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Figure 1: Using Dragimation to time a jump animation. The timing of the dragging motion is recorded and applied to the keyframes.

ABSTRACT

Getting the timing and dynamics right is key to creating believable
and interesting animations. However, using traditional keyframe
animation techniques, timing is a tedious and abstract process. In
this paper we present Dragimation, a novel technique for interac-
tive performative timing of keyframe animations. It is inspired by
direct manipulation techniques for video navigation that leverage
the natural sense of timing all of us possess. We conducted a user
study with 27 participants including professional animators as well
as novices, in which we compared our approach to two other inter-
active timing techniques, timeline scrubbing and sketch-based tim-
ing. Dragimation is comparable regarding objective error measure-
ments to the sketch-based approach and significantly better than
scrubbing and is the overall preferred technique by our test users.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Animations; H.5.2 [Informa-
tion Interfaces and Presentation]: User Interfaces—Interaction
styles

1 INTRODUCTION

Creating action is at the heart of character animation. Since the
early days of animation, action has been shaped through a sequence
of key poses with extreme positions of the character. Animators
control the speed of the motion by determining how many frames
are between these key poses. Fewer frames result in faster transi-
tions between key poses, more frames in slower transitions.

In classical animation, creating the intermediate frames, or in-
betweening, used to be the work of the animator. In computer an-
imation, in-betweening happens automatically. While this method
gives full temporal and spatial control over the animation, it re-
quires the animator to think in abstract units, usually frames, to
define the timing for a motion. This abstract notion of dynamics
does not come naturally, and animators spend a long time perfecting
this art. At the same time, humans do have a good intuitive grasp
of timing—anybody could quickly indicate a motion they have in
mind with gestures, or by voicing a rhythm.

Realtime animation methods set about this goal differently,
recording real world movement to define virtual motion and tim-
ing. Motion capture enables actors to define motion and dynamics
of digital characters via body expression, facial expression or ges-
tures. Computer puppetry, or performance animation, is a form of
motion capture that emphasizes instant visual feedback [22], sup-
porting actors by letting them adjust their performance based on
the feedback. Next to keyframe animation and physical simulation,
motion capture has become established as means of animation in
the film, television, and computer game industries. Yet the benefits
of capturing expressive and spontaneous acting come at the cost of
a lack of precise control. Furthermore, motion capture constitutes a
workflow completely different to keyframe animation, and capture
data is not easily integrated into a keyframe animation process.

Research has proposed to combine the best of both worlds by
applying realtime and non-realtime approaches to different parts of
the animation process. Performance-based timing—also called per-
formance timing—is an approach in which the animator first sets
key poses, then acts out the timing for these poses in realtime. This
can be done by drawing the trajectory of the target motion at a cer-
tain pace with a stylus and applying the sketch timing to the scene
[24], or by scrubbing the timeline [20]. Performance timing tech-
niques thus combine the precision of keyframe-based spatial control
with the natural sense of timing of the animator.

In this paper, we establish Dragimation as a new direct manipu-
lation technique to control timing in performance-based animation.
Dragimation takes the idea of dragging a feature “through time”,
and develops it as a new way to act out the timing of key poses.
With this, we adapt a solution for a problem in the domain of video
navigation to solve a different problem in the context of animation
timing. We claim that the directness of Dragimation improves the
quality of timing and user satisfaction in performance-based anima-
tion timing tasks. We substantiate this claim by comparing Dragi-
mation to drawing timings by Sketching and to the timeline-based
Scrubbing technique of prior works in a user study. Both objective
measurements and subjective user rankings are highly in favor of
Dragimation for performance timing. It is equal to sketching in pro-
ducing timings, and both are more suited to the task than scrubbing.
Dragimation is also the clear winner of a subjective assessment re-
garding ease of use, mental load, and overall user preference.
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2 DRAGIMATION: PERFORMANCE TIMING BY DRAGGING

Timing can be defined as modifying a piece of spatio-temporal data
in a way that, while its spatial component stays fixed, its tempo-
ral component can be adjusted freely. This generalized problem
is not exclusive to animation; it poses itself in the same manner
for other fields such as video editing or video navigation. For the
video-related problem a number of solutions have been proposed,
some of which are applicable to the animation case as well. Direct
manipulation video navigation (DMVN) systems [4, 7, 9, 10, 21]
in particular allow users to move through the video with arbitrary
pacing while being guided by the spatial motion of one or more
objects in the scene. The DMVN concept of spatially guided in-
teractive time control can also be used for defining a timing. It
can specifically solve problems of current timeline-based [20] and
sketch-based [24, 23] performance timing approaches.

