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Abstract

Acquiring sport skills can be difficult, time-consuming, and frustrating, especially
for novices. We have initiated a project to investigate how wearable computing can
support snowboarders in their learning process. Due to spatial separation during
riding exercises, a snowboard instructor usually cannot give feedback to his stu-
dents on their mistakes immediately. Feedback is only possible when instructor
and student are close to each other.
Body-worn sensors on the students could detect wrong movements in real-time
and give direct feedback. This might increase the students’ awareness of their mis-
takes and thus decrease learning time.
This thesis is the initial step to develop a Wearable Snowboarding Assistant. By inter-
viewing snowboard instructors and reviewing instructional literature we identified
four mistakes common for beginners. We selected suitable hardware components
and developed approaches to detect these mistakes. In an iterative design process,
we have developed a mobile wearable prototype robust enough to be taken on the
slope. To show the feasibility of automatic mistake detection, we have conducted a
user study with snowboard beginners and evaluated their sensors recordings.
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Überblick

Das Erlernen einer Sportart kann mühsam, zeitaufwändig und frustrierend sein.
Im Rahmen eines größeren Projektes untersuchen wir, wie mit Hilfe von Wearable
Computing der Lernprozess von Snowboardern unterstützt werden kann.
Aufgrund der räumlichen Distanz zwischen Snowboardlehrer und Schüler, bekom-
men Schüler während ihrer Fahrübungen häufig kein unmittelbares Feedback von
ihrem Lehrer. Dies ist nur zwischen den Übungen möglich, wenn sich Lehrer und
Schüler in Reichweite voneinander befinden.
Sensoren die am Körper der Schüler angebracht sind, könnten fehlerhafte Bewe-
gungsabläufe dagegen in Echtzeit erkennen und sofortiges Feedback geben. Wir
sind der Ansicht, dass der Schüler dadurch fehlerhafte Bewegungen eher zur
Kenntnis nimmt und effektiver lernt.
Diese Arbeit ist der erste Schritt in unserem Projekt zur Realisierung eines Wearable
Snowboarding Assistant. Aufgrund von Interviews mit Snowboardlehrern und der
Recherche von entsprechender Literatur konnten vier Fehler identifiziert werden,
die als typische Anfängerfehler gelten. Um diese Fehler mit Hilfe von Sensoren
zu erkennen, mussten geeignete Hardware und Verfahren zur Fehlererkennung
entwickelt werden.
In einem iterativen Entwicklungsprozess entstand ein für die Piste geeigneter mo-
biler und robuster Prototyp. Die Realisierbarkeit einer automatischen Fehlererken-
nung wurde durch einen Benutzertest mit Snowboardanfängern und den daraus
gewonnen Sensordaten gezeigt.
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Conventions

Throughout this thesis the following conventions will be
used:

The plural “we” will be used throughout this thesis instead
of the singular “I”, even when referring to work that was
primarily done by the author.

The whole thesis is written in American English.





1

Chapter 1

Introduction

“We learn by example and by direct experience
because there are real limits to the adequacy of

verbal instruction.”

—Malcolm Gladwell, Blink: The Power of Thinking
Without Thinking, 2005

For almost every kind of sport it is essential to first learn Learning sports in
cooperation with an
instructor

the very basics. This needs to be done properly so that fur-
ther improvement is possible. Therefore, it is common to
seek the assistance of a professional instructor. In several
lessons the instructor teaches important aspects of the spe-
cific sport, theoretically and practically. One of the most
valuable and crucial attributes of an instructor is the su-
pervision of his trainee and constructive feedback on his
performance. The trainee’s progress highly depends on the
quality of the instructor’s feedback.

A tennis instructor, for instance, observes the strokes of Immediate feedback
on tennis strokeshis trainee and immediately after each stroke the instruc-

tor can tell him how to improve his technique. The instruc-
tor might even guide the trainee’s hand to demonstrate the
movement (see Figure 1.1). In other sport areas direct feed-
back might not be possible because of spatial separation of
trainer and trainee. A sprinter, for example, will not get any
feedback on his performance during his training run. The
trainer will give advice afterwards.
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Figure 1.1: Tennis lesson.

When learning how to snowboard a similar spatial sepa-Snowboard instructor
and students are
spatially separated

ration of instructor and student exists. The snowboard in-
structor usually explains how to perform a movement and
demonstrates it. During demonstration he will move down
the slope, away from his students. Thereafter the students
try to repeat the demonstrated movement as an exercise.
The instructor observes every student from the distance.
He can only give advice after the exercise, when the stu-
dents are close enough to talk to him. Thus, the instruc-
tor’s feedback is not given immediately on the students’
mistakes.

1.1 A Wearable Snowboarding Assistant

Out of our experience with snowboarding we have initi-The wearable
Snowboarding
Assistant

ated a project at the Media Computing Group1 (RWTH
Aachen University) to investigate whether immediate feed-
back during the exercises can help snowboard beginners in
their learning process. A wearable system with sensors on
the body, woven into the clothing or attached to the snow-
board, could detect wrong movements and give real-time
feedback. We believe that making the snowboarders aware
of their mistakes and giving hints on how to correct them

1http://hci.rwth-aachen.de

http://hci.rwth-aachen.de
http://hci.rwth-aachen.de
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during an exercise might increase learning speed. Through-
out the whole thesis we will refer to such a system as the
Snowboarding Assistant.

Based on our research in the application domain (see Chap-
ter 4—“The Snowboarding Domain”) we provide two sce-
narios. The first scenario illustrates the practices of today’s
typical snowboarding lessons. The second one envisions
how lessons could be improved with the Snowboarding As-
sistant.

1.1.1 Scenario of Typical Snowboarding Lessons

Every year the dutch family van Stappen comes to Tyrol Family on their two
week winter vacationfor their two week winter vacation. Their fourteen-year-old

son Tim is very curious about trying out new things. This
time he wants to try snowboarding. Although he has no
experience with board sports, like skateboarding or surfing,
he is confident that it will be fun. The van Stappens register
their son for snowboarding lessons, and Tim cannot wait to
get on the slope.

After having received their snowboard equipment Tim and Three days of
lessonseight other snowboard beginners meet their instructor Flo-

rian. He tells them that they will have lessons for two hours
in the morning for the next three days. After the course they
will be able to accomplish simple turns on the snowboard.

First the students need to get familiar with the snowboard First day: the
snowboard basicsbasics. They learn to strap on their bindings, how to fall

down and stand up and how to move with their snowboard
on flat ground.

Before continuing with further exercises, Florian explains The basic stance on
a snowboardand demonstrates his students the basic stance (see 4.1) on

the snowboard. The knees should be bent to be able to com-
pensate bumps on the slope. The upper body should be
almost upright and the shoulders parallel to hip and snow-
board. The weight should be distributed equally on right
and left foot.

After one hour the beginners learn to slide down a flat hill. Tim’s motivation
decreases
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Tim falls down a couple of times but his ambition to learn
snowboarding like he saw it on TV during the X-Games2

keeps him motivated. Florian teaches his students how to
slide down the hill on the snowboard’s heel-side and toe-
side edge. He also explains that the snowboard always
slides and turns on the side with the greatest pressure. Tim
has problems keeping his upper body upright. He feels
a bit embarrassed in front of the other students because
Florian repeatedly reminds him to straighten up his body.
Tim’s motivation is decreasing, but nevertheless he wants
to give his best.

On the next day the students learn how to traverse a hillSecond Day:
students are not able
to realize instructions
immediately

on the edge, i.e., without letting the snowboard drift away.
They continue with several exercises which prepare them
for turns. At the end of the lesson, Florian explains and
demonstrates how to do turns. His students try to follow
his example but they are not able to realize Florian’s in-
structions immediately and sometimes struggle to make a
complete turn. Florian tells his group that they are going to
improve doing turns in the next lesson.

On the last day the students revise what they have learntDoing turns and
resolving mistakes so far. When they try to do turns, Florian observes every-

one individually at a time and gives advice afterwards. Tim
performs quite well, although sometimes he cannot accom-
plish a turn. While his back is facing downhill he is afraid
to shift his weight on the front foot because this accelerates
his snowboard. With his weight on the back foot, however,
the snowboard does not turn easily. After every run Flo-
rian reminds Tim to move his weight on the front foot, but
while riding, Tim often forgets this. He is too focused to
keep his knees bent and his back upright and therefore does
the same mistake again and again. Florian tells Tim that he
is doing quite well. Yet, for improving his technique in the
future he should try to resolve this last mistake.

2http:// expn.go.com/expn/index

http:// expn.go.com/expn/index
http:// expn.go.com/expn/index
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1.1.2 Scenario of Snowboarding Lessons with the
Snowboarding Assistant

Like in the previous scenario the van Stappens come to Ty-
rol for their winter vacation.
Tim’s parents register him for snowboarding lessons. Flo- Sensor enhanced

clothingrian, the snowboard instructor, asks Tim if he likes to rent
the ordinary equipment or the new sensor-enhanced cloth-
ing that will analyze his movements and help him recog-
nize his mistakes more easily. Tim is very interested in new
technology, so he decides to give it a try. The clothing and
boots, however, do not look special and Tim is a bit disap-
pointed because he expected a futuristic suit. In addition to
his clothing, Tim receives knee pads and a helmet, which
also contain sensors and moreover help to prevent injuries.

Thereafter, the snowboarding lessons begin and the stu-
dents Florian teaches his students the basics of snowboard-
ing. At first Tim feels a little uncomfortable on the snow-
board. When he practices to slide down the slope on the
heel-side edge he cannot control his speed. Florian tells
Tim to bend his knees further to gain more control over his
snowboard. Tim does bend his knees, but not sufficiently.
Therefore, Florian uses his mobile phone to enable the sen- Instant feedback

reminds beginner of
mistakes

sor system attached to Tim’s clothing, boots, helmet and
knee pads. Florian tells Tim, that as long as his knees are
not bent enough he will notice a vibration at his knees. Af-
ter that Tim practices again and notices the vibration from
his knee pads. At first Tim is surprised and does not know
what to do. In the next run, however, he remembers what
Florian has told him and bends his knees further until the
vibration stops. Every time Tim does not bend his knees
enough the vibration starts again. After a while Tim re-
members to always bend his knees and Florian turns off
the sensors.

The second day passed without Florian making use of the
Snowboarding Assistant.

On the third day the beginners improve their turns. Tim Improving turns with
the Snowboarding
Assistant

manages to accomplish turns but Florian is not satisfied
with his technique. He tells Tim that he is doing a good
job but that he should focus on improving his turning tech-
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nique. To initiate turns on steeper slopes Tim would need
to shift his weight more towards the front foot. Florian
enables the sensors in Tim’s boots to detect whether his
weight is too much on his back foot. When initiating a
turn, Tim’s back foot now vibrates if his weight distribu-
tion is not optimal. Tim notices the vibration immediately
and leans more on his front foot. In fact, turning becomes
easier.

Florian is satisfied with his student and lends Tim the mo-System can be used
without instructor bile phone for the rest of the afternoon, so Tim can continue

to practice even without an instructor. The settings on the
phone are already adjusted and Tim only needs to choose
on which of his mistakes he would like to focus.

1.1.3 Goals

As illustrated in the second scenario we envision two main
aspects of snowboarding lessons to be improved by the
Snowboarding Assistant.

1. Helping snowboarders to be aware of their mistakes
immediately when they occur. This should decrease
learning time and thereby reduce frustration.

perceive their mistakes more easily during the exer-
cise. This should increase learning speed, thereby re-
ducing frustration.

2. Allowing beginners to exercise even without the pres-
ence of an instructor by providing a system that en-
sures the correct performance of movements. This
should not substitute a human instructor but support
beginners beyond the lessons.

To reach these goals several steps towards a wearable Snow-
boarding Assistant are necessary:

1. Building a wearable hardware platform with appro-
priate sensors which operates on the slope.
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2. Identifying and detecting common mistakes in snow-
boarding.

3. Providing an adjustable interface to control the Snow-
boarding Assistant .

4. Giving appropriate real-time feedback to the stu-
dents, e.g., audio or tactile feedback.

5. Showing the benefit of real-time feedback for the
learning process.

1.1.4 Requirements

This thesis initiates the development of the Snowboarding
Assistant and focuses on the first two steps. Therefore, the
following requirements need to be fulfilled:

Exploring the Application Domain. We need a deep in-
sight into the basic terms and techniques of snow-
boarding and teaching methods. This serves as a
starting point for further development and provides
the basic knowledge to people working on the project.

Opportunities for Change. We have to identify disadvan-
tages in the communication between instructor and
student. The focus should lie on beginners problems.

Robust Hardware. A hardware platform that withstands
the conditions on a slope needs to be assembled. The
hardware should not restrict the user’s freedom of
movement. Thus, we need to select robust and un-
obtrusive sensors to detect mistakes.

Algorithms. To give feedback to the student we must rec-
ognize his mistakes via sensors. Therefore, we need
to find appropriate algorithms to process the sensor
data.
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1.2 Structure of the Thesis

According to the identified goals and requirements the re-
mainder of the thesis is structured as follows:

Chapter 2—“Sensor Technology” gives an overview of
different sensor types used in the development of the Snow-
boarding Assistant.

Chapter 3—“Related Work” discusses projects which
deal with context awareness, health care and sports.

Chapter 4—“The Snowboarding Domain” provides an
overview of the basic terms, concepts and techniques of
snowboarding. Moreover, we identify common beginner
mistakes and discuss further aspects of the teaching pro-
cess as results of interviews with snowboard instructors.

Chapter 5—“A Lab Prototype” describes the necessary
steps to build a first prototype. Based on the results of the
previous chapter, we have developed a wired lab prototype
to stimulate further ideas. The chapter discusses choice
and placement of sensors and first algorithms to detect mis-
takes.

Chapter 6—“A Mobile Prototype for the Slope” docu-
ments the building of a wireless prototype. The chapter
discusses the hardware setup as well as problems we faced
on the slope.

Chapter 7—“User Study and Data Analysis” takes a
closer look at the sensor data recorded on the slope. After
conducting self-tests we recorded snowboard beginners’
sensor data and discuss how the second prototype could
detect common mistakes.



1.2 Structure of the Thesis 9

Chapter 8—“Summary and Future Work” sums up the
results of the previous chapters. As this thesis is only the
initial step in the Snowboarding Assistant project, the chapter
outlines the following steps.

Appendix A—“Interview Guideline” contains the origi-
nal German version of the interview guideline we followed
during our interviews with snowboard instructors. We pro-
vide an English translation as well.

Appendix B—“MAX/MSP Patches” includes screen-
shots of the software we developed for the first prototype
in Chapter 6—“A Mobile Prototype for the Slope”.

Appendix C—“Smoothing Filters” provides the formu-
lae for the smoothing filters we used during the evaluation
of the sensor data.
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Chapter 2

Sensor Technology

“A sensor is a device that receives a stimulus
and responds with an electrical signal.”

—[Fraden, 2003, p. 2]

In this chapter we give an overview of relevant sensors
used in wearable computing1. This overview is important
for the projects discussed in Chapter 3—“Related Work”
and for the decisions we have made for our own project.

For every sensor we discuss its measurand, working prin-
ciple, and any special characteristics that need to be consid-
ered for its application.

2.1 Accelerometer

Accelerometers measure acceleration, i.e., the rate of Accelerometers
measure rate of
change of velocity

change of velocity, along a designated axis. 2-D accelerome-
ters combine two single axis accelerometers to measure ac-
celeration on two orthogonal axes. Analogously, 3-D ac-
celerometers combine three orthogonally arranged single
axis accelerometers.

1 More in depth information on sensors can be found in [Fraden,
2003].
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An accelerometer can be imagined as a ball in a tube whichAcceleration
measured through
forces on a tiny proof
mass

is fixed with a spring at each end (see Figure 2.1) [van Laer-
hoven et al., 2003]. When the tube is accelerated along its
longitudinal axis, the ball will lag behind the movement of
the tube due to inertia. This causes the ball to change its
position relative to the tube. The change of position is pro-
portional to the acceleration and can be thought of as the
sensor’s output. Many of today’s accelerometers are built
using MEMS2 (Micro-Electro-Mechanical Systems) technol-
ogy, which allows the ‘ball’ to be a tiny proof mass of less
than 0.1 micrograms [Riedel, 1993].
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Figure 2.1: 3-D accelerometer Infusion Systemsa and work-
ing principle. Based on [van Laerhoven et al., 2003].

ahttp://infusionsystems.com

An accelerometer is sensitive to gravity. Thus, its outputMeasurement is
sensitive to gravity is the sum of dynamic and static acceleration, i.e., accelera-

tion due to movement and due to gravity.3 When the sensor
is at rest it measures exclusively the gravitational accelera-
tion and can be used as a tilt sensor. The angle between
the sensor’s axis and the gravity vector can be computed
with basic geometry (Figure 2.2). Many wearable comput-
ing projects use accelerometers to measure movements be-
cause of their small composition and low price (see Chap-
ter 3—“Related Work”).

2 For further information see http://www.memsnet.org.
3 This is about 9.81 m

s2 in Europe at sea level.

http://infusionsystems.com
http://infusionsystems.com
http://www.memsnet.org/mems/what-is.html
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x-axis sin Θ = cos(90◦ −Θ) =
|!gx|
|!g|

⇔ Θ = arcsin
|!gx|
|!g|

!g

!gx

90◦ −Θ

Θ

Figure 2.2: Gravitational force on a tilted accelerometer.
The accelerometer measures only the projection ~gx of the
gravity vector ~g on the x-axis. Hence, with |~g| = 9.81 m

s2 the
angle Θ can be computed.

2.2 Gyroscope

Gyroscopes are sensitive to rotational speed, i.e., they mea- Gyroscopes measure
angular velocitysure angular velocity relative to a designated axis. Simi-

lar to accelerometers, 2-D and 3-D gyroscopes combines or-
thogonally arranged single axis gyroscopes.

Today’s MEMS gyroscopes measure the ‘Coriolis accelera- Coriolis acceleration
occurs during
angular movements

tion’, which can be explained as follows: Consider a person
standing at point 1© in Figure 2.3 on a rotating platform
with tangential velocity v1 relative to the (non-rotating)
ground. If this person walks to point 2©, away from the
center of rotation, its tangential velocity will increase to v2.
The acceleration that causes this increase is the Coriolis ac-
celeration. It is proportional to the angular velocity of the
rotation [Geen and Krakauer, 2003].

To measure the Coriolis acceleration, gyroscopes contain a Measuring the
Coriolis acceleration
with a tiny mass

tiny mass which vibrates up and down in a fixed frame.
When the mass is moving up (away from the center), it
will be accelerated towards the right. This will exert a force
on the frame to the left (Figure 2.4 (a)) as the mass is fixed
within the frame. Vice versa when moving down (towards
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1

2

!v1

!v2

direction of rotation

Figure 2.3: A person on a rotating platform. If she moves
from point 1© to point 2© she will notice a tangential ac-
celeration, the Coriolis acceleration. Taken from [Geen and
Krakauer, 2003]

the center), the mass will exert a force on the frame to the
right (Figure 2.4 (b)). This force is measured to indicate an-
gular velocity as they are proportional to each other.

mass in fixed frame

(a) (b)

Figure 2.4: 2-D gyroscope ‘Spin2D’ (I-CubeX) and the
working principle of a MEMS gyroscope. A mass in a fixed
frame is vibrating up and down. Because of the Coriolis
acceleration the mass exerts a force on the frame (orange
vector) proportional to the angular velocity of the rotating
plane.

