
conga: A Conducting Gesture
Analysis Framework

Diplomarbeit
Universität Ulm

Fakultät für Informatik
U

N

IV
ERSITÄT ULM

 · S
C

IE
N

D
O

 · DOCENDO · C
U

R
A

N
D

O
 ·

vorgelegt von

Ingo Grüll

1. Gutachter: Prof. Dr. Michael Weber
2. Gutachter: Prof. Dr. Jan Borchers

April 2005

Abstract

Conducting an orchestra is a highly sophisticated art form that matured over centuries.
In the last few decades, conducting has also become a form of human-computer inter-
action, giving conductors different ways to enter conducting input with varying degrees
of control and varying levels of success in making the computer perform the way the
conductor wants it to.

This diploma thesis describes a framework developed to aid analysis and recognition of
conducting gesture input in form of two-dimensional trajectories of the movement of the
conductor’s baton, or of his right hand, if he is conducting without a baton. The thesis
explains the concepts behind the framework, lists some of its characteristic components
and gives examples how to use it. In addition, the thesis provides an overview of several
computer-based systems that enable their users to conduct musical pieces and briefly
looks into other frameworks that have been used to process conducting gesture input in
some of the presented systems. It also judges strengths and weaknesses of the framework
and mentions how the framework could be extended both for its intended application
domain as well as for other application domains.

i

Acknowledgements

I would like to express my gratitude to all people who helped me with my work on this
paper and the conga framework. In particular, I thank the following persons:

• Rafael “Tico” Ballagas

• Nils Beck

• Jan Borchers

• Jan Buchholz

• Saskia Dedenbach

• Jonathan Diehl

• Linda Goldschmidt

• Britta Grünberg

• Thorsten Karrer

• Henning Kiel

• Jonathan Klein

• Eric Lee

• Teresa Marrin Nakra

• Guido de Melo

• Michael Plichta

• Wolfgang Samminger

• Tanja Scheffold

• Daniel Spelmezan

• Philipp Stephan

• Michael Weber

• Stefan Werner

• Marius Wolf

• Eugen Yu

Last but not least, I also thank my family: my parents Margit and Bolko Grüll and my
sister Sascha Grüll.

ii

Contents

Abstract . i
Acknowledgements . ii

1 Introduction 1

1.1 Background . 1
1.2 Motivation . 1
1.3 Structure of this Thesis . 2

2 Related Work 3

2.1 Frameworks Used in Computer-Based Conducting Systems 3
2.1.1 LabVIEW . 3
2.1.2 EyesWeb . 4
2.1.3 Max/MSP . 5

2.2 Overview of Computer-Based Conducting Systems 7
2.2.1 Radio Baton and Predecessors . 7
2.2.2 Conduct System . 8
2.2.3 Conductor Follower . 9
2.2.4 MIDI Baton and Successors . 9
2.2.5 Computer Music System that Follows a Human Conductor 10
2.2.6 Light Baton . 10
2.2.7 Adaptive Conductor Follower and Related Systems 10
2.2.8 The Ensemble Member and the Conducted Computer /

Extraction of Conducting Gestures in 3D Space 11
2.2.9 WorldBeat, Personal Orchestra and You’re The Conductor 12
2.2.10 Digital Baton, Conductor’s Jacket and Gesture Construction . . . 14
2.2.11 Multi-Modal Conducting Simulator 15
2.2.12 Virtual Orchestra . 15
2.2.13 Conductor Following with Artificial Neural Networks 16
2.2.14 Virtual Dance and Music . 17
2.2.15 Conducting Audio Files via Computer Vision 18
2.2.16 Conducting Gesture Recognition, Analysis and Performance System 18

2.3 Comparison of Computer-Based Conducting Systems 20

3 The Context that Led to the Conga Framework 23

iii

Contents

4 The Conga Framework 25
4.1 Model of Conducting Gestures . 25
4.2 Choice of Platform and Implementation Language 27
4.3 Early Approaches and Their Problems . 27
4.4 Basic Processing Model . 29

4.4.1 Types of Nodes, Ports and Processed Data 32
4.4.2 Implementation-Specific Processing and Initialization Issues 34

4.5 Some Examples of Basic Processing Nodes 36
4.5.1 CONGAPassiveValueNode . 36
4.5.2 CONGAOnePoleFilterNode . 37
4.5.3 CONGAAdderNode . 37
4.5.4 CONGAMaximumNode . 38
4.5.5 CONGASwitchNode . 38
4.5.6 CONGAHysteresisNode . 39
4.5.7 CONGADetectZeroCrossingNode 40
4.5.8 CONGANotNode . 41

4.6 Beat Pattern Tracking . 42
4.6.1 Handling the First Beat . 42
4.6.2 Modeling and Tracking the Cycle of a Beat Pattern 44
4.6.3 How to Enter the Cycle of a Beat Pattern 47
4.6.4 Actual Conga Components for Finite State Machine and States . . 48

5 Using the Framework 53
5.1 Source Code for Figures 4.3 and 4.4 . 53
5.2 Simple Tracker for 4-Beat Neutral-Legato Pattern 55

6 Conclusions and Future Work 63
6.1 Conclusions . 63
6.2 Future Work . 65

A Interpolating Beat Times 69
A.1 CONGABeatTimeInterpolatorNode . 69

iv

1 Introduction

1.1 Background

Computers are extremely versatile tools that by now have found a use in nearly every
area of our lives. Due to their ever-increasing speed the limiting factor in applying
computers to a task often is not the computational performance but rather the interface
between computers and their human users. On the input side, mouse and keyboard may
be convenient for office work and similar tasks but for a lot of areas better alternatives
are needed. Thus researchers examine very different forms of input such as recognition
of speech, handwriting or gestures, each with a lot of possible applications and each
with its own set of problems. In the field of gesture analysis and recognition, it is often
very difficult to discern the meaning of a gesture without analyzing the context in which
it occurred. For example, in conversation hand gestures may serve to help understand
what is being said. It is more difficult but still possible to understand what is being said
without the accompanying hand gestures but it is probably impossible to understand
the hand gestures without the accompanying conversation. So gesture recognition in
human-computer interaction is most promising if used in combination with other forms
of input.

But there are areas where gesture alone is able to convey all the information that is
needed. In the area of conducting music, there exists a language of conducting gestures
that enable a conductor to communicate with an orchestra. These gestures are more
formal than gestures used in everyday human life but they are still very expressive in
their own application domain. Consequently, they are an interesting special case of
computer gesture input and as a result a significant amount of research has focused on
computer-based conducting systems. This thesis also deals with analysis and recognition
of conducting gestures. It does not cover other areas of gesture recognition1.

