

sually highlighted, with the calling part of the path above
it and the called part below. To configure the displayed call
path, each of the method nodes can be swapped with one of
its siblings through two arrow buttons. The interface thus
is similar to a series of interdependent picker widgets or a
combination lock. Alternatively, clicking on the boundary
between two methods, opens a transient HUD menu that
lists all child nodes of the higher level one (Figure 6.26); this
menu allows a quicker selection of the subtree at any node
in the path than the left/right arrow keys.

The focus method is usually in a ‘locked’ state, meaning To separate
navigation and
relocation, the focus
method is lockable.

that a click on one of the methods in the path visualization
takes the developer to the implementation of that method
but does not change the focus method. This allows the path
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Figure 6.25: Screenshot of the Blaze UI as a plug-in for the Xcode IDE. The right
hand side column shows the current focus method in grey, the incoming call path
above, and one outgoing call path below.

to be explored in depth while always offering access to each
node in the path and a direct jump back to the focus method.
To change the focus method, it can be ‘unlocked’; in this sit-
uation, every click on one of the methods in the path makes
that method the new focus method.

The navigation model of BLAZE thus embraces the two-Having the focus
method unlocked
facilitates the first

phase of navigating,
locking the method

facilitates the second
phase.

phase navigation pattern of developers [Krämer et al., 2010;
Karrer et al., 2011]. First, the developer searches for a loca-
tion that is relevant for the maintenance task at hand. This
is done with the focus method unlocked where BLAZE sup-
ports quick, depth-first exploration of the call graph. In the
second phase, the developer gathers context information in
the semantic neighborhood of the found location. This is
done with the focus method locked where call paths to and
from the location of interest can be explored and modified,
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VCReceiver
- tryToReceiveData

enter search term

VCReceiver
- stream:handleEvent:

VCParser
- setInfoPacket:

VCParserDelegate
- parser: didParseInfoPacket:

VCViewController
- changeDisplayedImage

SomeOtherClass
- doSomething:

-(void)setInfoPacket:(NSArray *)entries
{
    NSError *error;
    NSError **parsingError = &error; // TODO: report errors via delegate method
    NSMutableArray *parsedInfoPacketEntries = [NSMutableArray arrayWithCapacity:[entries count]];
    for (NSData *bytesForEntry in entries) {
        
        NSUInteger stringLength = [bytesForEntry length];
        char *stringValue = malloc((stringLength+1)*sizeof(char));
        [bytesForEntry getBytes:stringValue length:stringLength];
        stringValue[stringLength] = '\0'; // null terminate the string
        
        // now parse the string to get the data for the info packet
        NSString *cocoaValueString = [NSString stringWithCString:stringValue 
encoding:NSUTF8StringEncoding];
        VCInfoPacketEntry *infoPacket = [[[VCInfoPacketEntry alloc] init] autorelease];
        
        // split the value string into different components to extract the values
        NSArray *valueComponents = [cocoaValueString componentsSeparatedByCharactersInSet:
[NSCharacterSet characterSetWithCharactersInString:@"<>"]];
        // it should look like this:
        // [associatedObjectName:]markerName <typeIdentifier[-valueIdentifier]>
        // with the part in square bracket being optional
        // and we are interested in the associatedObjectName, the marker name and the string 
before and after the -
        // (the type code and the detail code, which specify the data that can be found in this 
field)
        // since componentsSeparatedByCharactersInSet: produces empty string for separator 
characters at the end of a string
        // we should now have an array with three entries:
        //         0                                1                 2
        // {[associatedObjectName:]markerName , typeIdentifier[-valueIdentifier], }
        if (([valueComponents count] != 3) 
            || (![@"" isEqualToString:[valueComponents objectAtIndex:2]])
           ) 
        {
            // the value is not in the format we expect so we got a parsing error
            NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString 
stringWithFormat:@"channel string '%@' not in the expected format", cocoaValueString] 
                                                                 
forKey:NSLocalizedDescriptionKey];
            *parsingError = [NSError errorWithDomain:VCParserErrorDomain 
                                                
code:VCParsingErrorIncorrectInfoPacketChannelStringFormat 
                                            userInfo:userInfo];
            return;
        }
        
        NSString *nameString = [valueComponents objectAtIndex:0];
        NSString *channelCode = [valueComponents objectAtIndex:1];
        
        NSArray *objectNames  = [nameString componentsSeparatedByString:@":"];
        if (([objectNames count] == 0) || ([objectNames count] > 2)) 
        {
            // there should at most be one subject prefix, otherwise something is wrong
            NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString 
stringWithFormat:@"object name part '%@' not in the expected format", nameString] 
                                                                 
forKey:NSLocalizedDescriptionKey];
            *parsingError = [NSError errorWithDomain:VCParserErrorDomain 
                                                
code:VCParsingErrorIncorrectInfoPacketChannelStringFormat 
                                            userInfo:userInfo];
            return;
        } 
        else if ([objectNames count] == 2)
        {
            // we have a subject prefix
            infoPacket.objectName = [objectNames objectAtIndex:1]; // markerName / segmentName / 
objectName
            // remove spaces from the end of the name
            infoPacket.objectName = [infoPacket.objectName stringByTrimmingCharactersInSet:
[NSCharacterSet characterSetWithCharactersInString:@" "]];
            
            // handle the subject prefix / associated object name
            NSString *associatedObjectName = [objectNames objectAtIndex:0];
            if ([infoPacket.objectName isEqualToString:associatedObjectName]) 
            {
                // if the associatedObjectName is the same as the objects name it does not have 
an associated object
                infoPacket.associatedObjectName = nil;
            }
            else
            {
                infoPacket.associatedObjectName = associatedObjectName;
            }
        }
        else
        {
            // now there should only be one entry in the array (the object name without a subject 
name)
            NSAssert([objectNames count] == 1, @"something went wrong while parsing the object 
name");
            infoPacket.objectName = [objectNames objectAtIndex:0];
            // remove spaces from the end of the name
            infoPacket.objectName = [infoPacket.objectName stringByTrimmingCharactersInSet:
[NSCharacterSet characterSetWithCharactersInString:@" "]];
        }
         
