
by
Mahsa Jenabi

Selexels:
Adapting User Interfaces 
to Mobile Input Devices

Master Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Wolfgang Prinz

Registration date:   April 06th, 2006
Submission date:   September 28th, 2006





iii

Contents

Abstract ix

Acknowledgements xi

Conventions xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . 4

2 Theory 7

2.1 Expressiveness of Input Devices . . . . . . . 7

2.2 Selexels . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Layout Manager . . . . . . . . . . . . . . . . . 11

2.3.1 What is a Layout Manager . . . . . . . 12

2.3.2 Without Layout Managers . . . . . . . 12

2.3.3 Custom Layout Managers . . . . . . . 12

2.4 Glass Pane . . . . . . . . . . . . . . . . . . . . 13



iv Contents

3 Related work 15

3.1 Automatic Generation of UI . . . . . . . . . . 15

3.1.1 ICrafter . . . . . . . . . . . . . . . . . . 15

3.1.2 PUC . . . . . . . . . . . . . . . . . . . 17

3.1.3 SUPPLE . . . . . . . . . . . . . . . . . 19

3.1.4 Comparison With Selexels . . . . . . . 20

3.2 Area Cursor . . . . . . . . . . . . . . . . . . . 23

3.2.1 Comparison With Selexels . . . . . . 25

3.3 Interaction with Large Public Displays with
Mobile Devices . . . . . . . . . . . . . . . . . 25

3.3.1 Comparison With Selexels . . . . . . 26

4 Design 29

4.1 Goals . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Selexels Constraints . . . . . . . . . . . . . . . 30

4.3 3-Layered Architecture of the Selexel Frame-
work . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Layer 1: Selexel Transparent Layer
(Selexel Glass Pane) . . . . . . . . . . 30

4.3.2 Layer 2: Original User Interface . . . . 31

4.3.3 Layer 3: Selexel Layout Manager . . . 32

4.4 Diversity of Layout Managers . . . . . . . . . 32

5 Implementation 37

5.1 Implementation components . . . . . . . . . 37



Contents v

5.1.1 SelexelGlassPane . . . . . . . . . . . . 37

5.1.2 SelexelListener . . . . . . . . . . . . . 38

5.1.3 SelexelLayout . . . . . . . . . . . . . . 38

5.1.4 SelexelFlowLayout . . . . . . . . . . . 40

5.1.5 SelexelGridLayout . . . . . . . . . . . 40

5.1.6 SelexelJPanel . . . . . . . . . . . . . . 42

5.2 Implementation Challenges . . . . . . . . . . 42

5.2.1 Original Location . . . . . . . . . . . . 44

5.2.2 Minimum Lines of Code for Adaptation 45

5.2.3 The Layout Manager of unit Selexel
Containers (SelexelJPanel) . . . . . . . 45

5.2.4 Layout Manager or Layout Manager 2 46

5.3 How to Adapt an already existing UI . . . . . 46

5.4 How to write a new Selexel-based UI . . . . . 47

5.5 How to implement a custom Layout Manager 48

5.6 How to implement your own Selexel-based
Layout Manager . . . . . . . . . . . . . . . . . 50

6 Design Process 53

6.1 Prototype 1: Fitts’ Law . . . . . . . . . . . . . 53

6.2 Prototype 2: Selexel-based SUPPLE Toolkit . 57

6.2.1 Why SUPPLE Toolkit . . . . . . . . . . 57

6.2.2 Challenges . . . . . . . . . . . . . . . . 58



vi Contents

6.3 Prototype 3: Custom Layout Manager and
Transparent Layer . . . . . . . . . . . . . . . . 62

6.3.1 Challenges . . . . . . . . . . . . . . . . 63

6.4 Prototype 4: Selexel Layout Manager hierarchy 64

7 Evaluation 69

7.1 Experiment 1 . . . . . . . . . . . . . . . . . . . 69

7.1.1 Introduction . . . . . . . . . . . . . . . 69

7.1.2 Experiment Design . . . . . . . . . . . 70

7.1.3 Results . . . . . . . . . . . . . . . . . . 72

7.1.4 Discussion . . . . . . . . . . . . . . . . 73

7.2 Experiment 2 . . . . . . . . . . . . . . . . . . . 74

7.2.1 Introduction . . . . . . . . . . . . . . . 74

7.2.2 Experiment Design . . . . . . . . . . . 75

7.2.3 Results . . . . . . . . . . . . . . . . . . 75

8 Summary and future work 77

8.1 Summary and contributions . . . . . . . . . . 77

8.2 Future work . . . . . . . . . . . . . . . . . . . 78

A Selexel Golden Rules 81

B Hello World Swing Code 83

C User Study 87



Contents vii

Bibliography 91

Index 95





ix

Abstract

Selexels is a conceptual framework that guides a user interface (UI) designer to
adapt a UI to input devices with low expressiveness: devices that have limited
ability to convey intended meaning. By adjusting the interface, the user can enjoy
a fluid and smooth interaction, without suffering from the technical weaknesses of
the input device, such as low sampling rate or low resolution. We have evaluated
this framework through some user studies using Fitts’ Law.

As a proof of concept, we have implemented Selexel Toolkit. Selexel Toolkit can
help UI programmers in two ways. The first way is when a programmer has
already created a UI, working properly with the mouse and keyboard, but he
wants to change the UI code, so that the same UI can be used with an input device,
having low expressiveness, such as a mobile phone. In such a case, the Selexel
Toolkit adapts the original UI to match the expressiveness of the input device. The
second way is to give programmers a new Layout Manager, in addition to java
standard Layout Managers, i.e., a new tool for laying out their UI in a different
way with getting advantage of layout constraints that can also be useful in other
application areas.

Selexel Toolkit performs these tasks with its 3-layered Architecture. The three lay-
ers are: Selexel Transparent Layer, UI, and Selexel Layout Manager.

Selexel Transparent Layer puts a Transparent Layer (Glass Pane) on top of the UI,
in order to handle the Mouse input for the Selexel cursor. Additionally, It replaces
the standard cursor with the rectangular-shaped Selexel cursor.

Selexel Layout Manager layouts the UI with respect to the low expressiveness con-
straints, in order to adapt the UI to the connected input device. This adaptation can
be done dynamically, while changing the input device.





xi

Acknowledgements

I have successfully finished this Master thesis, but not to forget, with the kind
support of my lovely colleagues and friends and family.

I want to take the chance and say many thanks to Professor Jan Borchers, my first
examiner, and Professor Wolfgang Prinz, my second examiner, for giving me a
scientific support with my thesis.

Special thanks to Tico ballagas, who is a PhD candidate at InformatikX department
and my supervisor for this thesis. He has patiently helped me through the whole
improvement of the thesis with useful Tips.

Many thanks to my colleagues: Thorsten karrer for the nice Latex template he has
prepared for the Master thesis, the research assistants and research students that
helped me for reviewing the thesis and giving tips for programming and writing
this thesis.

My lovely family that have supported me emotionally all through my thesis, in
happy times and stressful days.

My kind friends who gave me hope and self-confidance to keep working on my
thesis.

Thank you!





xiii

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:

Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in Canadian English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://media.informatik.rwth-aachen.de/∼ACCOUNT/thesis/folder/file number.file

http://media.informatik.rwth-aachen.de/~ACCOUNT/thesis/folder/file_number.file




1

Chapter 1

Introduction

1.1 Background

As Ubiquitous Computing (UbiComp) moves the compu- Ubiquitous

Computingtational resources beyond the desktop by blending them
”into the fabric of our everyday lives” [Weiser, 1991], the
need for new novel interaction techniques is inevitable.
People use computers not just at home or at office, as in
old days, but also on the go, or in the public areas such
as bus stations, international exhibitions and airports.
Traditional input devices, like mouse and keyboard can
not be efficient for these post-desktop applications, be-
cause for example in on-the-go scenarios the portability
of the devices is necessary (i.e., the user should be able
to carry the device around) and the wireless capabilities
of the device are important. In emergency scenarios like
accidents, it is vital for the ambulance driver to get the
location information of the patient quick on the way to the
accident environment. In this scenario the driver is not at
his office or at home to use his desktop device, instead he
can use his car navigation system. Another alternative for
the driver is to use his mobile phone to see the location on a
map and also get the urgent location-based information, as
[Hosokawa et al., 2005] has implemented. In order to study
these new coming-up ubiquity challenges, researchers are
designing and developing new devices. Different areas of
applications have their own constraints, which need to be



2 1 Introduction

considered, while designing new interaction techniques.
As an example in public areas, speech modality performs
poorly, because of the background noise of the passengers.
The question is if one can develop some standard equiva-
lents to the traditional mouse and keyboard for UbiComp
environments.

Mobile phones are one of the familiar and powerful devices
that can be used for interaction in UbiComp environments.
Mobile phones are the first truly pervasive computers thatMobile phones

people use in everyday life. Calling friends, sending mes-
sages, managing personal data, or even playing games are
the common things people do with their mobile phone.
Mobile phones are with us almost everywhere, almost all
the time. They also have numerous built-in sensors such
as cameras and microphones. With these rich capabilities,
mobile phones are powerful input devices that can be used
to interact and control our environment, [Haro et al., 2005].

Although people enjoy the portability advantages of theMobile phones’

limitations mobile phones, they may find their small screen inconve-
nient to work with. The small screen of mobile devices
make them not so effective for some applications; for
example, the web has become available on the mobile
phones, but revealing the whole content of web pages on
the small screen of mobile devices is an open question.
Although some researchers, like [Baudisch et al., 2004],
have studied the possible approaches, like interactively
removing irrelevant content, to achieve it, there are still
remaining problems while displaying detailed images or
large UI components on the tiny screens [Roto et al., 2006].
One solution to this can be using a Large Public Display
(LPD) for displaying the information in combination with
the mobile phone.

LPDs are becoming more commonplace in public areas,Large Public Displays

like airports and bus stations. To date, LPDs are addressed
to be a medium for displaying information to groups of
people, not typically being interactive. However, interac-
tions have been demonstrated that make use of LPDs for
different application scenarios, such as BlueBoard inGoos
et al. [2002]. BlueBoard is intended for two kinds of per-



1.1 Background 3

sonal and in-group usages. Fast personal use is possible,
while the user is walking up, check his calendar, and walk
away. In addition, small groups can also use BlueBoard for
sketching ideas, sharing information, or comparing notes.
Making the LPDs interactive have the advantage of giving
the right information, in the right time, to the right per-
son. People can browse and search for the information they
need.

A challenge related to LPDs is finding a proper input de- Large Public Displays

challengesvice to interact with them. Therefore combining LPDs and
mobile phones together can solve many problems that each
of them has, when it is used separately. Sanneblad and
Holmquist [2006] has introduced a novel interaction tech-
nique using a mobile device in combination of a large dis-
play. This technique is introduced for solving the problem

Figure 1.1: Sanneblad06: A user holds up a tablet PC in front of a
large projected image to view details

of displaying a large map or detailed images. The large dis-
play is responsible for showing the large image. For view-
ing the detailed image of a special part, the user needs to
hold a mobile device, such as a tablet PC in front of the
place of his interest and the mobile device shows that part
in higher resolution.
Of course such kinds of solutions can only be used in the
public areas and Interactive Rooms that a LPD is available.



4 1 Introduction

In addition to Sannebald’s work, there are other going re-
search projects that are working on using a mobile device,
like a mobile phone instead of a mouse to control the cur-
sor on the screen. Ballagas et al. [2005], have introducedSweep technique

an interaction technique, called Sweep technique. Sweep
technique allows a mobile phone with a built-in camera to

Figure 1.2: The sweep technique can be used to control a cursor
on the large public display like an optical mouse

be used as an input device, instead of optical mouse dur-
ing interacting with a LPD. For moving the cursor, the user
should wave the mobile phone in the air and the built-in
camera at the other side of the phone takes sequence pic-
tures and by comparing these images can specify the rela-
tive motion with three degrees of freedom. With these ca-
pabilities, Sweep technique enables many direct manipu-
lation interactions, such as cursor control, with LPDs.The
connection between the LPD and the mobile phone is done
per Bluetooth.

1.2 Motivation

Some of the input devices have low expressiveness: their
ability to convey intended meaning is limited (see low ex-Low expressiveness

input devices



1.2 Motivation 5

pressiveness devices in the next chapter). Therefore the ex-
pressiveness of the input device is lower than the resolution
of the display. Consequently the users are not able to spec-
ify a pixel or a small region on the screen.The prototyped
cell phone, used in sweep technique, is an example of a low
expressiveness input device, Ballagas et al. [2005].

Another example for such kinds of devices is eyes as an Eyes as input device

input device. In the eye tracking research field, different
possibilities of using eye movements, in order to interact
with applications have been tested. Eyes are like a build-in
input device in human’s body. For using them in UbiComp
environments users doesn’t need to carry an extra input de-
vice with them. besides being intuitive, the direction of the
eye gaze can reveal the users’ attention in most cases.

