
Dynamic Visual
Cues for Code

Comprehension
and Navigation

Bachelor’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

by
Christopher Helios

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr.-Ing. Ulrik Schroeder

Registration date: 09.01.2024
Submission date: 10.05.2024

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Declaration of Academic Integrity

___________________________ _____________________________
Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)

 Student ID Number (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel
I hereby declare under penalty of perjury that I have completed the present paper/bachelor's thesis/master's thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting) erbracht habe.
Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt; dies umfasst
insbesondere auch Software und Dienste zur Sprach-, Text- und Medienproduktion. Ich erkläre, dass
für den Fall, dass die Arbeit in unterschiedlichen Formen eingereicht wird (z.B. elektronisch, gedruckt,
geplottet, auf einem Datenträger) alle eingereichten Versionen vollständig übereinstimmen. Die Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without unauthorized assistance from third parties (in particular academic ghostwriting. I have not used any
other sources or aids than those indicated; this includes in particular software and services for language, text, and media
production. In the event that the work is submitted in different formats (e.g. electronically, printed, plotted, on a data carrier), I
declare that all the submitted versions are fully identical. I have not previously submitted this work, either in the same or a
similar form to an examination body.

______________________ ____________________________________
Ort, Datum/City, Date Unterschrift/Signature

*Nichtzutreffendes bitte streichen/Please delete as appropriate
Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.
§ 156 StGB (German Criminal Code): False Unsworn Declarations
Whosoever before a public authority competent to administer unsworn declarations (including Declarations of Academic
Integrity) falsely submits such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment for a term not exceeding three years or to a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.
§ 161 StGB (German Criminal Code): False Unsworn Declarations Due to Negligence
(1) If an individual commits one of the offenses listed in §§ 154 to 156 due to negligence, they are liable to imprisonment for a
term not exceeding one year or to a fine.
(2) The offender shall be exempt from liability if they correct their false testimony in time. The provisions of § 158 (2) and (3)
shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

______________________ ____________________________________
Ort, Datum/City, Date Unterschrift/Signature

iii

Contents

Abstract xi

Überblick xiii

Acknowledgments xv

Conventions xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Goal and Approach . 3

2 Related Work 5

2.1 Code Summarization . 6

2.2 Extending IDEs . 8

3 Concept and Design Choices 13

3.1 Deciding on Limitations . 15

3.2 Determining Local context . 18

iv Contents

3.3 Displaying Line context . 22

4 Implementation 25

4.1 Generating the AST . 26

4.2 Preparing the AST . 26

4.3 AST Analysis . 27

4.4 Highlighting . 27

5 Evaluation 29

5.1 Technical Evaluation . 29

5.2 User study . 34

5.2.1 Study Design . 38

5.2.2 Participants . 41

5.2.3 Quantitative Analysis . 41

5.2.4 Qualitative Analysis . 44

6 Conclusion 47

6.1 Discussion . 47

6.2 Summary and Contributions . 49

6.3 Future Work . 49

A User Study Documents 51

Bibliography 79

Contents v

Index 85

vii

List of Figures

2.1 Code Bubbles . 9

2.2 Patchworks . 9

2.3 Mylar . 11

2.4 Stacksplorer . 12

2.5 Colored Structure Outline . 12

3.1 IDE Usage Statistic . 16

3.2 Programming Language Usage Statistic 16

3.3 Simple Tracing Example . 20

3.4 If-statement Tracing Example . 22

3.5 Example of prototype Visuals . 23

5.1 Unknown Horizons . 30

5.2 Object method call . 32

5.3 Bug: Control structure head . 33

5.4 Bug: Initialization Change Undetected 33

5.5 Bug: Special Case in current line . 34

viii List of Figures

5.6 Example: Initial Assignment . 35

5.7 Example: Side Effects . 36

5.8 Example: Class Attributes . 37

5.9 Example: Iterations . 37

5.10 Example: Scope Up and Down . 39

5.11 Study Task Pictures . 40

5.12 Study: Individual Task Results . 42

5.13 Study: Individual Task Results . 43

A.1 Welcome and consent . 52

A.2 Demographics form . 53

A.3 Task Explanation . 54

A.4 Test task . 55

A.5 Comments . 56

A.6 Thank you . 57

A.7 CA-1 . 59

A.8 CA-2 . 60

A.9 CA-3 . 61

A.10 IA-1 . 62

A.11 IA-2 . 63

A.12 IA-3 . 64

A.13 It-1 . 65

List of Figures ix

A.14 It-2 . 66

A.15 It-3 . 67

A.16 SD-1 . 68

A.17 SD-2 . 69

A.18 SD-3 . 70

A.19 SU-1 . 72

A.20 SU-2 . 73

A.21 SU-3 . 74

A.22 SE-1 . 75

A.23 SE-2 . 76

A.24 SE-3 . 77

xi

Abstract

More than half of a developer’s time is spent on code comprehension and naviga-
tion. This is due to existing tools not sufficiently supporting developers. Various
promising approaches exist to mitigate this issue. However, we identified a gap in
the research for a dynamic approach supporting developers on a local level.

This bachelor’s thesis presents our idea for an approach to fill this gap, as well as
an accompanying prototype. It provides developers with local context. To do so, it
traces code dependencies and marks them within the IDE. Thus we hope to enable
developers’ exploration of the code within methods. This is so far lacking from
other approaches. We conducted two evaluations of our approach. First, a techni-
cal evaluation was conducted on the prototype. It shows how well the prototype
performs on real-world code, including its limitations. Second, we present a user
study. The results answer some open questions that arose. These questions con-
cern the topic of what even constitutes a useful local context for developers. Based
on the evaluation results, we conclude our approach has merit. However, we also
identify various issues that need to be solved to make the approach viable.

xiii

Überblick

Mehr als die Hälfte der Zeit von Entwicklern wird aufgewendet für Codeverständ-
nis und Navigation. Dies ist der Fall, weil existierende Werkzeuge Entwickler
nicht adäquat unterstützen. Es existieren verschiedene vielversprechende Ansätze,
um dieses Problem zu mildern. Wir haben jedoch eine Lücke in der Forschung
für einen dynamischen Ansatz identifiziert, welcher Entwickler auf einer lokalen
Ebene unterstützt.

Diese Bachelorarbeit präsentiert unsere Idee für einen Ansatz, welcher diese Lücke
füllt, als auch ein dazugehöriger Prototyp. Dieser versorgt Entwickler mit lokalem
Kontext. Um dies zu erreichen, verfolgt er Codeabhängigkeiten und markiert diese
in der Entwicklungsumgebung. Damit hoffen wir Entwickler zu ermöglichen den
Code innerhalb von Methoden zu erforschen. Dies fehlt bisher in anderen An-
sätzen. Wir haben zwei Evaluationen unseres Ansatzes durchgeführt. Zuerst eine
technische Evaluation, durchgeführt auf dem Prototyp. Dies zeigt, wie gut der
Prototyp, in Anbetracht seiner Limitationen, auf realistischem Code funktioniert.
Zweitens präsentieren wir eine Benutzerstudie. Die Resultate beantworten einige
offene Fragen, welche aufkamen. Diese Fragen betreffen das Thema, was ein für
Entwickler nützlicher lokaler Kontext überhaupt beinhaltet. Basierend auf den
Ergebnissen der Evaluation folgern wir, dass unser Ansatz Wert besitzt. Jedoch
identifizieren wir auch verschiedene Probleme, welche gelöst werden müssen, um
den Ansatz brauchbar zu machen.

xv

Acknowledgments

First and foremost I want to thank my advisor Adrian Wagner for taking the time to
give me helpful feedback on the progress of my thesis every week and for guiding
me through the entire process.

Towards Prof. Dr. Borchers and Prof. Dr.-Ing. Schroeder I want to express my grat-
itude for offering up their valuable time to examine my thesis.

Additionally, I want to thank all the participants of the user study. Their extensive
feedback was very insightful.

Lastly, I want to thank anybody else who supported me in the creation of this thesis,
especially my family and friends.

xvii

Conventions

Throughout this thesis we use the following conventions:

• The thesis is written in American English.

• The first person is written in plural form.

• Unidentified third persons are referred to with gender-
neutral pronouns.

• Study participants are referred to as ’Px’ with 𝑥 ∈
{1, ..., 21} to maintain their anonymity.

Short excursuses are set off in colored boxes.

EXCURSUS:
Excursuses are set off in orange boxes.

Where appropriate, paragraphs are summarized by one or This is a summary of a

paragraph.two sentences that are positioned at the margin of the page.

Source code and implementation symbols are written in
typewriter-style text.

myClass

1

Chapter 1

Introduction

1.1 Motivation

Nowadays the influence of computer code permeates al- Modern life depends on

developers’ ability to

maintain code.

most every aspect of our lives. We connect with friends on-
line, entertain ourselves with digital media, and use prod-
ucts designed on a computer. The underlying code bases
can consist of millions of lines of code1. Developers are
responsible for maintaining these. To do so, they need to
comprehend and navigate vast and complex bodies of code.
Failing to do so results in faulty code, that can cause severe
damages (Glass [1981]; Zhivich and Cunningham [2009]).

Modern integrated development environments (IDEs) like IDEs help developers.

Eclipse2 or Visual Studio Code3 (VS Code) aim to support
developers. Developers benefit from IDE features, such as
the Call Hierarchy (Krämer et al. [2013]) or code completion
(Han et al. [2009]).

Researchers explore how different factors influence code What hinders code

comprehension and

navigation?

comprehension and navigation. They aim to further im-
prove these tools. Ko et al. [2006] investigated how de-
velopers explore unfamiliar code. They discovered devel-

1 https://www.wired.com/2015/09/google-2-billion-lines-
codeand-one-place/

2 https://eclipseide.org/
3 https://code.visualstudio.com/

 https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
https://eclipseide.org/
https://code.visualstudio.com/
 https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
 https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
https://eclipseide.org/
https://code.visualstudio.com/

2 1 Introduction

opers use cues within the code to search for task-relevant
parts. Searches often fail due to misleading or missing cues.
A study by Xia et al. [2018] corroborates these findings.
Their study suggests insufficient comments and documen-
tation hinder code comprehension. Results from LaToza
et al. [2006] explain why this might be the case. They found
developers heavily rely on mental models of the code. This
implicit knowledge is fragile compared to written-down
documentation. So developers have to recover it often. In-
sufficient documentation forces them to explore the code
or ask colleagues. Other factors that hinder code compre-
hension include nesting of code (Johnson et al. [2019]) and
abbreviated names for variables and methods (Hofmeister
et al. [2017]).

Studies of how time is spent on code comprehen-Better support tools

could save a lot of time. sion and navigation came to similar results (see Adeli
et al. [2020]; Minelli et al. [2015]; Ko et al. [2005]; Xia
et al. [2018]). Xia et al. [2018] ran the most comprehensive
study. They measured how developers spend their time.
Unlike previous studies, their measurements included time
spent outside the IDE, like looking up information. Despite
all of the support offered by modern IDEs, they found that
about half of it is spent on comprehension. Another quarter
is consumed by navigation. Only about 5% of a developer’s
time is devoted to editing code. Thus the time needed for
comprehension and navigation appears to be a significant
bottleneck for the code writing process.