1.2 Motivation

In order to work, computer-based conducting systems need components that process
conducting input. When the number of computer-based conducting systems increased
and some researchers were involved in the creation of more than one such system, there
was not only the need to create these components but also the need to reuse them. As
a consequence, some components for processing of conducting input have been imple-
mented using existing frameworks so that they can be used and reused in combination

1An in-depth coverage of the complete field of gesture analysis and recognition is well beyond the scope
of a single diploma thesis.

1

1 Introduction

with other components contained in or implemented with those frameworks. But there
was no framework built specifically for the purpose of conducting gesture analysis and
recognition. This diploma thesis describes the framework conga which was developed as
an input hardware independent toolkit to enable and aid the construction of components
that can process, analyze, recognize and track conducting gestures of the conductor’s
baton or right hand.

1.3 Structure of this Thesis

Following this introductory chapter, Chapter 2 presents an overview of existing computer-
based conducting systems and introduces the frameworks used in some of those systems.
After that, Chapter 3 sketches the context that led to the creation of the conga frame-
work and Chapter 4 describes the design of conga and its components as well as circum-
stances and problems that influenced this design. Next, Chapter 5 gives examples how
the framework can be used and Chapter 6 lists strengths and weaknesses of conga and
mentions how it could be extended, in the area of conducting as well as in other appli-
cation domains. Finally, Appendix A introduces a component that transforms output
of conga’s gesture tracking components into absolute time values.

2

2 Related Work

Over the last few decades, there have been quite a lot of computer-based systems that
take conducting input in one form or the other. This chapter presents an overview of a
number of such systems, mostly taken from the area of research. Following the overview
it gives an informal comparison of the systems presented in the overview, touching on
several important aspects and the different ways the systems handle those aspects. The
chapter also includes a section about frameworks that have been used for conducting ges-
ture analysis in some of the systems presented in the overview. Because the frameworks
themselves do not place special emphasis on conducting, they are discussed first.

2.1 Frameworks Used in Computer-Based Conducting Systems

Three frameworks appear in this section, LabVIEW, EyesWeb and Max/MSP. LabVIEW
is the most general and probably the most powerful of the three, while the other two are
better suited for developing interactive musical applications and accordingly have often
been used in this area. There are, however, some aspects all three frameworks handle
similarly.

2.1.1 LabVIEW

The company Native Instruments1 offers LabVIEW as “a powerful graphical develop-
ment environment for signal acquisition, measurement analysis, and data presentation,
giving you the flexibility of a programming language without the complexity of tradi-
tional development tools” [Ins]. LabVIEW is a rather general framework, suited for, but
not aimed specifically at, creating musical applications. It is a very powerful environ-
ment with a wide array of predefined modules for signal acquisition and processing and it
also features graphic representations for functionality found in normal programming lan-
guages like loop constructs or data structures. Programming consists of connecting the
icons representing data sources, data containers and functions or modules with wires plus
arranging the graphical user interface elements that are part of some modules, showing
output and letting the user control the program at runtime. When the program is exe-
cuted, data flows along the wires. LabVIEW analyzes the data flow and runs structures
in parallel, if they are independent of each other. After creating a processing structure in
LabVIEW, it can be encapsulated as a module and then used like the built-in modules,
hiding the internal structure behind a simple icon. Native Instruments also claims that
LabVIEW easily communicates with all kinds of input hardware as well as with other

1The website of Native Instruments can be found at http://www.ni.com

3

2 Related Work

Figure 2.1: Example program in LabView programming environment (image on the left)
and its runtime GUI (image on the right). Images taken from “Virtual
Instrumentation” tutorial on Native Instruments’ website.

software applications. LabVIEW runs on Microsoft Windows, Apple Mac OS X, Linux
and Sun Solaris and there are several versions with differing feature sets at different
price levels.

2.1.2 EyesWeb

One of the projects of InfoMus Lab, the Laboratorio di Informatica Musicale at the
University of Genova, Italy, is EyesWeb2 [CCM+04, Vol03]. EyesWeb is an open platform
that bears some resemblance to LabView but is more specialized and probably not as
powerful: it is a rapid prototyping environment for creating real-time applications in
the area of music and multimedia, especially interactive music and dance performances.
Video images are EyesWeb’s main input, and it provides several computer vision based
algorithms for detecting and tracking the bodies, or body parts, of human performers
plus their movements, and there are EyesWeb libraries for processing expressive gestures
and analyzing two-dimensional trajectories and two-dimensional space [CMV03].

EyesWeb also features a graphical programming environment, where computer vision
based modules and simpler processing modules are represented as icons and intercon-
nected with wires. Processing structures created in the graphical programming envi-
ronment can be encapsulated as modules, but it is also possible to write new modules
in C++. For output, EyesWeb can overlay visual representations of extracted features
on the input videos, trigger stored video sequences and synthesize new ones, using as
parameters information derived from the input data. In addition, EyesWeb can output
data via MIDI or over TCP/IP, and one can always write modules in C++ to accom-
modate special input or output channels. Currently, EyesWeb is available for Microsoft
Windows, and a Linux version is planned.

2The EyesWeb project website can be found at http://www.eyesweb.org

4

2.1 Frameworks Used in Computer-Based Conducting Systems

a) b)

Figure 2.2: a) Gestures being represented as two-dimensional trajectories in EyesWeb.
b) EyesWeb patch to process movements of an actress’ lips. Images taken
from [Vol03].

2.1.3 Max/MSP

Max/MSP is a product offered for Microsoft Windows and Apple Mac OS X by the
company Cycling ’743. The “Max” in its name is an homage to Max Mathews. The
software was originally written by Miller Puckette at IRCAM, the Institut de Recherche
et Coordination Acoustique/Musique in Paris, France.

Figure 2.3: Miller Puckette. Image taken
from http://www.crca.ucsd.edu
/˜msp/x.gif

Max/MSP is a rapid prototyping soft-
ware for developing real-time music appli-
cations, with a graphical programming en-
vironment that uses a metaphor derived
from patchable modular analog synthesiz-
ers and is in some aspects similar to the
graphical programming environments of
LabView and EyesWeb. Modules like pro-
cessing units, data containers or system
inputs and system outputs are represented
as boxes that can be placed on a graphi-
cal plane and connected with patch cords.
Such an assembly, called a patch, can in
turn be encapsulated into a module and
then be reused just like any other module.
MIDI data, audio signals and control mes-
sages are sent along the patch cords, but
the order in which data is processed does not only depend on the connections between
modules, it depends on the two-dimensional placement of the modules on the plane as
well. So if one module output is connected to the inputs of several other modules, the
programmer can still determine which of those modules processes the data first. Widgets
for user input into a patch or displaying data at runtime are placed on the plane alongside

3The website of Cycling ’74 can be found at http://www.cycling74.com

5

2 Related Work

processing modules, thereby mixing graphical user interface design with programming.