Coriolis acceleration only occurs during rotational move-Gyroscopes are not
sensitive to gravity ments. Thus, gyroscopes are insensitive to linear accelera-

tions and movements. In contrast to accelerometers, they
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are not affected by gravity.
Gyroscopes can be used to monitor rotation of machines, Use in car safety

systemsairplanes, or vehicles. They are often used in vehicle safety
systems.4

2.3 Force Sensitive Resistor (FSR)

Despite its name, force sensitive resistor, an FSR’s electri- FSRs measure
pressurecal resistance drops proportional to the amount of pressure

applied to its surface. Hence, its outcome depends on the
amount of force applied as well as the area covered by the
force. FSRs are very thin (ca. 0.2 mm) and consist of differ-
ent layers as depicted in Figure 2.5.! ! !
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Figure 2.5: (a) I-CubeXa TouchMicro. (b) Different layers of
an FSR.b

a http://infusionsystems.com
b http://www.interlinkelectronics.com

The connectors on the bottom layer lead to an ‘active area’ Higher pressure
results in lower
resistance

that consists of interdigitating electrodes printed on a flexi-
ble substrate. A conductive film is printed on the top layer
separated from the bottom layer by a plastic spacer. If no
pressure is applied to the sensor’s surface, top and bottom
layers are not in contact. This results in a high resistance of
the active area, as its interdigitating electrodes are not con-
nected. The more pressure is applied the more of the active
area is pushed against the conductive film which leads to

4 For example, the Electronic Stability Control (ESC) to prevent skid-
ding of cars (http://www.chooseesc.eu/)

http://infusionsystems.com/
http://www.interlinkelectronics.com/force_sensors/technologies/index1.html
http://www.chooseesc.eu/
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a connection of the electrodes. Thus, the resistance of the
sensor drops.5

The distance between the top and bottom layer can alsoFSRs need to be
mounted on flat
surfaces

be decreased by flexing the sensor. Therefore, it should be
mounted on a flat surface to eliminate mistakes through de-
formation.
FSRs are used in a wide range of application areas where
force or pressure needs to be measured, e.g., in the automo-
bile industry for measuring a tire’s pressure footprint6 or
in the medical industry to analyze a patient’s force distri-
bution under the feet.7

2.4 Bend Sensor

Bend sensors, also known as flex or flexion sensors, are
long, thin (ca. 0.1 mm, Figure 2.6(a)) sensors and change
their electrical resistance proportionally to their flexion.
Most bend sensors consist of a conductive ink printed onResistance drops

according to the
flexion

a flexible substrate. The ink is very brittle, hence flexion
of the sensor results in micro gaps within the ink (Fig-
ure 2.6 (d),(e)). Higher flexion causes greater gaps and de-
creases the conductance of the ink resulting in a higher re-
sistance.8

The outcome of a bend sensor depends on both the flexionSensor reading
depends on bend
angle and radius

angle as well as the flexion radius — a smaller flexion radius
will cause greater gaps (Figure 2.6(d)). A bend sensor of
this type only responds to one bending direction. Bend-
ing it in the opposite direction does not cause any gaps
and thus the sensor’s resistance remains unchanged (Fig-
ure 2.6(c)). Bend sensors are often used in input glovesGloves for virtual

reality applications for virtual reality environments to determine the finger’s
flexion, e.g., the CyberGlove R© II9 .

5http://www.electrade.com/html/produkte/sensorik fsr.htm
6http://www.tekscan.com/industrial/tirescan-system.html
7http://www.tekscan.com/medical/systems.html
8http://www.flexpoint.com/technicalDataSheets/mechanicalDesignGuide.pdf
9http://www.immersion.com

http://www.electrade.com/html/produkte/sensorik_fsr.htm
http://www.tekscan.com/industrial/tirescan-system.html
http://www.tekscan.com/medical/systems.html
http://www.flexpoint.com/technicalDataSheets/mechanicalDesignGuide.pdf
http://www.immersion.com
http://www.electrade.com/html/produkte/sensorik_fsr.htm
http://www.tekscan.com/industrial/tirescan-system.html
http://www.tekscan.com/medical/systems.html
http://www.flexpoint.com/technicalDataSheets/mechanicalDesignGuide.pdf
http://www.immersion.com
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no gaps

conductive ink

gaps

(b)

(c)

(d)

(e)
(a)

Figure 2.6: Different flexion states of a bend sensor.

2.5 Inertial Measurement Unit (IMU)

Inertial Measurement Units (IMU) measure orientation in IMUs combine
accelerometers and
gyroscopes to
calculate absolute
orientation angles

3-D space based on an initial state, e.g., in Euler angles.
IMUs usually consist of a 3-D accelerometer and a 3-D gy-
roscope with their axes aligned parallel. As long as the IMU
is not moving, its orientation can be inferred with the 3-D
accelerometer relative to the gravity vector. Yet, when the
IMUs is moving, the measured acceleration is the sum of
dynamic and static acceleration, which is difficult to sep-
arate. As gyroscopes are not sensitive to linear accelera-
tions, they are used to keep track of changes in the orien-
tation. Dedicated sensor fusion algorithms, which are usu-
ally implemented on the IMU, combine the readings of the
accelerometer and the gyroscope to infer the absolute ori-
entation relative to the initial state [Bachmann, 2004].

The absolute orientation in terms of ‘world coordinates’ The magnetic field of
the earth serves as
reference

cannot be derived with accelerometers and gyroscopes
alone. Moreover, as the calculation of the current orienta-
tion is always based on the previous one, any error in the
sensor readings is accumulated through the whole calcula-
tion. To account for these shortcomings, several IMUs in-
corporate a 3-D magnetometer to measure earth’s magnetic
field as a static reference. Thereby global coordinates can
be calculated.

There are several manufacturers that offer IMUs with built-
in processing capabilities, thus minimizing errors with spe-
cialized data fusion algorithms. Examples are the MTx
from XSens,10 the InertiaCube3 from InterSense,11 and the

10http://www.xsens.com
11http://www.isense.com

http://www.xsens.com
http://www.isense.com
http://www.xsens.com
http://www.isense.com
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SHAKE SK6.12 Figure 2.7 shows the SHAKE SK6 and the
angles it calculates relative to a fixed coordinate system.
The SHAKE SK6 can also be used as a digital compass
which returns values between 0 to 360◦ in the x–y plane
independent of the SHAKE’s orientation.

x

y

z

yaw

roll

pitch

!"#$%&
 

 

 Sensing Hardware Accessory for Kinaesthetic 

Expression 

 

Model SK6 

 

User Manual Revision F 
 

 

 

 

Figure 1 

Figure 2.7: SHAKE SK6 IMU and its axes. It calculates ori-
entation with respect to a fixed coordinate system.

12http://www.samh-engineering.com

http://www.samh-engineering.com
http://www.samh-engineering.com
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Chapter 3

Related Work

“Not to know what has been transacted in
former times is to be always a child. If no use is
made of the labors of past ages, the world must

remain always in the infancy of knowledge.”

—Cicero (106 BC–43 BC)

The research projects presented in this chapter deal with
body-worn sensors to measure human movements. They
are structured by application domain:
First we present projects in the broad field of context aware-
ness, i.e., being aware of the user’s surroundings. There-
after we discuss work done in the health care sector, which
is another promising application area for wearable technol-
ogy. To finish the discussion of related work we present
research projects in the application domain of sports.

3.1 Context-Awareness

3.1.1 Definition and Examples

Body-worn sensors are often used to identify the wearer’s Context is not clearly
definedcontext. Context has been defined differently by several au-

thors. Abowd et al. define context as
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“[. . . ] any information that can be used to character-
ize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the in-
teraction between a user and an application, includ-
ing the user and applications themselves.”

[Abowd et al., 1999, pp. 3–4]

This broad definition includes the user’s physical, social,
emotional or informational state.1 Systems that take con-
text into account when providing services to the user are
called ‘context-aware’.

For instance, Schmidt et al. [1999a] have built a hardwareContext aware
mobile phone platform that incorporates several sensors, among others,

a 2-D accelerometer, a light sensor, and a temperature sen-
sors. With a combination of the sensor readings they in-
fer different contexts of a mobile phone, e.g., whether the
phone is in the user’s hand or in a bag. Accordingly the
ring tone profiles are automatically adjusted.

In recent years several projects have focused on ‘activityActivity recognition
with wearable
sensors

recognition’, i.e., recognizing the user’s activity, which is an
important part of the user’s context.2 Laerhoven and Cak-
makci [2000] and Ravi et al. [2005] both try to recognize dif-
ferent everyday activities of the user, like sitting, standing
or walking, with only one accelerometer. Similarly Lester
et al. [2005] try to identify basic activities with one sensor
node that incorporates different sensor types.

3.1.2 Multi-Sensor Activity Context Detection for
Wearable Computing

Kern and Schiele [2003] have built their own sensor hard-Activity recognition
for real-world
applications

ware on top of the Smart-Its hardware platform [Beigl et al.,
2003] for activity recognition. Instead of building a lab pro-
totype they have designed their system to be used in a real-
world setting. As potential applications they envision the

1 For a more discrete classification of context see [Schmidt et al.,
1999b].

2 Other aspects of context are, e.g., the user’s location, or his heart-
rate, depending on the application.
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domains of sports and manual work. Targeting these appli-
cations they draw requirements on their hardware platform
which apply to the Snowboarding Assistant as well. The most Robust hardware is

essentialimportant requirements are robust hardware and proper
fixation of the sensors at the desired location, as this heav-
ily influences the quality of the sensor data. Furthermore,
the user’s freedom of movement should not be restricted.

To fulfill these requirements, Kern and Schiele cover their Hardware setup
sensors with shrink wrap and attach them with velcro
straps for tight fixation (Figure 3.1(c)). To be able to move
around freely, Kern and Schiele put the laptop that is
connected to the sensor hardware into a backpack (Fig-
ure 3.1(a)). A PDA connected to the laptop starts and stops
sensor recordings and is used for online data annotations.
Data is later analyzed off-line to extract information.

(a) Recording Setup Mounted on a User (b) Recording Setup: Laptop with IPAQ
for Online Annotation and 2 Smart–Its

Fig. 3. Recording Setup

5.1 Experimental Setup

All data is recorded on a laptop that the user carries in a backpack. The sole
user interface is a Compaq IPAQ that is attached to the laptop via serial line. It
allows to start/stop the recording application and to annotate the data online
with the current activity. Figure 3(a) shows the user with the mounted sensors
wearing the backpack, holding the IPAQ in his hand.

For the desired number of sensors we need two complete sets of sensors with
six sensors each. Each set, consisting of a smart-it, an add-on board, and six
3D acceleration sensor nodes is attached via a serial port to the laptop (see also
figure 3(b)). Every sensor is sampled with approx. 92Hz.

Activities Our goal in this paper is to recognize everyday postures and activi-
ties. First of all, this includes basic user postures and movements that allow to
roughly classify the user’s activity. These are sitting, standing, and walking.

Apart from these basic postures and movements, it would also be interesting
to know, what the user is currently occupied with. We hence included writing
on a whiteboard and typing on a keyboard. The former indicates that the user is
engaged in a discussion with others, while the latter indicates that the user is
working on his computer.

Finally, social interactions are very important and interesting information.
We hence include shaking hands to determine, if the user is currently interacting
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Figure 3.1: The wearable system introduced in [Kern and
Schiele, 2003]: (a) Person wearing the sensors and holding
the PDA, (b) The system and its components, (c) Shrink-
wrapped sensor with velcro strap

Unlike the previously mentioned projects that try to infer Sensor placement
according to the
application

the user’s activity with only one sensor [Ravi et al., 2005,
Lester et al., 2005], Kern and Schiele have decided to at-
tach several sensors at different locations specific for the in-
tended activity.

In a first experiment, they aim at identifying activities such Initial experiment
as sitting, standing, walking and hand-shaking. Based on
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these target activities they attach 3-D accelerometers to ma-
jor joints of the human body at the following locations: an-
kle, knee, hip, wrist, elbow and shoulder.

The experiment shows that simple activities, like standingFor complex
activities several
sensors are needed

or walking, can be recognized using only one sensor on
the leg. However, for more complex activities, like walk-
ing downstairs, the combination of sensors at different lo-
cations improves the recognition rate.

3.2 Health Care

The application of wearable computing technology in theMonitoring the
patient’s health
condition

health care sector has been explored in several projects. A
wide range of research projects focus on monitoring the pa-
tient’s health condition [Anliker et al., Dec. 2004, Oliver
and Flores-Mangas, 2006]. Most of them raise alarm in case
of dangerous changes in the measured parameters, espe-
cially for elderly patients [Najafi et al., 2003, Degen et al.,
2003].
The following projects, however, analyze movements and
postures. We present them because they are more related
to the concept of the Snowboarding Assistant.

3.2.1 GaitShoe

Usually gait can be analyzed using two different methods:Two methods for gait
analysis Either in a motion laboratory with computer-based meth-

ods like optical tracking or in an office with a clinician ob-
serving the patient. The first approach results in highly ac-
curate data but is expensive. The second method, although
being less expensive, yields highly subjective data depend-
ing on the clinician.

Bamberg et al. [2007] propose the GaitShoe, a wearable sys-GaitShoe fills gap
between traditional
methods

tem that falls in between the two methods and combines
their benefits. It provides accurate data and can be used
in the patient’s natural environment. The GaitShoe can be
attached to any shoe to analyze the wearer’s gait. To mea-
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sure gait-relevant parameters Bamberg et al. have incorpo-
rated several types of sensors. An overview is shown in
Figure 3.2.

Figure 3.2: Overview of the GaitShoe and used sensors.
Taken from [Paradiso et al., 2004].

The FSRs, PVDFs3 and bends sensors are collocated on one
insole. The gyroscopes, accelerometers as well as the micro-
controller, the power supply, and the antenna to transmit
data to a base station are placed on the back of the shoe
(Figure 3.2).

The GaitShoe has been used simultaneously with a tradi- Comparison with
traditional methodtional gait analysis data acquisition system for compari-

3 Polyvinylidene fluoride (PVDF) strips — sensors that react on dy-
namic pressure.



24 3 Related Work

son. The GaitShoe has been proven successful in distin-
guishing the gait patterns of healthy persons and subjects
with Parkinson’s disease. In addition, determining the
heel-strike and toe-off timing, i.e., when the foot touches
or leaves the ground, was highly successful using the FSRs
and PVDFs. For the stride length and the pitch of the foot
the GaitShoe integrates the values of the gyroscopes. Due
to the imprecisions of the gyroscopes and the compounded
effect in the integration only fair result could be provided.

Gait is analyzed in real-time and gait analysis has been ex-Auditory feedback for
therapeutic purposes plored to be used for therapeutic purposes through audi-

tory feedback [Paradiso et al., 2004]. To provide rhythmic
cues on how to walk, ambient music is played. Whenever
a gait defect is detected the music becomes less melodic,
encouraging the subject to return to a steady pace.

3.2.2 Biofeedback Wireless Wearable System

Farella et al. have contributed several projects to the wear-
able computing community. In their recent research they
have developed wireless sensor nodes to track human ges-
tures [Barbieri et al., 2004] and detect human body postures
with a body area sensor network [Farella et al., 2006].

Based on their previous work, they have introduced theOptimizing balance
through audio
feedback

‘Biofeedback Wireless Wearable System’ (Bio-WWS). This
system detects a human’s posture and gives audio feed-
back to help optimizing balance, e.g., to support the reha-
bilitation of patients that have lost their sense of balance
[Brunelli et al., 2006].

Similar to gait analysis, current rehabilitation practices forRehabilitation with
cumbersome
machines

balance monitoring are carried out with cumbersome and
expensive machines. These devices need to be controlled
by an expert and cannot be operated by the patient alone.
The Bio-WWS, however, is designed for autonomous and
unobtrusive usage.

The current setup consists of a PDA, a Bluetooth headset,Hardware setup:
PDA, headset and
sensor nodes

three sensor nodes each with a 3-D accelerometer, and a
gateway. The sensor nodes attached to trunk, thigh and calf
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measure acceleration and forward the values wirelessly to
the gateway. The gateway collects the data of the differ-
ent sensor nodes and sends them to the PDA via Bluetooth.
The software for creating auditory feedback resides on the
PDA and sends the created audio stream wirelessly to the
headphones via Bluetooth.

The range of acceleration values where the patient is in ‘Target Region’ and
‘Limit Region’good balance is called the ‘Target Region’ (TR) (Figure 3.3).

The TR is subject specific and needs to be calibrated at the
beginning of each monitoring session. Therefore the patient
nees to stand still for 10 seconds while the system samples
the acceleration values from the attached sensors. Based on
experiments, Farella et al. set the TR to 1.5 times the stan-
dard deviation of the samples collected during the calibra-
tion process. Similarly they set a so-called ‘Limit Region’
(LR) to 10 times the standard deviation of these samples.

frequency codes the value of the instantaneous 
acceleration while the volume increases with the 
distance from he Target Region (TR). The TR is a 
range of accelerations values which are safe for the 
user. The task of the user while using the audio-
biofeedback is to remain inside the TR. When the 
user’s accelerations are inside the TR range the sound 
volume and frequency are fixed [19]. The user’s 
accelerations in the left-right direction are coded by 
Left/Right balance modulation of the sound (Figure 
3B).  

Figure 3. Audio biofeedback sound dynamics.  A. 
Forward-Backward direction  B. Left-Right direction 

Every 50 ms, the biofeedback sound is updated 
according to the specific functions represented in 
Figure 3 and discussed in detail in [19].  The dynamics 
of the sound generation is determined by the TR and 
by the Limit Region (LR). TR reflects small ballistic-
like movements typical of the postural control system 
[20]; it is subject-specific and is set in the first 10 
seconds of each trial; LR is set consequently. Previous 
results and experimental sessions allowed us to set TR 
as 1.50 the standard deviation of the acceleration in the 
calibration time, and the LR as 10 times the standard 
deviation of the same value.  TR (and consequently the 
LR) may be changed according to the specific use of 
Bio-WWS (e.g. smaller for applications in sport 
discipline  or larger in severe damage of the postural 
system). On the PDA a GUI was implemented to 
support easy setting of parameters of the biofeedback 
algorithm.  

At present, the sensors on the leg are included in the 
biofeedback code as quiet standing on/off sensors. 
Imminent developments of the system will include also 
the leg sensor nodes, to provide an audio biofeedback 
during movements (in particular during walking), and 
the 3D acceleration will be considered (including the 
vertical one). 

5. Discussion
Mobility, Usability and Costs The small form 

factor both of the sensor nodes (size 20x20x18 mm) 
and the gateway (4x6x1.5cm, battery included) is 
suitable for easily wearing the system without 

experiencing obtrusiveness. Moreover, for the range of 
applications here presented for WBAN a small number 
of nodes is needed. Palmtop computers are decreasing 
their size while increasing computing capabilities (e.g. 
HP IPAQ example size is 7,5 x 1,9 x 11,9 cm) and 
they can easily be worn in pocket or carried in bags as 
it happens for mobile phones.  

From a cost perspective, the proposed solution is 
extremely interesting, considering that the prototype 
node has a cost of 35 , the gateway of 50  not 
including batteries. These costs can decrease 
significantly, since they are computed for small 
volume prototyping. Bluetooth headsets cost around 
80 , but they can be easily replaced with cheapest 
wired one. For the application tested the WBAN, using 
low-cost headsets, has a cost ranging around 160
(excluding the palmtop computer). Our system 
architecture is suitable for consumer market and 
widespread diffusion, e.g. as a potential partial 
substitute of expensive optical motion tracking systems 
(initial cost can easily reach $50,000), which do not 
allow outdoor acquisition and require high-cost 
maintenance during their lifetime.  

Power consumption. Measurement of power 
consumption was performed in all the states of the 
system, setting sampling frequency at 60Hz (to obtain 
a useful bandwidth of 30Hz, adequate for capturing 
human movements). Communication speed was set at 
32kbps from node to gateway on OOK transmission at 
868MHz, and at 230kbps from gateway to PDA, 
transmitting via Bluetooth at 2,4GHz. Power 
consumption when all components are active and 
transceiver is continuously sending data corresponds to 
200mW for the gateway and 45 mW for a single end-
node. In idle state (only reception mode is active) the 
power lowers respectively at 25mW and 20 mW. 
When active, gateway battery (500mAh) and single 
node battery (100mAh) have a lifetime of 8 hours. 
Sleep mode corresponds to having all devices in the 
minor consumption state (1,5mW for gateway and 10 
µW for end-nodes). For a 20% duty cycle the lifetime 
reaches 40 hours for the gateway and 38 hours for the 
node. This is a possible real situation, because 
typically it is not needed or it is not possible (e.g. the 
channel must be shared with other nodes) to send data 
continuously. The major limitation can be the palmtop 
computer lifetime. We tested the IPAQ transmitting a 
continuous data stream to a desktop PC through 
Bluetooth link. The evaluated duration of the 3,7 V 
battery (1000 Ah) in this worst case is of 12 hours, 
having that when on the PDA consumes 350mW. Thus 
we can conclude that WBAN lifetime is adequate for 
the applications we have in mind.  
System performance. The STMicroelectronics 
accelerometer sampling frequency used in our 
application is 560Hz, while its accuracy corresponds to 

!"#$%%&'()*+#,+-.%+/#0"-.+1((023+4555+4(-%"(2-'#(23+6#(,%"%($%+#(+!%"72*'7%+6#890-'()+2(&+6#880('$2-'#(*+:#";*.#9*+<!5=6>?:@ABC+

ADEBFGDHGHADHIAB+JHAKAA+L+HAAB!!"""#

TR TR

LRLR

vo
lu

m
e

fr
eq

ue
nc

y

sensor 
node

Figure 3.3: The Bio-WWS: As soon as the patient leaves
the Target Region (TR) the audio feedback is modulated to
guide the patient back to the TR. The maximum modula-
tion is achieved at the borders of the ‘Limit Region’ (LR)
[Brunelli et al., 2006].