Promising approaches have emerged to reduce these times.Current approaches

Each addresses some aspect causing issues with code com-
prehension and navigation. IDEs like Code Bubbles (Brag-
don et al. [2010]) support memory by integrating spatial
code arrangements. Approaches like MI by Lee et al. [2015]
extend IDEs with file edit recommendations. Others such
as Stacksplorer by Karrer et al. [2011] implement new views
to convey structural information. Lastly, there are code
summarizations. TASSAL by Fowkes et al. [2016] removes
code blocks unnecessary for overall understanding. Re-
cently neural networks for generating natural language
code summaries have yielded promising results. Although
they cannot keep up with human-written ones yet (see Sta-
pleton et al. [2020]).

1.2 Goal and Approach 3

1.2 Goal and Approach

While researching related work, we noticed a potential av- There is a lack of

dynamic approaches on

a scope-wide basis.

enue to support code comprehension and navigation. One
that has so far been neglected by researchers. Almost all
current approaches focus on enabling developers to explore
the project’s overall structure (e.g. Code Bubbles by Bragdon
et al. [2010]). They provide little to no benefit within the
scopes of the code.

CODE SCOPES:
Code scopes determine which variables, functions, and
objects are accessible within a code section. In this the-
sis, we mean something slightly different, when refer-
ring to scopes. We only consider the global scope and
a scope for each method. Talking about the local scope
of a statement will always refer to the entire scope of
the surrounding method (or if outside any method, the
global scope). Thus for the sake of this thesis, control
structures do not have their own local scope.

Excursus:

Code Scopes

Approaches, that do provide details about individual
scopes tend to be static. Most of them are code summariza-
tion techniques, providing short descriptions of what the
code within a scope does (e.g. Iyer et al. [2016]). There is a
lack of tools enabling developers to explore how the code
within a scope works. Dynamically supporting developers
during the exploration of a scope’s contents might prove
beneficial.

The goal of this thesis is to implement a prototype IDE Description of our

approach.extension. It should provide the above functionality. Its
purpose is to support developers’ code comprehension and
navigation on a scope-wide basis. We want to support the
developer’s mental model of the code by enhancing their
exploration process. The extension will display the local
context of the currently selected line. The local context con-
sists of information regarding what other statements the
current line is dependent upon within the local scope. The
developer can switch the current line at any point to explore
a different part of the local scope (or to explore a different

4 1 Introduction

scope). After implementing the prototype, we performOur evaluation strategy

a technical evaluation. We test the prototype on an open-
source GitHub repository. This will provide an indication
of the prototype’s performance and limitations. Finally, we
conduct a user study to answer open questions. These arose
during implementation. They are in regard to the over-
all question: “What information constitutes a useful local
context?”. The study will provide insights into which local
dependencies are perceived as relevant by developers. Its
results are essential for determining the future direction of
our approach.

Chapter 2 “Related Work” will outline other approachesThesis outline.

for improving code comprehension and navigation in more
detail. In chapter 3 “Concept and Design Choices” the ex-
tension’s concept and related design choices, made during
development, will be discussed. Then chapter 4 “Imple-
mentation” will detail how the prototype is implemented.
Afterwards, chapter 5 “Evaluation” will present the techni-
cal evaluation and the user study. Based on their results,
chapter 6 “Conclusion” will first discuss the prototype’s
contributions and limitations. After that, we summarize
this thesis, as well as outline potential directions for future
work.

5

Chapter 2

Related Work

A large variety of approaches have been proposed to im- There are two main

approaches to

supporting code

comprehension and

navigation.

prove code comprehension and navigation. Many of them
have shown promising results in studies. They can be
grouped into two broad categories. Firstly there are code
summarization techniques. Code summaries facilitate un-
derstanding of a code piece’s functionality. They are a form
of code documentation. But even though code documenta-
tion is effective (Tenny [1988]), its manual creation is often
neglected (Fluri et al. [2007]). Thus the goal of these tech-
niques is to generate code documentation automatically in-
stead. Secondly, there are approaches aiming to support de-
velopers by introducing new IDE functionality. They either
fundamentally change how developers interact with code
in IDEs or they implement new support features. Their goal
is to reduce the mental load required to work on the code.
Some of these approaches also summarize code. However,
they differ from those in the first category because they
summarize the code’s structure instead of its functionality.

6 2 Related Work

2.1 Code Summarization

“There is a need for tools that can automatically
extract useful documentation, beyond simple UML

diagrams or Javadocs, from source code, to
substantially reduce program comprehension

effort.”

—Xia et al. [2018]

Code summarization techniques automatically generate
concise ways to understand a code fragment. This can take
on different forms. One way to summarize code is by cut-Code can be

summarized by cutting

out less relevant parts.

ting out pieces. To do so an algorithm determines which
parts best describe the code’s functionality. The rest is then
removed. TASSAL by Fowkes et al. [2016] employs a topic
model to make this determination. According to McBurney
et al. [2014], a topic model of code associates code terms
with each other based on their co-occurrence, thus form-
ing groups called topics. These are assigned probabilities
of being associated with each code section. A downside of
relying on such a model is, that it needs to be trained on the
project beforehand. TASSAL includes a vector space model
requiring no pre-training as a fallback, but it does not per-
form as well. Regardless of the model used, TASSAL "re-
moves" code pieces by folding them away. While foldingManual folding is not a

good option. code can already be done manually, it poses a dilemma.
First, one must understand the source code to make an
informed decision on which parts to fold, thus rendering
the resulting summary redundant in aiding comprehen-
sion. The authors hope to make a reasonably informed
decision automatically. In an accompanying study, devel-
opers preferred TASSAL’s summaries over existing fold-
ing approaches. According to the authors, they intention-How granular should

parts be removed? ally chose to fold code blocks instead of individual state-
ments. They argue it is more intuitive since code blocks
form natural units. Yuan et al. [2017] disagree and chose to
implement a similar summarization technique. It removes
each statement deemed unimportant for understanding the
overall functionality, not just entire blocks. They argue it al-
lows for more precise removal of nonessential statements.
Their algorithm uses supervised machine learning, instead

2.1 Code Summarization 7

of a topic model, to determine which parts to keep. It is
trained on code abridgments written by humans. A user
study indicates their method decreases code comprehen-
sion times while increasing accuracy. The percentage of How much should be

cut out?code kept can be varied in both approaches. It is yet un-
clear what compression factor leads to the best summary.
Especially since the optimal factor might depend on the sit-
uation. Both studies simply used a compression factor of
50%. Outside a study setting, developers might struggle to
choose an appropriate factor since the tools are intended to
be used on unfamiliar code.

McBurney et al. [2014] also employ a topic model to sum- Code functionality is

hierarchical and can be

displayed as a tree.

marize code functionality. But they use it to construct a
structured view of it. Each topic found is assumed to cor-
respond to a functionality. The topics and their associated
keywords are put into a hierarchy and then displayed. The
authors give the example that in a program the topics “de-
code mp3” and “open files” might have the topic “play
sound” as a parent.

Neural networks are another way to summarize code. This Neural networks can

summarize in natural

language. They are an

increasingly popular

approach.

approach has become increasingly popular as neural net-
work methods have improved. They generate natural lan-
guage code summaries comparable to code comments. The
first attempts only used source code as input to the neural
network (see Iyer et al. [2016]). LeClair et al. [2019] showed,
that including structured input like the abstract syntax tree
(AST) can improve the resulting summaries, especially for
code lacking comments and descriptive names.

ABSTRACT SYNTAX TREE:
An abstract syntax tree (AST) represents the structure of
code as a tree. Each tree node corresponds to a construct
in the code. ASTs are abstract because they do not in-
clude "syntactic sugar", like parentheses or semicolons.
These are implicitly represented by the tree’s structure.

Excursus:

Abstract Syntax Tree

Furthermore Tang et al. [2022] demonstrated that how
the AST is encoded plays a significant role. Their en-
coding improved output quality and reduced computa-
tion times. Stapleton et al. [2020] studied how machine-

8 2 Related Work

generated summaries compare to human-written ones re-
garding code comprehension. While developers perceived
their quality as similar, human-written summaries still led
to significantly better comprehension. Additionally, they
found that frequently used metrics for evaluating these ap-
proaches were not suitable for that purpose. Thus despite
their promise, neural network approaches are still lacking
for the moment.

2.2 Extending IDEs

Code Bubbles by Bragdon et al. [2010] introduces an IDESpatial arrangements in

IDEs are a promising

approach.

user interface based around spatial arrangements (see
Fig. 2.1). Code fragments, like files, classes, and methods,
can be freely positioned as “bubbles” on a two-dimensional
plane. Additionally one can connect them with arrows.
Thus the developer can arrange code fragments according
to their mental model of the project. The authors aim to
free up memory otherwise spent on remembering the loca-
tion of currently relevant fragments within the file system.
Their study found that Code Bubbles reduces both code com-
prehension and navigation times compared to a traditional
IDE user interface. Adeli et al. [2020] also demonstrated
spatial arrangements can help provide developers with the
“right information at the right time and place”. Code Canvas
by DeLine and Rowan [2010] is a very similar approach. It
also provides a two-dimensional plane in which code frag-
ments can be arranged. Unlike Code Bubbles the plane con-
tains other project documents as well, like images or de-
sign documents. Depending on the zoom, the level of de-
tail displayed is adjusted. So when zoomed out, a code
file might only display important identifier names, while
when zoomed in, the entire file is visible and can be edited.
According to the authors, Code Canvas displays the entire
project, while Code Bubbles focuses on currently relevant
code fragments. Patchworks by Henley and Fleming [2014]
restricts spatial arrangements to a grid (see Fig. 2.2). The
user can scroll left and right along the grid and fill each
grid cell with a code fragment. The grid extends indefi-
nitely left and right, but not up and down. The author con-
ducted a study to compare Patchworks to Code Bubbles. They

2.2 Extending IDEs 9

Figure 2.1: Code fragments arranged in "bubbles" within
the Code Bubbles IDE by Bragdon et al. [2010]

Figure 2.2: Code fragments arranged in the grid of the
Patchworks IDE by Henley and Fleming [2014]

found their restrictions discourage users from wasting time
arranging the code. By reducing the number of possible
navigation directions, Patchworks also reduces navigational
mistakes. However, they did not investigate whether Patch-
works retains the benefits of Code Bubbles regarding code
comprehension.

Recommendation Systems for Software Engineering RSSEs help find

information relevant to

the current task.

(RSSEs) support developers’ code comprehension and nav-
igation by recommending information related to their cur-
rent task. According to Robillard et al. [2010], the aim
is to “help people find information and make decisions

10 2 Related Work

where they lack experience or can’t consider all the data
at hand”. These systems can use different context clues
to produce their recommendations. Mylar by Kersten and
Murphy [2005] computes an interest value for code ele-
ments to reflect their current relevance. It is based on how
recently and how often the developer interacted with a
code fragment, as well as structural information about the
code. Within various IDE views, elements like code files
or methods are then highlighted. Depending on the com-
puted interest value the highlight strength is varied. The
higher the value, the stronger the highlighting, thus mak-
ing high-interest elements stand out more (see Fig. 2.3).
Kersten and Murphy [2006] showed in a study, that My-
lar reduces information overload. By presenting filtered
information it increases developers’ focus. Other RSSEs
include MI by Lee et al. [2015], which is an extension of
ROSE by Zimmermann et al. [2004]. Mylar provides a gen-
eral overview of related files, while ROSE and MI directly
recommend files to edit. MI considers not only the project’s
edit history, as opposed to ROSE and Mylar. MI addition-
ally takes the view history into account as well. The re-
sult is an improvement in recommendation accuracy com-
pared to ROSE. In his master’s thesis Müller [2023] built an
RSSE framework, which combines interaction history (like
MI) with call graph recommendations. An accompanying
study yielded promising results.