Although using Eyes as an input can be beneficial accord- Eye Tracking

challengesing to the mentioned features, using eyes instead of a
mouse in order to control the cursor and select a UI com-
ponent is challenging. Because eyes can fixate on a special
target not more than about 600 milliseconds, Jacob [1994].
During a fixation eyes cannot be stable at one point, but in-
stead they make small movements, called micro-saccades,
Duchowski [2003]. These constraints of eyes make the ac-
curate measurement of the gaze point mostly impossible.
As mentioned in Isokoski [2000] small targets are harder to
hit with the gaze and require careful calibration between
the eye-tracker and the target; therefore an optimum UI for
such a low expressiveness input device has bigger widgets,
in order to make the selection task easier.

Our solution for this problem is to match the selection space Matching the UI to

input deviceof the application to the expressiveness of the input device.
Without reengineering GUIs, performing the intended ac-
tions can be hard, frustrating or sometimes impossible for
the users.

Another problem that emerges from the combination of Dynamic adaptation

of the UI to the

current Input device

mobile input devices and LPDs is that: different people
are entering the interactive spaces, using their hand-held
devices (e.g. a PDA or a mobile phone) combined with
existing devices (e.g., LPD), and then leave; therefore, the
LPD, which is located permanently in the space needs to
connect and interact with all these different hand-held de-



6 1 Introduction

vices, the users carry with. On one hand mobile devices
have different sensors, and different computational charac-
teristics, i.e., different sampling rates and sampling reso-
lutions, on the other hand the applications running on the
LPDs show always the same User Interface. In order to give
all users the chance of having equally smooth interaction
experience, the Graphical User Interface(GUI) of the LPD
needs to be adapted to the current connected input device
dynamically.



7

Chapter 2

Theory

This section includes the theoretical basis of this master the-
sis that understanding it is necessary, in order to under-
stand the thesis.

2.1 Expressiveness of Input Devices

As [Card, 1989] explained, Human-Computer interaction is Input devices

different from Human-Human interaction in this case that:
the interaction between human and a computer needs an
artificial language, since human and computer are not from
the same type; therefore he has modeled the interaction be-
tween human and computer as an interaction between at
least three agents:

• a human

• a user dialogue machine

• an application

The human’s input is taken, from an input device, and is
mapped to the application’s understandable events. As
[Baecker and Buxton, 1987] have observed:



8 2 Theory

” basically, an input device is a transducer from the phys-
ical properties of the world into logical parameters of an
application.”

Based on this, [Card et al., 1991] has defined the key idea
of ”Primitive Movement Vocabulary” in modeling the lan-
guage of Human-Computer Interaction, as follows:

Formally, input device is presented as a six-tuple,
(M, In, S, R, Out, W),
where
— M is a manipulation operator,
— In is the input domain,
— S is the current state of the device,
— R is a resolution function mapping from the input
domain set to the output domain set,
— Out is the output domain set, and
— W is a general-purpose set of device properties that
describe additional aspects of how a device works (perhaps
using production systems).

This model can be used as a taxonomy (i.e., classification)
for input devices. Researchers have been working onTaxonomy for Input

Devices defining taxonomies for input devices, in order to make
an abstract specification of the device. Taxonomies make a
clear and well-structured definition of the device in mind;
and therefore make the evaluation of the devices easier.
One can specify which features are important for a espe-
cial application and then compare the available devices just
according to those features of interest.

Another good criteria for input device evaluation is
expressiveness. [Card et al., 1991] has introduced the
expressiveness for input devices, which shows how well
the input device is able to convey the intended meaning.
The problem with Expressiveness happens when the
displaying preciseness mismatches the preciseness of the
input device. For example, in a touch screen interaction,
the user can select a widget on the screen by using his
finger. What will happen if the selectable items, like
buttons, are so small and placed so close together that the
user is not able to select just one of them without hitting
the other widgets in the neighborhood? In this example,



2.1 Expressiveness of Input Devices 9

finger, as user’s input device, is not able to express the
intended meaning of the user; therefore the user has a hard
time to interact with the system.
[Card et al., 1991] have described the expressiveness
problem as following:

“ In the design of input devices, an expressiveness prob-
lem arises when the number of elements in the Out set does
not match the number of elements in the In set to which it
is connected. If the projection of the Out set includes ele-
ments that are not in the In set, the user can specify illegal
values; and if the In set includes values that are not in the
projection, the user cannot specify legal values. ”

In and Out sets are the parameters explained in the Prim-
itive Movement Vocabulary (explained earlier). In our
above example, Out set comes from the display resolution
and In set from the input device (finger), which will se-
lect the total number of pixels below the finger, depending
on the finger’s size. A possible strategy here to solve the
problem can be to adapt the selectable UI widgets’ sizes big
enough for the finger or at least enough distanced, so that
a user with a big finger does not select more than one item
inadvertently at the same time.

According to the definition of Expressiveness for input
devices:

LOW EXPRESSIVENESS INPUT DEVICE:

An input device has low expressiveness, when it’s
ability to convey the intended meaning is low.

Definition:

Low Expressiveness

Input Device

As mentioned in the Introduction chapter, mobile phones,
finger in touch screen, Eyes as an input device are some
examples of low expressiveness input devices.



10 2 Theory

2.2 Selexels

As explained in the motivation section, the problem with
using low expressiveness input devices can be solved by
matching the selection resolution of the UI to the expres-
siveness of input device; keeping in mind that the UI reso-
lution is independent from the display resolution. For ex-
ample in the touch screen scenario in the previous section,
the problem of selecting UI objects on the screen will be
solved if the layout of the UI components respects the in-
put device (finger) constraints; It would be enough if the
UI components be laid out far enough from each other, so
that the user do not activate other widgets inadvertently.

This goal is achieved by dividing the screen into atomic
selectable elements (selexels) with a resolution that is
independent of the pixel resolution of the screen. In

Figure 2.1: A sample selexels screen division over a typical desk-
top interface. It indicates that existing desktop interfaces may
need to be modified to make selection with low precision point-
ing devices unambiguous.

other words the selectable units of the Application will
change according to the maximum preciseness of the
input device to select a target. The shape of Selexels is



2.3 Layout Manager 11

rectangular and its size is computed according to the
sampling rate and sampling resolution of the input device.

SAMPLING RATE OF INPUT DEVICES:

Sampling Rate = Number of Samples / Time (Sec)
Definition:

Sampling Rate of

Input Devices

SAMPLING RESOLUTION OF INPUT DEVICES:

Sampling Resolution = Information / Sample
Definition:

Sampling Resolution

of Input Devices

By separating selexels from pixels, we limit the range of
motion in the interface to support a smooth and fluid user
experience for the input device in use, while preserving
the screen resolution and information capacity of the dis-
play. Selexels serves as a design tool to match the expres-
siveness of graphical user interfaces to input devices with
low expressiveness. Using Selexel conceptual framework,
we would describe a traditional desktop interface as a spe-
cial case where the selection space is identical to the display
space. Expressiveness, characterized by selexels (unitless),
describes precision in selexel space; how many distinct po-
sitions, in selection space, can one express using this input
device. Adaptation of the UI to selexel constraints seems
inevitable.

2.3 Layout Manager

In this section, an introduction to Layout Managers is
given. We will discuss why a Layout Manager is needed
and how it can help the programmer to layout his UI. For
more information about implementation details see the Im-
plementation chapter. The information about Layout Man-
agers in Java is taken from [Walrath et al., 2004].



12 2 Theory

2.3.1 What is a Layout Manager

A Layout Manager in Java is responsible for positioning
and resizing the UI components inside their containers. It
asks how much space each component needs. The size set-
ting and locating for each component is done after checking
the available size on the screen and also according to the es-
pecial policy the Layout Manager has. Sizing and placing
policy is different for different Layout Managers, since they
are designed for conceptually different applications.

2.3.2 Without Layout Managers

The question is if we can ignore Layout Managers. It is
possible not to use Layout Managers, but it is usually better
to use them in most applications. A Layout Manager helps
adjusting to changeable font sizes and container sizes, e.g.
while resizing the application windows. Adjusting to the
especial Look and Feel is also easier if the UI components
are not independent of it. From software-engineering-view,
the reusability feature of Layout Managers are valuable,
since they can be used in several applications.

Without a Layout Manager the programmer needs to do the
precise positioning and sizing of all the components; it can
be several lines of code.

2.3.3 Custom Layout Managers

There are 7 standard Layout Managers, included in java
Swing Libraries. For laying out our GUI we can use one of
these Layout Managers or use combinations of them. But
what if these standard Layout Managers can not satisfy the
application requirements? In such a situation programmers
need to implement their own Layout Manager that respects
their specific constraints. In our project for implementing
the Selexel framework we have implemented our own Lay-
out Manager, Selexel Layout Manager. For more informa-



2.4 Glass Pane 13

tion about the concept behind the Selexel Layout Manager
see Design chapter. You can find more information about
how to implement a custom Layout Manager in Implemen-
tation chapter.

2.4 Glass Pane

In this chapter I will explain what Glass Pane in java is and
how one conceptually can benefit from it. The implemen-
tation issues about it are explained in the Implementation
chapter. More information about Glass Panes in Java can be
found in [Walrath et al., 2004].

Figure 2.2: Different layers in java GUI (sun Tutorial)

The Glass Pane in java is like a transparent layer coming on Glass Pane

top of your created UI. It is invisible unless you render to it.
Its Look and Feel in UI is exactly like its name, glass. Glass
enables you to see whatever is behind it, without any visual
obstacles, but it doesn’t let you touch the objects behind it.
If you touch it, you get to the glass surface. The Glass Pane
is the same. You can see the UI components, drawn in be-
hind layers, but when you want to click or manipulate the
widgets nothing will happen since you are ”touching the
glass ”; the Glass Pane blocks all the mouse input events
unless you handle them specifically in your Glass Pane im-
plementation.

The possible application for such a layer can be in the cases Applications

that you want to get the mouse input events and handle
them differently, or in the case that the processor is busy
with the user’s request; you may want to change the shape



14 2 Theory

of the cursor to a busy- mode and block all the mouse
events coming in. It can also be used in the situations that
you already have some components drawn on the screen
but you want to draw something on top of them.

We have used this concept in our project in order to change
the shape and the motion progress of the cursor and also for
handling the incoming mouse events different from stan-
dard Java. For achieving this goal we have implemented
this concept as ”Selexel Glass Pane”. For getting more con-
ceptual information about it see the Design chapter. About
the detailed implementation issues take a look at Imple-
mentation chapter.



15

Chapter 3

Related work

“If I have seen further it is by standing on the
shoulders of giants.”

—Isaac Newton

3.1 Automatic Generation of UI

3.1.1 ICrafter

ICrafter1 is a Service Framework for Ubiquitous Comput-
ing Environments, developed at Stanford University, [Pon-
nekanti et al., 2001].

In interactive workspaces, people enter the room, while
bringing their handheld devices (such as mobile phones,
Laptops, PDAs, etc.). These spaces are technology-rich,
and include I/O devices (such as large wall mounted dis-
plays, microphones, speakers, etc.). People entering these
workspaces usually intend to cooperate with others in
a collaborative work (such as design reviews and brain-
storming). The requirement for having an intuitive interac-
tion in such workspaces is to have an intelligent infrastruc-
ture that supports heterogeneity of different appliances and

1http://graphics.stanford.edu/papers/icrafter ubicomp01/

http://graphics.stanford.edu/papers/icrafter_ubicomp01/


16 3 Related work

computers connecting all together. ICrafter is designed for
interactive workspaces. It allows developers to deploy ser-
vices and to create user interfaces to these services for vari-
ous user appliances. By service they refer to a device (such
as a light, projector, or a scanner), or an application (such
as a web browser or Microsoft PowerPoint running on a
large display) that provides useful functions to end-users.
ICrafter facilitates users with flexible interaction with the
services in their environment.

ICrafter gives three main contributions:

• It brings intelligence to the infrastructure, by sup-
porting selection, generation, and adaptation of ser-
vice UIs. This feature enables a better handling of
resource-limited appliances.

• It enables on-the-fly aggregation of services.

• Created UIs are portable across workspaces, besides
reflecting the context of the current space.

ICrafter has considered two types of adaptations,
namely: appliance adaptation, and workspace adap-
tation. Workspaces are different according to the sets of
devices they contain, and physical geometries they have.
The relevant part for Selexel project is the appliance
adaptation part. Besides supporting different modalities,
ICrafter supports the different appliances according to
the resource criteria. ICrafter’s solution for the resource-
limited appliances is to add the component Interface
Manager (IM), in addition to the service and appliance
components, see figure 3.1. IM handles the UI selection,
adaptation, and generation issues. The UI is selected based
on the appliance and the number of services.

For workspace heterogeneity, ICrafter has a separated com-
ponent, called Context Memory, in order to save the context
information. As you can see in the picture 3.2 generators
produce a UI with having the appliance description and
getting the context information of the workspace.