Figure 2.4: A Max/MSP example patch.
The image was taken from
http://www.cycling74.com
/images/msp1.gif

While a patch is being executed, only its
widgets are shown. Max/MSP features a
lot of basic processing units as well as a lot
of signal processing and synthesis oriented
ones and Cycling ’74 offers an add-on,
called Jitter, that can handle all kinds of
matrix data and is optimized for graphics
and video processing, including support
for hardware-accelerated OpenGL opera-
tions. An SDK is also available, making
it possible to write new Max/MSP mod-
ules, and there are third parties that offer
Max/MSP modules to communicate with
special input and output hardware.

There exist free software packages re-
sembling Max/MSP. One of them, called
Pure Data and available for Linux, Mi-
crosoft Windows and several unix flavors,
including Apple Mac OS X, was created
and is still maintained by Miller Puck-
ette4. Another one, called jMax and avail-
able for Linux, Microsoft Windows and
Apple Mac OS X, is supported by the
IRCAM5.

4Pure Data software and documentation can be found at http://www.crca.ucsd.edu/˜msp/software.html
5jMax software and documentation can be found in the software section of the website of IRCAM at

http://www.ircam.fr/institut.html

6

2.2 Overview of Computer-Based Conducting Systems

2.2 Overview of Computer-Based Conducting Systems

This overview groups systems by person instead of presenting each system in a separate
section. That is, systems appear in the same group if there was the same person in a
central role in the development of each of them. Inside each group, systems are ordered
chronologically by the year they were created or at least presented to the public. The
groups are in chronological order according to the earliest system of each group.

2.2.1 Radio Baton and Predecessors

Max Mathews is often called one of the fathers of computer music because of his funda-
mental work in this field. From 1957 on, he created the Music systems (version I to V),
software packages for general purpose sound synthesis on a computer [Spo01]. Starting
in 1968, Mathews and Moore developed GROOVE, a program that enabled the user
to compose and edit functions of time interactively and to store them for further use
[MM70]. GROOVE initially ran on a computer system equipped with digital-to-analog
an analog-to-digital converters. Combined with equipment controlled by voltage like an
electronic music synthesizer and input hardware specially built for the system, including
a box with buttons, switches and rotary knobs, a keyboard similar to an organ keyboard
and a 3D joystick, this system was well suited for sound synthesis.

Figure 2.5: Hardware of the GROOVE sys-
tem. Image taken from [MM70].

But Mathews and Moore also had con-
ducting in mind and added the Conduc-
tor Program, stating that the computer
should not act like an instrument used by
a player but rather like an orchestra con-
trolled by a conductor: the user of the
computer would influence the way a stored
score was played by the computer. Input
from the input hardware let the Conduc-
tor Program advance beat by beat in the
score. A drum that had been modified as
input device for the system seemed to be
more suited to conducting than other in-
put devices, so Mathews developed it into
the Sequential Drum in 1980.
The Sequential Drum consisted of a right-angled network of wires and a microphone.
The impact of a drum stick brought two wires into contact, giving a two-dimensional
position, similar to the way some touch-screens work, and the sound picked up by the
microphone indicated how strong the impact was. Unfortunately, strong impacts of-
ten caused the wires to break, and between impacts there was no information on the
conductor’s movements. In order to solve those problems, Mathews and Bob Boies cre-
ated the Radio Baton, a device that is still being used by Mathews and others today
[BMS89, BM97]. It consisted of two batons that emitted radio waves from their tips and
a rectangular plate equipped with antennas to receive the signals emitted by the batons.

7

2 Related Work

Figure 2.6: Max Mathews and
the Radio Baton.
Image taken from
www.csounds.com
/mathews

Those antennas measured the positions of the batons
above the plate in three dimensions, but precision of
the z coordinate declined with growing distance to the
plate. The Radio Baton was connected to a computer
via MIDI or a serial interface. A version of the Con-
ductor Program for the Radio Baton operated on prere-
corded scores that contained, among other things, trig-
gers linked to notes [Mat00a]. The user conducted with
the Radio Baton by working through the triggers de-
fined in the piece. There were two ways for producing
trigger events with the Radio Baton. One was to set
a value for the z coordinate above the antenna plate
and generate a trigger event every time the baton z
position crossed the imaginary plane defined by that
value. The other was to generate a trigger event if the
downward acceleration of a stick decreased to zero af-
ter the downward velocity of the stick had increased
beyond a velocity threshold [Mat00b]. The Conductor
Program provided control over the timing of events in
a score with triggers, and control over dynamics, voice
balance and timbre with baton positions. To enhance
expressive control even further, Johan Sundberg, An-
ders Friberg, Max Mathews and Gerald Bennett com-
bined the Radio Baton with the Director Musices per-
formance grammar, which changes musical expression
according to musical context [SFMB01].

2.2.2 Conduct System

Figure 2.7: User interface hardware of
the conduct system. Image
taken from [BRF+80].

In 1980, Buxton, Reeves, Fedorkow, Smith
and Baecker constructed the conduct system
[BRF+80]. It was a conducting system based
on a microcomputer and included a digital
synthesizer as well as a graphics tablet and
switches plus sliders as input hardware. The
system played prerecorded scores and allowed
to change pitch, tempo, articulation, ampli-
tude (volume) and richness (timbre) of notes
played by the synthesizer in real time. These
parameters were controlled by selecting the de-
sired parameter on screen with the graphics
tablet cursor and then changing its value di-
rectly, they were not derived from conducting
movements of the user.

8

2.2 Overview of Computer-Based Conducting Systems

brass tubing

ball contact

spring wire

electrical
contacts

Figure 2.9: Mechanical sensor of the MIDI Baton. Drawing after [KG89].

2.2.3 Conductor Follower

Figure 2.8: Stephen Haflich using the
Conductor Follower. Image
taken from [Nak00].

Stephen Haflich and Markus Burns presented
their Conductor Follower in 1983 at the In-
ternational Computer Music Conference. It
extracted beats from the two-dimensional tra-
jectory of a baton, controlling tempo and dy-
namics of a piece played back by a synthesizer.
The baton was a passive device and included
no electronics at all. Instead, a corner reflec-
tor had been mounted to its tip and ultrasonic
range-finders, developed by Polaroid for one
of their camera models, were used to track the
movement of the baton. This allowed the hu-
man conductor to use real conducting gestures
to drive the system [Kol04, Sam02].

