
by
Nur Al-huda Hamdan

A Surface Manager
for Interactive

Tabletops

Master’s Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. James D. Hollan

Registration date: 02.10.2012
Submission date: 12.03.2013

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen,March2013
Nur Al-huda Hamdan

v

Contents

Abstract xv

Acknowledgements xvii

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Statement 5

1.3 Thesis Overview 6

2 Background and Related Work 9

2.1 Interactive Tabletop Systems 10

2.1.1 Tabletops in Work Environments . . . 10

2.1.2 Tabletop Metaphors 12

2.1.3 Tabletops Design Requirements and
Constraints 13

2.2 Window Management Systems 17

2.2.1 Window managers 18

2.2.2 The Evolution of Window Managers . 19

vi Contents

UI Metaphors 20

Direct Manipulation 21

Commercial Systems 21

2.2.3 A Paradigm Shift: from Personal
Desktops to Shared Tabletops 22

2.3 Related Work 24

2.3.1 Summary 28

3 Conceptual Framework 29

3.1 Context Of Work 30

3.2 Workspace Access 32

3.2.1 Entry Points 33

3.2.2 Access Points 35

The Design Space for Access Points . 39

Design Space Analysis 40

3.3 Surface Partitioning 43

3.4 Coordination Policies 46

3.5 Summary . 47

4 System Design 49

4.1 Design Goals 50

4.2 Applying the Conceptual Framework 51

4.3 Controller Metaphor 54

4.4 User Interface 55

Contents vii

4.4.1 User-Interface Toolkit 56

4.4.2 Generic Commands 62

4.4.3 Peripheral Association 62

4.4.4 System Hierarchy and Tree Manage-
ment 64

4.4.5 File Management 65

4.4.6 Interaction Techniques 66

In-place Interaction 67

Collapse & Expand Interaction 67

Remote Control Interaction 68

4.5 Analyzing the Interface against Direct Ma-
nipulation Principles 68

4.6 Implementation 70

4.6.1 Software Development Process 70

4.6.2 System Class Diagram 71

4.6.3 Surface Manager Software Architecture 72

4.6.4 Gesture Detection Process 74

5 User Studies and System Evaluation 77

5.1 Preliminary Study: Conceptual Model Elici-
tation . 77

5.1.1 Study Protocol 78

5.1.2 Results 80

5.2 Observational Study and System Evaluation 83

viii Contents

5.2.1 Task Design 83

5.2.2 Method and Procedure 85

5.2.3 Participants 85

5.2.4 Apparatus 85

5.2.5 Data Collection and Analysis 86

5.2.6 Results 87

System Entry 87

System Access 88

Controller Metaphor 91

Activity Landscape Construction . . . 93

Content Manipulation 94

5.3 Discussion . 95

6 Summary and Future Work 97

6.1 Summary and Contributions 97

6.2 Future Work 101

A Task Description for Observational User Study 103

B Questionnaire Form for Observational User Study105

Bibliography 107

Index 117

ix

List of Figures

1.1 Presentation of the single-application
paradigm. 5

2.1 Roomware interactive work environment
[Streitz et al., 2001]. 11

2.2 Ponds metaphor for information search and
visualization on tabletops [Ståhl et al., 2002]. 13

2.3 Tabletops design requirements and constraints. 14

2.4 A 4-layer window system architecture
[Gosling et al., 1989].. 17

2.5 Xerox Star UI. 19

2.6 CoSpaces [Mahyar et al., 2012]. 26

2.7 Storage bins [Scott et al., 2005]. 27

2.8 HandyWidgets [Yoshikawa et al., 2012]. . . . 27

3.1 Conceptual framework of surface managers. 30

3.2 Kirsh’s model of context of work. 31

3.3 Types of entry points in tabletop environments. 33

x List of Figures

3.4 Access points presentation attributes: visi-
bility, activation modality, and spatial prop-
erties. 37

3.5 Access points distribution dimensions: num-
ber of access points, relative location, dis-
tance from table. 38

3.6 Access points distribution models. 39

3.7 The design space of tabletop access points . . 40

3.8 Coordination policies on interactive tabletops. 47

4.1 Surface Manager UI overview. 52

4.2 Controller metaphor. 55

4.3 Building blocks of Surface Manager UI. . . . 56

4.4 Surface Manager controller. 58

4.5 Control units. Three navigation views. 59

4.6 Surface Manager canvas. 60

4.7 Surface Manager menu-bar. 61

4.8 Simultaneous peripheral association mecha-
nism. 63

4.9 System hierarchy and work items tree. 64

4.10 Interaction techniques. 67

4.11 Surface Manager class diagram. 71

4.12 Surface Manager software architecture. . . . 72

4.13 Peripheral association process. 73

4.14 Gesture detection process. 75

List of Figures xi

5.1 PICTIVE research method [Muller, 1991]. . . 78

5.2 Preliminary study setup. 79

5.3 User-generated widgets. 80

5.4 Users’ perception of the table as a workspace
for two. 81

5.5 Users’ workspace metaphors. 81

5.6 Observational study setup. 86

5.7 Gesture discovery behavior: test point loca-
tions, and visiting frequency. 90

5.8 Gesture discovery behavior: order and direc-
tion of movement. 91

5.9 Users’ ranking of controller features. 92

5.10 Activity landscape construction patterns. . . 93

5.11 Box plot for menu-bar related points in the
questionnaire. 95

xiii

List of Tables

1.1 Paradigm shift in UI design between differ-
ent interactive devices. 4

3.1 Aspects of surface partitioning. 45

5.1 Users’ requirements for a digital workspace
on a table surface. 82

B.1 Questionnaire form for observational user
study. 106

xv

Abstract

To date, most tabletop systems are designed with only a single application visible
and accessible to the users at any time. This can lead to the underuse of the tabletop
spacious surface, and is counter-intuitive to the normal working environment of a
table. Desktop window managers provide facilities to launch and manage concur-
rent applications. However, these managers are designed for single-user systems
and cannot be directly utilized in tabletops without sacrificing usability.

This thesis proposes surface managers as a new package of user-interface software, to
enable interactive tabletops as multi-tasking, general-purpose workspaces. A sur-
face manager is a user-interface that supports and facilitates users’ concurrent work
processes on large, horizontal, multi-touch surfaces. Like desktop window man-
agers, surface managers provide interface elements and policies to lunch and man-
age concurrent applications. Surface managers additionally provide space manage-
ment tools, and support simultaneous user interaction and workspace partitioning.

In this thesis, we begin by developing a descriptive model of the context of work
in tabletop environments for the purpose of aiding surface manager design. We
construct a conceptual framework for surface managers based on the theoretical
perspectives of distributed cognition, and tabletop literature. We then apply the
framework to design an exemplar surface manager, and describe the design and
implementation of the interface. Finally, the findings of the conducted user studies
are presented and discussed.

xvii

Acknowledgements

I am gratefully thankful to Simon Voelker, my advisor, for his contribution,
insightful ideas, and valuable discussions. I would also like to extend my gratitude
to Chatchavan Wacharamanotham for his continuous and thoughtful feedback,
and to professor Jan Borchers, the head of the Media Computing Group, for his
time and support.

Lastly, I would like to thank everyone who has supported me during this thesis,
the participants, who voluntarily took part in the user studies, and my family and
friends.

Nur Al-huda Hamdan.

1

Chapter 1

Introduction

“It’s not enough that we build products that
function, that are understandable and usable, we

also need to build products that bring joy and
excitement, pleasure and fun, and yes, beauty to

people’s lives.”

—Don Norman

Until the beginnings of the 1990s, interactive computing re- Interactive surfaces
call for a paradigm
shift in user-interface
design

search was essentially oriented towards personal comput-
ing. The yielded guidelines, models, and theories assisted
designers in building efficient single-user interfaces. With
the proliferation of a new range of shared interactive sur-
faces, including vertical whiteboards and horizontal table-
tops, it has become important to understand the subse-
quent paradigm shift in user-interface (UI) design and to
come up with new models and theories to guide designers.

Interactive tabletops are real-world, multi-touch surfaces
augmented with computational capabilities. They form a
unique class of computing devices by offering a horizon-
tal surface that affords social interaction, provides uncon-
strained display orientation, and allows placing physical
artefacts on it. In addition, their spacious surfaces can pos-
itively influence work dynamics by allowing more natural
and direct content manipulation and extending the visibil-
ity of the workspace [Shen et al., 2006].

2 1 Introduction

The research and industrial communities have taken great
interest in designing applications for interactive tabletops.
This has led to the development of novel interfaces and in-
teraction techniques, as well as a body of design guidelines.
Yet, most user-interaction on tabletop surfaces is limited to
the single-application paradigm, i.e., only a single applica-
tion is visible and accessible to the user at any time. This
paradigm has several disadvantages in tabletop environ-
ments. Three of these disadvantages are:

• It constrains the user’s interaction to a single applica-
tion at a time, and requires her to remember the other
running activities and how to switch between them.

• It limits the parallelism of co-located users.

• It can lead to the underuse of the surface’s size.

To break away from the single-application paradigm, we
propose the design of surface managers. A surface man-
ager is a user-interface that supports multi-tasking and
concurrent application interaction on interactive tabletops.
Throughout this document, we refer to our version of sur-
face manager design with Surface Manager.

Kirsh [2001] suggests that ”there is a deep structure to well
used workspaces. Any venue that has been adapted to
the ongoing workflow needs of a user will support those
task specific needs by providing an underlying structure,
or context for that work” (p. 307).

In this thesis, we believe that to create a useful workspace
in tabletop environments, it is important to first gain a deep
understanding of people’s physical interaction and work
patterns around table surfaces. Therefor, we construct a
conceptual framework that defines the tangible and con-
ceptual structures users need during their work processes
in tabletop environments. The framework will provide
tabletop interface designers with coherence to empirical in-
quiry, and aid them in their design process. We illustrate
the descriptive power of the framework by applying it to
the design of Surface Manager.

1.1 Motivation 3

1.1 Motivation

On classical desktop systems, window managers enable
the user to launch multiple applications on the same view-
ing surface, and interact with them simultaneously without
loss of context. However, existing window managers (e.g., Desktop window

managers provide
facilitates to launch
and manage
concurrent
applications

in Microsoft Windows and Apple’s OS X) are designed
for single-user systems with limited screen size, standard
mouse and keyboard, support of a single control point,
and fixed vertical orientation. Attempts to migrate desk-
top window managers by merely scaling the interface and
adapting the input modality can impose unnecessary limi-
tations on tabletop interaction [Wang et al., 2008].

Mobile devices, such as tablets and smartphones, have the
same direct-touch input modality as tabletops, but limited
screen space. Window managers on these devices mostly
allow users to switch between a full-screen application
view and the ”home” view, where the user can launch an-
other application. On these devices the single-application Mobile window

managers implement
the single-application
design paradigm
successfully

design paradigm has proven successful, as it was utilized
to account for the limited screen space and the mobile
contexts-of-use. Currently, commercial tabletop systems,
such as Microsoft Surface, implement window manage-
ment systems which resemble those of mobile devices in
form and function. With only one application visible and
responsive on the surface at any time, users are forced to
continually switch between contexts. This is unnatural and
counter-intuitive to the normal working environment of a
table, where the user is able to view and interact with mul-
tiple pieces of information in parallel.

In Table 1.1, we summarize the points in UI design that are
affected by the properties of different interactive devices.

These observations drove us to the design of surface man-
agers that provide similar window management facilities,
such as user sessions, hosting concurrent applications, and
layout policies, while being specifically designed for the
form and context of interactive tabletops.

Surface managers design requires an understanding of how
people work in interactive tabletop environments. How-

4 1 Introduction

Property Desktop PC Mobile device Tabletop Effect on UI design

Concurrent
users

1 1 n Multi-tasking
degree; collabo-
ration support

Screen size Medium Small Medium-
large

UI layout

Context Personal;
stationary;
private and
semi-public
contexts

Personal;
mobile;
private,
semi-public,
and public
contexts

Shared;
stationary;
semi-public
and public
contexts

Privacy settings;
filing system; fea-
tures and task do-
main

Rendering
orientation

Vertical Vertical and
horizontal

Arbitrary UI layout; shared
views

Contact
points

1 10 10 < Focus shift; ac-
cess coordination
policies

Table 1.1: Paradigm shift in UI design between different interactive devices.

ever, little is understood and has been studied of the kinds
of interactions parallel and collaborative users perform
when attempting to accomplish several different tasks in
a single session. The lack of standard tabletop technologies
and long-term users led us back to more fundamental the-
ories of workplace and tabletop territoriality. In particular,
we build on Kirsh’s [2001] model of context of work. Kirsh
studied office workplaces to define an invariant structure
of work that abstracts from superficial physical attributes,
and is shared between various office settings. We extend
his work for interactive tabletop environments with obser-
vations and empirical results from tabletop literature.

1.2 Problem Statement 5

(a) (b)

Figure 1.1: Presentation of the single-application paradigm. (a) two users interact-
ing with a single application simultaneously, (b) single user dominating the inter-
action.

1.2 Problem Statement

In a normal working environment of a traditional table,
people are able to view and interact with multiple pieces
of information in parallel. To date, most design and interac-
tion on tabletop surfaces is limited by the single-application
paradigm.

As an example, consider an interactive tabletop that im-
plements some window management facilities, such as Mi-
crosoft Surface. In Fig.1.1 (a), two users are interacting with
a single application simultaneously, when one participant
interacts with the surface, her actions are visible to the other
participant and supplementary to his interaction. At the
moment when one participant decides to switch to another
application, the other participant is forced to halt his or her
interaction, and the table surface switches from displaying
the full-screen application view to the manager’s view, (see
Fig. 1.1 (b)).

Systems like this one, only allow a single application to be Current tabletop
applications run in
full-screen mode and
assume co-located
users share a single
goal

visible and accessible at any time. They assume that co-
located users share a single goal that they want to achieve.
In addition, they give control over the view of the entire
surface to a single user. This could compel co-located users
to stop what they are doing at any time, and interrupt their
workflows. Unpredictable power structure issues can also
rise from giving the control over the entire surface to a sin-
gle user. Consequently, the table surface cannot support
parallel users with different goals, which limits the types of

6 1 Introduction

supported interaction styles and can hinder users’ produc-
tivity.

How can tabletop interface designers address the single-
application paradigm limitations? One possible solution is
to provide multiple access control points and enable con-
current applications to appear on the surface and be inter-
active simultaneously. As this may appear to address the
described limitations, however, designers still need to de-
terminant how people work on these large horizontal sur-
faces, how to distribute control, and what structures are
needed to facilitate their tasks. The conceptual framework
of surface managers is intended to abstract and define these
structures to provide designers with a skeleton that can be
then customized to the desired context.

1.3 Thesis Overview

In this section, we outline the structure of this thesis and
give a brief overview of the content of each chapter:

Chapter 2–”Background and Related Work”. In the
second chapter, we provide context for this thesis by
first reviewing tabletop research from HCI and CSCW
perspectives, as well as tabletops in work environ-
ments and design. Next, we review desktop win-
dow systems, how they influence this current work,
and describe the paradigm shift in UI design between
desktops and tabletops. Last, a review of the related
literature is conducted.

Chapter 3–”Conceptual Framework”. In chapter
three, we develop a descriptive model of the context
of work on tabletops for the purpose of aiding surface
manager design. We focus on the common structures
needed to support the work processes of co-located
users in tabletop environments. We describe the mod-
eling approach of access point design and analyze the
resultant design space.

Chapter 4–”System Design”. In the fourth chapter,
we outline the concepts, design, and implementation

1.3 Thesis Overview 7

of our version of a surface manager, a.k.a Surface
Manager. We apply the conceptual framework to the
design process, describe our UI controller metaphor,
and analyze our interface using the principles of di-
rect manipulation

Chapter 5–”Users Studies and System Evaluation”.
In this chapter we describe the purpose, design, and
findings of the two users studied we conducted dur-
ing this thesis. These are: a preliminary, participatory
study, and a qualitative, observational user study and
system evaluation.

Chapter 6–”Summary and future work”. We con-
clude this thesis with a summary of our findings and
contributions, and potential future extensions of our
work.

9

Chapter 2

Background and Related
Work

“You see things vacationing on a motorcycle in
a way that is completely different from any other. In
a car you’re always in a compartment, and because
you’re used to it you don’t realize that through that

car window everything you see is just more TV.
You’re a passive observer and it is all moving by you

boringly in a frame.”

—Robert M. Pirsig

In the 1990s, computer displays started to move beyond
those dominated by the form factors of traditional desktop
computers. Computer displays transformed in shape and
size, and the pixels became input as well as output devices
[Buxton, 2007].

Within the same time frame, Mark Weiser published his fa-
mous article ”The computer for the 21st century”, describ-
ing his vision of Ubiquitous Computing (UC). In his vision,
a computing environment is a physical space augmented
with perceptual information, not a virtual environment that
exists to store and run software [Weiser, 1991]. His vision
had two aspects: (a) a proliferation of devices at varying
scales ranging in size from hand-held ”inch-scale” personal
devices to ”yard-scale” shared devices; and (b) new appli-

10 2 Background and Related Work

cations that leverage off these devices and infrastructure
with new paradigms of interaction. Consequently, WeiserTraditional window

systems will not be
able to cope with UC

systems

noted, traditional window systems will not be able to cope
with these substantial changes in application design and
interaction.

Interactive tabletops are large, horizontal, multi-touch sur-Interactive tabletops
are inherently

ubiquitous
faces, which assume the shape of a traditional table. They
are the embodiment of the yard-scale, shared devices in
Weiser’s vision.

2.1 Interactive Tabletop Systems

Tabletop literature is mainly distributed between two re-
search fields: Human-Computer Interaction (HCI) and
Computer Supported Cooperative Work (CSCW).

In HCI, tabletop research have produced novel UIs (e.g.,
[Fitzmaurice et al., 1995]) and metaphors (e.g., [Besacier
et al., 2007, Hinrichs et al., 2005]), interaction techniques
(e.g., [Yoshikawa et al., 2012]), multi-touch frameworks and
toolkits (e.g., [Shen et al., 2004, Hansen et al., 2009]), and re-
sulted in multiple design guidelines for the development of
tabletop interfaces [Apted et al., 2009, Scott et al., 2003].

In CSCW, detailed studies have been carried out describ-
ing how factors, such as tabletop ergonomics [Rogers
et al., 2009], group size [Ryall et al., 2004], surface orien-
tation [Rogers and Lindley, 2004], and indirect input tech-
niques [Pinelle et al., 2009], can influence group processes.
Other work focused on how horizontal multi-touch sur-
faces can increase workspace awareness of collaborators’
actions [Pinelle et al., 2008].

2.1.1 Tabletops in Work Environments

Interactive tabletops have been studied in several contexts
and physical contexts, such as public contexts or ”in-the-
wild” (e.g., restaurants and museums [Hornecker, 2008]),

2.1 Interactive Tabletop Systems 11

semi-public contexts (e.g., classrooms [Piper and Hollan,
2009] and work offices [Morris et al., 2008]), and private Tabletops were

originally envisioned
for work
environments

contexts (e.g., homes and domestic environments [Kirk
et al., 2012, Wigdor et al., 2007]). However, when tabletops
were first investigated, they were originally envisioned for
work environments.

The iRoom [Streitz et al., 1999], Roomware [Streitz et al.,
2001], and DiamondTouch [Dietz and Leigh, 2001] are
among the early systems that presented the vision of in-
tegrating interactive tabletops into collaborative offices for
brainstorming, meetings, and presentations. For example,
Roomware research project (Fig. 2.1), originated as the i-
LAND project, integrated a table called the InteracTable, a
plasma display that allowed multiple document views and
touch based workspace rotations on the surface. Diamond-
Touch was the first tabletop system to be able to determine
multiple user touch input simultaneously.

Figure 2.1: Roomware interactive work environment [Stre-
itz et al., 2001].

Peltonen et al. [2008] reported that tabletop interaction in
different physical contexts can be affected with a number
of dimensions, such as the allowed number of co-located
users, social relationships between users, and knowledge
about the display and its use.

Isenberg et al. [2009] compared collaborative information

12 2 Background and Related Work

exploration on tabletops in work environments and public
spaces. In work environments, such as meeting rooms or
research labs, users can be characterized by a vast amount
of domain-specific knowledge, while in public spaces, peo-
ple’s level of knowledge is unpredictable. In work envi-UI requirements

differ substantially
between different
physical contexts

ronments, people work within teams of colleagues, unlike
public spaces, where strangers can approach and interact
with the table at the same time. Moreover, work teams also
often spend considerable time using the table, and are will-
ing to put the time to learn the interface. In public contexts,
people are pass byers, they approach the table with no pre-
defined intention or knowledge, and only remain for a few
moments. These core differences implicate the way a table-
top UI should be designed to accommodate for the needs
and requirements of each setting.

In this thesis, we focus on interactive tabletops in work en-
vironments in two manners: (1) we attempt to define the
common tangible and conceptual structures people need to
perform their tasks in these environments, and (2) we in-
vestigate several design alternatives in Surface Manager to
support these structures and the special needs of these set-
tings.

2.1.2 Tabletop Metaphors

Metaphors have been an organic part of window man-
agers since they first appeared in mid-1970s. Well-designed
metaphors are significant components of the UI because
they allow users to discover the purpose of interface el-
ements and how to interact with them. This is usually
achieved by building the metaphors on familiar, everyday
concepts.