The timeline-based approach [20] makes use of the well-known
one-dimensional visualization of time as a bar. The reconfiguration
of motion timing created by moving the playhead across this bar is
recorded and determines a new timing. This horizontal Scrubbing
input motion usually has no relation to the object motion, making
the timing task cognitively challenging.

With the Sketching technique [24, 23], the user draws a curve at
an arbitrary position of the main view with the desired pacing. This
curve may or may not resemble the motion path of the object. Dur-
ing this procedure, feedback is limited to the curve appearing under
the pen; the scene to be animated remains static. When the pen
is lifted, a matching algorithm tries to map the curve to the motion
path based on local features. This mapping does often not reflect the
intention of the animator, especially when the drawn curve’s shape
differs from that of the motion path, which is a known limitation of
the technique. It has then to be adjusted manually by adding and
removing feature correspondences. A command applies the tim-
ing of the drawn curve to the object. Only then, the new timing
is reflected in the scene. This is the first instance of content feed-
back the animator gets. The manual matching pass required for the
sketch-based technique creates a significant break in the interaction,
adding a layer of cognitive indirection.

We bring the concept of DMVN to the context of performance-
based animation timing with a technique we call Dragimation. With
Dragimation, the animator drags the object to be animated along
its motion path through the scene. This is a direct manipulation
interaction; feedback is immediately given, allowing closed-loop
performance adjustments. After lifting the pen, the animation is al-
ready fully re-timed. This approach has two advantages: Firstly, it
reduces the global matching problem between two representations
of a path—the one carefully laid out in the animation and the one
drawn by the user for re-timing—to a local problem in which at
any point during the process an input position simply has to be pro-
jected onto the animation path of the object. This local problem has
been studied in the area of DMVNs and can be solved in a variety
of ways. Such mappings require a close coupling of input motion
to object motion, strengthening the directness of the interaction.
Secondly, the resulting animation is already visible even during the
interactive re-timing by the motion of the object itself, as with per-
formance timing via a timeline. This removes a layer of cognitive
indirection that especially novices have difficulties with.

3 RELATED WORK

Research has been exploring alternative animation paradigms for
quite some time. Computer puppetry, often also referred to as per-
formance animation, combines motion capture with instant visual
feedback [22]. It endeavors to bring spontaneity and natural expres-
siveness back to computer animation. The motivation often stated
in this context is to make the process of bringing virtual scenes to
life more accessible, especially to novices. While this can involve
virtual reality setups [1] or custom-built animatronics puppets [5],

motion capture setups can also be achieved with smaller optically
tracked widgets [3] or accelerometers [18]. Even less demanding in
terms of hardware are 2D motion capture setups using continuous
input from the mouse [13, 17] or multi-touch devices [16, 11, 27].
Discrete control actions can also be recorded in realtime to interac-
tively drive an animation by triggering actions, much like control-
ling a video game [13, 26, 28]. Also aimed at novice animators are
sketch-based animation interfaces that combine realtime with non-
realtime manipulation [2] or map input sketch gestures to atomic
motion sequences from a motion library [25].

Usually performance animation aims at a high correlation be-
tween input space and animation space, since this is the most nat-
ural and easily graspable mapping. Confining motion to interpo-
lations between sets of spatial keyframes can aid the capture pro-
cess by focussing on predefined spatial arrangements[8]. A gener-
alization is to map any animation parameter to the axes of an input
modality such as a pen tablet, and let animators control the anima-
tion by moving in this space over time [12]. However, this comes
at the cost of abstraction that must be learned. Performance anima-
tion techniques can involve physical models to drive the motion of
secondary (not manipulated) features [19] or to form the basis of an
input-output mapping [13, 28].