2.2.4 MIDI Baton and Successors

In 1989, David Keane and Peter Gross built the MIDI Baton because they wanted a
computer system that was able to play alongside human performers conducted by a
human conductor [KG89]. Their baton could be wielded like a normal baton, but it
contained a mechanical sensor that reacted to acceleration. The sensor consisted of
a metal ball inside a metal tube, each wired to an electrical contact, as illustrated in
Figure 2.9. A spring kept ball and tube separated. If the baton was accelerated strong
enough, ball and tube came into contact, generating an electrical signal. The signals
from the baton were processed to filter out pulses that should not be regarded as beats
and then sent to a sequencer to produce sound. A foot-switch was included in the system
to let the conductor start, pause and restart the sequencer. Apart from pulse signals,
the MIDI Baton did not provide information about conducting movements, and it only
generated timing information and no volume information for the sequencer. There were
two successors, the MIDI Baton II and the MIDI Baton III, but they followed the same
basic concept [KW91].

9

2 Related Work

2.2.5 Computer Music System that Follows a Human Conductor

Hideyuki Morita, Shuji Hashimoto and Sadamu Ohteru developed their Computer Music
System that Follows a Human Conductor in 1989 and, together with Hiroshi Watanabe
and Tsutomu Harada, they created an enhanced version of the system one year later
[MOH89, MWH+90, MHO91]. The first version tracked either a white marker attached
to the conductor’s baton or the conductor’s hand wearing a white glove, using a CCD
camera and special feature extraction hardware that passed two-dimensional position
values to a personal computer. The computer derived tempo and volume information
from upper and lower turning points of the trajectory. The final version used an infrared
light source, mounted to the tip of the baton, and a CCD camera with an infrared filter,
taking position, velocity and acceleration of the tip of the baton as conducting input. It
also added a VPL Research data glove as input device, to be worn on the conductor’s
left hand. Movements and hand gestures of the left hand were tracked and interpreted
by the system to give the conductor more control over the orchestra, for example by
selecting an instrument section and then indicating a certain musical expression. The
system also included a knowledge database for mapping conducting and hand gestures
to musical expression information and it featured a self-evaluation function that enabled
the conductor to change the mappings in the knowledge database by telling the system,
after he conducted a piece, how good the system had interpreted his conducting. All
versions of the system created sound via a MIDI sequencer and MIDI synthesizers.

2.2.6 Light Baton

In 1992, Graziano Bertini and Paolo Carosi created the Light Baton [BC92]. It was
aimed at letting a human conductor conduct musicians in parallel to a computer that
played back a prerecorded score. The baton included a battery and a strong LED, which
was mounted to its tip. A CCD camera recorded the conductor, who could conduct using
normal conducting gestures. A special image acquisition board extracted the light point
without using the CPU of the host computer. The prerecorded score was then adjusted
according to tempo and volume information derived from the trajectory of the light.

2.2.7 Adaptive Conductor Follower and Related Systems

Michael Lee, Guy Garnett and David Wessel built an Adaptive Conductor Follower in
the year 1992 [LGW92], and Bennett Brecht and Guy Garnett produced an updated
version just a year later, which they called Conductor Follower [BG95]. A Mattel Power
Glove and a Buchla Lightning baton system served the system as input devices. The
Buchla Lightning used infrared light to determine a two-dimensional position of its
baton and passed this position via MIDI to the Conductor Follower, which processed
successive baton positions with tempo trackers that were implemented in the Max/MSP
environment. There were three methods of tracking and predicting tempo. The first just
used the time between the last detected beat and the beat previous to that to predict
the time of the next beat. The second looked for six characteristic points in a beat
curve, using zero crossings in velocity and acceleration of the baton, and thus allowed

10

2.2 Overview of Computer-Based Conducting Systems

to detect tempo changes between beats. The third method used the same characteristic
points, but fed them into neural networks, which gave even better tempo control. The
neural networks classified the conducting gestures and predicted the time of the next
downbeat or half beat, with a downbeat being defined as a local minimum and a half
beat being defined as a local maximum of the y coordinate of the movement of the tip of
the baton. To train the neural networks, a conductor conducted along with a metronome
for different tempi and the system adjusted the networks as necessary.

Guy Garnett continued to work on conducting systems and in 1999 he, Fernando
Malvar-Ruiz and Fred Stoltzfus presented their Virtual Conducting Practice Environ-
ment, where they focused on determining appropriate aural and visual feedback on what
student conductors are doing right or wrong and tried to build a system that can em-
phasize different aspects of conducting, depending on the skill level and learning goal of
the student [GMRS99]. This system also used a Buchla Lightning as input device. It
gave graphic representations of simple features, like the position of recognized beats in
the beat plane, or more complex features, like whether a conducting style tended more
towards staccato or more towards legato. It could play sounds every time it recognized a
beat or it could play a simple melody that followed the student in tempo and loudness.
But in the paper describing their system, the authors concluded that the system could
replace neither a good teacher nor practice with live musicians.

In 2001, Guy Garnett, Mangesh Jonnalagadda, Ivan Elezovic, Timothy Johnson and
Kevin Small published a paper about technological advances for their Interactive Virtual
Ensemble [GJE+01]. In particular, they noted that the position information given by
the Buchla Lightning baton was insufficient for their needs, and they abandoned it in
favor of a sensor system called MotionStar, built by Ascension Technologies. In this
sensor system, a pulsed magnetic field was picked up by magnetic sensors that measured
their own position and orientation relative to the source of the field and transmitted the
values wirelessly to a receiver that was connected via ethernet to the host computer.
In the Interactive Virtual Ensemble, the sensors were used to track the baton position
in three dimensions and to obtain pitch, yaw and roll of the baton, as well as hand
and head motion of the conductor. The system followed a distributed processing model,
where one computer processed all sensor input, deriving controller data from it, and
another computer requested only the controller data it currently needed from the first
computer. The system used neural networks for beat prediction and classification, and
instead of sending out notes to MIDI synthesizers, it featured sound output based on
sound analysis and resynthesis, controlled directly by conducting information.

2.2.8 The Ensemble Member and the Conducted Computer /
Extraction of Conducting Gestures in 3D Space

In 1995, Forrest Tobey developed a software system that tracked tempo along all points
of the path of a baton and allowed the conductor to take or release control of musical
phrases [Tob95]. It also included a rehearsal module, so the conductor could train it
to his gestures, and it used a Buchla Lightning baton as input device, which yielded
two-dimensional position information. Forrest Tobey and Ichiro Fujinaga extended the

11

2 Related Work

Figure 2.10: Der virtuelle Dirigent. Image courtesy of the Media Computing Group at
the RWTH Aachen.

system in the year 1996 [TF96]. The extended version of the system included a second
Buchla Lightning sensor. With two sensors, movement of the baton could be tracked in
three dimensions. This extended system featured tempo control, dynamic control, beat
pattern recognition, beat style recognition, accentuation control and timbral balance.

