
by
Devashish Jasani

Realizing Elastic
Design Principles for

User Exploration in
Bayesian Analysis

Master’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Dr. Matthias Kaiser, SAP SE

Registration date: 01.07.2016
Submission date: 13.02.2017

Eidesstattliche Versicherung

___________________________ ___________________________

Name, Vorname Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__
__
__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________

Ort, Datum Unterschrift

ii

v

Contents

Abstract xi

Acknowledgements xiii

Conventions xv

1 Introduction 1

1.1 Contributions 5

1.2 Outline . 5

2 Related Work 7

2.1 Complex Problem Solving 7

2.1.1 Characteristics of Complex Problem
Solving 8

2.1.2 Core Activities 11

2.2 Activity Theory 13

2.3 End User Development 15

3 Transformative User Experience Design 19

vi Contents

3.1 TUX proposed system architecture 20

3.1.1 Task Context 21

3.1.2 Task Object 22

4 Bayesian Analysis Theory 25

4.1 Theory . 26

4.2 Performing Bayesian analysis with a simple
example . 27

4.3 Workflow . 29

5 Interaction Design 31

5.1 Design Requirements and Conception 31

5.2 Design . 35

5.2.1 TUX Container design 37

5.2.2 TUX object design 38

5.2.3 Sourcing Application 39

5.2.4 Planning Application 42

5.2.5 Grouping Application 43

5.2.6 Comparing Application 46

5.2.7 Visualizing Application 47

6 Implementation 51

6.1 Web Components and Polymer 52

6.1.1 Custom Elements 53

Contents vii

6.1.2 Shadow DOM 54

6.1.3 HTML Imports 54

6.2 Component Based Behavior 55

6.2.1 CBB Implementation 56

6.2.2 Model Behavior 58

6.2.3 Draggable Behavior 61

6.2.4 Dropzone Behavior 62

6.2.5 Behavior Sortable 62

6.3 Implementing Task objects and containers . . 62

6.4 Implementation for Bayesian Analysis 65

7 Evaluation 67

7.1 User Study Protocol 67

7.1.1 Setup 67

7.1.2 Procedure 68

7.1.3 Method of Analysis 69

7.1.4 Participants 71

7.2 Results . 71

7.2.1 System Usability 71

7.2.2 Freedom offered by the system 72

7.2.3 User Feedback 74

8 Summary and future work 77

viii Contents

8.1 Summary . 77

8.2 Future work 79

A Appendix for User Study 81

Bibliography 85

Index 89

ix

List of Figures

3.1 Contextual Consumption of Business Entities 24

5.1 Prototype showing applications arranged on
a canvas a.k.a workspace 36

5.2 Describes the common design and behavior
of (a) Task containers, (b) Task objects 38

5.3 Prototype of spreadsheet application with
interactions for mouse hover over and
mouse click for a particular cell 40

5.4 Dragging cell in a spreadsheet application . . 40

5.5 Describes interactions for mouse hover over
a column header 41

5.6 Shows a snapshot of the final implemented
version of Sourcing application 41

5.7 Describes the interface for planning container 43

5.8 Describes the interface for Grouping container. 44

5.9 Shows the interface for grouping after drop-
ping a file in the suggestions area. 45

5.10 Describes the interface for Comparing appli-
cation. 46

x List of Figures

5.11 Shows the interface for comparing applica-
tion after dropping two files. Each file is vi-
sualized as a table. 47

5.12 Comparing result gets rendered and the re-
sult is displayed as a chart. Alternative tab-
ular visualization option is also provided. . . 48

5.13 Interface for visualizing application 49

5.14 Shows the interface after dropping group
”Group=Condition” from Grouping appli-
caiton into the Visualizing Container. 49

5.15 Shows how to create a custom visualization. 50

5.16 All applications arranged on a canvas. 50

6.1 Shows (a) vanilla button on mouse click (b)
button with a paper-ripple behavior 57

7.1 Grade ranking of SUS scores from [Bangor
et al., 2009] . 72

A.1 Collecting user details and demographic
data form . 82

A.2 SUS form . 83

A.3 Feedback . 84

xi

Abstract

People use multiple tools and standardized practices during their day to day
work. But while conducting complex investigations alongside these standardized
tools and practices, problem solvers bring their intent, insight and ingenuity
to shape data, tasks, methods, processes and strategies. Our vision centers on
understanding and designing for synergetic activities in user’s dynamic work to
ensure that applications for complex problem solving are truly useful. Designing
useful software support for such complex inquires fosters exploratory analysis,
adaptation to dynamic work needs and extends knowledge and communication.

Transformative User Experience (TUX) approach emphasizes on elasticity being the
inherent quality of such a system, which enables users to spontaneously reshape
their environment and the meaning of objects during usage. Using research in
the field of complex problem solving, Activity Theory as the theoretical HCI
framework for task analysis, TUX and Direct manipulation as our core conceptual
frameworks, we narrowed down requirements and design implications to build
generic useful software support for complex problem solving and implement the
same using an open source web-components library, Polymer. After realizing
generic software support for complex problem solving we integrate abilities for
appropriating our system for Bayesian analysis.

We conducted a qualitative user study with seven participants to measure the
usability and exploratory power of our system. Results from the study show that
the system allowed enough freedom for participants to explore a given problem
landscape in their own independent way, not bound by a predefined workflow to
achieve their goals.

xiii

Acknowledgements

I would like to thank Krishna Subramaniam, M.Sc., my supervisor for your
constant support and feedback. I really appreciate your patience and help in spite
of me being a remote thesis student. I would also like to thank Prof. Jan Borchers
for providing me an opportunity to work on my thesis under your department’s
supervision.

Secondly, I would like to thank Markus Latzina for this opportunity to work on
the very exciting area of TUX. It has been a valuable and enriching experience to
be able to work on this thesis with you. I would like to thank Dr. Matthias Kaiser
for becoming my thesis second supervisor. Your insights have helped me think
beyond. I would like to thank Dr. Knut Manske for providing a stimulating and
challenging environment at SAP for my thesis.

I would like to thank all users who gave their valuable time and participated in the
user study.

I would also like to thank my friends Srivatsan, Stephen, Chitresh, Shilpa, Ravi,
Sara, Mujtaba and everyone else for all the patience and advice.

Finally I would like to thank my parents, my siter and Ananya Kuri for their
constant support in my life.

Thank you very much!
Devashish

xv

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point
in a book, usually in an appendix, or digressions in a
written text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in Canadian English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file

http://hci.rwth-aachen.de/public/folder/file_number.file

1

Chapter 1

Introduction

“If it is so critical to understand the particular
users of a product, then what happens when a

product is designed to be used by almost anyone in
the world? This is paradoxical”

—Donald Norman [Norman, 2005]

Problem solving is an elemental part of our everyday People use their own
creativity, insight and
experience to solve a
problem uniquely in
their own style.

lives. We do problem solving rite from deciding which
restaurant to eat at tonight; what apartment to rent;
fixing and assembling furniture at home; finding the
shortest commute to work; applying for income tax return;
to writing a complex software; devising a new market
strategy. We use multiple tools embedded in our work and
home environments to resolve issues at hand. Sometimes
we use standardized mechanisms like assembling furniture
by looking at a user self construction guide. Follow best
practices and rules like using the seven hat technique
during brain storming. At times, we encounter problems
where there is no clear starting point of investigation nor an
end point; new problems and opportunities keep emerging
the more we explore. There may be enormous amount
of data involved which needs to be analyzed or there
may not be a clear correct answer. A few examples of
such problems are performing market research, hiring a
candidate, developing a project plan, prescribing a course
of medical treatment for a patient. In such situations,

2 1 Introduction

problem solvers may require automated and standardized
tasks and processes from time to time, but at some point
while conducting complex investigations they would be
required to bring their own insight, ingenuity and intent
to shape data, tasks, methods, processes and strategies. All
of this makes a problem complex.

Complex problems are difficult to solve because ofComplex
interdependencies,
encountering new

problems on the fly
and evolving goals

characterize complex
problems.

their contradicting, constantly changing and incomplete
requirements, which are often difficult to recognize. And,
due to complex interdependencies, the pursuit to resolving
one aspect of such a problem may unveil or fabricate other
problems. Complex tasks may use mostly standardized
and automated processes and have definite right answers
but are complex because of the volume and complexity of
data and or have numerous permutations or possibilities
to explore. These characteristics of complex problem
solving imbibed in multiple contexts fuel the strategies that
problem solvers follow.

Barbara Mirel records the following anecdotes from her
interviews and study with professionals from various
walks of life. The anecdotes describe how difficult it is to
use softwares for complex problem solving [Mirel, 2003]:

• Director of category management at a well known retailing
firm expressed that their analysts are so overwhelmed
by information that they end up hurling data without
even analyzing it properly. They need software support
that helps them make sense of the numbers from different
perspectives.

• Nursing Manager at a popular countrywide hospitals
association said that their drug program did not aim to
disrupt or curb clinical judgment, but it certainly did. This
restricted what their nurses could do and when and how
they could do it. The program caused more problems than
it solved.

• Network Analyst at telecommunications company shared
that his biggest problems were in getting data from
distributed resources. And, this was greater challenge to
him than the problem of visualizing it.

3

• Analyst at an HR firm mentioned that data cubes are a
very useful tool for performing arduous analysis but he
kept getting lost once he drilled down deeper and deeper
into it.

• John Dalton in the Forrester Research Technology report
quotes that applications for complex problem solving are
hideously difficult to use and usability enhancements for
such systems are no better than putting makeup on a pig.

Software support for complex problem solving needs A flexible software
architecture is
required to support a
novel and flexible
user interface for
complex problem
solving.

to cater to uncertainty and exploration. While problem
solvers conduct their investigations, goals, deployed
methods and their strategies keep evolving and changing
on the fly. For software to be truly useful in this regard,
usefulness needs to be ingrained into all aspects of product
development and not just the interface. Its architecture,
interface, modules, features and functionality should be
such that it endows users with flexibility and adaptability
for their emergent and dynamic inquiries [Mirel, 2003].
Inventing novel design paradigms to support for such
control and flexibility will be in vain if software architecture
has not been planned for.

Previously designers were predominantly concerned Designers should
develop systems that
enable design by end
users at runtime.

with understanding and supporting tasks, which people
perform to achieve clear predetermined goals. Issues
related to why an individual carries out a task and what
does it mean to the individual were typically placed
outside the scope. Now, interactive technologies have
become a part of our day to day lives and only focusing
on tasks has proven to be insufficient. Understanding
and designing technologies in the context of purposeful
meaningful activities is now a central concern for design
research and practices [Kaptelinin, 2015]. [Henderson and
Kyng, 1992] and [Won et al., 2006] describe the need for
flexible systems and personalized work flows in enterprise
environments. End User development (EUD) [Lieberman
et al., 2006] emphasizes on providing composable features
at runtime to endow end users with the ability to tailor a
system to their personalized needs. Design during use has
been pillar of EUD, the idea of creating static IT artifacts
has still not been challenged. The idea of packaged design

4 1 Introduction

needs to be overcome with the aim to surpass the need for
enabling a system for a concentrated scenario and provide
seamless transition between applications.

Transformative User Experience (TUX) is a novel approachTUX aims to support
users in self defined

workflows.
that aims to natively support users in a variety of
spontaneously self-defined task flows, not limiting them to
work along highly tailored use cases or adopt predefined
patterns of guided procedures. It build on concepts of
End User Development, Meta Design and appropriation.
It introduces concepts of task objects and task containers.
Task objects are data items that are of interest to the
user. Task containers are defined as contexts that host
task objects and localize appearance of task objects to fit
the context on the fly. These containers are underspecified
functionalities which allow users to freely express their
intent and appropriate the container for their specific
goal. Users can use multiple such task containers to
compose their own problem solving environment. Thus,
the user’s task flow is not predefined. It’s goal is to
overcome common application boundaries enabling users
to interact with information in terms of task objects
within dedicated contextual task environments assembled
through interrelated sets of task containers. TUX is all
about situational adaptation of an object as mediated
by technical containers which represents certain task
semantics.

Concepts of TUX go beyond tailorability or flexibilityDifference between
elasticity and

tailorability is that of
water and ice.

or user-driven adaptation in the conventional sense and
introduces elasticity as a generic quality of use. The elasticity
of TUX can help establish continuum between generic
and purposed application by bringing together reusable
platform components in a very organic way while ensuring
continuity regarding the user and task objects. Tailorability
requires user interface to be explicitly composed or shuffled
to fit to a certain form whereas elasticity enables intrinsic
adaptation due to its free-form character. TUX goes beyond
packaged design. Task context are often not mechanic but
grow organically as required in a given situation. TUX
therefore proposes designing IT-artifacts that are elastic
with respect to their meaning and user interface.

1.1 Contributions 5

1.1 Contributions

The contributions of this thesis are as follows:

• We propose a detailed interaction design of generic
applications built using elastic design principles as
proposed in TUX to support users in their self
defined, emergent and exploratory investigations.