        
        // now let's look at the channel code, which tells us what kind of information will be 
transmitted
        // in this channel
        // it has the form "typeIdentifier[-valueIdentifier]" with the part in square brackets 
being optional
        // for example: A-X for the angle axis rotation around the x axis for a global body
        // or T-Y for the translation in Y for a global body
        // or P-Z for the position of a marker on the Z axis
        // or P-O for the occlusion state of a marker
        NSArray *codeComponents = [channelCode componentsSeparatedByString:@"-"];
        // quickly check whether we got what we expect
        // there can be only one or two components (either just the typeIdentifier or also an 
aditional valueIdentifier
        if (([codeComponents count] == 0) || ([codeComponents count] > 2)) {
            // the channel code does not have the expected format
            NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString 
stringWithFormat:@"channel code '%@' not in the expected format 'typeIdentifier[-
valueIdentifier]')", channelCode] 
                                                                 
forKey:NSLocalizedDescriptionKey];
            *parsingError = [NSError errorWithDomain:VCParserErrorDomain 
                                                
code:VCParsingErrorIncorrectInfoPacketChannelCodeFormat
                                            userInfo:userInfo];
            return;
        }
        NSString *channelCodeType = [codeComponents objectAtIndex:0];
        NSString *channelCodeValue = nil;
        if ([codeComponents count] == 2) {
             channelCodeValue = [codeComponents objectAtIndex:1];
        }
        if ([TIMECODE_IDENTIFIER isEqualToString:channelCodeType]) 
        {
            // just some part of the time code
            infoPacket.dataType = VCViconDataTypeTimecode;
            if ([VARIABLE_TIMECODE_VALIDITY_IDENTIFIER isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataVariable = VCViconDataVariableTimecodeValidity;
            }
            else if ([VARIABLE_TIMECODE_RATE_IDENTIFIER isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataVariable = VCViconDataVariableTimecodeRate;
            }
            else if ([VARIABLE_TIMECODE_HOURS_IDENTIFIER isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataVariable = VCViconDataVariableTimecodeHours;
            }
            else if ([VARIABLE_TIMECODE_MINUTES_IDENTIFIER isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataVariable = VCViconDataVariableTimecodeMinutes;
            }
            else if ([VARIABLE_TIMECODE_SECONDS_IDENTIFIER isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataVariable = VCViconDataVariableTimecodeSeconds;
            }
            else if ([VARIABLE_TIMECODE_MILLISECONDS_IDENTIFIER 
isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataVariable = VCViconDataVariableTimecodeMilliseconds;
            }
            else if ([VARIABLE_TIMECODE_FRAMES_IDENTIFIER isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataVariable = VCViconDataVariableTimecodeFrames;
            }
            else if ([VARIABLE_TIMECODE_OFFSET_IDENTIFIER isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataVariable = VCViconDataVariableTimecodeOffset;
            }
            else
            {
                // if it's something else something went wrong, the only valid data variables for 
rotation and translation are X,Y and Z
                // the channel code does not have the expected format
                NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString 
stringWithFormat:@"data type is 'TC' for Timecode so the only valid data variables are V, R, H, 
M, S, MS, F, OFF. But it was %@)", channelCodeValue] 
                                                                     
forKey:NSLocalizedDescriptionKey];
                *parsingError = [NSError errorWithDomain:VCParserErrorDomain 
                                                    
code:VCParsingErrorInvalidInfoPacketChannelCode
                                                userInfo:userInfo];
                return;
            }
            
            infoPacket.objectClass = [NSNumber class];
        }
        else if ([FRAMERATE_IDENTIFIER isEqualToString:channelCodeType])
        {
            // just the frame rate
            infoPacket.dataType = VCViconDataTypeFrameRate;
            infoPacket.dataVariable = VCViconDataVariableNone;
            infoPacket.objectClass = [NSNumber class];
            
            // but in this case the frame rate is acutally part of the info packet and we have to 
extract it from the object name
            // the name should have the format "Time X fps" where X is the frame rate
            NSArray *frameRateComponents = [infoPacket.objectName componentsSeparatedByString:@" 
"];
            if ([frameRateComponents count] != 3) 
            {
                // the frame rate name value does not have the expected format
                NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString 
stringWithFormat:@"frame rate detected but could not extract frame rate from name value '%@'", 
infoPacket.objectName] 
                                                                     
forKey:NSLocalizedDescriptionKey];
                *parsingError = [NSError errorWithDomain:VCParserErrorDomain 
                                                    
code:VCParsingErrorIncorrectInfoPacketFrameRateFormat
                                                userInfo:userInfo];
                return;
            }
            
            self.frameRate = [[frameRateComponents objectAtIndex:1] integerValue];
            
        }
        else if ([BODY_IDENTIFIER_ROTATION isEqualToString:channelCodeType] || 
[BODY_IDENTIFIER_TRANSLATION isEqualToString:channelCodeType])
        {
            // we've got a body
            infoPacket.objectClass = [VCViconBody class];
            if ([BODY_IDENTIFIER_ROTATION isEqualToString:channelCodeType]) 
            {
                infoPacket.dataType = VCViconDataTypeRotation;
            }
            else // translation
            {
                infoPacket.dataType = VCViconDataTypePosition;
            }
            
            // now the data variable (x, y or z)
            if ([VARIABLE_X_IDENTIFIER isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataVariable = VCViconDataVariableX;
            } 
            else if ([VARIABLE_Y_IDENTIFIER isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataVariable = VCViconDataVariableY;
            }
            else if ([VARIABLE_Z_IDENTIFIER isEqualToString:channelCodeValue])
            {
                infoPacket.dataVariable = VCViconDataVariableZ;
            }
            else
            {
                // if it's something else something went wrong, the only valid data variables for 
rotation and translation are X,Y and Z
                // the channel code does not have the expected format
                NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString 
stringWithFormat:@"data type is '%@' so the only valid data variables are X,Y and Z. But it was 
%@)", channelCodeType, channelCodeValue] 
                                                                     
forKey:NSLocalizedDescriptionKey];
                *parsingError = [NSError errorWithDomain:VCParserErrorDomain 
                                                    
code:VCParsingErrorInvalidInfoPacketChannelCode
                                                userInfo:userInfo];
                return;
            }
        }
        else if ([MARKER_IDENTIFIER isEqualToString:channelCodeType])
        {
            // we've got a marker
            infoPacket.objectClass = [VCViconMarker class];
            if ([VARIABLE_OCCLUSION_IDENTIFIER isEqualToString:channelCodeValue]) 
            {
                infoPacket.dataType = VCViconDataTypeOcclusion; // we see occlusion as data type, 
not as a variable
                infoPacket.dataVariable = VCViconDataVariableNone;
            }
            else
            {
                infoPacket.dataType = VCViconDataTypePosition;
                if ([VARIABLE_X_IDENTIFIER isEqualToString:channelCodeValue]) {
                    infoPacket.dataVariable = VCViconDataVariableX;
                }
                else if ([VARIABLE_Y_IDENTIFIER isEqualToString:channelCodeValue])
                {
                    infoPacket.dataVariable = VCViconDataVariableY;
                }
                else if ([VARIABLE_Z_IDENTIFIER isEqualToString:channelCodeValue]) {
                    infoPacket.dataVariable = VCViconDataVariableZ;
                }
                else
                {
                    // if it's something else something went wrong, the only valid data variables 
for position are O, X, Y and Z
                    // thus the channel code does not have the expected format
                    NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString 
stringWithFormat:@"data type is '%@' for Marker so the only valid data variables are O, X, Y and 
Z. But it was %@)", channelCodeType, channelCodeValue] 
                                                                         