On traditional tables, people use pencils and papers for
their activities. To facilitate users transition to tabletop sys-
tems, Besacier et al. [2007] proposed peeling and slots paper
metaphors. Ståhl et al. [2002] designed Ponds, a tabletop in-
terface that presents data elements in a three-dimensional
virtual pond, providing a new interaction metaphor for
searching and browsing digital media. Media items related
to a recent search query float to the surface of the Pond.

2.1 Interactive Tabletop Systems 13

Items which have not been interacted with for some time
sink to the bottom of the Pond, gradually disappearing.
This garbage collection also happens if the Pond becomes
crowded (see Fig. 2.2).

Figure 2.2: Ponds metaphor for information search and vi-
sualization on tabletops [Ståhl et al., 2002].

Metaphors designed for Natural User Interfaces (NUI) can
also apply to interactive tabletops (e.g., Magnet, Sphere,
and Unfold metaphors [Hofmeester and Wixon, 2010]).

In Surface Manager, we explore a new simple metaphor—
controller metaphor—that provides users with flexible UIs
and control over their work.

2.1.3 Tabletops Design Requirements and Con-
straints

Large, horizontal tabletop displays afford quite different in-
teractions than common desktop displays. They introduce
several issues for interface designers that vary considerably
from those investigated in and inherited from the first offi-
cial desktop window manager in Xerox Star and successive
systems (see section 2.2.2).

Hinrichs et al. [2005] define a set of requirements that Tabletops UI
requirementsshould be considered when designing interactive tabletop

14 2 Background and Related Work

A A

(b)

A

A

(a) (d)(c)

Figure 2.3: Tabletops design requirements and constraints. (a) seating arrange-
ments, (b) orientation, (c) reachability, and (d) surface clutter.

UIs: seating arrangements, orientation, and reachability. In
this section, we review these requirements, in addition to
surface clutter and direct-touch (see Fig. 2.3).

Seating Arrangements and Ownership

Scott and Carpendale [2006] noticed that users during a col-When designing
portable, scalable, or

extensible tabletop
interfaces the

designer must
consider all possible

seating
arrangements

laborative task are mobile, some users leave, others join or
change their seating positions. DiamondSpin [Shen et al.,
2004] implements various important features to face table-
top challenges such as color coded frames to distinguish be-
tween different window owners, assumed the tabletop sys-
tem provides user-identification information. It also sup-
plies relocatable and non-modal menu-bars that adapt to
several seating arrangements, as well as various tabletop
sizes and shapes. We adopted similar techniques for own-
ership and flexible seating arrangements in Surface Man-
ager.

Orientation

A unique feature of interactive tabletops is that they sup-
port face-to-face interaction. In a collaborative task, for ex-
ample, this can lead to each user having a different view of
the same content, and in some views text becomes in com-
prehensible [Kruger et al., 2003]. Orientation is relevant for
visibility and comprehension, in addition to its social role
of indicating willingness to share a document [Ringel et al.,
2004, Tang, 1991].

2.1 Interactive Tabletop Systems 15

The solutions proposed to address object orientation prob-
lem in tabletops include software-based approaches (e.g.,
allowing free manual object orientation, or having items
on the table automatically orient themselves, to face the
nearest edge [Shen et al., 2004], or the user who most re-
cently touched them [Morris et al., 2004a]), and hardware-
based approaches (e.g., a view-dependent tabletop display
[Kakehi and Naemura, 2008]).

Reachability

Tabletop surfaces can be quite large. This means that some Tools should be
available to facilitate
document sharing,
passing and
duplicating

areas and workspace items may not be reached by every
user around the table. [Scott et al., 2004] noticed that reach-
ing across the table can cause territoriality issues and be-
come socially awkward when reaching across other per-
sons’ work or into other persons’ workspaces.

Ringel et al. [2004] proposed a series of four interaction
techniques: release, relocate, reorient, and resize to support
document sharing on multi-touch tabletop displays. Dy-
namic Portals [Voelker et al., 2011], is another lightweight
interaction technique that supports passing a group of doc-
uments across large tabletop surfaces, while maintaining
their relative spatial arrangement. Focusing only on reach-
ing far items, [MacKenzie and Jusoh, 2001, Myers et al.,
2002] proposed the use of indirect input devices, gyroscopic
mice and laser pointer, respectively. However, when com-
pared with the traditional mouse pointer, both devices per-
formed poorly in terms of throughput and speed. In addi-
tion, users reported it to be cumbersome to switch between
different input devices and shift input mode.

Surface Clutter

Tabletop surfaces tend to be large, nevertheless, due to the
act of scaling digital objects to their life-size or because of
low-resolution displays, and tabletop’s affordance to ac-
commodate more than a single user at a time, the table sur-
face tends to clutter.

16 2 Background and Related Work

Leithinger and Haller [2007] investigated six different
menu layouts for interactive tables under various cluttering
conditions. In their study, they found out that menu types
suffering from occlusion, pie menus, for example, showed
significant disadvantages compared to their proposed user-
drawn context menus. Occlusion can also occur from plac-
ing physical objects over virtual elements on the table sur-
face. Furumi et al. [2012] presented a user interface widget,
called SnapRail, that detects a physical object on the surface
and the virtual elements under the object. It then snaps the
virtual elements to a rail widget that appears around the
object. The user can then manipulate the virtual elements
along the rail widget.

Direct-touch

A natural collaboration is said to be afforded where theBecause people are
accustomed to

interacting directly
with items on

traditional tables, a
direct-input device
provides a familiar

method of interaction

tabletop invites people to reach out and touch it with their
fingers [Shen et al., 2004]. This form of direct-touch can in-
crease visibility of actions, enabling implicit coordination
and awareness among co-located users [Scott et al., 2003,
Kruger et al., 2003, Forlines et al., 2007].

However, it has been found that touch surfaces are lim-
ited in the kinds of interactions they can effectively sup-
port. Human fingers come in different shapes and sizes,
but even the smallest ones cannot achieve mouse-pixel pre-
cision [Seto, 2012]. This problem is referred to as fat-finger
problem. Fingers are clumsier than pointing devices, and
hence more error-prone for fine-grained and precise opera-
tions [Rogers and Lindley, 2004].

Other direct-touch disadvantages include occlusion from
body parts such as hands and arms, [Scott et al., 2003, For-
lines et al., 2007]. Brandl et al. [2009] designed occlusion
aware menus that adapt to the user’s handedness and posi-
tion on the tabletop. The adaptive menu placement method
was based on direct touch and pen tracking. Direct-touch
also imposes limitation on text-input [Hinrichs et al., 2007].

2.2 Window Management Systems 17

2.2 Window Management Systems

In early 1970s, Alan Kay and his group at Xerox PARC in- Smalltalk promoted
the notion of
personal computing
and pioneered
interactive
programming
environments

troduced Smalltalk programming language and environ-
ment. Smalltalk demonstrated the power of graphical,
bitmapped displays, mouse driven input, windows, and si-
multaneous applications. It became the common ancestor
of all window systems [Gosling et al., 1989].

Basic window system tasks include, input and output han-
dling, i.e., handling user and application requests, as well
as window management, i.e., managing and providing the
user controls for windows.

The window system operates between the hardware, i.e.,
input and output peripherals, and the application layer. In
Fig. 2.4, we show the 4-layer window system architecture
as described by Gosling et al. [1989].

User-Interface Toolkit

Window Manager

Base Window System

Graphics and Event Library

Figure 2.4: A 4-layer window system architecture [Gosling
et al., 1989].

The graphics and event library, and the base window sys-
tem layers handle low level operations, such as event rout-
ing and drawing on the screen. Together they are sometime
referred to as the window system [Myers, 1988], reserving
the term window manager to cover the UI and layout po-
lices.

18 2 Background and Related Work

2.2.1 Window managers

A window manager is a software package that helps theA Window manager
is associated with the

user session
user monitor and control different contexts by separating
them physically onto different parts of one or more display
screens [Myers, 1988]. It enables a user-centered system
view by providing a homogeneous look and feel across the
interface.

Window managers assume three primary roles on the desk-A Window manager
functions as screen

manager and a
session manager

top computer:

• They allow separate activities to be visible and acces-
sible concurrently by putting them in physically sep-
arate parts of the computer screen, a.k.a windows.

• They provide layout policies, and allow the user to
bring up menus and dialog boxes associated with
running applications, and manipulate the location
and size of windows.

• They provide a higher level interface to input and
output devices, and therefore can support: (a) much
higher quality UIs, for example, the window man-
agers on Star and Macintosh helped support the
early Desktop metaphor; and (b) make applications
portable from one machine to another, since the same
window manager procedural interface can be pro-
vided on different machines [Myers, 1988].

A toolkit is composed of several graphical elements andWindow Managers
are usually

accompanied with a
UI toolkit

widgets, that are used to design a complete UI. Toolkits
bring consistency across applications, and simplify the de-
sign process for developers by hiding the complexity of
window management as well as handling input and output
events. They also allow application developers to maintain
the same look and feel of the underlying window manager.
The widgets can be primitive such as buttons and switches,
or complex such as windows and dialog boxes.

Surface Manager represents the window manager, and UI
toolkit layers in Gosling et al.’s [1989] window system ar-
chitecture.

2.2 Window Management Systems 19

2.2.2 The Evolution of Window Managers

From the mid-1970s to the mid-1980s, there was much re-
search on window systems. With the introduction of Star Xerox changed the

notion of interactive
computing by
introducing Graphical
User Interfaces

Information System in 1981, Xerox changed notions of how
interactive systems should be designed [Smith et al., 1982].
Star bitmapped-screen came with distinguishable interface
features: windows, icons, pop-up menus and mouse driven
interface (see Fig. 2.5).The WIMP interface paradigm, i.e.,
windows, icons, menus and pointers, is still adopted to the
date on the predominant desktop operating systems (e.g.,
Microsoft Windows, and Apple’s OS X).

Figure 2.5: Xerox Star UI.

Star was the first commercial system to provide the capabil-
ities of a windowing system—allowing several programs
to display information simultaneously in separate areas of
the screen, rather than each consuming the entire display
[Smith et al., 1982]. The system controlled the size and posi-
tion of these windows when they were opened and closed.
Star first allowed windows to overlap, but later found that
users spent a lot of time adjusting windows. In Star’s suc-
cessor, ViewPoint, users were given the option to choose
between an overlapped or tiled windows layout.

20 2 Background and Related Work

The Andrew window system was designed to be portable
and hardware independent. It explored a space-filling tiled
window layout, where windows are resized automatically,
i.e., when one window grows others shrink. However,
users found it confusing and the approach was abandoned
[Morris et al., 1986] .

UI Metaphors

In the 1980s, two interface design metaphors were preva-Tool metaphor vs.
Desktop metaphor lent: the Tools metaphor on Smalltalk-80, Cedar, and Sun-

View; and the Desktop metaphor on Star. In the Tools
metaphor, users dealt mainly with applications as tools.
To accomplish a task, the user started an application, then
specified the data files she wants to edit. In early systems,
such as SunView, which application can open which files
was a burden put on the user to remember. In contrast, in
the early Desktop metaphor, users dealt with data files. To
accomplish a task, the user opened a data file and the sys-
tem automatically launched the relevant application.

Today, desktop window managers support both
metaphors’ file access capabilities. In mobile devices,
the file management model is similar to that of the Tools
metaphor. However, the model was improved by only
showing the user the files that the selected application
supports. In desktop and mobile systems the user can
choose to open a file in the default supporting application,
or switch to another application that supports that file
type.

The Desktop metaphor employed analogies with the phys-
ical world to help make better memory associations. An
advantage of the Desktop metaphor over the Tools’ is that
it oriented users toward their data and not the software.

In Surface Manager, we extend the file management model
of the early Desktop metaphor to minimize users’ interac-
tion with the software, and provide users with advanced
application switching mechanisms. We avoid the hierar-
chical filing and many analogies of the Desktop metaphor
that are single-user oriented.

2.2 Window Management Systems 21

Icons first appeared in Tajo. The aim was to alleviate the
problem of ”naming and remembering” [Johnson et al.,
1989]. Icons followed the Desktop metaphor analogy and
represented data files with pictures of office objects. This
reduced search time, and users were allowed to organize
icons, i.e., files and applications, spatially rather than by
distinctive naming. In our interface, we abandon the Desk-
top metaphor analogy of icon presentation, and instead
use thumbnails that were employed in X Window System
[Scheifler and Gettys, 1986].

Direct Manipulation

Star designers based the system heavily on the principles of
direct manipulation. They allowed users to directly manip-
ulate objects on the screen by pointing at them or by using
visible menus.

In multi-touch systems, direct manipulation is the preva-
lent interaction model. In section 4.5, we describe how di-
rect manipulation principles, introduced by Shneiderman
[1993], apply to the design of Surface Manager.

Commercial Systems

In 1984, the Macintosh from Apple Computer was re-
leased to the public. The Macintosh was a small machine
with high-quality UI. Most of the ideas in Macintosh were
browned from Smalltalk, Star, and Tajo. However, it was a
landmark in UI design, providing several ideas in a coher-
ent package that was easy to use, even though it was hard
to program.

In 1985, X Window System [Scheifler and Gettys, 1986], a
distributed window system, made a major innovation. X
separated window managers from being intertwined with
the complete window system. In X10, and later X11, win-
dow managers were treated as separate applications, and
the user was able to choose, install, and exchange window
managers over the window system.

22 2 Background and Related Work

Most modern window systems (e.g., Apple’s OS X, Mi-Modern window
systems are still

constrained by the
Desktop metaphor

limitations

crosoft Windows, and Ubuntu) are still based on the Desk-
top metaphor. The main improvements can be seen in the
quality of graphics (e.g., Aqua theme on OS X and Aero
Glass on Windows 7), and inter-application communica-
tion. For instance, animation is now heavily employed to
give the user the sense of continuity and direct manipula-
tion. Softer lines, shading, and textures are employed to
reflect better affordance, feedback, and even feedforward
[Vermeulen and Coninx, 2013]. Drag-and-Drop features
have also improved across applications and online services.

The Modern UI Style is the new tile-based design in Mi-
crosoft Windows 8. Many of Windows UI changes are cen-
tered towards improving its experience on tablet comput-
ers and other touchscreen devices. The new UI replaced
the Start menu with a new tile-based Start screen similar to
that of Windows Phone. The window system opens appli-
cations in full-screen mode, and allows for limited multi-
tasking. It also provides a vertical toolbar known as the
charms bar to provide access to system and application-
related functions, such as search, and settings. The tradi-
tional desktop environment is still accessible for running
concurrent desktop applications.

2.2.3 A Paradigm Shift: from Personal Desktops to
Shared Tabletops

In this section, we highlight five aspects that we believe areFive aspects to
consider when

redesigning software
from the desktop

computer to
interactive surfaces

critical to investigate when attempting to redesign software
from the desktop computer to interactive surfaces. These
are: the WIMP paradigm, input focus shifting, single-
user orientation, direct manipulation, and the Desktop
metaphor.

WIMP paradigm. Most tools for building Graphical User
interfaces (GUIs) are built around the WIMP paradigm. But
WIMP interfaces do not work well for multi-touch input
techniques because the paradigm is too closely tied to the
single pointer model, and multi-touch interfaces lack the
precision of indirect pointing devices.

2.2 Window Management Systems 23

Focus shift. In desktop environments, the term ”listener” The notion of focus
shifting is changed
dramatically in
multi-touch interfaces

or ”input focus” is used to refer to the window that receives
the keyboard and mouse events. Window managers pro-
vide several policies to select the listener. In modern sys-
tems, the listener is no longer a singleton, for example, in
Apple’s OS X, the keyboard can be attached to one window
and the mouse can be used to scroll another. On multi-
touch surfaces, it is possible that one user has more than
one control point at the same time, for example, two fin-
gers. With multiple control points, multiple users can work
on an interactive surfaces simultaneously. For example, if
two users attempt to type-in text, each in a separate docu-
ment, a mechanism should be provided to direct the input
of a specific keyboard, hardware or software, to the correct
document.

Single-user orientation. The desktop computer, the Desk-
top metaphor, and consequently the desktop window man-
ager are single-user oriented. Desktop window manager
interfaces and policies were design for a limited, vertical
screen where every part is assumed to be reachable by a
single user. For example, the icons and task bar on the clas-
sical desktop, once projected on a large, horizontal surface
become neither accessible from some locations around the
table, nor readable from any orientation.

Direct manipulation. Current desktop interfaces do
not totally comply with direct manipulation principles
[Beaudouin-Lafon, 2000]. On interactive surfaces, direct-
ness is more sensible. For example, Hancock et al. [2006]
designed a rotation and translation mechanism for tabletop
interaction (RTN) that allows users to manipulate objects
directly and incrementally.

Desktop Metaphor. Window management systems that
are based on the Desktop metaphor have been an essen-
tial part of the personal desktop computer UI for the last
35 years. The Desktop metaphor served its role well by al-
lowing users to view and switch between concurrent ap-
plications when the number of these applications was lim-
ited. Today, however, to accomplish a task, people engage
with multiple applications and online services, and need to
switch between them frequently and quickly [Henderson Jr
and Card, 1986]. In the Desktop metaphor, switching be-

24 2 Background and Related Work

tween tasks can involve several operations (e.g., searching,
rearranging, iconifying, opening, and resizing windows).

In Surface Manager, we avoid many of the Desktop
metaphor analogies because they are mainly single-user
orientated. For example, we attempt to narrow the gap
between information access and information viewing, a
known limitation of the Desktop metaphor [Kaptelinin and
Czerwinski, 2007], by minimizing the number of opera-
tions required to open a file or an application. One way
to achieve this is by designing a flatter system hierarchy.

2.3 Related Work

Current tabletop UIs are designed to support users’ inter-
action with a single application. On the desktop, win-
dow managers are designed to support multiple simulta-
neously running applications, while desktop PCs have lim-
ited screen size compared to tabletops, and only single con-
trol point. As we lack and desire the application concur-
rency feature in tabletops, we are faced with two design al-
ternatives: (1) we could adapt exiting window managers to
tabletops’ size and input modality, or (2) we could attempt
to redesign these managers to be specifically customized
for tabletops’ design space and context.

Wimmer and Hennecke [2010] suggested extending desk-Maintaining front end
software from

desktops to tabletops
rises many issues

top window managers with multi-touch capabilities to en-
able researchers to transparently control user input and
graphical output, simultaneously supporting both native
multi–touch and single–pointer legacy applications. How-
ever, Andreychuk et al. [2010] and Wang et al. [2008] re-
ported that it is not trivial to migrate front end systems that
were originally built for vertical screens to be utilized on
horizontal displays. For instance, while attempting to mi-
grate the AgilePlanner, an application designed for the tra-
ditional PC, Wang et al. [2008] reported a number of issues
such as the tabletop size, orientation, and the user group
size. In addition, challenges like standard GUI components
being unsuitable for the table input modality, and the sup-
port of multiple collaborators working at the same time.

2.3 Related Work 25

Collins et al. [2011] investigate Thacts—Things that should Tabletops software
should not be limited
by the mental models
people bring from
desktops

be supported and Actions that the user should expect to
be able do with those Things—to support core Operating
System functions on tabletops. The authors suggested that,
while it is important to acknowledge the mental models
people bring from desktops to tabletops, tabletops are very
different and the design of software support for Thacts on
tabletops must be different from that on desktops.

Based on the presented reports and investigations and our
previous knowledge of tabletops design constraints, we
choose to adopt the second design alternative—attempt to
design a window manager that is specifically tailored to the
shape, size and display technology of large, horizontal sur-
faces, as well as to tabletop context requirements.

On tables, workspace partitioning is a natural human act, Workspace
partitioning is a
natural human act
that should be
supported by
tabletop interfaces

and one that should be supported in a tabletop system
[Scott et al., 2004]. It has been observed that leaving this
practice to social protocols can lead to several conflicts and
social awkwardness [Morris et al., 2006a]. A software-
based solution was proposed by Morris et al. [2004b] in
the form of coordination policies that attempt to control a
document’s manipulation access rights. Klinkhammer et al.
[2011] presented a hardware-based solution that employs
tabletop-integrated multi-user tracking system to provide
data on a user’s location and movement. Using this data,
the system assigns a visually separated display space to
each user, the space serving them as a personal territory.
In Surface Manager, we implement some of the software-
based coordination policies suggested by [Morris et al.,
2004b].

Tabletops have been recognized to be well suited for col- Tabletop UIs should
support several
collaboration styles,
simultaneous user
interaction, and
workspace
awareness

laborative interaction. Previous research has shown that
collaborators tend to move back and forth between loosely
and tightly coupled work [Tang et al., 2006]. Another study
[Morris et al., 2004b] demonstrated that users preferred to
work individually on some parts of a problem when the
system used was capable of supporting such individual ac-
tivities. Thus, for an interface to maintain and augment the
social role of tabletops, it should support several collabora-
tion styles, simultaneous user interaction, and workspace
awareness.

26 2 Background and Related Work

In CoSpaces [Mahyar et al., 2012], color-coding has been
used as a mechanism for providing awareness among
users. Users partition their work using Worksheets (Fig.
2.6). Each Worksheet defines a work territory, either per-
sonal or shared, and contains color-coded tab-based views
to enable access to other users’ work. Similarly, we use
color-coding to indicate ownership.

Figure 2.6: CoSpaces [Mahyar et al., 2012].