2.2.9 WorldBeat, Personal Orchestra and You’re The Conductor

In 1996, Jan O. Borchers designed the WorldBeat system [Bor97, Bor01]. It was one of
the exhibits shown in the Ars Electronica Center in Linz, Austria. It featured several
modules showing visitors how computers could aid interacting with music in new ways,
for example by trying to find the titles of songs visitors hummed into a microphone.
Apart from the module using the microphone, all user input to the system came from
a Buchla Lightning baton system. WorldBeat also included a module that let users
conduct a piece of music, but the algorithm to track conducting movements was not
developed originally for WorldBeat. Instead, the system reused components from Guy
Garnett’s Conductor Follower. These components were slightly modified to be usable
by visitors who had no prior conducting experience.

In 2002, Jan Borchers, Wolfgang Samminger and Max Mühlhäuser finished the Per-
sonal Orchestra system [Sam02]. It was another museum exhibit, this time for the
House of Music in Vienna, Austria. The system was developed under the name Personal
Orchestra but the museum called the exhibit Der virtuelle Dirigent (i.e., Virtual Con-
ductor), even though the orchestra was virtual and not the conductor. Visitors could
interact with the exhibit by using a Buchla Lightning baton to first select one of four
musical pieces and then to conduct the selected piece. An important focus in developing
Personal Orchestra was to use recorded audio and video of the Vienna Philharmonic
Orchestra for output, adjusting playback with the help of manually created beat files

12

2.2 Overview of Computer-Based Conducting Systems

Figure 2.11: You’re The Conductor exhibit. Image taken from [LNB04].

containing the beat times of the musical pieces. Because no MIDI score was used, a con-
ductor could only control the tempo and volume of playback as well as emphasize certain
instrument groups. Conducting gesture recognition was very basic, a beat was detected
each time the baton changed from going down to going up and users were advised to use
a simple up and down conducting movement instead of more elaborate beat patterns.
The computers used for the exhibit were not fast enough to change the tempo of the
audio recording in real time in high quality. Therefore, the audio was preprocessed,
several tracks with pitch-shifted versions of the original audio were created with a slow
algorithm that kept the audio quality. Pitch-shifted instead of time-stretched alternative
tracks were used because they all had the same length and could be placed alongside the
video recording in a QuickTime movie file, ensuring synchronization of video and audio
during playback. As slowed down playback of audio lowers pitch and sped up playback
raises pitch, changing playback speed only required setting the correct frame rate for the
video and activating the one audio track that featured a pitch shift that cancelled out
with the playback speed, while muting all other audio tracks. Old and new active audio
track were cross-faded to avoid noticeable audio glitches. Of course, there was only a
limited number of audio tracks, so playback speed could only be adjusted at discrete
intervals and a conductor could conduct faster or slower than the orchestra was able to
follow. To avoid having to give an error message in such cases, thus ruining the user
experience of the exhibit, video sequences were recorded that showed members of the
orchestra complaining. If the conductor conducted outside the speed range of the or-
chestra for some time, he would be shown a complaint scene. Not only did the museum

13

2 Related Work

visitors accept this kind of error message, they rather liked it, and a lot of people tried
to conduct badly in order to see all of the complaint sequences.

Another museum exhibit was created in 2003 by Eric Lee, Teresa Marrin Nakra and
Jan Borchers for the Children’s Museum in Boston, USA [LNB04]. While still in de-
velopment, it was nicknamed Personal Orchestra 2, but the finished system was called
You’re The Conductor. Like Personal Orchestra, it output recorded audio and video of
a real orchestra. Faster computers enabled the system to time-stretch the audio in real
time by using an improved phase vocoder algorithm, enabling the system to play back
the recording at any wanted speed. Instead of employing a Buchla Lightning baton for
input, a very rugged baton-like device was developed, which was mainly a light source
and could stand heavy use. The light point was tracked with a camera, but no real con-
ducting gesture recognition took place: any movement of the baton was translated into
playback speed and volume, so that children of all ages could use the system. If a child
moved the baton faster or slower, the orchestra sped up or slowed down, respectively,
and if the child stopped moving the baton, the orchestra slowed to a halt.

2.2.10 Digital Baton, Conductor’s Jacket and Gesture Construction

Figure 2.12: The Digital Baton.
Image taken from
web.media.mit.edu
/˜joep/TTT.BO
/Baton2.gif

Teresa Marrin and Joseph Paradiso presented their
Digital Baton in 1997 [MP97]. They had developed
an input device similar to a baton, which included
three acceleration sensors to measure movement of
the baton and five pressure sensors to measure the
pressure of each finger of the hand holding the ba-
ton as well as an infrared LED at the tip of the
baton. A position-sensitive photodiode was placed
behind a camera lens to track position and inten-
sity of the infrared LED. Musical performance ap-
plications developed for the Digital Baton allowed
the user to influence the volume of several tracks
of a prerecorded MIDI score, to trigger playback
of samples as well as placing the triggered samples
in the stereo panorama and to switch instruments,
re-orchestrating the piece. There was no tracking
of conducting gestures and no beat information was derived from the input to control the
tempo of the piece being played. However, Teresa Marrin’s thesis paper on the Digital
Baton did include a classification and analysis of conducting gestures [Mar96].

Teresa Marrin and Rosalind Picard developed the Conductor’s Jacket in 1998 [MP98].
The system used a multitude of sensors built into a jacket to be worn by musicians to
record physiological and motion data. The monitored physiological aspects were muscle
tension of various muscles on each arm, heart rate, temperature, respiration and skin
conductance. Motion data was acquired using an UltraTrak motion capture system from
Polhemus Corporation. The jacket was connected to a computer running utilities written
in National Instruments’ LabVIEW package, collecting and analyzing the data.

14

2.2 Overview of Computer-Based Conducting Systems

Figure 2.13: Data acquisition setup
for the Conductor’s
Jacket. Image taken
from [Nak00].

This first version of the system did not use the ac-
quired data to let users conduct a computer. After
an in-depth analysis of the data sets collected with
the first version, Teresa Marrin created a second
version that did allow to conduct a prerecorded mu-
sical score, generating sound output by using MIDI
synthesizers [Nak00]. She modified the jacket to
include only the respiration sensor and the sensors
for muscle tension, placing those at biceps, forearm
and hand of each arm, as well as on the right shoul-
der. She also wrote the musical software Gesture
Construction that detected beats based on maxima
in muscle tension of left and right biceps. The soft-
ware also detected holds, cutoffs and pauses, and
enabled the conductor to control tempo, note and
channel volumes, articulations and accents. It also
allowed the conductor to choose pitch and number of voices, to pan instruments and
change instrument balance, to morph timbres and do several other performance oriented
things, moving beyond what a real orchestra is capable of. Gesture Construction was
split in two parts running on separate machines. The part for input data acquisition and
filtering was implemented in LabVIEW, while the performance part holding the musical
functions and creating the output was written in C++.