• We implement a highly flexible software architecture
based on web-components 1 and realize generic
software support for complex problem solving. We
tailor the system to showcase it in a Bayesian Analysis
scenario.

1.2 Outline

The thesis is structured as follows:

• Chapter 2. In this chapter we present relevant
work that focuses on complex problem solving and
approaches for providing flexible support for it.

• Chapter 3. We elaborate on the principles and
proposed system architectures of Transformative
User Experience design.

• Chapter 4. Here we look into theory and steps
involved in performing Bayesian Analysis.

• Chapter 5. In this chapter we distill system
and design requirements and propose a detailed
interaction design for such a system.

• Chapter 6. Here we discuss a technical framework
based on web components and Google Polymer
library2 to achieve elasticity as proposed by the TUX
approach.

1https://www.webcomponents.org/
2https://www.polymer-project.org/1.0/

6 1 Introduction

• Chapter 7. We describe a study to evaluate the
exploratory power and usability of our system.

• Chapter 8. This chapter concludes the thesis with a
summary of the thesis work and future work.

7

Chapter 2

Related Work

“Certainly, we cannot say that computers have
made us more ’wise’ but the interactions computers

offer do give us more chances to communicate our
thoughts and build wisdom if we only knew how

to...”

—Nathan Shedroff [Shedroff, 1997]

We have come a long way with technological and
sociological advancement since Shedroff quoted this. Our
approach is primarily based on Transformative User
Experience design. TUX is a novel conceptual framework
and so is its realization in the scope of this thesis. There
hasn’t been much research in realizing TUX principles. But,
there have been several research contributions in field of
complex problem solving, End User Development, Meta
Design and Activity Theory. In this chapter, we will look
deeper into these topics and use these insights to later distill
requirements and design implications.

2.1 Complex Problem Solving

Although, the term complexity has been used extensively
in the field of psychology and has been put to use in

8 2 Related Work

different methods and ways, there are no cognitive theories
for it. The way researchers have defined problem solving has
changed over time to reflect their diverse interests. Given
this, it together makes it hard to define complex problem
solving. So, what is complex problem solving?

Horst Willhelm Jakob Rittel, a design theorist and professor
of Design Methodology at the Ulm School of Design
(Germany), is best known for inventing the term wicked
problems. He defines them as :

WICKED PROBLEMS:
Problems that are impossible or difficult to solve because
of its contradicting, constantly changing and incomplete
requirements, that are often difficult to recognize.
And, due to complex interdependencies, the pursuit to
resolving one aspect of a wicked problem may unveil
or fabricate other problems.[Australian Public Service
Commission et al., 2012]

Definition:
Wicked Problems

The term wicked is used to denote resistance to a solution,
rather being evil [Churchman, 1967]. He is renowned for
identifying characteristics that differentiate well-structured
tasks from complex tasks. In this thesis, I accommodate
his interpretation to design useful software support for
complex tasks.

2.1.1 Characteristics of Complex Problem Solving

Two important aspects of wicked problems are itsUncertainty
characterizes wicked

problems.
multi-contextual inquiries and uncertainties. This is
mainly due to large amount information, incomplete
and insufficient data, changing variables with emerging
insights, goals evolve with evolving conditions and
discovering unforeseen insights. During such inquires
problem solvers often are unsure of the effects of their
choices. In complex problem solving uncertainty prevails.
Such uncertainty demands special attention for designing
useful software support.

2.1 Complex Problem Solving 9

People whose work is mostly powered by standardized
tasks and practices or automated processes do not solve
wicked problems, thus have very little need for altering
routines. Complex problem solvers may require automated Well structured tasks

have very little
requirements for
alteration. Complex
problems require
people’s insight,
ingenuity and intent.

and standardized tasks and processes from time to time,
but at some point while conducting complex investigations
they need bring their own insight, ingenuity and intent
to shape data, tasks, methods, processes and strategies.
Sometimes, complex tasks may use mostly standardized
and automated processes and have definite right answers
but are complex because of the volume and complexity of
data and or have numerous permutations or possibilities
to explore. These characteristics of complex problem solving
imbibed in multiple contexts fuel the strategies that
problem solvers follow. These traits distinguish where
well-structured tasks make way for complex tasks.

Characteristics of complex problem solving as adapted from
Horst Rittel are as follows [Rittel, 1984] [Australian Public
Service Commission et al., 2012] [Mirel, 2003]:

• Ill-defined situations and goals. Problem solvers often Difficult to define the
problem form
multiple
perspectives.
Evolving problem
statements leads to
evolving goals.

find it difficult to define the problem. They devote
significant time iterating and re-formulating the
problem statements throughout their investigations
finding an optimal level of abstraction. Also, each
stakeholder has his or her own version of the problem
statement. None of these versions is wrong, but a
problem solver needs to account for these needs while
defining the problem.

• Complex heterogeneous data from diverse sources. Problem solving may
involve using
unstructured or
non-compatible data
from multiple
sources.

Problem solvers use large volumes of data while
solving a problem. They need to collect, clean,
transform and integrate data from numerous sources
to comprehensively examine a situation. Integrating
data from diverse sources is a complex task. Problem
solvers need to overcome software and infrastructure
inadequacies to be able collect and work with such
data. They need to transform and re-arrange data as
and when required on the fly to derive new views that
cannot be foreseen.

10 2 Related Work

• No predefined entry or stopping points. Problem solvers
decide on an entry point to start their inquiry based
on how they formulate the problem, what data
and information is available to them, how they are
oriented towards problem solving, and what has been
their previous experience and knowledge they have
gathered from similar problem solving. This entryProblem solvers

move along
self-directed

transformative
vectors and as-such
way-finding occurs.

[Latzina and
Beringer, 2015]

point sets them on a specific path. In due course of
their investigations, contextual situations deploy new
influences, new insights emerge and which many a
times changes their course. Sometimes, they may
need to start all over again and decide on a new entry
point. Similarly, there is no clearly defined stopping
point. It is a subjective decision for them to infer
whether they have investigated enough and stop
exploring. Based on emerging contextual dynamics
people have to plan their way in and out of problem
solving.

• Emergent and Dynamic. With evolving contextualAs problem solvers
explore the problem
landscape more and

more, with new
insights new

questions arise.

dependencies change is unavoidable. Goals emerge,
insights surface, constraints change, stakeholders
requirements change, new data or information
becomes available, and with this problem solvers
reevaluate their inquiries constantly. Sometimes with
new insights new unforeseen problems surface which
restarts the circle of inquiry.

• Good enough solutions with no answer. DynamicEvolving
uncertainties lead to

evolving goals and
eventually multiple
different solutions.

and emergent queries allow for multiple possible
solutions. The correctness of the solution depends
on the situation. Its is important the problem
solver comprehends the consequences of their
candidate solutions. They need to support and
present their solutions with evidence and prove its
validity. Problem solvers continuously try to reduce
uncertainties to find a solution, while being aware
of the various entangled conditions that may create
larger uncertainties.

• Iterative and Opportunistic with socially based patterns
of inquiry. As discussed before, the way in which
problem solvers structure their inquiry depends on
how they socially orient themselves to problem

2.1 Complex Problem Solving 11

solving with data that is available to them. What Emergent insights
open new
opportunities
allowing problem
solvers to iterate a
situation with newly
gained insights

problem solvers do as they progress through their
inquiries depends on earlier choices for selecting,
arranging, coordinating, and relating relevant factors.
Many renditions are possible, and the ones that
problem solvers decide to compose depend on
contextual demands.The less systematic a problem
solver’s way-finding patterns are, the more dynamic
the processes of inquiry will be.

• Attached to interests of various stakeholders. For Different stake
holders have
different perspectives
and needs.

complex problems embedded within a larger
organizational environment, numerous stakeholders
are involved in defining the problem and its solution.
Choices that a problem solver makes is influenced by
the biases of each stakeholder. Needs of a stakeholder
often change and new stakeholders may come in due
course. Their diverse and often competing agendas
make it necessary for problem solvers to search for
alternatives and weigh trade-offs.

It is essential that we analyze various tasks and strategies
problems solvers deploy to achieve their goals. We need
to conceptualize and model their patterns of investigation.
We need to distill core generic activities that problem
solvers perform and compose their task landscape.

2.1.2 Core Activities

People perform investigations that are guided by domain
specific practices and needs. Here we list activities
that can be generalized across different problems. They
generalize across problems as they originate from the 2.1.1
“Characteristics of Complex Problem Solving”. These
activities are as follows :

• Data-ordeals. This refers to dealing with large
volumes of multi-dimensional data from multiple
heterogeneous sources. This includes validating
data accuracy, integrating and arranging data from

12 2 Related Work

multiple sources, comparing data sets and filtering
away irrelevant data. After this is done problemDealing with

unstructured and non
compatible data sets.

solvers need to extract valuable insight from the data
and visualize it with right level of abstraction.

• Wayfinding. Wayfinding in general covers the ways
in which people orient themselves in a physical
space and move around. We use spatial clues
like signage, indoor maps, lighting, color coding
etc. to navigate inside a building. These features
are information-support systems for wayfinding1.
In our case it can be defined as spatial problem
solving. People use their visuospatial memory
to orient themselves in space. It allows problemPeople need to align

themselves in line
with the problem.

They need to know
what stage of

problem solving they
are currently in and

how to get to the
answer.

solvers to structure their way through inquires from
indeterminacy to a solution. They go through
multiple intersections, choices, tangents, collateral
streams of reasoning and backtracking. As new
information and insights emerge, problem solvers
follow the scent of potentially important insights.
There are four stages to basic wayfinding [Lidwell
et al., 2010]:

– Orientation. Is the attempt to determine one’s
location, in relation to objects that may be nearby
and the desired destination.

– Route decision. Is the selection of a course of
direction to the destination.

– Route monitoring. is checking to make sure that
the selected route is heading towards to the
destination.

– Destination recognition. Is when the destination is
recognized.

• Sensemaking. This refers to a problem solvers mentalSensemaking is an
ongoing process by

which people give
meaning to their

actions and
experiences.

processes of finding relationships among data and
situations to draw inferences. Problem solvers
compare data sets, distributions and trends in data
sets to unearth insights that help them make sense
of data. These inferences and insights help problem
solvers relate what they see on the display with their
own intentions.

1http://www.umich.edu/⇠ wayfind/supplements/moreinfomain.htm

2.2 Activity Theory 13

Task is the basic component of human work. People use
various tools to transform objects in their hands into shapes
they desire. Tasks are actions which are performed by
one or more actors to achieve a particular goal. Each
task in the work process is regarded as a context-bounded
activity that is directed to achieve a goal of the task under
given conditions. A continuum of possible tasks can be
thought of as skill-based tasks from one side and complex
problem-solving tasks from the other side. Skill-based tasks
are performed in a brisk automated way with minimum
attention. Problem-solving tasks could be divided into
two major groups: non-algorithmic and algorithmic.
Algorithmic tasks are executed in accordance to some rules
and logic. Complex tasks are non-algorithmic. Useful
software support should cater to the above mentioned
characteristics of complex problem solving [Bedny, 2014].

Earlier designers were mainly concerned with
comprehending and assisting tasks, which users perform
to achieve their preconceived goals. The issues of why an
individual carries out a task and what does it mean to the
individual were typically placed outside the scope. Now,
interactive digital technologies have become a part of our
everyday lives and just focusing on tasks has proven to be
insufficient. Understanding and designing technologies in
the context of purposeful meaningful activities is now a
central concern for design research and practices.

We have a fair understanding of what activities are. Due
to this there can be many different theories from person to
person and may not be specific enough. How to distinguish
activities from non-activities? Can activities be broken
down into smaller units? What role does technology play
in human activity? To answer these and other similar
questions HCI needs a more elaborated concept of activity.
Such concept is offered by activity theory [Kaptelinin,
2015].

2.2 Activity Theory

[Kaptelinin and Nardi, 2006]

14 2 Related Work

Activity as interpreted by activity theory is the interaction
of a person/actor with the world. The interaction is
described as a process relating the subject (S) and the object
(O), which is commonly represented as :

S <-> O

Activities and their subjects mutually determine one
another. Activities are generative forces that transform both
subjects and objects. It is instantly understandable that
activities are influenced by the attributes of subjects and
objects. But, the reverse is also true, i.e. subject and the
objects evolve. Subjects do not only express themselves in
their activities; in a very real sense they are produced by
the activities .

Our world is structured; it comprises of discrete entities, i.e.
objects. Users’ interaction with the world is also structured
being organized around these objects. Every object has
it’s objective meaning, determined by it’s relationship with
other entities existing in it’s surroundings (including the
subject). In order to meet their needs, subjects have
to reveal the objective meaning of the objects, at least
partly, and act accordingly. An object in an activity
is dynamically aligned in the unfolding S-O interaction.
The alignment involves a double transition: the subject’s
activity is subordinated to properties of the object which
gives rise to new activity structures; in turn, new activity
structures bring about new subjective phenomena, such as
a more developed image of the object. In an activity system
such subject-object interactions and object transformations
are mediated via tools.