Within the TR the audio stream is not modulated at all. The Working principle of
audio feedbackmaximum modulation is achieved at the borders of the LR.

The more the patient leaves the TR the more the sound gets
modulated: volume and frequency modulation for forward
vs. backward leanings, left–right audio balance modulation
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for left vs. right leanings (Figure 3.3). This should guide the
patient back to the TR.

Farella et al. have conducted an evaluation of their system
with healthy subjects who were required to close their eyes.
With the audio feedback, the subjects left the TR less often
than without feedback.

3.2.3 TactaPacks

Lindeman et al. [2006] aim at supporting physical therapyRehabilitation for
joint replacement
patients

for joint replacement patients. They try to decrease injury
risk by monitoring and warning patients when they are do-
ing harmful motions that could result in injury.

For this purpose, Lindeman et al. have developed Tacta-
Packs, small sized wearable boxes, consisting of a micropro-
cessor with a Bluetooth unit for communicating to a host
computer, a 3-D accelerometer for sensing and a vibrator
for giving feedback (Figure 3.4).

Bluetooth Chipset

Battery 3-Axis 
Accel.

Microprocessor

Motor Driver

Tactor 
(Vibrator)

(a) (b)

Figure 3.4: TactaPack: (a) outline of its components, (b) pic-
ture of the interior. Taken from [Lindeman et al., 2006].

During a training session the patient attaches several Tacta-Vibration as
feedback Packs to the limbs around the replaced joint. Each of the Tac-

taPacks autonomously measures the momentary tilt of its
accelerometer relative to the gravity vector (cp. Figure 2.2).
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Like the Bio-WWS, the TactaPacks need to be calibrated to
store the ‘safe region’ of accelerometer values. If the patient
leaves this region the boxes begin to vibrate.

Vibration patterns and intensity as well as the delay, after Vibration intensity
can be adjustedwhich vibration starts, can be adjusted via a graphical user

interface on the computer. The sensor data, however, is pro-
cessed by the microprocessor on the TactaPacks to prevent
communication delays.

3.3 Sports

The following projects cover a promising application of
wearable computing in the area of sport: monitoring mo-
tions of athletes for objective analysis and to enhance train-
ing practices.

3.3.1 Wireless Force Sensing Body Protectors for
Martial Arts

Judging in Taekwondo competitions is a subjective task. Wearable device to
judge Taekwondo
competitions
objectively

The judges cannot always tell if a punch or a kick was ex-
ecuted powerful enough or if it hit the right body part to
be considered a valid score. To provide a more objective
approach, Chi et al. [2004] have built protectors with built-
in force sensors, which are worn on the taekwondo com-
petitor’s torso. The force sensors measure the impact of a
punch or a kick. They send the readings in real-time over a
wireless connection to a base station, which is connected to
a laptop.

Chi et al. have conducted experiments with experienced Automatic scoring is
based on force
measurements

Taekwondo competitors to gather sensor data for different
kicks and punches. From the experiments they have de-
rived thresholds for the force readings to determine auto-
matically whether a punch or a kick is valid. Chi et al. en-
vision their system to be used together with human judges
ensuring more objective results of Taekwondo competi-
tions.
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3.3.2 Towards Recognizing Tai Chi

Kunze et al. [2006] have conducted a feasibility study to ex-
plore the potential of body-worn sensors to automatically
recognize Tai Chi movements. As video analysis for such
movements is tedious, time-consuming, expensive and er-
ror prone, they argue in favor of a wearable solution to an-
alyze trainees.

Kunze et al. use eight MT94 Inertial Measurement UnitsEight sensor units
mounted on body (cp. 2.5—“Inertial Measurement Unit (IMU)”) sensor units

on different parts of the body. Discussions with Tai Chi ex-
perts yield the following attachment locations for the sen-
sor units: above the elbow, above the feet, above the knee
(two sensors in each case), and one on neck and hip.

Kunze et al. have conducted an experiment with two TaiAmateurs and
experts can be
distinguished

Chi amateurs and two Tai Chi experts. Collecting sensor
data over a sample window of 100 and calculating various
features, e.g., root mean square, Kunze et al. try to recog-
nize different Tai Chi movements. After having trained a
K-Nearest-Neightbor clustering algorithm, they are able to
distinguish three types of expertise with 76% accuracy and
two different Tai Chi movements with 85%. These results
show that recognizing Tai Chi movements automatically is
feasible.

3.3.3 Audiofeedback for Karate Training

Takahata et al. [2004] try to improve a trainee’s understand-Movements hard to
explain with words ing of how to perform a certain karate punch. They ar-

gue that instructors can only vaguely deliver movements
by means of expressions and explanations.

To deliver feedback on the trainee’s performance they pro-Audio feedback on
punches vide real-time audio feedback. 2-D accelerometers on the

wrists measure twists and a microprocessor maps the ac-
celerometers’ data to sound. For well performed punches
the trainee gets clear sounds as feedback and therefore can

4 This is the predecessor of the MTx mentioned in Section 2.5—
“Inertial Measurement Unit (IMU)” from XSens.

http://www.xsens.com/
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check his performance on his own. In their tests Takahata
et al. show that audio feedback increases the trainees’ mo-
tivation. However, feedback on several aspects of a punch
should be avoided as the trainees can only focus on one.

3.3.4 Combining Body Sensors and Visual Sensors
for Motion Training

Similarly to the previous project, Kwon and Gross [2005]
propose a system to improve traditional training methods
in motion training, especially in martial arts. During a
training session, a trainer usually demonstrates a certain
movement and the trainees try to follow his demonstra-
tions.

In the new training method the participants’ movements Body movements
captured with
camera and
body-worn
accelerometers

are captured via a camera and body-worn accelerometers
(Figure 3.5(a)) to create a motion data model in real-time.
This data model has two purposes:

1. The trainer’s motion data is used to automatically cre-
ate an instructive training video enriched with non-
visible information, e.g., a circle around the hand
changes its diameter according to the magnitude of
the acceleration (Figure 3.5(b)).

2. The trainee’s data on the other hand is evaluated by
the system based on the trainer’s reference data us-
ing Hidden Markov Models.5 Therefore, a trainee can
study the trainer’s movements in detail with the in-
structional video and gets feedback on the quality of
his own movements.

When practicing a basic movement in martial arts, a trainee
first performs a certain posture, then executes the motion,
e.g., one punch, and ends up in a posture again. Hence,
Kwon and Gross divide the sensor data into postures and

5 Hidden Markov Model (HMM) are used in speech analysis to rec-
ognize words and sentences and distinguish speakers. For more infor-
mation see [Rabiner, 1990].
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Figure 10: Observations for body sensor tracking
with LED markers on the wrist body sensor.

maximum value of 100. During the tests, we found that this
minimum distance is better suited than mean or median to
measure quality. The computed scores are displayed on the
motion training video panel in real-time.

5. MOTION TRAINING VIDEO
A motion training video is necessary for trainees and train-
ers as a reference to follow and analyze motions. However,
producing such a video usually takes a lot of time. First,
it requires simultaneous video recording during the trainer’s
performance. Also, the captured videos should be edited for
the purpose of motion training such as selecting video frames
and adding explanatory information. We provide a method
for automatic generation of motion training videos. As soon
as the input motion is detected, we save both the relevant
video frames and the body sensor data. Then we generate a
video displaying body sensor data along the tracked sensor
positions, as illustrated in figure 11.

5.1 Body Sensor Tracking
We extract sensor positions from the captured images and
use the positions to generate visual feedback. We made
various experiments to find suitable tracking solution for
our purpose. First, the color band tracking highly depends
on the training environment condition such as lighting and
color. We also tested IR light sources, but they omit color
information which is required. We found that color LED
markers are most suitable for our purpose. Their brightness
provides relatively robust tracking results in indoor train-
ing environments. We developed a simple vision tracking
algorithm to find the pixel positions within a certain color
and brightness range. The number and position of LEDs
are designed depending on the sensor position. In our tests,
we attached four LEDs at the four sides of the wrist bend.
This installation allows us to detect at least one point reli-
ably even when the hand is rotated in different directions.
Figure 10 illustrates four cases where one, two, three points
are detected respectively. We use the center of the detected
point as the position of the body sensor.

5.2 Visual Feedback
Visual feedback helps trainers and trainees to explain and
improve their motion practice. During the user tests, we
ascertain the fact that visual feedback for body sensor data
is absolutely needed. Users wanted to see how the body
sensor data is changing with the appearance of the posture.
Especially for the trainees, visualizing motion path helps
significantly to understand a dynamic gesture between two
static postures. Thus we focus on visualizing body sensor
data on the images along the motion path as illustrated in
figure 11. We use the tracked sensor positions and design a
simple template to display a moving circle along the path

Figure 11: Example video frames for visual feedback
with the mean power of acceleration signal.

changing its size as a function of the magnitude of the ac-
celeration. There are various design alternatives, of course,
varying the shape and its transformation rules.

6. USER EXPERIMENTS
We conducted a set of user experiments to quantify the costs
and benefits of combining visual and body sensor data for
motion training. We expect our motion training system to
provide significant benefits over conventional motion train-
ing. In our motion training system, visual sensor data is
used as a feedback to the user allowing him to coarsely ad-
just his motion to the reference motion. Conversely, the
body sensor data is utilized for adjusting required body part
of the user precisely. In our experiment we measure this
benefit. In addition, we quantify how our system evaluates
postures and gestures and how it detects human motions in
real-time. To this end, we use a martial art training scenario.
Martial art training is specifically suited for our experiment
because it includes highly complex, precise motions which
contain both postures and gestures.

6.1 Subjects
For this experiment, we used a trainer who is a master of
Taekwondo and six additional subjects as trainees, three
male and three female, all of them having no experience in
martial art training.

6.2 Task
We designed the separate tasks for the trainer and for the
trainees. The task of the trainer was to produce the ref-
erence motion data model for 10 sets of five motions each
(punch, outside block, upper block, inside block, and down
block). This model was used for the trainee experiment later
on. Subsequently, the trainer was asked to perform 5 sets of
10 outside-blocks for testing the motion evaluation methods.
The rest time between each set was two hours, and in each
set he performed 10 times repeatedly without resting.

For the trainees, we designed two basic training conditions:
posture training and gesture training. The task of posture
training was to learn start and end postures of the five mo-
tions. The gesture training serves for practicing individual
gestures between a start posture and an end posture. In
posture training, the trainees were told to perform postures
of four motions three times each while watching a reference
image without resting. We measured how long it takes to
learn to match their postures to the trainer’s average roll
and pitch values. Among the five motions, we selected the
punch motion which is relatively easy for teaching novices
to use the system. The end posture of the punch is also

99

(a)

(b)

Figure 3.5: (a) The system and its components. (b) Se-
quence of the visual feedback. The circle’s diameter in each
picture reflect the current acceleration of the hand.

gestures, i.e., static and dynamic chunks of a movement.
A single motion thus consists of three chunks: static–
dynamic–static. Based on these chunks the trainee’s mo-
tion is evaluated with respect to the trainer’s reference data.
The system calculates a score for every motion chunk en-
abling the trainee to systematically improve postures and
gestures.

The system has been tested in an experimental Taekwondo
training with one trainer and six trainees who had no ex-
perience with Taekwondo. The results have shown that the
system helps beginners to learn simple postures and ges-
tures.
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3.3.5 Wearable Sensing System for Professional
Downhill Skiing

A project closely related to the Snowboarding Assistant is de- Video analysis is a
common practicescribed in [Michahelles et al., 2005]. This project aims to

support and enhance training practices of professional ski-
ing athletes Usually the training runs of a skier are recorded
with a video camera during the day. Afterwards the skier
and his coach analyze the videos to identify mistakes and
opportunities for improvement.

Like [Kwon and Gross, 2005] in the previous section, Enriching video
material with sensor
data

Michahelles et al. argue that making non-visible informa-
tion (e.g., acceleration forces on the skier) visible through
body-worn sensors might improve video analysis. Out of
their own experience and from literature reviews they have
identified ski-relevant features and according sensors:

• 3-D accelerometers at thigh, lower leg and torso to
measure movements of the skier

• 3-D gyroscopes on the skies to measure rotation

• three FSRs under each foot to measure the weight bal-
ance of the skier

• distance sensors attached at the boots to measure the
edging angle of the skis relative to the slope

• a radar unit for measuring velocity (this sensor was
dropped for the final prototype due to its insufficient
accuracy)

Figure 3.6 shows a skier wearing the sensors. A laptop in Hardware setup
the backpack records the sensor data. The sensors on ski
and boots are fixated with adhesive tape. The accelerome-
ters on the body are attached via velcro straps. They shrink-
wrapped the sensors to protect them from snow.

To analyze a skier’s run Michahelles et al. have written a Dedicated software
to visualize and
analyze sensor data

dedicated software to view the sensor and video data of
the run synchronously. Sensor values appear in different
visualizations. Apart from raw data plots, they combine the
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entire framework. In SKI the user can associate video recordings of a ski with
sensor data, and view those through different visualization representations (see
Figure 5a).

In particular, the framework provides rotating bars indicating rotation move-
ments primarily for gyroscope data (see Figure 5b), a composition of all foot force
measurements (see Figure 5c), and, finally, an animated data plot showing the
plain sensor values (see Figure 5d). All viewers can be played at adjustable speed
synchronous to the video recording. Furthermore, basic filter operations, such
as mean calculations or integration, allow simple data pre-processing. Analyzing
first data we realized short random peaks in all of the sensor data. Nevertheless,
mean calculations over a sliding window with 30 values width prove sufficient to
eliminate those artefacts. Later versions of software should contain pre-defined
filter values, currently this is adjusted by hand.

5 Providing Experience and Meeting the Trainers

(a) (b) (c) (d)

Fig. 6. (a) sensor setup, (b) ski setup, (c) mounted accelerometers, (d) test-run

In order to provide more ‘realistic’ experience to the ski-experts we first
recorded test-data ourselves: A student wore the sensors and several downhill
runs were measured and video-taped on a race course. After that, having the
sensor platform, software-analysis tool, and first data, we started off visiting
several ski trainers in Switzerland. The following section gives an overview of
several meetings we have conducted. In each session we started with a couple
of slides describing our view about the benefits of wearable sensing for skiing,
showed our video- and sensor-data with our software, and collected feedback
from the discussions.
5.1 Meeting #1: Ryan Baumann, Interregio-Team Swiss West
Ryan Baumann coaches 15 to 18 years skiing athletes who have been selected
from all over West of Switzerland. His skiing team has about ten members.

In the beginning, our meeting was centered a lot around today’s work prac-
tices of trainers. The trainer records runs of his athletes to analyze very specific
phases of their skiing technique. Later in the evening they sit together and thor-
oughly analyze the recorded videos of the day. However, occlusion, snow spray
and perspective can limit the evidence from time to time.

During the meeting we realized that it does not make sense to ask trainers
which sensors they think could be interesting for them: trainers just do not care
about sensors. Instead we continued learning more about the skiing technique.
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(a)

(b)

(c)

Figure 3.6: (a) A Skier with the attached sensors. (b) Sensors fixed on the boots with
adhesive tape. (c) Accelerometers on the knee fixed with velcro straps [Michahelles
et al., 2005].

readings of the FSRs under the feet to estimate the center of
gravity. This is visualized as depicted in Figure 3.7.

Following their own prototype-centered development-Prototype stimulates
trainers’ ideas framework for wearable computing [Michahelles, 2004],

they used their first prototype as a starting point for dis-
cussions with professional skiing trainers. The prototype
should stimulate further ideas. In fact, the trainers were
open to new technologies and brought in their own ideas
for sensor placements. Moreover, they could imagine in-
corporating wearable sensors into their training practices.

3.4 Summary and Discussion

The Snowboarding Assistant will be used in an outdoor en-Some aspects of the
Snowboarding
Assistant overlap
with the presented
work

vironment to analyze the movements of snowboarders and
to detect mistakes. The objective is to improve the teaching
process. In some of these aspects, the projects presented in
this chapter overlap with the Snowboarding Assistant. In the
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7

details) shares this A/D conversion among 24 analog input channels for sensor
data. For the first prototype which chose the simplest way: In each cycle all 24
channels of both Smart-Its are collected and send over serial-line to a laptop for
storing the data. The on-board UART driver of the Smart-It limits the maximum
data rate to 14kB/sec. Assuming an average logging duration of a ski-run of two
minutes and considering one more minute before and after the run, with the
maximal data rate, 2.47MB of data accumulate per run.

4.3 Software: SKI - Synchronous Kinetics Integration
An analysis software prototype, referred to as SKI, was developed, so that video
sequences and data recorded by the sensor platform can be viewed in a synchro-
nized way. During the development of the visualization software one challenge

(a) (b)

(c) (d)

Fig. 5. (a) software-screen-shot, (b) rotation, (c) foot-forces, (d) rawdata

was to implement an intuitive representation of the measured data. Furthermore,
special attention was paid towards extensibility, in order to incorporate feedback
and suggestions stemming from users during the experience sessions: By using
the Java Reflection Framework [5] new data-viewers derived from basic frame-
work classes can be added to the software without any further changes of the

video referencefoot balance

raw data plot

Figure 3.7: Screenshot of the analysis software developed
by Michahelles et al. [2005]. Video and sensor data can be
viewed synchronously. The ‘foot balance’ view shows the
three FSRs under each foot. White points illustrate the cen-
ter of gravity of each foot and between both feet.

following we will summarize these similarities as well as
differences that distinguish the Snowboarding Assistant from
the related projects.

3.4.1 Systems for Outdoor Use

Both Kern and Schiele [2003] (sec. 3.1.2) and Michahelles Off-line analysis of
sensor data collected
outdoors

et al. [2005] (sec. 3.3.5) develop their hardware specifically
to be used in an outdoor environment. Their objective is to
collect sensor data for off-line analysis. Kern and Schiele try
to automatically recognize several activities. The objective
is ‘activity recognition’ in general. In contrast, Michahelles
et al. [2005] aim at the specific goal to support professional
skiing training. They do not, however, automatically ex-
tract relevant features from the sensor data.

These projects provide useful information on different Same environment
but different goalstypes of sensors and their locations for use in an environ-
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ment that is not restricted to the lab. Nevertheless, both of
them do not process data in real-time to support the wearer.

3.4.2 Training Systems

The goal of the martial arts projects (sec. 3.3.3, 3.3.4) is toFeedback for
improving single
motions

improve the teaching process in motion training. This pro-
cess suffers from the fact that trainers cannot explain mo-
tions by explanation or demonstration adequately. To over-
come this problem, the mentioned projects provide real-
time feedback for the trainees so they can judge their own
performances. The projects concentrate on distinct motions
such as single punches and compare them to those of an ex-
pert. As training is usually performed in a gym, Kwon and
Gross [2005] make use of a visual feedback system installed
in the environment.

The common goal of these projects and the SnowboardingSequence of motions
is important in
snowboarding

Assistant is to improve teaching methods for beginners.
While focusing on single motions, which are executed pre-
cisely, is important for martial arts, the overall sequence of
motions and proper body posture is essential for snow-
boarding.
Furthermore, snowboarding is performed outside on a
slope, making it unfeasible to follow an approach as pro-
posed by Kwon and Gross, which relies on the static envi-
ronment of a gym.

3.4.3 Monitoring Systems

The projects in Section 3.2—“Health Care” monitor theMonitoring patients
restricted on body
posture

patient’s posture with wearable sensors to give feedback,
if the patient leaves a ‘safe area’. Both the TactaPacks
(sec. 3.2.3) and the Bio-WWS (sec. 3.2.2) utilize accelerom-
eters for posture detection. They determine tilt from the
sensor readings (see Figure 2.2, p. 13). This works only if
the gravitational contribution to the sensor value is domi-
nant, i.e., the wearer of the sensors is not moving or at least
moving slowly.
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The idea to “nudge” ([Lindeman et al., 2006]) the user back
to a good body posture is certainly useful for the Snowboard-
ing Assistant. Nonetheless, in snowboarding we will have
to consider sequences of motions as well, as the rider moves
constantly while descending the slope.

The GaitShoe is not restricted to monitoring the patient’s GaitShoe for
rehabilitation
purposes

body posture. It analyzes movements. The project is closely
related to the Snowboarding Assistant, however, the target
application differs greatly. The GaitShoe focuses on the re-
habilitation of patients, whereas the Snowboarding Assistant
will support the learning process of snowboarders.