CALL GRAPH:
The call graph represents relationships between code
methods. Each method is a graph node. Assume
method a calls method b. Then there exists a directed
edge from a to b.

Excursus:

Call Graph

Apart from RSSEs there exist approaches improving howNew IDE views can

convey the code’s

structure.

the code’s structure is communicated to the developer.
Stacksplorer by Karrer et al. [2011] enables an interactive
traversal of the call graph. It does so by offering additional
navigation options within the IDE XCode1 (see Fig. 2.4).
Using these options, developers can easily walk back and
forth along the call graph. Both the methods called and

1 https://developer.apple.com/xcode/

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

2.2 Extending IDEs 11

Figure 2.3: Mylar by Kersten and Murphy [2005] marks var-
ious files with a red highlight. The highlight strength de-
pends upon their interest value.

where the current method is being called can be explored.
They conducted a study where participants had to perform
code maintenance tasks. For most tasks, completion times
were significantly reduced compared to the same IDE with-
out the tool. However, they were unable to show that the
rate of success improved. Kristensson and Lam [2015] also
add a view into an IDE, this time for Eclipse2. They use it
to visualize the code structure within a file. To achieve this,
each code construct, such as classes, functions, or fields,
is associated with a different color (see Fig. 2.5). The tool
is non-intrusive due to the separate view, but as a conse-
quence, developers have to map the displayed structure
onto the code themselves. This is especially the case be-
cause according to the authors, their new view does not
normally have the same size as the code view (in contrast
to Fig. 2.5).

2 https://eclipseide.org/

https://eclipseide.org/
https://eclipseide.org/

12 2 Related Work

Figure 2.4: Stacksplorer by Karrer et al. [2011] shows in- and
outgoing dependencies of the method in the call graph.

Figure 2.5: Kristensson and Lam [2015] add a new IDE
view. It shows a colored outline of the code’s structure

13

Chapter 3

Concept and Design
Choices

As outlined in 1.2 “Goal and Approach”, we identi- There is a lack of

dynamic approaches on

a scope-wide basis.

fied a gap within the existing approaches that we aim
to fill. Despite their variety, almost all approaches focus
on improving comprehension on a file-wide (e.g. Fowkes
et al. [2016]) and often even project-wide basis (e.g. Kar-
rer et al. [2011]). Dynamic approaches, such as Code Bub-
bles (Bragdon et al. [2010]) enable developers to explore the
overall structure of a project. However, once developers
explore within a scope of the code, the code is simply pre-
sented like in a modern IDE. While IDEs normally include
syntax highlighting, Hannebauer et al. [2018] suggest the
feature is not all that helpful. Some static approaches pro-
vide support concerning individual scopes. Most notably
code summarizations. They are short descriptions of what
a code fragment does. They are often applied to single
scopes and not entire code files (e.g. LeClair et al. [2019]).
Kristensson and Lam [2015] enrich the IDE’s visuals. They
aim to make it easier to parse the structure of a scope.
However, all of these do not truly allow developers to
dynamically explore how the code within a scope works.
We believe supporting developers in such a manner could
supplement other approaches. Approaches tackling code
comprehension and navigation on higher abstraction lev-
els could be complimented by our approach.

14 3 Concept and Design Choices

In the following, we will outline the concept for a tool in-Chapter outline

tended to enable such exploration. This chapter will detail
what we aim to achieve, as well as how we aim to do so.
Along with this, we will discuss important design choices.
This includes some limitations that we decided upon. The
concept behind the tool can be summed up as follows:

The goal of this thesis is to implement a tool supportingSummarized concept

code comprehension and navigation within the local scope,
by providing local context regarding the current line in the
IDE. The local scope refers to the scope within which the
current line resides. The local context of the current line
consists of information about variables of the local scope.
More specifically, which of them the current line depends
upon and in what way. The aim is to help developers
trace this dependency. It is transitive and depends both on
variables, as well as control structures and their conditions
(which tend to be variables as well). It also depends on in-
voked methods. We call the context local because we will
not trace dependencies outside the current scope. Thus our
tool will not capture the complete context. The reasons for
this choice will be discussed in 3.1 “Deciding on Limita-
tions”.

To determine the local context, our tool will implement anWe chose to use an

AST analysis algorithm. This algorithm will analyze the AST. The AST
is better suited as an input than the code file. It is much
easier to extract structural information about the code from
the AST. This is quite convenient as we are interested in
code dependencies. It also has the added benefit of spar-
ing the analysis from dealing with syntax. Semantics are
similar across many programming languages. Especially
basic concepts, such as variables, if-statements or method
calls share similarities. By choosing AST analysis, it will
decrease the effort required to adapt our algorithm to other
programming languages. As part of this thesis, we will
only analyze Python1. The analysis can simply traverse the
tree (except for loops, see 3.1 “Deciding on Limitations”)
because we are only dealing with the local scope. Essen-
tially our algorithm will go up line by line in the source
code. Not only does this simplify the algorithm, but it also
allows us to discard huge parts of the code file very eas-

1 https://www.python.org/

https://www.python.org/
https://www.python.org/

3.1 Deciding on Limitations 15

ily. Lines below the current one are discarded, because the
current line cannot be dependent on them. The hierarchical
nature of the AST is beneficial for dealing with code nest-
ing. Since scopes are determined by nesting, the local scope
is a subtree of the AST. Thus the analysis only needs to con-
sider this subtree. The rest is simply ignored.

We chose to implement the tool as an IDE extension for The tool will be

implemented as an IDE

extension for Python.

VSCode. Modern IDEs like VSCode offer extensive applica-
tion programming interfaces (APIs) to develop them. This
makes them a convenient option to test new features in the
realm of software development. We chose VSCode in par-
ticular because it is the most popular IDE (see Fig. 3.1). As
mentioned before, the prototype will only analyze Python.
We chose it because it is very popular and widely used (see
Fig. 3.2). Additionally, it comes with a module to extract
ASTs2 from given Python code. There also exists exten-
sive documentation3 for the Python AST. Furthermore AST
nodes in Python store the text position they correspond to
in the code. At the end of the analysis, we want to place
markings in the code. This makes it much simpler to place
them appropriately. In general, it should be noted that the
choice of programming language is not as relevant. Most
concepts represented by AST nodes, such as assignments
or control structures, exist in many languages.

3.1 Deciding on Limitations

There are several reasons for limiting the considered con- Why we limit our

approach.text. On the one hand, it is simply not possible to truly
capture the entire context with just a static code analysis.
Especially in a language like Python, which allows adding
new code during runtime. On the other hand, we impose
some limits that we believe lead to a minimal prototype still
sufficiently capable for testing our approach. The following
section will detail three areas, where we decide to limit our
prototype, as well as why we do so.

2 https://docs.python.org/3/library/ast.html
3 https://greentreesnakes.readthedocs.io/en/latest/nodes.

html

https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://greentreesnakes.readthedocs.io/en/latest/nodes.html
https://greentreesnakes.readthedocs.io/en/latest/nodes.html
https://docs.python.org/3/library/ast.html
https://greentreesnakes.readthedocs.io/en/latest/nodes.html
https://greentreesnakes.readthedocs.io/en/latest/nodes.html

16 3 Concept and Design Choices

Figure 3.1: IDE usage in 2023 according to Stackoverflow
(https://survey.stackoverflow.co/2023/)

Figure 3.2: Programming language usage in 2023 according to GitHub
(https://github.blog/2023-11-08-the-state-of-open-source-and-ai/)

https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2023/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/

3.1 Deciding on Limitations 17

As mentioned before, we limit our prototype to an analy- Why we stay in the local

scopesis within the local scope. It would be possible to trace de-
pendencies across scope boundaries, but that entails huge
issues. When going out of scope the analysis is likely to
encounter situations, where a piece of code is part of the
context several times on different paths of the dependency
trace. This is especially the case for recursion. This raises
several questions, such as: How often do you trace the
same scope? How do you convey the information that there
are several dependencies at once? Apart from that the anal-
ysis gets more complicated as well. Names of variables and
methods can no longer be assumed to be unique. Not only
that but one has to keep accurate track of when two vari-
ables of the same name are the same and when they are
not. By staying within the local scope we can benefit from
some assumptions during the analysis. For one, lines be-
low the current one cannot influence it and thus do not
have to be considered. There is one further reason for stay-
ing within the local scope. We believe tracing across scope
boundaries is already covered by the call graph. If the de-
veloper sees that the current line is dependent upon the call
of a method, they can use existing call graph tools to inves-
tigate that method. Once within the new method, they can
once again use our tool. Although we do analyze while- Only analyze loops

once.and for-loops, we do not take their looping behavior into
account. That is a further limitation we decided upon. It
is unclear how many iterations should be traced. A static
analysis is most often unable to determine how many iter-
ations there will be. With both these limitations in place,
the analysis only has to look at each tree node once. Of Can we set such

limitations?course such limitations raise the question, of whether the
resulting context is still insightful enough. Can users still
grasp the context surrounding a line with these limitations
in place? This, along with several other questions, will be
investigated in 5.2 “User study”. The results will indicate
whether the limitations are reasonable.

Unfortunately it is not trivial to decide, based upon the Why we limit possible

starting lines.AST, which node best describes the start line. It is rarely
a leaf node. To simplify our prototype, we make some as-
sumptions about the starting line. It can be an assignment,
a method call, or a return statement. If it is the head of

18 3 Concept and Design Choices

a control structure, we will start the analysis on the first
statement inside the structure’s body.

Due to the prototype nature we only consider a subsetWhy and what Python

subset is considered? of Python for the analysis. We do this by only consider-
ing certain nodes in the Python AST. For some nodes, we
only consider a few of their attributes. Our focus is on in-
cluding the most commonly used features of the language.
Those tend to be shared by many different programming
languages. Many features left out deal with redundant syn-
tax, e.g. lambda functions. They can be replaced by more
common features. Others do not provide much benefit to
our analysis, e.g. imports. We also do not consider the
asterisk operator, used for positional and keyword argu-
ments. Anything related to exceptions, asserts, etc., as well
as asynchronous functionality, are ignored as well.

Our subset mainly consists of the following Python fea-The subset used.

tures:

• Literals (e.g. sets, dictionaries), variables, attributes,
and subscripts (e.g. array[index])

• Assignments, expressions (e.g. a + b) including
method calls and return statements

• if-statements, for-, and while-loops

• Function and class definitions

Many features in this subset appear very similarly in other
programming languages. Thus how we deal with them in
the analysis should be largely transferrable. The next sec-
tion will describe how to deal with the most important lan-
guage features.

3.2 Determining Local context

This section will outline how to extract the local contextHow to trace variable

dependencies.

3.2 Determining Local context 19

for our Python subset. Variables are at the core of the algo-
rithm. In the case of attributes, we track the variable rep-
resenting the underlying object. This is to compensate for
the attribute name not being unique. During the analysis
variable occurrences are marked with a value. The value
reflects how distantly related the current line is to that vari-
able occurrence. The local context consists of all variable
occurrences that have been marked with a value different
from -1 during the analysis. -1 represents that there is no
dependency present. The algorithm traverses the AST such
that it corresponds to going up line-by-line in the source
code. The starting point of the analysis is the currently se-
lected line within the IDE. If that line is an assignment the
analysis only considers the variables on the left side of it.
Otherwise, all variables on the line are considered. The
analysis traces what this set of found variables depends
upon. This set will be referred to as the watched variables.