2.2.11 Multi-Modal Conducting Simulator

In 1998, Satoshi Usa and Yasunori Mochida built their Multi-Modal Conducting Simu-
lator [UM98]. To recognize beat patterns conducted with the right hand, acceleration
sensors were used, tracking movement of the baton in two dimensions. Hidden Markov
Models detected the beats and fuzzy logic production rules determined if the detected
beats were considered to be valid. To give cues to different instrument groups, an eye
tracking camera detected which instrument group the conductor was looking at. A
breathing sensor allowed to couple certain passages in the score to breathing patterns
of the conductor. The beat patterns used by the conductor determined tempo and vol-
ume, and the system could also differentiate between staccato and legato beat patterns.
The Multi-Modal Conducting Simulator generated sound output with MIDI synthesiz-
ers, taking the notes to be played from a prerecorded score that also contained special
markers for cues and for breathing patterns.

2.2.12 Virtual Orchestra

Frederick Bianchi, Jeff Lazarus and David B. Smith founded the company Realtime
Music Solutions in 1998, to commercialize their Virtual Orchestra system [Sol]. Virtual
Orchestra could be conducted exactly like a real orchestra and it sounded very much
like a real orchestra as well. Human technicians served as interface between conductor

15

2 Related Work

Figure 2.14: Multi-Modal Conducting Simulator. Image taken from [Sam02].

and computer, interpreting the conducting gestures and instructing the computer ac-
cordingly in real time. The system used prerecorded pieces to control a synthesizer that
played samples taken from real instruments. Musicians playing in real orchestras did not
welcome Virtual Orchestra because they feared to be replaced by a computer. Later the
system was renamed to Sinfonia, and a simpler variant called OrchExtra was created.

2.2.13 Conductor Following with Artificial Neural Networks

Figure 2.15: DIVA virtual orches-
tra. Image was taken
from www.tml.hut.fi
/Research/DIVA/past
/imgs/band1.jpg

Tommi Ilmonen and Tapio Takala developed a sys-
tem to track conducting gestures with neural net-
works, starting development in 1998 and finishing
it in 1999 [Ilm98, IT99, Ilm99]. Their publications
did not mention an official name for their system,
maybe they did not name it because it was part
of another system: it served to drive the virtual
orchestra of DIVA, the Digital Interactive Virtual
Acoustics project group [Ilm]. This virtual orches-
tra featured stylized 3D models of musicians of
a band, whose motions were calculated from the
notes of a MIDI score. Sound output of the virtual
orchestra was generated from the same MIDI score,
simply using a MIDI synthesizer for some of the in-
struments and synthesizing others on a computer
using the physical modeling technique.

However, the conductor following system was in itself already very advanced. It used
Ascension’s MotionStar magnetic motion tracker as input device, with one sensor placed

16

2.2 Overview of Computer-Based Conducting Systems

at the conductor’s left hand, another one at the right hand or alternatively mounted on
the baton and one at the conductor’s neck as reference point for the other two.

Figure 2.16: DIVA conductor following sys-
tem sensor placement. Image
taken from [Ilm98].

Therefore, input data for the neural net-
works consisted of three-dimensional po-
sitions of the sensors at the conductor’s
hands relative to the position of the sen-
sor at the conductor’s neck. Ilmonen also
tried using accelerometers placed on the
baton instead, but he found that they were
significantly less accurate than the mag-
netic sensors. The system used the neu-
ral networks to classify and predict beats,
and they were even able to identify subdi-
vided beats. It let conductors mainly con-
trol tempo and volume of the DIVA band,
but the neural networks could also dis-
tinguish between staccato and legato beat
patterns, making the band play accord-
ingly.

2.2.14 Virtual Dance and Music

Jakub Segen, Aditi Majumder and Joshua Gluckman created their Virtual Dance and
Music system in the year 2000 [SMG00]. The system had three main parts: a ges-
ture recognition system, a music sequencer and a dance sequencer, with the gesture
recognition system driving both sequencers to produce synchronized music and dance
as output. The gesture recognition system used computer vision to extract beats from
conducting gestures. Two synchronized cameras acquired a three-dimensional trajectory
of the baton and beats were placed at the locally lowest points of the trajectory. To
reduce latency, the gesture recognition system predicted beats if possible, by using a
polynomial predictor that indicated the quality of its predictions. If prediction quality
was poor, beats were detected instead of predicted, resulting in higher latency. The
music sequencer played music from a MIDI file, adjusting the tempo to the time inter-
vals between beats detected by the gesture recognition system. If the music sequencer
had already played all notes corresponding to the current beat, it just waited until the
user conducted the next beat, and if the user conducted the next beat before the mu-
sic sequencer finished playing the notes corresponding to the last beat, it increased the
tempo slightly more than indicated in order to catch up with the conductor. The dance
sequencer created video output of human avatars dancing to the music, according to the
beats given by the conductor and constrained by a model of possible human motions
and laws like gravity, to prevent unnatural and impossible dance motions.

17

2 Related Work

2.2.15 Conducting Audio Files via Computer Vision

Declan Murphy, Tue Haste Andersen and Kristoffer Jensen developed a conducting ges-
ture recognition system in 2003 [Mur03, MAJ03]. It could work with one or two cameras
as input sources. One camera was always taking a front view of the conductor and if a
second camera was present, this second camera was taking a side view of the conductor.
Computer vision techniques were then used to extract position and velocity of the tip of
the baton or of the conductor’s right hand, if he conducted without a baton.

Several standard beat patterns, encoded as template functions of an even tempo, were
compared to the position and velocity data from the tracker to follow the conductor’s
progress in the beat pattern, allowing users to control tempo and dynamics of the piece.

Figure 2.17: Declan Murphy using his
conducting system. Image
taken from [Kol04].

The conducting gesture recognition part was
implemented in the EyesWeb software environ-
ment, creating MIDI output for the audio sys-
tem. The audio system did not use MIDI syn-
thesizers to generate sound but instead used a
phase vocoder to change the tempo of an audio
file. Beat positions in the audio file were calcu-
lated automatically, no score file or manually
created beat information was needed. Tempo
coupling between conducting and audio play-
back could be done in two modes, with a mode
for low latency input trying to keep the audio
in direct sync with the beats conducted by the
user and a second mode for high latency input
trying to catch up with the conductor at the
estimated time of the beat following the last
detected beat.