Creating motion and timing it can be seen as two distinct tasks.
Performance timing applies realtime control only to the timing of
an animation. It requires the actual motion to have been defined
previously, either with realtime or non-realtime tools. The man-
ner in which the acted timing is captured and applied depends on
the technique. The literature proposes two realtime techniques for
timing animations. With the timeline technique, the animator inter-
actively records a timing by scrubbing along the timeline [20]. The
propagation through time created by input movement is recorded in
realtime and applied as the new timing, turning the timeline from
a browsing into a recording tool. The strength of this technique
is interactive feedback: when the playhead is moved to a certain
time, the view updates to the spatial configuration at that point in
time, putting it in line with computer puppetry techniques. How-
ever, there is no spatial relation between the linear control and the
animated motion. A sketch-based approach lets the animator give
a feature’s timing by mimicking its motion via sketching [24]. The
sketched path is then matched to the original trajectory. The anima-
tion is timed so that the timing matches the speed at which the pen
moved while sketching—slowly sketched parts of the path create
a slow timing, faster pen movements a faster timing. The strength
of this technique is its support for close spatial correspondence of
input to output, giving the actor a sense of the whole motion, rather
than just propagation through time. However, the automatic match-
ing between sketched path and feature trajectory is often not as the
animator desired, requiring manual matching of path features. After
a successful match the animator gets feedback on the result. Drag-
imation combines the strengths of both techniques into one, using
direct manipulation and interactive feedback to give the animator a
sense of space and time. The local, realtime input-output mapping
eschews any extra post-hoc matching.

While they are not the focus of this work, non-realtime
(re)timing methods provide a more parametric approach, e.g., by
employing physical models to re-calculate realistic motions given
timing parameters [15].

Direct manipulation of objects in a scene has been studied in the
context of navigating through a video scene. These direct manipu-
lation video navigation systems (DMVNs) focus on how to neglect
the time domain when interacting with a scene that is already timed.
Usually, these systems show the motion path taken by an object, and
provide a way to navigate along this path by dragging the object to
the desired point. Trailblazing [10] employs direct manipulation in
a video surveillance setting to interact with objects in the video or
on a floor plan. DRAGON [9] and DimP [4] propose a more gen-
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eral use of direct manipulation browsing for video analysis, e.g.,
of sport videos. Goldman et al. showed the feasibility of this ap-
proach for a variety of video editing tasks [7]. Recently, Shar and
Narayanan even used direct manipulation for video editing, retim-
ing a segmented part of the video against a still background or the
rest of the scene [21]. Dragimation brings this principle of direct
manipulation time control to the computer animation domain, as
we will describe next.

4 IMPLEMENTATION

In the following we describe Sketching, Scrubbing and Dragima-
tion in detail before explaining the retiming step common to all
three techniques. All three techniques assume an already created
motion, which can be arbitrarily timed. We employ the terminology
of McCann et al., who define the (re)timing process as a mapping
from the result to the original: output motion (the final animation)
is created from the input motion (defined by the initial set of key
poses) by mapping the playback time (the user’s time or realtime)
to the source time (defined by the original timing) [15].

Figure 2: The two stages of Sketching the timing: 1) draw path, 2)
check path matching.

4.1 Sketching
Sketching implements a sketch-based technique for performance-
based keyframe timing [24]. It builds on a static representation
of a feature’s motion, its motion path. This can be generated by
sampling the feature location at regular intervals of the animation.
To retime, the user mimics the motion path of the feature to be
retimed by sketching a similar path with a pen on a tablet input
device. Motion path and sketched path are then matched (semi-
)automatically and the timing of sketch path samples determines
how initial keyframes are retimed.

The sketched path is recorded as a list of triples (x, y, t) with two
spatial and one temporal dimension. The system then determines
salient points on both curves by finding local minima and max-
ima in both spatial dimensions. Thus detected minima and maxima

are filtered further by a threshold. These salient points divide both
curves into segments, and are used to match the two curves: for ev-
ery keyframe, the normalized arc length position along a curve seg-
ment of the original motion curve is used to calculate the recorded
playback time of the corresponding point on the sketched curve. If
the algorithm does not find a good match between salient points on
both curves, the salient points can be edited manually.

We added improvements in part suggested by Terra & Metoyer’s
user study [23]. To improve the manual matching process, the
source curve changes color depending on the success of the match-
ing: if the number of salient points matches, the curve turns green,
otherwise red. We also numbered the salient points to make it easier
to determine where on the path they lie.

Figure 3: Scrubbing uses the timeline as a recording device.

4.2 Scrubbing
Scrubbing implements the timeline-based technique originally pre-
sented as a plugin to the 3D creative suite Maya [20]: The user
slides or scrubs along the timeline with a cursor to define the new
timing.

A linear spatial mapping relates cursor position to source time.
The view is updated when a new source time is visited, giving in-
teractive feedback, and the playback (real) time that has passed
since scrubbing was initiated is saved with the current source
time. Applying the recorded time mapping retimes the frame range
scrubbed. Keyframes after the retimed range are shifted accord-
ingly, while keyframes before are left untouched (see section 4.4).