After initializing the set, the analysis goes up line-by- How to deal with

assignments.line, or to be more precise statement-by-statement. When
a watched variable is being assigned, we add any variable
on the right-hand side to the set. We remove the watched
variable from the set, unless it is also on the right-hand side
or if we encounter an augmented assignment (e.g. a += b).
If the right-hand side only consists of constants, then no
new variable is added to the set. Overall the specific value
and type of constants are ignored by the analysis. Fig. 3.3
contains a basic example of dealing with assignments.

The example also includes operators. It does not mat- How to deal with

expressions.ter which operator is used specifically. Nor does it mat-
ter in which order operands are. What matters is which
variables are inside the operands. In Fig. 3.3, a and b are
operands of the multiplication in line 5, and c is dependent
on both of them. So the analysis simply extracts all vari-
ables from the right-hand side regardless of any operators
present. Similarly, variables are extracted from compar-
isons. Their ordering and their comparison symbols are not
taken into account. For method calls, all variables within
the parameters are considered. If a watched variable is de-
pendent on the method’s return value, then the found pa-
rameter variables are added to the watched variables. In
the case of subscripts, e.g. container[slice_criterion],
both the container variable, as well as variables influenc-

20 3 Concept and Design Choices

Figure 3.3: Line 7 is the current line. It depends upon line 5,
which in turn depends on lines 1 and 2. d is not dependent
on lines 4 and 3, because c is completely overwritten in line
5.

ing the slice are considered. The slice consists of the index
values addressed. Once again, if any watched variable de-
pends upon these variables, they are added to the watched
variables themselves.

The general idea is, that the current line is dependent onHow to deal with control

structures. the control structure condition if the current line is depen-
dent on a line in the structure’s body. There is always the
possibility that the structure’s body is not entered because
the condition is unsatisfied. An exception is an if-statement
that also includes an else section. The watched variables
need to take this into account.

In the case of if-statements, the analysis deals with themHow to deal with

if-statements. as follows. A sub-analysis is called on both the if- and else-

3.2 Determining Local context 21

section. Both sub-analyses start with the currently watched
variables. The watched variables each of them had at the
end are merged after the sub-analyses conclude. If there
was only an if-section, the watched variables at the begin-
ning and end of the sub-analysis are merged instead. As
long as one of them contains a variable, the merged set will
contain it as well. If both contain the same variable but with
different relatedness values (see beginning), then the closer
related value is used for the variable in the merged set. This
merged set is now the new set of watched variables. Next,
it is checked if the watched variables changed compared
to before the sub-analyses. A change means that the cur-
rent line is dependent on a variable occurrence within the
if/else-body. That occurrence is dependent on the condi-
tion of the if-statement. Thus if a change is detected, any
variables in the condition are added to the watched vari-
ables. While- and for-loops are treated as follows. First, a How to deal with loops.

sub-analysis is started in the structure body. It starts with
the currently watched variables. The watched variables at
the end of that analysis are merged with those watched be-
forehand. If a change is detected, variables in the condition
are added to the watch. Our approach does not take into
account, that there might be multiple loop iterations (see
3.1 “Deciding on Limitations”). If the current line is in- How to start inside a

control structure.side a control structure, it is dealt with differently. First, an
analysis is done within the structure body containing the
current line. Other ones are ignored if they exist. The anal-
ysis starts with the current line. After finishing it adds any
variable inside the structure condition to the watch. Finally,
the analysis continues with the statement above the struc-
ture. Fig. 3.4 shows an example of the algorithm dealing
with an if-statement.

There are two cases of how function and class definitions How to deal with

function/class

definitions.

can occur within the local scope. Either as the definition
of a sub-function/class or as the head of the scope. In the
first case, they are simply ignored. Such function/class def-
initions contain a different scope. In the second case, func-
tion arguments are marked, if and only if they are within
the watched variables when the beginning of the scope is
reached (so when the analysis concludes). Class definitions
do not have arguments, so no variables are added to the
watch.

22 3 Concept and Design Choices

Figure 3.4: Line 5 is the current line. It is dependent on line
2 for its execution, which in turn relies on number from line
1. Line 3 is unrelated because it is in a different if-branch.
The return statement is unrelated because it is executed af-
terwards.

3.3 Displaying Line context

We will employ a simple approach regarding how we markBackground highlights

are used to convey the

local context.

the local context. This thesis is not focused on discern-
ing the optimal visuals. The prototype uses background
highlights to convey the local context (see Fig. 3.5). Stro-
belt et al. [2016] found, that they are an effective way to
highlight text. While other highlighting techniques per-
formed similarly, we chose background highlights. They
can be layered on top of existing IDE markings. Addition-
ally, they can be faded out, depending on how prominently
the target should be marked. Generally, we could also con-
vey the information via a new IDE view. This however has
the downside, that the developer has to map the informa-
tion on the code themselves. As mentioned in the previous
section, the local context consists of variable occurrences.
Thus we only mark variables. Each occurrence is associ-
ated with a relatedness value. Based on this value we differ
the strength of the marking. Higher relatedness is marked
stronger, and thus more prominent. If the value indicates
there is no dependency, then we place no marking on that
variable occurrence. Developers are likely less interested in
longer dependencies, so we fade them out. Our approach

3.3 Displaying Line context 23

Figure 3.5: This example shows all three aspects of our
markings. (1) Background Highlights, that (2) fade out. (3)
The scroll bar on the right contains a marking as well

supports navigation as well. Developers can instantly see
which code fragments are relevant to consider. They can
directly skip those that are not. We additionally indicate
where marked lines are with a green indicator on the scroll
bar (see Fig. 3.5). This enables navigating to code fragments
off-screen.

24 3 Concept and Design Choices

25

Chapter 4

Implementation

As previously mentioned, we implement the prototype as The prototype is a

VSCode extension.a VSCode extension. Extensions for VSCode are written in
TypeScript1. Additionally we use of Node.js2. The exten-
sion interacts with the IDE via the VSCode API3. This API
allows us to set in which situations the extension should
be active. For our purposes that is when a Python file is
currently open. Whenever the active file gets modified, What does the

extension do?or a new (Python) file becomes the active file, the method
updateAST() is invoked. It starts the process of analyzing
the code and marking it. Each of the main steps in that pro-
cess will be discussed in its section of this chapter.

1. Extract the code and generate an AST from it.

2. Prepare the AST for the analysis.

3. Conduct the AST analysis as described in 3.2 “Deter-
mining Local context”.

4. Set highlights according to the analysis results.

1 https://www.typescriptlang.org/
2 https://nodejs.org/en
3 https://code.visualstudio.com/api

https://www.typescriptlang.org/
https://nodejs.org/en
https://code.visualstudio.com/api
https://www.typescriptlang.org/
https://nodejs.org/en
https://code.visualstudio.com/api

26 4 Implementation

4.1 Generating the AST

To generate the AST, we first need the current code file.The extension

communicates with a

Python script to

generate the AST.

The API provides an easy option to extract the active file’s
contents. To generate the AST we call a separate Python
script using Node.js. The script is fed the extracted code
file. It generates the AST with Python’s AST module. The
resulting object is parsed into a JavaScript Object Notation
(JSON) string using the ast2json module4. Now the string
is transferred back to the extension. Interfaces are used to
convert the JSON string into a TypeScript Object. Thanks to
the interfaces, we can interact with the AST and its various
node types. annotateAST() is called with the AST object as
a parameter. This initiates further processing and analysis
of the AST.

4.2 Preparing the AST

First, we add a parent node attribute to each node. DoingDetermine anchor node

and initialize watched

variables.

so makes it easier to work with the tree. The Python AST
does not include them by default. Then analyseAST() is
called. The method first determines the anchor node. The
anchor node is how we will refer to the node that was found
to correspond best to the current line. It is determined ac-
cording to the limitations outlined in 3.1 “Deciding on Lim-
itations”. Next, we initialize the watched variables. These
are all variables in the subtree, that has the anchor node as
its root. Except when dealing with an assignment. Then
only the variables on the left-hand side are watched vari-
ables. The analysis only needs to consider the AST subtreeCutting out the scope’s

subtree. corresponding to the current scope. So the AST is trimmed.
The subtree of the current scope is cut out. Any nodes for
lines below the current one are removed as well. If the cur-
rent line is inside an if-statement, the branch not containing
the current line is cut out. Sub-function and -class defini-
tions in the scope are also removed. Lastly, if the current
scope is within a function, then the function definition node

4 https://pypi.org/project/ast2json/

https://pypi.org/project/ast2json/
https://pypi.org/project/ast2json/

4.3 AST Analysis 27

is moved, such that the analysis will consider it last. Thus
the AST is now ready for the analysis.

4.3 AST Analysis

Generally the analysis is conducted according to 3.2 “De- Signals are passed

along the tree.termining Local context”. The thing to note in the imple-
mentation are the variables passDown and passUp. These
are used to pass values up and down in the tree. Such a
value serves two purposes. First, it signals to parent (and
indirectly sibling) nodes, that something has happened. In
the case of an assignment, this means a watched variable
was found on the left-hand side. Thus variables on the
right-hand side need to be added to the watch. For con-
trol structures, it signals, that their contents are part of the
context. Thus variables in their condition must be added
as well. Second, the specific value passed around deter-
mines, which relatedness value newly added variables get.
The relatedness value is called relevancy in the implemen-
tation. A higher value means closer relatedness. The value
decreases by one for each new dependency. But it can never
go lower than zero. Additionally it is important to know, ctxTypes

that the ctxType of nodes is used. The ctxType describes
whether a variable, method, etc. is being stored or loaded.
We use this value to differentiate different situations. For
example, variables on the left-hand side of an assignment
are being stored, while those on the right-hand side are
loaded.

4.4 Highlighting

After the analysis concludes, the tree is traversed. Each Place VSCode

decorations based on

relevancy.

node’s relevancy is checked. If it is something different
from -1, we place a decoration. Code decorations can be
placed via the VSCode API. The decoration consists of a
green background highlight and sidebar marking. This cor-
responds to the description in 3.3 “Displaying Line con-
text”. The decoration is placed on the code associated with

28 4 Implementation

the node. The strength of the highlight is based on the
relevancy value. Higher values result in stronger high-
lights because higher values mean closer relatedness.

29

Chapter 5

Evaluation

In this section we evaluate the merits of our prototype. We We performed a

technical evaluation and

a user study.

performed a technical evaluation on a real-world project. It
demonstrated how well the current prototype version lives
up to the concept outlined in chapter 3 “Concept and De-
sign Choices”. We identify implementation bugs, as well
as situations overlooked during the design phase. We also
conducted a user study to investigate the open questions,
that arose in 3.1 “Deciding on Limitations”. The study re-
sults indicate whether or not some fundamental design de-
cisions made, need to be reconsidered. Participants’ com-
ments provide an insight into how they felt about the con-
cept. They also gave some interesting suggestions on how
to improve it.

5.1 Technical Evaluation

We tested the prototype on an open-source GitHub project Evaluation took place

on an open-source

project.

called Unknown Horizons1 (see Fig. 5.1). It is a 2D real-
time strategy simulation video game. We found it through
Müller [2023]’s master’s thesis. To best test out the algo-
rithm determining the context, long dependencies emanat-
ing from the current line are preferable. Unknown Hori-

1 https://github.com/unknown-horizons/unknown-horizons

https://github.com/unknown-horizons/unknown-horizons
https://github.com/unknown-horizons/unknown-horizons

30 5 Evaluation

Figure 5.1: An in-game screenshot of the open-source game
Unknown Horizons.

zons is a real-world project containing large files. Thus it is
suitable for testing the prototype.