Subject and objects evolve as they interact more and more
with each other. As and when the subject or the objects
evolves so does their usage and the tools required for their
mediation. Subjects may choose to modify the tool at hand
or start using a new tool to further interact with the object.

2.3 End User Development 15

2.3 End User Development

[Lieberman et al., 2006]

Current professional, leisure and learning environments
are characterized by evolving work and business practices,
diverse qualifications and individualized preferences in a
dynamic environment. This diversity derives from people
with different cultural and educational backgrounds,
skill, knowledge, psychological and cognitive abilities
and diversity among tasks, contexts and are of work.
User centered and participatory design is just a part
of the solution. Given that user requirements are
evolving, diverse, and at times difficult to pinpoint and
interpret accurately, following conventional design and
development iterations to keep up with evolving contexts
would be too slow, time consuming, and expensive. The
challenge here is to develop environments that empower
users to develop, modify and adapt software applications
to a level of complexity that is appropriate to their
individual skills and situations. End User Development
(EUD) is paradigm that advocates for such flexibility.
Libermann et al. define End User Development as follows:

END USER DEVELOPMENT:
”EUD can be defined as a set of methods, techniques,
and tools that allow users of software systems, who
are acting as non-professional software developers, at
some point to create, modify, or extend a software
artifact.”[Lieberman et al., 2006]

Definition:
End User

Development

They identify two types of EUD activities from a
user-centered design perspective :

• Parameterization or customization. These are activities
that allows users to choose from among alternate
interaction or presentation mechanisms provided
by the application. In adaptive systems such
customization occurs algorithmically by the system
as response to user’s activities. Examples of such
activities are :

16 2 Related Work

– Annotation. Users make a note beside results and
data to recall how they reached the result and
how could they reproduce it.

– Parameterization. The user wishes to guide the
system by indicating how to handle data in
a different way; it could simply be applying
different program functionalities or associating
specific computation parameters to specific parts
of the data.

• Program creation and modification. These are activities
where users create from scratch or modify an existing
software artifact. Artifacts created by end users
could be objects describing a control sequence or
an automated behavior, such as database requests
or grammar rules which can be described via
approaches like visual programming, programming
by demonstration, writing and generating macros
and using scripting languages [Costabile et al., 2006].

System should allow for different levels of modifications
with increasing complexity and expressiveness that go
beyond just annotation and parameterization, while being
easier than re-programming. For example a system could
offer 3 levels of complexity [Henderson and Kyng, 1992]:

• Users can set parameters.
• Users might compose existing components.
• Users can extend the system by programming new

components.

Software design becomes outdated soon with changing
and evolving requirements. Challenging this packaged
design methodology of design before use, new approaches
go beyond packaged design to establish design during use.
Such systems changes can result due to explicit end-user
actions or system initiated state transition [Mehandjiev and
Bottaci, 1996].

Modular component based approaches enable
reconfiguration and decomposition of software artifacts

2.3 End User Development 17

that are themselves build up from smaller components. A
system’s component architecture should be designed to be
meaningful for its users, so that they can correlate evolving
requirements in their working domain to corresponding
changes in the system’s component domain. System
adaptation should be unobtrusive i.e. not distracting
users from their main task and cognitive load of switching
from using the system to adapting the system so be low.
Flexible software architecture is prerequisite for enabling
adaptivity. Approaches range from changing parameters,
rules, and constraints to changeable descriptions of system
behavior and component-based architectures [Won et al.,
2006]. A key property of an EUD-friendly architecture is
to allow for substantive changes during run-time, without
having to stop and restart or rebuild the system.

We need to to move past the binary choice of low
level domain unspecific interactive programming and over
specialized systems. These are the two end points on a
spectrum:

• Turing tarpit. They are capable of representing any
problem that computers can be used to solve, and
as open systems they let users change any aspect of
the system if necessary but, they provide an incorrect
level of representation for most problems. Expressing
a problem and designing a solution in these systems
requires creating a mapping from the context of
the problem to the core constructs provided by the
programming language and its supporting library
[Shaw, 1989]. They are powerful but are difficult to
learn. Eg: Interactive programming environments
like Smalltalk, Squeak, Logo, Lisp, etc.

”Beware of the Turing tarpit, in which everything is
possible, but nothing of interest is easy.” [Perlis, 1982]

• Inverse of Turing Tar Pit. These are easy to use
no special training is required. They are domain
specific and closed systems that do not allow for user
modifications.

18 2 Related Work

”Beware of over-specialized systems, where operations are
easy, but little of interest is possible” [Guindon, 2013]

Meta design [Fischer and Giaccardi, 2006] is a framework
for end user development based on the Seeding,
Evolutionary Growth, Reseeding Model, (SER) a
process model for large evolving design artifacts. One
has to move beyond the binary choice of low-level
domain-unspecific interactive programming environments
and over-specialized systems. To address for evolving
requirements at use-time, software needs to be
underdesigned at design time. Underdesign advocates
for developing environments rather than solutions. Under
specifying the interface of an application allows users
to assign different semantics of use artifacts at use time.
Microsoft Excel is underspecified in terms of what a
spreadsheet application usage. It can be used as an address
book, to plan budget, managing minutes of meeting etc.

19

Chapter 3

Transformative User
Experience Design

[Latzina and Beringer, 2012] [Latzina and Beringer, 2015]

“We have only scratched the surface of what
would be possible if end users could freely program

their own applications...”

—Bonnie A. Nardi [Nardi, 1993]

Transformative User Experience (TUX) design was
proposed by Markus Latzina and Joerg Beringer in 2012
based on the concepts of end-user development, meta-design
and appropriation. TUX is a novel approach that aims at
natively supporting users in a variety of spontaneously
self-defined task flows, not binding them to work along
highly tailored use cases or adopt to predefined patterns of
guided procedures. It proposes that user interface for next
generation business application must be able to seamlessly
support users in all stages of task accomplishment and
switching between all these stages, routine and non-routine
work. TUX calls this quality of an interface of innately
accommodating the ongoing task needs of the user during
use time as elasticity.

It’s goal is to overcome common application boundaries

20 3 Transformative User Experience Design

enabling users to interact with information in terms of
task objects within dedicated contextual task environments
assembled through interrelated sets of task containers. An
example that mimics good TUX is:

A user may search on the web for a restaurant with a particular
cuisine. The system responds with a list of suggestions. These
suggestions are presented with information like name, phone
number, average cost of a meal, opening times, customer reviews
and an address. After shortlisting a restaurant from the list,
user clicks on the location to navigate to the restaurant. User’s
seamless transition from the task context of searching for a
restaurant to the context of navigating to the restaurant creates a
transformative experience.

TUX is all about situational adaptation of an object as
mediated by technical containers which represents certain
task semantics. It requires a clear presence of task models
in a product’s runtime and not just at design time. To allow
users to create a proper task setting, a system must provide
mechanisms to detach application content and move it
trough different task containers.

3.1 TUX proposed system architecture

TUX proposes a system architecture of how to achieve
contextualization and elasticity during runtime. This is
based on two basic concepts of task object and task context.

TASK OBJECT:
”A task object which acts as a proxy to a system object
and provides functionality for the hosting container to
contextualize its appearance and behavior to match the
local semantics of the container.” [Latzina and Beringer,
2015]

Definition:
Task object

Paul Dourish explains the difference between system
objects and task objects in Placeless documents [Dourish,
2003] with an example : A generic artifact in the form of
a document produced by a text processing application is a

3.1 TUX proposed system architecture 21

system object, but the use of the document by its owner
in a working context may be as a project plan, contract,
minutes of meeting, bug tracker, requirement specification,
patent application etc. While Dourish describes this as
appropriation. Appropriation in such system happens in
an unmanaged manner. TUX realizes appropriation by
moving task objects along task contexts rather than leaving
it unmanaged. The container moderated adaptation is
facilitated by the system, appropriation happens within the
system rather than being imposed from outside by users.

TASK CONTEXT:
”It is a container which is hosting and displaying task
objects...We refer to it in terms of a programming model
in which the container class is a storage container
for loosely-coupled content and functions. Contextual
appropriation of system objects is realized by allowing
containers to adjust system objects to task objects
reflecting the local semantics of use... A container models
context that is used to impose situational semantics on
system objects by casting them into local task objects
with local appearance and behavior.” [Latzina and
Beringer, 2015]

Definition:
Task context

3.1.1 Task Context

Containers embody and shape the context which imposes
situational semantics on system objects by casting them
into localized task objects. A container may have a
pre-specified context of use with a predefined purpose or it
may evolve over a period of time and change its semantics
during runtime. A container can be appropriated as a task
object by embedding it in another container. Elasticity in
containers is characterized by:

• Elastic Purpose. When the context of use is
underspecified the resulting system is elastic. The
lesser the context is rigidly defined, the more degree
of freedom a user has for casting his intentions onto
the system. Underspecified design is applicable for

22 3 Transformative User Experience Design

generic applications and is not constrained by any
application domain. ”They are designed for very
abstract needs, but agnostic to any specific content
[Latzina and Beringer, 2015].” For appropriation to
happen a system need to be open for interpretation
[Dix, 2007]. Over a period of time, users shape a
purposeful environment by bringing in more and
more content or adding tools to a given environment.
There is a bargain between affordances and under
specified design. If no specific purpose is informed
by design itself the generic functionality must be
compelling enough.

• Elastic Collaboration. Collaboration services tend be
specialized for limited use cases. This pushes users
to decide beforehand on technologies to use for their
subsequent task flows. Rigid barriers force users
to rebuild the task context withing a collaboration
platform to be able to share it with others. User stories
reflect the need to move into collaborative mode from
time to time but there is no strict task flow for it. The
need of collaboration cannot be defined beforehand
at design time. Users should be able to move content
in the form of task objects into a collaborative space
i.e from a personal work context to a shared context
without having to re-build the content just for the
purpose of collaboration.

• Elastic Practices. Task flows do not follow a predefined
life cycle and they alternate between regular routine
and non routine situation. For non routine tasks the
system should offer generic functions so that users
could define their intent. For routine well defined
tasks there should be a set of exclusive functions. The
system should support the user while moving along
different levels of problem solving.

3.1.2 Task Object

TUX separates the identity of an object from its use in
a given task context. Containers add behavior to a task
object and tailors the view of an object. Task objects
are indicative of the principle of ccontextual polymorphism

3.1 TUX proposed system architecture 23

since they can adapt semantically in various ways to their
respective context.

Task contexts are implicitly or explicitly created as a result
of moving task objects from one container to the other. A
combination of task objects and container semantics shape
a task context. TUX defines multiple mechanisms for
adapting task objects to containers.

• Contextual Casting. Any system object could be casted
to another class to model the behavior of a task
object whose semantics are local to the container
instead of the initial system object. TUX framework
should support abstracting system objects to provide
a generic task object class with a handle to its identity
and behavior.

• Contextual Postures. It cannot be assumed that a task
container knows about each and every object, still it
should be possible for a container to moderate the
appearance of a task object. This may be achieved
by facilitating an abstract task object with a set of
contextual appearances. The hosting context can
select from among these postures for rendering it.
This contextualization of system objects corresponds
to that of late binding.

• Contextual Volatility. This refers to freezing or
snapshotting an object when it is added to a container.
This snapshot can be later used to edit or create a
new version of the task object. This may be important
in cases where the task object needs to be a tangible
artifact local to a context.

Let’s look at a simple example:

Anna, a manager in a construction company is looking for
qualified plywood vendors who could satisfy her demands. While
searching for vendors that could possibly fit her criteria, she
would first have to go through a listing of all vendors. Here the
search results for plywood vendors is presented in terms of a list,
with each vendor as a list-item. In TUX terminology, vendors are
system objects and the result list is a task specific container and

24 3 Transformative User Experience Design

Search for
suppliers Shortlist supplier Decide for one

candidate Negotiate Contract

Supplier Content
Item Option ToDo Candidate

Contextual Usage
Use as an anchor
For exploration

Generate Decision
Option

Execute Decision Get Approval

Elastic Context

System Object Elastic Task Objects

Figure 3.1: Contextual Consumption of Business Entities adapted from [Latzina
and Beringer, 2015]

the result list-items are the task objects. In this result list each
list-item is displayed or presented with sufficient information
to probe, distill candidate vendors. At this point Anna would
expect to have abilities like comparing and shortlisting vendors,
inspecting each vendor individually etc. These needs arise from
the context. These items now become a member of a shortlist of
candidates. These members of the shortlist now inherit behaviors
of a shortlisting activity like decision options, which can be
prioritized or ranked and assessed. This shortlist is now a new
container which represents such a shortlisting activity. The fact
that each item is a plywood vendor is now less important and
users vote and annotate each item to support decision making.
For shortlisted candidates more investigation could be planned
by putting them in a TODO list. Now, each plywood supplier is
an action item i.e task object in a TODO context i.e. container.
After due investigation a specific supplier is chosen which has to
be approved by a stakeholder.