The drawback ICrafter has is that the UI generators are



3.1 Automatic Generation of UI 17

Figure 3.1: ICrafter Architecture. Appliances request UIs from
the Interface Manager while supplying an appliance description.
The Interface Manager first selects appropriate UI generators
based on the requesting appliance and the services for which the
UI was requested. Next, it executes the generators with access to
the service descriptions, appliance description, and the context
to generate the UI, [Ponnekanti et al., 2001].

hand-designed, i.e., ICrafter is using hand-crafted tem-
plates for generating UIs.

3.1.2 PUC

This project 2has been done at Carnegie Mellon Univer-
sity, and studies about using a Hand-Held as a Personal
Universal Controller (PUC). At home or office there are
several devices (appliances, such as light switches, TV or
stereo equipment) that people are interacting with every-
day. Each of them comes usually with a remote controller.

2http://www.pebbles.hcii.cmu.edu/puc/

http://www.pebbles.hcii.cmu.edu/puc/


18 3 Related work

RequestUI(appl, target
services)

User Appliance

Generator
Processor

ReturnUI

Generator
Selector

Generator Repository

Generator(s)

Context Memory

Interface Manager

Service
Desc.

Figure 3.2: Interface Manager

Each of them supports its own functionalities and complex-
ities. PUC is like a universal remote controller that can com-
municate with all these appliances, considering their sup-
ported functionalities. It achieves this goal by generating
intermediate graphical or speech interfaces for each appli-
ance the user want to interact with. After this connection
is done, user’s manipulation commands will go from the
PUC to the appliance with using the two direction connec-
tion they have with each other.

The System uses a two way communication protocol
[Nichols et al., 2002] . For translating from proprietary ap-
pliance protocols to the PUC protocol, the system includes
adaptors. For describing the appliance functions, a speci-
fication language is used, with which the generators auto-
matically can build interfaces. The language specification
uses dependency information, which describes the availabil-
ity of each function relative to the appliance’s state. De-
pendency information is useful, since it allows the interface
to provide feedback to the user about the availability of a
function, such as “graying out” a button in a graphical in-
terface, besides helping the interface generators to organize
functions.



3.1 Automatic Generation of UI 19

Figure 3.3: Supple’s implementation: The interface model exposes the state variables and
methods that should become accessible through the interface. The widget proxies gener-
ated by the device model are assigned to interface model elements by Supple’s optimization
algorithm.

The drawback of PUC is that ”Its rule-based rendering al- Drawbacks

gorithms relies on specific domain knowledge and makes
it inflexible even to the changes in the screen size of the
device it runs on.” Gajos et al. [2005]. Therefore PUC has
made ”some rough assumptions about the screen size and
can not deal with situations that the most desirable ren-
dition of the interface does not fit in the available area.”,
[Gajos and Weld, 2004].

3.1.3 SUPPLE

SUPPLE is a toolkit3 for automatic generation of User Inter-
faces for ubiquitous applications, developed at University
of Washington [Gajos et al., 2005]. The goal is to generate
UIs automatically with considering the device constraints
and also user’s trace information.

Unlike other mentioned related work, which use templates
or rule-based approaches to generate UIs, SUPPLE uses
decision-theoretic, combinatorial optimization. SUPPLE
enumerates all the possible layouts for a UI; after that it
prunes some branches of the solution tree according to the
device constraints.

3http://www.cs.washington.edu/ai/supple/

http://www.cs.washington.edu/ai/supple/


20 3 Related work

The rule-based approaches require hand-designed rule
sets, but the cost function of SUPPLE can be quickly cre-
ated according to the designer’s responses to examples of
concrete rendering of different interfaces. The optimization
algorithm make it robust against screen size changes, which
was a drawback for the previous mentioned systems. In or-
der to generate concrete UIs, SUPPLE uses three inputs:

• User model, which includes trace information of
user’s activities . This model is independent of device
and rendering.

• Functional specifications of the UI, which defines the
types of data transfered between the user and the ap-
plication.

• Device model (the relevant component to Selexels
project) describes the supported widgets for each de-
vice and provides a cost function, which estimates the
user’s effort for manipulating these widgets with in-
teraction methods supported by the device.

Figure 3.4 shows an example of functional specification,
which is represented graphically for a stereo controller. The
rendered GUI of this figure is shown in figure 3.5

One of the device constraints SUPPLE consider is the avail-
able screen size. In figure 6.4, you see different UI rendi-
tions for different devices. Besides different devices, also
for the same device, resizing the windows will make SUP-
PLE rendering different UIs, as the rendition algorithm is
considering the available size for each UI widget, see figure
3.6

3.1.4 Comparison With Selexels

All these Systems mentioned before are automatically gen-
erating UIs for Ubiquitous applications. Selexels is not a
framework for UI generation, but for UI adaptation. As you
have seen, other systems also have considered some adap-
tation criteria for their automatic UI generation, but these



3.1 Automatic Generation of UI 21

Fi
gu

re
3.

4:
G

ra
ph

ic
al

re
pr

es
en

ta
ti

on
of

th
e

fu
nc

ti
on

al
sp

ec
ifi

ca
ti

on
fo

r
a

st
er

eo
co

nt
ro

lle
r.

Fo
r

cl
ar

it
y,

di
ff

er
en

tp
ar

ts
of

th
e

sp
ec

ifi
ca

ti
on

ar
e

gr
ou

pe
d

w
it

h
gr

ay
sh

ad
in

g.



22 3 Related work

Figure 3.5: Three tab views of the stereo specification, rendered
for a PDA.

Figure 3.6: Supple optimally uses the available space and robustly degrades the quality
of the rendered interface if presented with a device with a smaller screen size. This fig-
ure shows three renderings of a classroom controller on three devices with progressively
narrower screens.

considerations are some rough ideas about the screen size
(ICrafer and PUC), or in SUPPLE there are some consider-
ations tin the case of Touch Panel device that the selectable
widgets need to be big enough so that the user can click on
them with his finger, but the constraint considerations re-
main just at this level. It is not adapting exactly according
to the sampling rate and sampling resolution of the input
device. In Selexels approach, we compute exactly how pre-
cise the input device can be and then according to that we
compute the Selexel size and adapt the whole UI according
to it.



3.2 Area Cursor 23

3.2 Area Cursor

In standard GUIs usually a mouse-cursor is point-sized and
for selecting a target on the screen this point cursor must
go over the area of the target. Such target acquisition situa-
tions can be modeled with Fitts’ law. The area cursor has an
active selection region that spans a screen area, instead of a
single point. Kabbash and Buxton [1995] showed that if we

Figure 3.7: In (a) the target is selected using a standard “cross-
hair” cursor. The difficulty of the task is limited by the size of the
target (W). In (b), an area cursor with width W’ surrounds the
target to select it. The difficulty of this task is a function of W’ .

have a point-sized target and want to reach it with an area
cursor with width W, Fitts’ law is still valid, see figure 3.7.

Area cursor faces an ambiguity problem when the the cur-
sor area overlaps multiple targets.
A possible solution to this problem is proposed by Worden Worden’s area cursor :

point +area cursoret al. [1997]. As you can see in figure 3.8 for solving this
problem the area cursor also has a hotspot at its center. In
the case of ambiguity this hotspot decides which target is
under focus. This area cursor performs better than a stan-
dard one when the targets are far enough from each other,
so that the area cursor doesn’t overlap multiple targets. Of
course in the case of targets standing close to each other the
user still needs to use the centered hotspot and the perfor-
mance will be equal to the standard cursor. Bubble cur-
sor[Grossman and Balakrishnan, 2005] is another solution Bubble cursor



24 3 Related work

Figure 3.8: Two cursor types and activation pattern of area cur-
sor with adaptive hot-spot when located over two icons. The
selected icon is shown in reverse video.

Figure 3.9: (a) Area cursors ease selection with larger hotspots
than point cursors. (b) Isolating the intended target is difficult
when the area cursor encompasses multiple possible targets. (c)
The bubble cursor solves the problem in (b) by changing its size
dynamically such that only the target closest to the cursor centre
is selected. (d) The bubble cursor morphs to encompass a target
when the basic circular cursor cannot completely do so without
intersecting a neighboring target.



3.3 Interaction with Large Public Displays with Mobile Devices 25

for the area cursor. The width of Bubble cursor is dynami-
cally resizable. For solving the ambiguity problem Bubble
reduces its size up to the level that it includes just one se-
lectable object, see figure 3.9. This technique performs bet-
ter than the previous solution in the case that the targets are
closely packed.

3.2.1 Comparison With Selexels

All the cursor area solutions mentioned above are consid-
ering a wider area for the cursor, rather than one point,
but the cursor motion still remains pixel-based. This pixel-
based motion make them inappropriate for the low expres-
siveness input devices.
A selexel is a point in the selection space, i.e., the width of
the cursor and the motion is based on the Selexel size. For
making the GUI environment usable with the low expres-
siveness devices, we basically want to have bigger pixels,
i.e., Selexels, which are accessible to the input device. When
a pixel grows to Selexel, all the measurable units of the cur-
sor environment from its size to its motion needs to be in
Selexels unit (not in pixel unit anymore).

3.3 Interaction with Large Public Displays
with Mobile Devices

The C-Blink [Miyaoku et al., 2004] system is one of the ex-
amples for these projects that uses a colored-screen mobile
phone as the cursor on an LPD. The cursor is traced by a
camera mounted at the top of LPD. If the user comes in
an Interactive room and want to interact with such kind
of LPD, he just needs to run an application on the mo-
bile phone, which changes the hue of the mobile phone’s
screen. The displayed hue sequence encodes an ID and con-
sequently interaction of multiple users is supported.

For controlling the cursor, the taken pictures by the camera
will be traced for the signal and the result would be consid-
ered as an absolute position.



26 3 Related work

Figure 3.10: The system detects a C-Blink signal, and with in-
creasing the number of large public displays in public areas
and with increasing the number of mobile device consumers, re-
searchers are thinking about the possible interaction methods be-
tween these two popular groups of high-tech devices.performs a
process indicated by the signal.

3.3.1 Comparison With Selexels

C-Blink is also studying about using a low expressiveness
input device(here a mobile phone) with LPDs. But the point
of C-Blink research is based on having some novel inter-
action techniques in order to make using mobile devices
with LPDs possible, since they are both becoming popu-
lar. C-Blink is considering special UIs that the targets are
big enough for disambiguating the selection with a low ex-
pressiveness input device. They have used UIs that doesn’t
have this problem, and just focused on the novel interac-
tion technique. Selexels framework is focusing on how the
UI needs to be adaptive in the case that the input device
has low expressiveness. A specific techniques for interac-
tion between LPD and input mobile device is not under our
focus in Selexels project.

In our scenarios and also user studies, we have assumed
that the interaction technique is the Sweep technique,
which is explained in the introduction chapter. Although



3.3 Interaction with Large Public Displays with Mobile Devices 27

Figure 3.11: Large Screen Interaction with a mobile terminal by
using a light signal marker

the Selexel concept is independent of the selected interac-
tion technique.





29

Chapter 4

Design

In this section, I explain about the way we have designed
our Selexels framework. The reasons that we have taken
this approach are explained in the Design Process chapter.
There you can find the earlier approaches we have taken
and the challenges we had.

4.1 Goals

Given an already-created UI, which can work properly
with high expressiveness input devices, such as mouse, our
task is to adapt it according to the constraints of a low-
expressiveness input device, such as a mobile phone. We
need to compute how precise the input device is and ac-
cording to it adapt the UI. Therefore we need to get the
technical features of the input device (i.e, sampling rate and
sampling resolution), compute the maximum Selexels size
this device affords, and then adapt the UI according to the
computed Selexels size.



30 4 Design

4.2 Selexels Constraints

We have three general requirements for the Selexel-adapted
UI:

• No more than one selectable item can be in the same
Selexel. Otherwise when the user click on this Se-
lexel, it is ambiguous, which of these selectable wid-
gets must be activated.

• Selexel cursor needs to have a different shape from
the standard cursor. It must be a rectangular shaped
cursor with the size of one Selexel.

• The mouse input process is also different, since the
standard cursor has just one hotspot, which is the ex-
act pixel (i.e., point) it can specify. But for the Se-
lexel cursor the hotspot extends to the whole rectan-
gular region, which equals the whole number of pix-
els under the rectangle. Mouse click in the standard
metaphor means clicking on one pixel, but in the case
of Selexel cursor, it means clicking all the pixels lying
under the Selexel rectangle.

For handling the first constraint we have implemented the
Selexel Layout Manager. For the other two tasks we have
implemented the Selexel Glass Pane. In general, we have
divided the adaptation process to 3 layers, which is ex-
plained more in the following section.

4.3 3-Layered Architecture of the Selexel
Framework

4.3.1 Layer 1: Selexel Transparent Layer (Selexel
Glass Pane)

This layer is responsible for drawing the Selexel cursor, and
processing the mouse input with the help of the program
Selexel Listener. This Layer is like a Glass Layer comes on



4.3 3-Layered Architecture of the Selexel Framework 31

 
 
 
 
 
 
Selexel 
Transpare
nt Layer 
 
 
 
 
 
 
 
 
 
User 
Interface 
 
 
 
 
 
 
 
 
 
 
 
 
Selexel  
Layout 
Manager 

Figure 4.1: 3-Layered Selexels Framework Architecture

top of the UI and replaces the standard cursor with the Se-
lexel (Rectangle-shaped) cursor and blocking the up com-
ing mouse input and managing it according to the Selexel
concept.