In general the extension worked as intended. EspeciallyOur supported Python

subset limited the

evaluation.

when dealing with basic structures. Code dependencies
were successfully tracked over long distances. However,
the evaluation was hindered by the limited Python subset
our prototype supports. Many code sections contained lan-
guage features intentionally ignored by the prototype. Nat-
urally, the prototype failed in these sections. Unfortunately,
any large-scale project is likely to contain more than basic
Python features. So choosing a different project would not
have helped. In the end, evaluation was limited to simpler
code sections in the project. Furthermore we encounteredLarge files could not be

processed. another significant problem, that further limited our eval-
uation. On large code files, the current version of the pro-
totype fails to generate an AST. The Python file generating
the AST writes it to the standard output buffer. Once it is
completely full the Python file cannot write to it anymore.
But the extension only empties the buffer once the complete
AST is written to it. The result is a deadlock between the
Python file and our TypeScript extension. This ruled out
the longest files in the project entirely. In the end, the pro-
totype could only be tested on code files of a few hundred
lines.. During the testing it became clear, that the con-The concept is better

suited for large scopes. cept is rather unsuited for very compact and efficient code.

5.1 Technical Evaluation 31

Such code fragments tend to be very interconnected. As a
result, almost every variable occurrence is being marked.
Such dense markings are unlikely to provide the user with
any insightful information. They might as well read the en-
tire code fragment.

Apart from these more general problems regarding the Our concept did not

consider object

methods.

prototype’s applicability to real-world code, we also no-
ticed a notable oversight in our concept. From here on-
wards all code examples in the subsection stem from
terraincache.py, an Unknown Horizon’s file. It will be
used to exemplify our most interesting findings. The over-
sight mentioned is about how methods called on objects are
dealt with. Our concept did not consider object methods
different from normal methods. Normal methods are not
traced, because they inevitably leave the local scope (recur-
sive calls are their own scope). But if a method is called on
an object, it is reasonable to assume that internal values in-
fluence the return value. Thus if a variable is dependent on
the return value, it is also likely dependent on the object.
So it would be sensible to add the object to the context as
well. Fig. 5.2 portrays an example of an object method call.
Line 214 is the current line. In line 213 the second occur-
rence of the variable result has the method intersection
called on it. Currently, only the parameters are added to
the context. result leaves the context because it is com-
pletely overwritten. It would make more sense for it to
stay since it is dependent on itself via the method. This
example also illustrates some of the prototype’s limitations
in practice. It marks the object of attributes, but not the at-
tributes themselves, e.g. cache_layer.cache in line 213. It
also does not consider the asterisk operator. That is why
other_cache_layer in line 210 is not marked, even though
it is in line 212.

Lastly the evaluation also unearthed some bugs within the We found bugs as well.

implementation. In the following, three noteworthy bugs
will be presented in detail. Most bugs are related to edge
cases. They defy certain assumptions made during imple-
mentation. Most often they lead to an incorrect start of our
algorithm, which thus computes the wrong context or no
context at all. These bugs serve to show that implementing

32 5 Evaluation

Figure 5.2: Example of an object method call, that is not tracked.

our presented concept is not trivial, even for such a limited
subset of Python.

The prototype does not behave as intended when the start-Bug: Starting at the

head of a control

structure.

ing line is the head of a control structure. In Fig. 5.3 Line
116 is the starting line, but the algorithm starts its analy-
sis in 119. As outlined in 3.1 “Deciding on Limitations”,
our prototype does not support starting with the head of a
control structure. In that case, the algorithm should start at
the first line of the control structure’s body. This minimizes
the deviation from the context, that would arise when start-
ing in the head. However, due to an error in the code, the
last line is started with instead. Consequently, the entire
control structure is traced and marked. It leads to a signif-
icant increase in variables being marked compared to the
first line’s context. So the deviation is much greater. There
is an additional bug in this example. Since line 119 is the
starting line, due to the first bug, sq3 is marked. It is also
marked in line 112. But it should be forgotten after the first
algorithm step because it is completely overwritten by the
tuple (has_land, has_coast). A subscript in the starting
line is a special case, that is not correctly handled by our
implementation.

In the next example, visible in Fig. 5.4, the conditions of aBug: Initialization not

counted as change

within control structure.

control structure are incorrectly left unmarked. The cause
is a bug, that can happen when the current line is inside a
control structure. The algorithm starts in line 63. Since the
line is inside both the if-statement and for-loop, both their
conditions should be marked. The reason why that does
not happen lies in how the algorithm decides to mark con-
trol structure conditions. That decision is based on whether
or not the set of watched variables changes during the anal-
ysis of the structure. If no change is detected, the structure
is assumed to have no relation to the context. The algorithm
neglects to count the initialization of the starting line vari-

5.1 Technical Evaluation 33

Figure 5.3: Example of a bug, where the analysis incorrectly starts, when the cur-
rent line is the head of a control structure.

Figure 5.4: Example of a bug where the prototype incor-
rectly considers the condition irrelevant.

ables as a change because it happens before the start of the
main analysis. As a result, if no other change takes place,
as is the case in this example, then the structure is deemed
as unrelated.

The last example, depicted in Fig. 5.5, is a case, where the Bug: Special cases

lead to an unexpected

ctxType.

variables are not correctly initialized. As a consequence
the analysis starts with no variables, so it can also find no
new variables on which they depend. The starting line in
the example is line 208. Our implementation assumes the
left- and right-hand sides of an assignment can be distin-
guished based on their ctxType (see 4 “Implementation”).
It assumes variables and attributes on the left side will be
marked as storing, while those on the right side as loading.
It turns out, that is not always the case. Here the left side
consists of a subscript of an attribute. In this special combi-
nation, the attribute is marked as loading, because the sub-
script surrounding it is marked as storing. As a result the
algorithm incorrectly concludes there are no attributes to
mark on the left side. The starting variables end up as the
empty set and the empty set is dependent on no variables.

34 5 Evaluation

Figure 5.5: Example of a bug where variables in the starting line are incorrectly
initialized due to a special case.

5.2 User study

Originally the intention for our user study was to inves-Goal of the study

tigate how to best mark the context. After all, there are
countless possible ways to do so. However, several interest-
ing questions arose during the design and implementation
process. Thus we decided to pivot the user study to inves-
tigate them instead. The overall question we aim to answer
with the user study is: "What information constitutes a use-
ful context?". This is not as clear-cut as determining de-
pendencies and conveying them to the developer. On the
one hand, just because some dependency exists, does not
mean it would be helpful for the developer to know about
it. On the other hand, some code markings might provide
insight into the code’s purpose, even though the current
line is not dependent on the marked code. Whether or not
to include these additional markings could be left up to the
user. However, we believe it best to try to find a reasonable
standard. Because, when developers explore the code, they
are unlikely to know which options would be most bene-
ficial for them to explore that specific code fragment. The
study investigated the following six open questions.

• Initial Assignment (IA): Should overwritten initial as-Show overwritten initial

assignments? signments be marked? Sometimes the initial assign-
ment of a variable is overwritten before the current
line. Thus there is no dependency. However, de-
velopers might still garner important clues about the
variable from its initialization. Fig. 5.6 contains an ex-
ample.

5.2 User study 35

Figure 5.6: Start line is 6. Variable line is completely over-
written in the starting line. Left is without and right with a
marking for the overwritten IA.

• Side Effects (SE): Should side effects be highlighted? Show side effects?

While it seems likely that developers want to know
about any side effects, there are potential downsides
to marking them. Most of all they might be confusing.
Oftentimes they are caused in a different scope, so it
is not immediately clear why they are marked. The
markings might also be misleading to a certain de-
gree since a static analysis will not be able to find ev-
ery side effect. Thus marking a limited subset could
lure developers into a false sense of security. Another
downside is that even if the analysis does not mark
beyond the local scope, it would still have to analyze
beyond it. Fig. 5.7 contains an example.

• Class attributes (CA): Should attributes be traced as part Trace attribute or entire

object?of the entire object instead of individually? When an at-
tribute is part of the context, it is unclear whether
only this specific attribute of the associated object, or
the entire object is relevant for the context. When an
object method is called it might influence attributes.
This is missed if only the attribute is taken into con-
sideration. However, as long as the analysis does not
trace outside the local scope, it is impossible to know
whether that is truly the case. Additionally tracking
the entire object might provide valuable insights into
the object’s purpose, even if the other object attributes
do not affect the current line’s value. To avoid over-
lap with the side effects question, we avoided object
methods in study tasks investigating CA. So the study
only investigated whether developers were interested

36 5 Evaluation

Figure 5.7: Start line is 9. Above is without, bellow is with
side effects marked. The method reverse_word has a side
effect affecting the variable reverse.

in other object attributes being marked. Fig. 5.8 con-
tains an example.

• Iterations (It): Should loops be traced more than once?Trace loops more than

once? In a static analysis, it is often unclear how often a
loop will be executed. But it is likely to be more than
once. Otherwise, the developer would not have used
a loop. Currently, our prototype only traces one it-
eration, as if we were dealing with an if-statement.
The difference in the resulting markings is especially
noticeable when the current line is towards the begin-
ning of a loop. If we trace the dependencies for more
than one loop iteration, we have to consider lines be-
low the current line as well. Such markings might
be confusing to developers since they are inconsistent
with all other cases. Otherwise, only lines above the
current line are marked. But even if such markings
are confusing they might still be insightful. Fig. 5.9
contains an example.

5.2 User study 37

Figure 5.8: Start line is 10. Above only the attribute’s de-
pendencies are traced. Below the entire object is traced.

Figure 5.9: Start line is 12. The left side is tracing the loop
without taking iterations into account. The right side traces
with iterations.

• Scope Down / Up (SD / SU): Should the context be Trace out of scope

downwards / upwards?traced downwards / upwards in scope? The main limita-
tion imposed upon the prototype is that it only analy-
ses the local scope. The reasons for that were outlined
in 3.1 “Deciding on Limitations”. This is a severe re-
striction and should thus not be made arbitrarily. Ide-
ally, the study will validate this limitation as a sensi-
ble restriction, that still enables developers to compre-

38 5 Evaluation

hend the local context. We split up the question about
going out of scope. Going down in scope seems more
likely to provide useful context than going up. After
all, when exploring a method, understanding called
methods helps to piece together what the method it-
self does. While where a method is being called does
not. It just gives a hint about the method’s usage.
Fig. 5.10 contains an example, both for going up in
scope and for going down.

5.2.1 Study Design

The study was conducted online and made with SoSci Sur-
vey2. Pictures of the study and all of the task descriptions
can be found in A “User Study Documents”. Participants
underwent the following steps when taking part in the sur-
vey:

1. Upon starting the survey, participants first receivedWelcome and consent

a welcome message. They also had to consent to the
conditions of the study.

2. After participants agreed to participate, they had toDemographics

fill out some demographic information.