As users interact over tabletops they will come to the needTabletops should
provide flexible

space management
and content sharing

tools

of space management and content sharing tools [Morris
et al., 2010]. Storage bins [Scott et al., 2005] (Fig. 2.7) are mo-
bile, adjustable container widgets. They offer lightweight
interaction mechanisms to support information storage, or-
ganization, and sharing. Storage bins allow items to be
added or removed as a group or individually. Users can use
storage bins as personal, group or storage territories. Stor-
age bins can be moved around the table, resized, and col-
lapsed, allowing users to manage the available space more
efficiently. In Surface Manager, we implement storage sev-
eral units that provide similar facilities to organize and re-
trieve objects.

UI widgets on a large tabletop are constrained with reach-Tabletop UI widgets
should account for

reachability,
orientation, and

direct-touch issues

ability, orientation, and direct-touch issues. To address
these problem, many gesture-based solutions have been
proposed to invoke widgets at the location and orientation
of the user, while maintaining a natural user interface ex-
perience [Jacob et al., 2008]. For example, [Strothoff et al.,
2011] used the number of touches, while [Brandl et al., 2009,

2.3 Related Work 27

Figure 2.7: Storage bins [Scott et al., 2005].

Bartindale et al., 2011] utilized the contact shape of hands.
HandyWidgets [Yoshikawa et al., 2012], are widgets local-
ized around users’ hands that are invoked by a bimanual
multi-touch gesture called ”pull-out” (see Fig. 2.8). Handy-
Widgets were designed to be robust against casual touch-
ing, and to be occlusion aware. Marking menus, proposed
by [Lepinski et al., 2010], similarly support gestural activa-
tion and save screen real estate, by only popping-up when
being used.

Figure 2.8: HandyWidgets [Yoshikawa et al., 2012].

To access shared and personal files on interactive table- Tabletop filing system
need to account for
limited text input,
collaborative
interaction, and
context-of-use

tops, several approaches have been proposed. These ap-
proaches include: associative file access (e.g., [Collins et al.,
2007]), faceted browsing and visualization approach (e.g.,
[Shen et al., 2006, Morris et al., 2006b]), and interactive
file transferring techniques using personal carried devices,
such as laptops and smart-phones, in conjunction with

28 2 Background and Related Work

tabletop surfaces (e.g., [Shen et al., 2003, Rekimoto and
Saitoh, 1999]). For example, in the Personal Digital His-
torian (PDH) application, Shen et al. [2006] allowed users
to access archives of digital material like video clips, pho-
tographs, and documents, by visualizing these items on the
rim of a circular tabletop. The application included other
hierarchical layouts as well.

Several software toolkits (e.g., DiamondSpin Shen et al.
[2004] and PyMT Hansen et al. [2009]) provide widgets
and interaction techniques to accelerate the development
of tabletop applications. However, these toolkits were de-
signed for the single-application paradigm and do not in-
clude any space management or layout policies. Wu et al.
[2011] developed uPlatform, a tool designed specifically
for creating customizable multi-user windowing systems
on interactive tabletops. Although compelling, uPlatform
does not provide insights on user interaction and behavior
in these environments, nor provide a coherent design for
window managers on tabletops.

In a design effort to support application switching on table-
tops, Ackad et al. [2010] proposed Switch. Switch provides
four functionalities: change application, switch between
the set of files available for an application, alter application
settings, and activatedeactivate interface elements within
an application.

2.3.1 Summary

By merely adapting or migrating front end software fromDesigning tabletop
UIs allows the

designer to exploit
their unique design

spaces

desktops to tabletops, we risk imposing limitations on the
possible interaction afforded by tabletop surfaces. Interac-
tive tabletop UIs should be designed to support workspace
territories, various social interaction settings, and provide
space management tools, UI widgets, and filing systems
that account of tabletops design constraints.

29

Chapter 3

Conceptual Framework

“Ultimately, we are deluding ourselves if we
think that the products that we design are the

’things’ that we sell, rather than the individual,
social and cultural experience that they engender,
and the value and impact that they have. Design

that ignores this is not worthy of the name.”

—Bill Buxton

In this chapter, we develop a descriptive model of the con-
text of work in tabletop environments for the purpose of
aiding surface manager design. We focus on the common
structures needed to support the work processes of co-
located users. In particular, structures that facilitate users’
access to system resources, support flexible workspace con-
struction, and coordinate users’ actions on a horizontal in-
teractive surface. We are building a conceptual framework
that extends Kirsh’s [2001] model of context of work in of-
fice environments that is based on the theoretical perspec-
tives of situated and distributed cognition.

Our framework utilizes three concepts to define the struc- Three concepts to
define tabletop work
structures

tures people need to perform basic tasks in tabletop envi-
ronments. These concepts are: workspace access, surface par-
titioning, and coordination policies (see Fig. 3.1). Workspace
access is the set of structures users need to initiate and
move through a task flow. Surface partitioning is the act of

30 3 Conceptual Framework

dividing a work area into spaces, each with different char-
acteristics and purpose. A coordinating policy is an under-
lying mesh of mechanisms and rules that coordinate users’
actions or govern the layout of work items during a work-
flow. Guided by these abstract concepts, designers should
be able to design a variety of surface managers that sup-
port users’ workflows in different technological, physical,
and social interaction settings.

Workspace
Access

Surface
partioning

Coordination
policies

Conceptual Framework of
Surface Managers

Activity
landscapes

Transition

Layout

Access

Access
Points

Entry points

Figure 3.1: Conceptual framework of surface managers.

3.1 Context Of Work

Kirsh defines the context of work as the structure of infor-Context of work is
the set of underlying

structures that
support work

activities in an
environment

mational, conceptual and physical resources that goes be-
yond the superficial attributes of a work environment. It is
used to describe how people come to obtain resources from
an environment or a task, construct an activity representa-
tion, and coordinate their access to the resources and their
interaction with the environment and people.

Kirsh analyzed office environments from a cognitive sci-
ence perspective, in order to understand the ecology and
key components that define the deep structures of these
environments and make them portable. In his analysis,
he used three key concepts that he believes to be shared
among many work settings: entry points, activity land-

3.1 Context Of Work 31

Context of Work Model

Coordination
mechanisms

Activity
landscapesEntry points

Figure 3.2: Kirsh’s model of context of work.

scapes, and coordination mechanisms (see Fig. 3.2). An
entry point is a structure or cue that represents an invita-
tion to enter an information space. An activity landscape is
the space users interactively construct out of the resources
they find when trying to accomplish a task. A coordinating
mechanism is an artefact or structure which helps a user
manage the complexity of his task.

Distributed cognition theory proposes cognition and
knowledge are not confined to an individual, rather, they
are distributed across objects, individuals, artefacts, and
tools in the environment [Hutchins and Lintern, 1995].
Kirsh proposes that distributed cognition can help achieve
the ”ultimate goal” of ubiquitous computing:

”The ultimate goal of ubiquitous and con-
text aware computing will not be achieved until
we have a theory of the interaction of these
elements [that make up the context of work],
and more particularly, an account of how we
humans are dynamically embedded in this
contextual nexus. The theory of distributed
cognition has a special role to play in under-
standing this relationship” (p. 306).

32 3 Conceptual Framework

In HCI research, Norman [1986] advocated a cognitive en-
gineering approach, ”knowledge in the head, knowledge
in the world”, that is premised upon this view of cognition
as distributed between user and artefact. Nardi [1995] dis-
cussed distributed cognition as one component of a theory
to bridge research in CSCW and HCI. Wright et al. [2000]Distributed cognition

theory to bridge
research in CSCW

and HCI

suggest that this theory serves to soften the boundary be-
tween the user and system, and brings into focus the de-
sign question of the information requirements for interac-
tion. What information is required in order to carry out some
task and where should it be located? A question that we are
keen on answering in this framework.

Our conceptual framework builds on Kirsh’s model in
three ways:

1. It attempts to frame the ideas from distributed cog-
nition research in a way that is more usable by HCI
designers.

2. It adapts the abstract concepts of the model from tra-
ditional office desks and environments to interactive
tabletop environments.

3. It expands the previous model, which is single-user
oriented, to account for multiple co-located user set-
tings.

3.2 Workspace Access

Many attributes of an environment contribute in shapingEntry and access
points are the first

levels of interaction
in tabletop

environments

the intention of a user and consequently his actions towards
that environment [Norman, 2002]. The tabletop designer’s
first concern should be to construct the tabletop environ-
ment in a way that mediates the correct sequence of actions.
The concept of workspace access provides designers with
the basic information and structures needed to initiate an
interaction with users. In this section, we describe these
structures at two levels: an entry level to invite users, for-
mulate intention, afford interaction, and mediate meta data

3.2 Workspace Access 33

in an information space; and an access level to enable in-
teraction and execute a sequence of actions. We investigate
the properties and roles of these levels through the design
of entry points and access points, respectively.

3.2.1 Entry Points

Entry points are cues and mechanisms that provide visi- Entry points are
related to Gibson’s
notion of affordance

bility, relevance, and overview of a space, and advance in-
formation about it [Hornecker et al., 2007, Kirsh, 2001, Lid-
well et al., 2010]. For example, a highlighted headline in
a newspaper is an entry point to the corresponding arti-
cle. In shared interfaces, entry points can contribute to the
work context in terms of providing the users with a con-
tinuous perception of the state of digital and physical re-
sources [Rogers et al., 2009].

Entry point #3:
social setting

Entry point #1:
physical environment

Entry point #2: table
shape and size

Entry point #4: UI
design

Figure 3.3: Types of entry points in tabletop environments.

In interactive tabletop environments, entry points can be
environmental, physical, social, or digital structures (see
Fig. 3.3). The physical environment in the vicinity of a
tabletop is the first entry point the user encounters. The
second point the user faces is the horizontal, relatively large
and familiar surface of the table. Rogers et al. [2009] found

34 3 Conceptual Framework

that the ergonomics of a table, i.e., size and shape, can play
an important role in luring people to approach that table.
Other users who are already at the table can either have
what [Hornecker et al., 2007] describe as the honeypot effect
or discourage further approach. As the user finds space
around the table or by merely observing others interact and
experience the table’s interface, whatever design decisions
the designer had made shape the primary entry points to
the tabletop experience.

Brignull and Rogers [2003] found two personal thresholdsIn public contexts the
interaction principles
of the display should

be communicated
implicitly to
bystanders

that users have to overcome before they can start interact-
ing with a display in a public setting. First, they have to
drive away from any other activity they are engaged with.
Second, they have to wait for their turn and be willing to
use the display in the presence of others. As an implication,
the authors suggested positioning the display along the
thoroughfares of traffic and improving the ways in which
the interaction principles of the display are communicated
implicitly to bystanders.

Lidwell et al. [2010] describe entry points as one of the uni-
versal principles of design, and list three key features for
them: minimal barriers, points of prospect, and progres-
sive lures. In the rest of this section we present these fea-
tures and demonstrate how entry points can be designed in
tabletop environments to: (a) encourage the user to enter a
workspace, (b) guide his behavior, and (c) inhibit undesired
actions.

Minimal barriers means allowing the user to get to and move
between entry points with minimum interference. Placing
a tabletop in an obscured location introduces a barrier of
getting to the table. An entry point that vaguely commu-
nicates its purpose can prevent the user from moving to
subsequent points. Other forms of barriers can be explic-
itly designed to prevent harmful actions. For example, in a
classroom setting, the tabletop designer can make some en-
try points harder to reach for the young students and easier
for the teacher by placing them away from the edges of the
surface. Visibility, accessibility, and aesthetics are some of
the properties a designer can manipulate to include or ex-
clude barriers.

3.2 Workspace Access 35

Points of prospect means entry points must provide the user
with enough time and space to review his options and un-
derstand the context. Visible and meaningful layouts of
entry points are one way to bring context to the user. For
example, the flow, typeface and size of newspaper’s head-
lines provide the observer with ”information scent” neces-
sary to obtain a high-level conception of the content, and a
rough plan to navigate through this information landscape
[Kirsh, 2001]. Entry points should give users enough time
to capture a meaning. While animation can draw people’s
attention, using flashing animations, for instance, can re-
quire additional time to capture the meaning of a point—
time that people might not be willing to give.

Progressive lures means entry points should be designed in-
crementally to guide the user to enter and move through
the space. In social settings, [Brignull et al., 2004] suggest
that a UI should start with simple and low commitment
activities in order to encourage users to interact with the
interface. The response of an interface to the user’s first in-
teraction should be simple, clean and to an extent familiar,
in order to seduce the user to continue trying the system.
Given the limited text input on direct-touch surfaces, a re-
pulsive interface could be one that forces the user to enter
his personal information in order to initiate the system. On
interactive tabletops, the designer can offer a diverse set of
incremental entry points to enable users to engage at dif-
ferent levels of interaction, gradually allowing mechanics
of the system to disappear, leaving the user with a sense
of familiar and natural interaction with the content. Entry
points can also be designed to facilitate learning complex
interfaces.

3.2.2 Access Points

Access points are structures that users perceive and inter- An access point
enables the user to
access a resource or
interact with an
activity

act with to gain access to an interface or a resource. For
example, a desktop icon is an access structure that the user
interacts with to launch an application or open a file. A va-
riety of access points can be distributed over an interface,
each point can lead to an information space that contains
yet another set of access points. A UI cannot be consid-

36 3 Conceptual Framework

ered interactive if it does not provide access structures with
which users can convey their intentions to the system.

Hornecker et al. [2007] distinguish between entry points
and access points in that the former denote design char-
acteristics that invite people to an activity, while the latter
enable the user to actually interact and join that activity.

A main attribute of large multi-touch surfaces is the appro-
priation of multiple inputs that can support multiple users
interacting simultaneously. One way of increasing access
on these surfaces is by providing multiple interaction ob-
jects that distribute control, or through spatial distribution
of access points and areas [Hornecker et al., 2007].

In order to investigate possible access point design alterna-Modeling the design
of access points to
investigate design

alternatives and
effectiveness

tives, and to understand the effect each design decision can
have on tabletop interaction, we follow Card et al.’s [1990]
approach and describe how to model the space of access
point designs.

To model the design of access points, we use two key ideas:

• The presentation of access structures, and

• The distribution of access points.

The presentation of an access structure describes the prop-
erties users perceive and interact with to gain access to an
interface. The distribution of access points models the rela-
tion between the location and number of access structures
that lead to a common information space.

Presentation

Going back to the desktop icon example, if the user has thePresentation refers
to the perceived look

and feel of these
points

goal of launching an application from the desktop, a typi-
cal scenario: the user looks for the corresponding desktop
icon, perceive its click to open affordance, and use an in-
put device, such as a mouse, to activate it and launch the
application.

3.2 Workspace Access 37

In tabletop systems, we use three attributes to describe the
presentation of an access point: visibility, activation modal-
ity, and spatial properties (see Fig. 3.4). Visibility indicates
the initial visual state of an access structure, i.e., visible
or invisible. Activation modality is the mediating tool or
mechanism that the user uses to activate an access struc-
ture. Spatial properties are the perceived cues of a structure
(e.g., size, shape, affordance).

Activation modality

Soft Hard

Spatial propertiesVisibility

Figure 3.4: Access points presentation attributes: visibility,
activation modality, and spatial properties.

In most tabletop projects, two classes of visible struc-
tures have been used to access system resources: graphi-
cal elements (e.g., menus and buttons) and tangibles (e.g.,
custom-designed objects [Lepreux et al., 2012], or ad hoc
devices such as laptops [Rekimoto and Saitoh, 1999]). In-
visible structures such as spatial locations have been uti-
lized in systems such as Microsoft Surface. Access points
can be designed to transform from one initial visibility state
to another via incentives, such as user actions (e.g., the user
taps on the surface or issues a voice command to receive
a visible access structure), timeouts (e.g., animated struc-
tures), context-aware mechanisms (e.g., an access menu ap-
pears on the surface when it detects users in the vicinity),
or mounting a head device in order to see access structures
in virtual reality.

Once recognized by the user, an access point can be ac- Input modalities can
themselves serve as
access structures

tivated or accessed with a number of input devices and
modalities. These include soft modalities (e.g., direct-
touch, complex gestures, voice, and eye-gaze [Holman,
2007]), and hard modalities (e.g., tangibles, styli, gyro-
scopic mice [MacKenzie and Jusoh, 2001], and laser point-
ers [Myers et al., 2002]). The input modalities can them-
selves serve as access structures instead of only being me-
diators or instruments. For example, [Lepreux et al., 2012]
used tangible objects to store the user’s current state on a
table, afterwards the user was able to access the stored data

38 3 Conceptual Framework

by merely placing the tangible on any table surface.

An access structure can have several static and dynamic
spatial properties to mediate its current state, usage affor-
dance (e.g., multi-user interaction), and relevance.

Distribution

We describe the distribution model of a system of accessDistribution affects
the number of

possible co-located
users, seating

arrangements, and
users’ mobility

points using three measures (see Fig. 3.5): the number of
access structure sets within the system, i.e., single set, fixed
number of sets, or unlimited number; and their locations
relative to each other and to the table, i.e., whether the ac-
cess structures are initially distributed at fixed or arbitrary
locations, and whether they are positioned on- or beyond-
the surface.

1 4 *
On

Distance from table

Beyond

Relative LocationNumber

Fixed Arbitrary

Figure 3.5: Access points distribution dimensions: number
of access points, relative location, distance from table.

Morris et al. [2006a] cite two access distribution models
on tabletops: centralized, a single set of access points is
fixed and shared by all users, and replicated, a set of ac-
cess points is replicated around the borders of the shared
surface (see Fig. 3.6). We refer to the control pattern in
both these models as singleton—while a user uses an access
structure in this control patten, he obtains a system resource
that other co-located users cannot obtain simultaneously,
and the system response to the user’s action can hinder or
interfere with other users’ work. For example, Microsoft
Surface provides a replicated distribution model with sin-
gleton control pattern in the form of four access structures
located at the corners of the table.

On the other end of the distribution spectrum is the dis-
tributed model, an arbitrary number of access point sets

3.2 Workspace Access 39

A

A

A

A

A

A

A

A

A

(a) (b) (c)

Figure 3.6: Access points distribution models.

located at arbitrary spatial locations. The control pattern
in this model can be singleton, or independent—each user
can obtain any system resource regardless of other users.
In an independent control pattern, it is important to de-
sign the response of the system to be ”local” to the user’s
workspace, rather than affecting the entire table surface.

Access structures can be distributed and accessed on- Access points need
not be mounted on
the table

surface, such as graphical elements, spatial locations, and
tangibles, or beyond-surface such as in-air gestures and ad
hoc devices (e.g., smart-phones and laptops).

The Design Space for Access Points

In Fig. 3.7, we graph a visualization of the design space
of tabletop access points to show the possible presentation
and distribution design combinations. For example, Sur-
face Manager appears as a vertical line in the design space.
In our system, we tired to combine the benefits of visible
structures and invisible structures by allowing the access
structures to be hid and shown on user request. Another
example from the space is the MemTable [Hunter, 2009]. In
this project, the author designed a single, animated ”Start
menu” graphical presentation that can move around the ta-
ble and closer to the active users, thus, minimizing the ob-
ject reachability problem of a typical centralized distribu-
tion model.

40 3 Conceptual Framework

Pr
es

en
ta

tio
n! In

vi
si

bl
e! ! ! ! ! ! ! ! ! ! ! ! !

 ! ! ! ! ! ! ! ! ! ! ! !

 ! ! ! ! ! ! ! ! ! ! ! !
 ! ! ! ! ! ! ! ! ! ! ! !

V
is

ib
le
!

 ! ! ! ! ! ! ! ! ! ! ! !
 ! ! ! ! ! ! ! ! ! ! ! !
 ! ! ! ! ! ! ! ! ! ! ! !
 ! ! ! ! ! ! ! ! ! ! ! !

 ! ! 1! 4! *! 1! 4! *! 1! 4! *! 1! 4! *!
number! number! number! number!

Fixed! Arbitary! Fixed! Arbitrary!
location! location! location! location!

On the surface! Beyond the surface!
Distribution!

MemTable-Contextual Memory…!

Augmented surfaces!

Microsoft Surface!

WeSearch!

TeamTag!

Surface Manager!

Tangiget! Interactions in the air…!

1
 1

1

1

1

1

1

1

1

1

Figure 3.7: The design space of tabletop access points. A
circler indicates a tabletop system. Hollow circles indicate
that the corresponding system uses soft activation modal-
ities, and filled circles indicate systems with hard modali-
ties. A line represents a single tabletop system with access
point structures that have varying dimensions. The num-
bers from 1 - 4 - * measure the number of access point sets
within a tabletop system, single - fixed - unlimited, respec-
tively.

Design Space Analysis

Up to this point, we have described how to model the de-
sign of access points, and presented a visualization of this
design space. We now attempt to analyze the effectiveness
of several design alternatives in different tabletop contexts,
in order to help designers make informed design decisions.

In our analysis, we use two sets of figures of merit:An access system
should be designed
to minimize or avoid
the effects of these

constraints
• From tabletop design constraints: reachability, orien-

tation, and direct-touch.

• From Card et al.’s [1990] input device effectiveness:
desk footprint, time to grasp a device, and cost.

3.2 Workspace Access 41

Visible structures have the advantage of being easily dis- Visible structures are
discoverable but
expensive to obtain
and maintain

coverable. However, on the table surface, visible structures
can: (a) obscure or be obscured by other objects, (b) be ori-
ented against the user’s position, and (c) contribute to the
surface clutter [Kruger et al., 2003]. Tangible visible struc-
tures add the cost risk of getting lost or stolen. In contrast,
invisible structures have zero footprint on the table surface
but are harder to discover.