forKey:NSLocalizedDescriptionKey];
                    *parsingError = [NSError errorWithDomain:VCParserErrorDomain 
                                                        
code:VCParsingErrorInvalidInfoPacketChannelCode
                                                    userInfo:userInfo];
                    return;
                }
            }
        }
        else
        {
            infoPacket.objectClass = [NSObject class];
            infoPacket.dataType = VCViconDataTypeUnknown;
            infoPacket.dataVariable = VCViconDataVariableNone;
            NSLog(@"Warning: unkown info packet entry: %@", cocoaValueString);
        }
        
        [parsedInfoPacketEntries addObject:infoPacket];
    }
    
    self.parsedInfoPacket = parsedInfoPacketEntries;
}
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Figure 6.26: Sketch of the BLAZE user interface showing the branch selection
menu. This is the menu design that was picked for the final software prototype.
Source: [Kurz, 2011]

while always offering backtracking and direct navigation
back to the focus method.

6.2.4 Evaluate the Interface

To evaluate our choice of conceptual model and semantic We compared both of
our navigation
techniques with the
call hierarchy tool
and an unmodified
Xcode IDE.

structure for source code as well as our different interface
ideas of STACKSPLORER and BLAZE, we conducted a com-
parative study between a regular, unmodified Xcode instal-
lation and both of our semantic navigation interfaces5. As
an additional control condition that represents the same se-

5Parts of this evaluation have been published in Jan-Peter Krämer’s
Diploma Thesis [Krämer et al., 2010], as a full paper at UIST 2011 [Kar-
rer et al., 2011], in Joachim Kurz’s Bachelor’s Thesis [Kurz, 2011], and will
be published as a full paper at CHI 2013 [Krämer et al., 2013]
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mantic structure, we also included a version of Xcode that
we modified by adding a call hierarchy view (Figure 6.27).

The call hierarchy is a navigation tool that already exists in
the current versions of Eclipse and Microsoft Visual Studio
and that allows access to the call graph from a focus method
through a hierarchical tree view interface. Similar to BLAZE
with the focus method locked, the call hierarchy keeps its
state and does not auto-update when the developer navi-
gates through the code. It can, however, be manually up-
dated at any time through a menu or keyboard shortcut.

In this experiment, we measured the success rates and taskWe had participants
find a change
location in the

BibDesk source code
and assess possible

side effects of the
change.

performance times for two code maintenance tasks. We
used the open source project BibDesk6, a BibTEX-based bibli-
ography management tool for OS X that is written in Cocoa,
as the code base for our study. The two maintenance tasks
were designed to test the influence of the different naviga-
tion interfaces on identifying a suitable location and change set
for implementing a suggested feature and on assessing the
side effects of this change at a designated code location.

The tasks concerned BibDesk’s Autofile feature, which au-
tomatically sorts PDF documents of publications into ded-
icated folders and renames them according to a user-
definable naming scheme. In the first task, participants
were asked to prepend the string “TRIAL” to every gener-
ated PDF file name. In the second task, we asked the partic-
ipants to identify side effects that would occur if the change
from the first subtask was implemented in a specific method
[Karrer et al., 2011].

To solve the first task, a participant had to perform the codeThe tasks were
considered

successful when the
correct location was

found or when one
correct side effect

was identified,
respectively.

change in a way that it would have achieved the desired ef-
fect as stated in the task description. For the second task,
the participant was required to list as many changes (apart
from the intended change, of course) as possible in the func-
tionality of the application that would result from the code
modification. Identifying one correct side effect was enough
for the second task to be considered as successful; conse-
quently, the time recoded also reflects the time until this first
correct solution.

6http://bibdesk.sourceforge.net

http://bibdesk.sourceforge.net
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Figure 6.27: Screenshots of the three non-standard user interfaces for source code
navigation along the call graph: call hierarchy (top), STACKSPLORER (middle),
and BLAZE (bottom). Source: [Krämer et al., 2013]
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The time for each trial was capped at and limited to 25 min-After the time cap,
the task was

considered
unsuccessful.

utes for the first and 15 minutes for the second task. If a
participant could not find a correct solution in the allotted
time for each task, we regarded this attempt at the task as
unsuccessful and recorded the maximum time.

Quantitative Analysis

To evaluate both our interface designs as well as our under-We hypothesized that
both maintenance

tasks will have a
higher success rate

but require less time
when our semantic
navigation tools are

available.

lying navigation model, we formulated four hypotheses:

H1 More developers can find a correct solution to both
tasks in the allotted time if the IDE offers a tool for se-
mantic navigation with the call graph as the semantic
structure.

H2 Developers overall take less time for both tasks if the
IDE offers a tool for semantic navigation with the call
graph as the semantic structure.

H3 More developers can find a correct solution to both
tasks in the allotted time if they are using STACK-
SPLORER or BLAZE in contrast to the call hierarchy as
a standard call graph navigation tool.

H4 Developers overall take less time for both tasks if they
are using STACKSPLORER or BLAZE in contrast to the
call hierarchy as a standard call graph navigation tool.

The first two of these hypotheses reflect our claim that se-
mantic navigation in general and navigation that uses the
call graph as its semantic structure in particular is superior
to syntactic source code navigation, although the latter is
still the dominant design paradigm in modern IDEs. The
remaining two hypotheses are meant to reflect the influence
our particular interface designs for semantic source code
navigation—that of STACKSPLORER and that of BLAZE—
have on the effectiveness and efficiency of common code
maintenance tasks.

The experiment was performed in two parts—the first one
with STACKSPLORER and the unmodified Xcode and the
second one with BLAZE and Xcode with a call hierarchy
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plug-in—using the same code base, tasks, and experimental
setup. In the following, we will evaluate the aggregated re-
sults of both parts of the experiment; the exact descriptions
of the methodology, participant demographics, and experi-
ment setup can be found in the respective prior publications
[Krämer et al., 2010; Karrer et al., 2011; Kurz, 2011; Krämer
et al., 2012, 2013].