Through this entire example it is secondary that the
plywood supplier is actually an ERP Object. Figure 3.1
illustrates how the supplier system object gets transformed
into different forms based on the context of usage.

25

Chapter 4

Bayesian Analysis
Theory

[Kruschke, 2014]

“How often have I said to you that when you
have eliminated the impossible, whatever remains,

however improbable, must be the truth?”

—Sherlock Holmes [Doyle, 2010], [Kruschke, 2014]

In this chapter we will briefly discuss the concepts of
Bayesian analysis. In the scope of this thesis we focus
on performing very basic rudimentary Bayesian analysis
restricted to calculating posterior distribution from priors
and likelihood using the Bayes rule. Bayesian data Analysis
is based on two basic conceptions. Firstly, bayesian
reallocates credibility across different possible outcomes.
Certain outcomes have different prior possibilities as
and when new data is gathered, these credibilities are
redistributed across the different outcomes and the result is
a new credibility distribution. Secondly, these possibilities
are nothing but parameter values mathematical formulas
describing trends in data.

26 4 Bayesian Analysis Theory

4.1 Theory

Kruschke describes Bayesian analysis with the following
example from our everyday lives:

Suppose you step outside your house one morning and notice
that your front porch is wet, and start to wonder what could be
the reason for it. You start thinking and first list down all the
possible causes of wetness, including possibilities such as rain,
garden irrigation, a leaking pipe, a newly erupted underground
spring, etc. If all you know is that the porch is wet, then all those
possibilities will have some prior credibility based on previous
knowledge. For example, recent rain may have greater prior
probability than a spilled drink. You now continue to make
more observations, you gather more data. If you observe that the
pavement is wet for as far as you can see, and so are the trees,
then you reallocate credibility to the hypothesis of recent rain.
Inversely, if you observe that the wetness is localised to a small
area, and there is an empty cup lying on the ground, then you
would reallocate credibility to the hypothesis of a spilled drink,
even though it had a lower prior probability.

Let us discuss three important aspects of Bayesian analysis
in the scope of this thesis:

• Prior. In Bayesian reasoning, prior is a probability
distribution which expresses a person’s belief about
an uncertain quantity. In the example above, when
we had no clue what caused the wetness, our prior
belief was equally distributed across the candidate
reasons for wetness. So, the possibility of each
outcome was 0.25. Here the reason for wetness is
the unknown quantity. A prior can be created in a
number of ways. A prior could be determined using
information from previously collected experiments.
A prior can be elicited by just pure subjective opinion.

• Likelihood. Likelihood is also a probability
distribution which is used to describe data. It
is a function of parameters of a statistical model
for a given data set. In the scope of this thesis
we do not expect our users to know this concept

4.2 Performing Bayesian analysis with a simple example 27

in depth. We handle calculating the Likelihood
distribution autonomously by our system. This
distribution can be calculated based on common
experimental design. Depending on the amount
and types of independent and dependent variables a
representative model and likelihood distribution can
be calculated autonomously.

• Posterior. Posterior is a probability distribution
which is obtained by applying Bayes Rule to
likelihood and posterior distributions. Bayes Rule
in the discrete form, allows us to calculate the
probability of an event A given event B. This is what
is called a conditional probability. The posterior can
be written in a memorable format as:

Posteriordistribution / Likelihood⇥Priorprobability

The posterior probability distributions gives the final
result as probabilities of possible outcomes.

4.2 Performing Bayesian analysis with a
simple example

Let us take a simple hypothetical example to explain this:
Consider a study which tests the effectiveness of a new hair loss
control pill. 20 people were assigned to the treatment group and
20 to the control group. 4 people from the treatment group still
had hair loss compared to 16 from the control group. The question
being asked is how strongly does this indicate that treatment is
more effective than control?

To simplify matters, We convert this problem of comparing
two proportions to a single proportions problem. Consider
the 20 total people who still had hair loss after taking the
medication, and ask how likely is it that 4 people with hair
loss come from the treatment group. If the treatment and
control are equally effective and the sample sizes for the
two groups are the same, then the probability that a person
with hair loss came from the treatment group is simply 0.5.

28 4 Bayesian Analysis Theory

We fist start by setting up our hypothesis. We can think of
these as the models that the data come from. We know that
the probability that a person with hair loss comes from the
treatment group can take values between zero to one. Let
us consider that the plausible chances that a person with
hair loss comes from the treatment group comes from is
10% or 20% or 30% upto 90%. Hence we consider 9 models
instead of one.

Next, we need go onto specifying the prior probabilities we
want to assign to these models. The prior probabilities we
assign must reflect our beliefs before the experiment had
been conducted. They should incorporate the information,
learn from all relevant research up to the current point
in time. However, the prior probability should not
incorporate information from the current experiment.
Suppose our prior probabilities for each of the models are
presented in this table.

Model(p) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prior 0.06 0.06 0.06 0.06 0.52 0.06 0.06 0.06 0.06

We have placed a prior probability of 52% at p=0.5 and
equally distributed the remaining probability amongst
all the other models. Such an equal distribution i.e
symmetrical distribution around p=0.5 implies that that the
treatment is equally likely to be better or worse than the
standard treatment. A peak value of 52% at p=0.5 implies
that we believe that there is a 52% chance that there is
no difference between the treatment and condition group.
Here, we do not get into the details of how to come up with
values for priors.

Next we can look at calculating the likelihood distribution.
Likelihood is defined as the probability of data given the
model. Here our data is 4 people with hair loss from the
treatment group out of a total of 20 people with hair loss.
And our model is the same as defined above from 0.1 to
0.9 . As we discussed previously likelihood function can be
calculate based on experimental design. In our case it is a

4.3 Workflow 29

binomial distribution representing 4 successes in 20 trials.
The likelihood calculated is as follows :

Model(p) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Likelihood 0.09 0.22 0.13 0.035 0.0045 0.0003 0 0 0

Once this is done and the models have been described for
priors and likelihoods, we can use Bayes rule to calculate
the posterior probability distribution. The posterior
distribution obtained is as follows:

Model(p) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Posterior 0.17 0.43 0.25 0.07 0.08 0.0 0 0 0

In the result we see that the posterior probability has
its maximum value p=0.2. So, this model is the most
likely model, based on the observed data. The posterior
probability at p is equal to 0.2 is 42.48%. The calculation of
the posterior incorporated prior information and likelihood
of the data observed and the concept of data. Probability
that p=0.5, dropped from fifty two percent in the prior to
about seven percent in the posterior. This shows how we
update our beliefs based on observed data using Bayesian
reasoning.

So coming back to our initial question is treatment more
effective than the condition?. Sum of probabilities in the
posterior distribution for p lesser than 0.5 gives us 92
percent. There is a 92 percent chance that the treatment is
more effective than the control. Bayesian allows us to make
such direct probability statements about our models.

4.3 Workflow

According to Kruschke, typical Bayesian analysis involves
the following five steps:

30 4 Bayesian Analysis Theory

• Identification of independent and dependent
variables in the relevant data set. Determining
the measurement scale for the variables.

• Defining the mathematical form that describes the
given data with meaningful parameters. In this thesis
we calculate this on the basis of experimental design
inferred from the previous step.

• Assigning a prior distribution that can be supported
using relevant justification.

• Re-allocate credibility distribution across the
parameter values based on Bayesian inference. The
new posterior distribution should be then interpreted
based on meaningful parameters assuming the model
adequately describes the data.

• Conduct a posterior predictive check that verifies
whether the posterior distribution models the given
data accurately.

An additional step sometimes could be collecting, cleaning
and refactoring data before it can be used.

31

Chapter 5

Interaction Design

In the previous chapters we discussed concepts of
Complex Problem Solving, end user development, activity
theory, transformative user experience design and Bayesian
analysis. Based on these concepts we first design an
interface for generic problem solving and then appropriate
it for Bayesian inference making. Before we elaborate
on the design we try to filter design requirements and
conceptualize the design.

5.1 Design Requirements and Conception

It is a common practice in user centered design to design Designing for a
single or generic
context of use is
inadequate.

for user’s activity in a given context. But such a singular
usage and conception of the term ’context’ and focusing on a
generic context is misleading. While working with complex
problems and performing emergent queries users work in a
large number of contexts. Singular association of context is
inadequate while designing systems for complex problem
solving [Mirel, 2003].

People act in multiple contexts and may require multiple
such applications in order to achieve their goals. When
people are in problem solving mode they perform tasks
at a higher level. ”Higher-order processes give coherence

32 5 Interaction Design

to the synergy of open-ended investigations. If a software
focuses only on actions for unit tasks without unifying
them into these higher-order processes, problem solversProblem solvers

operate on higher
level tasks in problem

solving mode.

will not be able to shape to their own ends the emergence,
serendipity, idiosyncrasy, and uncertainty that come with
solving perplexing problems. [Mirel, 2003]” Rasmussen
et al. describes the need of smart instruments that are
specialized for a specific type of task under a context for
complex problem solving [Rasmussen and Vicente, 1990].

With this lens we look at TUX. The two basic concepts ofWe conceptualize
TUX containers as

independent generic
applications.

TUX are task objects and task contexts. TUX defines task
contexts a.k.a containers as smart instruments. Keeping
this in mind we conceptualize these technical containers as
separate applications. Each application represents a higher
order process i.e. generic activity and behaves like a smart
instrument. Examples of such generic activities are :

• Grouping

• Comparing

• Associating

• Clustering

• Visualizing

• Keeping

• Network Building

• Searching

• etc...

These are generic containers and are not designed forApplications needs to
be underspecified to

be open to
interpretation.

the purpose of achieving a specific goal. They should
be designed such that users can implicitly specify context
of use and appropriate them in-situ. Applications need
to be underspecified so that users have enough freedom
to express their intentions and context of use. When the
context of use is underspecified the resulting system is
elastic. The lesser the context is rigidly defined, the more
degree of freedom a user has for casting his intentions

5.1 Design Requirements and Conception 33

onto the system. Underspecified design is applicable
for generic applications and is not constrained by any
application domain. ”They are designed for very abstract Underspecified

applications allow
users to express the
context of use and
appropriate it for their
needs.

needs, but agnostic to any specific content [Latzina and
Beringer, 2015].” Containers should be able to pick up these
queues and apply transformations as suggested by TUX
so that appropriation takes place inside the system in a
managed way. Such systems are open for interpretations
and appropriation can take place.

From our above discussion and concepts discussed in 2
“Related Work” and 3 “Transformative User Experience
Design” we can narrow down the following system
requirements:

• An application needs to be underspecified so TUX containers a.k.a
applications need to
underspecified.

that it can be appropriated and context can be
specified. Complex problems have ill defined
situations and goals 2.1.1 “Characteristics of Complex
Problem Solving”. Underspecified applications allow
to express such goals and situations. This need
for underspecification is also characterized by TUX
as elastic purpose of task contexts in 3.1.1 “Task
Context”.

• Users in problem solving mode would require
multiple such generic applications for achieving a
goal. They may need only a subset of all such
available generic applications offered by a system.

• Users need a workspace where they can manage and
spawn such generic applications.

• User could add or remove an application from
the workspace at runtime as queries in problem
solving mode are emergent and dynamic 2.1.1
“Characteristics of Complex Problem Solving”.

• User may want to clone an instance of an exiting Allow replicating
applications with or
without its data.

application with its data items and configurations.
This would allow users perform different variations
of the same activity and try different stream of inquiry
to support users in their iterative and opportunistic

34 5 Interaction Design

queries 2.1.1 “Characteristics of Complex Problem
Solving”.

• A user could use the abilities of a container and
apply container or context specific transformations on
objects or items of interest.

• A user may want to move data items from one taskAllow optional
cloning for task

objects.
container to another. While moving he may want
move the item itself or drop a copy and maintain the
original in source container.

• User may want to load data into a containerAllow users to fetch
data from multiple

sources.
from a file or from any other data source as while
solving complex queries users may want to fetch
complex heterogeneous data from multiple sources
2.1.1 “Characteristics of Complex Problem Solving”.

• Users in problem solving mode may approach
a problem top down or bottom up manner of
information processing and knowledge ordering.
Users may decide in advance on the set of stepsSupport top-down

and bottom-up
inquiries.

to performed to achieve their goals and create a
plan. Alternatively, they could start their inquires
from any random starting point and build recursively
by adding more and more applications and end
once they are satisfied with their investigation 2.1.1
“Characteristics of Complex Problem Solving”.

• Users would need support to deal with data ordealsBuild generic
application support

to deal with
data-ordeals

2.1.2 “Core Activities”. Few higher order functions
that could be useful in this respect are grouping,
comparing, clustering, charting, visualizing etc.

