

Me Hates This: Exploring Different
Levels of User Feedback for (Usability)
Bug Reporting

Abstract
User feedback for deployed software systems ranges
from simple one-bit-feedback to full-blown bug reports.
While detailed bug reports are very helpful for the
developers to track down problems, the expertise and
commitment required from the user is high. We
analyzed existing user report systems and propose a
flexible and independent hard- and software
architecture to collect user feedback. We report our
results from a preliminary two-week user study testing
the system in the field and discuss challenges and
solutions for the collection of multiple levels of user
feedback through different modalities.

Keywords
Usability, evaluation, user reports, feedback, modality.

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User
interfaces – Evaluation/methodology

General Terms
Experimentation, Human Factors

Copyright is held by the author/owner(s).

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

ACM 978-1-4503-0268-5/11/05.

Florian Heller
RWTH Aachen University
52056 Aachen, Germany
flo@cs.rwth-aachen.de

Leonhard Lichtschlag
RWTH Aachen University
52056 Aachen, Germany
lichtschlag@cs.rwth-aachen.de

Moritz Wittenhagen
RWTH Aachen University
52056 Aachen, Germany
wittenhagen@cs.rwth-aachen.de

Thorsten Karrer
RWTH Aachen University
52056 Aachen, Germany
karrer@cs.rwth-aachen.de

Jan Borchers
RWTH Aachen University
52056 Aachen, Germany
borchers@cs.rwth-aachen.de

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1357

Introduction
Software usability and user centered design have been
at the center of our research community’s efforts for
many years. Despite considerable progress, however,
non-optimally designed user interfaces and frustrated
users are still a common sight. Many software bugs and
usability problems are only found when the software
has already been deployed and is in active use. Thus,
developers have to rely on user feedback mechanisms
to find, investigate, and fix such problems.

While this procedure is common practice, a lot of users
do not file bug reports or enhancement requests when
they encounter frustrating situations (crashes are an
exception as these often auto-generate bug reports).
Reasons for this may include the lack of incentive to
report usability problems, lack of trust that the
feedback will have any impact, feedback mechanisms
that are unknown to the user or that are difficult to
find, and general unwillingness of frustrated users to
manually fill out bug report forms. Instead, users tend
to blame themselves or learn to accept cumbersome
workarounds to avoid these problems [10].

To include user feedback at these late stages of a
software product’s life cycle, user feedback
mechanisms should be easy and quick to invoke, be
presented in a consistent fashion among different
products, and impose a minimum amount of
inconvenience to the user who is probably in a negative
emotional state. We present a number of experimental
prototypes of such feedback mechanisms which allow
users to express their disapproval of the current state
of their system in different ways.

Collecting User Feedback
Current techniques for collecting user feedback in
deployed software systems cover a wide spectrum,
ranging from classic bug reporting facilities which are
often external tools to the minimalistic but ubiquitous
content-related feedback mechanism of today’s social
networks.

Traditional bug reports are usually targeting software
developers rather than end users. Bug reporters are
usually expected to provide information such as
detailed problem descriptions, source code examples,
or bug severity levels. The average user, however, in
many cases may not be able or willing to provide this
level of detail. In addition, bug reporting facilities are
often not integrated with the users’ workspace but
require launching special tools or websites. This results
in only a small part of users participating in reporting
problems [9].

In contrast, simple one-bit-feedback facilities such as
the facebook “like” button (Figure 1) or the YouTube
thumbs-up/thumbs-down mechanism are used
millionfold; they are easily visible, have a rather
consistent representation, and only require a minimum
amount of effort on the users’ side. Of course, these
mechanisms also do not provide much information—
they only link a sentiment to the context the feedback
button refers to.

Examples in between these extremes exist. Recently,
the Microsoft Office 2010 beta (Figure 2) and the
Firefox 4 beta (Figure 3) have included feedback UI
elements that are always visible when the user is
working with the software. Clicking these elements
users are presented with a dialogue that asks to give a

Figure 2. The Send-A-Frown application
from the MS Office 2010 beta. The user can
send comments with an optional screenshot
to the developer team

Figure 1. The facebook like-button allows to
give very basic feedback.

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1358

short statement about what they liked or disliked about
the software in that moment. It is important to note
that most of the context, e.g., the current state of the
application or an optional screenshot, is captured
automatically and included in the report. This allows
meaningful reports to be generated by non-expert
users while reducing user effort at the same time.

Figure 3. Feedback website for the Firefox 4 beta. Instead of
relying on detailed information the feedback is limited to 140
characters and a URL.