We first look at the task success rates for all four conditions: The success rates for
the combined tasks
were significantly
higher when using
call graph navigation
tools.

call hierarchy, STACKSPLORER, BLAZE, and Xcode, with the
latter as the control. For this, we considered a participant’s
trial as successful only if both tasks, the identification of a
suitable location and change set for a modification and the
assessment of possible side effects of a suggested change,
had been solved successfully by the participant. The results
are shown in Figure 6.28. We compared the success rates
for the combined tasks using a one-sided Fisher’s exact test,
which showed that the success rates for call-graph-based
navigation were significantly higher (p = 0.021) than for
Xcode alone, thus confirming H1. If we look at both tasks
individually, we can see that the difference in success rate is
only significant for the second task (p = 0.026, Fisher’s exact
test). The reason for this could be that the first task required
both down- and upgraph navigation, and the former can
be accomplished in Xcode by using the ‘jump-to-definition’
tool. The second task primarily depended on upgraph nav-
igation, which is not explicitly supported in Xcode.

Following up on this positive result, we compared the suc- The success rates
between the call
graph navigation
tools did not differ
significantly.

cess rates of the three call-graph-based navigation tools
only, with the call hierarchy acting as the control. Although
the success rate for the call hierarchy was always below that
of both our interfaces, the result of a Fisher’s exact test was
not significant (p = 0.35); therefore we cannot confirm H3.

After analyzing the effectiveness of the four tools, we also Both of our call graph
navigation tools led
to significantly lower
task completion times
compared to Xcode.

examined their efficiency in the form of task completion
time. A two-way independent measures analysis of vari-
ance (ANOVA), with the two factors being task and condi-
tion, indicated significant effects for both factors individu-
ally (task: p < 0.001, F (1, 55) = 81.877, condition: p = 0.01,
F (3, 55) = 4.125). The significant effect of the task was ex-
pected, since the first was designed to take longer than the
second task, which is also reflected in the maximum allot-
ted times (25 vs. 15 minutes). We followed up on the sig-
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Time To Solution
Task 1-1 Task 1-2 Task 1 Total Task 1-1 (only 

correct)
Task 1-2 (only 

correct)
Task 1 Total 
(only correct)

mean Call Hierarchy
standard deviation Call 
Hierarchymean Stacksplorer2
standard deviation 
Stacksplorer2

21,0 10,9 32,1 22,0 10,6 31,3
5,1 2,2 6,2 6,0 1,4 6,0

13,7 8,3 21,9 14,3 9,0 24,0
4,6 3,6 7,4 4,6 3,4 8,4

participant analysis
Count Average Age Male 

Percentage
Student 

Percentage
Average 

Experience 
(years)

Average 
programming 

per week 
(hours)

only iOS 
Percentage

don‘t know 
Mac 

programming 
percentage

didn‘t use 
BibDesk 

percentage

didn‘t know 
BibDesk 

source code 
percentage

Call Hierarchy
Stacksplorer
Both

8 23,8 87,5 % 100,0 % 2,3 12,9 12,5 % 12,5 % 62,5 % 100,0 %
9 26,0 100,0 % 66,7 % 3,6 11,4 22,2 % 11,1 % 55,6 % 100,0 %

17 24,9 94,1 % 82,4 % 3,0 12,1 17,6 % 11,8 % 58,8 % 100,0 %

Task 1 Task 2 Complete 
Trial

Call Hierarchy
Blaze
plain Xcode
Stacksplorer

55,6 % 87,5 % 50,0 %
62,5 % 87,5 % 62,5 %
50,0 % 50,0 % 12,5 %
75,0 % 87,5 % 62,5 %

0 %

25,0 %

50,0 %

75,0 %

100,0 %

Task 1 Task 2 Complete Trial

Percentage of correct solutions

plain Xcode Call Hierarchy
Stacksplorer Blaze

SUS
SUS Score Usability Learnability

Call Hierarchy
SD
Stacksplorer 2
SD
Stacksplorer
SD

83,3 80,6 94,4
8,7 9,5 9,1

81,9 79,9 90,3
8,2 7,3 17,4

85,7 83,3 95,6
7,2 7,8 6,2

0

25,0

50,0

75,0

100,0

SUS Score Usability Learnability

95,6

83,385,7 90,3
79,981,9

94,4

80,683,3

SUS Scores

Call Hierarchy Stacksplorer 2 Stacksplorer
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Time to hypothesis
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Time to correct hypothesis

mean Call Hierarchy mean Stacksplorer2

Time To Solution (modified times)
Task 1-1 Task 1-2 Task 1 Total Task 1-1 (only 

correct)
Task 1-2 (only 

correct)
Task 1 Total 
(only correct)

mean Call Hierarchy
standard deviation Call 
Hierarchymean Stacksplorer2
standard deviation 
Stacksplorer2
mean plain Xcode
standard deviation plain Xcode
mean Stacksplorer
standard deviation Stacksplorer

21,0 6,9 28,1 22,0 6,3 28,4
5,1 4,5 6,5 6,0 1,4 6,0

15,1 6,1 21,2 16,7 6,6 23,9
4,3 3,5 7,3 4,6 3,4 8,4

19,7 9,1 28,7 14,3 3,8 14,3
6,3 5,8 7,1 0,0 0,0 0,0

14,7 6,0 20,7 15,3 4,7 20,0
5,9 4,1 6,8 0,0 0,0 0,0
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0 %
10,0 %
20,0 %
30,0 %
40,0 %
50,0 %
60,0 %
70,0 %
80,0 %
90,0 %

100,0 %

Task 1 Task 2

Percentage of Tool Usage

Call Hierarchy Stacksplorer2

Figure 6.28: Task success rates for all four conditions in both
tasks and combined. For the second task and for both tasks
combined, the success rates are significantly higher when
offering call-graph-based navigation in the IDE. Source:
[Kurz, 2011]

nificant effect of the condition using a post-hoc one-tailed
Dunnett’s test with the Xcode condition as the control. The
result shows that for both our call graph navigation meth-
ods the tasks could be completed on average significantly
faster than with the unmodified Xcode IDE (Xcode vs Stack-
splorer: p = 0.024, Xcode vs Blaze: p = 0.045); the difference
in task completion time between the unmodified Xcode and
the call hierarchy version was not significant (Xcode vs CH:
p = 0.807). H2 therefore is too general and cannot be ac-
cepted.

For comparing the efficiency between the three differentSTACKSPLORER and
BLAZE were

significantly more
efficient than the call

graph hierarchy.

user interface designs for call-graph-based navigation, we
conducted Tukey post-hoc tests. The results were signifi-
cant (call hierarchy vs. STACKSPLORER: p = 0.037, call hi-
erarchy vs. BLAZE: p = 0.046), allowing us to confirm H4.
Comparing STACKSPLORER and BLAZE did not reveal any
statistically significant differences in either effectiveness or
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efficiency.