• Containers should be able to infer what properties of
an object are relevant to be presented in the current
context. Based on these properties it should alsoContainers should be

able to change
visualization of task

objects on the fly.

be able to choose an appropriate presentation of the
object. This refers to properties of contextual casting
and contextual postures of task objects. 3.1.2 “Task
Object”

• Continuing with the idea of contextual casting andContainers should
update context when

new task objects
arrive.

postures, containers should be able to monitor user
activities and sense a change in context. When this
happens containers should be able to adjust or change

5.2 Design 35

the visualization of all containing objects to fit the
context of use.

• There could be multiple suitable visualizations for Allow users to switch
between multiple
visualizations of task
objects in a
container.

objects in a given container. Users should be allowed
to switch between these visualizations to be able to
better analyze a situation. For example, given a data
set there could be multiple suitable charts that could
be useful for exploring data. Here the user should be
allowed to switch between these data visualizations.

An interface for realizing the above requirements should
continuously represent the object of interest and allow to
transform these objects by moving them along different
task containers which perform dynamic, incremental
operations whose impact on the object is immediately
visible. Though the concepts of TUX are nor confined
to any specific UI paradigm, TUX would hugely benefits We choose Direct

Manipulation
Interfaces paradigm
to support TUX.

from the core principles of Direct Manipulation Interfaces.
TUX can leverage from physical, spatial and visual
representations in Direct Manipulation interfaces making
it easier to retain and transform objects. Users could
immediately see if their actions are furthering their goals
and if the actions become non-productive then they can
easily change the direction of their activity. Direct
Manipulations endows users with a sense of directness i.e.
a feeling of close contact with the object and actions of
interest [Shneiderman, 1993].

5.2 Design

On the basis of system requirements listed in the previous
section, we conceptualize our design. We use Polymer, an
open source web-components library for implementation
in this thesis. We use some default controls provided by
polymer so, some of its visual design can be seen in our
prototypes and implementation.

We visualize each application as a widget or a window.
These applications are arranged as tiled windows in a

36 5 Interaction Design

URL

Application

TUX task
context

represented
as a generic
application

Canvas
hosting

applications is
much larger
and expands
and collapses

when
required.

Application

Application

Application

Application

Application

Application

Application

Application

Application Application Application

Browser
window

Figure 5.1: Prototype showing applications arranged on a canvas a.k.a workspace

workspace. This workspace is an infinitely expandingEach application is
visualized as a

window on an infinite
canvas.

canvas so that it can accommodate multiple applications
that users spawn at runtime. This allows users to distribute
different tasks to different parts of the canvas enabling to
make use of their visuospatial memory as shown in Figure
5.1.

Navigating though such an expanding canvas can be
difficult. The canvas needs to be zoom-able so that users
can get the right applications into their view port when
required by adjusting the amount of zoom or moving the
view port around. Other auxiliary aids like a mini-map
or a fish eye view etc. can also be integrated to provide
more sophisticated support for navigating a zoom-able
interface. Users should be allowed to rearrange, sortOur goal is not to

develop a highly
effective zoom-able

workspace.

and switch application on this canvas whenever desired.
Multiple strategies can be developed to display and
arrange containers based on related data items, data flow,
temporal characteristics. There is a myriad of HCI research
concerned with building effective zoom-able interfaces.
We do not look into designing for efficient navigation or
way-finding for such zoom-able canvases. In the scope of
this thesis we focus on designing for elasticity.

5.2 Design 37

5.2.1 TUX Container design

Each generic application as discussed above represents a A windows
decoration typically
consists of a title bar,
usually along the top
of each window and
a minimal border
around the other
three sides. 1

TUX container and is visualized as a window or widget. All
applications irrespective of its features and functionality
have a common window decoration as follows:

• A header with

– an application icon,
– an application name,
– a handle to signify draggability of the container,
– a button to clone the application,
– and a button remove the container from the

canvas.

• A footer which is visualized as a tab bar. This
tab bar allows users to switch between different
visualizations offered by the TUX container.

This container design is also described in Figure 5.2(a).

Few generic applications a.k.a TUX containers that we
selected to implement are:

• Planning.

• Grouping.

• Comparing.

• Visualizing.

• Sourcing.

All of these applications are generic applications and do Design of these
applications do
suggest usage for a
specific use-case but
rather can be
appropriated.

not provide any indication that they could provide any
indication that they could be used for Bayesian Analysis.
Users should be able to appropriate containers to perform
Bayesian Analysis. For the purpose of this thesis we build
some domain specific support so that users can express
their Bayesian needs and containers can interpret this
context.

38 5 Interaction Design

Button to allow users to delete an application

Handle for making application draggable

Button to allow users to clone an application

Application Name

Visualisation1 Visualisation2 Visualisation3

Application specific content goes here

Tabs to explore possible visualisations of
tasks object in the context of this

application

On mouse hover

(a) Task Container a.k.a Application (b) Task Objects or Items

On mouse hover the item gets raised to
indacte that it is in focus and manipulable.
Options for dragging, cloning and deleting

the item also appear.

On mouse out

Figure 5.2: Describes the common design and behavior of (a) Task containers, (b)
Task objects

5.2.2 TUX object design

TUX objects could be any data item or even a containerTask object’s
visualization is

decided on runtime,
but all task objects

share some common
behaviors.

itself. These objects are moved from one container to
another and transformed by the hosting container. The
actual visualization of an object is decided on runtime by
the hosting container 3.1.2 “Task Object”. But, all objects
show the following common behavior as described in 5.2(b)
on mouse hover:

• task object rises and a shadow appear this indicates
that the item is in focus and gives it an affordance of
being movable,

• a small menu appears to the top right corner of the
item with options of dragging, cloning and deleting
the item.

This behavior disappears on mouse out. As per TUX,
containers can also be appropriated as task objects. The
above mentioned behavior of generic task objects is also

5.2 Design 39

applicable and can be seen in TUX containers as shown in
5.2(a).

Following this we now discuss design for previously
mentioned generic applications and how each application
could be appropriated for Bayesian Analysis.

5.2.3 Sourcing Application

Sourcing application allows users to view, create and edit
data in a tabular or spreadsheet format. It allows users to
drop files and other data items into the container to view
or edit it as a spreadsheet. Each row and column behave
as task objects and are draggable. Each row and column Design is similar to

that of a spreadsheet
with draggable rows
and columns.

can either be rearrange inside the spreadsheet or can be
dragged outside the application and be dropped as a task
object into another application. Each cell in the spreadsheet
application is editable. Mouse pointer changes to text type
while hovering over any cell. While clicking on a cell an
editable text field appears. The design is made to resemble
that of common spreadsheet applications.

Figures 5.3, 5.4 and 5.5 describes the design of sourcing
application. Figure 5.6 shows a snapshot of the
implemented sourcing application. Similar to any
other generic application it also has the same window
decorations as shown in Figure 5.2(a). Rows and column
have the same behavior as that of task objects shown in
Figure 5.2(b).

Users can appropriate the Sourcing application for
Bayesian analysis in the following ways:

• Import data set. Import current or prior experimental
data from a file and view it in a tabular format.

• Create data set. Create a new data set by typing in
entries.

• Create priors. Express priors in a tabular form by
typing in the outcomes and possibilities.

40 5 Interaction Design

Sourcing

Spreadsheet

Variable 1 Variable 2

0.2 90

0.3 5

0.4 1

0.5 2

Sourcing

Spreadsheet

Variable 1 Variable 2

0.1 0

0.2 90

0.3 5

0.4 1

0.5 2

0.1 0

On mouse click

On mouse hover

Figure 5.3: Prototype of sourcing application with interactions for mouse hover
and mouse click for a particular cell

Sourcing

Spreadsheet

Variable 1 Variable 2

0.1 0

0.3 5

0.4 1

0.5 2

900.2

900.2

Variable 1 Variable 2

900.2

Variable 1 Variable 2

On mouse drag item On drag from options

Figure 5.4: Describes interactions for dragging a cell which results into dragging of
the entire row

5.2 Design 41

Sourcing

Spreadsheet

Variable 2

0

90

5

1

2

Variable 1

0.1

0.2

0.3

0.4

0.5

0.5

0.5

0.5

Figure 5.5: Describes interactions for mouse hover over a column header

Sourcing

Table

Figure 5.6: Shows a snapshot of the final implemented version of Sourcing
application

42 5 Interaction Design

• Data cleaning. Add or remove variables and data from
the dataset which maybe relevant or irrelevant for
analysis.

These are just a few examples. Users can appropriate it in
many other ways for Bayesian analysis. Some other ways
of appropriation were also suggested by participants of our
user study.

5.2.4 Planning Application

As discussed above in our system requirements 5.1Helps users in
conducting top-down

queries or record
and report steps in

existing investigation.

“Design Requirements and Conception” users may
conduct their inquiries top-down or bottom-up. The
Planning container helps users in carrying out top-down
investigations. It allows users to list down the steps of their
investigation prior to conducting them or it may be used
to document the steps that were followed in order to get to
their solution. In a business scenario it could be helpful for
managers to define tasks and assign them to appropriate
subordinates or colleagues.

Similar to any other generic application it also has the same
window decorations as shown in Figure 5.2.

Figure 5.7 shows the design of the planning application.
The application window has a floating plus icon to the
lower left corner. This design has been adapted from
Google’s material design to show a call to action button. On
clicking this button a new activity is created. Each activity
has the following fields :

• Activity title.

• Short activity description.

• Longer activity description.

• Field for adding users who would be working on the
activity.

5.2 Design 43

Activity task object

Task object
behavior makes

the item
draggable

Add an activity
task object

John Doe

Figure 5.7: Describes the interface for Planning container

• Radio button group to indicate status of the activity
as not-started, in progress and completed.

Each activity has the same behaviors as that of a task object
as shown in 5.2(b).

In context of performing or appropriating planning
application for Bayesian Analysis, users can use the it to list
down the steps they want to perform during their Bayesian
investigations. This can also be seen in Figure 5.7.

5.2.5 Grouping Application

Grouping application as it’s name suggests, allows users
to group items. The application window is divided in two
panes. The top pane allows users to create new groups and
add new items to any group directly. The bottom half of the
application is a suggestions pane.

44 5 Interaction Design

Drop Items or File for suggestions

Click to add
new empty

group

Figure 5.8: Describes the interface for Grouping container.

When a new group is created it is represented by a rounded
box added to the top pane of the application. Each group
is uniquely identified by a name and a box border color.
When the number of groups are more than what can be
displayed on the application window a horizontal scroll bar
with a focus menu appears to navigate through the list of
groups. This can be seen in Figure 5.9.

Each group and each data item inside a group behave like
task objects as shown in Figure 5.2

The bottom pane of the application is a suggestions pane.
When items of files are drooped in the suggestions pane the
application provides suggestions for potential groupings
based on the current configuration. When a file is dropped
in this area the applications prompts the user to ask if
the data should be extracted form the file and used as
individual items for grouping or use the file as it is.

Figures 5.8 and 5.9 describes the interface for the grouping

5.2 Design 45

Automatically
created groups

Focus +
Context menu
for navigating

all groups

Add new
empty Group

Figure 5.9: Shows the interface for grouping after dropping a file in the suggestions
area.

application.

Users can appropriate this application in a Bayesian
analysis context in the following ways:

• Discover groups. Users can find groups in data sets
and use these groups separately for analysis. The
grouping application iterates through the dataset
and finds similarities to achieve this autonomously.
Figure 5.9 shows one such example.

• Define a hierarchical model. Users can create groups for
independent and dependent variables and fill them
appropriately with variables.

• Grouping priors and likelihoods. Users can group prior
and likelihood data sets into different groups to
manage and annotate them as semantically separate
data sets.

46 5 Interaction Design

Figure 5.10: Describes the interface for Comparing
application.

5.2.6 Comparing Application

Comparing application allows the users to compare any
two kinds of task objects or files. Comparing application is
also divided into two panes the upper pane is used to drop
items that are supposed to be compared and the lower half
is used to display the comparison results.

Users can appropriate this application in Bayesian analysis
context in the following ways:

• Comparing groups. Users can compare outcomes from
different groups in an experiment.

• Comparing priors. Users may have multiple candidate
priors at their disposal they could compare these
priors to find differences and effects to choose the
most suitable one.

• Find posteriors. Users can generate the posterior by
comparing prior and likelihood distributions.

5.2 Design 47

Figure 5.11: Shows the interface for comparing application
after dropping two files. Each file is visualized as a table.

• Comparing posteriors. Users can compare posteriors
generated generates using multiple candidate priors.

• Posterior Predictive check.

Figures 5.10, 5.11 and 5.12 describe the interface of
comparing application.

5.2.7 Visualizing Application

Visualizing application allows users to visualize data sets
or create their own custom visualizations. Figures 5.13, 5.14
and 5.15 describes the interface for the this application.

Users can appropriate this application in Bayesian analysis
context in the following ways:

• Visualize experimental data.