We made three modifications and extensions beyond the original
technique: First, since we assume that the sequence of key poses in
time should remain the same, we constrain movement of the play-
head to only forward in time, i.e., a movement from left to right,
on the timeline. This means that the function mapping playback
time to source time can never have a negative derivative. Second,
since we want to be independent of the original time resolution, we
allow sub-frame scrubbing. Thus, resolution is limited only by in-
put device resolution and the dimensions of the timeline and frame
range it depicts, most of which can be adjusted to meet the reso-
lution desired. Third, contrary to the original implementation, we
also correct timing curve tangency, as described at the end of this
section.

4.3 Dragimation
Dragimation was developed based on direct manipulation video
navigation (DMVN). It combines the spatial relation of user in-
put to the resulting motion with the interactive feedback of direct
manipulation interaction. Like Sketching, it makes use of a spatial
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representation of a feature’s motion over time, its motion path (see
section 4.1). In order to retime an animation, the animator picks a
feature and drags along its motion path through time. The anima-
tion is updated according to the current feature position, giving the
animator an immediate feedback on his actions. When releasing
the drag, the animation is retimed to represent the timing that the
animator has just acted out by dragging.

We assume that the user has set a view so that the trajectory is
maximally parallel to the view plane, i.e., with no segments of the
path at a large angle to the view plane. This needs to be guaran-
teed to assure a near-constant 2D input to 3D motion ratio. As with
Scrubbing, we also assume that the correct sequence of key poses is
already set, so source time only moves forward, which is the same
as stating that the arc length position of the feature along the trajec-
tory always increases. We also require movement along the curve
independent of the original timing. This means that the smallest
unit of the motion path should not be determined by frames, but
by the spatial resolution of the input. To ensure this, we generate
the motion path by sampling the object over time at regular spatial
rather than temporal intervals.

The simplest metric for determining the current position along
the curve is to find a point on the curve with the shortest distance to
the input cursor. However, with complex paths or fast movements
this can result in unwanted jumps along the curve. For timing it
is critical that an animator can create fluid movements along the
curve. We thus add Dragicevic et al.’s arc length continuity [4] that
extends the distance metric to include the change in arc length as a
third dimension, reproduced here for convenience:

D =
√

(px−Cx)2 +(py−Cy)2 +(k·CaC)2 (1)

where px and py are the coordinates of the pointer on the screen,
Cx and Cy are the coordinates of any point C on the curve projec-
tion, and CaC is the arc-length distance between the currently active
point Ca and C on the projected curve [4]. The scalar k ≥ 0 allows
to weight the arc-length continuity component. While [4] recom-
mends a value of k ≈ 1 for good results in video navigation, this
produced too much “slur” or lag for the performance timing task,
especially with fast animations. k ≈ 0.5 yielded a good tradeoff
between a highly interactive response and smoothly following the
path.

We only allow travel along the curve in one direction by search-
ing the segment of the curve defined by the currently active point Ca
on the curve and the far end of the curve. This direction constraint
guarantees directional continuity, so that we do not need to consider
it in the metric. An important requirement for direct manipulation
techniques is that they are responsive. Dragicevic et al. suggest op-
timizations to ensure interactive rates. However, we did not find
this necessary for our implementation, as interactivity was possible
even with longer motion paths. In order to create a true dragging
action, we only start time traversal when the cursor is in proximity
of the feature, rather than enabling a user to click anywhere on the
curve. Recording the timing works similar to Scrubbing, with the
source time being determined for every cursor movement and the
tuple (source time, playback time) saved for the retiming process
described below.

4.4 Applying the Recorded Timing

Scrubbing and Dragimation record a relation between playback
time and source time that we store in a list of tuples (source time,
playback time) we call a time map. For the Sketching tool, we cre-
ate a time map by matching the paths based on salient features using
the procedure proposed by Terra & Metoyer [24]. Thus, unifying
the time mapping allows us to streamline the retiming process, mak-
ing it the same for all three techniques.

Figure 4: Timing a head turn with Dragimation.

Since the time map initially only covers the frame range visited
during interactive timing and the recorded playback (or real) time
is not yet aligned with the animation time, we perform some post-
processing on the time map to make it ready for look-up:

• We align the two time domains by offsetting the playback
time component of each tuple by the source time of the first
recorded tuple.