An access system that is designed with soft activation Hard modalities and
more reliable than
soft modalities but
less flexible

modalities can be less expensive to scale than with hard
modalities. Soft activation modalities have three benefits:
(1) they integrate seamlessly and maintain the desired in-
visibility in a ubiquitous computing system, (2) they reduce
the time to grasp an input device and avoid the overhead
of switching between different input devices, for example,
switching to use a laser pointer to reach distant objects [My-
ers et al., 2002], (3) soft modalities can provide a large set of
interaction vocabulary (e.g., via complex gestures or voice
commands). However, compared to hard modalities, soft
modalities can be harder to discover (e.g., complex ges-
tures), less reliable (e.g., voice commands), and imprecise
(e.g., direct-touch).

Many of the direct-touch issues can be addressed by manip-
ulating a structure’s spatial properties (e.g., by increasing
the size of the structure or surrounding it with an iceberg
area).

Isenberg et al. [2009] discussed contextual, technological, Different structure
presentations can be
utilized depending on
the context-of-use

perceptual and collaborative challenges arising when de-
signing tabletop systems for information exploration in two
different contexts: workplace settings where domain ex-
perts gather to explore and analyze often large and complex
datasets, and public spaces where the design has to sup-
port a much more diverse set of people, tasks, and goals.
They found that several issues are common in both settings,
other challenges are unique to workplace environments or
public spaces and need to be addressed accordingly. For
example, in public contexts people mostly would not have
any experience of tabletops and may not be willing to put
the time to explore them, thus, visible structures activated
via simple direct-touch or tangibles are preferred in these
settings. However, with tangibles, the number of allowed

42 3 Conceptual Framework

simultaneous participants is predetermined. In semi-public
contexts such as work environments, [Isenberg et al., 2009]
cite that work teams are often prepared to invest time in
learning the tabletop interface, thus, employing invisible
or ad hock structures in these environments can be more
advantageous.

In a comparison between replicated model and centralized
model Morris et al. [2006a] found that users preferred the
replicated model for two main reasons: (1) the desire to
use the center of the table for other semantically important
tasks, and (2) to avoid accidentally touching a teammate’s
hand when using the shared controls.

A centralized model has the advantage of providing better
workspace awareness among users where each can see the
others interacting with the same access point set [Zanella
and Greenberg, 2000]. However, this model can cause ac-
cessibility and single-orientation issues. In addition, [Scott
et al., 2003, Stanton and Neale, 2003] report that this model
can allow the stronger users to dominate, and can raise
coordinating concerns, such as invading other users’ per-
sonal spaces by reaching out to a centralized location. The
replicated model can overcome the reach and orientation
problems until the table becomes very large and the num-
ber of access point sets limited. Both models, centralized
and replicated, share the disadvantage of limiting the over-
all flexibility of the system by providing a singleton control
pattern. In this sense, the distributed model is more flex-
ible, but its evaluation also depends on the reachability of
the spatial locations used and the number of access point
sets provided.

Access systems that are designed to operate beyond-
surface, can be more flexible in supporting users’ mobility,
can be utilized as a form of privacy, and are largely scal-
able. In addition, the structures of such systems, whether
visible or invisible, have zero footprint on the table surface.
Access systems that operate directly on-surface can offer a
more engaging user experience and facilitate better human-
to-human interaction.

In summary, a tabletop interface designer can combine sev-
eral access point presentations and distributions to control

3.3 Surface Partitioning 43

the number of concurrent users on the surface at any time,
and the amount and type of accessible resources. Access
points can be designed to impose access privileges to af-
fect the power structure of an interaction (e.g. in a class-
room two levels of privilege can be provided for the teacher
and the students). In addition, access points help increase The choice of access

point design is
determined by the
task and context
requirements

workspace awareness and can be used to define different
roles and ownership [Hornecker, 2005]. Access points are
mediators and not content, and so they should have a lim-
ited footprint on the surface. For example, by extending
the number of manipulative access points by facilitating the
sharing of digital content across ad hoc devices [Rekimoto
and Saitoh, 1999]. A designer should also be aware of the
effect various access point designs can have in different so-
cial interaction settings. For instance, in a parallel inter-
action setting, a centralized distribution model may raise
intolerable privacy issues as opposed to its usage in a col-
laborative setting.

3.3 Surface Partitioning

Surface partitioning concept helps the designer under- Each tabletop
territory can be
perceived as a space
that needs
workspace access,
space partitioning,
and coordination
policies structures

stand how people divide a shared surface and construct
workspaces, in order to facilitate and maintain these spaces
in simple and straightforward ways. Once users gain access
to system resources they will start performing sequences of
actions on these resources to achieve their goals. Several in-
vestigations of tabletop work practices have observed that
users partition the surface into three different territories
when performing activities to acquire resources and medi-
ate group interactions: personal, group, and storage terri-
tories [Scott et al., 2004]. Within these territories, users con-
struct what Kirsh describes as activity landscapes. These
landscapes are composed of collections of concepts, the lay-
out of artefacts, users actions and consequences, and con-
straints imposed by a task or environment.

The establishment of territories depends on the user’s ac-
quired space and is part of the manager’s partitioning and
coordination process. On a tabletop surface, each territory
can be perceived as a workspace with a set of entry and

44 3 Conceptual Framework

access points, activity landscapes, and coordination poli-
cies. Territories can be defined implicitly by relying on
social practices. For instance, associating a space with a
user’s work habits, i.e., period of usage and frequency of
access [Edney, 1976], or by merely depending on the orien-
tation of tabletop artefacts to distinguish separate regions
on the surface [Tang, 1991]. However, while implicit terri-
tories seem natural and intuitive, researchers observed that
users attach different characteristics to different types of
territories [Scott and Carpendale, 2006]. To support a vari-
ety of tasks and interaction styles, the designer should un-
derstand the fundamental concept of territories and design
the UI to augment their roles in tabletop environments.

From tabletop territoriality research, we synthesized four
aspects a designer should investigate when partitioning
territories, the territory’s definition, properties, functional-
ity, and policies. In Table 3.1, we present these aspects, the
related questions a designer should attempt to answer, and
a suggested set of investigation elements.

While defining a territory, a designer can depend on the er-On personal desks
the surface is divided
to a personal territory

and several private
territories

gonomics of the table and use the edges, for example, as ref-
erences to personal territories. However, fixed and prede-
fined territories have been found to be limiting to the user’s
mobility [Scott et al., 2004], and can impose constraints on
the number and arrangement of co-located users. Taking a
user-oriented approach instead, requires the tabletop sys-
tem to have user-identification mechanisms or behavioral
models to identify the user and adapt her personal territory
to her location and orientation. Alternatively, personal ter-
ritories can reside on ad hoc devices such as laptops (e.g.,
[Rekimoto and Saitoh, 1999, Shen et al., 2003]).

Group territories usually start from the center of the surface
and expand to the areas unoccupied by personal or stor-
age spaces [Scott and Carpendale, 2006]. When deciding
on the properties of each territory, the designer should con-
sider if the interface should be scalable or portable. Scott
and Carpendale [2006] noticed that users casually pile doc-
uments in their storage territories and suggested provid-
ing these spaces with facilitates to organize and search the
stored documents.

3.3 Surface Partitioning 45

Territory Aspect Designer questions Investigation elements

Definition What kinds of territories
should be supported?

Personal, storage, group.

Which approach should be
adopted in dividing and
maintaining territories?

User-oriented or table-
oriented.

Properties What spatial properties does
each territory have?

Size, shape, visual presenta-
tion, etc.

Should the properties be dy-
namic or fixed?

Yes/No

What affects the designer’s
choice of properties?

Table ergonomics, task activ-
ities, group size, seating ar-
rangements, etc.

Functionality What functionality should
each territory provide?

Organization, searching, per-
sonalization, etc.

Policies What policies should each
territory implement?

Access, transition, and layout
policies.

Table 3.1: Aspects of surface partitioning.

Each territory type can require different coordination poli-
cies. The selection of these policies is influenced by the
tabletop hardware, and desired interaction styles among
other factors. For example, the DiamondTouch table [Di-
etz and Leigh, 2001] is capable of assigning touch points
to specific users, thereby enabling simultaneous access and
avoiding conflicts. When interacting on the table, the users
shouldn’t need to change their work practices between dif-
ferent types of territories. Thus, the designer should be cau-
tious in maintaining a consistent look and feel among the
territories while augmenting and supporting the purpose
each territory serves during an interaction.

46 3 Conceptual Framework

3.4 Coordination Policies

Coordination policies are agents that facilitate manipulat-
ing objects and coordinate the interaction of single and
multiple users. In offices, Kirsh describes the clock as one
mechanism to facilitate time coordination between people.
On traditional tables, social policies, i.e., standards of polite
behavior, are used to coordinate people’s interaction. How-
ever, in interactive tabletops, research shows that addi-
tional coordination policies for direct manipulation should
be provided to coordinate access and solve conflicts [Morris
et al., 2004b, Yuill and Rogers, 2012].

Morris et al. [2004b] suggest that coordination policiesCoordination policies
should be flexible should be implemented to provide a more structured and

predictable interaction while still being more flexible than
rigid access permissions. They proposed several global co-
ordination mechanisms, among these are: (a) making all
elements accessible to everyone and relying on social pro-
tocols, (b) allowing users to lock objects so that others can-
not access them, (c) giving each user a ranking, and allow-
ing higher ranking users to take objects from lower rank-
ing users, and d) allowing physical measurements, such as
speed and force applied by the user, to determine who is
able to retrieve a contested object. Other techniques were
proposed to improve handoffs, where one user transfers an
object to another [Jun et al., 2008], as well as to improve
awareness of other users’ actions and locations [Pinelle
et al., 2008].

Based on this, we identify three kinds of policies that
should be supported on interactive surfaces (see Fig. 3.8):

• Layout policies to help increase workspace visibil-
ity, organize activity landscapes, exploit spacial cog-
nition, and facilitate artefacts organizing.

• Access policies to enable flexible access to table re-
sources and workspaces, as well as to implement pri-
vacy settings.

• Transition policies to achieve fluid transitions be-
tween individual work and active collaboration, and

3.5 Summary 47

to facilitate content sharing.

(a) (b) (c)

Figure 3.8: Coordination policies on interactive tabletops.
(a) layout policies, (b) access policies, and (c) transition
policies.

These polices can vary between different user roles and ter- Coordination policies
can be designed on
different layers and
activated or
configured by the
users

ritories. For example, access policies in personal territories
should be more strict than in a group territory. Kirsh no-
ticed two patterns of structured office desks, the neat—tidy
desks where limited number of work items are visible and
located in a standardized place, and the scruff—messy of-
fice that can hold large amounts of information. In table-
tops, both patterns should be supported, for example, by
relaxing the layout policies inside the territories. The de-
signer’s choice of policies depends largely on the type of
social interaction she wants to support.

3.5 Summary

This chapter presented three concepts to help define the The framework helps
designers assess
design alternatives
for tabletop
structures

structures people need to perform basic tasks in tabletop
environments, namely, workspace access, surface partition-
ing, and coordination policies. The framework builds on
observed human behavior around tables as captured in
tabletop investigations and described in workplace theo-
ries. To help designer assess different design alternatives,
we demonstrated, in detail, the assessment of tabletops’ ac-
cess points. We described a modeling technique for access

48 3 Conceptual Framework

point design based on the presentation and distribution of
these structures, and produced the corresponding design
space. We then used the space to evaluate design alterna-
tives in the light of empirical tabletop literature, as well as
effectiveness figures of merit from Card et al. [1990].

Before applying the framework to the design process of
tabletop UI, designers should define the system’s context-
of-use. The context includes the physical, technological,
and social settings of the digital table, as well as target
users, supported interaction styles, and task domain.

The described framework recognizes the role of tables in
physical contexts and does not attempt to design holistic
work environments for interactive surfaces. Instead, it fo-
cuses on observed tabletop practices and provides struc-
tural guidance to support these practices and enhance the
overall user experience. The proposed framework still re-
quires long-term and observational studies to understand
the deep effect the table’s form factor and contexts have
on the workflows of co-located users. With the use of sur-
face manager software and considering the current state of
commercial tabletops, we believe that this data will become
available in the near future.

49

Chapter 4

System Design

“Any intelligent fool can make things bigger,
more complex, and more violent. It takes a touch of

genius, and a lot of courage, to move in the opposite
direction.”

—Albert Einstein

This chapter outlines the concepts, design, and implemen-
tation of our version of a surface manager, a.k.a Surface
Manager. An essential requirement for software develop-
ment on interactive tabletops is to take advantage of table-
tops’ unique features and design space, and attempt to at
least one of the following goals:

• Augment the utility of the traditional table with com-
putational power in order to digitize, access, and vi-
sualize information in new forms and contexts.

• Enhance the user experience with new styles of en-
gaging and enjoyable interaction.

• Provide new products and services that are not possi-
ble on other computing devices.

The design of Surface Manager attempts to achieve the first
two goals, which we believe will consequently enable the
third.

50 4 System Design

4.1 Design Goals

The overall goal of Surface Manager is to support and fa-A nonintrusive UI
makes the mix

between digital and
physical objects

more natural

cilitate users’ concurrent work processes on interactive sur-
faces, in various social interaction settings. Our aim is to
augment the current role of traditional tables in semi-public
contexts with a general purpose, nonintrusive, ”calm” UI
that enables flexible resource access and manipulation. We
envision Surface Manager to enable a similar scenario to the
one described by Streitz et al. [1999] in the i-LAND project:

”[Imagine] meeting a colleague by chance in
the hallway and starting a discussion that might
result in the intention to explain something by
drawing a sketch on the wall and annotate it by
drawing. Besides the fact that this is usually not
accepted in office buildings, traditional walls do
not support storing and later modifying the ele-
ments of the discussion. It is also not possible to
search for related information in a background
information base and to link this information to
the sketch and the scribbles on the wall. In the
future, we like to be able to turn to the wall and
do just this. Think of the wall as an ”interactive
wall” or as one being ”covered” by a high reso-
lution electronic wallpaper providing the func-
tionality needed” (p. 121).

To achieve our overall goal, Surface Manager is designed
with the following design goals:

1. Equal Access Privileges. The size, shape, and hor-
izontal tilt of tabletop surfaces afford approaching
them from any angle, and by multiple users. Surface
Manager UI should be designed to provide users with
equal access privileges to the tabletop system from
any location on the surface. This is a vital feature for
large tabletops in particular, and for interactive sys-
tems that do not provide static user interfaces in gen-
eral.

4.2 Applying the Conceptual Framework 51

2. Local Control Distribution. Surface Manager should
provide each tabletop user with full control over his
or her work items. The scope of one user’s control
should be localized to the user’s workspace and must
not affect or interrupt the work of others.

3. Window Management Facilities. As a general pur-
pose UI, Surface Manager is required to provide: (a)
facilities to launch and interact with concurrent appli-
cations, (b) policies to coordinate the layout of, and
access to interface and work items, and (c) techniques
to interact with and manipulate user content.

4. Handle Design Constraints. The focus of Surface
Manager is mainly on the constraints that can inter-
rupt the workflow of users, such as surface clutter
and object reachability.

5. Calm Computing Environment. Surface Manager in-
terface should inherit from tabletops’ ubiquity. The
interface should integrate with the traditional table
role without being intrusive, loud, or demanding.

We argue that the minimum requirement for any surface
manager, regardless of the context-of-use and target users,
is to handle tabletop design constraints.

4.2 Applying the Conceptual Framework

The conceptual framework in chapter 3 describes the tan-
gible and conceptual structures needed to support users’
work in tabletop environments. In this section, we look at
ways designers can apply the knowledge of the framework
to the design of surface manager UIs. We demonstrate the
descriptive power of the framework by showing how we
applied the framework, and give examples of how a de-
signer can use the framework: to think about the suitable
presentation and distribution of structures and widgets to
provide workspace access in a specific context, to partition
the surface to work areas of different purposes, and to de-
cide on the types of policies that serve the desired social
interaction settings.

52 4 System Design

Far far away, behind the word
mountains, far from the countries
Vokalia and Consonantia, there live the
blind texts. Separated they live in
Bookmarksgrove right at the coast of the
Semantics, a large language ocean.

Far far away, behind the word
mountains, far from the countries
Vokalia and Consonantia, there live the
blind texts. Separated they live in
Bookmarksgrove right at the coast of the
Semantics, a large language ocean.

Controller

Control Units

Canvas

Context menu

Menu-bar

A
pp

lic
at

io
ns

D
oc

k

End
session

Collapse

Trash

Storage
Trash

BG Colors Textures Choose App

Figure 4.1: Surface Manager UI overview.

Fig. 4.1 shows an overview of Surface Manager’s UI ele-
ments to provide a context for subsequent explanations of
software features in this section.

Workspace access

Our requirements for the interface in Surface Manager are:
(a) to be scalable to any table size, shape, and number of
users, (b) to be portable across several tabletop technolo-
gies, (c) enable flexible seating arrangements , and (d) to be
discoverable. A discoverable interface in this context refers
to how easily users recognize how to access and interact
with the interface by robust exploration or by relying on
the affordance and layout of the design.

Informed by the design space of access points (section
3.2.2), the presentation of Surface Manager’s access points
is: an on-surface, hidden access structure that is activated
via a soft modality. The access points are arranged in a
distributed access model with independent control pattern.

4.2 Applying the Conceptual Framework 53

The hidden presentation is a graphical widget, a controller,
which is initially invisible. Using a soft activation modal-
ity, a simple access gesture, on any location on the table, a
controller can be invoked to become visible and provide the
user access to system resources (e.g., applications and files).
This workspace access design allows us to avoid static UI
layouts, thus, adhering to our first design goal, equal access
privileges, and minimizing object reachability problem.

Additionally, the system applies the design principle of en-
try points by making use of familiar visualizations, avoid-
ing flash animations, time-outs, and moded interaction, in
order to provide the user with a continuous and consistent
system state.

Surface Partitioning

To support multiple social interaction settings, Surface
Manager supports the three main types of territories: per-
sonal, storage, and group territories. We followed a user-
oriented approach to partition these territories—when the
user performs the access gesture at any location on the sur-
face, a virtual personal territory is created for her at the lo-
cation and orientation of the gesture. A storage territory
is available for each user from the controller widget. The
group territory coves the entire unoccupied space on the
surface.

The spatial properties for the personal territory are not vis-
ible, i.e., no visible boundaries to show the size or shape
of the territory. We did not want visible boundaries to di-
vide the table or add chrome to the interface in away that
can distract users or over ”technify” the table, which con-
tradicts with our fifth design goal, calm computing envi-
ronment. The size and location of a personal territory are
dynamic and adapt to the distribution of the user’s work
items. A virtual personal territory is thus, independent
of the table ergonomics. Storage territories, called control
units, are also mobile but have a fixed shape and size. Con-
trol units provide facilities to store, organize, and navigate
stored items.

54 4 System Design

Coordination Policies

We chose a relaxed set of access and transition policies,
namely, making all elements accessible to everyone and re-
lying on social protocols [Morris et al., 2004b]. The layout
policies are implemented system-wide to manage the tree
of work item widgets on the surface. The user can drag, ro-
tate and scale items freely. When an item is dragged by the
user it is located at the point of release, and on top of the
surface tree, thus, covering all items lying under it. Item
cans be manipulated while obscured. To rearrange an oc-
cluded item to the top of the tree, the user must attempt to
drag it.

Other policies are implemented to facilitate accessing and
controlling distant work items (e.g., collapse&expand, and
remote control interaction techniques), and to enable flexible
layouts (e.g., in-place interaction technique). To direct input
streams from input devices, such as keyboards, to the cor-
rect output devices, we designed a simultaneous peripheral
associate mechanism.

Many of our design decisions were constrained by the lack
of any user-identification mechanism on the tabletops in
our possession.

4.3 Controller Metaphor

Large, shared tabletops, unlike desktop computers and
smartphones, can have co-located users working simulta-
neously, with new users coming and others leaving, at any
time. Thus, the notions of accessing the system and exiting
the system are complemented and replaced, respectively,
with the notions of staring and ending a table session on
tabletops.

Surface Manager implements, what we refer to as the con-
troller metaphor (see Fig. 4.2). In this simple metaphor,
the UI of the system is compacted in a single widget, the
controller, and duplicated and distributed among table-

4.4 User Interface 55

Start sessionPerform access gesture Access and manipulate resources End session

time

Figure 4.2: Controller metaphor.

top users. Staring a table session means obtaining a con-
troller. Ending a session means destroying the controller
and clearing any related work items. An essential part
of the metaphor is the UI mobility—a user can move her
workspace, controller and work items, around the table
while maintaining their relative spacial arrangement. The
metaphor is composed of a set of core UI elements and in-
teraction techniques, which we discuss further in the next
section.

4.4 User Interface

Following a series of prototypes, interaction metaphors,
and design iterations, we concluded to the general look &
feel of Surface Manager UI. Fig. 4.3 summarizer the main
building blocks of the interface.

Our design guidelines for the interface were as follows:

• Design the interface to be discoverable, predictable
and consistent.

• Keep the interface simple and familiar. Minimize
chrome and allow users to interact with content di-
rectly.