48 5 Interaction Design

Figure 5.12: Comparing result gets rendered and the result along with the dropped
items are displayed as a chart. Alternative tabular visualization option is also
provided. The container on the fly detects the context and decides that using charts
is a more suitable visualization for data than table.

• Express priors. Create priors visually by building a
chart. An example of this is shown in Figure 5.15.

• Find posterior. calculate and visualize posterior when
both priors and likelihoods are dropped together in
this container or one on after the other.

• Build charts selectively. to incrementally drop single
data items from any container to build a custom data
set visually.

Figure 5.16 shows all the applications arranged on a canvas.

5.2 Design 49

Figure 5.13: Interface for visualizing application

Figure 5.14: Shows the interface after dropping group
”Group=Condition” from Grouping applicaiton in Figure
5.9 into the Visualizing Container.

50 5 Interaction Design

Pressing
this button
adds a new

editable
bar to the

chart.

Users can
move this

circle
handle up
or down to

adjust
height of
the bar.

Users can type in
or drop variables

for chossing x and
y axis. They can

also select a level of
measurement for

each and the graph
would adjust
accordingly.

Figure 5.15: Shows how to create a custom visualization.

Figure 5.16: All applications arranged on the canvas.

51

Chapter 6

Implementation

As discussed in the previous chapters in order to Software architecture
needs to be highly
modular and flexible.

accommodate elasticity as a generic system quality, not
only the interface, but the software architecture, features,
functionality and methods need to be flexible too. To realize
elasticity, the software framework has to also be highly
elastic. The framework should support task containers
to influence the posture of an object and add specific
behaviors to it or modify these behaviors on runtime. This Our system uses a

Component Based
Behavior framework
built on Polymer for
realizing the UI
architecture and R
for Bayesian
analysis.

allows the hosting task container to manipulate task objects
such that they are tailored for a particular context despite
not knowing its identity or object type. We built our system
on a Component Based Behavior (CBB) framework using
Google’s web components library, Polymer. We first look
at why web components are an ideal fit to realize such a
flexible software architecture, what does Polymer offer and
finally how we implemented the system. For performing
Bayesian Analysis we integrate R1 using the OpenCPU
API2.

1https://cran.r-project.org/
2https://www.opencpu.org/

52 6 Implementation

6.1 Web Components and Polymer

Web components3 are being introduced with the intention
to facilitate modular software development for the web.
They are a set of features that are presently beingWeb components

facilitate modular
web development.

supplemented to the DOM and HTML specification by the
World Wide Web Consortium 4. Some important features
of web-components are as follows 5:

• Custom Elements.

• Shadow DOM.

• HTML Imports.

We will discuss these features in detail and how to make
use of them using Polymer 1.x in following sections.

Polymer 6, being developed by Google, is an open sourcePolymer is an open
source javascript
web-components

library.

javascript web-components library for building modular
web applications. It is analogous to using lego building
blocks 7.

Some features that Polymer offers over vanilla web
components are as follows:

• Easier method of creating custom elements

• Provides one and two way data binding

• conditional templates and repeated templates

• pre-defined ready to use elements - 8

3https://www.w3.org/wiki/WebComponents/
4https://www.w3.org/standards/techs/components
5http://w3c.github.io/webcomponents/spec/custom/
6https://www.polymer-project.org/1.0/
7https://www.itnews.com.au/news/inside-ing-directs-new-lego-block-app-architecture-407763
8https://elements.polymer-project.org/

6.1 Web Components and Polymer 53

6.1.1 Custom Elements

This feature enables developers to build their own Custom Elements
provide API’s to
create customized
DOM elements.

customized fully equipped DOM elements. Contrary to
this developers could build with non-confirming elements
which are non standardized elements with application
oriented behaviors added later via scripting. With custom
elements developers define how the element should be
processed by a parser and how would it react to specific
changes 9.

The following code snippet shows how to create custom
elements using Polymer 1.x:

<dom-module id="my-custom-element">

/* DOM tree to be rendered goes inside the template */
<template>

<style>
/* Local DOM CSS style */

</style>

<!-- Local DOM -->
<div> Hello {{name}}!</div>

</template>

/* Control for the custom element */
<script>

Polymer({
is: ’my-custom-element’,

properties: {
name: String
/* Element properties */

},

ready: function(){
/* Called when the local DOM is initialized */

},

9http://w3c.github.io/webcomponents/spec/custom/

54 6 Implementation

/* Custom methods */
changeNameToJohn : function(){

this.name = "John";
}

});
</script>

</dom-module>

The above written code is placed in a HTML file. This
HTML file can then be used as resource and imported
where required as shown in

6.1.2 Shadow DOM

Using the Shadow DOM feature, browsers can renderElements placed in a
shadow DOM are

isolated from other
elements.

DOM elements without injecting them into the main
document tree. This means that browsers can render and
manipulate the DOM the same way as nested elements.
However, developers cannot penetrate a shadow DOM in
the same way as before. The allows styles in a shadow
DOM to become isolated and scoped within the shadow
DOM. This allows HTML elements to be completely
encapsulated without being exposed to CSS leaks. This
prevents elements in a shadow DOM to get effected by
unintended external code or behavior.

The encapsulated DOM tree inside a shadow DOM isEvents are used to
communicate with

elements in a
shadow DOM and

vice versa.

known as a shadow tree. DOM elements in a shadow
tree can communicate with rest of external DOM by firing
events. These events can be picked by elements and can
respond to it and vice-versa.

6.1.3 HTML Imports

HTML imports 10 allow to reuse and include webHTML Imports are
used to load

requested resources.
components i.e. custom elements and HTML documents.
The following example shows how to import the custom
element we created in 6.1.1 “Custom Elements”:

10https://www.w3.org/TR/2016/WD-html-imports-20160225/

6.2 Component Based Behavior 55

<link rel="import" href="my-custom.element.html">

HTML imports also make sure that a required resource is
not imported multiple times.

6.2 Component Based Behavior

Custom elements facilitate adding and registering new Task containers and
object are placed in
shadow DOMs and
operate
independently.

DOM elements at runtime into a Shadow DOM. This allows
element added at runtime to be function independently. We
implement task containers and objects as custom elements.
This would allow to clone, add and remove task objects and
containers at runtime. Custom elements facilitate such a
high level composability at runtime.

These elements are independent and operate If system
functionality could be
decomposed of
smaller behaviors,
then each behavior
could be written as
custom elements to
function
independently.

autonomously. Another important aspect is to attach
functionality and behaviors to an existing element at
runtime. If components are built form composable
functionality and behaviors, it would also be possible to
add or remove desired behaviors at runtime.

TUX containers built with such composable behaviors
would accommodate as per evolving context. Since
applications a.k.a containers are underspecified, users can
appropriate them by expressing the context of use. With
changing context such micro behaviors can be added and
or removed from containers to provide users with the right
set of features required in context.

TUX objects built with composable micro behaviors Containers and
Objects built with
such behaviors could
be composed at
runtime to fit the
needs of a context.

would be flexible. Task containers can adjust postures
of containing task objects by manipulating its behaviors
and appearance. With this, task containers can adjust
containing task objects on the fly.

To achieve this level of system granularity we use
Component Based Behaviors (CBB) which enables
adjusting task objects and containers during runtime.
CBB proposes to implement generic manipulatable

56 6 Implementation

functions as independent components i.e independent
custom elements. This way all such composable behaviors
are independent from one other but can still work in a
synergy. Since, each such micro functionality i.e. behavior
is a DOM element they can be easily be switched at
runtime.

6.2.1 CBB Implementation

Lets, first look at an example of CBB from Polymer:

<div style="position: relative">
<paper-ripple></paper-ripple>

</div>

In the above code <paper-ripple></paper-ripple>
is a CBB. <paper-ripple> provides a visual effect that
other DOM elements can use to simulate a rippling effect
originating from the point of contact i.e. touch or mouse
down. The effect is visualized as concentric circle in motion
as shown in Figure 6.1(b).

A normal button as shown in 6.1(a) is implemented as
follows:

<button type="button">NORMAL BUTTON</button>

In order to give it the ripple behavior as shown in figure
6.1(b), we just add the <paper-ripple> custom element
as a child of the button as follows:

<button type="button">
NORMAL BUTTON
<paper-ripple></paper-ripple>

</button>

The <paper-ripple> behavior adds abilities to theA behavior inserted
as a child node adds

features to its
immediate parent.

parentNode hosting the behavior. If multiple such

6.2 Component Based Behavior 57

NORMAL BUTTON NORMAL BUTTON

RIPPLE BUTTON RIPPLE BUTTON

On Click

On Click

(a)

(b)

Figure 6.1: Shows (a) vanilla button on mouse click (b) button with a paper-ripple
behavior

behaviors are added as child nodes. All such behaviors
would add abilities to the parent node. Polymer offers
the following life cycle callback methods when a custom
element is created 11:

• createdCallback This is used for a single time
setup before local DOM can be initialized and
property values be set.

• ready This method is called after the property values
are set but DOM has not yet been initialized. At this
stage it possible to access property values.

• attachedCallback This is called after a custom
element has been attached to the document. Here
developers can add event listeners and access
computed styles. When a behavior is inserted to a
DOM element in this callback the parentNode can
be accessed and behavior specific functionality can be
added.

11https://www.polymer-project.org/1.0/docs/devguide/registering-elements

58 6 Implementation

• detachedCallback This callback is called when a
custom element is removed from the the DOM. So,
when a behavior is removed from DOM, we can
remove the behavior specific functionality from the
parent Node.

• attributeChanged This is called when an
element’s attribute is changed. This is not the
same as observing properties. in order to register a
callback when a property is changed, observers
are used.

So, the attachedCallback and detachedCallback
are used to modify abilities of the parentNodes when
behaviors are added or removed. Examples of some
behaviors that we implement are as follows:

• <model-behavior>

• <behavior-draggable>

• <behavior-dropzone>

• <sortable-behavior>

6.2.2 Model Behavior

Model behavior allows to attach a model to any DOM
element. This behavior can be attached to any element
which represents a task object. A container can
access the data of this task object by retrieving the
<model-behaviour> DOM element and querying for
its model property. This provides a generic way for all
containers to access the model of any task object when it is
dropped into the container. We added the ability to set and
retrieve a model to every HTML element as this feature is
used very frequently and it improves code readability.

The following code shows how to retrieve the model of any
DOM element using Polymer:

6.2 Component Based Behavior 59

HTMLElement.prototype.getModel = function(){
var modelElement = Array.from(this.childNodes)
.filter(el => el.tagName === "MODEL-BEHAVIOUR")[0];
if(modelElement === undefined)
{
if(this[’model’] !== undefined)
return this[’model’];
else
return undefined;

}
return modelElement[’model’];

};

The following code shows how to set the model of any
DOM element using Polymer:

HTMLElement.prototype.setModel = function(model){

var modelElement = Array.from(this.childNodes)
.filter(el => el.tagName === "MODEL-BEHAVIOUR")[0];
if(modelElement !== undefined)
{
if(isArray(modelElement[’model’])) {

modelElement[’model’] = [];
}
else if (isObject(modelElement[’model’])) {

modelElement[’model’] = {};
}
modelElement[’model’] = model;

}
if(this.model)
{

if(isArray(this.model)) {
this.model= [];

}
else if (isObject(this.model)) {

this.model = {};
}

this.model = model;
}

60 6 Implementation

};

With the above methods in place model from an element
can be accessed by just calling element.getModel().
And setting the model can be done by just calling
element.setModel(model).

task objects can be of any type and can have different
complexity of models attached to it. We define a simple
format in which a model needs to be declared. This
standardized way of declaring models allows all containers
to parse the model and construct a model in a consistent
manner. An example is shown below:

model : {
key1 :
{’common:value’:[],
’display:renderer’:true,
’type’:generic},

key2 :
{’common:value’:"SubjectID",
’display:renderer’:true,
’type’:’variable’}
}

’common:value’ is used to store the data.
’display:render’ is a boolean flag which is used
to decide if the values need to be displayed on the interface
or not. type is used to register the semantic type of the
element eg: variable, car, person etc...

The value of the display:renderer flag can change over
time. This allows containers to display the right amount of
information in a given context.

6.2 Component Based Behavior 61

6.2.3 Draggable Behavior

Attaching this behavior to any DOM element makes
it draggable. All task objects and containers are
draggable. Task objects start exhibiting the behaviors
described in 5.2.2 “TUX object design”. When the
<draggable-behaviour> gets attached the following
attachedCallback gets executed:

attachedCallback : function () {

this.parent = this.parentNode;
this.parent.style.position="relative";
...
...