In oder to find out what causes these differences between We created a
framework to analyze
the navigation
behaviors of
developers.

the three call graph navigation tools, we proposed a frame-
work that helps to model, quantify, and compare the navi-
gation behavior of developers. The idea is to transform in-
dividual navigation trails—sequences of navigation events
that are classified and labeled—into a seven-dimensional
feature space with axes that represent well-known micro-
navigation patterns. Numerically, each entry in the feature
vector represents the prediction accuracy of a simple math-
ematical navigation model. The transformation can thus be
imagined as a filter bank where each filter resonates with a
different micro-navigation pattern. A detailed description
of this analysis framework will be published in [Krämer
et al., 2013].

We used this framework to analyze the navigation behav- Both of our tools
promote semantic
navigation better than
the call hierarchy.

ior of each participant in each trial. This required manu-
ally annotating all navigation trials—we determined times-
tamp, kind of navigation, used tool, start location, and end
location—and then calculating the prediction accuracies of
all seven navigation models. The results show that develop-
ers performed significantly more navigations along the call
graph (prediction accuracy of the forward call depth model)
when using STACKSPLORER or BLAZE compared to Xcode
(one-sided Dunnett’s t-test, Stacksplorer: p = 0.003, Blaze:
p = 0.037) and also compared to the call hierarchy (Tukey’s
test, Stacksplorer: p = 0.003, Blaze: p = 0.044) [Krämer
et al., 2013]. Similarly, STACKSPLORER and BLAZE caused
developers to perform longer navigation chains along the
call graph than they did when using Xcode alone (one-sided
Dunnett’s t-test, Stacksplorer: p < 0.001, Blaze: p = 0.015);
this was interestingly not true for the call hierarchy (call hi-
erarchy: p = 0.562) [Krämer et al., 2013]. These results, to-
gether with the parallel increase in efficiency, are a strong
indication that the call graph is a suitable choice for the
conceptual model of source code, that both our subgraphs
make for useful semantic structures, and that we can use
our interaction model to create semantic navigation inter-
faces that make a positive difference in how developers per-
form certain code maintenance tasks.
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Figure 6.29: System usability scale scores, combined and
separated by usability and learnability, for all three call
graph navigation tools. Source: [Kurz, 2011]

Qualitative Analysis

In addition to these quantitative measurements, we also col-Both UIs were also
evaluated according

to the SUS.
lected qualitative results through a post-session question-
naire, which contained the standard system usability scale
(SUS) [Brooke, 1996] and six additional questions (cf. Fig-
ure 6.30). The questions were asked with regards to the call
graph navigation interface that was used by a participant
but not with regards to the plain Xcode control condition.

The results of the SUS part of the questionnaire and theAll call graph
navigation tools were

considered
‘excellent’.

distribution of scores in the usability and learnability sub-
scales [Lewis and Sauro, 2009] are shown in Figure 6.29.
All three call-graph-based navigation interfaces were evalu-
ated as ‘excellent’ [Bangor et al., 2008], with STACKSPLORER
(median 87.5) scoring better than BLAZE (median 85) or the
call hierarchy (median 82.5). These differences, however,
are not statistically significant (�2

(2) = 2.40, p = 0.301).

The six additional questions covered three different aspects
of how they could benefit code maintenance tasks: ques-
tions 11 and 12 were concerned with code understanding,



6.2 Two IDE Extensions for Semantic Source Code Navigation 323

Q11

S
tr

o
n
g
ly

 D
is

a
g
re

e
N

e
u
tr

a
l

S
tr

o
n
g
ly

 A
g
re

e

Call Hierarchy

Stacksplorer

Blaze

Q12 Q13 Q14 Q15 Q16

Q

Q

Q

Q

Q

Q

11: I found understanding the source code easy using Stacksplorer

12: I do not think Stacksplorer has benefits for code understanding compared to Xcode

13: I think navigation in source code is faster when using Stacksplorer (compared to vanilla Xcode)

14: I found navigation using Stacksplorer awkward

15: When using Stacksplorer, I had a better idea of where I am in the source code compared to using plain Xcode

16: I often felt lost in the source code when using Stacksplorer
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Figure 6.30: Results of the post-session questionnaire for the three call graph
navigation tools. These questions were concerned with code understanding (Q11
and Q12), navigation (Q13 and Q14), and orientation in the code (Q15 and Q16).
The boxes for the STACKSPLORER condition are wider to indicate the larger sam-
ple size (17 vs. 8 in the other conditions). Source: [Kurz, 2011]

questions 13 and 14 covered the users’ perceived impact on
the navigation itself, and questions 15 and 16 were asked
to assess how the participants’ sense of orientation in the
source code was influenced by the tools. As can be seen
in Figure 6.30, all three source code navigation interfaces
that use the call graph were received relatively similarly
in all three aspect areas; as a trend, STACKSPLORER gener-
ally received better scores than BLAZE, which in turn re-
ceived better—with the exception of Q13—scores than the
call hierarchy. The reason for Blaze’s lower score regarding
the perceived speed of navigation may be twofold: First,
in the tested prototype, the methods in the right hand side
column are not linked visually to the code editor like it is
done, for example, in STACKSPLORER by means of overlaid
frames (Figure 6.22). This makes it more difficult to find the
implementation of a method in the code view after navigat-
ing there. Second, setting up a complete preferred call path
in BLAZE requires some extra interaction steps in compari-
son to the other two call graph tools. While this extra time
commitment is objectively offset by a larger gain in efficiency
(cf. 6.2.4 “Quantitative Analysis”), subjectively it seems to
feel slower overall.
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6.3 Closing Remarks

In this last of our four project chapters, we have shown howWe could show that
our interaction model

for semantic
navigation can also

be applied to
text-based media.

our interaction model for semantic navigation in digital me-
dia can be applied to the medium of source code. In terms
of its syntactic structure, this medium is probably one of the
oldest types of media that have been digitally represented—
until today, source code is still mainly stored and interacted
with in the form of collections of plain text documents. In
contrast to arbitrary text, however, it possesses a very clear
notion of purpose and associated tasks, and it has strin-
gently defined semantics. This latter point enabled us to au-
tomatically derive the semantic structure from the syntactic
representation of the code for the second step of our four-
step approach to creating semantic navigation interfaces.