2.2.16 Conducting Gesture Recognition, Analysis and Performance System

In 2004, Paul Kolesnik created his Conducting Gesture Recognition, Analysis and Per-
formance System [Kol04]. The system consisted of two parts running on separate ma-
chines. A Windows PC executed the input part which recorded a front and side view of
the conductor with two USB cameras. The input part used components of the EyesWeb
software to find both hands of the conductor and extract their two-dimensional posi-
tion in the camera view. To aid this process, the conductor wore a colored glove on at
least one hand. Position data of both hands was then passed to the second part, which
was implemented in the Max/MSP environment and running on a Macintosh computer.
This second part derived beat and amplitude information from the conducting gestures
of the right hand and expressive information from the gestures of the left hand. Paul
Kolesnik developed a package of Hidden Markov Model tools for Max/MSP that were
used to process and classify the gestures. HMM objects pairs6 were created and trained

6One HMM object for each camera view.

18

2.2 Overview of Computer-Based Conducting Systems

Figure 2.18: The parts of Paul Kolesnik’s system side by side. Image taken from [Kol04].

for each gesture that the system should accept as input. In performance mode, all HMM
objects processed the input data and for each hand the system chose the HMM object
pair that was considered most likely to correspond to the current conducting gesture,
deriving the information needed for controlling system output from the chosen HMM
object pair. Output of the system was either audio only or audio and video combined,
with the audio output being created by time-stretching an audio file using Max/MSP
components like a phase vocoder. To be able to use an audio file for output, a file with
the beat times of the audio file had to be created manually, using a component Paul
Kolesnik wrote for that task. Paul Kolesnik encourages reuse of his work, he made the
HMM package available for free distribution7.

7The HMM package can be downloaded from http://www.music.mcgill.ca/˜pkoles/download.html

19

2 Related Work

2.3 Comparison of Computer-Based Conducting Systems

It is hard to compare the presented computer-based conducting systems because of the
very different approaches that were taken in their development.

There are a lot of parameters a trained conductor can influence when conducting a
real orchestra. He can for example indicate when notes will be played and how long
they should be, holding them or cutting them off. He can tell the musicians how loud
notes should be played, how notes should be accentuated and what form transitions
between subsequent notes should take. He can influence how notes are grouped or
at least perceived as groups. He has control over the whole orchestra as well as the
different instrument groups and can dictate when and how they enter the musical piece.
He can emphasize an individual instrument group and control this group directly for
some time, while the rest of the orchestra serves as background. Or he can let his
attention jump from instrument group to instrument group, issuing commands to each
group, fine-tuning their balance and interplay. Supporting all those parameters in a
computer-based system, and supporting them well, is very hard indeed, and different
systems pick different subsets of those parameters, with some systems featuring only
the basics like tempo and volume and others going beyond that in letting the conductor
shape the notes in various degrees or giving him control over instrument groups. How
the parameters present in the respective systems can be influenced by the conductor also
differs from system to system. There are systems that just let the conductor enter a
value for each parameter he wants to change. Others derive the parameter values from
conducting gestures, hand gestures or eye contact. Virtual Orchestra even uses humans
as transducers for conducting input, in order to capture nuances a machine would miss.

What parameters are supported is also influenced by the intended user group. Some
systems are targeted towards people with no conducting experience whatsoever, some
address people who are interested in performing music but do not want to learn an
instrument or do not want to have to control all aspects of the sound they generate,
as they would have to when using a musical instrument. Some are aimed at trained
conductors and some are aimed at students still learning how to conduct.

The systems also use very different input hardware, ranging from simple keyboards
and switches over cameras and data gloves to all sorts of sophisticated sensors, each
having their own characteristics, with latency and accuracy being of special importance.
Input data can be video images of the conductor, of body parts like his hands and
his eyes, or of the baton he is wielding. Several enhanced batons are employed in the
systems, some acting as a light source whose position can be tracked, again with different
kinds of sensors to locate the point of light. Other batons provide acceleration values,
sometimes only in the form of triggers. Even radio waves are used to locate the baton,
or magnetic fields serve to measure position and orientation of the baton and/or the
conductor’s hands. Sensor technology from the medical field has been used to monitor
body signals of the conductor. Very different ways of processing the input were tried out,
starting with functions to de-noise the signals and rather simple algorithms to extract
triggers from input data and ending with very advanced algorithms like neural networks
and hidden markov models. Although the software of the systems varies wildly, there

20

2.3 Comparison of Computer-Based Conducting Systems

have also been cases of reuse of existing components, or components have been built in
order to be reused, facilitated by utilizing frameworks such as Max/MSP.

The output of the systems takes several forms as well. Some play back recorded
audio and video, some output MIDI data and rely on MIDI synthesizers to generate
their sound. Some incorporate advanced synthesis algorithms like physical modeling of
instruments into the system in order to be able to control very precisely how the sound of
the orchestra is generated. The performance based systems do even synthesize graphics
or animations based on the conducting input.

A very important point is that different systems use different definitions of conducting
gestures. Some see conducting gestures just as a sequence of beat triggers. Others define
and measure conducting gestures as the movement of the conductor’s baton or hand in
one, two or three dimensions, often reducing the properties of the baton to the position
or acceleration of its tip and placing the beats at local minima of its vertical movement.
Some of the systems defining conducting gestures as movement of the baton take the
form of the trajectory into account, i.e., there are explicit models of beat patterns or
components that can be trained to recognize beat patterns. In a completely different ap-
proach, the Conductor’s Jacket regards conducting gestures as patterns of physiological
signals. Several systems detect special gestures that add to the basic conducting gestures
and model those as posture and orientation of the left hand or direction in which the
conductor is looking.

For perfect control of a conductor over a real orchestra, the musicians of the orchestra
and the conductor must know each other and rehearse a musical piece before performing
it. Only some of the presented systems take this aspect of conducting into account.

21

2 Related Work

22

3 The Context that Led to the Conga
Framework

The Media Computing Group at RWTH Aachen, the Rheinisch-Westfälische Technische
Hochschule in Aachen, Germany, was established in the year 2003. With Jan Borchers
as head of the group and Eric Lee as research assistant, computer-based conducting sys-
tems belong to its history. When the group pondered development of successor systems
to Personal Orchestra and You’re The Conductor, the question arose, how the conduct-
ing gesture recognition parts of those systems could be reused and improved. It turned
out that, because the gesture recognition parts had been held simple, they had been
implemented in a way that made extracting them and encapsulating them for further
reuse just as hard as re-implementing them from scratch in a new system. In addition,
substantial improvements in the way they tracked conducting gestures would have re-
quired a redesign anyway. In consequence, it was decided to reuse neither the gesture
recognition code of Personal Orchestra nor the one of You’re The Conductor in succes-
sor systems. To avoid running into the same problem in the future, the group started
looking for components that would allow to create an encapsulated gesture recognition
part that is isolated from the rest of the system and that would also allow to adapt such
a part to changed requirements. Moreover, these components should accommodate the
use of very different input hardware, as not even Personal Orchestra and You’re The
Conductor used the same input devices. They should also enable building conducting
gesture trackers that do not depend on the way sound is generated from conducting
input, since different ways of doing so have been implemented in the past and sound
synthesis is still a developing field.