4.3.2 Layer 2: Original User Interface

This layer represents the User Interface and its components.
This UI can be created using any kinds of java Standard
Layout Managers or programmer’s custom Layout Man-



32 4 Design

ager. UI components can be any kinds of Java Swing com-
ponents (other than the ones which have scroll function-
ality, such as a scroll bar or a scroll pane container. More
information about exceptions can be found in Conclusion
chapter, part ”What doesn’t work”).

4.3.3 Layer 3: Selexel Layout Manager

This layer represents a custom Layout Manager that adapts
the User Interface according to the Selexel limitations. It
takes the original sizes and Locations of the UI components
on the screen and change the locations if needed. It com-
putes the Grid boundaries according to the Selexel Size, at-
tained from the mobile input device per Bluetooth, and try
to add the UI components of the second Layer one by one
considering the Selexel Grid Constraints, which aligns the
UI component along the Grid without allowing a Selexel to
include more than one selectable widget. This layer tries to
change the UI of the second layer as little as possible, i.e.,
the location of the components are changed just in the case
that they conflict the Selexel constraints, mentioned in the
previous section. If a UI component can not be placed in
its original location, the Layout Manager needs to place it
in another place that is free. The policy of placing the com-
ponents in the case of overlapping is different for different
Selexel Layout Managers we have implemented. The pol-
icy of each of these Layout Managers is explained in details
in the following section.

4.4 Diversity of Layout Managers

Java Swing library has 7 common standard Layout Man-
agers, which the programmers can use just one or a combi-
nation of different ones. For more information about Lay-
out Managers see the Theory chapter.
These standard Layout Managers are Flow-, Border-, Card-,
Grid-, GridBag-, Box-, and Spring Layout.

Each of these Layout Managers can be useful in some sce-



4.4 Diversity of Layout Managers 33

narios and maybe not so efficient for some other applica-
tions. The important thing for programmers is to under-
stand the concept behind these Layout Managers and use
them in the right place.
As mentioned in the previous section, each Layout Man-
ager has its own policy for placing the components. For ex-
ample, the FlowLayout is a good choice when you want to
display some components compact in the same row, keep-
ing their natural size. The GridLayout is useful in the sce-
narios that you want to display some components with the
same size in rows and columns. You can find tips for choos-
ing the right Layout Manager in [Walrath et al., 2004].

Selexel Layout Manager also needs to pay attention to
these differences that Layout Managers have. Therefore,

Figure 4.2: Original FlowLayout UI

Figure 4.3: Selexel Flow Layout, taking the same policy as the
Java FlowLayout, besides considering the Selexel constraints.

it checks which kind of Layout Manager the Container has
used originally, and then take the same policy for placing
the components, besides respecting the Selexel constraints.
With this approach the purpose of the programmer of creat-
ing the UI can be highly preserved. As you can see in figure



34 4 Design

4.3, the buttons’ layout has been changed after adaptation.
It may be expected that in this case the button number 0
get more to the left so that the buttons on the second row
could still stay in the first row. That would be the tech-
nique the standard FlowLayout would do if you make the
buttons bigger. This technique was not our case since we
try to place the buttons, as the first priority, in the origi-
nal location. As far as the component can be placed in the
original location, we will not change its location. Further
more the location of the components are changed just once,
and will not be changed after relocating the next compon-
nets. This approach keep the components as much as it can
in their original location. More discussion about semantic
preserving can be found in the Design Process chapter.

Selexel Layout Manager has a general policy for the UI con-
tainers that the programmer has set no Layout Manager,
or an unknown/custom Layout Manager to the container.

Figure 4.4: All 9 buttons have the same location as the button
number 0; since after placing button 0 other buttons can not be
placed there they are placed in the nearest neighborhood of the
original location.



4.4 Diversity of Layout Managers 35

The policy here is to put the UI component in his nearest
free neighborhood. Each Selexel Grid has 8 neighbors (the
same as 8 different squares we have in a chess game plate).
If none of these 8 neighbors are free the search for a free
space will continue to the further level of neighborhood,
which is 16 places this time.





37

Chapter 5

Implementation

In this chapter, the challenges we had while implementing
the Selexel Toolkit are explained, and the reasoning behind
the approaches we have taken is dicussed. After that the
code a programmer needs to add to his code in order to
adapt his created UI to the input device is shown. At the
end comes a description of what a programmer needs to
pay attention to if he wants to implement a Selexel-based
Layout Manager.

5.1 Implementation components

In this section, I will introduce the different classes imple-
mented. As explained in the Design part, we have a three-
layered architecture for the Selexel framework, see figure
4.1.

5.1.1 SelexelGlassPane

This class is implementing a custom Glass Pane, which is
responsible for drawing the Selexel cursor. It also receives
the mouse input events and computes the corresponding
Selexel, which includes the mouse point, and pass this in-
formation to the SelexelListener. This class is in the top



38 5 Implementation

most layer (Selexel Transparent Layer) in figure 4.1.

5.1.2 SelexelListener

SelexelListener extends MouseInputAdapter. It overrides
the actions regarding to the different mouse events, such
as mouseMoved, mouseClicked, mouseDragged, etc.This
class is called in the top most layer (Selexel Transparent
Layer) in figure 4.1.

Its algorithm is as follows:

First it gets the cursor point, then it gets the top most com-
ponent under that point. After that it computes the relative
location of that component.

If the component is a:

• Selectable widget: then fire its action.

• Non-selectable widget: get its container and fire the
actions of the all child components, only one of which
is selectable.

• Container: fire the actions of all the child components

Since we are sure inside each SelexelJPanel there can be
maximum one selectable widget, therefore maximum one
widget can be fired on each mouse click.

5.1.3 SelexelLayout

This class is a custom Layout Manager, which has imple-
mented the LayoutManager2 interface. It is responsible for
laying out the UI components with respecting the Selexel
rules, mentioned in appendix 1.This class is in the third
layer ( Selexel Layout Manager) in figure 4.1.

The algorithm of SelexelLayout is as follows:



5.1 Implementation components 39

First of all we force the original Layout Manager, which can
be a standard Layout Manager or a custom Layout Man-
ager, to lay out the container, i.e., setting the sizes and lo-
cations of the container and all its child-components. With
this step we know how the UI would look like originally,
i.e., how the programmer wanted the UI to look like. The
algorithm tries to put the components as close as possible
to their original locations on the screen.

For all of the children of this container do:

Compute the number of Selexels they need, according to
their original size.

If the child is a:

• Selectable widget: then search to find a location for it
on the screen. This location needs to be free of any
selectable component.

• Non-selectable widget: then search to find a location
which is free of any Container.

• Container: then search for a location that is empty on
the screen for this child.
convert this child-container to a Selexels-based con-
tainer (set its Layout Manager to SelexelLayoutMan-
ager)

As you see in the algorithm when a child is a container it-
self, its location will be specified and then its type is con-
verted to the Selexel Layout type. This conversion func-
tion automatically converts the whole containers and sub-
containers till it gets to the Selexel unit container. More in-
formation about this especial unit container is given in the
SelexelJPanel section.

The difference in the implementation of this class and the
SelexelFlowLayout and SelexelGridLayout is that: the way
the algorithm finds a free location for a component is dif-
ferent. All these algorithms try to put the components in
its original location as the first priority. If the original loca-
tion is occupied, then these classes have different strategies



40 5 Implementation

for finding a free space. The technique that SelexelLayout
uses is the nearest neighborhood algorithm. It locates the
components in the nearest free neighbor location. More in-
formation about this algorithm can be found in the Design
section.

5.1.4 SelexelFlowLayout

This is a subclass of SelexelLayout. It is acting like the Se-
lexelLayout, but just use another policy to add the compo-
nents inside the cotainer. Instead of using the nearest neigh-
borhood policy, SelexelFlowLayout adds the new compo-
nents at the end of the row at the right side next to the
previously added component, exactly like the FlowLayout
in Java. Therefore, A free location is searched in the same
row. If there were no empty space then the next row will be
tested. This class is in the third layer ( Selexel Layout Man-
ager) in figure4.1. More information about this algorithm
can be found in the Design section.

5.1.5 SelexelGridLayout

This is a subclass of SelexelLayout. It is acting like the Se-
lexelLayout, but just use another policy to add the compo-
nents inside the cotainer. Instead of using the nearest neigh-
borhood policy, SelexelGridLayout computes the original
row and column index of each component and try to put
the components in the same index. But in this case the grid
size is changed to the nearest coefficient of the Selexel size.
If some of the components doesn’t have space to be added,
they will just be ignored (i.e., they will be set to invisible).
This class is in the third layer ( Selexel Layout Manager) in
figure 4.1.

The algorithm is as follows:

The same as SelexelLayout, we force the original Layout
Manager, which can be a standard Layout Manager or a
custom Layout Manager, to lay out the container, i.e., set-
ting the sizes and locations of the container and all its child-



5.1 Implementation components 41

components. With this step we know how the UI would
look like originally, i.e., how the programmer wanted the
UI to look like.

For all of the children of this container do:

• Compute the number of Selexels they need, according
to their original size.

• Compute the location index of the child in the original
layout, which means computing the grid index that
includes this child; for example when a button is in
the first row and second column the location index
would be (1,2).

• Compute the Selexel grid, which is always an inte-
ger coefficient of the Selexels size, and is the nearest
largest coefficient of the Selexels size.

If the child is a

• Selectable widget: then compute the new grid index
for this component, which means the component re-
mains in the same row and column, but just the exact
location will be changed according to the Selexel grid.
The reason behind this technique is to make sure that
the component is remaining in the same index (i.e.,
row and column), since in the standard GridLayout
usually the index location of the components is im-
portant.

• Non-selectable widget: If the container has more
than one selectable widget in general, then the non-
selectable widgets also need to be placed in the new
grids. In the case that the total number of the se-
lectable widgets is less than two, the layout will re-
main the same as it was originally, since the Selexels
constraints are about selectable widgets, i.e., the non-
selectable widgets are allowed to share Selexels.

• Container: then compute the new location through
the grid index of the container.



42 5 Implementation

convert this child-container to a Selexels-based con-
tainer (set its Layout Manager to SelexelLayoutMan-
ager)

More information about this algorithm can be found in the
Design section.

5.1.6 SelexelJPanel

This class extends the standard JPanel class in the Java
Swing Toolkit. It represents the unit Selexel containers that
the components are added to them. Such a special con-
tainer class is needed in order to distinguish between the
Java standard containers and the unit Selexel container.
This class is used in both first and third layers in figure 4.1.

5.2 Implementation Challenges

Our goal was to change the layout of the UI in such a wayGoals

that it obeys the Selexels constraints. In this process we try
to preserve the components’ locations and sizes, and in the
case that they need to be changed we try to resize and re-
place the components as close as possible to the original
situation. Another aim was to make it easier to adapt an
already existing UI to the Selexels rules, so that a UI can be
adapted with adding the minimum number of code lines
to the original program. Further more, it should be easy
to adapt an already existing UI program, with having little
knowledge about its implementation techniques; the ad-
vantage in this case would be when we intend to adapt a
complex UI application which is written by someone else.

The implementation is done in Java language. The AWT
and Swing libraries have been used. As mentioned in the
Design Process chapter, Layout Managers are a good choice
for forcing specific components’ size and location settings
in Java. The important plus point of the Layout Managers
is their reusability. One needs to implement them once and
can use them as often as he wants. There are some standard



5.2 Implementation Challenges 43

Layout Managers in Java that programmers use their com-
bination, in order to achieve their favorite layout.
In our project, we couldn’t use any of the standard Lay-
out Managers, since none of them have the exact policy we
have in mind. The desired Layout Manager must ensure
the Selexel rules explained in the Design Process chapter
and also in appendix 2.

For creating a new Layout Manager there are two possible
methods:

• subclassing a standard Layout Manager that its policy
is close to our new Layout Manager.

• Writing our own custom Layout Manager.

The first approach was not proper for our case, since the Why not subclassing

the standard Layoutschanges we needed to make to the already existing Layout
Manager was so much, so that it was not worth anymore.
For example the GridBagLayout seemed to be a good Why not

GridBagLayoutchoice. GridBagLayout puts the components inside rows
and columns. the cell size is specified according to the pre-
ferred size of the components added to the container. A
component can occupy more than one cell, which is called
its display area. The problem with this Layout Manager is
that it is doing opposite tasks that we want to do, i.e., it
gets the preferred size of the UI objects and then at the end
decides how big each cell should be. But we set the size of
each cell first and set the size of the widgets accordingly.
This paradox of the size setting make the GridBagLayout a
difficult layout to adapt to the selexel paradigm.
With all these drawbacks, still we tried to subclass the Grid-
BagLayout and this approach failed. The reason was that
we needed to override the function getLayoutDimensions()
of the GridBagLayout to have the same width and height
for all the cells and this size equals to the selexel size, but
unexpectedly GridBagLayoutInfo, which includes the infor-
mation regarding to the number of cells horizontally and
vertically, is just visible to the GridBagLayout itself and not
to any subclasses of it. Therefore we couldn’t make the
changes we wanted even by overriding the important func-
tions.