• We cover frames before the retimed range by adding a tuple
(tsrc

0 , tsrc
0 ) to the beginning of the list, where tsrc

0 is the first
frame of the source time.

• We cover frames after the retimed range by appending a tuple
(tsrc

1 , t pb
1 ) to the end of the list, where tsrc

1 is the last frame of
the source time range and t pb

1 is the last frame of the playback
time range (the same value adjusted by the temporal contrac-
tion or dilation of the retimed time range).

To retime the keyframes, we look up the source time mapped
to each keyframe’s playback time and set it as the keyframe’s new
time. If there is no tuple in the list with a keyframe’s playback
time, we interpolate linearly between the nearest value before and
the nearest after the frame. Since we constrain movement to only
forward in time, we never record more than one playback time for
a source time (the derivative of the mapping function is never neg-
ative). In order to maintain the spatial configuration of the motion,
the last step is to scale the keyframe bezier handles along the time
axis based on the retimed keys [24].

5 EVALUATION

To evaluate Dragimation, we conducted a study comparing it to the
established Scrubbing and Sketching tools for timing animations.
For each technique, we measured objective quality of timings gen-
erated and the subjective satisfaction of participants. Our study de-
sign is based on the setup with which Terra & Metoyer compared
their sketch-based performance timing to keyframe animation [23].
We constructed a setup with three realtime tools instead of their
one realtime tool vs. one non-realtime tool setup, since we wanted
to evaluate all three performance timing techniques. Although we
could have used keyframing as a baseline, we omitted comparing
performance-based timing to non-performance timing anew since
this has already been explored in the literature and we wanted to
keep session times within a feasible scope.

The entire workflow in which performance timing would be used
has three steps:

1. Create a set of key poses with the standard tools. The timing
of these key poses need not be determined yet, placing them
in a sequence over time with arbitrary spacing suffices.
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Figure 5: The three scenes used for the timing task in our user study. Bouncing ball, jumping lamp character, chinchilla character looking from
side to side.

2. Perform the timing using one of the three realtime techniques.
The recorded timing is applied to the temporal layout of
the keyframes. Repeat this step until the desired timing is
reached.

3. Further adjust key poses, key times and interpolation with the
standard tools if necessary.

Since we are investigating only the actual realtime tools, we as-
sumed the keyframe layout to be given, skipping step 1, and omitted
the post-editing process, leaving out step 3. The study thus focused
on the realtime part of the performance timing workflow, step 2.

5.1 Task
In order to have a comparable measure of how well a tool can be
used for timing, we follow Terra & Metoyer’s design of timing to
a reference. For a set of sample animations, we defined a target
timing that subjects were asked to imitate as good as possible.

We selected four sample scenes for the timing tasks, one for the
tutorial and three for the main study. The criteria considered were
speed of the animation, spatial complexity of the motion, and over-
all animation length. Further, animations were selected to be rep-
resentative of typical animation tasks. We also wanted to vary the
type of character or object central to the scene—humanoid, object,
or anthropomorphic object. The three scenes were a spatially com-
plex bouncing ball animation of medium length and speed, a lamp
character in a fairly complex short jumping animation with antici-
pation and follow-through, and an animal character slowly looking
from side to side (Fig. 5). The tutorial scene featured a jumping
humanoid character and was spatially less complex and of shorter
length. For the study user interface, the initial keyframes of each
animation were distributed over time at equal spacing.

5.2 Design
The study used a within-subjects design, with each participant test-
ing all three techniques on the same scenes. First, the experimenter
explained and demonstrated the use of each timing tool. Partici-
pants were then given sufficient time to explore each technique with
a tutorial task until they felt comfortable using it. The main part of
the study was done in three blocks, testing all three techniques on
each scene. Since the tasks were quite different in nature for each
scene, we judged the learning effect between scenes as negligible.
We thus kept the presentation order of the scenes constant, while the
order of techniques was counter-balanced based on a Latin square.

For each tool, participants had 10 trials to approximate the goal
timing as closely as possible, resulting in 90 trials per user. A trial
consisted of using the tool once and viewing the resulting timing.
After 10 trials with one tool, the system automatically switched to
the next tool, until all three techniques had been used for the current
scene. We recorded the resulting animation and duration for each
trial.