Similar to the preceding three chapters, we could againSemantic navigation
interfaces improve
task performance.

show that our model for semantic navigation can not only
be applied to a wide range of digital media but that we can
also increase the users’ effectiveness and efficiency for high-
level tasks just by improving the navigation. Given the eco-
nomic relevance of source code maintenance and its strong
dependency on code navigation, we are confident that our
proposed or similar techniques will be adopted by commer-
cial IDEs.

A first step in this direction has already been made by
the Xcode team at Apple: after we demonstrated STACK-
SPLORER to them at WWDC 2011, Xcode now offers
caller and callee modes for its auto-updating assistant side
columns (Figure 6.31). Unfortunately, the assistant columns
only show one method in code and thus do not give an
overview over all callers and callees. This information can
be found in the method selection pop-up at the top of the
column but is otherwise invisible. Also, the UI does not al-
low navigation, e.g. by setting the focus method to either
of the methods in the assistant columns, and the position of
the code editor column is restricted to the far left.

Our research on code navigation, which had began with
the idea for STACKSPLORER, will be continued by Jan-Peter
Krämer. As promising directions for future work we re-
gard investigating how the conceptual model changes in the
context of debugging and how navigation through runtime
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Figure 6.31: The current version of Xcode now allows its auto-updating assistant
columns to display either a caller (middle) or a callee (right) of the focus method
in the main editor column (left).

traces can help understanding the code and possible bugs.
Additionally, we are in the process of analyzing individ-
ual developers’ navigation paths through unknown source
code to better understand the influence of the availability
of different navigation tools on the developers’ navigation
behavior [Krämer et al., 2013].
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Chapter 7

Conclusion

Navigation in digital media is a wide field that encompasses
many facets; from the purely performance-based consider-
ations of how people use sliders for linear navigation under
different mapping functions to the psychological studies of
how a change in the format of the presentation medium af-
fects the learning performance of classes of students, all de-
tails contribute to the goal of changing the way we navi-
gate through modern digital media in order to make this
process easier, faster, and more enjoyable. Setting out from
the observation that current interaction with these media is
often still modeled after how we historically handled their
analog counterparts—thus severely and unnecessarily lim-
iting the design space for such interaction—we have looked
for an approach to introduce concepts that have emerged
in the design of graphical user interfaces into digital media
navigation. The leading thought behind the research pre-
sented here were two questions: “Why is navigation in dig-
ital media still a change in location that is parameterized by
the container and not the content?” and “If we can shift
the navigation space from being container-defined to be-
ing content-defined, what interaction techniques would be
most appropriate for such navigation?”. With this thesis, we
have made an attempt at proposing a concept in the light of
these two questions that can be used to rethink and improve
current navigation techniques, or to create completely new
ones.
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7.1 Summary and Contributions

While in the limited scope of such a document we can only
scratch the surface of the area as a whole, we were able to
make a number of contributions to media navigation and
demonstrate their viability and positive effects in a number
of example projects. These contributions include:

• Review and discussion of established interaction and inter-
face theories
We explained and analyzed the existing work regard-We discussed the

interplay of existing
interface and

interaction theories,
and we tried to point

out where these
theories are taken in

the wrong spirit in
today’s navigation

interfaces.

ing the modeling of user interfaces as a layer stack ab-
straction and different interaction techniques with an
emphasis on direct manipulation. For both of these
areas, we presented a literature review and a (hope-
fully) balanced discussion on the advantages and dis-
advantages of these theories. Both theories can be em-
bedded into Norman’s seven stages of action, which we
used to illustrate the concept of semantic and syntac-
tic distances in current navigation interfaces. We also
offered an explanation as to why many widespread in-
terface designs that are often considered direct manip-
ulation interfaces actually violate the underlying prin-
ciples of this interaction technique. Specifically, we il-
lustrated that employing technical metaphors is prone
to create large syntactic distances and that certain inter-
faces relying on direct representations of abstract val-
ues may suffer from large semantic distances. Interfaces
for navigating digital media, unfortunately, often fall
into either of these classes.

• Semantic navigation interface idea
As a central contribution, we then proposed semanticWe proposed our

idea of semantic
navigation as

opposed to the
predominant

syntactic navigation.

navigation interfaces that allow users to move through a
medium by directly manipulating its content instead
of external parameters of its form. While conceptu-
ally simple, the challenge of the idea lies in the for-
mulation of a consistent interaction theory, in which
semantic navigation can be expressed and differenti-
ated from regular, ‘syntactic’ navigation.

• Interface model and design space
Based on the layer stack interface models and the
design space for direct manipulation interfaces by
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Hutchins et al. [1985], we then proposed our own de- We proposed an
interface model and
design space that
can describe and
evaluate different
types of navigation
interfaces.

sign space and interface model for media navigation
interfaces. While our adaptation of the layer model is
a simplified version of the related work [Foley et al.,
1997], for the design space, we laid a greater emphasis
on the differentiation between syntactic and semantic
distance in the interface. Also, we dropped the orig-
inal notion of a ‘directness’ axis in favor of a explicit
representation of the control granularity of an interface.
The design space can be used as an evaluative means
as all axis are associated with a qualitative notion of
‘better’ or ‘worse’: Along the axes representing the
semantic and syntactic distances, a position close to
the origin, where these distances are small, is desir-
able. The control granularity axis can also be formu-
lated in a way to associate interfaces that map syntac-
tically atomic input gestures of operations to semanti-
cally atomic navigations with values close to the ori-
gin.

• Media model
If we accept the idea that users navigate digital me- Any description of

navigation in digital
media must
encompass not only
the interface but also
the medium and the
navigation tasks.

dia in order to accomplish a certain goal, the need for
an explicit representation of this goal in any theory to
evaluate and design such interfaces becomes clear. We
proposed a dual structure of form and content, syn-
tactics and semantics, to represent any medium for
which we want to model navigation. This allowed us
to differentiate between syntactic and semantic navi-
gation tasks or goals and to match these to the layer
infrastructure of an interface. The media model also
contains the semantic mapping, a description of how
the content of the medium is distributed over its con-
taining form. This mapping is an important part both
for the evaluation of the semantic distances present in
existing navigation interfaces and for the implemen-
tation of semantic navigation interfaces.

• Combined model
We showed how our interface model and media We proposed a

combined interface
and media model
from which most
properties of the
navigation process
can be derived.

model can be consolidated into a single combined
model that is defined by the interface, the medium,
and the semantic description of the navigation task.
In this combined model, we could directly identify
the semantic and syntactic interfaces and derive the
control granularity, thus allowing to locate—and con-
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sequently evaluate—such an interface in our design
space. The seven stages of action can also be directly
overlaid onto the combined model, which facilitates
the identification of certain gulfs in media navigation
interfaces. We then showed that this combined model
possesses all characteristics that are needed for an in-
teraction model [Beaudouin-Lafon, 2000] and thus can
be used to describe and compare existing interfaces or
to guide the creation of new interfaces.