44 5 Implementation

Another example is the GridLayout. There, the size of allWhy not GridLayout

the cells are the same and are set to the preferred size of
the largest width and height among the components added.
Such a cell size does not necessarily equals the Selexel size
on one hand, and on the other hand, it must allow the com-
ponents to occupy more than one cell. These policies make
the GridLayout not a desirable choice for sub classing.

Although by subclassing these standard Layout Managers
one can easily prevent them to do something undesirable,
by overriding their functions, but overriding all these func-
tionality make us thinking, why we must sub class a class
which has so many contradictory features. Why not imple-
menting our own Layout Manager instead; there we can be
sure that the super class is not doing something unaccept-
able and is not changing our set values in between.

5.2.1 Original Location

Our goal is to keep the size and the location of the UI wid-
gets as close as possible to their original size and location.
A challenge that we have here is how to know where the
original locations are. During the run time although the
Layout Manager is the original one in the beginning of the
program, but at the end we set the Layout Manager to the
SelexelLayoutManager. When SLM get the control of the
program, of course the UI is not created on the screen yet;
consequently the locations of the components on the screen
has not been set by the original Layout Manager.
Our solution to this problem was to call the doLayout() func-The doLayout() trick

tion of the Layout Manager. This function forces the origi-
nal Layout Manager to compute the sizes and locations of
the UI components inside their containers, but it will not
draw it on the screen. After calling this function all the
components’ sizes and locations are set. Therefore if you
call the function getLocation() it will return the original lo-
cation of the component; but this call would return just 0
before calling the doLayout() function. With this trick SLM
can get the locations information in its constructor before
calculating the Selexel grid.



5.2 Implementation Challenges 45

5.2.2 Minimum Lines of Code for Adaptation

We wanted to make the coding task as minimum as pos-
sible. Imagine this scenario that Bob has implemented his
UI, which is working properly with the high expressive-
ness input devices. He has recently heard about the Selexel
concept and wants to adapt his UI according to the con-
nected low expressiveness input device. He should be able
to do this adaptation in his code as easy as possible. Per-
haps he can not remember anymore how exactly he has im-
plemented his UI. Therefore it should be possible to adapt
the UI even though one doesn’t have detailed information
about what is done where. One of the approaches we have
taken, in order to achieve this goal is that Bob just needs to
set the Layout Manager of the Content Pane (Mother Con-
tainer) of his UI to SLM, without changing all the Layout
Managers used inside the UI to SLM. In this case SLM goes
recursively down to all the sub containers and convert their
Layout Manager to SLM, i.e., translate all the containers to
SLM containers.

5.2.3 The Layout Manager of unit Selexel Contain-
ers (SelexelJPanel)

As mentioned before, all the UI components are inside their
own Selexel Container, which is SelexelJPanel in our case.
The question here is: what is the Layout Manager of this
container? It can not be an SLM itself, since it is one unit
of presentation and can not be divided anymore, i.e., an
atomic division of the UI. If we set its Layout Manager to
SLM, it tries recursively to divide the UI to the Selexel unit,
and since it is already a unit of Selexels the algorithm will
goes in an infinite loop. It is basically like defining some-
thing with itself. It never ends up, since there is no termi-
nation condition for the recursion algorithm.

The solution is to specify its Layout Manager to one of the
standard Layout Managers. Our approach was to choose
the Flow Layout Manager. The reason for this decision was
that this Layout Manager is the simplest and most intuitive
Layout Manager. If we don’t specify any Layout Manager



46 5 Implementation

for the Selexel Units, the components may draw on each
other; the same problem with having no Layout manager
for a UI repeats. So we would need precise sizing and lo-
cating of all the components.

5.2.4 Layout Manager or Layout Manager 2

If you see the section about implementing a custom Lay-
out Manager, you see two possibilities for such an im-
plementation. You can either implement the LayoutMan-
ager Interface or the LayoutManager2 interface. In our
project we needed to implement the LayoutManager2,
since we wanted to override the function addLayoutCompo-
nent(Component comp, Object constraints), which doesn’t ex-
ists for the LayoutManager interface. LayoutManager2 is
basically extending the LayoutManager, i.e., it has the func-
tions of LayoutManager, but the other way around is not
valid.

5.3 How to Adapt an already existing UI

If you have a program, creating a UI, you can adapt it to
the Selexel constraints with adding two settings at the end
of your program. Any UI application has a function which
is adding the components to their containers. For example
consider Hello world application in Appendix 2. This code
includes every parts that a typical Swing program needs to
include. The application is in full-screen mode.

For adapting the UI we just need to add the code below
to the createAndShowGUI() function, after all the code for
adding the components is finished.

As you see in the code, just two settings are needed; one is
for setting the Layout Manager to SLM and the other one
is to set the Glass Pane of the Content Pane to our Selexel
Glass Pane. SLM will translate the Layout Manager to the
Selexel Layout Manager, and the Glass Pane setting will



5.4 How to write a new Selexel-based UI 47

Dimension selexelsize = new Dimension(100,100);
SelexelGlassPane myGlassPane;
contentpane.setLayout(new SelexelLayout(selexelsize,frame,false));
myGlassPane = new SelexelGlassPane(selexelsize,contentpane);
frame.setGlassPane(myGlassPane);
myGlassPane.setVisible(true);

draw the Selexel cursor on the screen and hide the actual
cursor (standard arrow-shaped cursor) and process the Se-
lexel cursor events.

If the input device be changed during the run time dynam-
ically, the setSelexelSize() function should be called with the
new computed size of Selexels. After adding the adaptation
source code, the code will look like the second program in
appendix 2.

5.4 How to write a new Selexel-based UI

For writing a new UI application with Java, there are few
changes from the normal Java application development
process. The only difference is that instead of setting the
Layout Managers of the containers to the Java standard
ones, we set it to the Selexel-based one, which is basically
adding the term ”Selexel” in the beginning of its name. For
example for the FlowLayout we set the Layout Manager to
SelexelFlowLayout.

Another way, which I recommend, is to write your own UI
application in the traditional way you have always done
and then add the code for adaptation, as explained in sec-
tion 5.3—“How to Adapt an already existing UI”. In this
case you will not set the Containers’ Layout Manager one
by one to the Selexel-based version, but you just set the
Content Pane’s Layout Manager to SLM at the end. It will
then recursively change the Layout Managers automati-
cally and the result will be the same.



48 5 Implementation

5.5 How to implement a custom Layout
Manager

In this section I will explain how one can implement a cus-
tom Layout Manager. This information is taken from [Wal-
rath et al., 2004].

Before implementing your custom Layout Manager, you
should make sure what you want to do is not doable or can
not be done efficiently by Java standard Layout Managers,
or the Layout Managers that can be found in the Internet.
In most cases, you can lay out your UI by using a good
combination of standard Layout Managers.

If it didn’t work then start implementing your own as fol-
lowing:

You need to implement one of the interfaces: LayoutMan-
ager or its sub-interface LayoutManager2. In any case you
need to implement at least the following 5 methods:

void addLayoutComponent(String, Component)
Adding a component to the container and specifying a
string for it.

void removeLayoutComponent(Component)
removing a component from the container. Many layout
managers do nothing in this method, relying instead on
querying the container for its components, using the Con-
tainer method getComponents.

Dimension preferredLayoutSize(Container)
Calculate and return the ideal size of the container, assum-
ing that the components it contains will be at or above
their preferred sizes. This method must take into account
the container’s internal borders, which are returned by the
getInsets method.

Dimension minimumLayoutSize(Container)
Calculate and return the minimum size of the container, as-
suming that the components it contains will be at or above
their minimum sizes. This method must take into account



5.5 How to implement a custom Layout Manager 49

the container’s internal borders, which are returned by the
getInsets method.

void layoutContainer(Container)
It doesn’t draw components. It simply invokes each com-
ponent’s setSize, setLocation, and setBounds methods to
set the component’s size and position.
This method must take into account the container’s inter-
nal borders, which are returned by the getInsets method.
If appropriate, it should also take the container’s orienta-
tion (returned by the getComponentOrientation method)
into account. You can’t assume that the preferredLayout-
Size or minimumLayoutSize method will be called before
layoutContainer is called.

If you wish to support component constraints, maximum
sizes, or alignment, then your layout manager should im-
plement the LayoutManager2 interface. That interface adds
five methods to those required by LayoutManager:

• addLayoutComponent(Component, Object)

• getLayoutAlignmentX(Container)

• getLayoutAlignmentY(Container)

• invalidateLayout(Container)

• maximumLayoutSize(Container)

As you can see the addLayoutComponent function exists for
both interfaces, but with different arguments; instead of
String, LayoutManager2 uses the argument Objects. This ar-
gument includes the constraints (features) the component
has. It is a type of object, which means any subtype of
objects can be used. We needed to implement the Lay-
outManager2 interface for Selexels implementation, since
we wanted to let the programer adding the components
to their containers by specifying their ratio locations. For
example, if a programer wants to add component button1
to its container (container1) in a way that the component is
standing at the center of the container, he writes:

container1.add(button1,0.5F,0.5F)



50 5 Implementation

The ratio is calculated according to the container and can
be a float number from 0 to 1.

5.6 How to implement your own Selexel-
based Layout Manager

In order to implement your own Selexel-based Layout
Managers you need to do the following steps:

• Design issues: Think deeply, which policy the Layout
Manager should have for relocating and resizing the
components.

• Implementation issues: Subclass the SLM, i.e., extend
the SelexelLayout

• Check which functions need some changes, i.e., over-
ride. For this step it is necessary to understand what
each of the functions in the SelexelLayout is doing.

• Implement just the functions that need to be changed

• Done!

As an example consider the SelexelFlowLayout and Selex-
elGridLayout that are already implemented. They have
also done the steps above.

The functions most probably need to be overridden are the
functions below:

• layoutContainerChild

• layoutNonSelectableChild

• layoutSelectableChild

• preferredLayoutSize

The layout functions are responsible for relocating and re-
sizing the three groups of UI components: Containers (have



5.6 How to implement your own Selexel-based Layout Manager 51

children inside, e.g., a frame), Selectables (e.g., a button),
Non Selectables (single widget that is not selectable, e.g., a
label)

and the preferredLayoutSize, which is responsible for com-
puting the preferred size of the container.

In some cases, such as in the SelexelFlowLayout the layout
functions were doing what we wanted, but the priorities
for finding another location in the case that the original lo-
cation is occupied was different, therefore we just needed
to override the Find functions for each case as below:

• FindSelectableFreeSpace

• FindEmptySpace

• FindContainerFreeSpace

What finally needs to be done is to make SLM consider the
newly created Layout Manager as one of the Layout Man-
agers it needs to call during its translation. If the created
Layout Manager is called SelexelXLayout, the code below
must be added to the ConvertLayout function, which is in-
side SLM:

if((parent.getLayout() instanceof XLayout)){

parent.setLayout(new SelexelXLayout(selexelSize,parent,true));

}

These are the steps for writing a Selexel-based version for a
standard Layout Manager (e.g., BorderLayoutManager). If
the Selexel-based Layout Manager is something different, it
needs to be specified inside the if condition, in which situ-
ations SLM needs to convert the container’s Layout to the
new Layout. This feature is used while adapting a Content
Pane, including some container children, which each have
their own different Layout Manager. Of course this last step
can be ignored and the new Layout Manager can be used
as a stand alone Layout Manager.
After doing the above steps, the new Selexel-based Layout
Manager is ready.





53

Chapter 6

Design Process

“We can’t solve problems by using the same
kind of thinking we used when we created them.”

—Albert Einstein

In this chapter, I will go through our design process: ex-
plaining about the earlier prototypes that we have designed
and implemented, the challenges we had, and our solutions
for solving the faced problems. This design process is done
according to the DIA Cycle. DIA is abbreviation for Design,
Implement, Analyze. Nielsen has described this iterative
way of designing UIs in [Nielsen, 1993]. UIs will be refined
iteratively over several versions (i.e., prototypes). In each
of the iterations the produced prototype get more matured
and the users’ feedbacks to the prototype gets more con-
crete. We have had 4 different prototypes and the 4th one is
our final design, which is explained in the Design chapter.