• Avoid deep hierarchies. Minimize the number of
steps and transitions required to perform an action.

56 4 System Design

System access

File Access

Tree Management Peripheral
Association

UI toolkit

Interaction
Techniques

(policies)

Generic
Commands

Surface
Manager

Figure 4.3: Building blocks of Surface Manager UI.

• Provide a flexible and expressive set of UI compo-
nents for variant social interaction settings.

• Provide a continuous visual state of the system and
resources.

4.4.1 User-Interface Toolkit

We designed a lightweight UI toolkit for Surface Manager
in order to maintain a consistent interface, and to embed
design solutions for some of the direct-touch issues. For
example, we adjusted the size of UI elements, and sur-
rounded them with an additional iceberg to increase the
touch responsive area, and account for different contact-
point’s angels and sizes. In addition, we designed menu
and file navigation to require horizontal scrolling rather
than vertical to prevent items from being obscured by the
hand of the user.

The toolkit is composed of three groups of UI elements: (a)
primitive elements, such as buttons and text-fields, (b) lay-
out containers, and (c) core elements: controllers, canvases,
menu-bars, and soft-keyboards. This section describes the
design and properties of the core UI elements.

4.4 User Interface 57

Controller

The controller is technically the access point structure form
which the user can access and manage all Surface Manager
resources and functionality (see Fig. 4.4). Conceptually, a
controller presents a table session. Each controller is bound
to a single territory, and controls the orientation and lay-
out of items lying in this territory. The controller can also
function as a system notification center by directing system
messages to available users.

When a controller is first generated it is assigned a specific
color-code to indicate ownership. All items generated us-
ing the controller are similarly color-coded. The controller
is composed of four control units that provide users with
access to system resources. It also provides two territory
control buttons: an end session button to move all work
items of a territory off the table surface and into storage,
and terminate the table session; and a collapse&expand
button (details in section 4.4.6).

The controller has three main characteristics:

• Mobility. The controller can be moved on the surface
to be reachable to the user from any working area.
This features enables the user to move around the ta-
ble and still have full access to the system and his con-
trol units.

• Orientation. The controller can be freely reoriented.
Items generated from a controller are oriented to the
same angle. This allows collaborators to share a sin-
gle controller and orient it towards a group’s view an-
gle. Other scenarios where this feature might come
useful is when an existing user needs to adjust his
workspace to accommodate for a newcomer.

• On request. The controller can be hid, when it is not in
use, to avoid cluttering or occluding the surface. Per-
forming the access gestures anywhere near the pre-
vious controller’s location will make it appear in the
new location.

58 4 System Design

A
pp

lic
at

io
ns

D
oc

k
Collapse

Storage
Trash

Controller

Control Units

Territory controls

End
session

Figure 4.4: Surface Manager controller.

Control Units

A control unit is a rectangular shaped widget that provides
users access to system applications and user files. The con-
troller is composed of four control units: application, dock,
trash, and storage units. Application unit displays avail-
able applications that the user can launch concurrently. The
dock, storage, and trash units allow the user to add and re-
move digital items in them. The dock unit, like the dock in

4.4 User Interface 59

(a) (b) (c)

Figure 4.5: Control units. Three navigation views: (a) normal view ,(b) scan view ,
(c) fine view.

Apple’s OS X and the task bar in Microsoft Windows, can
be used to minimize the footprint of work items on the sur-
face. Other than storage capabilities, control units provide
facilities to organize, and navigate files.

Items in a control unit are arrange in a grid. When a user
adds an item to a control unit, the item is scaled-down in
size, and snapped to a grid position. This organization
mechanism allows for maximum visibility as the content
of a scaled-down item remains visible, and the spacing be-
tween gridded items prevents potential occlusion.

The units provide users with a lightweight interaction
mechanism to navigate files (see Fig. 4.5). To quickly scan
the files, the user performs a zoom-out gesture, the gridded
items scale down and are rearranged to show more items
per view. To fine-tune the search the user performs a zoom-
in gesture, the items scale up in size for the user to have a
better visual.

To distinguish between dragging an item over a control
unit and into one, we implemented a scaling feedback.
When an item is gridded, it is scaled down to a size that
maintains its recognizability. When an item is dragged out
a unit, it is scaled up to its original size. While dragging
an item over a unit, if the user wants to grid that item, she
must drag it slower around the edges of the unit. Once the
unit recognizes that this item must be gridded, it notifies
the user by scaling down the size of the item. If the user re-
leases a scaled-down item, the item snaps to the unit’s grid,
otherwise the item stays at the release location on the table.

60 4 System Design

Canvas

A canvas is a rectangular shaped widget that acts as a place
holder for user content. It is surrounded by a color-coded
border that has a rectangular hot spot to open the context
menu-bar (Fig. 4.6). The canvas can be moved, scaled and
rotated. Once the user drags an item from a control unit
and onto the table, a new canvas is created and attached
to that item. Attaching a canvas to each item on the table
provides interactive and visual consistency.

Far far away, behind the word
mountains, far from the countries
Vokalia and Consonantia, there live the
blind texts. Separated they live in
Bookmarksgrove right at the coast of the
Semantics, a large language ocean.

Context menu
Canvas

Border

Trash

Figure 4.6: Surface Manager canvas.

Logically a canvas is made of two parts: user content (e.g.,
a file that contains images and text) and a set of application
references (e.g., an image editor and a text editor). When a
canvas is created and attached to a file, it creates a reference
to the application that supports that file, and launches that
application. A single canvas can have references to several
applications, we discuss this feature in section 4.4.5.

The toolkit contains two floating objects: a menu-bar and a
soft-keyboard. A floating object is generated and invoked
by a canvas, and responds to the canvas dragging and grid-
ing. Floating objects resides on root objects’ level, rather
than within the canvas. The rational behind this design was
to account for three problems: (1) if the canvas is too nar-
row, the menu-bar, for example, is either wrapped or trun-
cated, and that can destroy the spatial memory of menu
item locations or limit their accessibility; (2) if the canvas
was far or slightly oriented off the user’s position, the user

4.4 User Interface 61

will need to change his seating position, for example, to
access the virtual keyboard; (3) rendering floating objects
within the canvas limits how simulations users can access
that canvas.

To manipulate the content of a canvas, the user can either
perform direct transformation gestures or perform a menu
invoking gesture over any element to invoke an editing
menu-bar. In response, the canvas contacts the supporting
application and generates a floating menu-bar, in-place.

Menu-bar

A menu-bar is composed of two parts: menu tabs, and
menu items (Fig. 4.7 (a)). The menu-bar arranges the
menus consecutively in a single row. The user can scroll
horizontally, or use the tabs to view different menus and
menu options.

Menu-bar

Menu items

Menu tabs

Embedded menu

(a)

(b)

Choose App

BG Colors

Textures

Textures

BG Colors

Choose App

Figure 4.7: Surface Manager menu-bar. (a) single menu-
bar of three menus and one embedded menu, (b) expanded
embedded menu.

An embedded menu is represented as a single menu item in
the parent menu. The item provides a miniature preview of
the first four menu items in the embedded menu. The user
can tap that item to expand the embedded menu horizon-
tally and in-place. The embedded menu items appear at

62 4 System Design

the level of the parent menu items but with a darker back-
ground shade (see Fig. 4.7 (b)). Like other floating objects,
menu bars can be flicked-away and invoked when needed.

Soft-keyboard

When the user taps a text field a software keyboard appears
floating under that field. When finished, the user can flick-
away the keyboard to hide it.

4.4.2 Generic Commands

To maintain gestural consistency as well as visual, we de-
signed a minimum set of generic commands that apply
similarly to all items in the system. These commands
include: transformation gestures (e.g., move, rotate, and
scale), menu invoking gesture, floating objects hiding ges-
ture, and access gestures. Most of these gestures are from
standard bi-manual gestures adopted by most contempo-
rary multi-touch platforms. We kept the gestural com-
mands to a minimum to reduce interference with appli-
cation specific gestures. The system also allows applica-
tion designers to disable generic gestures. Unlike keyboard
shortcuts, gestures are not perceived as unique command
units. For example, the exerted force, the handedness of a
user, and the number of fingers can be used to distinguish
between gestures on the system level, but not by users
[Wobbrock et al., 2009]. Consequently, some gestures are
further supported with visual options in the context menu.

4.4.3 Peripheral Association

Given that there could be many canvases on the surface,
each of which can be controlled by a different user, there
must be a mechanism for directing input to the right can-
vas. In our system, we implement a simultaneous periph-
eral association mechanism. Association is achieved be-
tween a peripheral, input or output device to pass events

4.4 User Interface 63

BG Colors Textures Choose App

Far far away, behind the word
mountains, far from the countries
Vokalia and Consonantia, there live the
blind texts. Separated they live in
Bookmarksgrove right at the coast of
the Semantics, a large language
ocean.

Trash

Figure 4.8: Simultaneous peripheral association mecha-
nism.

between them (see Fig. 4.8). For example, an image can be
a target item (output device) that is associated and manip-
ulated with a menu-bar. Simultaneous association means
that several items can be associated with peripherals at the
same time. This mechanism functions based on three rules:

1. All items on the surface are in-focus, whether the item
is obscured, embedded, or on the top of the surface.
This means that any item in the system can be ma-
nipulated directly, without first selecting it and then
issuing an action for it, even if partially obscured.

2. Each item is associated with the touches directly on
its surface. Competing touches are resolved by the
gesture detector (section 4.6.4).

3. Each item within a canvas can be associated to a sin-
gle soft-keyboard and or menu-bar via a one-to-one
relation. This means that each device, menu-bar or
soft-keyboard, can only send events to a single target.

64 4 System Design

4.4.4 System Hierarchy and Tree Management

The system is built over a relatively flat hierarchy of three
levels (Fig. 4.9). The surface level is the visible back-
ground covering the entire table area that receives users’
access gestures. The work level is the level above the sur-
face level on which all users’ work items exist. The con-
tent level is a level embedded in the work level items and
where system resources and user’s content elements are ar-
ranged and manipulated. A flat hierarchical system pro-
vides users with visibility and transparency, potentially in-
creasing workspace awareness. It can also minimize the
number of transitions needed to access and manipulate sys-
tem resources.

Root

Canvas(es) Floating
Object(s)Controller(s)

File

Embedded
Object(s)

Content
level

Work
level

Surface
level

File(s)

Figure 4.9: System hierarchy and work items tree.

Surface Manager manages two types of trees: surface tree
and content trees. The surface tree is singleton and dynamic.
The root of this tree is the table surface, which is the only
object on the surface level. Controllers, canvases, and float-
ing objects, which reside on the work level, are the branches
of this tree, the children of the root. Content trees, start and
branch at the content level. Content trees can be built of
static UI elements arrangements, for example, the interface
of an application, or dynamic user content elements, for ex-
ample, by dragging and dropping files in a canvas. Every
item on the table is part of a dynamic or static tree and is

4.4 User Interface 65

within a child-parent relation with another item. Layout
policies control these trees.

Files and canvases can be dragged and dropped inside
other canvases. We distinguish between a canvas dragged
over or into another canvas by changing the border color of
the dragged canvas, momentarily.

4.4.5 File Management

There are two primary types of content elements in the sys-
tem. These are embedded objects and files. An embedded
object is one that an application generates and has no ex-
tension outside that application (e.g., shapes in a paint ap-
plication). A file is an information object with an extension
or file-type (e.g., an image can have the extensions jpeg or
png). The extension is important to identify the applica-
tions that support the file.

The system provides users with three different ways to ac-
cess files: speed access, system access, and application access.
All methods aim to narrow the gap between information
access and information viewing by minimizing the number
of transitions required to open a file or an application:

• Speed access. A user can approach a table from any
location, perform a canvas invoking gesture, and a
canvas is created, and appears in-place. The aim of
providing speed access is to allow hasty users to skip
the system access process and start generating con-
tent. This method was designed to mimic the situa-
tion of traditional tables which have papers and pen-
cils laid out and allow any person to grab a pencil and
start writing or drawing. The user can create an un-
limited number of canvases. When the user is done,
she can perform the corresponding gesture to save or
delete her work. This method augments the utility of
traditional tables by allowing users to attach applica-
tions and services to a canvas. For example, a user
can create a canvas and attach a paint application to
it in order to draw, or a calculator utility to calculate

66 4 System Design

some numbers.

• System access. The user invokes a controller, opens
the storage unit, and drags the desired files to the ta-
ble for editing. This method is designed for users who
want to navigate and edit exiting files.

• Application access. To create new content, or inter-
act with the interface of the application (e.g., in game
applications), the user can access the application unit,
drag a new instance of an application and start gen-
erating content or interacting with the interface.

Application switching. In Surface Manager, each file is as-
sociated with a single application. When the file is dragged
to open on the table, a canvas is attached to it, and the
canvas invokes the file’s associated application to launch.
This file becomes the root of the content tree in the can-
vas, and its application becomes the ”current application”.
To switch from the current application, the user invokes
a menu-bar on the root file. The menu-bar contains the
menus of the current application, and an additional menu,
labeled ”Choose App”, of other applications that support
that file type. After the user selects an application, the can-
vas aggregates the menus of the new application in the file’s
menu-bar. The new application becomes the file’s associ-
ated application.

Invoking a menu-bar on an embedded file, child of the root
file, can result in one of two results: if the embedded file
type is supported by the current application, the menu-bar
is filled with the current application’s menus, if the file type
is not supported, the menu-bar shows the menus of this
file’s associated application.

4.4.6 Interaction Techniques

To handle many of the horizontal surface constraints and
support collaborative interaction, we designed three inter-
action techniques: in-place, collapse&expand, and remote
control interaction (see Fig. 4.10).

4.4 User Interface 67

BG Colors Textures Choose App

BG Colors Textures Choose App

(a) (b) (c)

StorageTrash

Dock Applications

C

E

C Far far away, behind the word mountains,

far from the countries Vokalia and

Consonantia, there live the blind texts.

Figure 4.10: Interaction techniques. (a) in-place, (b) collapse&expand, and (c) re-
mote control.

In-place Interaction

In-place interaction means providing the desired informa-
tion at the time and location of request (e.g, menu-bars and
soft-keyboards). On interactive surfaces in-place interac-
tion can have the following benefits:

• Enhance system’s visibility and predictability. This
becomes more important in cluttered workspaces,
and when triggered items are very large that depend-
ing on their boarders to show a requested menu, for
example, becomes inefficient.

• Grantee accessibility of requested information re-
gardless how large the table surface is. It can also
reduce homing time [STUART et al., 1978].

• Support collaboration. This is specially true when
collaborators attempt to manipulate two different but
close items. An in-place menu-bar, for example, will
provide a clear associate of which menu can affect
which item (Fig. 4.10 (a)).

Collapse & Expand Interaction

Collapse&expand technique is mainly used to handle ob-
ject reachability problem. When the user wants to access a
far item, she can tap the ”Collapse” button on the controller,

68 4 System Design

to force all her work items to the dock control unit. She can
then drag the item in request, and tap the now ”Expand”
button for the system to return all the other collapsed items
to their previous locations. This interaction technique also
supports user’s mobility and flexible seating arrangements
by maintaining the relative spatial arrangement of the col-
lapsed items. For example, collapse&expand allows the
user to collapse all his items, move the controller to another
location on the table, then expand the items to their original
relative-to-controller spacial arrangement (Fig. 4.10 (b)).

Remote Control Interaction

Remote control is an interaction technique that allows users
to control and manipulate distant or oriented items. We
illustrate the benefits of this technique with two scenar-
ios. The first, when editing a text document, instead of the
user reaching out to use the keyboard in an uncomfortable
posture, or dragging the document away from a desired
group’s view, the user can simply drag or rotate the soft-
keyboard towards him and start typing (Fig. 4.10 (c)). The
second, if the user is working with overlapping canvases,
she can drag the menu-bar of a partially obscured canvas
and control it without having to change the canvas arrange-
ment on the table.

4.5 Analyzing the Interface against Direct
Manipulation Principles

In this section, we use Schneiderman’s principles of direct
manipulation [Shneiderman, 1993] to analyze and compare
Surface Manager UI with general desktop window man-
agers.

Continuous representation of objects of interest
An object of interest refers to digital artifacts that users
want in order to perform a task (e.g., text, images, URLs,
etc.). In this thesis, we refer to these objects as content ele-
ments. This principle asserts that objects of interest should

4.5 Analyzing the Interface against Direct Manipulation Principles 69

be always present to the user. Similar to desktop win-
dow managers, Surface Manager provides scrolling and
zooming techniques to control the presence of these ob-
jects. Zoomable interfaces [Bederson and Hollan, 1994]
break away from the windowing metaphor. They imple-
ment the metaphor of all objects exit on one surface, and
the user can zoom in or out to reach different objects.

Within traditional GUI interfaces, objects of interest and
secondary objects (e.g, menu-bars and pallets) are over-
lapping and occupy the same display area. Window sys-
tems handle this problem by providing a full-screen op-
tion, i.e., scaling the content to the entire screen and hiding
menu-bars, providing ”auto hide” mechanisms, or ”stay
on top” option. In our UI, we allow users to flick-away
secondary objects, i.e., menu-bars, controllers and soft-
keyboards, when they are not in use, to minimize surface
clutter and occlusion.

Physical actions on objects vs. complex syntax
Single control point interfaces such as desktop comput-
ers are limited to mouse pointers, indirect touch pad ges-
tures, and keyboard shortcuts, to trigger actions. Con-
sequently, mediators such as menus, are needed to issue
complex commands. In multi-touch interfaces, tangibles
and gestures can provide an unlimited command vocab-
ulary. However, it was found that people generally do not
agree on which gesture is suitable for an action, nor do they
agree on how to perform a certain gesture (e.g., with how
many or which fingers) [Wobbrock et al., 2009]. Thus, cur-
rently, we still need mediators and tools on multi-touch sur-
faces. However, typical action sequences such as scaling
and translating can be reduced with gesture manipulation.
In our UI, we support a generic set of commands and ges-
tures, as well as provide menu-bars to control and manipu-
late the interface. However, to enhance the user experience,
we implemented the in-place technique to reduce the typi-
cal homing time on the desktop computer.

Fast, incremental and reversible operations with an
immediately-apparent effect on the objects of interest
With advances in display and computing technologies, sys-
tems are able to react to a user’s command in time and with
minimum lag. On typical window managers, to change

70 4 System Design

the color of a text, the user must select the text, go to the
menu bar and enter the desired color and commit. This in-
teraction in neither fast nor incremental. On the other hand,
scaling a window only requires selecting the window and
dragging an edge or corner to see the window scale in time.
In Surface Manager, gestures achieve a similar incremental
effect. However, to change text color, for example, the user
must go through a similar action cycle of typical window
managers, but with reduced homing time.

Layered or spiral approach to learning
In desktop window managers, the transition from a novice
user to a power user usually means the user knows most
of the keyboard shortcuts. Windows systems provide users
with ctrl and alt buttons to make this transition incremen-
tal [Wigdor and Wixon, 2011]. In Surface Manager, the user
can incrementally scale, rotate, and translate an object with
one gesture. Additional complex gestures can be used to
provide incremental effect, and supported with visual op-
tions in the context menu.

4.6 Implementation

This section covers the technical implementation and struc-
tural design of Surface Manager’s UI and gesture detector.
We begin by describing the general software development
process, and the overall class diagram of the system. Next,
we describe in more detail the class hierarchy and software
architecture for the graphic front end of the table system.
Finally, the process of gesture detection is illustrated.

4.6.1 Software Development Process

Surface Manager was built over Apple’s OS X 10.8 operat-
ing system. The software was developed using Objective-
C and C programming languages in the Xcode IDE, and
can be launched using a single .app file. Surface Manager
was built over the foundational framework Table Engine,
which was developed at our chair (Simon Voelker, 2012).

4.6 Implementation 71

MController

MControl
Unit

MCanvas

MMenu-bar

MSoft-
keyboard

MFile

MObject

MManager

MFileSystem

MApplication

MSurface

TObjectEvent
Dispatcher

GLEngineTouchServer

TTable
Engine

TGesture
Detector

MRect

MGrid

Surface Manager

Table Engine

Additional frameworks

Figure 4.11: Surface Manager class diagram.

Table Engine includes: (a) a Touch Server to deliver touch
events to the framework, (b) a GLEngine to provide conve-
nient functions to draw and load texture files with OpenGL
3.2 framework, and (c) a set of base classes to start the ren-
dering pipeline, dispatch events, and implement standard
affine transformations.

The software was designed to run independent from any
tabletop’s technical settings and ergonomics. Our devel-
opment process has been evolving for approximately six
months, including the initial paper prototypes and the de-
sign of the system architecture.

4.6.2 System Class Diagram

In Fig. 4.11, we preset a simplified class diagram of the
overall system.

72 4 System Design

In Surface Manager, the general look and feel of the UI
are implemented in the base class MObject. MObject im-
plements shared methods and properties in the UI toolkit,
such as the generic commands, the widget iceberg, the con-
text menu, and peripheral association mechanism. The
base object grantees uniform visual and behavioral char-
acteristics over the interface.

4.6.3 Surface Manager Software Architecture

Surface Manager implements the equivalent of the UI
toolkit and window manager layers in desktop window
system architecture (see section 2.2). In Fig. 4.12, we show
the system architecture of Surface Manager. The system
was designed to be simple and modular by using an in-
terface of delegates and protocols between communicat-
ing classes. MSurface, MManager and MFileSystem are
singleton classes, i.e., they are shared among all table ses-
sions. MController and MControlUnit(s) are created once
per session. The id of MController instance is used to access
the singleton classes and identify the corresponding ses-
sion. Several MCanvas, MMenu-bar and MSoft-keyboard
instances can exit per session.