3. Next participants were explained the tasks. Through-Task explanation

out the study, they repeatedly ranked three pictures.
In each task, a short context description, related to
the content of the pictures was given as well. Within
a task, all three pictures contained the same piece of
code. The code was marked in different ways. There
was a red line marking, which indicated the current
line. It was the same across all three pictures. There
also were green line markings, that participants were
told should support them in understanding the lo-
cal context of the current line. The markings were
done with Easy Highlight3 (version 1.2.0), a VSCode
extension. Participants were asked to rank how well
the different markings helped with understanding

2 https://www.soscisurvey.de/
3 https://github.com/BrandonBlaschke/vscode-easy-highlight/

https://www.soscisurvey.de/
https://www.soscisurvey.de/
https://github.com/BrandonBlaschke/vscode-easy-highlight/
https://www.soscisurvey.de/
https://github.com/BrandonBlaschke/vscode-easy-highlight/

5.2 User study 39

Figure 5.10: Start line is 3 for top left and 7 for bottom left. The left side shows mark-
ings without going out of scope. These two cases produce the right side markings:
Top left, but with going up in scope. Bottom left, but with going down in scope.

the local context of the current line. The three pic-
tures always corresponded to three conditions. "Min-
imal Visuals". "Additional Visuals" and a baseline.
Their order was random and participants were not
told about them. "Minimal Visuals" corresponded to
what should be marked according to what was laid
out in 3 “Concept and Design Choices”. "Additional
Visuals" included the same markings, but also addi-
tional markings. These were based on what should
be marked if one of the previously mentioned open
questions was answered with yes. The baseline was
based on an IDE feature, that marks all occurrences of
a variable. If there was more than one variable in the
current line, only the occurrences of one of them were
marked. To minimize the effect of how we marked the
code, we decided to always either fully mark a line or
not at all. Fig. 5.11 shows an example of the different
markings in one of the tasks. Our goal for the study
was to get a ranking of the conditions for each open
question. Based on the resulting rankings, we attempt
to answer them in 5.2.3 “Quantitative Analysis”.

4. Before the actual tasks, participants were first asked Test task

to solve a test task. They were told in which order
to rank the three pictures. This made sure they were
familiar with SoSci Survey’s ranking system and had
no technical issues.

40 5 Evaluation

Figure 5.11: The three different code markings presented
during one of the tasks. Top to bottom are: "Minimal Visu-
als", "Additional Visuals" and the baseline.

5. Now they were given 18 real tasks. Each open ques-Solving the tasks

tion had three associated with it. The task order was
randomized, just like the contained pictures.

6. After finishing up the tasks, participants were asked
to leave comments. They were invited to leave pos-
itive, negative, and neutral feedback via three differ-
ent text boxes. The results will be discussed in 5.2.4
“Qualitative Analysis”.

7. On the last page of the survey participants wereThanking participants

thanked for their participation.

5.2 User study 41

5.2.2 Participants

The demographics section gives an insight into the partici- Most participants were

typical CS students.pants of the user study. There was a total of 21 participants.
Their ages ranged from 20 to 62 years old. The median age
however was 22. Two-thirds (14) of them were male, the
other third (7) female. 17 of them study computer science
or something related to it. Two are already working in a
profession related to computer science. The last two par-
ticipants study something unrelated. The time they spent
in their profession, including studying for it, ranges from
1.5 to 35 years, but the median is much lower at 3.5 years.
Programming experience ranges from 1.5 to 45 years, with
a median of 6 years. Except for one participant, all had ex-
perience programming with Python. Most also had experi-
ence with C/C++/C# or Java. The top three IDEs they use
are VSCode, Visual Studio, and IntelliJ (in that order). In
summary, most participants were fellow computer science
students with programming experience you would typi-
cally expect. All participants knew either Python or a sim-
ilar language. This is unsurprising, considering the survey
invitation mentioned that basic Python knowledge would
be required.

5.2.3 Quantitative Analysis

To extract useful information from the ranking results we Inverted rank-sums

were analyzed.form rank-sums for each of the conditions. To get more
easily readable results, the rankings are inversed and sub-
tracted by one. So rank 1 becomes 2, rank 2 becomes 1,
and rank 3 becomes 0. This way the highest rank-sum cor-
responds to the highest ranking. No information is lost
by this conversion. First, we calculate the inverted rank-
sums of each condition for each task. Fig. 5.12 shows them,
grouped for each investigated question.

It is clear that for some questions, the results were strongly Strong variations

between tasks for some

questions.

influenced by the specific task. We will try to provide po-
tential explanations for two examples. The most clear vari-
ation is between the tasks of the class attribute question.
It might indicate that the context of the code influences,

42 5 Evaluation

Figure 5.12: The graphs show the rank-sums for each task. The tasks are grouped
by their question. The condition with the highest bar scores best.

whether users want the entire object to be tracked or not.
P12 commented "Highlighting "sibling" data fields of an ob-
ject and their usage can be useful, but more often they are
not.". So this does not yield a definitive answer on whether
to include such markings by standard. In the case of the
scope-up tasks, "Additional Visuals" scores much better in
the second than the other two tasks. This might be, because
in the second task going up in scope only leads to two addi-
tional markings. Many participants stated too many mark-
ings made them rank pictures lower. This likely skewed the
results against "Additional Visuals", since it tends to pro-
duce the most markings. Especially in tasks going out of
scope, since the dependencies cascade easily. We will dis-
cuss the issue in more detail in 5.2.4 “Qualitative Analysis”.
Here it indicates that developers are interested in the mark-
ings of going up in scope. But only as long as they do not
come with a plethora of markings.

Next we sum up the results from the different tasksAccumulated results

per question for each question. Thus there are now three rank-sums
per question, one per condition. These are presented in
Fig. 5.13.

5.2 User study 43

Figure 5.13: The graph shows the accumulated rank-sums for each question. The
condition with the highest bar scores best.

A Friedman test was performed on the accumulated rank-
sums of each question. This tests for significant differences
between the conditions. There are significant differences
for three of the six questions. For initial assignments IA results indicate our

concept is useful."Minimal Visuals" and "Additional Visuals" are both sig-
nificantly different from the baseline. Thus it is uncertain
whether overwritten initial assignments should be marked.
However both conditions mark code very similarly to what
is outlined in 3 “Concept and Design Choices”. "Addi-
tional Visuals" only adds one more marking. This indi-
cates that the concept is useful for developers to some de-
gree. It seems to improve upon what is currently available
in IDEs to highlight variables. For going down in scope, Is the local scope

limitation validated by

the SD results?

the difference between "Minimal Visuals" and the other two
is significant. Apparently tracing the scope downwards is
not particularly insightful for developers. But this result
should be taken with a grain of salt. When tracing down in
scope, it usually results in plenty of new markings. Espe-
cially for compact code fragments as in the study. As men-
tioned before participants disliked it when there were a lot
of them. This might also explain why "Additional Visuals"
performed so badly. Thus it is unclear whether this result
supports our decision to limit the tool to the local scope.
Apart from that, the difference to the baseline once again

44 5 Evaluation

indicates the usefulness of our concept. Lastly regard-Developers prefer SE

marked. ing side effects, "Additional Visuals" is significantly differ-
ent from the other two. Developers appear to prefer being
made aware of potential side effects. It should however
be noted, that within our study the side effect was always
caused within the same file. Thus it was quite easy to de-
tect. Whether this result still holds for side effects not easily
apparent, needs to be investigated further.

5.2.4 Qualitative Analysis

After finishing all tasks, participants were invited to leaveParticipants left

comments. comments. They were offered a comment box for positive,
negative, and neutral comments. Most participants used
them extensively, providing invaluable feedback. The fol-
lowing section will detail what they liked, what they dis-
liked, and potential improvements they suggested.

In general participants responded positively to our ap-The approach seems to

resonate with

participants.

proach. While participants were not told the markings
are based on code dependencies, many figured that out
themselves. Their criticism was more focused on how the
code was marked and how much. Like the results of 5.2.3
“Quantitative Analysis”, it indicates that providing such
context about the current line is a reasonable approach.

Comments mainly pointed out a significant issue with ourOur highlighting method

skewed the results. study. As already mentioned in 5.2.3 “Quantitative Analy-
sis”, excessive highlighting likely skewed the result. Most
participants thought that in some cases the highlights were
rendered useless due to their amount. Several reasons were
causing this issue. When deciding on how to mark the con-
text within the study, we aimed to minimize the influence
of the markings. Simple marking rules, like marking the en-
tire line, seemed sensible to achieve this. However, we did
not take into account, that marking entire lines would make
them very prominent. This was especially problematic due
to several compounding factors. As P4 pointed out, some-
times there is a "cascade of [variables leading] up to the line
currently worked on". This is related to an issue brought up
in 5.1 “Technical Evaluation”. The markings are more use-

5.2 User study 45

ful for long scopes because smaller ones tend to be compact
and highly interconnected. The result is almost every line
being marked. Unfortunately, the small code sizes were a
limitation of our study. Otherwise, we would not have been
able to test out more than one question in a reasonable time
frame. Participants also wrote they often had to choose be-
tween too much or too little highlight (e.g. P7 "information
of one [picture] was too much but the crucial part of [it] was
not present in the reduced form"). But they preferred too
little over too much. This indicates our approach needs to
be quite careful about how much is being marked. Further-
more, P7 stated, "highlighting conditions [...] can be help-
ful but only if the outcome does affect the code part, [...]
[a] time iterator [...] has an effect but not as much as [...] a
break condition". So the usefulness of condition highlights
depends on context. Iterators are less interesting than break
conditions. Maybe the head of for-loops should be marked
less prominently than those of if-statements.

If markings as in the prototype were used, the study would prototype highlights

likely better.likely have fared better. The context in our approach con-
sists of variables. Our prototype only marks them, in-
stead of the entire accompanying line. Such markings take
up much less screen space and are thus significantly less
prominent. In addition, the prototype fades out variables
depending on how distantly related they are to the current
line. Participants’ comments indicate this would have been
beneficial. P15 wrote that they "preferred when lines were
highlighted that were "one" level up". Many other partici-
pants agreed, that indirect dependencies are less important
to know about. P9 even noted that "maybe recursive de-
pendencies should be marked less occupant, to make direct
distinction to direct dependencies more apparent". That of
course is exactly what the prototype’s fade-out does.

Apart from stating what they liked and disliked, partici- Participants proposed

features.pants also suggested several features. P1 asked that differ-
ent structures, e.g. assignments and conditions, be given
different colors. P12 proposed giving the option to deter-
mine how many dependency steps should be traced. This
would potentially solve a point brought up by many par-
ticipants. The amount of context they need depends on fac-
tors, such as how familiar the code is and how insightful the

46 5 Evaluation

names are. By providing such an option developers could
extend the context as far as they need. P12 also suggested
enabling the developer to switch to tracing future depen-
dencies instead. P8 also thought that "it can also be helpful
to see where [a variable] is being used later on".

47

Chapter 6

Conclusion

6.1 Discussion

In general the results of the evaluation are promising. They Our approach is

promising, but requires

further testing.

indicate that an approach on a scope-wide basis could be
beneficial. However, the approach will need to be prop-
erly studied during usage to make a definitive determina-
tion of its usefulness. Especially the dynamic aspect is yet
untested. During the study, participants were only given
one static marking. They were not allowed to explore dif-
ferent markings by changing the current line. It is also not
yet clear, what controls would be best for developers. Cur-
rently, the markings update actively, when the current line
is switched. Developers might prefer a passive version,
where they manually decide when to update them.