6.1 Prototype 1: Fitts’ Law

As mentioned in the Motivation chapter, the low expres-
siveness input devices are unable to specify the intended
meaning of the users. Our solution to this problem (as ex-
plained in Theory, part Selexels) is to adapt the resolution
of the UI to the expressiveness of the input device. We have



54 6 Design Process

Figure 6.1: Iterative Design- Implement- Analyze introduced by
[Nielsen, 1993]

divided the screen space to a Grid of same-sized rectangles,
i.e, Selexels. These regions are considered as the selectable
unit instead of Pixel (inch per dot), which is a standard for
GUIs. With this modification all the input devices are able
to work with UI. The difference will be just the way the UI
looks like (i.e., the layout of the UI) and the way the mouse
will be interpreted (from a hotspot mouse to an area cur-
sor).

In the Selexel approach, the screen space is divided to equal-
sized regions, i.e., Selexels. It means, as far as the input
device isn’t changed, or it is changed, but the new input
device has the same technical features (i.e., sampling rate
and sampling resolution), the size of the Selexels remains
unchanged. According to the performance improvement,
one may suggest having different Selexel sizes for differ-
ent UIs/ Dialogues; which means, besides considering the
maximum preciseness of the input device, also take the
minimum necessary preciseness for that specific UI (dia-
logue) in to account and set the Selexel size as the mini-
mum of these two. As an example, see figure 6.2, we have
a photo that the user can zoom in or out. In this simple UI,
the preciseness we need for interacting needs to be enough
for selecting the buttons, which have the minimum size in



6.1 Prototype 1: Fitts’ Law 55

Figure 6.2: An example of an input device that has a higher ex-
pressiveness than UI needs.

compare to the other widgets. Although the input device
may afford higher resolutions, it is really not needed for this
UI. The size of the gray cursor show you the Selexel size in
this case and therefore the maximum preciseness of the in-
put device. For this UI, it would be enough to make the
cursor as big as the size of the smallest selectable widget.
There the user could still choose all the selectable widgets
with enough expressiveness.

The problem with this approach is having variety of Selexel
sizes for different UIs in the same application. It makes the
computation unit of the UI, i.e., Selexels, inconsistent. Con-
sequently, the user can not learn the interaction behavior
from his cursor movement, since this Selexel size is chang-
ing often for each dialogue. It causes user confusedness and
can not help smoothening the user interaction. With having
the same Selexel size, users are able to play around with the
device and learn how they need to react and move the de-
vice in order to perform their intended tasks. Therefore we
define the first Selexel rule as:

SELEXEL RULE 1: SELEXEL SIZE RULE:
Selexel size is computed just according to the sampling
rate and sampling resolution of the input device. As long
as the sampling rate and sampling resolution of the in-
put device are unchanged, the selexel size also remains
unchanged.

Definition:

Selexel Rule 1:

Selexel Size Rule



56 6 Design Process

For having an idea, how different input devices can work
with this concept, we have tested different input devices
(gyro mouse, mouse, joystick and mobile phone, which is
used as a cursor controller in sweep technique, see Sweep
Technique.
The test application was the horizontal tapping test
explained in [ISO, 2000]. In this test the UI includes two

Figure 6.3: Screen shots of the horizontal tapping test, target with
the red color and cursor in blue.

targets, but showing just one of them at a time. The user
needs to move the cursor, in order to reach the target, and
click on it. The result of this user study is explained in Eval-
uation chapter.

This tapping test was basically just a Fitts’ law application
and not a real GUI with User Interface widgets. Therefore
as the next improvement, we thought of implementing an
example UI, which looks more similar to the real UIs, peo-
ple use in their everyday experience with their computer.
The goal was to show how such an adaptable UI can im-
prove the users’ interaction. This goal made us start work-
ing on the second prototype.



6.2 Prototype 2: Selexel-based SUPPLE Toolkit 57

6.2 Prototype 2: Selexel-based SUPPLE
Toolkit

The purpose was to implement a real-life UI example that
can adapt itself dynamically to the expressiveness of con-
nected input device. For achieving this goal, we decided to
extend the SUPPLE Toolkit (see Related Work) which is a
Toolkit for automatic generation of UI for different Appli-
cations. In the following section you can see our reasons for
making this decision.

6.2.1 Why SUPPLE Toolkit

Figure 6.4: The classroom interface rendered for two devices with
the same size: (a) a pointer-based device (b) a touch-panel de-
vice,[Gajos and Weld, 2004]

SUPPLE Toolkit is automatically generating UIs for differ-
ent applications and different input devices. It is choosing
the optimum UI rendition that fits the available free space
on the screen. It is already handling so many problems that
come up with automatic generation, such as using tabs in
the case of having no more free space, which is the case also
for our framework, happens even more often in our case.
For example, SUPPLE adapts the UI accordingly, when the
input device is a pointer device, such as a mouse, or when
it is a touch panel, see figure 6.4 including two screen shots
generated automatically by SUPPLE.
SUPPLE stores the constraints related to each of these de-
vices; therefore, it make sense to add the Selexel constraints
to SUPPLE, in order to have an automatic generated UI re-
specting Selexels limitations. In the following, you see the



58 6 Design Process

challenges we have for this adaptation.

6.2.2 Challenges

UI components, in standard UIs, may stand too tight to-
gether or be so small, and therefore require a high expres-
siveness input device to work with. In such cases, in order
to adapt the UI, we need to solve the overlapping problem.

Selexel rule 2 says:

SELEXEL RULE 2: RULE OF ONE SELECTABLE ITEM:
No more than one selectable widget can be in the same
Selexel.

Definition:

Selexel Rule 2: Rule

of One Selectable

Item
By Selectable Widget we refer to:

SELECTABLE ITEM/ WIDGET:
A widget or UI component is selectable, if it contains a
set of items for which zero or more can be selected; e.g.,
a button, an editable text field, e.t.c.

Definition:

Selectable Item/

Widget

The possible solutions to achieve Selexel rule 2(i.e., rule of
one selectable item) can be:

• Set the widget size as an integer coefficient of the se-
lexel size.

• The distance between two selectable widgets must be
at least 1 selexel.

• Without changing the size of the widget, just make
sure that in each selexel there are maximum one se-
lectable widget.

The first and second solutions solve the overlapping prob-
lem, but they don’t respect the Selexel rule 3 (i.e., the rule
of Selexel alignment). The Selexel rule 3 says:



6.2 Prototype 2: Selexel-based SUPPLE Toolkit 59

Figure 6.5: This is a screen shot of a UI automatically generated
by SUPPLE. The Selexel Grid on top of the UI shows that the
adaptation of the UI with the Selexel grid is necessary, since se-
lectable widgets are overlapping in shared Selexels and make the
selection task ambiguous.



60 6 Design Process

Figure 6.6: This figure demonstrates the alignment problem oc-
curs while using the first solution for solving the overlapping
problem.

SELEXEL RULE 3: SELEXEL ALIGNMENT:
The widget placement should be aligned with the Selexel
grid.

Definition:

Selexel Rule 3:

Selexel Alignment

In the first two solutions, we make sure that the widgets
are far enough or are big enough, but as far as they are not
aligned according to the Selexel grid they may still overlap
in the same grid, see figure 6.6.

Therefore, we took the third approach, and decided not to
change the size of the selectable widgets, but make sure that
in each Selexel maximum one selectable widget is placed.
For overcoming the alignment problem, we considered a
Selexel grid on the UI and calculated the borders while
placing the components. With this approach we ensure the
Selexel rule 3 (Selexel alignment).

SUPPLE Toolkit defines a UI generation as a ”con-
strained decision-theoretic optimization problem”, [Gajos
and Weld, 2004]. The optimum UI is generated for a specific
user using a specific input device, by considering the con-
straints of the input device. First of all a tree of possible UI
rendition is generated and then the algorithm starts prun-
ing some of the solutions according to the constraints. Fi-
nally among all the remaining solutions one with the mini-
mum cost will be taken as the final decision. By minimum



6.2 Prototype 2: Selexel-based SUPPLE Toolkit 61

cost, Gajos and Weld [2004] means the minimum effort the
user needs to put for manipulating the widgets of the UI.
For designing the Selexel-based SUPPLE we considered
two approaches:

• Take the optimized UI from SUPPLE Toolkit and shift
the selectable items.

• Prune the solutions and let the ones that obey our
constraints pass

By taking the first approach, we can get to a solution, which
is respecting Selexel constraints, but there is no guarantee
anymore that the final UI keeps optimum. Briefly say, it
is like generating our own UI without using SUPPLE. In
this case SUPPLE optimization algorithm can not help us
anymore since we are basically changing the UI.

Taking the second approach makes more sense. There we
put our Selexel constraints as some additional constraints
and then SUPPLE optimization algorithm can find the op-
timum solution accordingly. Another advantage of this ap-
proach will be in the case of not having enough space on
the screen for the last added components. In this case SUP-
PLE have its solution; when there are not enough available
space, SUPPLE use tabs in order to place all the compo-
nents on the screen.

For adding our constraints to SUPPLE we decided to con-
sider two different sizes for each selectable component: the
virtual and actual size. The actual size of the component is
its current size and the virtual size is basically the size of its
bounding box, which is calculated according to the number
of Selexels this component takes in the grid; therefore it is
always a coefficient of the Selexel size.
The advantage of this approach is that: besides keeping the
actual size of the component, as it was originally, it makes
the necessary distance between the selectable components,
in order to respect the Selexel rule 2 (i.e., the rule of one se-
lectable item). It respects the Selexel rule 3 (rule of Selexel
alignment), by making the grid squares to be the bounding
box of the components, i.e., the bounding box is aligning
the Selexel grid.



62 6 Design Process

To implement this approach in the first step, we needed tofaced problem

calculate the Selexel grid and the borders. In the second
step the location of each of the UI widgets must be calcu-
lated and set the locations to the new locations. By imple-
menting these steps we got to a point that, although the cal-
culated locations were correct, the UI widgets were placed
in the wrong positions. After tracing, we found the origin
of this problem: Layout Managers!
As explained in details in the Theory chapter, Layout Man-
agers place and size the components on the screen. They
have their own policy and they follow their policy even by
ignoring the programmers settings. Although we have set
the new locations, the Layout Managers used in the SUP-
PLE Toolkit didn’t allow us to position the components pre-
cisely.

Two approaches can be taken for solving this problem:

• Ignoring the Layout Managers

• Implementing our own Layout Manager

The first approach doesn’t make sense, since by ignoring
Layout Managers, programmers need to do the exact posi-
tioning of all the components, which can be many lines of
code.

We decided to implement a custom layout manager thatSolution

places the UI widgets with respecting Selexel rules. The
advantage of this approach is having a reusable tool that
every programmer can use it in order to have Selexel-based
UI. This idea leads us to design our third prototype.

6.3 Prototype 3: Custom Layout Manager
and Transparent Layer

As explained in the previous prototype, we take advantage
of Layout Managers, in order to layout our UI with respect
to Selexel constraints. We called this custom Layout Man-
ager Selexel Layout Manager (SLM).



6.3 Prototype 3: Custom Layout Manager and Transparent Layer 63

SLM’s algorithm step by step is as following:

• SLM takes the original locations and sizes of the UI
components

• It computes the Selexel grid borders according to the
Selexel size; each cell of the grid is a container itself
with the size of one Selexel.

• For all the containers, it recursively checks if the cor-
responding Layout Manager is a SLM; if not it will
convert it to a SLM.

For converting to an SLM the following steps are done:

• If the current widget is Selectable then put it inside a
Selexel that is free of any selectable widget.

• If the current widget is a non-selectable widget or a
container no specific Selexel constraint exists; i.e., act
as standard Layout Managers

This approach works well for adapting already created UIs
(having their own Standard Layout Managers), and also for
starting to create a UI with this Layout Manager. It tries to
keep the location and size features of the components and
perform minimum changes necessary for adaptation.

6.3.1 Challenges

With having a Selexel grid for our layout and alignment,
we may need to put the widgets further from each other,
in comparison to their original distance together. Conse-
quently, we may face a situation, which the original loca-
tion of a widget is occupied by another widget added be-
fore. The question is where to put this widget. Our solution
to this problem was to put the widget in the first free near-
est neighborhood. This method is explained more in the
Design chapter; see figure ??.



64 6 Design Process

Figure 6.7: An example of a standard layout. This layout can not
be changed, while adaptation.

The problem we faced, was the semantic meaning of theFaced Problems

UI, i.e., each programmer, while implementing a UI, has
his own intentions and purposes, which SLM can not know
about it. What SLM does is basically adding the UI compo-
nents to the Selexel grid, while ensuring the Selexel rules. If
a widget can not be placed in its original location, it will be
placed in its nearest neighborhood, which is a good guess,
but not always exactly how the programmer intended it to
be. To demonstrate this problem, lets look at the example
UI in figure 6.7. This is a virtual keyboard. The Layout of
a keyboard is standard and should not be changed because
of adaptation purposes. SLM will not keep the layout as it
is, by using the nearest neighborhood algorithm.

Our solution to this problem was to take the original Lay-
out Managers, the programmer has used in to account, and
guess the intended positioning of the components accord-
ingly. This approach formed our 4th (last) prototype.