MManager

MCanvasMController

MControlUnit

MFileSystem MApplication

MMenu-
bar

MSoft-
keyboard

MSurface

Figure 4.12: Surface Manager software architecture.

4.6 Implementation 73

get menus for
target O

show menu-bar
for target O at
location P menus

add Menu-bar
to table

MController
MApplication
MFile
FloatingObjectsArray

MManager

MApplication

associate
aggregate
additional apps

MCanvas

Figure 4.13: Peripheral association process.

MSurface is a non-transformable object that represents the
table surface. It controls the background of the table, re-
ceives users’ access gestures, and maintains the surface
tree. When MSurface receives a user event it translates the
request to: request a controller, or request a canvas, and
calls MManager to handle that request.

MManager receives the user request from MSurface with
two pieces of information: the user’s location and orienta-
tion. MManager uses the location information to find or
create a new MController. The decision is made by con-
sulting a simple nearest neighbor algorithm. The algo-
rithm was implemented to account for the lack of any user-
identification mechanism. Once an instance of MController
is allocated, MManager initiates a table session and adds
MController to the top of the surface tree and at the loca-
tion and orientation of the request. MManager implements
surface layout policies to coordinate the location and orien-
tation of root objects, and their arrangement in the surface
tree.

MController initiates the storage, application, dock and
trash MControlUnit(s). The units communicate with
MFileSystem to fill up their grids with the available files
and applications. Each MControlUnit maintains a record of
its items and can work independently. Thus, MController
only acts as a container widget and can be replaced with
any other presentation.

MCanvas aligns its items in the center of its bounds if the
size of items is less than the canvas’s, and to the top-left
corner otherwise.

74 4 System Design

When a show menu or keyboard invoking gesture is per-
formed on MCanvas, MCanvas receives the event and
the target object from the TEventDispatcher and continues
with the peripheral associating process.

Fig. 4.13 illustrates the peripheral association process: (1)
request the menus that apply to the target object from the
current application, (2) create a menu of the other system
applications that support the target object, (3) aggregate the
menus in a single MMenu-bar, (4) associate that MMenu-
bar with the target, and (5) sends MMenu-bar to MManager
to be added to the table.

To end a table session, the user taps end session button on
his or her MController, the MController adds all its can-
vases to the storage unit, and is then removed by MMan-
ager from the surface tree.

4.6.4 Gesture Detection Process

The purpose of designing a gesture detector was to en-
able multi-user interaction. In particular, we wanted a ges-
ture server that can concurrently detect and respond to two
or more users performing the same gesture (e.g., an ac-
cess gesture) on the same object (e.g., the table surface).
We achieved this by using a nearest neighbor algorithm to
roughly classify concurrent touches into sets of potential
gestures, before sending them to the gesture server.

In Fig. 4.14 we show the gesture detection process. TGes-
tureDetector is a singleton class that receives user touch
events from Table Engine. When TGestureDetector receives
a new touch on a target object, it assembles an array of the
TGestureRecognizers registered on the target object and its
parent object, down to the root parent object. TGestureDe-
tector gives registered TGestureRecognizers on the target
object higher priority than TGestureRecognizers on parent
object chain.

TGestureDetector starts by sending the touch object to the
last registered TGestureRecognizer with highest priority. If
a TGestureRecognizer accepts the touch, TGestureDetector

4.6 Implementation 75

TGestureRecogniser Aconsume
touch?

TGestureRecogniser Bconsume
touch?

TGestureRecogniser Cconsume
touch?

TGesture (instance)accept
touch? TGesture (instance)accept

touch?accept
touch?

TGestureDetector

TGesture (instance)

Figure 4.14: Gesture detection process.

binds the touch object with that TGestureRecognizer. Oth-
erwise, TGestureDetector sends the touch to the next in line
TGestureRecognizer.

Each TGestureRecognizer is associated in a one-to-one re-
lation to a TGesture. TGestureRecognizer takes the touch,
and finds or creates an instance of the associated TGesture
to process that touch. TGestureRecognizer uses the location
of the touch to find a gesture instance in its vicinity. Once
an instance is found, it is asked if it can process this touch.
TGesture designer can override a method in the TGesture
class to constrain which touches can be accepted. If the
touch was accepted, TGestureRecognizer binds the touch
object with that gesture instance. Otherwise, TGestureRec-
ognizer uses the touch and target object info to decide if it
should create a new gesture instance to process that touch.
For example, if the object of TGestureRecognizer only al-
lows one user to interact with it at a time, TGestureRecog-
nizer does not create a new TGesture instance if one already
exists. In this case, the touch is not accepted in that TGes-
tureRecognizer, and is returned to TGestureDetector.

77

Chapter 5

User Studies and System
Evaluation

“The only way of discovering the limited of the
possible is to venture a little way past them into the

impossible.”

—Author C. Clarke

During this thesis, we conducted two user studies: a pri-
marily study, before we started the design process, and a
qualitative user study and system evaluation, at the end
of the process. This chapter describes the purpose, design,
and findings of each study. Our overall goal is to enhance
the UI of Surface Manager, test the underlying conceptual
design, and begin the process of developing well-grounded
theories of the use of tabletops as workspaces to inform our
framework with empirical results.

5.1 Preliminary Study: Conceptual Model
Elicitation

The purpose of the preliminary study was to understand
how people, experienced with desktop and smartphone
UIs, perceive a table surface as a digital workspace.

78 5 User Studies and System Evaluation

5.1.1 Study Protocol

This study was conducted using the participatory re-A PICTIVE prototype
gives the user an

early sense of how
the finished product
could look and feel

search method PICTIVE (Plastic Interface for Collaborative
Technology Initiatives through Video Exploration) [Muller,
1991]. PICTIVE is a paper mock-up technique that allows
users to take part in the early design process in collabora-
tion with the research or design team (see Fig. 5.1).

(a) (b)

Figure 5.1: PICTIVE research method [Muller, 1991]. (a)
design material, (b) PICTIVE setting.

Tabletops are relatively new interactive devices considering
their current availability and population of frequent users.
Limitations and problems in tabletop design are mainly
available from short-term and laboratory studies. Conse-
quently, we had to find another source of information to
help us frame our research question—how to enable table-
tops as useful workspaces.

PICTIVE research method was selected to allow us to ex-
plore early UI and conceptual design of tabletop interfaces
with potential users. The method provides participants
with a high degree of freedom to express their thoughts
and generate design ideas. The participatory nature of the
method enables the researcher to engage with the user and
understand the rational of each step of the user’s actions
instantly, thus, minimizing the effect of false memory, and
providing a chance to explore design alternatives.

The study was conducted on a traditional physical table
with one user and one researcher at a time (see Fig. 5.2). At
the beginning of the study, users were provided with sim-

5.1 Preliminary Study: Conceptual Model Elicitation 79

ple office supplies, such as Post-it notes, pens, paper, scis-
sors, and paper clips. They were asked to use these mate-
rial to symbolize components of the interface, such as icons,
windows, or any custom widgets .

Figure 5.2: Preliminary study setup. Participant (wearing
blank) engage in a participatory design session with the re-
searcher.

The study session started by the researcher describing the
desire to design a digital UI on a tabletop surface to be later
integrated in the university campus. The interface should
allow users to browse the internet, design presentations,
and play games. The session proceeded as a collaborative
brainstorming session. Users were asked to perform a se-
ries of simple tasks, such as start the table, open an appli-
cation, copy an image from one application to another. In
each task the user was asked to visualize the interface using
the provided material, and to avoid lifting the objects off
the surface during virtual interaction. The sessions were
video recorded, and followed by a semi-structured feed-
back session.

Five users took part in the study. All users were males,
their ages ranged between 22-27 years old. All participants
were Computer Science students, and owned a multi-touch
smartphone or tablet.

80 5 User Studies and System Evaluation

5.1.2 Results

Data sources, video recordings and interviews, were pro-
cessed by annotating, coding, and finally, categorizing the
observations.

User-designed widgets were subsets of the desktop and
smatphone interfaces: icons, pull-down menu-bars, win-
dows, and virtual keyboards (Fig. 5.3). In [Wigdor andUsers had limited

imagination for new
UI widgets and

interaction
techniques

Wixon, 2011], the authors expressed concerns about the
ability of users conducting a study to come up with new
and concrete design ideas. In this study, the results con-
firmed that users had limited imagination for new UI wid-
gets that go beyond the desktop or smartphone metaphors.

Icon Menu-bar Window Virtual keyboard

Figure 5.3: User-generated widgets.

The interface design process started from the table’s startupWorspace layouts
and metaphors view—the first view the user sees when she approaches the

table. All users used icon widgets to represent this view,
but arranged them in different distributions. Fig. 5.4 shows
the two layouts of the suggested distribution of icons on a
table surface. The users were asked to design the interface
to work for them and the researcher at the same time. In the
first layout, U1 and U2 treated the table as one workspace
that can offer widget duplicates for each co-located user ac-
cording to the user’s location and orientation. In the second
layout, U3-U5 split the table surface to two independent
workspaces, each running a separate instance of the UI.

Users had different ideas of the dynamics and metaphors
of their workspaces. In Fig. 5.5 (a), U1, U2, and U5 worked
only within a single, fixed area, located in front of them,
on the table surface. In this work area, users had only
the application they were currently interacting with. Other
applications were spread out of the work area, on the ta-
ble surface. To interact with another application, the users

5.1 Preliminary Study: Conceptual Model Elicitation 81

(a) (b)

Figure 5.4: Users’ perception of the table as a workspace for
two. (a) table as single, shared workspace, (b) table as set
of independent workspaces.

dragged the previous application out of their work area,
and dragged the new application in. Users had fixed menu-
bars on the bottom or top edges of the virtual work area.

(a) (b)

Figure 5.5: Users’ workspace metaphors. (a) single work
area on table surface, (b) table surface as a work area.

In Fig. 5.5 (b), U3 and U4 worked on the entire table surface.
They spread their working items, and interacted with them
in different locations and orientations.

When we asked users how they would react if another per- Users used
physical-like
gestures during
interaction

son comes and sits on the opposite edge of the table, they
used different grouping gestures to pull their items closer
to them. Users shared items with the researcher by drag-
ging them towards her. Users reached for far items by
stretching themselves or standing up. When told to do so
without standing up, two users made the gesture of pulling
a virtual table cloth towards them, while another user sug-
gested the use of a laser beamer that can be pointed to the
target object.

82 5 User Studies and System Evaluation

In Table 5.1, we synthesized users’ basic requirements for a
digital workspace on a table surface.

User Requirement

U1-U5 Provide a startup view that informs the
user of what he can do on the table

U2 Make visible which window is receiving
keyboard events, for example, by high-
lighting window border, or drawing a
connecting line

U3 Provide context menu to manage root
windows, and undo surface-level actions

U4 Provide dock area to reduce number of
windows on surface

U4 Provide storage area

U1 Provide window grouping containers

U2, U4 Provide user credentials to access previ-
ous window arrangements

Table 5.1: Users’ requirements for a digital workspace on a
table surface.

In summary, this study was intended to explore early UICollaborating with
potential users

allowed us to focus
on their basic

requirements in the
beginning of the
design process

and conceptual design of tabletop interfaces with potential
users. The observations provided us with insights on how
users perceive the table as a workspace, and enabled us to
focus on basic user requirements in the context of design.
However, in such exploratory interface, we were not able
to extract concrete design ideas from users. In the future,
other research methods could be explored.

5.2 Observational Study and System Evaluation 83

5.2 Observational Study and System Eval-
uation

The purpose of the second user study was to: (1) evaluate
Surface Manager UI, and (2) be the first of multiple rounds
to develop well-grounded theories of tabletop usage from
empirical observations. Surface Manager’s flexibility allow
us to investigate several aspects of task performing on in-
teractive surfaces. The study was conducted with the fol-
lowing objectives:

• Assess and gather feedback on the overall usabil-
ity, discoverability and learnability of the system’s
UI components, functionality, and interaction tech-
niques.

• Understand how users perceive the controller
metaphor.

• Detect usage and behavioral patterns during a task
flow.

5.2.1 Task Design

Each participant worked individually on the tabletop, and
performed three tasks in the same order. For the purpose of
this study, we designed two simple applications, Text Edi-
tor and Poster Creator. The tasks required the user to de-
sign a poster in different themes. Below, we provide the
description of the first task. The description of the rest of
the tasks is available in Appendix A.

Dennis was working on the table before you, however, he didn’t
finish his task yet, and needs your help. He left the cover of a
technical poster in the ”storage unit” of the ”controller” with a
number of images and notes that he we would like you to arrange
for printing later today. Feel free to choose the arrangement, rota-
tions, sizes, background color, and text format that work for you.
But please, use only the items Dennis provided and stick to the
size of the given poster. After you finish, store your work and end
the table session. Dennis will come later to check it.

84 5 User Studies and System Evaluation

The design and purpose of each task were as follows:

• The first task was designed to mimic, to an extent, the
desktop interface. When the user starts this task he
sees a controller mounted at a static location on the ta-
ble. The controller in this task was not movable, and
other than the control units, it only had an end ses-
sion button. The task was designed to require mini-
mal creativity—user were asked to rearrange a prede-
fined set of images and text labels inside an existing
poster. In the task description, we attempted to fa-
miliarize the user with the interface vocabulary, (e.g.,
controller, control unit, and table session).

The purpose of this design was to asses the discov-
erability of the UI, familiarize users with the general
interface, and see which UI features the users used or
missed.

• The second task was designed to observe users from
the point they encounter the table in a standby mode,
to the point they leave it. The user was required to
first start a table session by invoking the invisible con-
troller to appear, in order to complete the design task.
The controller in this task was mobile and provided
additional buttons, i.e., hide, shrink and collapse, to
manage it and the surface items. We provided the
user with a set of predefined images and asked him
to arrange them in a new poster and create suitable
text labels. At the end of the task, users were asked to
describe the functionality provided by the controller,
and then end the table session.

The aim of this task was to observe user’s behavior
towards the tabletop, particularly, at the entry and
access stages, and to understand how users use the
controller and perceive the controller metaphor.

• The third task was designed to observe and detect
users’ work patterns. The user was required to com-
plete a full poster design. The theme we chose for this
task was a movie ranking poster, under the assump-
tion that users will find some of the available movie
images familiar and focus more on the content rather
than on the interface.

5.2 Observational Study and System Evaluation 85

At this point of the study, we assumed the users to
be familiar with the system, thus, allowing us to con-
clude on the learnability and usability of the interface.

5.2.2 Method and Procedure

We conducted a qualitative, observational, think aloud user
study. The study sessions were video recorded, and each
lasted about 30 minutes.

Before starting the sessions, participants were asked to fill
out a consent form and provide demographic background
information. Then, they were provided with a brief de-
scription of the tabletop and the overall system, as well as
the goal of the study. The users were asked to explore the
system freely during the tasks, and describe what they are
doing, and why, at every step. Each user was handed a
sheet of paper that described the tasks. After finishing the
tasks, the users filled out a questionnaire (see Appendix B),
and took part in a semi-structured interview session.

5.2.3 Participants

Nine participants took part in the study, 2 female users and
7 male users. They ranged in age between 19-34 years old,
with the median of 25. All participants, but U6, were Com-
puter Science students. U6 was the only left-handed partic-
ipant.

5.2.4 Apparatus

Participants sat at a custom-made desk embedding a ca-
pacitive touch-sensing 27′′ Perceptive Pixel display (see Fig.
5.6). The display had the area and resolution of 597 × 336
mm, 2560 × 1440 pixels. The display was connected to a
Mac Pro running the Surface Manager software.

86 5 User Studies and System Evaluation

Figure 5.6: Observational study setup. Participant interact-
ing directly with on the horizontal surface.

5.2.5 Data Collection and Analysis

Data was collected from three different sources: the video
recordings, questionnaire, and feedback interviews, as a
form of data source triangulation. We used grounded the-
ory as a qualitative research method to develop theory from
empirical results [Glaser and Strauss, 1967]. The data anal-
ysis procedure was as follows:

1. An open coding round was performed by one re-
searcher. The researcher watched the video record-
ings and annotated actions, relevant time stamps, and
vocabulary, such as terms users used to describe the
interface, or verbs to describe actions.

2. Another round of coding was performed but this time
the intention was to distinguish form from function.
Users’ behavior and comments were coded under
two main categories: visual and gestural enhancement,
and concepts and functionality. The former category in-
cludes users’ comments on the used gestures and spa-
tial properties of the interface elements. The latter is

5.2 Observational Study and System Evaluation 87

composed of our observations of user behavior, and
how users described and interpreted the system.

3. The data under concepts and functionality category
was further categorized under 5 sub-categorizes : sys-
tem entry, system access, controller metaphor, activity
landscape construction, and content manipulation.

4. Questionnaire and feedback interview results were
also coded in a similar fashion.

5.2.6 Results

The convention used to present the results of the study is as
follows: under each category we describe our observations
of users behavior, the implication of these observations and
users’ answers to questionnaire and interview questions,
and, when available, recommendations for tabletop design-
ers.

System Entry

Observation. In the first task, users saw the controller wid-
get and started interacting with the tabletop immediately.
In the second task, where the controller was not visible at
startup, we noticed that the users paused for a few minutes
before they started touching the tabletop surface. At differ-
ent points in time, users began performing exploratory ges-
tures at different locations on the table until they invoked
the controller. In the third task, users engaged directly with
the table, except for U7 who could not remember the ges-
ture he used previously to invoke the controller.

Implication. In the conceptual framework (section 3.2.1) we The lack of a digital
entry point confused
users

described four types of entry points in interactive table-
top environments: environmental, physical, social and dig-
ital. In the first task, physical and digital entry points—the
shape and size of the table, and the controller widget—were
present. In the second task, despite the users having al-
ready interacted with the system, the lack of a digital entry

88 5 User Studies and System Evaluation

point confused the users and made some of them hesitant
to touch the table’s surface.

Recommendation. Tabletop designers who want to depend
on gestures in their UI design should seek to understand
users’ gesture patterns, and provide continuous feedback
to users’ touches in order to enhance the chance of users
continuing their interaction with the surface. In our inter-
face, we rendered a white circle of 7 mm (30 px) radius un-
der each detected finger as a feedback to indicate system re-
sponsiveness, however, this was not enough, for example,
for U3 who gave up trying to find the gesture after only a
few failed trials.

System Access

Observation. To invoke the controller, users performed a se-The gestural access
structure was hard to

discover
quence of repeated gestures at different locations on the ta-
ble until the controller appeared. When asked to describe
the gesture that invoked the controller, they all gave non-
matching descriptions. In the interview, users agreed that,
unless known to them previously, the access gesture—a
two-finger drag—was not intuitive, and is hard to discover.

Implication. The detected behavior, of gesture exploration,
arises three questions:

1. Was this continuous quest to find the correct gesture
the effect of the study environment? Would the users
give up earlier in other situations?

2. Was this behavior the result of having seen the inter-
face in the first task already? How could this behavior
change in a new, undiscovered interface?

3. What is the effect of the nonmatching description
users gave to their gestures on system acceptance? In
future encounters with the system, will the user re-
member to repeat her complex sequence of gestures?
Will the user be willing to try and discover the gesture
again?

5.2 Observational Study and System Evaluation 89

In the case of Surface Manager, the interface is intended for
semi-public contexts—where users are assumed to be fre-
quent users who are willing to put the time and effort to
discover and learn the system. Thus, users could be tolera-
ble to discover the access gesture and invoke the controller,
but a false conceptual model of the access gesture can have
a sever effect. In contrast, in public contexts, the system’s
immediate response is more important to attract the user,
while the correct conceptual model of the access gesture can
be sacrificed, since most users in these contexts are usually
one-time users [Isenberg et al., 2009].

When we compared the access gesture each user used to in-
voke the controller, and the user’s description of that ges-
ture, we noticed that users rarely differentiate between a
four-finger gesture and a five-finger gesture if the gestures
were structurally the same (e.g., a four-finger and a five-
finger tap).

We traced users’ gesture discovery behavior at the begin- Patterns in gesture
discovery behaviorning of the second task in order to detect any useful pat-

terns. Fig. 5.7 illustrates the locations where users tested
gestures on the table, and the frequency of returning to each
location. Fig. 5.8 shows the direction of users’ movement
and order of table locations each user tested.

All users started at, and if still hadn’t found the correct ges-
ture, returned to the area in front of them. Out of 9 users, 7
users tested tabletop locations in clockwise direction, while
U9, and U6, the only left-handed user, moved counter-
clockwise. Among participants, 55% of the users started
their gesture discovery sequence with a single-finger tap,
while the other 45% started with a single-finger drag.

A limitation of the collected data is that it was traced on a
relatively small table surface, where each edge and corner
was reachable by the sitting user, in addition to the rela-
tively small group of users.