On the technical side, our prototype works in principle. Discussing technical

aspectsBut it also has significant limitations. The most obvious are
bugs in the implementation. In particular edge cases need
further attention during the analysis. The oversights found
will require extending the concept to account for them. Fur-
thermore, two important aspects need to be discussed. The
approach is more suitable for longer code scopes. How-
ever, it is unclear how long scopes need to be for the tool
to be of use. The code length is probably a bad indicator
of this. Instead how strongly interconnected the code is,
would probably provide a better basis for further investi-

48 6 Conclusion

gation. The prototype only supports a subset of Python.
The technical evaluation made clear, that this subset is quite
limiting. The current version is not fully applicable to a
real-world project yet. Thus the subset will need to be ex-
panded. It seems likely that most aspects of Python will
have to be supported. Our prototype focuses on the core
language features. The reason is not just because it is the
minimum required to test it out. These features are also
the ones shared with many other programming languages.
Outside of them, many languages tend to have their own
quirks. Thus if full language support is necessary, it will
make it more difficult to transfer the tool to different lan-
guages.

Unfortunately the user study conducted did not defini-Discussing conceptual

aspects tively answer any of the open questions. Still, it pro-
vides valuable insights into how developers react to the
approach. The main finding was that it is of utmost im-
portance how and what information is presented. It is the
difference between the tool being helpful and being a hin-
drance. Our study used markings that were too promi-
nent. Participants’ comments suggest that our prototype
presents markings better. Generally, participants preferred
too little markings over too much. As a consequence limit-
ing the tool to the local scope is likely better than risking a
ton of markings by going beyond it. We believe some fea-
tures proposed by participants could improve the tool. In
particular, the option to set how many dependency steps
are being traced. It would enable users to better fine-tune
how they explore the code. This perfectly aligns with our
goal to allow for dynamic exploration. However other pro-
posed features appear less promising. Having the option
to trace dependencies in the other direction as well would
probably not be detrimental. But only a few participants
mentioned that they wished to explore future assignments.
And even those said that they were only interested in some
cases. Thus such an extension of the tool seems unlikely to
be worthwhile.

6.2 Summary and Contributions 49

6.2 Summary and Contributions

This bachelor’s thesis presented a new approach to sup- Summary

porting developers’ code comprehension and navigation.
Developers spend large chunks of time on these aspects of
software development. Our approach differs from exist-
ing ones by dynamically providing context within scopes.
Previous approaches focused on improving a wider under-
standing of a code project.

We outlined in detail, which limitations our approach has.
In particular, we explained why we limited ourselves to
staying within the local scope. Then we described how the
local context is determined using an abstract syntax tree.
Finally, we detailed how the resulting context is displayed
to the user. Afterward, we described the implementation of
a prototype.

The prototype was evaluated in two ways. A technical eval-
uation was performed to determine implementation prob-
lems, as well as current limitations. Apart from that, a
user study was conducted. It investigated what informa-
tion constitutes a useful context. We discussed the results
of both evaluations in detail. Their results were promising,
but also clearly demonstrated a need for further improve-
ments.

In conclusion this thesis contributes a new promising ap- Contribution

proach. It enables developers to dynamically explore local
scopes, thus filling a gap in the research. Along with that
two evaluations provide an outline for its future direction.1

6.3 Future Work

As a conclusion, we will outline some potential directions The implementation

needs to be improved.for future work. We think that our approach has shown
promise, albeit still flawed in many respects. The most ba-
sic way to build upon this thesis is to fix the bugs of the
current implementation. After that, it could be expanded
to deal with more edge cases. Building on that one could

50 6 Conclusion

start to consider further parts of Python in the analysis as
well.

Otherwise future work could explore how to best mark theStudy how to mark the

context better. context. Our prototype used highlighting and we believe
that to be a reasonable starting point. However, there is a
wide variety of potential markings that could be explored.
Apart from that other visual indicators could be incorpo-
rated as well, such as different highlight colors to signal
which type of feature is marked. Furthermore, it would be
interesting to explore whether the tool can be connected to
the call graph. This would enable developers to easily go
to and explore connected scopes. It would avoid having to
extend the tracing algorithm to go beyond scope borders.
Potential features described in 6.1 “Discussion” could also
be tested.

Lastly so far the approach has not been studied in its in-Study how well it

supports developers. tended use-case. Conducting such a study would be able
to conclusively prove, whether our approach is helpful. A
study could also determine to what degree it is helpful. Es-
pecially the dynamic aspect has not been explored by us.
Since our approach is intended to supplement wider-scope
approaches, it might also be insightful to study how de-
velopers switch between tools supporting them in different
scopes.

51

Appendix A

User Study Documents

This appendix includes non-task survey pages, as well as
the task description and pictures for each of the tasks in
the user study. For an example of how the ranking and
descriptions looked like see Fig. A.4.

Under each task description we included the following hint
(written in grey, "print statement" replaced with statement
type in start line):

Please rank the pictures based on how well their green
markings help you understand the context of the print
statement in the red line.

Rank 1 means most helpful and rank 3 least helpful.

Tip: Tap/click on a picture to give it the best unused rank-
ing. Tap/click it again to take away its ranking.

Class Attributes

Task 1

Context: In the below code fragment, a student’s school
status is printed out after their graduation is processed.

Task 2

52 A User Study Documents

 0% completed

Welcome to our study

Below is a short overview about the content of the study and how your
personal data will be handled

Purpose: The goal of this study is to obtain insights into how code should be
marked to help programmers understand the current context better.

Procedure: The study is conducted online in SoSciSurvey. Participating in this
study involves ranking screenshots of lines of python code with colored
markings. Additionally, we will collect general demographic information and ask
general questions about the experience. All information will be confidential. (See
'Confidentiality' below for details.)

Risks: The study should take approximately half an hour. Beside possible
exhaustion or tiredness, there are no known risks. You can take breaks or abort
at any time.

Confidentiality: All information gathered during the study will be kept
confidential. You will be identified only through identification numbers and
background information you divulge in publications, theses, or reports.

Costs and Compensations: Participation in this study is voluntary. You are free to
withdraw or discontinue the participation. Participation in this study will involve
no cost to you and there will be no financial compensation.

Principal investigator: Christopher Helios, RWTH Aachen University,
christopher.helios@rwth-aachen.de

I have read and understood the information and participate of my
own volition

Next

Figure A.1: Welcome and consent page of the survey

53

 17% completed

Demographics

Please tell us some general information about yourself.

Next

Age

Gender

Current Occupation / Field of
Study

How long have you been in this
profession? Please include the
time you spent studying for it.
(years)

For how long have you been
programming? (years)

Please list programming languages you have used before

Please list IDEs (Code development environments) you have used before

Figure A.2: Demographics form in the survey

54 A User Study Documents

 33% completed

In the following you will repeatedly rank three pictures.
They will always show the same piece of code, where the same one line is marked in
red and different lines are marked in green.

The red line marks the one you would be currently working on.
The green markings are automatically created by the IDE to mark context for the red
line.

Your task will be to rank the pictures according to the specificity and helpfulness of
the green markings for understanding the line marked in red.

If you don't understand a code snippet or its context remains unclear, you are able to
skip by clicking next without ranking.

Example:

Next

Figure A.3: Explanation of the tasks in the survey

55

Figure A.4: Test task to make sure SoSci Survey ranking system works correctly.

56 A User Study Documents

Figure A.5: Participants were invited to leave comments.

57

Figure A.6: Thanking participants for participation.

58 A User Study Documents

Context: The code fragment below enables the user to track
their favorite element in the periodic table.

Task 3

Context: The code fragment below enables a university to
keep track of rooms in their buildings and who is responsi-
ble for them.

Initial Assignments

Task 1

Context: The below code fragment initializes a new lobby
in a multiplayer game, ensuring certain limitations are met.

Task 2

Context: The code fragment below is a simple program for
registering a new user.

Task 3

Context: The code below breaks a string up into lines and
prints them individually.

Iterations

Task 1

Context: The code below calculates the Fibonacci Sequence
and prints it out.

Task 2

Context: The code below calculates the total cost of a shop-
ping basket, taking into account the buyer’s budget.

Task 3

Context: The code below aims to guide the user of an app
to give it a rating.

59

Figure A.7: Class Attributes, task 1, condition 1-3 from top to bottom

60 A User Study Documents

Figure A.8: Class Attributes, task 2, condition 1-3 from top to bottom

61

Figure A.9: Class Attributes, task 3, condition 1-3 from top to bottom

62 A User Study Documents

Figure A.10: Initial Assignment, task 1, condition 1-3 from top to bottom

Scope Down

Task 1

Context: The below code prints out a title with padding on
both sides to center it and make it stand out.

Task 2

63

Figure A.11: Initial Assignment, task 2, condition 1-3 from top to bottom

64 A User Study Documents

Figure A.12: Initial Assignment, task 3, condition 1-3 from top to bottom

Context: The below program enables customers of a com-
pany to book a vacation with them.

Task 3

65

Figure A.13: Iterations, task 1, condition 1-3 from top to bottom

66 A User Study Documents

Figure A.14: Iterations, task 2, condition 1-3 from top to bottom

67

Figure A.15: Iterations, task 3, condition 1-3 from top to bottom

68 A User Study Documents

Figure A.16: Scope Down, task 1, condition 1-3 from top to bottom

Context: Below is a program helping users search for items
in their drawers.

Scope Up

69

Figure A.17: Scope Down, task 2, condition 1-3 from top to bottom

70 A User Study Documents

Figure A.18: Scope Down, task 3, condition 1-3 from top to bottom

71

Task 1

Context: The code below is for a video game and deter-
mines what happens when the player is damaged.

Task 2

Context: The course below enables users to book courses
and to receive a discount if they are students.

Task 3

Context: The code below determines a customer’s favorite
drink so it can be served to them.

Side Effects

Task 1

Context: The code below tells the user whether a given
word is a palindrome.

Task 2

Context: The code below approximates the Golden Ratio
using the Fibonacci Sequence.

Task 3

Context: The below program keeps track of ongoing
games.

In the following condition 1 is "Minimal Visuals", 2 is "Ad-
ditional Visuals" and 3 the baseline.

72 A User Study Documents

Figure A.19: Scope Up, task 1, condition 1-3 from top to bottom

73

Figure A.20: Scope Up, task 2, condition 1-3 from top to bottom

74 A User Study Documents

Figure A.21: Scope Up, task 3, condition 1-3 from top to bottom

75

Figure A.22: Side Effects, task 1, condition 1-3 from top to bottom

76 A User Study Documents

Figure A.23: Side Effects, task 2, condition 1-3 from top to bottom

77

Figure A.24: Side Effects, task 3, condition 1-3 from top to bottom

79

Bibliography

[1] Marjan Adeli, Nicholas Nelson, Souti Chattopadhyay, Hayden Coffey, Austin
Henley, and Anita Sarma. Supporting Code Comprehension via Annotations:
Right Information at the Right Time and Place. In 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pages 1–10, 2020.
doi.org/10.1109/VL/HCC50065.2020.9127264.

[2] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola. Code bubbles: a working set-based interface for code understanding
and maintenance. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’10, page 2503–2512, New York, NY, USA, 2010.
Association for Computing Machinery. doi.org/10.1145/1753326.1753706.

[3] Robert DeLine and Kael Rowan. Code canvas: zooming towards better de-
velopment environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE ’10, page 207–210, New
York, NY, USA, 2010. Association for Computing Machinery. doi.org/10.
1145/1810295.1810331.

[4] Beat Fluri, Michael Wursch, and Harald C. Gall. Do Code and Comments
Co-Evolve? On the Relation between Source Code and Comment Changes.
In 14th Working Conference on Reverse Engineering (WCRE 2007), pages 70–79,
2007. doi.org/10.1109/WCRE.2007.21.