After each scene, participants were asked to rank the three tech-
niques according to precision (“With which technique did you feel
you achieved the most exact result, closest to the reference tim-
ing?”), ease of use (“How cumbersome did it seem to you to cre-
ate a timing with each technique?”), and mental load (“During the
task, how often did you have to consciously remember how a tech-
nique works?”), plus an overall ranking on which tool they most
preferred for this scene. They were asked to rank the techniques
based only on usage with the scene they had just retimed. After all
three scenes, participants were asked to comment on the learnabil-
ity of each technique using the learnability sub-scale of the System
Usability Scale questionnaire [14]. This was followed up by an in-
terview in which subjects were asked to remark on any positive or
negative impressions, and to give a comparison to other timing tech-
niques they were familiar with, if any. Finally, participants filled in
a form on demographics and prior experience.

5.3 Apparatus and Interface

Participants sat at a table, using an interactive pen display (Wacom
Cintiq UX). Interactive displays were found to be the optimal de-
vice for performance timing in previous work [23], and it is a rea-
sonable assumption that animators have such a device at their dis-
posal. Before the experiment, they were asked to adjust angle and
position of the Cintiq as well as the height of the chair to a comfort-
able position. A reference monitor playing a rendered video with
the goal timing of the current scene in an endless loop was placed
next to the interactive display. The user interface of the Cintiq con-
sisted of a 3D view of the scene with the feature to be retimed and
its motion path highlighted (Fig. 6). For the Scrubbing technique,
a timeline was displayed beneath the 3D view, for Sketching and
Dragimation this was left blank. For the Sketching technique, the
bar below the 3D view featured a large button labeled “Apply”. A
complete trial using Sketching consisted of performing the timing
once, editing the resulting curve if necessary, and manually issuing
the Apply command. For Scrubbing and Dragimation, a complete
trial consisted of performing the timing once, which was then au-
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Figure 6: The interface used in our study. The motion path is dis-
played as an orange curve. The timeline was only displayed for the
scrub technique, for the other two it was left blank. Current technique
and trial were displayed in the top right corner. Techniques were
coded with the letters A (Sketching), B (Scrubbing) and C (Dragima-
tion).

tomatically applied on lifting the pen from the screen. After the
timing was applied, the resulting animation was played back in an
endless loop for review. A tap with the pen ended the playback and
reset the scene and timing to the initial setup. An alphanumeric
display in the top right corner of the 3D view displayed the current
tool and trial.

5.4 Hypothesis
We claimed that the directness of the interaction and the closed-
loop feedback that Dragimation provides has a positive impact on
both the objective performance of the animator and their subjective
preference compared to Sketching and Scrubbing.

5.5 Participants
27 subjects aged 22–43 (average=28.4) participated in our study,
7 of which were female. All were right-handed. 11 were experi-
enced in computer animation (more than 3 years of experience), 6
considered themselves intermediate (between 0.5 and 3 years of ex-
perience) and 10 were novices to animation (less than 0.5 years of
experience).

5.6 Results
5.6.1 Precision and Time
To determine quality of timing, we employ the measure proposed
by Terra & Metoyer: Per trial, we calculate the offset between target
and achieved time for each keyframe. Since the three animations
have a different number of keyframes, we calculate the average er-
ror over all keyframes for each trial, giving us a single value for
proximity to the target timing. In order to account for a learning
effect, we pick the trial with the lowest error from each set of 10
trials per scene per technique. After cleaning the data from out-
liers (video data corroborates that one subject did not follow the
task of timing to a target but rather created a completely different
timing, largely ignoring the reference video), the mean errors in
frames are 3.85 (SD 3.51) for Sketching, 4.09 (SD 2.30) for Scrub-
bing and 3.58 (SD 2.03) for Dragimation (Fig. 7, note that the error
bars are not an indicator for statistical significance). A Friedman
test shows a significant difference (p = 0.007) for technique. Pair-
wise Wilcoxon tests show Sketching (p = 0.017) and Dragimation
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Figure 7: Comparison of overall frame error means. Error bars indi-
cate 95% confidence interval.
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Figure 8: Comparison of per task frame error means. Error bars
indicate 95% confidence interval.

(p = 0.033) to have significantly lower error than Scrubbing. A
Mann-Whitney test comparing expert and novices did not reveal
any significant effect.