• Design guidelines and generative aspects
From the combined model we derived a sequence ofWe proposed a

sequence of four
steps as a design

guideline for the
creation of semantic

navigation interfaces.

four steps to guide the design of semantic navigation
interfaces for digital media. Each step is concerned
with a different part of the model; in concert, they de-
scribe a creation process that, ideally, arrives at a navi-
gation interface close to the origin of the design space.
The four steps are:

– identifying the conceptual model for the task and de-
riving a suitable semantic structure from it,

– finding the semantic mapping between that seman-
tic structure and the syntactic structure of the
medium,

– designing the interface for accessing the semantic
structure according to the key principles of direct
manipulation, and

– evaluating the interface with users to make sure
that it benefits the user.

• Application examples
We demonstrated that the design approach of creat-The proposed

theoretical foundation
was evaluated in four

large example
projects.

ing syntactic navigation interfaces for digital media by
following the aforementioned four steps can be suc-
cessfully applied to a wide range of different types of
digital media. Our four example projects cover time-
based as well as graphic- and text-based media, and
we described the process of developing each project
with a different emphasis on one of the four steps.

Apart from these contributions to interface design theory,
the example applications each represent independent con-
tributions to their respective fields and consequently have
been published before as peer-reviewed notes, papers, and
articles. These contributions are mostly summarized or
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only referenced in the context of this thesis to allow more
emphasis to be put on their purpose as illustrations of the
individual apects of the theoretical framework and the pro-
posed interaction model.

PERSONAL ORCHESTRA served as an introductory example, PERSONAL

ORCHESTRA is an
example for the
technical complexity
of creating an
algorithmic
implementation of the
semantic mapping.

showing that even if the semantic structure is just a non-
linear re-parametrization of the syntactic structure, the re-
sulting navigation possibilities can give rise to novel ways
of interacting with a medium. The focus of the discussion
lay on the creation of the semantic mapping as the second
step in our four-step-approach to the design of navigation
interfaces: While the initial mapping, which annotates the
syntactic structure with locations in the semantic space, is
created manually, the inversion of the mapping and its ap-
plication to the actual medium were a challenge in signal
processing theory and implementation. The result is a sys-
tem that allows an—at the time—novel kind of direct ma-
nipulation playback of orchestral music where each beat can
be placed individually in time without corrupting the listen-
ing experience.

DRAGON advanced the concept of semantic media naviga- DRAGON shows how
different designs for
the semantic and
syntactic layers of the
interfaces can
change users’
interaction strategies
and circumvent
mathematical
limitations of the
semantic mapping.

tion by presenting the possibility of having a dynamic set of
semantic structures that allows different simultaneous se-
mantic mappings. Navigation tasks that are concerned with
multiple objects of interest are thus possible. In this chap-
ter, we concentrated on the different design possibilities for
video navigation interfaces once the conceptual model, the
semantic structure, and the semantic mappings have been
established. Minor changes to the interface mechanics, like,
for example, the different distance measures that govern the
direct manipulation of objects in the scene, were shown to
cause very different effects in certain cases. We presented a
number of refinements and extensions to the original inter-
face and demonstrated how these can fix some of the short-
comings that can arise from the potentially singular nature
of the semantic mappings.

FLY is a software to create and navigate through presenta- FLY changed the
syntactic layer of the
medium itself; we
demonstrated how
such changes can be
evaluated.

tion visuals and an example where the normal strategy of
accessing the syntactic structure of the medium through the
semantic mapping does not work as straightforward as in
the previous applications. Instead of inverting an initial es-
timate of the semantic mapping’s inverse, we re-defined the
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format of the medium to contain an explicit syntactic rep-
resentation of the semantic structure of the content. This,
of course, led to a semantic mapping that is close to the
identity, thus allowing for a much simpler design and im-
plementation of the interface. Using FLY as an example, we
illustrated in detail the fourth step of our design sequence—
evaluating the interface—, which encompassed three differ-
ent aspects of media navigation as seen by the three differ-
ent user groups of the system.

STACKSPLORER and BLAZE served as examples for naviga-The biggest
challenge regarding
STACKSPLORER and

BLAZE was to find an
appropriate

conceptual model
and semantic

structure for the
efficient navigation of

source code.

tion in a medium that is highly structured and has a very
tight coupling between the semantics of the content and its
syntactic form. This allows an easy retrieval of the semantic
mapping, and, consequently, the challenges rather lay with
identifying suitable semantic substructures that represent
the relevant parts of the users’ conceptual model. Therefore,
both tools facilitate navigation in and access to topologi-
cally different parts of the call graph. Our analysis showed
how these particular choices for the semantic structure to-
gether with well-designed interfaces can help developers to
increase both success rates and task performance times over
existing call-graph-based interfaces for certain code mainte-
nance tasks.

7.2 Future Work

With this thesis, we have developed a theoretical frame-
work for interfaces that allow semantic navigation in digital
media, and we have validated the concept by successfully
applying it to four different types of media. Still, there is
room for future extensions and improvements in many ar-
eas of this work—in the theoretical foundation as well as in
the individual application areas.

Regarding the idea and concept of semantic media navi-Semantic scoping
remains an issue to

be investigated
further.

gation, it would be necessary to investigate the notion of
semantic scoping with respect to our interaction model.
While, for example, we have applied the model to enable se-
mantic video navigation inside a single scene, and although
it would be relatively easy to come up with other semantic
structures for longer movies (cf. Figure 1.2), the problem of
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letting the user specify the semantic scope remains open. In
the future, we thus have to develop a theory of how seman-
tic scopes can be structured, parametrized, and represented
in the interface.

Another area that could be explored is the idea of dynamic We have not
investigated all
implications when
shifting the active
domain during direct
manipulation
interactions.

domain switching in the context of direct manipulation in-
teraction. We have touched this briefly when designing
ways to avoid the navigation singularities that arise in the
presence of temporal ambiguities in our semantic video
navigation systems (cf. 4.2.3 “Common Interaction Prob-
lems” (p. 136)). While our proposed solution to have the
manipulated domain dynamically shift from spatial to tem-
poral and back solved a specific problem in a specific con-
text, the implications of this concept on the theoretical basis
of direct manipulation should be investigated.