3.4.4 Comparison

Table 3.1 shows an overview of the relevant projects. None None of the systems
supports trainees
outdoors

of these projects focus on analyzing human movements to
support the learning process of trainees in an outdoor envi-
ronment. [Michahelles et al., 2005] lacks real-time analysis
and [Kwon and Gross, 2005] is exclusively designed for ap-
plications in controlled environments, prohibiting an out-
door use. As mentioned before, the GaitShoe is similar to
the Snowboarding Assistant, but their application domains
are different.

Project Real-Time Outdoor Purpose of
Analysis Application Feedback

[Kern and Schiele, 2003] (3.1.2) –
√

[no feedback]
[Michahelles et al., 2005] (3.3.5) –

√
[no feedback]

Bio-WWS (3.2.2)
√

– rehabilitation
TactaPacks (3.2.3)

√
– rehabilitation

GaitShoe (3.2.1)
√

(
√

) rehabilitation

[Takahata et al., 2004] (3.3.3)
√

– teaching
[Kwon and Gross, 2005] (3.3.4)

√
– teaching

Snowboarding Assistant
√ √

teaching

Table 3.1: Comparison of related work (
√

= Yes, − = No, (
√

) = Perhaps).
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Chapter 4

The Snowboarding
Domain

“Snowboarding is an activity that is very
popular with people who do not feel that regular

skiing is lethal enough.”

—Dave Barry

An in-depth examination of the snowboarding environ-
ment and a detailed understanding of beginners’ and in-
structors’ problems are important when designing a sys-
tem like the Snowboarding Assistant. As criticized by Micha-
helles, wearable computing projects often emphasize the
technology side while the target application domain is not
taken into consideration sufficiently. This is one reason
why only few systems are successfully employed in real
world settings [Michahelles, 2004, p. 4].

This chapter is an introduction to the snowboarding do-
main. First we explain elementary snowboarding terms
and techniques, which are important, primarily for those
readers not familiar with this environment, to follow our
design decisions. Thereafter, we discuss the most impor-
tant results that we have gained from researching snow-
boarding literature and conducting interviews with snow-
board instructors, which led to the design of our first pro-
totype described in Chapter 5—“A Lab Prototype”.



38 4 The Snowboarding Domain

4.1 Snowboarding Terms and Techniques

Nose and Tail. On a snowboard the rider stands side-
ways. The leading end of the snowboard is called ‘nose’
and the rear end is called ‘tail’. A sketch of important terms
is given in Figure 4.2.

Regular and Goofy. Regular and goofy are the two pos-Regular: left foot in
front. Goofy: right
foot in front.

sible riding stances. Standing with the left foot in front is
called regular footed (or ‘regular’) and standing with the
right foot in front is called goofy footed (or ‘goofy’).1 This
distinction is important due to the fact that the movements
and motion sequences of regular and goofy footed riders
are reversed, as illustrated in Figure 4.1.

regular goofy

Figure 4.1: The snowboarders’ postures are reversed due
to their different stances. Taken from [Reil et al., 2003,
pp. 12, 70].

Frontside and Backside. In the snowboarding jargon theTerms like‘left’ and
‘right’ are replaced
by ‘front’ and ‘back’

terms ‘left’ and ‘right’ are generally avoided because de-
pending on the rider’s stance the terms have a different
meaning and therefore might lead to confusion. For in-
stance, the rider’s left foot can be either the leading or the

1 The rider’s stance, like being left- or right-handed, is determined
by nature.
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rear foot depending on the stance. In order to resolve this
confusion, snowboarders speak of their front (leading) and
back (rear) foot. Likewise the term ‘frontside’ refers to what
is in front of the rider and what is to his back is called
‘backside’. The snowboard’s edges are named frontside
(toe-side) and backside (heel-side) edge correspondingly
(see Figure 4.2).

frontside edge

backside edgenose tail

direction of travel

frontside edge

front foot back foot

goofy (left foot in front)

regular (right foot in front)

Figure 4.2: Sketch of important terms in snowboarding.

Basic Stance. The ‘basic stance’ is an extremely important The basic stance is
the starting point for
any further
movement

body position on the snowboard because it is the starting
point and foundation for any further movement. For ex-
ample, in between turns the rider returns to the basic stance
[Reil et al., 2003, p. 22]. Figure 4.3 illustrates the main char-
acteristics of the basic stance:

• The rider’s weight is distributed evenly on both feet, Balanced weight
distributionin order to maintain balance.

• The joints (including ankles, knees, hip, spine) are in a Joint in a central
positioncentral position, i.e., neither entirely straight nor com-

pletely bent. Even though the body is relaxed, a cer-
tain tension remains to allow quick reactions.

• The shoulders and hip are parallel to the snowboard.

• The direction of movement is solely tracked by the
head. Upper and lower body remain aligned.
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Figure 4.3: Basic stance on a snowboard. Taken from [Reil
et al., 2003, p. 23].

Turns. There are two different kind of turns: the frontsideTwo different types of
turns: frontside and
backside

turn and the backside turn.
When starting a frontside turn, the rider is on his backside
edge facing downhill. After the turn he is on his frontside
edge facing uphill. For a backside turn the snowboarder is
riding on his frontside edge facing uphill. After performing
the turn he is on his backside edge facing downhill.

The instructions of how to perform a basic frontside turn
can be specified into the following four points:23

1. In basic stance position the rider approaches on the
backside edge (Figure 4.4 1©).

2. To initiate the turn, the rider shifts his weight onto
the front foot and pre-rotates his upper body to-
wards turning direction. This is important because
otherwise the snowboard does not turn easily. (Fig-
ure 4.4 2©).

2 This works vice versa for backside turns.
3 Even though various other techniques to perform turns exists [Reil

et al., 2003, pp. 48, 52, 72], a basic frontside and backside turn is what
beginners learn first.
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3. To pivot the snowboard from the backside edge to the
frontside edge, the rider shifts his weight from the
heels to the toes (Figure 4.4 3©).

4. The rider shifts his weight back onto his back foot
to finish the turn. Thereafter he traverses the slope
on the frontside edge (Figure 4.4 4©). After finishing
the frontside turn the rider returns to basic stance and
prepares to initiate a backside turn.

1
2

3

4

Figure 4.4: Stages of a frontside turn. Taken from from [Reil
et al., 2003, p. 35].

4.2 Literature and Interview Findings

Our findings are based on instructional literature and in-
terviews with snowboard instructors. We refer to [Reil
et al., 2003] as the only literature source since this book
is officially used by the German Ski Instructor Associa-
tion (Deutscher Verband für das Skilehrwesen e.V.). Nev-
ertheless, the content of the book is consistent with various
handouts, websites and movies of different associations for
snowboard instructor training.4

4 For example, the Canadian Association of Snowboard Instructors
or the Tiroler Skilehrerverband.

http://www.casi-acms.com
http://www.snowsporttirol.at
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We conducted guided interviews with four snowboard in-Interviews with
snowboard
instructors yields a
deeper
understanding of
practices in
snowboarding

structors (see A—“Interview Guideline”). The goal of these
interviews was to collect qualitative data in order to attain a
better understanding of the future users and the context of
snowboarding lessons. Furthermore, we wanted to know,
if the instructors have experience with typical mistakes that
arise when learning how to snowboard and how they deal
with these mistakes. We wanted to substantiate what we
had read in the instructional literature. At the end of each
interview, we presented our idea of the Snowboarding Assis-
tant to specifically obtain feedback and possibly new ideas
for the development of the first prototype.5 Our intervie-
wees had at least several weeks of teaching experience with
snowboard beginners (see Table 4.1).

Instructor 1 Instructor 2 Instructor 3 Instructor 4

Profession student research assistant physio- physio-

(geography) (metallurgy) therapist therapist

Age 24 27 26 27

Years on snowb. 12 12 11 9

Years as instr. 4 5 1.5 5

Type of instr. basic basic basic basic/advanced

Experience:

Outdoors 1 season >7 weeks 1 week several years

Indoors several weeks several weeks several years

Table 4.1: Overview of the snowboard instructors we have interviewed.

In the following sections we summarize the most outstand-
ing interview findings.

4.2.1 Common Beginner Mistakes

The instructors agreed that common beginner mistakes ex-
ist. We were able to identify four main mistakes beginners
are likely to make.

5 Without question, interviews with snowboard beginners as the tar-
get user group of our system are equally important. Nonetheless, at this
early stage we focused on the instructors who are capable of judging the
situation and the problems of beginners.
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Straight Knees

Balance on the snowboard can be maintained by lowering Beginners do not
bend their knees
sufficiently

the center of gravity. Therefore, the snowboarder needs to
adopt a relaxed stance by slightly bending the major joints
(see 4.1—“Basic Stance”). From the interviews we have
learnt that bending the joints, especially the knees too little,
is one of the most typical and frequently occurring begin-
ner mistake. As mentioned by the instructors, one reason
is the awkward and unfamiliar situation. In addition, be-
ginners often lack a correct perception of their own bodies,
which makes them believe that their knees are bent when
actually they are too straight.

Wrong Upper Body Posture

An almost unbowed position ensures that the center of Beginners tend to
bow their upper bodygravity is above the snowboard and balance can be main-

tained (see 4.1—“Basic Stance”). Nevertheless, beginners
often bend their upper body and look down to the snow-
board and to their feet (see Figure 4.5). This posture should
be avoided because by this it is easy to lose balance and fall.
Moreover, it is important that the snowboarder sees what is
in front of him and therefore needs to look in the direction
he is going.

Figure 4.5: A snowboarder with incorrect body posture.
His knees are straight and the upper body is bowed. Pre-
sumably, his backside edge cuts into the snow and he falls
on his back. Taken from [Reil et al., 2003].
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As mentioned by the instructors, a wrong upper body pos-Often in combination
with straight knees ture often occurs in combination with straight knees. Once

more, the reason is the lack of the own body perception:
The beginners know they need to be closer to the ground
so they bow their bodies instead of bending their knees.

Wrong Weight Distribution

Distributing one’s weight correctly is essential as it controlsBeginners tend to put
their weight on their
back foot

the snowboard’s sliding behavior. In between turns, weight
is distributed equally between the front and the back foot.
In order to perform turns the weight needs to be shifted to-
wards the front foot (see 4.1). As a result the board turns
downhill into the fall line, the line of greatest slope. As
this accelerates the snowboard, beginners are often afraid
to lean onto their front foot. As a counter-intuitive reaction
they tend to lean back because they think this slows down
the snowboard. Instead with weight on the back foot, the
snowboard does not turn easily. As a result the rider is not
able to leave the fall line, accelerates and loses control (Fig-
ure 4.6).

Figure 4.6: A snowboarder falling down because of too
much weight on his back foot. Taken from [Reil et al., 2003,
p. 41]

Counter-Rotation

When the upper body rotates contrary to the turning di-Turning the upper
body against the
lower body to turn
the snowboard

rection this is called counter-rotation. For example, after
a frontside turn, beginners are likely to keep their upper
body pointed downhill instead of returning to the basic
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stance [Reil et al., 2003, p. 43]. This results in a twisted pos-
ture as illustrated in Figure 4.7(a). If the next backside turn
is initiated by unwinding the twisted body, we speak of
counter-rotation. This ‘technique’ is physically exhausting
and should not be used for frontside and backside turns.
Nevertheless, it is necessary to stop the snowboard [Reil
et al., 2003, p. 28].

(a)

(b)

(c)

Figure 4.7: Sequence of a snowboarder performing a back-
side turn with counter-rotation. Taken from our user study.

4.2.2 Further Aspects

Altogether the interviewees’ opinions on our project were Instructors could
imagine the system
to be helpful during
snowboarding
lessons

positive. They could imagine the Snowboarding Assistant
improving the learning process. They stated that beginners
have problems to put into practice what the instructor tells
and demonstrates them. Feedback on their performances is
crucial as one interviewee stated:

“I think it is important to get feedback as fast
as possible. Feedback whether something was
right or wrong. At the beginning we observe
everyone individually and give feedback after-
wards.” Instructor 4

The interviewees felt that the Snowboarding Assistant could Snowboarding
Assistant increases
awareness of body
posture



46 4 The Snowboarding Domain

improve the beginners’ awareness of their body postures.
This could prevent mistakes related to the insufficient
perception of their own bodies, e.g., knees too straight
(see sec. 4.2.1). Another advantage is that the Snowboard-
ing Assistant can monitor the beginner even when the in-
structor is not present. When practicing without supervi-
sion mistakes are likely to creep in.

Besides of a positive opinion on the Snowboarding Assistant,
the instructors mentioned other important aspects we had
not thought about before

Target User Group

According to the interviewees, first-time riders are tooNot helpful for
first-time riders, but
for advanced
beginners

overwhelmed by the unfamiliar situation on a snowboard
and feedback from the Snowboarding Assistant could over-
stimulate them. Therefore, the target user group of our sys-
tem should be beginners who already know how to per-
form basic turns but still make mistakes.

As another user group the interviewees suggested ad-Advanced
snowboarders as
possible user group

vanced riders who would like to improve their techniques
e.g., when learning to carve.6 This user group might
even benefit from the Snowboarding Assistant’s feedback to
a greater extent than beginners because riding on a snow-
board does not overwhelm them. Therefore, they would be
able to precisely focus on the feedback of Snowboarding As-
sistant. This user group has to be kept in mind for future
developments, but for the first version we focus on begin-
ner mistakes.

Supporting the Instructor

Even though the Snowboarding Assistant is supposed to sup-
port students, the instructors imagined certain situations
in which the Snowboarding Assistant could support them.

6 With this technique turns are performed on the edges of the snow-
board and not by drifting [Reil et al., 2003, p. 14].
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For instance when students wear wide pants it is not pos-
sible to see their knee bending. Moreover, if mistakes recur
frequently it is exhausting to repeat the same advices over
and over again and it might be embarrassing from the stu-
dent’s point of view. Repeatedly getting unobtrusive feed-
back from a device, however, might feel less embarrassing
in front of others.

Focus on One Mistake

The instructors further mentioned that the Snowboarding One mistake at a
timeAssistant should only detect one mistake at a time. Feed-

back on several mistakes would distract beginners. More-
over, according to the instructors’ experience, beginners
usually maintain one mistake after they have learnt how to
do turns. The Snowboarding Assistant could help to specifi-
cally eliminate this mistake.
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Chapter 5

A Lab Prototype

“An idea not coupled with action will never get
any bigger than the brain cell it occupied.”

—Arnold H. Glasgow

During the development process we followed a DIA cycle
(Design–Implement–Analyze). Every iteration resulted in
a prototype that was evaluated. We made three iterations,
starting with the lab prototype, followed by a first wireless
prototype, which was refined to the final prototype used in
the user study.

We designed the first prototype for a lab environment in or-
der to discover how mistakes can be detected using body-
worn sensors. This lab prototype is able to detect several
common beginner mistakes and give simple real-time feed-
back.

This chapter describes the hardware setup, our approach to
determine the mistakes, how it was implemented, as well
as initial tests and findings which fed into the design of the
second prototype described in Chapter 6—“A Mobile Pro-
totype for the Slope”.
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5.1 Hardware Setup

Targeted at the common beginner mistakes (see sec.4.2.1),
we selected several sensors. To connect the sensors to the
computer, we first needed to chose an appropriate sensor
interface.

5.1.1 Sensor Interface

Many of the projects in Chapter 3—“Related Work” built
their own hardware platforms, but for our first prototype
an off-the-shelf sensor interface seemed more appropriate.
We considered several alternatives:

Phidgets. The PhidgetInterfaceKit 8/8/81 sensor interface
has eight analog and eight digital inputs, as well
as eight outputs. Phidgets provides several sensors
which can simply be plugged into the interface. The
interface connects to the computer via USB. There is
no wireless version available.

MakingThings. The Make Controller Kit2 sensor interface
board is similar to the Phidgets board. It offers eight
analog inputs and eight outputs. MakingThings pro-
vides custom sensors for their interface. The sensor
interface can be connected to the computer either via
USB or Ethernet. No wireless version is available.

Smart-Its. The Smart-Its hardware platform [Beigl et al.,
2003] emerged from a collaborative research project
from different universities.3 Smart-Its do not hide the
hardware layer as much as the above sensor inter-
faces do. This results in a higher threshold for users
not familiar with physical computing.
In contrast to the previous interfaces, they incorpo-
rate wireless sensors into their platform.

1http://www.phidgets.com
2http://www.makingthings.com
3 In particular the Lancaster University, the ETH Zurich, and the Uni-

versity of Karlsruhe. See http://www.smart-its.org for more informa-
tion.

http://www.phidgets.com
http://www.makingthings.com
http://www.phidgets.com
http://www.makingthings.com
http://www.smart-its.org
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I-CubeX. The I-CubeX4 sensor system sold by Infu-
sion Systems provides different sensor interfaces.
Two of them connect to the computer via MIDI cables
and one can be operated wirelessly over Bluetooth.
Infusion Systems provides a wide range of different
sensors which can be plugged into their sensor inter-
faces.

We dismissed the Smart-Its platform because the threshold I-CubeX as platform
for the first prototypeto built our own hardware on top of this platform seemed

to high for a first prototype. The other systems provide eas-
ier access to their sensing capabilities. We also dismissed
the PhidgetInterfaceKit and the Make Controller Kit be-
cause they both lack wireless versions. Consequently we
chose the I-CubeX sensor system and selected the I-CubeX
Digitizer for the first prototype. We made the decision
based on the following advantages:

Simple connection. The system can be easily connected to
the computer. Only a MIDI interface and the I-CubeX
configuration software are required. Moreover, with
the MIDI standard as communication protocol, ev-
ery programming language or software that supports
MIDI can process data from the Digitizer.

Variety of robust sensors. The variety of sensors offered
for the I-CubeX system exceeds those provided by
Phidgets and MakingThings. This was the main ad-
vantage of the rather expensive system. Additionally,
the sensors are already assembled in robust casing
and can be plugged into the Digitizer without solder-
ing.

24 inputs and 8 outputs The Digitizer offers 32 sensor con-
nections, more than enough for our purposes. More-
over, eight of them work as outputs as well. This was
considered for providing feedback in later stages of
the development.

Although the setup was appropriate for a lab prototype it Limited processing
capabilities on the
Digitizer

was obvious that we would not take this system on the

4http://infusionsystems.com

http://infusionsystems.com
http://infusionsystems.com
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slope. The automatic sensor processing capability of the
Digitizer is limited to simple preprocessing like averaging
or setting thresholds for every sensor. Although we wanted
to work with thresholds, fixed threshold were too restricted.
We needed to change them for every user. Moreover, data
of several sensors cannot be combined to define output
with the I-CubeX configuration software.

Hence, we needed to connect the Digitizer via two MIDI ca-Wired system will not
work on the slope bles to a computer to allow further processing. We consid-

ered taking a laptop in a backpack on the slope, as Micha-
helles et al. [2005] did for their initial test runs, but we dis-
missed the idea. The risk of damaging the laptop was high,
as beginners often fall. In addition, the Digitizer was sensi-
tive to movements when operated via battery. Sometimes
the battery lost contact and turned off the Digitizer.

The limitations of the system, however, were acceptable forSetup is appropriate
for a rapid prototype a rapid prototype. We deliberately chose a wired system

for our first trials with the sensors in the lab. Data pro-
cessing on the Digitizer was not necessary as it was con-
nected via cables to a host computer and introduced hardly
any latency. Moreover, for a wireless prototype the wired
Digitizer could later be replaced with the wireless I-CubeX
Wi-microDig.

5.1.2 Sensor Types and Locations

Among the vast range of sensors offered by I-CubeX we se-
lected the following sensors and corresponding sensor lo-
cations to identify common mistakes.

Force Sensitive Resistors (Weight Distribution)

We selected four FSRs to measure the rider’s weight dis-FSRs to measure
weight distribution tribution. Similar to the related projects described in Sec-

tions 3.3.5 and 3.2.1, we planned to put the FSRs directly
under the feet: one FSR under the heel and another under
the ball of the foot for each foot. By this we wanted to de-
tect forward and backward (frontside vs. backside) leaning,



5.1 Hardware Setup 53

as well as left and right (front foot vs. back foot) leaning.

FSRs provided by I-CubeX differ in size, shape and range Small sized FSRs
can be placed under
insole

of measurement. The round shaped TouchMicro-10 fitted
our needs. Its dimensions of 30 mm width, 14 mm depth
and most of all its thin construction of 0.2 mm allowed us
to attach it unobtrusively under a shoe insole (Figure 5.1).
The TouchMicro-10 measures force up to 200 N distributed
evenly on its active area. Its absolute maximum is at ap-
proximately 4.5 kN. This means even though it cannot mea-
sure forces above 200 N, the sensor endures much higher
forces.