With an average of 12.9 (SD 4.4) and 14.2 (SD 4.9) seconds per
trial respectively, Scrubbing and Dragimation were approximately
equally fast to use, while the timing process with Sketching took
roughly twice as long with 27.4 (SD 7.6) seconds on average. This
can be attributed to the fact that the sketch-based technique is not
fully realtime, due to its manual feature editing. In the scope of the
whole animation process, this time difference is negligible, and we
will thus not base any further distinction between the techniques on
task completion time. However, it is highly likely that these val-
ues are far below the time required to fulfill the task with standard
keyframe placement.

5.6.2 User Observation

Video footage from the experiment illuminates issues with the setup
and individual techniques. The task of timing to a video presented
at a nearby monitor seemed to create an artificial situation that ob-
structed the interactive feedback of Scrubbing and Dragimation. In
many cases, subjects watched the reference video while perform-
ing the timing on the interactive display. While this worked for
Sketching, neglecting the visualization impaired using Scrubbing
and Dragimation, since these rely on their interactive feedback.
This is an artificial condition as animators will usually not time to
a reference, but create a desired timing they have in mind, which
was the price we had to pay in order to have a good quantitative
measure for timing precision. We summarize the issues observed
for each technique below.

With Sketching, the path matching algorithm often resulted in the
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need to manually edit feature points. This was a task many partici-
pants had difficulties with, since the correct total number and rela-
tive position along paths is essential for an optimal mapping. Some
participants adopted strategies of sketching the path at a smaller
scale away from the target curve, and a few did not mimic the tra-
jectory at all but created an abstract path that they matched nearly
entirely manually.

When Scrubbing the timing, subjects were nearly always con-
fused by the mapping between timeline and feature motion. There
was a further problem with interactive feedback as some subjects
looked at the timeline when performing the scrub, rather than
watching the viewport.

An issue occurring with Dragimation was that hand and pen
occluded the viewport, a problem inherent to direct manipulation
techniques on interactive screens. Furthermore, while the algo-
rithm locally matching input to path seems to be well suited for
the smooth arc trajectory of Task 2, it could run into problems when
confronted with the sharp cusps of the motion path in Task 3. While
dragging over a sharp cusp, the feature could “get stuck” when the
target path motion was only followed lazily or short-cut. It then
jumped along the path in unwanted jerks, potentially distorting the
desired timing.

5.6.3 Subjective Assessment

The rankings of the three techniques that participants gave provide
results clearly in favor of Dragimation (Fig. 9). A Friedman test
reveals a highly significant (p < 0.001) effect for technique for the
qualities precision, ease of use, mental load and overall preference.
Pairwise Wilcoxon tests show Dragimation to be ranked signifi-
cantly higher than Scrubbing regarding precision (p < 0.001), ease
of use (p = 0.009), mental load (p = 0.001) and overall prefer-
ence (p < 0.001). They also show Dragimation to be ranked sig-
nificantly higher than Sketching regarding ease of use (p < 0.001),
mental load (p = 0.003) and overall preference (p = 0.003). Again,
a Mann-Whitney test comparing experts and novices did not reveal
any significant effect for group across all four qualities, thus experts
did not significantly diverge from novices in their assessment.

The learnability scores achieved (on a scale from 0 to 20) were
12.6 (SD 5.7) for Sketching, 14.8 (SD 5.0) for Scrubbing, and 17.1
(SD 3.45) for Dragimation (Fig. 10), with a highly significant ef-
fect for technique (Friedman test, p < 0.001). Pairwise Wilcoxon
tests showed Scrubbing to score significantly higher than Sketch-
ing (p = 0.005) and Dragimation to score significantly higher than
Scrubbing (p = 0.024).

In the interviews, participants almost equivocally judged all three
techniques as very intuitive, easy, and quick to use. While most
did not enjoy the manual editing often necessary with Sketching,
some appreciated it as a means to control the performance mapping.
Subjects complained about the non-spatial mapping of Scrubbing,
which made it difficult to judge which input would lead to which
timing. Dragimation was often cited to be the most intuitive tool.
Many participants stated they could imagine each technique to have
its use for certain application scenarios, although there was no con-
sensus on which was best for what type of task. When asked for
a comparison with keyframing tools, the performance timing ap-
proach as such was judged to be less precise than keyframe ani-
mation, but more suited to create natural, spontaneous timing. It
was also thought to be much faster and less cumbersome than the
keyframe-based method, and many participants predicted signif-
icant productivity improvements. Many participants also stated
that they could well imagine using such tools for prototyping an
animation timing, and tweaking details afterwards with standard
keyframe tools.
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Figure 9: Comparison of user ranking means. Precision, mental load,
overall: lower is better. Ease of use: higher is better. Error bars
indicate 95% confidence interval.
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Figure 10: Comparison of learnability score means. Error bars indi-
cate 95% confidence interval.