/* elementCloneDeleteMove is a custom element which
adds the move, clone, delete menu to the element */

var element = new elementCloneDeleteMove(this);
this.parent.appendChild(element);

element.setAttribute("style",
"display:none;z-index:9999;position:absolute");

this.parent.addEventListener("mouseover",
function(e){e.stopPropagation();self.showElement();});

this.parent.addEventListener("mouseout",
function(e){e.stopPropagation();self.hideElement();});

/* this makes the parent draggable */
this.parent.setAttribute(’draggable’,true);

/* attaching drag-* event listeners to parentNode */
this.parent.addEventListener(’dragstart’,
function(e){e.stopPropagation();self.iWasDragged(e,self);});

this.parent.addEventListener(’touchstart’,
function(e){e.stopPropagation();});

this.parent.addEventListener(’dragstart’,

62 6 Implementation

function(e){e.stopPropagation();});
},

The above code snippet shows how properties,
appearances and event listeners can be attached to
the parent node hosting a behavior.

6.2.4 Dropzone Behavior

Attaching this behavior to a DOM element converts it
into a drop zone where draggable items can be dropped.
This behavior goes a step further and attaches history
metadata to every task object. The history property records
the transformation of an object. This can be later used
to inspect the flow and transformation of data for sense
making purposes. This behaviour also abstracts extracting
data from excel files and convert it into a generic model
format.

6.2.5 Behavior Sortable

This behavior allows to rearrange objects row-wise,
column-wise, matrix or in a list. The row wise and column
wise rearrangement behavior can be seen in the seen in the
table application. The list reordering behavior can be seen
in groups and the matrix reordering behavior can be seen
in the workspace a.k.a canvas where applications can be
rearranged.

6.3 Implementing Task objects and
containers

Task objects and containers are implemented as custom
elements. Each custom element has its own controller
which handles the application logic. When an element is
dropped into a container an event is fired. The controller

6.3 Implementing Task objects and containers 63

intercepts these event to get a handle of the dropped
element. It extracts the model from the model behavior
of the dropped element to determine properties of the
object needed to be rendered. Based on semantics of these
property values the container controller choose a suitable
posture of the task object and realizes it by either modifying
a task objects behaviors or creating an entirely new custom
element to represent the task object.

All containers have a common window decoration. We
implemented a high level custom element window called
<container-application> which encapsulates
this window decoration and functionalities that
come with it. When an application for example
<grouping-application> is placed inside the
<container-application> it inherits the window
decoration and behaviors from it. The following pseudo
code snippet shows how this is done.

Pseudo code for <comparing-application> placed in
comparing-application.html file:

<dom-module id="container-application">

<template id$= "{{id}}">

/* paper material creates a window
on the canvas for the application*/
</paper-material>

<div class="header">
/* Code for header toolbar goes here */
</div>

/*The content tag acts as a slot*/
<content select = "[widget]"></content>

<div class="footer">
/*code for footer hosting multiple visualization goes here*/
</div>

</paper-material>

64 6 Implementation

</template>

<script src = "containerController.js"></script>

</dom-module>

The <content> tag acts as a slot where
UI for other applications get inserted. The
<container-application> is a custom element
which can be imported as an HTML resource via HTML
import. In the <grouping-application> custom
element, <container-application> is placed inside
the <template>. Now any DOM Tree added as a child
of <container-application> will get added to the
<content> slot in the code snippet above. Both container
and grouping applications have their own controller for
container specific application logic.

Pseudo code for <grouping-application> placed in
grouping-application.html:

<dom-module id="grouping-application">

<template id$= "{{id}}">

<container-application id="grouping"
title="Grouping"
class="groupingToolbar"
icon="group-work">

<section>

...

/* Interface for grouping application*/

...

6.4 Implementation for Bayesian Analysis 65

</section>

</container-application>

</template>

<script src="groupingController.js"></script>

</dom-module>

We built the interface unique to application
and objects using default elements and widgets
provided by the Polmer library. The polymer
element catalog documentation can be found at
https://elements.polymer-project.org/.

6.4 Implementation for Bayesian Analysis

To support Bayesian analysis we use R functions via the
OpenCPU API. Computations for calculating probability
distributions inferred on the basis of independent and
dependent variables is done by calling R functions. To
use OpenCPU it is first required to impoert jquery and
opencpu javascript libraries. The following snippet shows
how to call an R function to calculate a discrete probability
distribution for 7 positive outcome in 20 independent trails
for a given probability model p:

ocpu.seturl("//public.opencpu.org/ocpu/library/stats/R");
ocpu.rpc("dbinom",{
x:7,
size:20,
prob:p

},function(result){});

Using web-components’ custom elements, HTML imports,
shadow DOM; components based behaviors and custom
elements from Polymer we realized an elastic interface as
imagined by TUX.

67

Chapter 7

Evaluation

We conducted a think-aloud user study to evaluate the
exploratory power and usability of our system based on
Transformative User Experience Design.

7.1 User Study Protocol

Since the study involved a closer observation of users in Participant’s screen
and voice were
recorded. They
performed simple
Bayesian analysis
tasks.

problem solving and exploratory mode, we recorded the
participant’s screen to capture their actions. Since this
was a think aloud study we recorded participant’s voice.
They were asked to perform tasks representative of steps
involved in Bayesian analysis.

7.1.1 Setup

The test environment selected was a typical office
environment. Participant was seated in front of a 21 inch
LCD monitor and given a mouse and keyboard. Mouse
was used instead of a trackpad, as in the pilot study
user was uncomfortable using the trackpad on our system.
Since the majority of interaction involved drag and drop
actions we decided to use a mouse. Users were allowed
to adjust mouse sensitivity as per their comfort. This was

68 7 Evaluation

done so that the medium of interaction didn’t become an
extraneous variable in our study.

7.1.2 Procedure

Participants were sent a short tutorial on Bayesian AnalysisTuitorial was
provided to firstly,

make sure they
understood the

concepts and
secondly, to reduce
the time duration of

the actual user study.

a day before the user study. After the participants
arrived for the study, we went over a few basic concepts
of Bayesian analysis to ensure that they understood
the bare basics of the topic and were comfortable with
terms like independent variables, dependent variables,
model, probability distributions, likelihood, prior, levels of
measurement, etc. Once the participant arrived, they were
given a consent form which also stated the purpose of the
study. Some demographic data was collected as listed in A
“Appendix for User Study”.

First participants were shown the interface with the the five
applications arranged on the canvas. They were asked to
think aloud, what they understood from by just looking
at the interface without using it just yet. After this, they
were allowed to explore the interface for not more than
five minutes and get used to moving around applications
on the canvas and experiment with features of individual
applications.

After participants had briefly explored the system, theyParticipants were
asked speak out their
actions and expected

responses before
performing a task.

were given the below mentioned tasks. For each task
users were free to use the system as they desired. Before
they performed an action, they were asked to speak out
the action and the response they would expect from the
system. For each task, participants were also asked to
suggest generic methods and features that if present would
have aided them to perform that specific task.

After participants completed the tasks they were asked to
fill out form to measure system usability. This is measured
using the System usability scale (SUS) and another form to
provide general feedback. User Study forms are attached
in A “Appendix for User Study”.

7.1 User Study Protocol 69

Tasks

Tasks given to participants were some basic steps involved
in performing Bayesian Analysis. Users were given
the a hypothetical example discussed in 4.2 “Performing
Bayesian analysis with a simple example”.

Participants of our system are given an excel file with data
recorded from the example. Users are already familiar
with the process of performing Bayesian Analysis. A set of
predefined detailed task were not given because we wanted
the user to explore. But a set of steps were given to them
for reference:

• Data Identification

• Defining Independent and Dependent Variables

• Expressing Priors

• Finding the posterior

7.1.3 Method of Analysis

Our goal is to measure System Usability and the Freedom
offered by the system.

System usability
We measured system usability is measured using th system
usability scale (SUS). It is ”a quick and dirty, reliable tool for
measuring usability” [Brooke et al., 1996]. SUS has become
a standard in the industry. The befits of using SUS are as
follows 1:

• It is very easy for participants to understand and give
responses, thus making it easy to administer.

1https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

70 7 Evaluation

• It provides reliable results with even small sample
sizes.

• It effectively differentiates between usable and
unusable systems.

Participants are given the following 10 statements and
they score these statements on a 5 point likert scale from
strongly-disagree to strongly agree:

• I think that I would like to use such a system
frequently.

• I found the system unnecessarily complex.

• I thought that the system was easy to use.

• I think that I would need the support of a technical
person to be able to use this system.

• I found the various functions in the system were well
integrated.

• I thought that there was too much inconsistency in
the system.

• I would imagine that most people would learn to use
this system quickly.

• I found the system very cumbersome to use.

• I felt very confident using the system.

• I need to learn a lot of things before I could get going
with the system.

The SUS consists of ten questions. Each question can
be answered with a response on a five point likert scale
from strongly disagree to strongly agree and numerically
marked from 1 to 5 respectively. The final outcome of the
SUS is a number that represents the usability of the system.
The score for each individual item is not meaningful in
itself.

7.2 Results 71

To calculate the SUS score, for statements 1,3,5,7 and 9 the
score contribution is the score minus 1. For statements
2,4,6,8,10 the score contribution is calculated as 5 minus the
score. After this the score contributions are summed up
and the sum is multiplied by 2.5 to obtain an overall system
usability score on a scale of 0 to 100.

Freedom offered by the system
This is a qualitative measure. We analyze users actions and
voice recordings to investigate this. We look at the number
of ways in which a user tries to accomplish a particular
task.

7.1.4 Participants

A total of seven participant were a part of this study
aged 27-30(M=28.3, SD=1.1 ,3 females and 4 females).
four participants were developers, two participants were
university students and one participant was a user
experience designer. All participants were from computer
science background. Only one of seven participant, had
studied Bayesian Analysis formally and was familiar with
concepts of Bayesian Analysis. All seven participants had
formally studied statistics.

7.2 Results

7.2.1 System Usability

The combined SUS score, M=78.2, SD=3.5. Figure 7.1 shows
the grade ranking of SUS scores from [Bangor et al., 2009].
Our results indicate a good SUS score with a high system
acceptability.

72 7 Evaluation

Figure 7.1: Grade ranking of SUS scores from [Bangor et al.,
2009]

7.2.2 Freedom offered by the system

Here we look at the set of actions users performed to
accomplish a particular task. Each series of actions is
followed by a fraction which indicates how many users
performed this action out of a total of seven users.

• Actions performed for Data Identification

– Dropping data file directly into the sourcing
container, then grouping data using the
grouping container followed by visualizing
the required group by dropping it in the
visualization container: (7/7)

– Dropping data file directly into the visualizing
container, followed by assigning required
variables to x and y scale to obtain the required
data set. (5/7)

– Dropping data file directly into the grouping
application to discover groups in data followed
by drooping the required group in the
visualizing container. (5/7)

• Defining Independent and Dependent Variables

– Annotating variables as independent and
dependent in the Sourcing application: (3/7)

– Create two groups for independent and
dependent variables and group variables
accordingly: (7/7)

7.2 Results 73

– Dropping dependent variable and independent
variable on the x-axis and y axis of the
visualizing application respectively, assuming
x axis by default to represent independent
variable and y axis to represent dependent
variable: (3/7)

• Expressing Priors

– Using Sourcing application to create priors by
text entry: (7/7)

– Using Visualizing application to visually create
priors: (7/7)

• Finding the posterior

– Creating two groups, likelihood and prior,
putting relevant data into these groups and
dropping the Grouping application directly into
Visualizing application: (6/7)

– Creating two groups, likelihood and prior,
putting relevant data into these groups and
dropping the Grouping application directly into
Comparing application: (4/7)

– Creating two groups, likelihood and prior,
putting relevant data into these groups and
dropping the grouping application into the
Sourcing application: (3/7)

– Dropping likelihood and prior data one after the
other into the Visualizing application without
grouping: (5/7)

– Dropping likelihood and prior data on after the
other into the Comparing application without
grouping.(5/7)

These results indicate that the system allowed enough
freedom for participants to explore data and problem in
their own way. Additionally, all users were able to find
the posterior distribution for our given scenario. This
is not a definitive measure but an indicative measure of
moving in the correct direction. Also, in the list above
we have simplified and grouped user actions, but actually

74 7 Evaluation

participants performed multiple permutations across these
tasks and action sets. A deeper analysis into this will reveal
more insights. But, this was placed outside the scope of this
thesis.

7.2.3 User Feedback

Most users found the system very simple to use as theySytem was easy to
use and understand.
But, users were not

sure if the system
would understand

their actions.

were composed of generic features. On one side they
found it easy and understandable, the other side they were
un-sure if the system would understand their intentions.
They were a bit hesitant in the beginning while performing
task as they didn’t know if their appropriation would work.
A participant suggested, ”There should be a way for the
system to continuously communicate what context inferences is
it making.”.

Users suggested the following generic applications which
could be useful from their perspectives:

• Network building application. An application which
could draw directed arrows from one object to
another. Such an application could be used to show
dependency or build organizational trees etc.

• Clustering application.

• A generic text editor applications.

• An application that could be used to browse the web
and import data from any web source.

Users experience the following issues while using the
grouping application:

• A few users didn’t realize the presence of the
focus+context menu for navigating to invisible
groups.