Figure 5.1: Two FSRs taped on the bottom side of a shoe
insole.

The range of up to 200 N, i.e., about 20 kg, might seem too Range of up to 200 N
is sufficientrestricted for measuring weight distributions of humans.

We have to consider, however, that a human’s weight is
distributed on the area under his feet. The small-sized FSRs
measure only a fraction of the total foot area and thus are
exposed to only a fraction of the total force. Even though
the absolute force on the feet cannot be measured, the re-
lations between different FSR readings reveal the weight
distribution.

Bend Sensors (Knee Bending)

Knee flexion is an important aspect of a snowboarder’s Bend sensors to
reveal knee bendingposture (cp. 4.2.1—“Straight Knees”). Hence, we decided

to attach two bend sensors at the back of the knees with vel-
cro straps (Figure 5.2). Even though a bend sensor’s output
depends on the flexion angle and the flexion radius, i.e., the
exact angle cannot be measured,5 they should reveal coarse

5 See [Morris, 2004, pp. 144] regarding problems with bend sensors.
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levels of knee bending. For detecting straight knees of be-
ginners this seemed appropriate.

Figure 5.2: Bend sensors attached to the back of the knee
via velcro straps.

We chose the I-CubeX BendShort v1.1 because of its thin
composition of 0.1 mm and its appropriate length of 87 mm.
The sensor can measure flexion up to 180◦— enough to
measure knee flexion.

Accelerometer (Upper Body Posture)

As accelerometers can measure inclination (see. sec.2.1),Accelerometer to
measure tilt of the
upper body

we attached a 3-D accelerometer on the upper body. The
I-CubeX GForce3D-3 v1.0 measures acceleration in three or-
thogonal axes in the range of −3G6 to +3G. We did not
expect higher acceleration for snowboard beginners. For
advanced snowboarders, however, this range might be ex-
ceeded.

Gyroscope (Counter-Rotation)

To detect rotations of the upper and the lower body weGyroscope do not
provide accurate
information

intended to use gyroscopes. We experimented with the

6 G = 9.81 m
s2 , the acceleration due to gravity.
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I-CubeX Spin2D-500, a 2-D gyroscope, but could not in-
fer upper versus lower body twists. As gyroscopes only
measure angular velocity the absolute position could only
be calculated through integration. Yet, the findings of
other projects show that this does not lead to good results
(cp. [Morris, 2004, pp. 116]). Sensor readings when the sen-
sor is at rest usually drift over time. These mistakes are
multiplied by the integration and yield poor results.
Hence, we postponed detecting counter-rotation and
planned to acquire inertial measurement units (see Sec-
tion 2.5—“Inertial Measurement Unit (IMU)”) which are
able to measure absolute orientation.

5.1.3 Additional Setup

We connected the I-CubeX Digitizer to an Apple Power- Digitizer is connected
to a laptop running
Max/MSP

Book G4 1.25 GHz via a M-Audio MIDISPORT 2x2 inter-
face. The MIDI data from the Digitizer was processed us-
ing Max/MSP,7 a graphical programming environment
intended mainly for creating musical applications. We
chose this software because it enables rapid prototyp-
ing. Implementation details are described in Section 5.3—
“Implementation”. Additionally, we displayed a picture of
a snowboarder with different postures on a screen as vi-
sual feedback. An overview of the whole hardware setup
is shown in Figure 5.3.

5.2 Design for Mistake Detection

After experimenting with the sensor values, we came up
with the following ideas:

• The basic stance (4.1—“Basic Stance”), as most impor- Basic stance servers
as reference to
compare sensor
values

tant posture in snowboarding, serves as reference for
comparing any further values. We need to capture the
value of each sensor while the snowboarder is in basic
stance as calibration data.

7http://www.cycling74.com/

http://www.cycling74.com/
http://www.cycling74.com/
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Sensor interface 
(Digitizer)MIDI interface

Computer (Max/MSP)

Bend sensors:
knee flexion

FSRs:
weight distribution

Accelerometer:
upper body tilt

Monitor:
visual feedback

Figure 5.3: Overview of the setup for the prototype. The
FSRs were attached under two insoles. Two velcro straps
fixed the bend sensors to the users knees. The accelerome-
ter was taped to the upper body. A screen showed pictures
of a snowboard as visual feedback.

• A certain range above and below the values of the ba-
sic stance should also be considered a good posture.
We call this region tolerance range, similar to the Target
Region in Section 3.2.2—“Biofeedback Wireless Wear-
able System” and define it by a tolerance value:

tolerance range = calibration value ± tolerance value

5.2.1 Knee Bending

As the readings of the bend sensors indicate the knee bend-Bend sensors
directly measure
knee flexion

ing we compare the sensor values to those of the basic
stance within a given tolerance range. In our case the val-
ues of the bend sensors drop when the knees are bent more.
Accordingly, when the readings value(bend) exceed the cal-
ibration value valuecal(bend) captured in basic stance plus
a fixed tolerance value Tbend we consider the knee straight.
We measure knee flexion for both knees independently as
follows:
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if value(bend) > (valuecal(bend) + Tbend) then
knee is straight

else
knee is bent

5.2.2 Upper Body Posture

As depicted in Figure 2.2 an accelerometer only measures Accelerometer can
be used to directly
measure tilt

acceleration in distinct directions. If the gravity vector is
not oriented parallel to one of the axes of the accelerom-
eter only its respective projection is measured. In partic-
ular, if one axis of an accelerometer is aligned parallel to
the ground, the projection of the gravity vector on this axis
is the zero vector, i.e., the reading is 0G (Figure 5.4 (a)).
The sensor readings rise when the axis is tilted towards the
ground (Figure 5.4 (b), (c)).

accelerometer axis

projection of

!g

!g

(a) (b) (c)

Figure 5.4: Person with an accelerometer attached to the
upper body. The axis of the accelerometer points towards
the person’s heading. In (a) the projection of the grav-
ity vector ~g on the accelerometer’s axis is ~0. If the upper
body is tilted the projections grows, resulting in a higher
accelerometer reading ((b), (c)).

As depicted in Figure 5.4, we align one of the axes of the 3-D One axis of the
accelerometer is
aligned
perpendicular to the
body axis

accelerometer perpendicular to the vertical body axis point-
ing forwards. If the upper body is tilted the sensor read-
ings rise. To analyze the accelerometer data value(accel),
we proceed analogously to knee bending:
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if value(accel) > (valuecal(accel) + Taccel) then
upper body is bent over

else
upper body is upright

5.2.3 Weight Distribution

The basic stance is not always appropriate and mistakesPosition within a turn
is important might depend on the stage of a turn. Thus, we also need

to infer this information from the sensor readings. Based
on the different stages of a turn (see 4.1—“Turns”) we iden-
tified according weight distributions under the feet of the
snowboarder that are illustrated in Figure 5.5. When theTwo independent

aspects of weight
distribution

snowboarder is traversing the hill on the frontside edge his
weight is mostly on the toe-side of his feet (Figure 5.5 5©
). Vice versa, while on the backside edge, his weight is on
the heel-side (Figure 5.5 1©). Among the front and the back
foot weight is distributed equally. When initiating a turn,
however, weight is shifted towards the front foot (e.g., Fig-
ure 5.5 2©). We thus consider two independent aspects of the
weight distribution and distinguish between three levels:

1. weight distribution between toe-side and heel-side ofToe–heel distribution
each foot (in the following referred to as toe–heel dis-
tribution):

(a) weight is mostly on the toe-side

(b) weight is mostly on the heel-side

(c) weight is distributed equally between toe and
heel-side

2. weight distribution between the front foot and theFront–back
distribution back foot (in the following referred to as front–back

distribution):

(a) weight is mostly on the front foot

(b) weight is mostly on the back foot

(c) weight is distributed equally on both feet
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Toe–Heel Distribution

Detecting toe–heel distribution with the FSRs should be
straight forward as there is one FSR on the toe-side and one
on the heel-side of each foot. We refer to the FSRs according
to their placement as illustrated in Figure 5.6.

ft = front foot toe side
fh = front foot heel side
bt = back foot toe side
bh = back foot heel side

FSRft

FSRfh FSRbh

FSRbt

FSRft

FSRfh FSRbh

FSRbt

direction of travel

regular goofy

Figure 5.6: Placement and denomination of the FSRs under
the feet.

For the three levels (1.(a), 1.(b), 1.(c)) of toe–heel distribution
the relations between the FSRs are as follows:

1.(a) weight is mostly on toe-side:

front foot: value(FSRft)� value(FSRfh)
back foot: value(FSRbt)� value(FSRbh)

1.(b) weight is mostly on heel-side:

front foot: value(FSRft)� value(FSRfh)
back foot: value(FSRbt)� value(FSRbh)

1.(c) weight is distributed equally:

front foot: value(FSRft) ≈ value(FSRfh)
back foot: value(FSRbt) ≈ value(FSRbh)

When the snowboarder is in basic stance one might expectEven in basic stance
values are not equal the sensor readings of all FSRs to be almost equal (as in

1.(c)) because the weight is distributed evenly on his feet.
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This will, however, not be the case because the FSRs can-
not be placed at precisely the same locations under the feet.
Moreover, different FSRs differ slightly in their readings
even if they measure the same force.
However, this does not impose a problem as we are inter- Relation between

FSR values is
important

ested in the relations between the FSR readings. An ap-
proach to compensate the different readings of the FSRs is
to take their difference during the basic stance as an offset.

To measure toe–heel distribution we calculate the differences
between toe- and heel-side FSRs on front and back foot. In
a first calibration step, we save the FSRs’ values in the basic
stance as calibration data. Additionally, we save the differ-
ences between toe and heel values:

1. Capture values in basic stance:

(a) front foot:
F cal

ft := value(FSRft)
F cal

fh := value(FSRfh)
(b) back foot:

F cal
bt := value(FSRbt)
F cal

bh := value(FSRbh)

2. Calculate and save differences:

(a) front foot (index ff ):
(∆F )cal

ff := F cal
ft − F cal

fh

(b) back foot (index bf ):
(∆F )cal

bf := F cal
bt − F cal

bh

(∆F )cal
ff and (∆F )cal

bf constitute the offsets due to the inac- Comparing with
values to the basic
stance

curacies of the FSRs. Values above this offset indicate a
shift towards the toe-side, values below a shift to the heel
side. Thus, for any subsequent values we calculate the cur-
rent differences of the toe- and heel-side FSRs and compare
them with (∆F )cal

ff for the front foot, and with (∆F )cal
bf for

the back foot:

3. Read data from the FSRs:

(a) front foot:
Fft := value(FSRft)
Ffh := value(FSRfh)
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(b) back foot:
Fbt := value(FSRbt)
Fbh := value(FSRbh)

4. Calculate the difference:

(a) front foot: (∆F )ff := Fft − Ffh

(b) back foot: (∆F )bf := Fbt − Fbh

5. Compare with basic stance values plus a tolerance
value Tfoot (shown for front foot, back foot works
analogously):

if (∆F )ff > ((∆F )cal
ff + Tfoot) then

weight is on toe-side
else if Fff < (F cal

ff − Tfoot) then
weight is on heel-side

else
weight is distributed equally on toe and heel

Front–Back Distribution

To estimate the front–back distribution we proceed similarly.
Yet, this time we sum up the values of the FSRs for each
foot to get an estimation of the weight on front (index ff )
and back foot (index bf ):
(
∑
F )ff = value(FSRft) + value(FSRfh)

(
∑
F )bf = value(FSRbt) + value(FSRbh)

Analogously to toe–heel distribution for the three levels
(2.(a), (b), (c)) of front–back distribution (sec. 5.2.3) the data
will be:

2.(a) weight is mostly on front foot:
(
∑
F )ff � (

∑
F )bf

2.(b) weight is mostly on back foot:
(
∑
F )ff � (

∑
F )bf

2.(c) weight is distributed equally on front and back foot:
(
∑
F )ff ≈ (

∑
F )bf
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The rest of the procedure is analogous to toe–heel distribu-
tion:

First, calibration data is set in the basic stance:

1. Sum up the FSR values of each foot in basic stance
and save their difference as calibration value:

front foot: (
∑
F )cal

ff = F cal
ft + F cal

fh

back foot: (
∑
F )cal

bf = F cal
bt + F cal

bh

difference: (∆F )cal
ff−bf = (

∑
F )cal

ff − (
∑
F )cal

bf

Again for further values we calculate the difference be-
tween front and back foot values and compare them with
the calibration data:

2. For further values calculate the difference:
(∆F )ff = Fft + Ffh

(∆F )bf = Fft + Ffh

(∆F )ff−bf = (∆F )ff − (∆F )bf

3. Compare the difference with the calibration data and
a tolerance value Tff−bf :

if (∆F )ff−bf > ((∆F )cal
ff−bf + Tff−bf ) then

weight is on front foot
else if (∆F )ff−bf < ((∆F )cal

ff−bf − Tff−bf ) then
weight is on back foot

else
weight is distributed equally

5.2.4 Combining Basic Information to Derive More
Complex Mistakes

We can combine the basic information about toe–heel and Combining
information to derive
the stage of a turn

front–back distribution to infer information about the stage
of a turn or mistakes in the weight distribution, e.g., too
much weight on the back foot.
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For example to derive stage 6© of Figure 5.5 from the sen-
sor readings, we combine three different results of the basic
processing:

if weight is distributed equally on front and back foot then
if weight is on toe-side for the front foot then

if weight is on toe-side for the back foot then
rider is traversing on the frontside edge

Some stages have the same weight distributions, e.g.,Stages with same
weight distributions stages 3©and 7©. We could keep track of the current stage by

building a state machine according to the different stages.
Transitions should be allowed between succeeding stages
in both directions, so turns can be aborted.

We can detect mistakes in the weight distribution by look-
ing at the front–back distribution:

if weight is on back foot then
give feedback on the mistake

In this case, it is not important whether the weight is on the
toes or on the heels, as shifting one’s weight on the back
foot is not needed (at least for beginners).8

We will give a last example considering knee bending:

if front knee is straight then
if back knee is straight then

give feedback on straight knees

Even though these mistakes are quite simple we could com-Focussing on simple
mistakes bine this basic information to detect more complex mis-

takes. For example, to detect counter-rotation we need to
know the turning direction. This can be derived from the
weight distribution. With the lab prototype we are not
able to detect twists of upper and lower body. We will
see how counter-rotation can be detected in Section 7.2.4—
“Counter-Rotation”. Moreover, we have divided the mis-
take detection into distinct levels. The snowboarder either

8 For snowboarding in powder snow, e.g., the rider weight needs to
be mostly on the back foot.
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makes a mistake or not. To assess the severeness of the mis-
take we could introduce more levels. To prove the concept
of automatic mistake detection, however, we focus on sim-
ple mistakes.

5.2.5 Providing Feedback

To give feedback on mistakes and the current position
within the turn, we first decided to show pictures of the
respective mistake and the position within the turn. Vi-
sual feedback might not be appropriate for the slope. It
was meant to demonstrate that the detection is working
correctly. This needs to be substituted in future develop-
ments

5.3 Implementation

As mentioned, for the first prototype data processing was Max/MSP as
developing
environment for rapid
prototypes

done with Max/MSP. I-CubeX provides a plugin — the
‘iCube object’— that controls the Digitizer from within the
Max/MSP environment. Max/MSP allows direct manipu-
lation of data values because the values are always visible
even while editing. Data flow is visualized through con-
nections that are graphically dragged from a sending ob-
ject to a receiving object. With the ‘iCube object’, data val-
ues can simply be piped into further processing objects via
dragging connections. Figure 5.7 shows the ‘iCube object’.
To illustrate the principle of Max/MSP, the first two sensor
outputs are connected to an object that calculates their sum.
The result is printed in a log window by the print object.

5.3.1 Max/MSP Patches

The structure of our prototype was inspired by the layered Layered architecture
architecture proposed in [Schmidt and Laerhoven, 2001].
We divided the software into three single programs, or
‘patches’ as they are called in Max/MSP, which represent
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settings for the Digitzer

data flow

data from the Digitizer
(via MIDI)

data to the Digitizer
(via MIDI)

calculate sum
print to log window

current values of the
first two sensors

Figure 5.7: A Max/MSP patch with the iCube object. The
iCube object receives sensor values from the Digitizer. As
an example the first two sensor values are piped into a ‘sum
object’. The resulting sum is forwarded to a ‘print object’
that prints it into a log window.

the different layers. The single patches communicate via
OSC9 (Open Sound Control) messages. These are similar to
MIDI messages but can contain arbitrary binary data. OSC
messages are not bound to a specific communication proto-
col and can be sent over any networking mechanism, e.g.,
UDP (User Datagram Protocol). This enables loose cou-
pling between the different patches. In particular we could
also send messages to other applications that are not writ-
ten in Max/MSP.

The three patches have the following functionalities:

Collecting sensor
data MyCutePatch.pat The first patch depends on the sensor

system and the sensors used, i.e., the I-CubeX Dig-
itizer and connected sensors. The patch contains the
‘iCube object’, collects samples from the Digitizer and
evaluates them according to 5.2—“Design for Mistake
Detection”. The resulting OSC messages contain ba-
sic context information such as ‘front knee straight’ or
‘weight on front foot’.

Combining basic
information MyEventReceiver.pat This patch receives the mes-

sages sent from the first patch and combines them
as discussed in 5.2.4—“Combining Basic Information
to Derive More Complex Mistakes”. It contains the
logic to make sense of the basic context information.

9http://www.cnmat.berkeley.edu/OpenSoundControl/

http://www.cnmat.berkeley.edu/OpenSoundControl/
http://www.cnmat.berkeley.edu/OpenSoundControl/
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For instance, the messages ‘front knee straight’ and
‘back knee straight’ are combined to form the mes-
sage ‘knees too straight’. The results of the combina-
tions are forwarded again via OSC messages to the
next patch.

Giving appropriate
feedbackMyFeedbackGenerator The last patch is responsible for

giving feedback according to the received messages.
For example, when the message ‘knees too straight’
arrives, the patch displays a picture of a snowboarder
with straight knees.

In the following section, we describe the data flow within
the different patches. Screenshots of the patches can be
found in appendix B.

MyEventReceiver

Combine basic events
(e.g. front foot on toe side  
AND back foot on toe side
⇒ snowboarder is traversing 

on frontside edge)

MyFeedbackGenerator

Provide feedback
(e.g. snowboarder is traversing 

on frontside edge ⇒ show 
appropriate picture)

OSC

MyCubePatch

Collect sensor data
(from I-Cubex Digitizer)

Generate basic events
(e.g. front foot on toe side ) 

OSC

Figure 5.8: Outline of the three Max/MSP patches.

MyCubePatch.pat

Figure 5.9 shows the different modules of
MyCubePatch.pat.

Before using the prototype, the calibration data needs to be Setting calibration
and tolerance valuescaptured. This is done, when the user is in basic stance. A

button in the calibration module captures the current sen-
sor values of all attached sensors. Moreover, the tolerance
values are set to realize the tolerance range as introduced
in 5.2—“Design for Mistake Detection”.

The data acquisition module is responsible for collecting Data acquisition
modulesensor values from the Digitizer. We always connected the

sensors to the I-CubeX Digitizer in the same order as shown
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Data acquisition
(from iCube)

sensor ouputs according to stance

Calibration
setting tolerance values, stance

capture calibration values
stance

Basic Evaluation

tolerance values
calibration valuessensor values

(∆F )ff > ((∆F )calib
ff + Tfoot) etc.

front foot:
toe side / heel side

back foot:
toe side / heel side

. . .

left knee right knee. . .

front knee back knee

OSC OSC OSC

Figure 5.9: The different modules of MyCubePatch.pat

in Table 5.1. The data acquisition module on the other hand
should output sensor data irrespective of the user’s stance.
Table 5.1 shows the connections of the sensors to the Digi-
tizer as well as desired outputs of the data acquisition mod-
ule.

I-CubeX Digitizer Data Acquisition module
Input Connected sensor Output Sensor

0 FSR on left foot, toe-side 0 FSR on front foot, toe-side
1 FSR on left foot, heel-side 1 FSR on front foot, heel-side
2 FSR on right foot, toe-side 2 FSR on back foot, toe-side
3 FSR on right foot, heel-side 3 FSR on back foot, heel-side
4 Bend sensor on left knee 4 Bend sensor on front knee
5 Bend sensor on right knee 5 Bend sensor on back knee

6-8 3-D accelerometer on upper body 6-8 3-D accelerometer on upper body

Table 5.1: Sensor attachment on the I-CubeX Digitizer and desired outputs for the
data acquisition module.

We could have attached the sensors based on the user’sSensor mapping
based on the user’s
stance

stance. Nevertheless, an easier way was to map the inputs
from the Digitizer within the data acquisition module onto
its outputs as shown in (Figure 5.10).