5.6.4 Summary of Results

The results show that Dragimation lets animators produce tim-
ings equally well as Sketching, and better than Scrubbing. This
proves our hypothesis that Dragimation has a positive influence on
the objective performance of timing regarding the timeline-based
Scrubbing technique. We cannot claim this regarding Dragimation
vs. Sketching since their objective performance seems to be about
equal. Dragimation was judged to be more precise than Scrubbing,
and not less precise than Sketching. All subjects found Dragimation
easier to use than Sketching and Scrubbing, with less mental load
than the other tools. Dragimation ranked top among all three tools
in overall user preference. Dragimation was also thought easier to
learn than Scrubbing, which in turn was judged easier to learn than
Sketching. This proves our second hypothesis that Dragimation has
a positive influence on the subjective preference of techniques re-
garding ease of use, mental load, overall preference and learnabil-
ity. The interview comments further support these findings. They
also show that many participants, including professional animators,
could well imagine benefits from using performance timing tools
in a keyframe animation process, supporting the workflow we sug-
gested. Since both objective ability and subjective preference are
very important for creative tools, we see these results as highly in
favor of our more direct, in-the-loop timing technique.

6 KNOWN LIMITATIONS

All three performance timing techniques studied suffer from prob-
lems already mentioned in the literature: The length of an anima-
tion that can be timed is limited. They cannot produce timings that
are too fast for humans to recreate, such as high frequency motion,
although linearly scaling playback speed could improve this. And
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they need a maximally constant input-motion ratio for optimal use,
i.e., the motion path must be mostly parallel to the view plane [23].

While Scrubbing can also be used to time non-spatial phenom-
ena such as color change, Sketching and Dragimation are limited to
timing motion. This can be approached by making such attributes
controllable through spatial handles. Dragimation in particular is
further affected by the physical forces influencing the animator’s
acting. When following the motion path, pen, fingers, hand and
arm are subject to real world inertia and other physical restrictions,
limiting timing possibilities. While this is also the case for Sketch-
ing, its editable mapping provides more flexibility. Thus one could
“outwit” the system by, e.g., drawing a curve to retime the motion
at a cusp, then making sure that the path is nevertheless mapped as
desired via manual feature editing. However, transferring the an-
imator’s inertia to the timing can also be seen as a feature. After
all, reproducing real world phenomena is what motion capture is
all about. In any case, the laws of physics are as much part of the
natural panache of humans as experience and intuition. What Drag-
imation does suffer from is occlusion and reach problems typical
for direct manipulation on interactive screens [6]. A possible solu-
tion is to provide two duplicate views of the animation, one mainly
for control and the other mainly for visualization, at the cost of di-
rectness. The problem of cusps in the curve snagging the dragged
feature can be counteracted by either improving the proximity met-
ric, or smoothing the curve, e.g., with a Gaussian filter.

7 CONCLUSION

We presented Dragimation as a new method for performance-based
timing of keyframe animations. It was inspired by recent devel-
opments in direct manipulation video navigation techniques. We
proposed that the close spatial correspondence between input and
output and the interactive feedback of direct manipulation make it
better suited for the performance timing task, for which intuitive
mappings and natural interaction are essential. A user study with
27 participants of varying experience with animation comparing
Dragimation to a Sketching-based and a timeline-based Scrubbing
technique supports this claim. Dragimation and Sketching achieved
significantly more precise results than Scrubbing in a timing-to-
reference task. Dragimation was significantly higher ranked than
both other techniques in a subjective assessment regarding ease of
use, mental load, overall preference and learnability. We identi-
fied some deficiencies of the Dragimation technique and suggested
ways to address them.

With this work, we intend to make animation timing more ac-
cessible by offering an improvement of directness and user satis-
faction for timing tools. In a professional setting, animators could
use performance-based techniques to develop an initial timing that
they then refine with traditional tools, or others involved in the an-
imation process but untrained in animation tools could use them as
a means to better express and communicate their timing ideas. This
is supported by the tenor of our interviews with professional anima-
tors and novices who both expect significant productivity enhance-
ments from using performance timing in an animation workflow. It
indicates that such realtime tools are a valid option for beginners
and more experienced animators alike.
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