6.4 Prototype 4: Selexel Layout Manager
hierarchy

In our last prototype, we tried to have a closer guess about
the location decision. Although prototype 3 was already
using the nearest neighborhood, in order to relocate the
components close to the intended location, it is still not
clear at this point, which of the neighbors should have pri-
ority to others. In some cases, e.g., in the Grid Layout
it makes more sense to scale the whole layout and even
change the size of the components, since when a program-



6.4 Prototype 4: Selexel Layout Manager hierarchy 65

Figure 6.8: calculator layout.

mer use this Layout Manager, in order to lay out his UI, it
means he intended to make some components in rows and
columns with the same size. In such cases, when the com-
ponents needs to stand further from each other, it is bet-
ter to make the size of the components bigger, so that after
putting them inside the Selexel grid they still stand closely
together and make the UI looking less different. In different
application scenarios the UI designer might want to present



66 6 Design Process

a different layout, which needs some semantic information
about the context of the UI.

Our solution for this problem was to write different Selexel-
based version of the standard Layout Managers, such as
Flow Layout, Grid Layout, Border Layout, etc. Each of
these versions are acting according to the original Layout
Managers they are based on, besides respecting the Selexel
rules. Selexel Flow Layout Manager, e.g., is a Selexel-based
Flow Layout Manager that besides ensuring the Selexel
constraints, is following the Flow Layout Manager policy
for putting the components on the screen. Flow Layout
manager in Java doesn’t use the nearest neighborhood al-
gorithm we used in the SLM, but just put the added com-
ponent on the right side, next to the previous component;
see figures 4.2 and 4.3.

For achieving this goal we have sub classed the SLM to dif-

Figure 6.9: The hierarchy of Selexel Layout Manger classification

ferent Layout Managers; see 6.9

This approach help us to have a good guess for location
and size decisions, but as showed in figure 6.7 there are
some more complicated situations that the layout needs to
remain in the frame of the same concept, and in this case
the semantic information is missing to the system.

The way this prototype works is similar to prototype 3. The
difference is in the Convert part. The Algorithm checks
which Layout Manager type the container has originally



6.4 Prototype 4: Selexel Layout Manager hierarchy 67

and convert the container to the Selexel-based version of
it. For example if the original Layout Manager is Flow Lay-
out then it will be converted to Selexel Flow Layout. In
the cases that the Layout Manager is a customized one, im-
plemented by the programmer, the nearest neighborhood
algorithm is taken in order to make the best guess of the
widgets’ locations. The convert function can be imagine as
a translator from the original Layout Manager to the corre-
sponding Selexel-based one.

For the Multi User Applications rule number 4 says:

SELEXEL RULE 4: MULTI USER RULE:
Get the maximum size of the Selexel in the case of multi-
user applications.

Definition:

Selexel Rule 4: Multi

User Rule

In this case the shared UI will be adapted according to the
sampling rate and sampling resolution of the weakest in-
put device; therefore, all the users with all kind of input de-
vice power can fluidly interact with the application without
having any advantage because of having an input device
with better technical specifications.

More Information about our final prototype is given in the
Design chapter.





69

Chapter 7

Evaluation

“Anyone who has never made a mistake has
never tried anything new.”

—Albert Einstein

7.1 Experiment 1

7.1.1 Introduction

This experiment was a preliminary evaluation of Selexel
framework, comparing mobile phone (using Sweep tech-
nique) with some standard input devices, namely: joystick,
gyro mouse, and mouse.

As mentioned before, researchers are working on novel in-
teraction devices for Ubiquitous Computing applications.
These input devices need to be tested, while they are in the
prototype phases of development. Fair evaluation of these
new techniques against the standard input techniques is
difficult, since the standard input devices are more estab-
lished. The prototype input devices, such as Sweep mobile
phone, usually suffer from low expressiveness. In order to
fairly compare Sweep mobile phone with other input de-
vices, we need to test them under equal conditions, i.e., we



70 7 Evaluation

need to test them all under low expressiveness situation.

With running this experiment we wanted to test if the mo-
bile phone performs better than other selected input de-
vices.

7.1.2 Experiment Design

Figure 7.1: User is doing the tapping test with a mobile phone
which was running the Sweep technique.

This user study is done with a within-group design. In aWithin-group design

within-group experiment design, all of the users test all the
systems, unlike the between-group design, that each user
just test one system, [Nielsen, 1993]. In this experiment we
let all the users to do the experiment with all the selected
input devices.

The test application was the horizontal tapping test, men-Technical Details

tioned in ISO [2000]. As you can see in picture 7.1, the out-
put device was a large public display (a 40-inch NEC LCD
screen) and the users needed to use 4 different input de-
vices in order to interact with the application. The task was
to reach the target on the screen, which was a red-colored
rectangle, and clicking on it. The application was hiding the



7.1 Experiment 1 71

cursor and showing a rectangular-shaped Selexel cursor on
the screen. After clicking the target, it disappears and the
second target will appear on the other side of the screen.

The input devices included a Logitech MX900 Bluetooth
optical mouse, a Gyration GyroRemote gyromouse, a Log-
itech Freedom 2.4 cordless joystick, and the Sweep tech-
nique running on a Nokia 7610 mobile phone.

Figure 7.2: The 4 different input devices we used for Experiment
1.

In the test application, changing the level of expressiveness
was simulated by varying the display refresh rate. In or-
der to store all the samples, we have buffered all the device
motions, till the display was refreshed. Consequently the
sampling resolution for a single sample was effectively in-
creased, but the frequency of the samples were decreased.
This allowed for a consistent feel of the sensitivity of the de-
vice in terms of screen distance across the different selexel
resolutions. For the case of low expressiveness in this ex-
periment the Selexel resolution was 20x15, and the display
refresh interval equaled 80 ms.

Three different Index of Difficulties (ID) are considered
with values of 1.7, 2.7, and 3.7. The data set can be found



72 7 Evaluation

in appendix 3. This provided a total of 12 (3 IDs * 4 input
devices) different tapping tests for each user. The tests were
grouped first by device, and then the users would complete
all indices of difficulty for each device.

The order of devices, and index of difficulty for each user
and each condition was alternated to minimize learning ef-
fects. At the beginning of each new device, users were
given a couple of minutes to practice with the technique un-
til they felt comfortable. We encouraged the users to do the
task as quickly and accurately as possible. To motivate our
participants, we offered a prize for the best overall score
where points would be added for speed and reduced for
errors. In order to simulate a large public display inter-
action, we asked users to stand for all interactions except
with the mouse. The interaction took place while standing
(or sitting in the case of the mouse) one meter away from
the screen.

Totally 16 users participated in the study, 19% female. Age
of the participants ranged from 22 to 29.
93% of the participants claimed to use the mouse every day,
and the remaining participants reported a high frequency
of use. 31% had never used a joystick, 38% less than once a
month, and 25% once a month or more. None of our users
had ever used a gyromouse. 93% had never used the Sweep
technique, and the remaining had used it only once in an
open house demonstration earlier in the year.

7.1.3 Results

The results for the tapping test are depicted graphically in
figure 7.3

The results for the linear regression analysis are as follows:

Mouse : MT = 0.224 + 0.280ID(R2 = 1.00) (7.1)
Joystick : MT = 0.0294 + 0.644ID(R2 = .996) (7.2)

Gyromouse : MT = 0.0036 + 0.484ID(R2 = .992) (7.3)
Sweep : MT = 0.235 + 1.14ID(R2 = 1.00) (7.4)



7.1 Experiment 1 73

Figure 7.3: Graphs of the results from the user test showing the
fit of the models with actual data.

7.1.4 Discussion

The Sweep technique still performs far worse than the other
input techniques in terms of task performance, even though
we have examined them in a way that is relatively indepen-
dent of resolution and sample rate. That means that other
factors might be at play that are affecting relative perfor-
mance.We have identified the following possibilities:

• Error rate: The motion detection algorithm used in
the Sweep technique is not perfect and does make
errors in the direction and magnitude of the move-
ment detected. This can impede progress towards the
intended target. This factor is theoretically easy to
counter balance in an evaluation by intentionally in-
corporating errors into the input of other input tech-
niques. However, it is very difficult to accurately
characterize the error rate of the system.

• Variance of lag: The Bluetooth profile used on the
mobile phone (SPP) only supports “guaranteed de-
livery”, meaning that if a packet is lost or corrupted it
must be resent, slowing down the data transmission.
Although the average sample interval of the Sweep
technique was faster than 80ms, the variance of the
lag could push the sample interval above that thresh-
old. In contrast, the Bluetooth profile used by the



74 7 Evaluation

mouse (HID) is optimized for input devices and does
not necessarily guarantee delivery of packets. Vari-
ance of delay has been shown to increase task perfor-
mance time [Park and Kenyon, 1999], but no model
has been developed to isolate its effect.

• Ergonomics: The mobile phone has not been de-
signed with the Sweep interaction in mind. The shape
and position of buttons on the gyromouse, for exam-
ple, make it much more appropriate for these types
of pointing tasks. With the gyromouse, the clutch is
located underneath the device to make it feel like a
trigger, learning from the stability considerations that
go into weapons design. It would be appropriate to
consider alternative form factors of the mobile phone
with these interactions in mind.

Clearly task performance time is not the sole indicator that
should be considered in judging a device, but it is an im-
portant one. Had the task performance time of the Sweep
technique been closer to that of the rest of the devices, it
would have been beneficial to examine the technique un-
der several different lag conditions and perform a regres-
sion analysis to determine the device specific constants for
the MacKenzie and Ware lag model, [Mackenzie and Ware,
1993].

7.2 Experiment 2

7.2.1 Introduction

As explained in Related Work (Area cursor), a Selexel cur-
sor is like an area cursor in pixel space, but in a Selexel
space,which is the space of our purpose, it is acting like a
point cursor. According to the previous analysis of area cur-
sors[Worden et al., 1997], the index of difficulty decreases
while selecting smaller targets with area cursors. A Selexel-
wise motion may impede or annoy users, since users expect
a pixel-wise motion. Therefore, it is important to determine
empirically whether Fitts’ law holds for Selexel cursors.



7.2 Experiment 2 75

7.2.2 Experiment Design

This experiment has used the same test application as ex-
periment 1. The experiment design was within-group like
the previous experiment, i.e., all the users have tried all the
test conditions. Our goal for this user study was to show
that pointing in the selection space can be modeled using
Fitts’ Law. The input device was just the bluetooth mouse
from the previous experiment and the output device was
an Apple Cinema Display 23”.
20 participants have taken part in this user study. We had 6
different levels of expressiveness. A special test program
allowed us to simulate different levels of expressiveness
by varying the selexel resolution and the display refresh
rate. Six different lndex of difficulties (ID) were considered,
which was the result of 2 different distances between tar-
gets and 3 different target widths. Therefore we had 36 (6
expressiveness * 6 ID) combinations that the users needed
to do. The detailed data set can be found in appendix 3.

7.2.3 Results

The result of this user study is graphically shown in figure
7.4 The results approved that pointing in the selection space
can be modeled by Fitts’ Law. More information will be
published in CHI 2007, [Ballagas, 2007].



76 7 Evaluation

Figure 7.4: Graphs of the results from the user test showing that pointing in Selection space
can be be modeled using Fitts’ Law.



77

Chapter 8

Summary and future
work

“Imagination is more important than
knowledge...”

—Albert Einstein

8.1 Summary and contributions

Selexel framework is a conceptual framework that allows
the user interface to be tailored to match the expressive-
ness of the input device, without sacrificing the screen res-
olution which is important to preserve the information ca-
pacity of the display. We have shown how this framework
can be used as a design tool for applications intended to
be used with low-expressiveness input by matching the se-
lection space of the application to the expressiveness of the
input device. By this adaptation all the users with differ-
ent input devices can enjoy an equally-smooth experience
of interaction.

Our evaluation shows that pointing under the selexel
framework can be modeled using Fitts’ Law, regardless of
the selexel resolution.



78 8 Summary and future work

Selexel Toolkit is an implemented prototype of Selexel soft-
ware framework. It allows rapid adaptation of Java Swing
applications to the attached low expressiveness input de-
vice.
The main feature of this Layer-based approach is reusabil-
ity. The GUI programmers can adapt their own already-
created UIs, just by adding a few lines of code. Selexel
Toolkit tries to keep the original size and the location of
the UI components, as far as they respect the Selexel con-
straints.

The Toolkit makes a good guess for placing the components
in the case of Flow- and Grid Layout Managers. An ap-
proximate location decision is given,by using the nearest
neighborhood algorithm, for other Java standard Layout
Managers, and also for programmers’ custom Layout Man-
agers.

8.2 Future work

Although the Selexel framework has achieved its main
goal, there are some improvement possibilities that can
make the framework more robust against different appli-
cation scenarios.

The problems the current system has and the possible
solutions for them are as below:

• Lack of enough space on the screen:

With wider Selexel sizes, the Toolkit will make
the selectable widgets further and further from each
other, and the probability of not having enough space
on the screen to show all the widgets, gets higher.

A solution can be to add the extra widgets in-
side different Tabs, or make a Scroll bar for the GUI
so that the user can access all the widgets.