The basic evaluation module evaluates the sensor dataComparing values
with calibration data based on the settings of the calibration and tolerance val-

ues as described in 5.2—“Design for Mistake Detection”.
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FSR left toe

FSR left heel

FSR right toe

FSR right heel

Bend left knee

Bend right knee

front toe

front heel

back toe

back heel

front knee

back knee

regular
goofy

Input from 
Digitizer

Outputs of the 
data acquisition

sensor mapping

Figure 5.10: The mapping of the sensors according to the
stance of the user.

It does not yet combine the different context information.
This is the task of the next patch.

MyEventReceiver.pat

This patch combines basic context information of the snow- Combining
information to infer
mistakes

boarder to detect mistakes and the position within a turn as
outlines in Section 5.2.4—“Combining Basic Information to
Derive More Complex Mistakes”. For example, if it receives
both messages ‘front knee straight’ and ‘left knee straight’
it creates a ‘both knees straight’ message and sends it to the
following patch (Figure 5.11).

front foot:
toe side / heel side

back foot:
toe side / heel side

front / back knee:
straight / bent

upper body:
forward /backward

front/back foot:
front/equal/back

Mistake detectionTurn
detection

weight on front foot
toe side

weight on front foot
heel side

. . . both knees
straight

weight on
back foot

. . .

front knee 
straight

back knee 
straight

AND

Figure 5.11: Outline of MyEventReceiver.pat, which
combines basic information to infer mistakes and stages
within a turn.
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MyFeedbackGenerator.pat

The last patch gives feedback on the position within a
turn and mistakes based on the messages it receives from
MyEventReceiver.pat (Figure 5.12).

Feedback on stage Feedback on mistake

stage within turn
e.g. toe side

mistakes
e.g. weight on back foot

alternative
feedback types

(audio, video, tactile)

Figure 5.12: Outline of MyFeedbackGenerator.pat.
For the lab prototype we, chose visual feedback. This could
be substituted by other feedback types (picture used with
permission of ABC-of-Snowboarding).10

In one window, the patch shows images of a snowboarderVisual feedback
mistakes and stage
within a turn

as shown in Figure 5.5 according to the current position
within a turn (Figure 5.12). In another window, feedback
on current mistakes is provided as depicted in Figure 5.13.

(a) basic stance
(no mistake)

(c) upper body
posture

(d) both knees
straight

(b) weight on
back foot

Figure 5.13: Pictures shown to give a hint on the cur-
rent mistake (pictures used with permission of ABC-of-
Snowboarding).a

ahttp://www.ABC-of-Snowboarding.com

Visual feedback on a slope will not be appropriate as theFeedback is
exchangeable

http://www.ABC-of-Snowboarding.com
http://www.ABC-of-Snowboarding.com
http://www.ABC-of-Snowboarding.com
http://www.ABC-of-Snowboarding.com
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snowboarders need to watch the slope. We chose visual
feedback in the lab prototype to confirm that mistakes were
detected correctly. Other types of feedback needs to be
explored on the slope. As mentioned in 1.1.3—“Goals”,
this is not the focus of this thesis. If appropriate feed-
back has been found, this could simply be incorporated into
MyFeedbackGenerator.pat to test it in the lab.

5.3.2 Discussion

The layered architecture of the prototype has several ad-
vantages:

• If the sensor system is exchanged, only the corre-
sponding MAX object needs to be replaced — in our
case the iCube object.

• If sensors are substituted, only the corresponding
processing will have to be adjusted. For instance, if
bend sensors were replaced by optical sensors, mes-
sages like ‘knee straight’ or ‘knee bent’ would remain
the same.

• The logic to derive mistakes or the position within a
turn from the basic messages is concentrated in one
location (MyEventReceiver.pat). Different basic
messages can be combined to detect more compli-
cated mistakes.

• The last layer only deals with the type of feedback. It
can easily be exchanged to test several modalities of
feedback, such as video, audio or tactile feedback.

In reality, a strict isolation of the different layers will most Sensor system
should be
exchangeable

likely not be possible. It should, however, be made easy to
exchange the sensor system and the sensors used as this
will often necessary. Additionally, the type of feedback
should be exchangeable to test several possibilities.
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5.4 Test and Findings

We tested the prototype in the lab and simulated mistakes
and turns. We simulated turns by shifting the weight ac-
cording to Figure 5.5 and focused on mistakes that were re-
lated to a bad body posture as compared to the basic stance.

(a) (b) (c)

Figure 5.14: Testing the lab prototype. (a) in basic stance
(no mistake), (b) weight on back foot, (c) both knees
straight. The visual feedback indicates the mistakes.

The tests led to the following results:

Position within a turn. Shifting one’s weight according
to Figure 5.5, to simulate a turn, led to a cor-
rect sequence of the corresponding pictures in
MyFeedbackGenerator.pat. Yet, sometimes the
distinction between stage 2© and 3© , i.e., pivoting
the snowboard, were not clearly separated. However,
stages 1© and 5© could be identified unambiguously.

Upper body posture. Detecting the upper body posture
was possible with the accelerometer. Yet, we could
not detect it as easily as the other mistakes.

Knee bending. The mistake ‘both knees are too straight’
was the most simple to detect. After adjusting the
tolerance value straight knees could be detected re-
liably.However, as we will see in 6.3.1—“Problems
with the Hardware” on the slope we were facing
problems related to the bend sensors.

Weight too much on back foot. Comparing differences
between FSRs worked well. The different levels of
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front–back distribution (sec. 5.2.3) could be identified.
With an appropriate tolerance value, which depends
on the user, too much weight on the back foot could
be detected.

The readings of the accelerometers were only partly satis- Focus on FSRs and
bend sensorsfying. We did not dismiss the accelerometer completely for

the next prototype but focused on the FSRs under the feet
and the knee bending as they returned promising results.
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Chapter 6

A Mobile Prototype for
the Slope

“In theory, there is no difference between theory
and practice. But, in practice, there is.”

—Jan L.A. van de Snepscheut

For the next prototype, we build a wireless sensor system Mobile prototype for
the slopethat can be taken on the slope. This chapter describes the

hardware we used as well as the software to acquire and an-
alyze sensor data. In addition, we conducted initial self-test
runs with the system on a slope. Based on the experience
from these tests we improved the prototype for a test with
snowboard beginners.

The main goal of the second prototype is to collect sensor
data in a real-world setting. Building a prototype for the
slope imposes several requirements:

• The hardware needs to be robust enough to compen-
sate impacts when the wearer falls.

• The use of a laptop, like in the first prototype, is not
appropriate for the slope. We must

• switch to mobile devices.
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• Sensor data should be logged for further analysis in
the lab as conducting tests on the slope is expensive
and time-consuming.

6.1 Hardware Setup

6.1.1 Sensor Interface

Even though the I-CubeX Wi-microDig could have beenArduino platform for
future developments useful for a wireless prototype, we dismissed it because it

has no outputs for providing feedback1 Furthermore, its
on-board microprocessor cannot be programmed to sup-
port complex data processing. Instead we chose the Ar-
duino2 platform [Banzi et al., 2007] as our future develop-
ment sensor interface. It offeres several advantages:

• Every Arduino board is equipped with a micro-Programmable
micro-controller controller which can be programmed in C. Thereby it

allows advanced processing of sensor data in contrast
to the I-CubeX sensor interfaces.

• Arduino’s dedicated software environment allowsLow threshold for
programming on
hardware level

easy programming of the micro-controller by hiding
unnecessary hardware details. This is particularly
useful for developing prototypes.

• Data is transferred over the serial line, which is sup-Communication via
serial line ported by almost every programming language.

• Arduino offers different boards with outputs to con-
nect motors and actuators for feedback.

• A wireless version of the Arduino, the Arduino BT3 ,
with a built-in Bluetooth device is available.

• The software as well as the hardware are open source.Arduino allows
customization of
software and
hardware

The schematics of the different Arduino boards can
be found on the Arduino website, which allows cus-
tomization of the hardware if needed.

1 In the prototypes of this thesis feedback will not be implemented.
However, the decision was made for future developments.

2http://www.arduino.cc
3http://www.arduino.cc/en/Main/ArduinoBoardBluetooth

http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc/en/Main/ArduinoBoardBluetooth
http://www.arduino.cc
http://www.arduino.cc/en/Main/ArduinoBoardBluetooth
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6.1.2 Robust Casing

Arduino does not provide any custom sensors for its plat- Custom circuit board
to connect I-CubeX
sensors

forms. As the I-CubeX sensors have proven to be useful,
we integrated them into our wireless prototype. We sol-
dered our own circuit board which allows us to connect six
I-CubeX sensors to the analog inputs of the Arduino board.

To protect the board against impacts on the slope, we put Robust box for
Arduino BTit into a robust plastic box (Figure 6.1). The external batter-

ies supply power for approximately ten hours and can be
replaced without opening the box.

power 
switch

replaceable
batteries

sensor 
connections

Arduino BT

custom
circuit board

(a) (b)

Figure 6.1: Arduino casing. (a) Box closed, with external
batteries and power switch. (b) Box opened, with an Ar-
duino BT and the custom-built circuit board to connect to
the I-CubeX sensors.

6.1.3 Sensor Attachment

In the lab the sensor attachment on the snowboarder was Sensors need to be
attached properlynever considered a problem. But for tests in a real-world

setting we had to ensure that sensors were attached prop-
erly. After evaluating several possibilities, we used flexible
off-the-shelf knee pads to fix the bend sensors on the knees.
The FSRs were taped on insoles like in the first prototype.
The insoles were put into the snowboard boots. The sensor
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cables ran through the pants to the Arduino box which was
carried in a bag on the hips (Figure 6.9 on page 89 shows
the whole setup).

In the lab, we used an accelerometer to measure the upperDismissed the
accelerometer due to
poor results on the
slope

body posture. However, on the slope it did not provide use-
ful data with respect to body leanings. Due to the constant
movement of the snowboarder, the dynamic acceleration is
high in contrast to the gravitational acceleration and does
not allow to infer the upper body posture easily. Hence,
we decided to dismiss the accelerometer. We give an out-
look on alternatives for measuring the upper body posture
in Section 7.2.3—“Upper Body Posture”.

6.2 Software

This section gives an overview of the software we have de-
veloped for this prototype at this point. We will not give
detailed information of the implementation since the soft-
ware is still under development.

6.2.1 Wireless Communication

We needed to find a mobile device to connect to the Ar-Nokia N70 with
Python script
communicates with
Arduino BT

duino BT via Bluetooth to adjust its settings and to receive
sensor data. Based on the chair’s experience from a previ-
ous project,4 we selected the Nokia N70 smartphone with
the mobile operating system Symbian OS5 which allows
to run programs written in Java and Python. We decided to
use Python because, as a scripting language, it allows quick
development. We used a Python port6 specifically tailored
for the S607 software environment of the N70. On the N70,
Python can easily access the mobile’s Bluetooth capabilities
and create menus. We wrote a Python script that communi-

4 The REXplorer, a mobile, pervasive game for tourists [Ballagas
et al., 2007].

5http://www.symbian.com/
6http://opensource.nokia.com/projects/pythonfors60/index.html
7http://www.s60.com/

http://www.symbian.com/
http://opensource.nokia.com/projects/pythonfors60/index.html
http://www.s60.com/
http://www.symbian.com/
http://opensource.nokia.com/projects/pythonfors60/index.html
http://www.s60.com/
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cated with the Arduino BT. and set up an ad-hoc communi-
cation protocol between the two devices which allowed to
control the behavior of the Arduino board (Figure 6.2).

Arduino BT

 - samples sensor data at   
    given sampling rate
 - stores calibration 
    values (basic stance)
 - maps inputs according 
    to stance

Nokia N70
(Python)

 controls Arduino:
 - starts / stops streaming
 - starts calibration
 - sets sampling rate
 - sets stance
 
 receives sensor data:
 - previews sensor data 
    on screen
 - writes data to file

settings

sensor data stream
674583;29;481;88;458;411;691
674623;34;486;86;459;415;690
674664;32;544;67;454;415;693

start streaming
stop streaming

calibrate
set sampling rate

set stance

se
ns

or
co

nn
ec

tio
ns

Bluetooth connection

Figure 6.2: Communication protocol between Arduino BT and N70. The Ar-
duino BT collects data samples from the sensors and streams them via Bluetooth to
the N70 which stores the data. The N70 adjusts the settings of the Arduino.

In particular we implemented the following features:

• On the Arduino microprocessor:

Data sampling. Data is sampled from the six ana-
log inputs with an adjustable constant sampling
rate. The resolution of the onboard analog-to-
digital converter is 10 bit, sensor values range
between 0 and 1023.

Saving calibration values. We saved the sensor val-
ues while the snowboarder is in basic stance as
calibration values, like we have done in the first
prototype. These values can later be used to de-
tect mistakes.

Streaming values. The 10 bit sensor values of the in-
puts are streamed over the serial line together
with a timestamp. Streaming can be turned on
and off.

Sending information. Information about the current
settings is sent over the serial line when re-
quested. This includes the sampling rate and the
calibration values.
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• Python script on the N70 (accessible via a menu):

Connecting. This feature establishes a Bluetooth con-
nection to the Arduino BT.

Adjusting settings of the Arduino. This includes ac-
tivating and deactivating streaming of data, set-
ting the sampling rate, requesting information
on the settings of the Arduino and displaying the
sensor values on the N70.

Logging. Streamed values from the Arduino are
saved to a log file.

The data stream from the Arduino BT to the N70 consistedData stream as
separated strings of CSV (character separated values) strings. The values of

the six sensor inputs are separated with a semicolon and
preceded by the current timestamp (ms) of the Arduino mi-
croprocessor.8 One string contains one sample of every sen-
sor.

Analogously to the first prototype (Chapter 5), we imple-Sensor mapping
according to user’s
stance

mented a setting on the Arduino which stores the snow-
boarder’s stance and maps the values as outlined in Fig-
ure 5.10 (p. 69) to a fixed position within the CSV string.

6.2.2 Off-line Sensor Data Analysis

We tried to implement real-time processing on the Arduino
as we had done before the lab prototype. On the slope,
however, sensor data was too noisy to get satisfying results
with the same approaches. Hence, we postponed real-time
detection and focused on off-line analysis to explore pos-
sible algorithms. When appropriate algorithms have been
found, they can be implemented directly on the Arduino or
the N70.

For the off-line analysis we developed a dedicated soft-Sensor values
displayed as plotted
graph

ware tool which allows to import the sensor recording logs
stored on the N70 and displays them as graphs on a time-
line according to the timestamps of the sensors. Sensors are
shown in different adjustable colors. The tool allows to set

8 Time in milliseconds since powering the Arduino.
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a calibration value for each sensor (which is also logged by
the N70) which is shown in the graph as horizontal line.
The software also allows to view video data and the sensor
data synchronously (Figure 6.3) which enables us to iden-
tify sensor values associated with the users’ mistakes.

Sensor view

(a) (b)

Figure 6.3: Sensor synchronization software. (a) Main window with sensor plots of
the different sensors. (b) Video window displaying the current frame of the video
recording.

The software was developed for Apple’s Mac OS X9 us- Software still under
developmenting the Xcode10 development environment. For the data

analysis of the user test (see Chapter 7), we made intensive
use of the software. It is still under development and filters
and algorithms to process the sensor data to test several ap-
proaches for mistake detection will be added.

6.3 Initial Self Tests on the Slope

Initial self tests should verify that our hardware endures Gathering sensor
datathe conditions on a slope. Additionally, we gathered sensor

data from this real-world setting. We did not yet implement
any mistake detection.

9http://www.apple.com/macosx/
10http://developer.apple.com/tools/xcode/

http://www.apple.com/macosx/
http://developer.apple.com/tools/xcode/
http://www.apple.com/macosx/
http://developer.apple.com/tools/xcode/
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We tested our prototype in SnowWorld11 in Landgraaf, anTests on indoor slope
indoor slope in the Netherlands. This location will also be
the test environment for any further studies.

6.3.1 Problems with the Hardware

Unfortunately, measuring the knee flexion with the bendBend sensors do not
work well in
real-world setting

sensors did not work as well as in the lab. Although they
were attached with the knee pads, they did not stay in place
on the slope. Sometimes the knee pads also folded the bend
sensors which led to a sharp bent radius of the sensors.
This created big gaps in the sensors’ conductive layers (Fig-
ure 6.4) resulting in a sudden downfall of the sensor read-
ing to almost zero even with slightest changes of the knee
flexion.

bend sensor

knee pad

conductive inkknee

Figure 6.4: A bend sensor attached to the back of the knee
with a knee pad. The bend sensor is bent sharply at one
spot. This creates big gaps in the conductive ink.

Moreover, we had some minor problems with the FSRs.FSR cabling is
stressed The snowboarder’s movements sometimes stressed the

FSRs’ cables inside the pants which led to a broken solder
connection two times.

The setup time is considerably high. The insoles need to beConsiderable setup
time put into the shoe and the cables need to be pulled through

the pants. Additionally, attaching the knee pads and ad-
justing the bend sensors within them is a tedious task.

11http://www.snowworld.com

http://www.snowworld.com
http://www.snowworld.com
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6.3.2 Successful Setup Features

The Bluetooth communication between the Arduino BT Bluetooth connection
works properlyand the Nokia N70 worked well. Even on distances up to

50 m the Bluetooth connection transmitted the sensor val-
ues. Nevertheless, setting up a connection at this distance
was not possible. Thus, the snowboarder who wore the
sensors needed to carry the N70.

The FSRs inside the boots returned promising values by FSRs distinguish
frontside and
backside edge

which different stages of a turn can be identified (Fig-
ure 6.5). As expected, when riding on the frontside edge
the values of the FSRs on the toe-side are very high. In con-
trast, those on the backside edge are low. Especially the
values of the front foot show the alternation between toes
and heels. This is not surprising as the front foot is the lead-
ing foot and controls the snowboard. As we have already
seen in the first prototype (see sec.5.4), the pivoting pro-
cess cannot be divided into several stages. Nevertheless,
the distinction between frontside edge, backside edge, and
turning provides information about the turning direction:

• change from frontside to backside edge: backside
turn

• change from backside to frontside edge: frontside
turn

The FSRs inside the boots were unnoticeable. The knee Sensors are
unobtrusivepads were not as unobtrusive as the FSRs, but still did not

bother when riding. The cables running inside the pants Cables are disturbing
were bothersome. However, they did not restrict one’s free-
dom of movement at all. At this early stage, comfort is not
the main goal, but in a sophisticated version cables could
be woven into the pants.

6.3.3 Summary

Although it was satisfactory to see that the communication Mainly sensor
problemsbetween our self-made sensor box and the N70 worked, we
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Figure 6.5: Data plots of the FSRs under the front foot of the author during alter-
nating frontside and backside turns.

had severe problems regarding the bend sensors. They did
not provide useful data. They even slipped out of the knee
pads once after using the ski lift.

To sum up our experience gained on the slope:

• With the current setup, bend sensors do not work re-
liably in a real-world setting. We will have to find a
new way of sensing knee flexion or build a more ro-
bust cover around the bend sensors.

• FSRs inside the boots are unobtrusive and work rea-
sonably well. However, we must ensure that the sol-
der connections are robust enough to bear stress.

• Bluetooth communication is sufficient for snow-
boarding lessons, where the instructor is at most 50 m
away from his students.

• The overall comfort of the wearable system is satis-
factory. In particular it does not restrict the wearer in
his movements.

As a result of our test, we decided to focus on the fixation of
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the sensors, as this is essential for the quality of the sensor
values.

6.4 Improvements

6.4.1 Bend Sensors

After experiencing difficulties fixing the bend sensors in- Foam to protect bend
sensorsside the knee pads, we tried to protect them with a robust

but flexible cover. After trying out different rubbers and
foams, we found a particular foam that worked well. The
final version of the knee bend sensors is depicted in Fig-
ure 6.6. The cover protects the bend sensors and keeps them
tightly fixed under the knee pads.

(a) (b)

Figure 6.6: (a) The right bend sensor is protected by a thick
foam. (b) Bend sensors attached with knee pads.

6.4.2 Detecting Counter-Rotation

As mentioned earlier, we dismissed gyroscopes for detect- SHAKE compass
unit to measure
absolute orientation

ing counter-rotation. Instead, we incorporated two SHAKE
SK6 sensor units. Among other parameters, they allow to
measure absolute orientation by means of a digital com-
pass. The values returned from the SHAKE compass range
from 0 to 3600, i.e., 360◦ with 0.1◦ steps.