• While hovering over the items inside the group they
didn’t realize that the items inside the groups were
also draggable.

7.2 Results 75

Users experience the following issues while using the
visualizing application:

• Some users couldn’t figure out immediately how to
build a custoom visualization from scratch.

• Some users couldn’t figure out that variables were
extracted when an item was dropped into the
visualizing application. And in order to visualize the
graph variables had to be dropped in the respective
axes. They expected a random visualization to appear
as soon as data was dropped on the container.

• Most users couldn’t figure out x and y axis fields were
dropzones.

There were no comments for planning, sourcing and
comparing applications.

77

Chapter 8

Summary and future
work

We now conclude with summarizing the thesis, and briefly
discuss scope of future work.

8.1 Summary

Inspired by supporting user’s emergent needs in problem
solving mode, we designed and developed generic
software support based on elastic design principles.
We built domain specific support for performing basic
Bayesian analysis with the system.

In order to do so we first delved into research on complex
problem solving to understand what are complex problem?
what uniquely characterizes them? and what are the
strategies adopted by problems solver while working with
such problem? From this insight we distilled core generic
activities that problem solvers perform. Complex problems
are characterized by uncertainty. User’s goals keep
evolving as and when new insights appear. Core generic
activities that users perform in problem solving mode are
wayfinding, sensemaking and managing data ordeals. To
understand goal oriented activities better we turned to

78 8 Summary and future work

Activity theory for better understanding how users interact
with tools and perform activities to achieve their goals.
Activity theory suggests that a singular reference to context
is insufficient to support users in open ended queries.
Users work in multiple contexts while in problem solving
mode. We realize that interfaces and software support
for such applications needs to be flexible to accommodate
uncertainty. End user Development (EUD) is a paradigm
that suggests for such flexibility and adaptability of
systems at runtime. EUD suggests using a modular
approach to achieving such flexibility. We adopt a few EUD
activities like annotation, parameterization, composition
and modification for adapting system functionalities at
runtime. EUD’s meta design theory suggests under
specifying application so that they can be appropriated by
the users the way they want in the context they want.

Transformative User Experience Design builds on the
above mentioned lessons from EUD and meta design. It
aims at supporting users in variety of spontaneously self
defined task flows. It introduces two basic concepts, task
containers and task object. Task objects are data items of
interest to the user and task containers represent contexts
which host these data items. Problem solvers operate in
multiple such contexts. User should be able to move task
objects from one context to the other. Containers should
be underspecified so that users can impose their intentions
and express a context of use. System should allow user
to perform EUD activities in order to do so. Context can
also be inferred by containers based on the task objects
contained in it. Container should be able to adjust the
posture of containing task objects to match the context of
use. We discuss how TUX proposes to achieve elasticity as
a generic quality of use.

Based on insights gained from complex problem solving,
end user development, activity theory, meta design and
TUX we narrow down concrete system requirements to
build generic support for complex problem solving. We
propose an interface design with 5 generic applications,
grouping, sourcing, planning, visualizing and comparing.
There are many other such generic applications that can
be developed but we choose to implement only these 5

8.2 Future work 79

in the scope of this thesis. These are generic applications
which are not built for nor reflect any specific use case
placed on an infinitely extending canvas. These represent
task containers described by TUX. We describe in detail
interaction design for these applications and interaction
potentials they offer.

To realize elasticity the software architecture, methods,
features and functionality need to be flexible to support
elasticity at the interface level. We use web-components
specifications i.e. custom elements, shadow DOM and
HTML imports to realize such flexibility. And, we build
on a component based behavior framework powered by
the polymer. Applications and objects are implemented as
custom elements placed in a shadow DOM. This allows
them to work independently without being affected by
others.

We conduct a qualitative user study to evaluate the
freedom offered by the system to allow exploration in
Bayesian analysis and evaluate the usability of the system.
Results of the study indicate high acceptability of the
system. Participants in the study could understand and
appropriate generic applications for performing Bayesian
analysis. They were able to achieve their goals in a self
informed self defined manner in multiple different ways.

8.2 Future work

As discussed earlier, in the scope of this thesis we do not
focus on building a highly efficient zoom-able interface.
Implementing a zoom-able interface with multiple
strategies for organizing and managing applications on the
canvas would be extremely useful.

We implemented support for performing basic Bayesian
analysis. More support could be integrated for performing
more complex statistical analysis.

Currently, task objects and containers are no not purely
built out of behaviors. They are a mix of behaviors

80 8 Summary and future work

and custom elements. More generic behaviors could be
developed so that containers and task objects would be
truly composable.

We did not built a tool-bar or any other element, from
which applications could be spawn and brought onto the
canvas. A tool-bar containing all applications allowing
users to drag new application instances to the canvas
would be very useful.

User study points out some usability flaws in the system
which need to be corrected. A participant suggested during
the study that the system should communicate the context
it is constantly inferring from user actions. This would
allow the users to correct their actions.

We implement only five generic containers, more
containers like clustering, network building etc. could
be added to provide more comprehensive support.
There could be numerous generic and domain specific
applications which could be useful.

Each application provides a generic functionality. And
users use these applications independently. Generic
applications could be merged by merging behaviors to
create new applications at runtime.

The system is built to be used by a single user at a time.
This could be further extended as a collaborative platform.
Multiple users could share a common workspace and solve
a larger problem together.

Task containers do not not know the identity of objects
which get dropped onto it. It would be useful to build an
intelligent context engine which could evaluate the canvas
to infer context of use and identify object types by iterating
over it properties.

We realized elastic design principles via Direct
Manipulation Interfaces paradigm. But, TUX is not
bound by any UI paradigm. It would be interesting
to explore elasticity for other modes and modalities of
interaction.

81

Appendix A

Appendix for User Study

82 A Appendix for User Study

User Study Form

User ID :

Name :

Age :

Gender :

Profession :

Highest degree :

1. Have you studied Statistics?

8�Yes 8�No

2. Have you studied Bayesian Analysis?

���� � 8�Yes 8�No

�

3. If yes, are you familiar with keywords like Prior, Posterior, Likelihood?

���� � 8�Yes 8�No�

�

4. Are you familiar with any software program for statistical analysis?

���� � 8�Yes 8�No

5. How often do you work with such a software?

��� 8�Daily 8�Weekly 8�Once in a while 8�Never

6. Are you familiar with interfaces with drag and drop features?

��� 8�Yes 8�No

7. How often do you work with such interfaces?

��� 8�Daily 8�Weekly 8�Once in a while 8�Never�

Figure A.1: Collecting user details and demographic data form

83

8. Tick the appropriate option

1. I think that I would like to use such a system frequently.

2. I found the system unnecessarily complex.

3. I thought that the system was easy to use.

4. I think that I would need the support of a technical person to be

able to use this system.

5. I found the various functions in the system were well integrated.

6. I thought that there was too much inconsistency in the system.

7. I would imagine that most people would learn to use this system

quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I need to learn a lot of things before I could get going with the

system.

S
tr

o
n

g
ly

 D
is

a
g
re

e

D
is

a
g
re

e

N
e
u

tr
a
l

A
g
re

e

S
tr

o
n

g
ly

 A
g
re

e

Figure A.2: SUS form

84 A Appendix for User Study

9. Feedback:

 1. Grouping Application

 2. Spreadsheet Application

 3. Visualizing Application

 4. Comparing Application

 5. General (suggestions/things you liked/disliked)

Figure A.3: Feedback

85

Bibliography

Australian Public Service Commission et al. Tackling
wicked problems: A public policy perspective. 2012.

Aaron Bangor, Philip Kortum, and James Miller.
Determining what individual sus scores mean: Adding
an adjective rating scale. Journal of usability studies, 4(3):
114–123, 2009.

Gregory Z Bedny. Application of Systemic-Structural Activity
Theory to Design and Training. CRC Press, 2014.

John Brooke et al. Sus-a quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7, 1996.

C West Churchman. Guest editorial: Wicked problems.
Management Science Vol. 14, 1967.

Maria Francesca Costabile, Daniela Fogli, Piero Mussio,
and Antonio Piccinno. End-user development: The
software shaping workshop approach. In End user
development, pages 183–205. Springer, 2006.

Alan Dix. Designing for appropriation. In Proceedings of
the 21st British HCI Group Annual Conference on People and
Computers: HCI... but not as we know it-Volume 2, pages
27–30. British Computer Society, 2007.

Paul Dourish. The appropriation of interactive
technologies: Some lessons from placeless documents.
Computer Supported Cooperative Work (CSCW), 12(4):
465–490, 2003.

Arthur Conan Doyle. The sign of four. Broadview Press,
2010.

86 Bibliography

Gerhard Fischer and Elisa Giaccardi. Meta-design: A
framework for the future of end-user development. In
End user development, pages 427–457. Springer, 2006.

Raymonde Guindon. Cognitive science and its applications for
human-computer interaction. Psychology Press, 2013.

Austin Henderson and Morten Kyng. There’s no place like
home: Continuing design in use. In Design at work, pages
219–240. L. Erlbaum Associates Inc., 1992.

Victor Kaptelinin. Acitivity theory. In Encyclopedia of Human
Computer Interaction. Interaction Design Foundation,
2015.

Victor Kaptelinin and Bonnie A Nardi. Acting with
technology: Activity theory and interaction design. MIT
press, 2006.

John Kruschke. Doing Bayesian data analysis: A tutorial with
R, JAGS, and Stan. Academic Press, 2014.

Markus Latzina and Joerg Beringer. Transformative user
experience: Beyond packaged design. Interactions, 19(2):
30–33, 2012.

Markus Latzina and Joerg Beringer. Elastic workplace
design. In Designing Socially Embedded Technologies in the
Real-World, pages 19–33. Springer, 2015.

William Lidwell, Kritina Holden, and Jill Butler. Universal
principles of design, revised and updated: 125 ways to enhance
usability, influence perception, increase appeal, make better
design decisions, and teach through design. Rockport Pub,
2010.

Henry Lieberman, Fabio Paternò, Markus Klann, and
Volker Wulf. End-user development: An emerging
paradigm. In End user development, pages 1–8. Springer,
2006.

Nikolay Mehandjiev and Leonardo Bottaci.
User-enhanceability for organisational information
systems through visual programming. In International
Conference on Advanced Information Systems Engineering,
pages 432–456. Springer, 1996.

Bibliography 87

Barbara Mirel. Interaction Design for Complex Problem
Solving: Developing Useful and Usable Software. Morgan
Kaufmann Publishers Inc., 2003.

Bonnie A Nardi. A small matter of programming: perspectives
on end user computing. MIT press, 1993.

Donald A Norman. Human-centered design considered
harmful. Interactions, 12(4):14–19, 2005.

Alan J. Perlis. Epigrams on programming. Sigpplan Notices,
17(9):7–13, 1982.

Jens Rasmussen and Kim J Vicente. The ecology
of human-machine systems ii: Mediating’direct
perception’in complex work domains. Ecological
psychology, 2(3):207–249, 1990.

Horst Rittel. Second generation design methods. In
Developments in Design Methodology. Wiley & Sons, 1984.

Mary Shaw. Maybe your next programming language
shouldn’t be a programming language. 1989.

Nathan Shedroff. Interfaces for understanding. In More
Than Screen Deep: Toward Every-Citizen Interfaces to the
Nation’s Information Infrastructure. National Academic
Press, 1997.

Ben Shneiderman. 1.1 direct manipulation: astep
beyond programming languages. Sparks of innovation in
human-computer interaction, page 17, 1993.

Markus Won, Oliver Stiemerling, and Volker Wulf.
Component-based approaches to tailorable systems. In
End user development, pages 115–141. Springer, 2006.

Typeset February 13, 2017

	Abstract
	Acknowledgements
	Conventions
	Introduction
	Contributions
	Outline

	Related Work
	Complex Problem Solving
	Characteristics of Complex Problem Solving
	Core Activities

	Activity Theory
	End User Development

	Transformative User Experience Design
	TUX proposed system architecture
	Task Context
	Task Object

	Bayesian Analysis Theory
	Theory
	Performing Bayesian analysis with a simple example
	Workflow

	Interaction Design
	Design Requirements and Conception
	Design
	TUX Container design
	TUX object design
	Sourcing Application
	Planning Application
	Grouping Application
	Comparing Application
	Visualizing Application

	Implementation
	Web Components and Polymer
	Custom Elements
	Shadow DOM
	HTML Imports

	Component Based Behavior
	CBB Implementation
	Model Behavior
	Draggable Behavior
	Dropzone Behavior
	Behavior Sortable

	Implementing Task objects and containers
	Implementation for Bayesian Analysis

	Evaluation
	User Study Protocol
	Setup
	Procedure
	Method of Analysis
	Participants

	Results
	System Usability
	Freedom offered by the system
	User Feedback

	Summary and future work
	Summary
	Future work

	Appendix for User Study
	Bibliography
	Index