• Semantic UI adaptation:



8.2 Future work 79

Although the Toolkit is adapting according to
the specific Layout Managers the programmer has
used, but the exact information about the UI context
and the purpose behind the UI is not visible to
the Toolkit. This lack of semantics can cause some
meaningless, adapted UIs that can not achieve the
intended purpose of the programmer anymore.
There are two different approaches to solve this
problem:

– Automatic adaptation:

In this case, we just want to allow the automatic
adaptation of the UI, without programmers’
help.
The solution in this case can be to continue the
approach we have taken, and implement Selexel
versions of other standard Layout Managers,
e.g., BorderLayout

– User configurable:

The programmer is allowed to help the Se-
lexel Toolkit with understanding the context
and logical information behind the UI.
An Intelligent Selexel Layout Manager with
policy configuration files can solve the problem.
The programmer can give his priorities to the
system by adjusting the policy configuration
files and the Selexel Toolkit can change its
placing and resizing policy accordingly.

• Selexel Toolkit is just able to handle the full screen
Java Swing applications:

In the future one can extend it to be used also
for resizable window applications.
Having resizable window application is challenging,
since when one resizes or moves the window, the
cursor alignment would be hard to preserve.

• Selexel Toolkit doesn’t work with the widgets that
are instance of Adjustable Interface:



80 8 Summary and future work

Adjustable Interface is the interface for objects
which have an adjustable numeric value contained
within a bounded range of values. Subclasses of this
interface are JScrollBar and ScrollBar, namely the
widgets that have the scrolling abilities, such as a
ScrollPane.
The reason is that: firstly, the containers with this
feature have a special Layout Manager called Scroll-
PaneLayout, which can not be converted to other
kinds of Layout Managers. Therefore our attempt to
convert it to the SelexelLayoutManager failed.

Secondly, the scroll-abled widgets needed to be
treated especially, in order to obey the Selexel con-
straints. More precisely, all the Selexels that the scroll
bar is occupying must be free of any other selectable
widgets, since during the scrolling task the moving
part of the scroll bar, which is a selectable item itself,
is passing by all these Selexels.
A solution to this problem is subclassing the Scroll-
PaneLayout to SelexelScrollPaneLayout and make
the changes needed to this subclass.

• The cursor is currently a simple gray rectangle:

Adding some cursor effects, such as, changing
its shape in the waiting mode can give the users more
feedback about the current status of the application.

• More powerful programming language:

While implementing the Selexel versions of standard
Layout Manager, the need of using another language
for this purpose was felt. The best way for imple-
menting the Selexel-based versions of Java standard
Layout Managers would be to extend both Selexel-
LayoutManager and the original Layout Manager,
which is not possible in Java programming.



81

Appendix A

Selexel Golden Rules

The Selexels rules are briefly presented in this appendix, in
order to facilitate a quick look, when this thesis refers to
them in some chapters.

Selexel Rule 1: Selexel Size Rule

Selexel size is computed just according to the sampling rate
and sampling resolution of the input device. As long as the
sampling rate and sampling resolution of the input device
are unchanged, the selexel size also remains unchanged.

Selexel Rule 2: Rule of One Selectable Item

No more than one selectable widget can be in the same Se-
lexel.

Selexel Rule 3: Selexel Alignment

The widget placement should be aligned with the Selexel
grid.

Selexel Rule 4: Multi User Rule

Get the maximum size of the Selexel in the case of multi-
user applications.





83

Appendix B

Hello World Swing Code



84 B Hello World Swing Code

Figure B.1: Hello World Swing before adaptation.



85

Figure B.2: Hello World Swing after adaptation.





87

Appendix C

User Study

You can find the data used in the experiment number 2 be-
low.

Figure C.1: This table shows the data used for the experiment
number 2.

One of the UI examples implemented was an application
which can search in Flickr1 data base for finding the entered
keywords. As you can see also in the pictures the user can
select a picture on the screen, and the selected picture will
be shown on the right side of the screen in its original size.
This application has used SelexelFlowLayout and also Se-
lexelGridLayout for laying out the picture album in the left
side of the screen.

1www.flickr.com

www.flickr.com


88 C User Study

Figure C.2: The data used for the experiment number 2.



89

Figure C.3: A picture of a user interacting by Sweep mobile
phone with the large public display. The UI example used here
is the Flickr application.



90 C User Study

Figure C.4: A picture of a user interacting by Sweep mobile
phone with the large public display. The UI example used here
is the Flickr application.



91

Bibliography

R. M. Baecker and W. A. S. Buxton. Human-computer in-
teraction: a multidisciplinary approach. Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA, 1987.

R. Ballagas, M. Rohs, J. G. Sheridan, and J. Borchers. Sweep
and point & shoot: Phonecam-based interactions for
large public displays. CHI ’05’: Extended abstracts of the
2005 conference on human factors and computing systems.,
2005.

Tico Ballagas. Selexels: a conceptual framework for point-
ing devices with low expressiveness. CHI 2007, 2007.

Patrick Baudisch, Xing Xie, Chong Wang, and Wei-Ying Ma.
Collapse-to-zoom: viewing web pages on small screen
devices by interactively removing irrelevant content. In
Proceedings of the 17th annual ACM symposium on User in-
terface software and technology, pages 91–94. ACM Press,
2004.

S. K. Card. Intelligent Interfaces: Theory, Research and Design.
Elsvier Science Publishers B.V., North-Holand, Amester-
dam, 1989.

Stuart K. Card, Jock D. Mackinlay, and George G. Robert-
son. A morphological analysis of the design space of in-
put devices a morphological analysis of the design space
of input devicesa morphological analysis of the design
space of input devices. ACM Transactions on Information
Systems (TOIS), 9(Issue 2):99–122, April 1991.

Andrew T. Duchowski. Eye tracking methodology: theory and
practice. Springer, 2003.

Krzysztof Gajos and Daniel S. Weld. Supple: automati-
cally generating user interfaces. In IUI ’04: Proceedings of



92 Bibliography

the 9th international conference on Intelligent user interface,
pages 93–100. ACM Press, 2004.

Krzysztof Gajos, David Christianson, Raphael Hoffmann,
Tal Shaked, Kiera Henning, Jing Jing Long, and Daniel S.
Weld. Fast and robust interface generation for ubiqui-
tous applications. In UbiComp 2005: Ubiquitous Comput-
ing, 2005.

G. Goos, J. Hartmanis, and J. van Leeuwen, editors. Social
Aspects of Using Large Public Interactive Displays for Collab-
oration, 2002. Springer.

Tovi Grossman and Ravin Balakrishnan. The bubble cur-
sor: enhancing target acquisition by dynamic resizing of
the cursor’s activation area. In CHI ’05: Proceedings of the
SIGCHI conference on Human factors in computing systems,
pages 281–290. ACM Press, 2005.

Antonio Haro, Koichi Mori, Vidya Setlur, and Tolga Capin.
Mobile camera-based adaptive viewing. In Proceedings
of the 4th international conference on Mobile and ubiquitous
multimedia, pages 78–83. ACM Press, 2005.

Yoshihide Hosokawa, Naoki Kimura, and Naohisa Taka-
hashi. An implementation method of a location-based ac-
tive map transformation system. In Proceedings of the 6th
international conference on Mobile data management, pages
13–21. ACM Press, 2005.

ISO. Ergonomic requirements for office work with visual
display terminals (vdts) - requirements for non-keyboard
input devices. ISO 9241-1, 2000.

Poika Isokoski. Text input methods for eye trackers using
off-screen targets. In Proceedings of the symposium on eye
tracking research and applications. University of Tampere,
November 2000.

Robert J.K. Jacob. Eye tracking in advanced interface de-
sign. In Advanced Interface Design and Virtual Environ-
ments, pages 258–288. Oxford University Press, 1994.

P. Kabbash and W. Buxton. The “prince” technique:
Fitts’ law and selection using area cursors the “prince”
technique: Fitts’ law and selection using area cursthe
“prince” technique: Fitts’ law and selection using area



Bibliography 93

cursors ors. In Proceedings of CHI’95, pages 273–279. ACM
Press/Addison-Wesley, 1995.

I. Scott Mackenzie and Colin Ware. Lag as a determinant
of human performance in interactive systems. In CHI
’93: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 488–493, Amsterdam, The
Netherlands, 1993. ACM Press.

Kento Miyaoku, Suguru Higashino, and Yoshinobu Tono-
mura. C-blink: a hue-difference-based light signal
marker for large screen interaction via any mobile ter-
minal. In UIST ’04: Proceedings of the 17th annual ACM
symposium on User interface software and technology, pages
147–156, 2004.

Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph
Hughes, Thomas K. Harris, Roni Rosenfeld, and
Mathilde Pignol. Generating remote control interfaces
for complex appliances. In UIST ’02: Proceedings of the
15th annual ACM symposium on User interface software and
technology, pages 161–170. ACM Press, 2002.

Jakob Nielsen. Iterative user-interface design. IEEE Com-
puter, 26(11), 1993.

K. S. Park and R. V. Kenyon. Effects of network charac-
teristics on human performance in a collaborative virtual
environment. In VR ’99: Proceedings of the IEEE Virtual
Reality., Washington, DC, USA, 1999. IEEE Computer So-
cienty.

Shankar R. Ponnekanti, Brian Lee, Armando Fox, Pat Han-
rahan, and Terry Winograd. Icrafter: A service frame-
work for ubiquitous computing environments. In Ubi-
comp 2001: Ubiquitous Computing, 2001.

Virpi Roto, Andrei Popescu, Antti Koivisto, and Elina Var-
tiainen. Minimap – a web page visualization method for
mobile phones. In Proceedings of the SIGCHI conference
on Human Factors in computing systems, 17, pages 35–44.
ACM Press, 2006.

Johan Sanneblad and Lars Erik Holmquist. Ubiquitous
graphics: Combining hand-held and wall-size displays



94 Bibliography

to interact with large images. In Proceedings of the work-
ing conference on Advanced visual interfaces, pages 373–377.
ACM Press, 2006.

Von Kathy Walrath, Mary Campione, Alison Huml, and
Sharon Zakhour. The Jfc Swing Tutorial: A Guide to Con-
structing GUIs. Addison-Wesley Professional, 2004.

M. Weiser. The computer for the 21st century. Scientific
American, 265(94-104), 1991.

Aileen Worden, Nef Walker, Krishna Bharat, and Scott
Hudson. Making computers easier for older adults to
use: area cursors and sticky icons. In CHI ’97: Proceedings
of the SIGCHI conference on Human factors in computing sys-
tems, pages 266–271. ACM Press, 1997.



95

Index

Area cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Bubble cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Ergonomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Experiment Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
EyeTracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Flow Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Gyro mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

iCrafter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Large Public Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Low expressiveness input device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

nearest neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Personal Universal Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Primitive Movement Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
scroll bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Selexel Glass Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Selexel Golden Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
SelexelLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SelexelListener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Selexels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Semantic UI adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
SUPPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Sweep technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Taxonomy for Input Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Ubiquitous Computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1



Typeset October 5, 2006


	Abstract
	Acknowledgements
	Conventions
	Introduction
	Background
	Motivation

	Theory
	Expressiveness of Input Devices
	Selexels
	Layout Manager
	What is a Layout Manager
	Without Layout Managers
	Custom Layout Managers

	Glass Pane

	Related work
	Automatic Generation of UI
	ICrafter
	PUC
	SUPPLE
	Comparison With Selexels

	Area Cursor
	Comparison With Selexels 

	Interaction with Large Public Displays with Mobile Devices
	Comparison With Selexels 


	Design
	Goals
	Selexels Constraints
	3-Layered Architecture of the Selexel Framework
	Layer 1: Selexel Transparent Layer (Selexel Glass Pane)
	Layer 2: Original User Interface
	Layer 3: Selexel Layout Manager

	Diversity of Layout Managers

	Implementation
	Implementation components
	SelexelGlassPane
	SelexelListener
	SelexelLayout
	SelexelFlowLayout
	SelexelGridLayout
	SelexelJPanel

	Implementation Challenges
	Original Location
	Minimum Lines of Code for Adaptation
	The Layout Manager of unit Selexel Containers (SelexelJPanel)
	Layout Manager or Layout Manager 2

	How to Adapt an already existing UI
	How to write a new Selexel-based UI
	How to implement a custom Layout Manager
	How to implement your own Selexel-based Layout Manager

	Design Process
	Prototype 1: Fitts' Law
	Prototype 2: Selexel-based SUPPLE Toolkit
	Why SUPPLE Toolkit
	Challenges

	Prototype 3: Custom Layout Manager and Transparent Layer
	Challenges

	Prototype 4: Selexel Layout Manager hierarchy

	Evaluation
	Experiment 1
	Introduction
	Experiment Design
	Results
	Discussion

	Experiment 2
	Introduction
	Experiment Design
	Results


	Summary and future work
	Summary and contributions
	Future work

	Selexel Golden Rules
	Hello World Swing Code
	User Study
	Bibliography
	Index