The SHAKE SK6 has a Bluetooth unit on its own and does Bluetooth
communication to
SHAKEs

not need to be connected to any sensor interface. We could
communicate with the SHAKEs directly from the N70 by
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writing a new Python script that follows the protocol de-
fined by these sensor units. The values of the SHAKEs were
logged on the N70 by appending them to the CSV stream
of the Arduino:

Unfortunatel

y, the maximum sampling rate of the SHAKE when calcu-Sampling rate
lowered to 20 Hz lating absolute orientation is as low as 25 Hz. We streamed

data from the SHAKE units and the Arduino at the same
sampling rate. After experiencing synchronization prob-
lems between Arduino and the SHAKE units at 25 Hz, we
lowered the sampling rate to 20 Hz. At this rate quick
movements will not be captured correctly. However, for
slow movements a sampling rate of even 10 Hz is sufficient
[Knight et al., 2007]. We did not notice any disadvantages
in the sensor recordings due to the lower sampling rate.

To measure counter-rotation, we mounted one unit on theSHAKEs mounted on
upper body and shin shin of the front foot and the other on the torso near the

front shoulder (Figure 6.7(a)). We were interested in val-
ues indicating if the upper and lower body are aligned or
twisted. Therefore, we chose a similar approach as when
processing the FSR values. When the snowboarder is in ba-
sic stance, upper and lower body are aligned. The SHAKE
values, however, will differ slightly (Figure 6.7(c)). Dur-
ing calibration, we store the difference in the readings as
offset and declare this reading as the angle ∆Φ = 0◦. Val-
ues above indicate a counter-clockwise twist of the upper
body against the lower body, values below a twist in clock-
wise direction. We map counter-clockwise twists to an an-
gle 0◦ < ∆Φ < 180◦ (Figure 6.7(b)) and clockwise twists to
an angle −180◦ < ∆Φ < 0◦ (Figure 6.7(d)).

We have tested this setup in the lab with several twists ofLab test of the
SHAKEs the upper body in both directions. Figure 6.8 shows the

data plots of the values of SHAKEupper, SHAKElower, and
the angular difference ∆Φ between these two values. The
twists can directly be seen from the plot. First the person’s
upper and lower body are aligend, then he twists the upper
body counter-clockwise and back. A twist in clockwise di-
rection follows and thereafter a twist in counter-clockwise
direction.
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direction of travel

SHAKEupper

SHAKElower

offset∆Φ = 0

0◦ < ∆Φ < 180◦

−180◦ < ∆Φ < 0◦
(a)

(b)

(c)

(d)

Figure 6.7: SHAKE: (a) attachment of the SHAKE units on
a regular footed snowboarder. (b) Counter-clockwise body
twist, (c) no body twist, (d) clockwise body twist of upper
against lower body.
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Figure 6.8: The plots show the values of the SHAKEs attached to the upper and
lower body. The angular difference ∆Φ compared to its calibration value reveals
body twists (∆Φ is shifted by 1024 on the y-axis for visualization).

6.5 Final Setup

After incorporating the two SHAKE SK6 sensor units, the
final setup of the prototype consisted of (Figure 6.9):
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• four FSRs, two under each foot, fixed on an insole

• two bend sensors wrapped in thick foam, attached
with knee pads at the back of the knees

• two SHAKE SK6 sensor units, one on the upper body,
one on the front shin right above the boot
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Chapter 7

User Study and Data
Analysis

“To acquire knowledge, one must study; but to
acquire wisdom, one must observe.”

— Marilyn vos Savant

In order to collect sensor samples under realistic conditions,
we have conducted a user study with three snowboard be-
ginners. We have analyzed the collected data with respect
to common beginner mistakes. In the following chapter,
we outline the test procedure as well as approaches to de-
tect each mistakes made by the test subjects. Based on our
findings, we judge the success of the outlined approaches
and give recommendations for further improvements.

7.1 Tests with Snowboard Beginners

We recorded sensor and video data of three test subjects on
the indoor slope of SnowWorld.
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7.1.1 Test Subjects

Table 7.1 shows an overview of the subjects and their snow-Advanced beginners
as test subjects boarding experience. Subject 2 has recently started snow-

boarding, whereas Subject 1 is snowboarding since 9 years.
None of the subjects performed the sport on a regular ba-
sis, but all of them were able to perform turns on a slope.
This justified the term ‘advanced beginner’, which was the
target user group for our prototype.

Person Subject 1 Subject 2 Subject 3
Gender male male female

Age 25 27 24

Stance regular goofy regular

Riding since 9 years 3 months 1 year

Riding weeks/year 1-2 weeks 3-4 weeks 2-3 weeks

Expertise advanced advanced advanced
beginner beginner beginner

Table 7.1: Test subjects in the user study.

7.1.2 Test Procedure

Before entering the slope, we helped the subjects put onNo major hardware
flaws during the tests the sensors (FSRs, bend sensors, SHAKEs). Thereafter,

we checked if the Bluetooth connection and the sensors
worked correctly. Unfortunately, with the last test subject
the bend sensor on the right knee was damaged and could
not be recorded. Apart from that, no major hardware flaws
occurred. On the slope, we set up a camera to record the
subjects’ runs. It was placed about 50 m away from the
point where they started (Figure 7.1).

Before each run, we adjusted the settings on the ArduinoAdjusting settings
and calibrating with
the N70 before the
run starts

with the N70. We set the sampling rate to 20 Hz and the
stance for the sensor mapping according to the subject’s
stance. Thereafter, we asked the subjects to stand in the
basic stance on flat ground to save the sensor values as cal-
ibration data, which was logged by the N70.
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ca. 50 m

Figure 7.1: Outline of the user test. The snowboarder
started his run about 50 m away from the camera.

At the beginning of each run, we asked the subjects to jump A jump at the
beginning serves to
synchronize video
and sensor data

so that we could later synchronize sensor and video data.
The jump can be clearly identified on both the video and the
sensor recordings. During the run, the subjects were sup-
posed to descend the slope as they would normally do. We
recorded four to six runs of each subject for later analysis.

7.2 Approaches to Detect Mistakes

In the following sections, we will give a qualitative analysis Qualitative analysis
of the test dataof the sensor data. We provide approaches, showing how

the sensor data can be analyzed with respect to common be-
ginner mistakes. We analyzed the data with our dedicated
software (see sec. 6.2.2—“Off-line Sensor Data Analysis”).
The video of the run served as reference to verify, where
the subjects made mistakes and to validate that mistakes
were recognized correctly by our approaches. Additionally
to the sensor data of the test subjects, we analyzed data col-
lected during our initial self tests, including data from the
author and a snowboard instructor, both ‘advanced snow-
boarders’.
In order to simulate a real-time analysis on the sensor data,
so that it could also be processed on the Arduino or the N70
during a snowboard run, we adhered the following rules:

Analysis in ascending order. We analyzed the sensor val-
ues in ascending order according to their timestamp.
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This was done in a for-loop starting from the first
sample and ending at the last one.

No processing of future samples. In every step, we only
processed data of the sensor samples with the cur-
rent timestamp. Additionally, we used past samples.
Succeeding samples were not considered as they were
‘future’ samples.

Use of calibration data. The calibration values for every
sensor were known. These had been captured at the
beginning of each run and stored on the Arduino.

Known time steps. The time step (in milliseconds) be-
tween each sample was known because of the times-
tamps logged by the microprocessor of the Arduino.

To process the data, we proceeded like described in Sec-Detecting coarse
levels of mistakes tion 5.2—“Design for Mistake Detection” by comparing the

current values with the calibration values. To show the fea-
sibility of real-time analysis of snowboard movements, we
aimed at detecting coarse levels of mistakes, e.g., ‘knees are
straight’ and ‘knees are bent’(see sec. 5.2.1). For analyzing
the slope data we made use of the following:

Removing noise. We used smoothing filters on the noisy
slope data. We tested a simple moving average and
an exponential moving average (see C—“Smoothing
Filters”).

Tolerance range. The tolerance range around the calibra-
tion value was set by hand. This would not be pos-
sible in real-time analysis. Later we will give sugges-
tions on how it could be derived automatically.

Time thresholds. Even after applying smoothing filters,
the recorded sensor data remained noisy. To pre-
vent false detections when sensor data jumps up and
down due to the uneven slope, we experimented with
time thresholds: a value was only considered outside
the tolerance range, if it stayed above or below for
longer than the specified timeout.

To visualize the regions where the sensor values are out-
side and inside their tolerance range, we drew a new graph
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gmap(t) that mapped these regions to discrete values (an ex-
ample is given in the following sections):

gmap(t) =


800 if value(t) is above the tolerance range
500 if value(t) is within the tolerance range
200 if value(t) is below the tolerance range

The values for the mapping were chosen to stay within the Mapping is only for
visualizationrange of the sensor readings of the Arduino (0–1023), so

that they could be viewed together with the original sen-
sor plot. The values have no further meaning. The map-
ping is used solely as visualization. Three horizontal lines
with different y-axis components represent the three differ-
ent regions we distinguished. The graph gmap(t) allows to
directly interpret the results of our approaches.

7.2.1 Weight Distribution

We consider two aspects of the snowboarder’s weight dis-
tribution: toe–heel distribution (see sec. 5.2.3) and front–back
distribution (see sec. 5.2.3).

Toe–Heel Distribution

Figure 7.2(a) shows the values Fft (front toe) and Ffh (front
heel) of the FSRs under the front foot of the author. The
previous chapter already outlined how to interpret these
values (see. Figure 6.5). Figure 7.2(b) plots the difference
between these two values (∆F )ff and the according cali-
bration value (∆F )cal

ff (cp. sec. 5.2.3—“Toe–Heel Distribu-
tion”). Additionally, we set a tolerance range around the
calibration value (tolerance value = 70).1 In the graph, the
calibration value is displayed as horizontal line. The toler-
ance range is visualized as the region between two horizon-
tal lines above and below the calibration value.

For the analysis, the tolerance value was set by hand, based Tolerance value was
set by hand

1 The value was set based on our experience with the sensor record-
ings.
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Figure 7.2: (a) The FSRs under the front foot of the au-
thor during turns. (b) The difference between the toe-side
FSR and heel-side FSR (shifted by 1024 on the y-axis to pre-
vent negative values). The red circle highlights a spike that
reaches into the tolerance range.

on the sensor recordings. This violates the real-time behav-
ior of this approach. As soon as enough analysis is con-
ducted, we believe that we will be able to derive an appro-
priate tolerance value from the calibration values (similar
to the TR in Section 3.2.2—“Biofeedback Wireless Wearable
System”).
Another approach would be to set the tolerance value on
the slope via the N70. A smaller tolerance value could en-
force more precise mistake detection. Moreover, in a real-
world setting, it could be necessary to customize the mis-
take detection according to the student’s skills.

In accordance with the video, values above the toleranceDistinction between
frontside and
backside edge is
possible

range in Figure 7.2 mean that the snowboarder’s weight is
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on his toes and thus he is riding on the frontside edge. Con-
versely, values below the tolerance range indicate that he is
riding on the backside edge. Values within the tolerance
range indicate the pivoting process from one edge to the
other, e.g., during turns. Unfortunately, this pivoting takes
place too fast to be recognized from the recordings. Never-
theless, a clear distinction between frontside and backside
edge is possible.

Figure 7.2(b) indicates a spike where the value of (∆F )ff Exponential moving
average to filter noisy
data

briefly enters the tolerance range, although the snow-
boarder is still on his backside edge.2 To smooth such
spikes, we tested a simple moving average and an exponen-
tial moving average with different parameters. We chose
the exponential moving average because compared to the
simple moving average it stayed closer to the original sen-
sor values and still filtered out spikes.3 The behavior of
the exponential moving average can be adjusted with the
smoothing parameter α ∈ [0, 1]. The higher the value the
more the data is smoothed (Figure 7.3)

98500 99000 99500 100000 100500 101000
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sensor value

time / ms

α= 0

α= 0.9

α= 0.5
α= 0.7

tolerance
range}

Figure 7.3: Detailed view on the spike highlighted in Fig-
ure 7.2(b). A higher smoothing factor introduces more la-
tency relative to the original plot (α = 0).

2 This can be seen in the video recording.
3 This observation is based on experiments with the sensor data. For

future developments we will have to test more filters to decide which
one is the most appropriate.
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Figure 7.3 shows a close up of the spike and variousFiltering introduces
latency smoothed graphs with different settings for α. A higher

value for α smoothes the graph more but introduces la-
tency. A value of α = 0.7 seems a good compromise be-
tween smoothing behavior and latency. Values below 0.5
have almost no smoothing effect and values above 0.7 intro-
duce a latency of almost 500 ms (Figure 7.3). After smooth-
ing the graph, the spike no longer reaches into the tolerance
range and it is possible to clearly separate the different re-
gions.

As stated earlier we want to map the different regions to a
graph gmap(t) with discrete values. For the toe–heel distribu-
tion we interpret the mapping as follows:

gmap(t) =


800 on frontside edge at time t
500 evenly distributed at time t
200 on backside edge at time t

Figure 7.4 shows the original graph and the discrete map-
ping. We see that the approach indeed separates toe–heel
distribution clearly between frontside and backside.
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Figure 7.4: The result of the discrete mapping.

When using the same approach to evaluate the sensorProblems
determining toe–heel
distribution with the
beginners’ front feet

recordings of the beginners, we realized that using the front
foot to identify toe–heel distribution only worked correctly
for advanced riders. Nevertheless, for the beginners we
were able to derive information on the toe–heel distribution
from the back foot.
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Figure 7.5(a) shows the plots of the FSRs under the front Evaluating the back
foot leads to a clear
indication of toe–heel
distribution

foot of Subject 1. In this case the discrete mapping for the
front foot does not clearly indicate when he is riding on the
backside edge. Figure 7.5 shows the results of the same ap-
proach using the subject’s back foot. The mapping is much
clearer.
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Figure 7.5: (a) The graph shows the FSRs under the front
foot of Subject 1. The discrete mapping does not clearly
indicate when the subject is on the backside edge. (b) This
graph shows the same time segment with the values of the
back foot. The discrete mapping yields clearer results.

We stated earlier that the front foot shows the alternation Foot with highest
pressure indicates
toe–heel distribution

between frontside and backside edge because it is the lead-
ing foot. However, beginners tend to lean too much to-
wards their back foot (cp. 4.2.1—“Wrong Weight Distribu-
tion”). More pressure on the back foot keeps it more stable
than the front foot. This explains the results. Thus, to infer
toe–heel distribution reliably, we must observe the foot with
the highest pressure. This information can be derived from
the front–back distribution.
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Front–Back Distribution

To analyze front–back distribution we calculate values as de-Combining
information on
toe–heel distribution
and front–back
distribution

scribed in 5.2.3—“Front–Back Distribution”. The difference
(∆F )ff−bf between the front foot and the back foot of Sub-
ject 2 is shown in Figure 7.6(a) along with its calibration
value (∆F )cal

ff−bf and a tolerance range (tolerance value =
100).4 Additionally, we have plotted the discrete mapping
of the toe–heel distribution to see where the subject performs
turns. In this special case, we shifted the mapping along
the y-axis so that all graphs can be viewed separately with-
out interference. As stated earlier, the actual values of the
mapping do not have any further meaning. The relation
between the values is important.
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Figure 7.6: The discrete plot in red indicates the three levels
of toe–heel distribution. The discrete plot in black visualizes
the three levels of front–back distribution. The difference be-
tween the values of the front foot and the back foot is plot-
ted together with its calibration value and the surrounding
tolerance range. Values within the tolerance range indicate
a centered weight distribution between front and back foot.
Values below indicate a shift towards the back foot and val-
ues above a shift towards the front foot.

When taking a closer look, we see that the subject’s weight
balance is not centered. Especially before turns, he shifts

4 This value was set through experimentation.
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his weight more towards the back foot, which results in a
value below the tolerance range. This is a common begin-
ner mistake as identified in 4.2.1—“Wrong Weight Distribu-
tion”. The discrete mapping gmap(t) shows the three levels
of front–back distribution.

gmap(t) =


800 weight on front foot
500 weight equally distributed
200 weight on back foot

For comparison Figure 7.7 shows the front-back distribution
of the author. The weight is never on the back foot— except
for one spike.
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Figure 7.7: Plot of the author’s front–back distribution.
Weight is mostly on the front foot.

Evaluating the other sensor recordings led to similar re- Poor calibration
values prevent
proper evaluation in
some cases

sults. However, in some runs the front–back distribution
could not clearly be separated into the three levels. This
was due to poor calibration values. We will discuss
problems during the calibration process in Section 7.3—
“Summary”. Nevertheless, when proper calibration values
were available, we could identify wrong weight distribu-
tion with the FSRs.
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7.2.2 Knee Bending

When recording Subject 3 the bend sensor on her back knee
ceased to work and could not be evaluated. However,
for the other test subjects the bend sensors worked prop-
erly. Furthermore, we did not encounter problems with the
proper fixation of the sensors on the knees like we did in
our initial test runs (cp. sec. 6.3.1). Figure 7.8 shows two
data plots, each of them showing values of the two bend
sensors on the knees.
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back knee 

(a)

(b)

Figure 7.8: Plots of the bends sensors on the front knee and
the back knee of two snowboarders: (a) the snowboard in-
structor, (b) Subject 1. During the run the values of (a) were
below the calibration value. Those of (b) were above with
few exceptions, indicating too straight knees.
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Plot (a) shows the snowboard instructor’s values, plot (b) Bend sensors make
the distinction
between advanced
snowboarders and
beginners possible

the recordings of Subject 1. During the run, the values in
(a) are always below the calibration data, whereas in (b)
they are above most of the time. As we stated earlier, the
higher the value the straighter the knees. Therefore, Sub-
ject 1 did not have both of his knees bent enough. We set
the tolerance value based on the video recording to indicate
too straight knees (tolerance value = 50). In the case of the
snowboard instructor’s plot and the front foot of Subject 1
we omit the discrete mapping. The raw data plots can di-
rectly be interpreted. Figure 7.9 shows the plot of the back
knee of Subject 1 with the discrete mapping:

gmap(t) =


800 knee is straight
500 knee is bent
200 knee is bent even more

3000 13000 23000 33000
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time / ms

straight knee: 
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knee bent: 
500

knee bent 
more: 200 back knee 

discrete

Figure 7.9: Sensor values of the back knee of Subject 1 and
corresponding discrete mapping (tolerance value = 50).

We see from the mapping that his back knee was only tem-
porarily too straight (Figure 7.9), but on a regular basis.
Analysis of the plots of Subject 2 and the author led so sim-
ilar results. For Subject 3 we could only analyze her front
knee, which was not bent sufficiently.

The resistive bend sensors we used enabled us to detect Resistive bend
sensors are sufficient
for snowboard
beginners

coarse levels of knee bending. This was sufficient for snow-
board beginners. For advanced snowboarders we will have
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to measure knee bending more accurately. The used bend
sensors will most likely not provide this information. The
measurement of the bend sensors was highly dependent on
the placement on the knees, which can be seen on the data
plots in Figure 7.8(a). The readings of the bend sensors dif-
fer greatly in their y-axis component, even when they are
flexed to the same extent.5 We will have to take other sen-
sors into consideration whose outputs depend only on the
flexion angle. A promising choice could be optical sensors
like described in [Kuang et al., 2002]. These react linearly
on bending.

7.2.3 Upper Body Posture

Although we did not further investigate the use of an ac-Accelerometer tested
with one subject celerometer to measure the tilt of the upper body, we tested

it with Subject 1. As we stated in the previous section,
this subject did not bent his knees sufficiently. Addition-
ally, he did not keep his upper body upright during runs.
Figure 7.10 shows the values of the accelerometer on his
upper body, which was attached as in the first prototype
(Figure 5.4).

1000 11000 21000 31000 41000 51000 61000
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1000

sensor value

time / ms

Subjects leans forward
(to open the  binding)

start of run end of run

accelerometer
on upper body

Figure 7.10: Values of the accelerometer attached on the up-
per body of Subject 1. The reading do not show body lean-
ings during the run.

The values do not provide information about the currentDynamic
acceleration is too
high to derive
information about tilt

body tilt of the subject. The dynamic acceleration during

5 This was observed on the video recordings.
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the run was too high to clearly indicate acceleration due
to gravity. Only when the subject was at rest, his upper
body tilt could be measured. At the end of the run Subject 1
leaned forward to open his bindings. This can be seen in the
sensor plot.

As we stated in Section 4.2.1—“Wrong Upper Body Pos- Poor upper body
posture occurs often
with insufficient knee
bending

ture”, problems with the upper body posture occur often in
combination with insufficient knee bending. Since we are
able to detect the knee flexion, the inability to measure the
upper body posture does not impact the mistake detection
to a great extent. Moreover, in the next section we will pro-
vide alternatives to detect this mistake.