Generally, it remains to be seen if our interaction model The theoretical
foundation could
potentially be applied
to other types of
interfaces besides
navigation.

could be extended to be applicable past the field of me-
dia navigation alone. We have already partly adapted the
concept to the creation process of medial content when de-
signing FLY (cf. 5 “Hybrid Media: Presentation Visuals”
(p. 185)), and, very recently, the trajectory-based direct ma-
nipulation interaction of DRAGON (cf. 4 “Time-based Me-
dia: Video Scenes” (p. 89)) has been extended to create dy-
namic video overpaintings [Santosa et al., 2013]. Similarly,
many of the prototypes of interaction visionary Brett Vic-
tor1 utilize the same ideas and make the semantic structure
of media or source code directly accessible and modifiable.
And lastly, our DRAGIMATION project enabled animators to
interactively define the timing for an animation, which is
also closer to the process of authoring media than to navi-
gating existing content. These examples are hopefully just
the first steps in developing a new class of semantic content
creation and manipulation interfaces.

Each of our four example applications for semantic navi- All four projects open
up additional
research questions in
their respective fields.

gation in digital media, PERSONAL ORCHESTRA, DRAGON,
FLY, and STACKSPLORER, of course, also opens up its own
field of research questions to be explored: For audio naviga-
tion, other more accessible interaction metaphors than con-
ducting remain to be developed, and the quality of the ges-
ture detection and the time-stretching could be improved.

1www.worrydream.com

www.worrydream.com
www.worrydream.com
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The computer vision approaches in DRAGON to generate
object trajectories in videos need to be improved in terms
of speed and reliability, and they need to be more robust
when tracking objects across different shots and scenes.
Video navigation also seems to be a suitable candidate to
investigate how interfaces for a wider range of semantic
scopes can be designed. With FLY, an analysis of the user
experience for the presenter—especially with the recently
developed mobile version of the system—remains do be
done. At the same time, the current implementation is
still missing some important features that would allow a
fairer comparison with commercial systems, such as ani-
mated builds or the possibility to have branching presen-
tation paths. Finally, our work on STACKSPLORER just has
opened up the opportunity to gain deeper insight into de-
velopers’ source code navigation patterns and understand-
ing strategies (cf. [Krämer et al., 2013]). Long-term user
tests, and therefore the implementation of a stable version
that can be distributed in the field, would be the next logical
steps.

7.3 Closing Remarks

The consumption but also the creation of digital media is
one of the central activities users of computers or mobile de-
vices engage in, and both of these activities heavily depend
on media navigation. The majority of navigation interfaces,
however, has inherited the technical limitations of their ana-
log ancestors, representing the position inside a medium
only by means of the syntactic structure. While these in-
terfaces are functionally sufficient to navigate through a
medium, we argue that semantic navigation interfaces can
be created that leverage the capabilities of today’s devices
to provide faster, more direct, and more enjoyable means
of navigation. We hope that the theoretical framework for
such content-based navigation that is provided in this thesis
together with the detailed application examples enables re-
searchers and software developers to help design and create
a new class of navigation and editing interfaces: one where
content comes before format and where we can directly in-
teract with our objects of interest regardless of their medial
container.
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Appendix A

Questionnaires

This appendix contains excerpts of some the questionnaires
that are referred to in the body of the thesis. These are meant
as a quick reference for better readability, the full question-
naires can be found in the original papers or thesis docu-
ments.
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hcum yrev  erusnu  ton yletulosba  sedils eht gnidrager

Did you feel that the size of the slides negatively limited the way you wanted to do your presentation?     

Did you feel positively guided by the slide size?

      

regarding the plane

Before putting information on the plane, did you feel lost in the big free space?       

Do you feel that your final result looks messy? 

      

enalp  ecnereferp on  sedils  nosirapmoc

Was it easier for you to express your ideas on the unlimited plane or the slides?      

As a presenter, what would you prefer for your real presentations?       

Figure A.1: Questionnaire for the qualitative analysis of the authoring experi-
ence with the Fly paper prototype. Source: [Lichtschlag, 2008]

old set new set

Content ordered by time when possible without conflicts 1
Perfectly time ordered content 1

Alto/Lisa relationship NEXTSTEP, Macintosh and Mac Os X 1
Lisa/Classic Macintosh relationship UNIX and NEXTSTEP relationship 0.5
Alto/Star relationship Windows 1.0 and Mac relationship 0.5

Systems from Apple together Systems from Apple together 1
Systems from PARC together Open Source systems together 1

Systems ordered by success Systems ordered by success 1

Table A.1: Scoring points for the paper prototypes. Points for relationships were
awarded when a visual connection between the items was clear, for example, by
proximity, by a drawn line, or by grouping. Source: [Lichtschlag, 2008]

.



337

Attitude Questions

A1 (5-point, 1=fully
agree)

The presentation was interesting.

A2 (5-point, 1=fully
agree)

I liked the presentation’s visuals.

A3 (5-point, 1=fully
agree)

I liked the presentation’s commentary.

A4 (5-point, 1=fully
agree)

I liked the presentation overall.

Satisfaction Questions

S1 (5-point, 1=fully agree) The presentation was comprehensible.
S2 (5-point, 1=fully agree) The presentation did not loose me. I was never dis-

oriented.
S3 (3-point, 1=too slow) How was the speed of the presentation?
S4 (3-point, 1=too little) How was the amount of content shown at once?
S5 (5-point, 1=very often) The visuals distracted me from the spoken narra-

tion.
S6 (5-point, 1=fully agree) I had sufficient time to look at all the content on the

screen.
S7 (5-point, 1=fully agree) The presentation’s structure was easy to under-

stand.
S8 (5-point, 1=fully agree) I always knew which part of the presentation was

currently shown.
S9 (5-point, 1=fully agree) I always knew approximately how far advanced the

presentation was.

Learning Questions

L1 (1=visuals, 2=narra-
tion, 3=both)

Where did you get most of the information from?

L2 (5-point, 1=fully
agree)

I remembered information based on its spatial loca-
tion. (Only for the Fly presentation.)

Open Questions

O1 What did you like/dislike about the presentation?

Table A.2: English translation of the questionnaire for the qualitative analysis of
the learning experience with Fly as compared to PowerPoint. Source: [Hess, 2011]
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Statement PowerPoint Neither Fly

It was easier for me to express myself 

with...

Overall for my real presentations I would 

prefer...

Statement Strongly 
disagree

Disagree Neither 
agree nor 
disagree

Agree Strongly 
agree

,�DP�VDWLVÀHG�ZLWK�WKH�UHVXOWLQg 

PowerPoint document. 

,�DP�VDWLVÀHG�ZLWK�WKH�UHVXOWLQg 

Fly document. 

Figure A.2: Excerpt (questions Q7–10) from the questionnaire for the qualitative
analysis of the authoring experience with Fly as compared to PowerPoint. Origi-
nal source: [Lichtschlag, 2008]
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