Research Questions
Intuitively we can see that there is a tradeoff between
two forces across the described spectrum of user
feedback reporting techniques. On the one hand, bug
reports provide software engineers and UI designers
with in-depth information on the context and effects of
the problems in their products but are demanding time,
expertise, and commitment from the reporting users.
One-bit-feedback, on the other hand, imposes no such
requirements on the users but will leave the developers
and designers only with an ‘opinion histogram’ or
‘problem heatmap’ on the different states of the
software.

Two central questions arise from this tradeoff that have
to be answered before an informed decision about how

end user feedback should be included in deployed
software can be made:

a) How does the amount of effort that is expected
from the user influence the number of
submitted reports?

b) Can a larger number of user reports that
contain less user-generated information (but
may contain automatically gathered data) be
as valuable for developers and designers to
find and fix problems in deployed software?

Another point that we have to consider is that when
users encounter problems while working with
computers they are likely frustrated and in an
emotional state of stress. This suggests that it may be
beneficial to present a reporting UI not as part of the
software that caused the problem but as part of a
trusted entity, e.g., the operating system or even an
external device. The latter could even offer the
possibility for emotional relief by venting if the device
was built in a sturdy fashion and could endure physical
punishment. We add this as a third and fourth question
to the list:

c) Does the modality of the feedback mechanism
(software button vs. hardware device)
influence the number of submitted reports?

d) Does a hardware artifact that can be punched
offer emotional relief to frustrated users?

Related Work
Previous work [3], [2], [8], [7] researched usability
evaluation of deployed software. They found that end
users can provide information that is adequate for the
developer to identify the usability bugs [3], [2], [1].

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1359

However, reporters desire simple and short reports [3],
[2], [8], [7] because “users are typically more
concerned with getting their work done than in paying
the price of problem reporting while developers receive
most of the benefit. As a result, often only the most
obvious or unrecoverable errors are reported.” [4], [9]

With increasing number of bug reports it becomes
necessary to preprocess them and to detect duplicates.
Ko et al. [6] gathered a large corpus of bug report titles
and found that these short headings are already
expressive enough that automated tools can identify
the component and concern in question. The Firefox
beta (Figure 3) even allows reporters only to report
short statements.
A challenge for automatic recordings is that the time
between the bug incident and the filing of its report is
often too large to allow collection processes to capture
the problem [3]. Also, most errors are usability based
and collected data is often inadequate to identify user
experience problems [7].

Whether venting has a lasting impact on the emotional
state of the angered reporter is debated [5] but might
also increase satisfaction and perceived product value
[11]. Nichols [9] suggests that developers let the
reporter know that (and how) her report impacted the
development to encourage their involvement.

Prototype Design
We built a first prototype feedback system for Mac
OS X. Our prototype consists of a background process
collecting system information and an optional hardware
button (Figure 4). In case the hardware button is not
connected, an on screen button is displayed in the OS X
menu bar (Figure 5). We decided on this position over

a floating window or a separate program to ensure
constant accessibility of the button. This reduces the
likelihood of the button itself adding to the user’s
frustration.

Figure 5. The on-screen button of our prototype

The software is a background process that monitors
certain system characteristics and packs them into an
incident report whenever the user clicks on the on-
screen button or punches the hardware button. For this
first prototype we did not collect additional user
information after the button is pressed. The information
contained in such a report consists of a (full-screen)
screenshot, a list of currently running applications,
system load information, current mouse position, the
optional user comment dependent on the mode of the
tool, and, if allowed by the user, a webcam picture. The
report is stored locally on the user’s system.

Two modes are available: one that opens a text view
after the user has invoked the tool to query her for
additional information (much like the Firefox beta does,
cf. Figure 3) and one where no extra action by the
user is required. In the latter case, users were provided
with a management tool for the generated incident
reports, which allows them to select any number of
prepared reports and modify, annotate, delete, or send
them off for evaluation. Our prototype implementation

Figure 4. The hardware button

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1360

is only available for Mac OS X but a Windows version is
under development.

The hardware (Figure 6) consists of a simple
mechanical switch and an AVR microcontroller, which
runs a software USB-stack1 and registers at the system
as a human interface class device. Our background
process searches for our specific hardware IDs and
tracks incoming events.