7.2.4 Counter-Rotation

In the lab the values of the SHAKE units were smooth Readings of the
SHAKE units are
distorted through
movements

and could give a clear indication on the current orienta-
tion (cp. sec. 6.4.2—“Detecting Counter-Rotation”). On the
slope these values were distorted through the movements
of the snowboarders. Figure 7.11 shows the angular dif-
ference ∆Φ between SHAKEupper and SHAKElower during
a run of Subject 1. He did not twist his upper body against
his lower body. However, from the readings we would con-
clude that this happened often.

Unfortunately, the SHAKE units could not measure abso- SHAKE units do not
reliably provide
orientation on the
slope

lute orientation reliably when they were subject to quick
movements. We contacted their manufacturer to get more
information. Although the SHAKE units have a gyroscope
unit, this is not incorporated in the calculation of the ab-
solute orientation. It depends solely on the magnetome-
ter and the accelerometer. Rapid movements affect the ac-
celerometer readings, compromising the calculation of the
absolute orientation. We will discuss alternatives for the
SHAKE units at the end of this section.

Despite the inaccuracies of the SHAKE units, we could Evaluation of
Subject 2 was
possible due to his
slow movements

evaluate the recordings of Subject 2 with respect to counter-
rotation. As the least experienced subject, he descended the
slope slowly and made no quick movements on the snow-
board. The SHAKE values were only slightly distorted and
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Figure 7.11: Plot of the angular difference ∆Φ between the
SHAKEs on the upper body and the lower body of Sub-
ject 1. The distortions evoked through the movements of
the snowboarder are too great to derive meaningful infor-
mation.

could be analyzed. Figure 7.12 shows the angular differ-
ence ∆Φ between the two SHAKE units attached to Sub-
ject 2. He often used counter-rotation to perform turns.
Three video snapshots from the run illustrate how the sub-
ject performed backside turns: To turn around the snow-
board, he twisted his upper body against his lower body
in counter-clockwise direction. This can be seen from the
raw data plot, where the value of ∆Φ rises high above the
calibration value for one second.

To account for the unstable readings of the SHAKE units,
we employed a timeout. A twist was only indicated, if
the reading exceeded the tolerance value for more than
250 ms.6 The resulting mapping of this approach which
maps ∆Φ on a discrete graph is also shown:

gmap(t) =


800 counter-clockwise twist
500 upper body and lower body aligned
200 clockwise twist

We see that the timeout introduces latency and lacks aboutMapping indicates
body twists 250 ms behind the actual twist. Nevertheless, the map-

ping indicates the twist successfully. To show the relation-

6 Like the tolerance value, this was set by hand.



7.2 Approaches to Detect Mistakes 107

39000 40000 41000 42000 43000 44000 45000

500

1000

1500

2000

2500

counter-clockwise
twist

clockwise
twist

sensor value

time / ms

} tolerance
range

1
2

3

gmap

∆Φ
gmap

Figure 7.12: Counter-rotation of Subject 1. Snapshot 2© from the video shows that
the upper body of the subject is twisted counter-clockwise against his lower body.
This is indicated by an increase in the reading of the angular difference ∆Φ high
above the calibration value.

ship between body twists and the stage within a turn, Fig-
ure 7.13 shows the discrete mapping of the subject’s toe–heel
distribution and the discrete mapping of the angular differ-
ence. The graph shows the whole run of the subject. Back-
side turns are indicated by a shift from the frontside edge
to the backside edge, frontside turns vice versa.

We note the following:

• Before and during a backside turn, i.e., a turn in clock-
wise direction for the subject, he twisted his upper
body in counter-clockwise direction.

• After having performed a frontside turn, i.e., a turn in
counter-clockwise direction for goofy snowboarders,
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Figure 7.13: Discrete plot of the toe–heel distribution and the
body twists of Subject 1

Subject 2 twisted his upper body in clockwise direc-
tion.

In both cases the upper body was twisted contrary to theCombining values of
FSRs and SHAKEs
makes detection of
counter-rotation
possible

turning direction, which we already saw on the video
recording. The mappings, however, show that this can also
be derived by combining the information of toe–heel distri-
bution from the FSRs and the angular difference between
upper and lower body from the SHAKE units. By this
counter-rotation, a common mistake among snowboard be-
ginners, can be detected.

As the SHAKE units only worked reliably, when the sub-Alternatives for the
SHAKE units jects were moving slowly, we will have to look for alter-

natives. As mentioned in Section 2.5—“Inertial Measure-
ment Unit (IMU)”, another IMU is the MTx from XSens.
According to its data sheet, it measures absolute orienta-
tion angles in three dimensions even when moved quickly.
This would also solve the problem of measuring the up-
per body tilt. The device has already been used to monitor
speed skaters.7 . We assume that it would also work for
snowboarders. Unfortunately, these devices are expensive.
That is why we dismissed them in the first place and used
the SHAKE units. The challenge for future developments
will be to find a reliable way to measure absolute orien-
tation during snowboarding runs. The approach to detect
counter-rotation has been outlined successfully in this sec-

7http://www.xsens.com/

http://www.xsens.com/index.php?mainmenu=applications&submenu=human_moti on&subsubmenu=training_and_simulation
http://www.xsens.com/index.php?mainmenu=applications&submenu=human_moti on&subsubmenu=training_and_simulation
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tion.

7.3 Summary

Table 7.2 shows an overview of the analysis of the sensor
values. We were able to address most of the target common
mistakes. Although not every mistakes could be detected
for every subject, we outlined approaches to detect the mis-
takes in real-time.

Parameter Author Instructor Subject 1 Subject 2 Subject 3
Toe–heel dis.

W/ front foot
√ √

– (
√

) –
W/ back foot

√ √ √ √ √

Front–back
√ √

(
√

)
√

(
√

)
Counter-rotation – – –

√
–

Knee bending
√ √ √ √

–

Table 7.2: Success of our approaches to derive several pa-
rameters from the test subjects’ sensor readings (

√
= Suc-

cess, – = No success, (
√

) = Partly successful).

We will give a brief discussion on the success of our ap-
proaches:

Toe–heel distribution. Riding on the frontside edge and
riding on the backside edge could be distinguished
for all test persons. To infer the toe–heel distribution
for advanced snowboarders and beginners alike we
needed to observe the foot with the highest pressure
on it. This can be determined by the front–back distri-
bution.

Front–back distribution. The front–back distribution could
be derived from most of the sensor data. In some
cases the approach did not lead to meaningful results
due to poor calibration values, e.g., in some runs of
Subjects 2 and 3. The calibration process remains an
open problem. We will discuss it at the end of the
section.
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Upper body posture. The upper body posture could not
be inferred by the 3-D accelerometer on the slope.
This problems needs to be addressed in further itera-
tions. However, as this mistake often occurs together
with straight knees, measuring knee bending partly
solves this posture related mistake.

Counter-rotation This mistake was successfully detected
with the least experienced subject. He descended the
slope slowly enough, so that the values of the SHAKE
units were only slightly distorted by the accelerations
of his movements. Although we could only show the
detection for Subject 2, the approach is still promis-
ing. If other sensor are incorporated that return the
absolute orientation of the upper body and the lower
body reliably then the outlined approach can be used
for all subjects.

Knee bending. We have outlined an approach to detect too
straight knees, a common beginner mistake.

One problem remains the calibration process. SnowboardCalibration process
is difficult with
snowboard
beginners

beginners do not know how to stand properly in the basic
stance. Even when standing still on flat ground they had
problems to distribute their weight equally on their feet.
In particular, they often stood on either their toes or their
heels. This could be seen afterwards from the sensor read-
ings, when the calibration values of the FSRs on the heel
and on the toe side differed noticeably.

Nonetheless, the FSRs have proven to be useful to analyze
the weight distribution under the feet. Two FSRs for each
foot enabled us to detect coarse levels of weight distribu-
tions. For a more detailed information on the weight distri-
bution we should incorporate more FSRs. Musselman et al.
[2007], for example, have developed an insole incorporat-
ing fourteen FSRs to enhance the GaitShoe (sec. 3.2.1).

We have outlined how the common beginner mistakes canTolerance range
needs to be derived
from the calibration
values

be identified with the sensor readings. We still need to im-
plement algorithms that act autonomously. Right now we
have set the tolerance range by hand based on the expe-
rience with the data recordings. These values should be
derived from the calibration data automatically (similar to
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the Target Range in 3.2.2—“Biofeedback Wireless Wearable
System”). We still need to evaluate sensor data of more
snowboarders. Nevertheless, the approaches discussed in
this section can be extended to work in real-time, as they
do not consider ‘future’ samples.
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Chapter 8

Summary and Future
Work

“Always remember that the future comes one
day at a time.”

—Dean Acheson

This chapter sums up the results from the previous chap-
ters and outlines future work that needs to be done in the
development of the Snowboarding Assistant.

8.1 Summary and Contributions

In this thesis we have presented initial steps towards a
wearable Snowboarding Assistant. Based on the results of
interviews with snowboard instructors, we selected ap-
propriate sensors to detect common beginner mistakes in
snowboarding. In a first lab prototype we explored possi-
bilities to process the sensor data. In the next step we de-
veloped a mobile sensor system that was robust enough to
endure the conditions on the slope. After initial tests on
the slope, we improved the hardware resulting in the fi-
nal prototype which we have tested with three snowboard
beginners. Data analysis of sensor values collected during
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this test have shown the feasibility of real-time analysis of
snowboard movements with the current setup.

With respect to Section 1.1.4—“Requirements” we have
achieved the following:

Exploring the Application Domain. We have given an in-
depth overview of important terms and techniques in
the snowboarding domain in Chapter 4—“The Snow-
boarding Domain”.

Opportunities for Change. Through literature review and
interviews with four snowboard instructors we have
identified common beginner mistakes. The instruc-
tors have confirmed that incorporating a device as
the Snowboarding Assistant into snowboarding lessons
would be useful. They have also contributed new
ideas that we will consider for our future develop-
ments.

Robust Hardware. In order to detect common mistakes,
we have selected appropriate sensors. After explor-
ing the possibilities to process the sensor data in the
lab, we have built a robust, mobile sensor platform
which we tested in several trials on the slope. The
hardware is unobtrusive to wear and does not ham-
per the snowboarder. After improving the prototype
based on the experience gained from the initial tests
on the slope, we have conducted a user study with
three snowboarder beginners on the slope.

Algorithms to Detect Mistakes. Based on our knowledge
about the snowboarding domain, we have developed
several approaches to detect common mistakes. Af-
ter having collected sensor data from the field test,
we have presented different real-time approaches to
identify each of the common mistakes. We have
tested these approaches with the recorded data sets
and discussed their success. Although we did not
implement the approaches on the mobile device, the
results suggest that real-time detection of snowboard
mistakes is feasible with a wearable mobile device as
presented in this thesis.
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8.2 Future Work

Our final prototype is a good starting point for any further Final prototype as
starting pointdevelopments towards a wearable Snowboarding Assistant.

As this was only the first step of the project a lot of work
remains to be done

The hardware was sufficient for an initial mobile prototype. Hardware must be
improvedWe were able to identify common beginner mistakes with

the selected sensors. However, for advanced snowboarders
the hardware needs to be improved to achieve more accu-
rate sensor values. The quality of the mistake detection de-
pends on the quality of the sensor data. In particular, the
following improvement should be considered for detecting
the more subtle mistakes of advanced snowboarders:

Weight distribution. Incorporating more FSRs under the
feet could reveal more details of the snowboarders
weight distribution. For example Musselman et al.
[2007] have extended the insole of the GaitShoe to in-
corporate 14 FSRs to measure the weight distribution
under the feet more precisely.

Knee bending Similar to the FSRs, a more precise way of
measuring knee flexion should be investigated, e.g.,
optical sensors like presented in [Kuang et al., 2002].

Counter-Rotation We have outlined an approach to de-
tect counter-rotation with the SHAKE units. Unfor-
tunately, they only provided good result for slow de-
scending snowboarders. For monitoring advanced
snowboarders, the sensor units from XSens, e.g., the
MTx, might be able to measure absolute orientation
even with fast movements. Other approaches to cap-
ture human motions with body-worn sensors are still
under development and yield promising results. The
Snowboarding Assistant could benefit from such tech-
nology, e.g., the motion capture approach in [Vlasic
et al., 2007]. This would also solve the problem of
tracking the snowboarder’s upper body posture.

We have limited our prototype to one Arduino board with Incorporating more
sensors
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six sensor inputs. To get more reliable sensor data we will
have to incorporate more sensors in future prototypes. We
plan to use several Arduino boards that communicate with
the N70 or another mobile device. The mobile device com-
bines the information from the sensors connected to the dif-
ferent Arduino boards and responds with appropriate feed-
back.

One of the most important aspects that needs to be inves-Type of feedback
needs to be
investigated

tigated in the future is the type of feedback that could be
given to snowboarders. Visual feedback might distract the
beginners to much. Auditory or tactile feedback seems
more appropriate.

As soon as the Snowboarding Assistant incorporates bothDoes the
Snowboarding
Assistant improve
the learning
process?

components — mistake detection and feedback — the main
question whether or not it improves the learning process
needs to be evaluated under real conditions. Results found
here could be applied to other sport areas as well.
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Appendix A

Interview Guideline

When we conducted interviews with snowboard instruc-
tors we followed an interview guideline. Section A.1 shows
the original german guideline, section A.2 the english trans-
lation.

A.1 Interview Guideline (German)

Ablauf eines Anfängerkurses:

• Wie lange dauert typischerweise ein Anfängerkurs
(Stunden pro Tag, Dauer insgesamt in Tagen)?

• Mit welchen Übungen beginnt der Snowboardunter-
richt? Wann werden Kurven gefahren?

• Was sind die Ziele eines Anfängerkurses? Was sollten
die Schüler nach dem Kurs beherrschen?

• Wie gehst du vor, wenn du den Schülern die
Fahrtechnik beibringst (Vorfahren, Erklären,
Übungen, . . . )?
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Typische Anfängerfehler

Typische Anfängerfehler:

• Gibt es Fehler die typisch sind für Anfänger (bitte
aufzählen und beschreiben)?

• Wie kannst du Fehler bei deinen Schülern erkennen?

• Hat du manchmal Probleme zu erkennen wo der
Fehler liegt?

• Warum treten diese Fehler deiner Meinung nach auf?

Verbessern der Fehler

• Bitte beschreibe jeweils, was du im Fehlerfall machst,
um dem Anfänger zu helfen.

• Wie gehst du vor wenn du während des Fahrens
einen Fehler beim Schüler beobachtest und ihn
verbessern möchtest (z.B. zurufen, warten bis Schüler
runtergefahren ist und danach Verbessern)?

• Ist räumliche Trennung von Anfänger und Lehrer
eine Situation die häufig auftritt? Welche Probleme
gibt es dadurch? Wie versuchst du diese Probleme zu
umgehen?

• Können alle Schüler deine Verbesserungen sofort um-
setzen? Wenn nicht, woran könnte das liegen?

• Hast du das Gefühl, das einige Schüler während des
Fahrens vergessen was du Ihnen zuvor gesagt hast?

• Glaubst du dass du den Schüler besser unterstützen
könntest, wenn es möglich wäre, dass du während
der Fahrt neben ihm stehst und ihm direktes Feed-
back gibst?
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Vorstellen der Idee Snowboarding Assistant

Nach dem Präsentieren der Idee folgende Fragen:

• Glaubst du, dass direktes Feedback für die Schüler
sinnvoll wäre? Für Anfänger / Fortgeschrittene / Ex-
perten?

• Welche Körperteile sollten gemessen werden?

• Wie könnte das Feedback aussehen (Audio, Video,
taktil, . . . )? Was ist deiner Meinung nach wichtig?

• Wie könnte der Assistent den Snowboardlehrer un-
terstützen?

– Fehler besser erkennen (z.B. bei Gewichtsver-
teilung)

– Fehler den Schülern am Display zeigen etc.
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A.2 Interview Guideline (English)

Content and Steps of Snowboarding Lessons

• Duration of the course: What is the average amount
of hours per day and the total of days?

• First lessons exercises: What exercises are done at the
beginning? When do you teach your students how to
perform turns?

• Goals of the course: Which are the students’ achieve-
ments at the end of the course?

• Approaches to convey the technique: How do you
explain turning techniques to your students (e.g., by
demonstration, by explanation, by exercises)?

Typical Mistakes of Beginners

• Do you consider several mistakes common for snow-
board beginners? Please specify and describe these
characteristic mistakes in detail.

• Describe how you recognize each of the mistakes.

• Do you sometimes have problems recognizing the
mistakes?

• Can you think of reasons why these mistakes occur?

Handling Problems of Beginners

• Please describe what you usually do in order to help
your students resolve their mistakes.

• What opportunities do you have to communicate
suggestions for improvement to your students while
they are riding and you are not close-by (e.g., call out
to them, tell them when approaching)?
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• Is spatial distance between students and instructor
a common situation during snowboarding lessons?
What problems are raised due to spatial distance?
How do you usually work around these problems?

• Are your students able to put your instructions into
practice immediately? If not, can you think of reasons
why?

• Do you feel that some students forget the just given
instructions when they start riding?

• Do you think that direct feedback would improve
the students performance (imagine you stand on the
same board with them)?

Presenting the Idea of The Snowboarding Assistant

After presenting the idea of the Snowboarding Assistant ask
the following questions:

• Can you imagine direct feedback being useful for all
levels of expertise? For beginners / advanced riders
/ experts?

• Which parts of the body should be measured?

• How could the Feedback be realized (audio, video,
tactile, . . . )? What do you consider important?

• The Snowboarding Assistant could not only support
the student, but also the instructor. Can you imagine
how the Snowboarding Assistant could support you?

– help to recognize mistakes (e.g., better analysis
of weight distribution)

– show students their mistakes on a screen etc.
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Appendix B

MAX/MSP Patches

B.1 MyCubePatch.pat

Evaluation of sensor data

front foot:
toe side / heel side

back foot:
toe side / heel side

front / back knee:
straight / bent

upper body:
forward /backward

stance

preprocessed
sensor data

calibration data /
tolerance value

Button to capture 
current values

front/back foot:
front/equal/back

slider to visualize 
front-back 

distribution

Figure B.1: Screenshot of MyCubePatch.pat
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B.2 MyEventReceiver.pat

position within turn mistakes

front foot:
toe side / heel side

back foot:
toe side / heel side

front / back knee:
straight / bent

upper body:
forward /backward

front/back foot:
front/equal/back

weight is on toe side for the front foot && 
weight is on the toe side for the back foot

front knee staight &&
back knee straight

Figure B.2: Screenshot of MyEventReceiver.pat
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B.3 MyFeedbackGenerator.pat

Position within turn Visual feedback
on mistakes

Alternative feedback
(not connected in the example)

Figure B.3: Screenshot of MyFeedbackGenerator.pat
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Appendix C

Smoothing Filters

C.1 Simple Moving Average (SMA)

In a series of data samples x(t), the simple moving average
SMA(t) calculates the mean over the last N data samples:

SMA(t) =
∑N−1

i=0 x(t− i)
N

=
x(t) + x(t− 1) + · · ·+ x(t−N + 1)

N

In a successive series of samples the calculation of the
whole sum is not necessary in every step. To update the
SMA, only the oldest value needs to be subtracted from the
sum and the newest needs to be added:

SMA(t+ 1) = SMA(t)− x(t−N + 1)
N︸ ︷︷ ︸

oldest value

+
x(t+ 1)
N︸ ︷︷ ︸

newest value

The lengthN of the sliding window is the smoothing factor
for the SMA. A higher N results in better smoothing but in
decreased responsiveness with respect to the original sam-
ples.
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C.2 Exponential Moving Average (EMA)

In a series of data samples x(t), the exponential moving av-
erage EMA(t) is calculated as follows:

EMA(t) = α · EMA(t− 1) + (1− α) · x(t)

The smoothing factor α ∈ [0, 1] determines the relationship
between EMA(t− 1), i.e., the result from the previous cal-
culation, and the current sample. Choosing a high value for
α emphasizes the past data, whereas for a low value for α
the current data sample is predominant for the calculation.
At α = 0, for example, there is no smoothing at all because
no past samples are used for the calculation.
Compared to the SMA, the EMA is more responsive with
respect to the original data values. The EMA places more
importance to recent values, whereas the SMA treats all
past values within the time window of length N the same
in the mean calculation.1

1 Details can be found, e.g., at:
http://lorien.ncl.ac.uk/ming/filter/filewma.htm.

http://lorien.ncl.ac.uk/ming/filter/filewma.htm
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