[5] Jaroslav Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Alla-
manis, Mirella Lapata, and Charles Sutton. TASSAL: autofolding for source
code summarization. In Proceedings of the 38th International Conference on Soft-
ware Engineering Companion, ICSE ’16, page 649–652, New York, NY, USA,
2016. Association for Computing Machinery. doi.org/10.1145/2889160.
2889171.

[6] R.L. Glass. Persistent Software Errors. IEEE Transactions on Software Engineer-
ing, SE-7(2):162–168, 1981. doi.org/10.1109/TSE.1981.230831.

https://doi.org/10.1109/VL/HCC50065.2020.9127264
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1810295.1810331
https://doi.org/10.1145/1810295.1810331
https://doi.org/10.1109/WCRE.2007.21
https://doi.org/10.1145/2889160.2889171
https://doi.org/10.1145/2889160.2889171
https://doi.org/10.1109/TSE.1981.230831

80 Bibliography

[7] Sangmok Han, David R. Wallace, and Robert C. Miller. Code Completion from
Abbreviated Input. In 2009 IEEE/ACM International Conference on Automated
Software Engineering, pages 332–343, 2009. doi.org/10.1109/ASE.2009.64.

[8] C. Hannebauer, M. Hesenius, and V. Gruhn. Does syntax highlighting help
programming novices? Empirical Software Engineering, 23:2795–2828, 2018.
doi.org/10.1007/s10664-017-9579-0.

[9] Austin Z. Henley and Scott D. Fleming. The patchworks code editor: toward
faster navigation with less code arranging and fewer navigation mistakes. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’14, page 2511–2520, New York, NY, USA, 2014. Association for Comput-
ing Machinery. doi.org/10.1145/2556288.2557073.

[10] Johannes Hofmeister, Janet Siegmund, and Daniel V. Holt. Shorter identifier
names take longer to comprehend. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 217–227, 2017.
doi.org/10.1109/SANER.2017.7884623.

[11] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Sum-
marizing Source Code using a Neural Attention Model. In Katrin Erk and
Noah A. Smith, editors, Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pages 2073–2083,
Berlin, Germany, August 2016. Association for Computational Linguistics.
doi.org/10.18653/v1/P16-1195.

[12] John Johnson, Sergio Lubo, Nishitha Yedla, Jairo Aponte, and Bonita Sharif.
An Empirical Study Assessing Source Code Readability in Comprehension.
In 2019 IEEE International Conference on Software Maintenance and Evolution (IC-
SME), pages 513–523, 2019. doi.org/10.1109/ICSME.2019.00085.

[13] Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hartmann, and Jan
Borchers. Stacksplorer: call graph navigation helps increasing code mainte-
nance efficiency. In Proceedings of the 24th Annual ACM Symposium on User In-
terface Software and Technology, UIST ’11, page 217–224, New York, NY, USA,
2011. Association for Computing Machinery. doi.org/10.1145/2047196.
2047225.

[14] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for IDEs.
In Proceedings of the 4th International Conference on Aspect-Oriented Software De-
velopment, AOSD ’05, page 159–168, New York, NY, USA, 2005. Association for
Computing Machinery. doi.org/10.1145/1052898.1052912.

[15] Mik Kersten and Gail C. Murphy. Using task context to improve programmer
productivity. In Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, SIGSOFT ’06/FSE-14, page 1–11, New

https://doi.org/10.1109/ASE.2009.64
https://doi.org/10.1007/s10664-017-9579-0
https://doi.org/10.1145/2556288.2557073
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.1109/ICSME.2019.00085
https://doi.org/10.1145/2047196.2047225
https://doi.org/10.1145/2047196.2047225
https://doi.org/10.1145/1052898.1052912

Bibliography 81

York, NY, USA, 2006. Association for Computing Machinery. doi.org/10.
1145/1181775.1181777.

[16] Amy J. Ko, Htet Aung, and Brad A. Myers. Eliciting design requirements
for maintenance-oriented IDEs: a detailed study of corrective and perfective
maintenance tasks. In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, page 126–135, New York, NY, USA, 2005. Association for
Computing Machinery. doi.org/10.1145/1062455.1062492.

[17] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An Ex-
ploratory Study of How Developers Seek, Relate, and Collect Relevant Infor-
mation during Software Maintenance Tasks. IEEE Transactions on Software En-
gineering, 32(12):971–987, 2006. doi.org/10.1109/TSE.2006.116.

[18] Jan-Peter Krämer, Thorsten Karrer, Joachim Kurz, Moritz Wittenhagen, and
Jan Borchers. How tools in IDEs shape developers’ navigation behavior. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’13, page 3073–3082, New York, NY, USA, 2013. Association for Comput-
ing Machinery. doi.org/10.1145/2470654.2466419.

[19] Per Ola Kristensson and Chung Leung Lam. Aiding programmers using
lightweight integrated code visualization. In Proceedings of the 6th Workshop
on Evaluation and Usability of Programming Languages and Tools, PLATEAU 2015,
page 17–24, New York, NY, USA, 2015. Association for Computing Machinery.
doi.org/10.1145/2846680.2846683.

[20] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental
models: a study of developer work habits. In Proceedings of the 28th Interna-
tional Conference on Software Engineering, ICSE ’06, page 492–501, New York,
NY, USA, 2006. Association for Computing Machinery. doi.org/10.1145/
1134285.1134355.

[21] Alexander LeClair, Siyuan Jiang, and Collin McMillan. A Neural Model for
Generating Natural Language Summaries of Program Subroutines. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages
795–806, 2019. doi.org/10.1109/ICSE.2019.00087.

[22] Seonah Lee, Sungwon Kang, Sunghun Kim, and Matt Staats. The Impact of
View Histories on Edit Recommendations. IEEE Transactions on Software Engi-
neering, 41(3):314–330, 2015. doi.org/10.1109/TSE.2014.2362138.

[23] Paul W. McBurney, Cheng Liu, Collin McMillan, and Tim Weninger. Improv-
ing topic model source code summarization. In Proceedings of the 22nd Inter-
national Conference on Program Comprehension, ICPC 2014, page 291–294, New
York, NY, USA, 2014. Association for Computing Machinery. doi.org/10.
1145/2597008.2597793.

https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1145/1062455.1062492
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/2470654.2466419
https://doi.org/10.1145/2846680.2846683
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/TSE.2014.2362138
https://doi.org/10.1145/2597008.2597793
https://doi.org/10.1145/2597008.2597793

82 Bibliography

[24] Roberto Minelli, Andrea Mocci, and Michele Lanza. I Know What You Did
Last Summer - An Investigation of How Developers Spend Their Time. In
2015 IEEE 23rd International Conference on Program Comprehension, pages 25–35,
2015. doi.org/10.1109/ICPC.2015.12.

[25] Leon Müller. User-Centered Edit Recommendations in IDEs. Master’s the-
sis, RWTH Aachen University, Aachen, May 2023. URL https://hci.rwth-
aachen.de/publications/mueller2023a.pdf.

[26] Martin Robillard, Robert Walker, and Thomas Zimmermann. Recommen-
dation Systems for Software Engineering. IEEE Software, 27(4):80–86, 2010.
doi.org/10.1109/MS.2009.161.

[27] Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eberhart,
Westley Weimer, Kevin Leach, and Yu Huang. A Human Study of Comprehen-
sion and Code Summarization. In Proceedings of the 28th International Confer-
ence on Program Comprehension, ICPC ’20, page 2–13, New York, NY, USA, 2020.
Association for Computing Machinery. doi.org/10.1145/3387904.3389258.

[28] Hendrik Strobelt, Daniela Oelke, Bum Chul Kwon, Tobias Schreck, and
Hanspeter Pfister. Guidelines for Effective Usage of Text Highlighting Tech-
niques. IEEE Transactions on Visualization and Computer Graphics, 22(1):489–498,
2016. doi.org/10.1109/TVCG.2015.2467759.

[29] Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, Zhelin Zhu, and
Bin Luo. AST-trans: code summarization with efficient tree-structured atten-
tion. In Proceedings of the 44th International Conference on Software Engineering,
ICSE ’22, page 150–162, New York, NY, USA, 2022. Association for Computing
Machinery. doi.org/10.1145/3510003.3510224.

[30] T. Tenny. Program readability: procedures versus comments. IEEE Transactions
on Software Engineering, 14(9):1271–1279, 1988. doi.org/10.1109/32.6171.

[31] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and
Shanping Li. Measuring Program Comprehension: A Large-Scale Field Study
with Professionals. IEEE Transactions on Software Engineering, 44(10):951–976,
2018. doi.org/10.1109/TSE.2017.2734091.

[32] Binhang Yuan, Vijayaraghavan Murali, and Christopher Jermaine. Abridging
source code. Proc. ACM Program. Lang., 1(OOPSLA), oct 2017. doi.org/10.
1145/3133882.

[33] Michael Zhivich and Robert K. Cunningham. The Real Cost of Software Er-
rors. IEEE Security Privacy, 7(2):87–90, 2009. doi.org/10.1109/MSP.2009.56.

[34] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller. Mining version his-
tories to guide software changes. In Proceedings. 26th International Conference

https://doi.org/10.1109/ICPC.2015.12
https://hci.rwth-aachen.de/publications/mueller2023a.pdf
https://hci.rwth-aachen.de/publications/mueller2023a.pdf
https://doi.org/10.1109/MS.2009.161
https://doi.org/10.1145/3387904.3389258
https://doi.org/10.1109/TVCG.2015.2467759
https://doi.org/10.1145/3510003.3510224
https://doi.org/10.1109/32.6171
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1145/3133882
https://doi.org/10.1145/3133882
https://doi.org/10.1109/MSP.2009.56

Bibliography 83

on Software Engineering, pages 563–572, 2004. doi.org/10.1109/ICSE.2004.
1317478.

https://doi.org/10.1109/ICSE.2004.1317478
https://doi.org/10.1109/ICSE.2004.1317478

85

Index

Abstract Syntax Tree . 7, 14, 15, 17–19, 25–27, 30

AST . see Abstract Syntax Tree

code comprehension . 1–5, 7–9, 13, 14, 49

concept . 4, 13–23, 29–32, 43, 44, 47

context 3, 4, 10, 14, 15, 17–19, 22, 25, 27, 29, 31, 32, 34, 35, 37–39, 41, 44–46, 49, 50

evaluation . 29–46

extension. .3, 4, 10, 15, 25, 26, 30, 38

future work . 49–50

IDE . see Integrated Development Environment

Integrated Development Environment . 1–3, 5, 8–16, 19, 22, 25, 39, 41, 43

navigation. .1–5, 8–10, 13, 14, 23, 49

prototype . 3, 4, 15, 17, 18, 22, 25, 29–33, 36, 37, 45, 47–50

Python . 14, 15, 18, 19, 25, 26, 30, 32, 41, 48, 50

user study . 4, 29, 34–46, 48, 49

VSCode . 15, 25, 27, 38, 41

Typeset May 10, 2024

	Abstract
	Überblick
	Acknowledgments
	Conventions
	Introduction
	Motivation
	Goal and Approach

	Related Work
	Code Summarization
	Extending IDEs

	Concept and Design Choices
	Deciding on Limitations
	Determining Local context
	Displaying Line context

	Implementation
	Generating the AST
	Preparing the AST
	AST Analysis
	Highlighting

	Evaluation
	Technical Evaluation
	User study
	Study Design
	Participants
	Quantitative Analysis
	Qualitative Analysis

	Conclusion
	Discussion
	Summary and Contributions
	Future Work

	User Study Documents
	Bibliography
	Index