Pilot Study
We conducted a two-week preliminary study with 10
computer science students. All participants used our
software prototype with the button for one week and
without for the other week, and were instructed to
comment and send off the incident reports at the end
of each day. Along with each incident report,
participants had to fill out a self-reporting
questionnaire, asking for, e.g., the importance of the
task to be accomplished or the level of frustration that
the incident caused. We analyzed the comments and
ratings of the collected 65 reports. Since this was only
a preliminary evaluation among a non-diverse user
group, results are not generalizable, but give us an
indication about possible trends that we want to study
in more detail during future evaluations. Overall we see
that the number of reports generated with the
hardware button (41) is much higher than with the
menu (24). The button was also reported as much
more useful to express the encountered feeling of
frustration while generating an incident report.
However, only for half of the reports in the hardware
button condition and only a third of the reports in the

1 http://www.obdev.at/products/vusb/index-de.html

menu condition the participants reported feeling better
after they pressed the button. This can be explained by
the fact that, even though one can express the feeling
of frustration, the problem for which the report was
generated still persists.

We asked the participants to rate the importance of the
task they were trying to accomplish when they pushed
the button, as well as an estimate on how frustrating
the encountered problem was perceived. We received
more reports on incidents with a lower frustration level,
with the physical button, suggesting that the hardware
lowers the barrier for generating such reports.

Generally, we received very positive feedback on the
physicality of the button although its usage is
somewhat restricted for laptop users in the sense that
they will not carry the button with their laptop all the
time and thus can use the button only at a specific
location.

Open research questions
With the upcoming implementation of our software
prototype for Microsoft Windows the number of
potential users will grow by a considerable amount.

We will conduct a series of studies to find answers to
the research questions defined earlier. At first, we want
to study how the amount of detail and expertise that is
required to submit a report affect the number of user
reports. If with a one-bit-feedback facility users report
more incidents but with less detail, does the amount of
reports compensate for their simplicity compared to a
full user report with custom text. The goal is to find the
right balance between simplicity for the user or incident

Figure 6. Detailed view on the components of
the hardware button. The AVR microcontroller
on the small PCB registers at the system as
USB HID and reports the state of the switch on
the green PCB.

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1361

reporter and the amount of required information for the
developer to be able to track down a problem.

The second area we want to explore is the modality of
the feedback. Does a physical button as an artifact
independent of the currently used software represent a
more trustworthy instance to generate incident reports.
Another point that arose during our preliminary study
is, if the physicality and the potential physical stress
relief that comes with it lead to an emotional relief. We
also have indications that the physicality of the button
affects the number of generated reports, especially that
the number of less critical reports increases. Finally,
does the number of button presses allow an estimation
of the severity of a problem? After submitting a full bug
report for a specific problem, we usually assume that
someone will take care of it and thus, we do not report
the problem a second time. But does a (physical)
button get pressed every time a specific incident
occurs?

Acknowledgements
This work was funded in part by the German B-IT
Foundation and by the German Government through its
UMIC Excellence Cluster for Ultra-High Speed Mobile
Information and Communication at RWTH Aachen
University.

References
[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann. What makes a good bug report? In
Proc. ACM SIGSOFT ’08, ACM Press, 308–318, 2008.
[2] J. C. Castillo, H. R. Hartson, and D. Hix. Remote usability
evaluation: can users report their own critical incidents? In
Proc. CHI ’98, ACM Press, 253–254, 1998.
[3] H. R. Hartson and J. C. Castillo. Remote evaluation for
post-deployment usability improvement. In Proc. AVI ’98, ACM
Press, 22–29, 1998.
[4] D. M. Hilbert and D. F. Redmiles. Large-scale collection of
usage data to inform design. In Proc. INTERACT’01, IOS Press,
569–576, 2001.
[5] J. Klein, Y. Moon, and R. Picard. This computer responds
to user frustration: Theory, design, and results. Interacting
with computers, 14(2): 119–140, 2002.
[6] A. J. Ko, B. A. Myers, and D. H. Chau. A linguistic analysis
of how people describe software problems. In Proceedings of
the Visual Languages and Human-Centric Computing, IEEE
Computer Society, 127–134, 2006.
[7] B. Murphy. Automating software failure reporting. Queue,
2:42–48, November 2004.
[8] D. Nichols, D. McKay, and M. Twidale. Participatory Us-
ability: supporting proactive users. In Proc. CHINZ’03, ACM
Press, 63–68, 2003.
[9] D. Nichols and M. Twidale. The Usability of Open Source
Software. First Monday, 8(1), 2003.
[10] D. A. Norman. The design of everyday things, Basic Books
New York, 2002.
[11] P. Nyer. An investigation into whether complaining can
cause increased consumer satisfaction. Journal of Consumer
Marketing, 17(1):9–19, 2000.

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1362