Recommendation. If the designer is to take advantage of a
gesture as an access point, he should consider the illus-
trated patterns. The patterns show that users start looking
for an access gesture in the center area in front of them then
move to explore the accessible edges and corners of the ta-

90 5 User Studies and System Evaluation

U1 U2 U3

U7 U8 U9

U4 U5 U6

Figure 5.7: Gesture discovery behavior: test locations, and visiting frequency. Each
rectangle represents one user’s activity on the surface. The grid view is used to
divide the table into 9 locations. Starting form the lower right corner of each rect-
angle, and moving clockwise to the area in front of the user on the table, the lower
left corner of the table, the left edge, upper left corner, upper edge, etc. Each circle
symbolizes a set of successive gestures performed at a location. Number of circles
in each location reflects the frequency of revisiting the location after leaving it.

ble. Users begin their gesture sequences with single-finger
gestures, tap or drag. The designed gesture should be toler-
able to how users differentiate the number of involving fin-
gers. Additionally, the designer should consider that users
who once knew the gesture can forget it after a period of
time.

5.2 Observational Study and System Evaluation 91

U1 U2 U3

U4 U5 U6

U7 U8 U9

Figure 5.8: Gesture discovery behavior: direction of movement and order. The
blacked circles represent the starting point of each user’s path. The arrows show
how the user moved from one location to another.

Controller Metaphor

Observation. In all tasks, once the users saw the controller,
they started interacting with it, and were able to figure out
how it works.

Implication. We asked the users during the interview ”What Users felt familiar
with the controller
metaphor

did the controller represent in the system?”. We received
similar answers, such as the task-bar in Microsoft Win-
dows, the dock in Apple’s OS X, or simply the ”main
menu”. While all answers are valid, when we designed the
controller we intended for it to represent a complete user
session, including the file system, application host, and the
dock. To try and understand more how the users viewed

92 5 User Studies and System Evaluation

the system, we asked them the following: ”If two users
used the same table, will each user have his or her own
controller or will they share one?”. Two users said they
will share one, while the others felt that each user should
have his own controller. U8 commented that what is inside
the controller, files and applications, should be shared, but
the widget itself shouldn’t, so the user who has one control
unit open at a specific location on the table will always find
it in the same way.

In the questionnaire and interviews, users reported the con-
troller metaphor to be simple. When asked if they felt the
controller was in their way while working, U6 said that it
was in the first task, while 3/9 users said they had to move
the controller from their focus area more than once.

In Fig. 5.9, users ranked the features of the controller ac-Users favored
controller mobility on

any other feature
cording to their usefulness. The features were: controller’s
mobility, the ability to hide the controller using the hide
button, the ability to close all opened control units using
the shrink button, and the collapse&expand feature. Users
mostly appreciated the mobility of the controller, and had
varied opinions about other features. Four users reported
they used the collapse&expand feature to clear and arrange
their workspace, while the rest of users didn’t use the fea-
ture.

Hide

Collapse & Expand

Shrink

Mobility1

2

3

4

1 9

R
an

k

Number of users

3 5 7

Figure 5.9: Users’ ranking of controller features: 1 most
useful, 4 least useful.

5.2 Observational Study and System Evaluation 93

In general, the controller was used and identified the way
it was designed for. However, the type of tasks, and the
setting of this study were not sufficient to test all aspects of
the controller.

Activity Landscape Construction

Observation. We observed two reoccurring patterns of land- Patterns in activity
landscapes
construction

scape construction in all three tasks (see Fig. 5.10). In the
first pattern, 7 users spread all images, whether exiting on
the poster like in the first task, or in the storage unit like
in the third task, on the surface. The users then moved
the items one by one to the poster, where they positioned
them in the desired location before going to look for the
second image. This pattern is beyond the typical desktop
metaphor, and more closely related to traditional tables’ af-
fordance. In the second pattern, 2 users accumulated all
images on the poster itself, and selected and arranged the
images by repeatedly shuffling between the images.

(a) (b)

Figure 5.10: Activity landscape construction patterns. (a)
working on the surface (b) working in the application.

Implication. In the conceptual framework we mentioned
how Kirsh [2001] distinguishes between two structures of
office desks, the neat—tidy desks where limited number of
work items are visible and located in a standardized place,
and the scruff—messy office that can hold large amounts of
information. In the context of this study, the first pattern
resembles that of the messy office structure.

94 5 User Studies and System Evaluation

Recommendation. Finding a connection between Kirsh’s of-
fice desk structures and the observed patterns could inform
the design of surface managers, particularly, surface parti-
tioning and layout policies.

Content Manipulation

Observation. In Surface Manager, interface and content ma-
nipulation is done using direct manipulation techniques,
gestures, and menus. Users discovered how to invoke
menu-bars quickly. They were observed to request the
menu-bars when needed, use them intuitively, and then
hide them when they were done. We also noticed that users
would have several menu-bars appear simultaneous, edit
the associated items, and then go back to hide the menu-
bars. Only two users made use of menu-bars’ mobility.

In the third task, where the users needed to find images inUsers utilized the
scaling feedback in

the controller to
facilitate file

searching

the storage unit, we noticed the users had hard time dis-
tinguishing the images. Users reported that despite the
zooming feature in control units, images were still small.
Alternatively, two users made use of the scaling feedback
of control units, and dragged each image to the edge of the
unit, where it grows to its original size. While still hold-
ing the image, the user examined it, then returned it or
dragged it out for usage. The other users dragged the im-
ages out of the storage unit completely and returned them
if not wanted.

Implication. We were keen to find how users use the menu-Menu-bars were
found to be simple to
use, and require only

few action steps

bars, in particular, how the in-place interaction technique
improved or hindered their task flow. Diagram 5.11 shows
how the users responded to the questionnaire about the us-
ability of menu-bars. About 50% of the users reported that
they were confused by the menu-to-target item association.
In our interface, we relied merely on proximity. We wanted
to avoid any visible connectors, for example, between the
peripherals. However, we observed that proximity was not
sufficient. Users found menu-bars appearing under the tar-
get item to be useful. In the interview, three users com-
mented that using the menu-bars required only few steps
to achieve the desired effect on the target item compared to

5.3 Discussion 95

the desktop.

I found the menus hard to use

I was distracted by the need to
hide and show the menu-bars

I think showing the menus on
request was useful

I was confused of which menu
belonged to which item

The menus occluded my work
items

strongly disagree strongly agree

Figure 5.11: Box plot for menu-bar related points in the
questionnaire.

5.3 Discussion

During both conducted studies, we noticed that users en- We achieved
simplicity and
usability in a new
computing
environment and
interface-design

joyed the familiarity, of UI and gesture design, but were
open to trade familiarity for simplicity and speed. The
controller metaphor, the core of Surface Manager, was ap-
proved by users for its simplicity, reachability, and mobility.
We also noticed that users felt comfortable placing physi-
cal sheets of paper on the surface while interacting with it.
Users suggested that the system can work significantly bet-
ter if we enhanced the visual appearance and feedback with
animations. In the questionnaire, we asked the users if they
imagine that most people will be able to use this interface
without prior training and they all confirmed.

We collected rich sets of data during the first and second
studies, however, we defer to provide any conclusive man-
ifestations, and bound to only reflect our observations and
analysis, as we were limited in the size of table and group
of users. Nevertheless, our findings, as we have mentioned,

96 5 User Studies and System Evaluation

are the result of the first round of a series of user studies
that aim to develop well-grounded tabletop usage theories.
Designers can make use of our initial findings, for example,
the illustrated gesture discovery behaviors and landscape
construction patterns, as guidelines in the early stages of
the design process.

97

Chapter 6

Summary and Future
Work

“Successful design does not necessarily
perpetuate users’ current ways of working, but it is
built on a deep understanding of those ways and of

how a new design will change them.”

—Catherine Courage

6.1 Summary and Contributions

This thesis started with the broad research question— Research question:
how to enable
tabletops as
multi-task,
general-purpose
workspaces

how to enable tabletops as multi-task, general-purpose
workspaces. On desktops, window managers have been re-
sponsible for supporting and enabling these features. How-
ever, desktop window managers are designed for single-
user systems and cannot be directly utilized in tabletops
without sacrificing usability. Consequently, we proposed
surface managers as a new package of user-interface soft-
ware on interactive tabletops.

A surface manager is a user-interface that supports and fa- Surface managers
provide equivalent
facilities of window
managers tailored for
tabletops

cilitates users’ concurrent work processes on large, horizon-
tal, multi-touch surfaces. Like desktop window managers,
surface managers provide interface elements and policies

98 6 Summary and Future Work

to launch and manage concurrent applications. Surface
managers additionally provide space management tools,
and support simultaneous user interaction and workspace
partitioning.

In order to design a surface manager, we started by analyz-
ing the design space, requirements and constraints of table-
tops, and the paradigm shift in UI design between desktops
and tabletops.

We highlighted five aspects that we believe are critical to
investigate when attempting to redesign software from the
desktop computer to interactive surfaces. These are: the
WIMP paradigm, input focus shifting, single-user orienta-
tion, direct manipulation, and the Desktop metaphor.

A vital part of the design process was to understand users’
physical and behavioral interaction around tables. We
conducted a preliminary, participatory user study in or-
der to explore early UI and conceptual design of table-
top interfaces with potential users. The observations pro-
vided us with insights on how users perceive the table as a
workspace, and enabled us to focus on basic user require-
ments in the context of design.

Next, we reviewed fundamental theories of workplace andDistributed cognition
theories to

understand the
structure of tabletop

environments

tabletop territoriality. We extended Kirsh’s [2001] model
of the context of work in office environments to define the
structures users need while working on tabletops. This has
resulted in the conceptual framework of surface manages.

The conceptual framework builds on Kirsh’s model in three
ways: (1) it attempts to frame the ideas from distributed
cognition research in a way that is more usable by HCI
designers, (2) it adapts the abstract concepts of the model
from traditional office desks and environments to interac-
tive tabletop environments, and (3) it expands the previous
model, which is single-user oriented, to account for multi-
ple co-located user settings.

The framework provides a descriptive model of the tangi-
ble and conceptual structures users need to perform tasks
in tabletop environments. It sets out three concepts to de-
fine and design these structures: workspace access, surface

6.1 Summary and Contributions 99

partitioning, and coordination policies.

The conceptual framework elaborates on the design of ac-
cess points to help designers assess different design alter-
natives. We described a modeling technique for access
point design, produced the corresponding design space,
and evaluated design alternatives in the light of empirical
tabletop literature, as well as effectiveness figures of merit
from [Card et al., 1990].

The described framework recognizes the role of tables in
physical contexts and does not attempt to design holistic
work environments for interactive surfaces. Instead, it fo-
cuses on observed tabletop practices and provides struc-
tural guidance to support these practices and enhance the
overall user experience.

The proposed framework still requires long-term and ob-
servational studies to understand the deep effect the ta-
ble’s form factor and contexts have on the workflows of
co-located users. With the use of surface manager software
and considering the current state of commercial tabletops,
we believe that this data will become available in the near
future.

We applied the framework to the interface design of Sur- The aim of Surface
Manager design was
to augment the utility
of traditional tables in
semi-public contexts

face Manager. Our overall goal was to support and facil-
itate users’ concurrent work processes on interactive sur-
faces, in various social interaction settings. We aimed to
augment the current role of traditional tables in semi-public
contexts with a general purpose, non-intrusive, ”calm”
UI that enables flexible resource access and manipulation.
Consequently, we designed the controller metaphor. This
metaphor allows single users as well as collaborators to ap-
proach and interact with the tabletop, while maintaining
flexible seating arrangements.

Surface Manager was designed to achieve five design goals: Surface Manager
design goals(1) equal access privileges: users should be able to access

the system from any location or orientation on the table; (2)
local control distribution: the scope of one user’s control
should be localized to the user’s workspace and must not
affect or interrupt the work of others; (3) window manage-
ment facilities, such as application hosting and layout poli-

100 6 Summary and Future Work

cies; (4) handling tabletops design constraints, mainly the
constraints that can interrupt the workflow of users, such
as surface clutter and object reachability; and (5) designing
a calm computing environment: Surface Manager should
integrate with the traditional table role without being in-
trusive, loud, or demanding.

The main building blocks of the Surface Manager inter-
face are: system access model, UI toolkit, file system,
generic commands, tree manager, peripheral association
mechanism, and a set of interaction techniques (policies).
The interaction techniques provided by Surface Manager
aim to handle tabletops design constraints. The tech-
niques include: (a) in-place, (b) collapse&expand, and (c)
remote control interaction techniques. For example, col-
lapse&expand allows the user to reach any distant object
by tapping the collapse button on the controller. Once the
user does, she can press the now expand button to return
her objects to their original spatial arrangement.

The UI toolkit in Surface Manager was designed to main-Surface Manager UI
toolkit tain a consistent interface, and to embed design solutions

for some of the direct-touch issues. The toolkit is composed
of three groups of UI elements: (a) primitive elements, such
as buttons and text-fields, (b) layout containers, such as
scroll and grid views, and (c) core elements: controllers,
canvases, menu-bars, and soft-keyboards.

In addition, we designed a gesture detector server for Sur-Gesture detector
face Manager that can concurrently detect and respond to
two or more users performing the same gesture (e.g., an ac-
cess gesture) on the same object (e.g., the table surface).

Surface Manager was evaluated in a qualitative, observa-A qualitative,
observational user

study to detect
tabletop usage

patterns and
evaluate Surface

Manager UI

tional user study. The study results highlighted tabletop us-
age patterns, such as gesture discovery behavior and activ-
ity landscape construction. Users feedback on the overall
design, learnability, and discoverability of the system was
positive and encouraging.

6.2 Future Work 101

6.2 Future Work

The qualitative user study we conducted during this the- Developing
well-grounded
theories of tabletop
usage

sis is only the first of multiple rounds to develop well-
grounded theories of tabletop usage from empirical obser-
vations. Our next steps include iterating on Surface Man-
ager UI design, and designing a user study to test the con-
troller metaphor and overall UI with co-located users. This
shall be followed with a series of studies in different tech-
nological, physical, and social interaction settings.

Further investigations and quantitative studies can be per-
formed to follow up on the tabletop usage patterns that
emerged during our user study. For example, the ges-
ture discovery behavior can be studied further and pro-
cessed with Artificial Intelligent techniques to build heuris-
tic models of users’ gestural behavior. This can be used as
input to enhance our gesture detector.

Our work in this thesis can be extended as two complemen-
tary paths: refining the conceptual framework with more
theoretical analysis and empirical results, and iterating and
extending Surface Manager UI design.

The controller metaphor was received well by participants Exploring new
metaphorsin the user study. Nevertheless, we intend to test sev-

eral other metaphors in Surface Manager, for example, the
metaphors designed for NUI (e.g., Magnet, Sphere, and Un-
fold metaphors [Hofmeester and Wixon, 2010]).

In our interface, we designed a simple file system that al- Improving file
navigation and
search

lows users to access files in three ways: speed access, sys-
tem access, and application access. For example, speed ac-
cess allows the user to start creating content on tabletops
after a single gesture. However, we only used basic file nav-
igation and visualization techniques. A future work could
be to investigate with more visualization tools. Addition-
ally, due to text input limitations, we only offered file search
via simple navigation, scaling, and scrolling mechanisms.
Alternatively, a visual tagging system could be designed.
This system would allow users to tag a file by cropping
part of its view and then utilizing grouping and associative
searching tools to replace hierarchical file storing, naming,

102 6 Summary and Future Work

and extensive text input requirements.

In addition, in the design of the file system we exploredA new filing system
two new filing ideas. In the first idea, we tried to substi-
tute the notion of files and applications, with content and
services. Content represents users’ objects of interest that
are needed to accomplish a task (e.g., images, text, URL).
A service is a set of options provided by a service provider
that can be requested and received from Surface Manager
in a uniform format. This led to the second idea: the user
can request two services for one content object and the sys-
tem aggregates the options of both services in one format.
Accordingly, the user can, for example, edit the images of
a single pdf file with an image editor, and the text in a text
edit, simultaneously. We designed a prototype for this file
system, but the design still requires several iterations and
user evaluations.

For Surface Manager to function as a general-purpose UISurface Manager as
a general-purpose UI we need to achieve the following: (a) simple and clean vi-

sual design of UI elements, (b) expressive and continuous
feedback, (c) comprehensive gestural language, (d) user-
identification mechanisms, (e) improved filing system, and
(f) additional interaction techniques to improve the overall
user experience.

A longitudinal goal is to extend Surface Manager to designSurface Manager as
a complete window

system
an equivalent of a complete window system. Such a sys-
tem on tabletops will provide abstractions from tabletop
technologies and hardware, provide a reliable multi-touch
and gesture recognition system, plug-ins that allow seam-
less integration with other user devices, tracking and scan-
ning mechanisms, as well as support for tangible objects. It
could also implement several interaction models to handle
different social settings. It would also be essential for the
system to provide privacy settings, and be connected to the
internet and cloud storage.

103

Appendix A

Task Description for
Observational User
Study

First task Dennis was working on the table before you, how-
ever, he didn’t finish his task yet, and needs your
help. He left the cover of a technical poster in the
storage unit of the controller with a number of images
and notes that he we would like you to arrange for
printing later today. Feel free to choose the arrange-
ment, rotations, sizes, background color, and text for-
mat that work for you. But please, use only the items
Dennis provided and stick to the size of the given
poster.

After you finish, store your work and end the table
session. Dennis will come later to check it.

Second task Start a new session on the table. You will see sev-
eral images randomly spread out on the surface. Your
task is to make use of these images, and create suit-
able text labels to design a sports poster. You can use
the Poster Creator and Text Editor applications to ac-
complish this task.

Can you describe the controller features?

After you finish please store your work and end the
session.

104 A Task Description for Observational User Study

Third task This is your final task. Sahra was given the task of cre-
ating a poster that shows the best and worse movies
from the past 5 years. Her boss already decided on
the movies she could rank and stored them in the stor-
age unit. But Sahra does not watch movies! She needs
your help. Please, design a poster that shows a few
movies and their rankings (according to your prefer-
ence). You can use any resource provided by the sys-
tem. After you finish please store your work and end
the session.

105

Appendix B

Questionnaire Form for
Observational User
Study

strongly
disagree

disagree neutral agree strongly
agree

I used the controller to:

Access applications

Access stored items

Store items

Delete items

Dock items

Exit session

I found the controller to be in
my way while working

106 B Questionnaire Form for Observational User Study

I found the controller’s mo-
bility useful

I found the controller’s hide
button useful

I think I will use the shrink
button frequently

I found the menus hard to use

I was distracted by the need
to hide and show the menu-
bars

I think showing the menus on
request was useful

I was confused of which
menu belonged to which item

The menus occluded my
work items

The interface distracted me
from the content

I imagine that most people
will be able to use this inter-
face without prior training

I used the collapse button to: reach far
items

store all
items

clear the
surface

arrange
my
space

didn’t
use it

I rank controller features
from 1-4 as follows (1 is most
useful, 4 is least):

hide
button

collapse
button

shrink
button

mobility

I used the zooming function-
ality of the control units to:

fast
search
for items

fine
search
for items

estimate
storage
size

avoid
scrolling

didn’t
use it

Table B.1: Questionnaire form for observational user study.

107

Bibliography

C.J. Ackad, A. Collins, and J. Kay. Switch: exploring the de-
sign of application and configuration switching at table-
tops. In Proc. ITS ’10, pages 95–104. ACM, 2010.

D. Andreychuk, Y. Ghanam, and F. Maurer. Adapting exist-
ing applications to support new interaction technologies:
technical and usability issues. In Proc. SIGCHI ’10, EICS
’10, pages 199–204. ACM, 2010.

T. Apted, A. Collins, and J. Kay. Heuristics to support
design of new software for interaction at tabletops. In
CHI’09 Workshop on Multitouch and Surface Computing,
2009.

T. Bartindale, C. Harrison, P. Olivier, and S.E. Hudson. Sur-
facemouse: supplementing multi-touch interaction with
a virtual mouse. In Proc. TEI ’11, pages 293–296. ACM,
2011.

M. Beaudouin-Lafon. Instrumental interaction: an interac-
tion model for designing post-wimp user interfaces. In
Proc. SIGCHI ’00, pages 446–453. ACM, 2000.

Benjamin B. Bederson and James D. Hollan. Pad++: a
zooming graphical interface for exploring alternate inter-
face physics. In Proc. UIST ’94, UIST ’94, pages 17–26.
ACM, 1994.

G. Besacier, G. Rey, M. Najm, S. Buisine, and F. Vernier. Pa-
per metaphor for tabletop interaction design. Human-
Computer Interaction. Interaction Platforms and Techniques,
pages 758–767, 2007.

P. Brandl, J. Leitner, T. Seifried, M. Haller, B. Doray, and
P. To. Occlusion-aware menu design for digital tabletops.
In CHI EA ’09, CHI EA ’09, pages 3223–3228. ACM, 2009.

108 Bibliography

H. Brignull and Y. Rogers. Enticing people to interact with
large public displays in public spaces. In Proc. INTER-
ACT ’03, volume 3, pages 17–24, 2003.

H. Brignull, S. Izadi, G. Fitzpatrick, Y. Rogers, and T. Rod-
den. The introduction of a shared interactive surface
into a communal space. In Proc. CSCW ’04, pages 49–58.
ACM, 2004.

B. Buxton. Multi-touch systems that i have known and
loved. Microsoft Research, 2007.

S.K. Card, J.D. Mackinlay, and G.G. Robertson. The design
space of input devices. In Proc. SIGCHI ’90, pages 117–
124. ACM, 1990.

A. Collins, T. Apted, and J. Kay. Tabletop file system ac-
cess: Associative and hierarchical approaches. In TABLE-
TOP’07, pages 113–120. IEEE, 2007.

A. Collins, C.J. Ackad, T. Apted, P. Sztajer, P. Ward,
H. Weng, and J. Kay. Core functionality and new ap-
plications for tabletops and interactive surfaces. In Proc.
UbiComp ’11, pages 607–608. ACM, 2011.

P. Dietz and D. Leigh. Diamondtouch: a multi-user touch
technology. In Proc. UIST ’01, pages 219–226. ACM, 2001.

J.J. Edney. Human territories: Comment on functional
properties. Environment and Behavior, 1976.

G.W. Fitzmaurice, H. Ishii, and W.A.S. Buxton. Bricks: lay-
ing the foundations for graspable user interfaces. In Proc.
SIGCHI ’95, pages 442–449. ACM Press/Addison-Wesley
Publishing Co., 1995.

C. Forlines, D. Wigdor, C. Shen, and R. Balakrishnan.
Direct-touch vs. mouse input for tabletop displays. In
Proc. SIGCHI ’07, pages 647–656. ACM, 2007.

G. Furumi, D. Sakamoto, and T. Igarashi. Snaprail: a table-
top user interface widget for addressing occlusion by
physical objects. In Proc. ITS ’12, ITS ’12, pages 193–196.
ACM, 2012.

Barney G Glaser and Anselm L Strauss. The discovery of
grounded theory: Strategies for qualitative research. Aldine
de Gruyter, 1967.

Bibliography 109

J. Gosling, D.S.H. Rosenthal, and M.J. Arden. The NeWS
book: an introduction to the network/extensible window sys-
tem. Springer, 1989.

M. S Hancock, F. D Vernier, D. Wigdor, S. Carpendale, and
C. Shen. Rotation and translation mechanisms for table-
top interaction. In TableTop ’06. First IEEE International
Workshop on, pages 8–pp. IEEE, 2006.

T.E. Hansen, J.P. Hourcade, M. Virbel, S. Patali, and T. Serra.
Pymt: a post-wimp multi-touch user interface toolkit. In
Proc. ITS ’09, pages 17–24. ACM, 2009.

D.A. Henderson Jr and S. Card. Rooms: the use of mul-
tiple virtual workspaces to reduce space contention in a
window-based graphical user interface. TOG ’86, 5(3):
211–243, 1986.

U. Hinrichs, S. Carpendale, S. Scott, and E. Pattison. Inter-
face currents: Supporting fluent collaboration on table-
top displays. In Smart Graphics, pages 924–924. Springer,
2005.

U. Hinrichs, M. Hancock, C. Collins, and S. Carpendale.
Examination of text-entry methods for tabletop displays.
In TABLETOP’07, pages 105–112. IEEE, 2007.

K. Hofmeester and D. Wixon. Using metaphors to create a
natural user interface for microsoft surface. In CHI EA
’10, pages 4629–4644. ACM, 2010.

D. Holman. Gazetop: interaction techniques for gaze-
aware tabletops. In CHI EA ’07, pages 1657–1660. ACM,
2007.

E. Hornecker. A design theme for tangible interaction:
embodied facilitation. In ECSCW 2005, pages 23–43.
Springer, 2005.

E. Hornecker. ”i don’t understand it either, but it is cool”-
visitor interactions with a multi-touch table in a museum.
In TABLETOP ’08, pages 113–120. IEEE, 2008.

E. Hornecker, P. Marshall, and Y. Rogers. From entry to
access: how shareability comes about. In Proc. DDPI ’07,
pages 328–342. ACM, 2007.

110 Bibliography

S. Hunter. MemTable-Contextual Memory in Group
Workspaces. PhD thesis, Massachusetts Institute of Tech-
nology, 2009.

E. Hutchins and G. Lintern. Cognition in the Wild, volume
262082314. MIT press Cambridge, MA, 1995.

P. Isenberg, U. Hinrichs, M. Hancock, M. Tobiasz, and
S. Carpendale. Information visualization on interactive
tabletops in work vs. public settings. CoVIS ’09, page 28,
2009.

R.J.K. Jacob, A. Girouard, L.M. Hirshfield, M.S. Horn,
O. Shaer, E.T. Solovey, and J. Zigelbaum. Reality-based
interaction: a framework for post-wimp interfaces. In
CHI ’08, volume 1, page 201. ACM, 2008.

J. Johnson, T.L. Roberts, W. Verplank, D.C. Smith, C.H. Irby,
M. Beard, and K. Mackey. The xerox star: A retrospective.
Computer, 22(9):11–26, 1989.

L. Jun, D. Pinelle, C. Gutwin, and S. Subramanian. Im-
proving digital handoff in shared tabletop workspaces.
In TABLETOP ’08., pages 9–16. IEEE, 2008.

Y. Kakehi and T. Naemura. Ulteriorscape: Interactive op-
tical superimposition on a view-dependent tabletop dis-
play. In TABLETOP ’08, pages 189–192. IEEE, 2008.

V. Kaptelinin and M. Czerwinski. Beyond the desktop
metaphor: designing integrated digital work environments,
volume 1. The MIT Press, 2007.

D. Kirk, S. Izadi, O. Hilliges, R. Banks, S. Taylor, and
A. Sellen. At home with surface computing? In Proc.
CHI ’12, pages 159–168. ACM, 2012.

D. Kirsh. The context of work. Human–Computer Interaction,
16(2-4):305–322, 2001.

D. Klinkhammer, M. Nitsche, M. Specht, and H. Reiterer.
Adaptive personal territories for co-located tabletop in-
teraction in a museum setting. In Proc. ITS ’11, pages
107–110. ACM, 2011.

R. Kruger, S. Carpendale, S.D. Scott, and S. Greenberg.
How people use orientation on tables: comprehension,
coordination and communication. In Proc. SIGGROUP
’03, pages 369–378. ACM, 2003.

Bibliography 111

D. Leithinger and M. Haller. Improving menu interac-
tion for cluttered tabletop setups with user-drawn path
menus. In TABLETOP ’07, pages 121–128. IEEE, 2007.

G. J. Lepinski, T. Grossman, and G. Fitzmaurice. The design
and evaluation of multitouch marking menus. In Proc.
CHI ’10, CHI ’10, pages 2233–2242. ACM, 2010.

S. Lepreux, S. Kubicki, C. Kolski, and J. Caelen. From cen-
tralized interactive tabletops to distributed surfaces: the
tangiget concept. International Journal of Human-Computer
Interaction, 28(11):709–721, 2012.

W. Lidwell, K. Holden, and J. Butler. Universal Principles of
Design, Revised and Updated: 125 Ways to Enhance Usabil-
ity, Influence Perception, Increase Appeal, Make Better Design
Decisions, and Teach through Design. Rockport publishers,
2010.

I. MacKenzie and S. Jusoh. An evaluation of two input
devices for remote pointing. Engineering for Human-
Computer Interaction, pages 235–250, 2001.

N. Mahyar, A. Sarvghad, T. Weeres, and M. Tory. Cospaces:
Workspaces to support co-located collaborative visual
analytics. In DEXIS ’11, page 36, 2012.

J.H. Morris, M. Satyanarayanan, M.H. Conner, J.H.
Howard, D.S. Rosenthal, and F.D. Smith. Andrew: A
distributed personal computing environment. Commu-
nications of the ACM, 29(3):184–201, 1986.

Meredith Ringel Morris, Andreas Paepcke, Terry Wino-
grad, and Jeannie Stamberger. Teamtag: exploring cen-
tralized versus replicated controls for co-located tabletop
groupware. In Proc. CHI ’06, CHI ’06, pages 1273–1282.
ACM, 2006a.

M.R. Morris, D. Morris, and T. Winograd. Individual audio
channels with single display groupware: effects on com-
munication and task strategy. In Proc. CSCW ’04, pages
242–251. ACM, 2004a.

M.R. Morris, K. Ryall, C. Shen, C. Forlines, and F. Vernier.
Beyond social protocols: Multi-user coordination policies
for co-located groupware. In Proc. CSCW ’04, pages 262–
265. ACM, 2004b.

112 Bibliography

M.R. Morris, A. Paepcke, and T. Winograd. Team-
search: Comparing techniques for co-present collabora-
tive search of digital media. In TableTop ’06, pages 8–pp.
IEEE, 2006b.

M.R. Morris, A.J.B. Brush, and B.R. Meyers. A field study
of knowledge workers’ use of interactive horizontal dis-
plays. In TABLETOP ’08, pages 105–112. IEEE, 2008.

M.R. Morris, D. Fisher, and D. Wigdor. Search on surfaces:
Exploring the potential of interactive tabletops for collab-
orative search tasks. Information processing & management,
46(6):703–717, 2010.

Michael J. Muller. Pictive: an exploration in participatory
design. In Proc. CHI ’91, CHI ’91, pages 225–231. ACM,
1991.

B.A. Myers. A taxonomy of window manager user inter-
faces. CG ’88, 8(5):65–84, 1988.

B.A. Myers, R. Bhatnagar, J. Nichols, C.H. Peck, D. Kong,
R. Miller, and A.C. Long. Interacting at a distance: mea-
suring the performance of laser pointers and other de-
vices. In Proc. CHI ’02, pages 33–40. ACM, 2002.

B.A. Nardi. Context and consciousness: activity theory and
human-computer interaction. mit Press, 1995.

D. Norman. The design of everyday things. Basic books, 2002.

D.A. Norman and S.W. Draper. User centered system de-
sign; new perspectives on human-computer interaction. L.
Erlbaum Associates Inc., 1986.

P. Peltonen, E. Kurvinen, A. Salovaara, G. Jacucci, T. Ilmo-
nen, J. Evans, A. Oulasvirta, and P. Saarikko. It’s mine,
don’t touch!: interactions at a large multi-touch display
in a city centre. In Proc. CHI ’08, pages 1285–1294. ACM,
2008.

D. Pinelle, M. Nacenta, C. Gutwin, and T. Stach. The effects
of co-present embodiments on awareness and collabora-
tion in tabletop groupware. In Proc. GI ’08, pages 1–8.
Canadian Information Processing Society, 2008.

Bibliography 113

D. Pinelle, M. Barjawi, M. Nacenta, and R. Mandryk. An
evaluation of coordination techniques for protecting ob-
jects and territories in tabletop groupware. In Proc. CHI
’09, pages 2129–2138. ACM, 2009.

A.M. Piper and J.D. Hollan. Tabletop displays for small
group study: affordances of paper and digital materials.
In Proc. CHI ’09, pages 1227–1236. ACM, 2009.

J. Rekimoto and M. Saitoh. Augmented surfaces: a spa-
tially continuous work space for hybrid computing envi-
ronments. In Proc. CHI ’99, pages 378–385. ACM, 1999.

M. Ringel, K. Ryall, C. Shen, C. Forlines, and F. Vernier. Re-
lease, relocate, reorient, resize: fluid techniques for docu-
ment sharing on multi-user interactive tables. In CHI EA
’04, CHI EA ’04, pages 1441–1444. ACM, 2004.

Y. Rogers and S. Lindley. Collaborating around vertical and
horizontal large interactive displays: which way is best?
Interacting with Computers, 16(6):1133–1152, 2004.

Yvonne Rogers, Youn-kyung Lim, William R. Hazlewood,
and Paul Marshall. Equal opportunities: Do shareable
interfaces promote more group participation than single
user displays? Human–Computer Interaction, 24(1-2):79–
116, 2009.

K. Ryall, C. Forlines, C. Shen, and M.R. Morris. Explor-
ing the effects of group size and table size on interactions
with tabletop shared-display groupware. In CSCW ’04,
volume 6, pages 284–293. Citeseer, 2004.

R.W. Scheifler and J. Gettys. The x window system. ACM
Transactions on Graphics (TOG), 5(2):79–109, 1986.

S. D. Scott, M. Sheelagh, T. Carpendale, and K. M. Inkpen.
Territoriality in collaborative tabletop workspaces. In
Proc. CSCW ’04, pages 294–303. ACM, 2004.

S.D. Scott and S. Carpendale. Investigating tabletop terri-
toriality in digital tabletop workspaces. Technical report,
Technical Report 2006-836-29, Department of Computer
Science, University of Calgary., Calgary, AB, Canada,
2006.

114 Bibliography

S.D. Scott, K.D. Grant, and R.L. Mandryk. System guide-
lines for co-located, collaborative work on a tabletop dis-
play. In Proc. CSCW ’03, pages 159–178, 2003.

S.D. Scott, M.S.T. Carpendale, and S. Habelski. Storage
bins: Mobile storage for collaborative tabletop displays.
Computer Graphics and Applications, IEEE, 25(4):58–65,
2005.

A.M. Seto. Designing discoverable digital tabletop menus
for public settings. 2012.

C. Shen, K. Everitt, and K. Ryall. Ubitable: Impromptu face-
to-face collaboration on horizontal interactive surfaces.
In UbiComp ’03, pages 281–288. Springer, 2003.

C. Shen, F.D. Vernier, C. Forlines, and M. Ringel. Diamond-
spin: an extensible toolkit for around-the-table interac-
tion. In Proc. CHI ’04, pages 167–174. ACM, 2004.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F.D. Vernier,
K. Everitt, M. Wu, D. Wigdor, M.R. Morris, M. Han-
cock, et al. Informing the design of direct-touch table-
tops. Computer Graphics and Applications, IEEE, 26(5):36–
46, 2006.

B. Shneiderman. 1.1 direct manipulation: a step beyond
programming languages. Sparks of Innovation in Human-
Computer Interaction, page 17, 1993.

D.C. Smith, C. Irby, R. Kimball, and E. Harslem. The star
user interface: An overview. Proceedings of the June, pages
7–10, 1982.

O. Ståhl, A. Wallberg, J. Söderberg, J. Humble, L.E. Fahlén,
A. Bullock, and J. Lundberg. Information exploration us-
ing the pond. In Proc. CTS ’02, pages 72–79. ACM, 2002.

D. Stanton and H.R. Neale. The effects of multiple mice on
children’s talk and interaction. Journal of Computer As-
sisted Learning, 19(2):229–238, 2003.

N.A. Streitz, J. Geißler, T. Holmer, S. Konomi, C. Müller-
Tomfelde, W. Reischl, P. Rexroth, P. Seitz, and R. Stein-
metz. i-land: an interactive landscape for creativity and
innovation. In Proc. CHI ’99, pages 120–127. ACM, 1999.

Bibliography 115

N.A. Streitz, P. Tandler, C. Müller-Tomfelde, and S. Konomi.
Roomware: Towards the next generation of human-
computer: Interaction based on an integrated design of
real and virtual worlds. Human-Computer Interaction in
the New Millenium, Addison Wesley, pages 551–576, 2001.

S. Strothoff, D. Valkov, and K. Hinrichs. Triangle cursor:
interactions with objects above the tabletop. In Proc. ITS
’11, pages 111–119. ACM, 2011.

K. STUART, K. William, and J. BETTY. Evaluation of
mouse, rate-controlled isometric joystick, step keys, and
text keys for text selection on a crt. Ergonomics, 21(8):601–
613, 1978.

A. Tang, M. Tory, B. Po, P. Neumann, and S. Carpendale.
Collaborative coupling over tabletop displays. In Proc.
CHI ’06, pages 1181–1190. ACM, 2006.

J.C. Tang. Findings from observational studies of collabo-
rative work. International Journal of Man-machine studies,
34(2):143–160, 1991.

Luyten K. Hoven E. Vermeulen, J. and K. (in press) Con-
inx. Crossing the bridge over norman’s gulf of execu-
tion: Revealing feedforward’s true identity. In Proc. CHI
’13. ACM, 2013.

S. Voelker, M. Weiss, C. Wacharamanotham, and
J. Borchers. Dynamic portals: a lightweight metaphor
for fast object transfer on interactive surfaces. In Proc.
ITS ’11, pages 158–161. ACM, 2011.

X. Wang, Y. Ghanam, and F. Maurer. From desktop to table-
top: Migrating the user interface of agileplanner. Engi-
neering Interactive Systems, pages 263–270, 2008.

M. Weiser. The computer for the 21st century. Scientific
American, 265(3):94–104, 1991.

D. Wigdor and D. Wixon. Brave NUI world: designing natural
user interfaces for touch and gesture. Morgan Kaufmann,
2011.

D. Wigdor, G. Perm, K. Ryall, A. Esenther, and C. Shen. Liv-
ing with a tabletop: Analysis and observations of long
term office use of a multi-touch table. In TABLETOP ’07,
pages 60–67. IEEE, 2007.

116 Bibliography

R. Wimmer and F. Hennecke. Everything is a window: Uti-
lizing the window manager for multi-touch interaction.
In Proc. EICS ’10, 2010.

J.O. Wobbrock, M.R. Morris, and A.D. Wilson. User-defined
gestures for surface computing. In Proc. CHI ’09, pages
1083–1092. ACM, 2009.

P.C. Wright, R.E. Fields, and M.D. Harrison. Analyz-
ing human-computer interaction as distributed cogni-
tion: the resources model. Human-Computer Interaction,
15(1):1–41, 2000.

C. Wu, Y. Suo, C. Yu, Y. Shi, and Y. Qin. uPlatform: a cus-
tomizable multi-user windowing system for interactive
tabletop. Human-Computer Interaction. Design and Devel-
opment Approaches, pages 507–516, 2011.

T. Yoshikawa, B. Shizuki, and J. Tanaka. Handywidgets:
local widgets pulled-out from hands. In Proc. ITS ’12,
pages 197–200. ACM, 2012.

N. Yuill and Y. Rogers. Mechanisms for collaboration: A de-
sign and evaluation framework for multi-user interfaces.
ACM Trans. Comput.-Hum. Interact., 19(1):1:1–1:25, May
2012.

A. Zanella and S. Greenberg. A single display groupware
widget set. In Western Computer Graphics Symposium 2000,
pages 94305–6004, 2000.

117

Index

access policies, 46
activity landscapes, 31, 87, 43–87
application swicthing, 3, 28, 66

beyond-surface, 38

centralized model, 38, 42, 43
concurrent applications, 2, 51
context of work, 4, 29, 30–32
controller metaphor, 13, 54–55
coordination mechanisms, 31
coordination policies, 29, 46–47, 51

design constraints, 13–16, 51
design space, 52, 39–52
Desktop metaphor, 20, 23
direct manipulation, 21, 23, 68–70
direct-touch, 56, 16–56
distributed cognition, 29
distributed model, 52, 38–52

entry points, 30, 53
evaluation, 83–95

focus shift, 3, 23
future work, 101–102

hard modalities, 37

icons, 21
interaction styles, 6, 45

layout policies, 18, 46

Macintosh, 21
metaphors, 10, 12–13, 20–21
migrate, 3, 24
Modern UI Style, 22

neat desk, 47, 93

118 Index

occlusion, 16, 54
on-surface, 52, 39–52

paradigm shift, 22, 1–22
physical contexts, 12, 48
physical interaction, 2

reachability, 15, 39, 67
replicated model, 38

scruff desk, 47, 93
seating arrangements, 14, 52
single-application paradigm, 2
Smalltalk, 17, 20
social interaction, 30, 47, 50, 25–50
soft modalities, 52, 37–52
space management, 26
summary, 97–100
surface clutter, 15, 67
surface orientation, 10, 14
surface partitioning, 25, 29, 43–45

table ergonomics, 10, 44
territories, 4, 15, 25, 43
toolkits, 18, 28
Tools metaphor, 20
transition policies, 46

ubiquitous computing, 9, 31

WIMP paradigm, 19, 22
window management facilities, 3
window manager, 3, 18, 20
window system architecture, 17, 72
work environment, 11–12, 30
workflows, 5, 30, 51
workplace, 4, 41
workspace access, 29, 52
workspace awareness, 10, 42

X Window System, 21
Xerox Star, 13, 19

Typeset March 29, 2013

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Thesis Overview

	Background and Related Work
	Interactive Tabletop Systems
	Tabletops in Work Environments
	Tabletop Metaphors
	Tabletops Design Requirements and Constraints

	Window Management Systems
	Window managers
	The Evolution of Window Managers
	UI Metaphors
	Direct Manipulation
	Commercial Systems

	A Paradigm Shift: from Personal Desktops to Shared Tabletops

	Related Work
	Summary

	Conceptual Framework
	Context Of Work
	Workspace Access
	Entry Points
	Access Points
	The Design Space for Access Points
	Design Space Analysis

	Surface Partitioning
	Coordination Policies
	Summary

	System Design
	Design Goals
	Applying the Conceptual Framework
	Controller Metaphor
	User Interface
	User-Interface Toolkit
	Generic Commands
	Peripheral Association
	System Hierarchy and Tree Management
	File Management
	Interaction Techniques
	In-place Interaction
	Collapse & Expand Interaction
	Remote Control Interaction

	Analyzing the Interface against Direct Manipulation Principles
	Implementation
	Software Development Process
	System Class Diagram
	Surface Manager Software Architecture
	Gesture Detection Process

	User Studies and System Evaluation
	Preliminary Study: Conceptual Model Elicitation
	Study Protocol
	Results

	Observational Study and System Evaluation
	Task Design
	Method and Procedure
	Participants
	Apparatus
	Data Collection and Analysis
	Results
	System Entry
	System Access
	Controller Metaphor
	Activity Landscape Construction
	Content Manipulation

	Discussion

	Summary and Future Work
	Summary and Contributions
	Future Work

	Task Description for Observational User Study
	Questionnaire Form for Observational User Study
	Bibliography
	Index