Frameworks like LabVIEW, EyesWeb and Max/MSP meet these demands. Their
components are tried and tested, each framework has its own user community and the
commercial frameworks feature additional support by the companies selling them. The
frameworks have been used successfully in several computer-based conducting systems.
There are even modules like neural networks or hidden markov models, developed with
these frameworks for such systems, that are available for reuse. But there are drawbacks
to using these frameworks as well. The modules for advanced tracking of conducting
gestures have been developed precisely because there are no built-in components spe-
cializing on conducting. The graphical programming environments are very comfortable,
but programmers are forced to use them because the modules of the frameworks cannot
be used easily outside the frameworks. If one wants to combine these modules with code
from other sources, one is either forced to package that code into external modules for
the framework and use the framework’s programming tools to develop the overall appli-
cation, or one has to create two applications, using the framework’s runtime environment

23

3 The Context that Led to the Conga Framework

and an operating system process running in parallel. In the latter case, the application
borders will be dictated by the types of the parts one wants to combine. Furthermore,
one has to insert glue code into both applications so they can communicate with each
other, adding to the complexity of the system. Another drawback might be the way the
frameworks handle the flow of data and how data is processed. These are fixed because
the frameworks have been used by many people to develop a lot of different applica-
tions — changing the framework’s core behavior would break those applications. So a
programmer using the frameworks has to adapt his application logic to fit the framework.

In the end, the group decided that it would be better to create a new framework
that specializes on conducting gesture tracking and particularly supports a better set
of operators for conducting gestures than the existing frameworks. It should also allow
to create processing units that can be mixed with existing code that was developed
with standard development tools. This framework was to be called conga, short for
“CONducting Gesture Analysis framework”, and it would first be used in the Personal
Orchestra 3 project of the Media Computing Group. Objective of the project was to
create an interactive conducting system for The Betty Brinn Children’s Museum1 in
Milwaukee, USA, featuring an adaptive gesture recognition that could act like You’re
The Conductor, deriving tempo and volume from any baton movement, but that could
also track a standard beat pattern giving the conductor finer control than in Personal
Orchestra. Personal Orchestra 3 would also feature audio output using a phase vocoder
that was more advanced than the one that had been used in You’re The Conductor.
Thorsten Karrer was working on this part of the project for his diploma thesis[Kar05]2.

Creating a new framework meant to forego the advanced conducting gesture recogni-
tion modules available for reuse that have been built with existing frameworks. But this
was deemed acceptable, because these modules use neural networks or hidden markov
models and thus rely on being trained to certain beat patterns. The future conducting
systems planned at the Media Computing Group will probably be interactive music ex-
hibits. This means they will be used by each user only for a short amount of time and
probably only for a few times or even only once. That makes it impractical to train the
systems to each user. But if one uses general training sets to train the gesture recogni-
tion modules, one cannot be sure if the modules really learned the essential properties
of the gestures. In addition, it is not possible to change the way the module tracks a
gesture without retraining it.

1A museum installation will not be maintained and operated by computer experts. Therefore, it is
desirable to have a system that only needs a single computer to run on. As the target platform
of Personal Orchestra 3 is an Apple computer with MacOS X, this would have ruled out EyesWeb
anyway.

2Both the Personal Orchestra 3 project and Thorsten Karrer’s diploma thesis were still in progress at
the time this thesis paper was written, so the final title and publishing date of his diploma thesis
might differ from the ones given in [Kar05].

24

4 The Conga Framework

This chapter describes the fundamental characteristics of the conga framework, particu-
larly the underlying model of what a conducting gesture is plus the important concepts
and structures of the framework and its components. It also mentions some of the
problems in developing conga and the impact they had on the design of the framework.

4.1 Model of Conducting Gestures

In her PhD thesis about the Conductor’s Jacket ([Nak00]), Teresa Marrin shows that
conducting is an activity that involves the conductor’s whole body. But the actual con-
ducting gestures mainly rely on the conductor’s hands. According to Paul Kolesnik, who
focused on recognition of expressive gestures in his Master’s thesis ([Kol04]), expressive
gestures in conducting can be performed with either hand, but time-beating gestures
are almost always carried out using the right hand. Max Rudolf is even more strict,
in his book The Grammar of Conducting: A Comprehensive Guide to Baton Technique
and Interpretation ([Rud95]) he argues that all important conducting information can
and should be conveyed with gestures of the right hand, citing the conductor Richard
Strauss: “The left hand and both arms are dispensable, a good wrist is sufficient.” The
book describes conducting gestures that can be performed with the right hand, both with
or without a baton, and these gestures cover musical expression as well as time-beating.
It explains the shape of the gestures with illustrations that show the path followed by
the tip of the baton when performing a certain gesture.

The design of the conga framework is based on the model of conducting gestures
given in Max Rudolf’s book, i.e., conga models conducting gestures as two-dimensional
trajectories of a point, with the point corresponding to the tip of the baton, or the
conductor’s right hand, if he is conducting without baton. In his book, Max Rudolf
depicts the shapes of the trajectories of several fundamental beat patterns, including
the placement of the beats. He also supplies information whether or not the baton
or right hand should stop on the beats and whether movement should be deliberate
and controlled or rather very quick. Figure 4.1 is an example of various beat patterns
for conducting gestures in the graphic notation of Max Rudolf. Properties shared by
different beat patterns express themselves in similarities in the trajectories of those
patterns, for example both neutral-legato pattern trajectories in said figure look similar,
although one is a 3-beat pattern trajectory and the other is a 4-beat pattern trajectory.
The numbers in the figure are placed at the locations of the beats and give the order in
which the beats occur when the beat pattern is executed by the conductor. Consequently,
each beat marks a point in time as well as a point in the trajectory of its beat pattern.

25

4 The Conga Framework

1

3
2

4

4-beat; neutral-legato

1

32

4

4-beat; expressive-legato

2
1

4

3

4-beat; light-staccato

1

4

4-beat; full-staccato

2

STOP

3STOP

the baton passes through without stopping

the baton stops at this point

indicates deliberate, controlled movement

indicates very quick movement

indicates bouncing

1

2
3

3-beat; neutral-legato

Figure 4.1: Some examples of Max Rudolf’s beat patterns for conducting gestures. Draw-
ings after [Rud95].

26

4.2 Choice of Platform and Implementation Language

Conducting an orchestra with a certain beat pattern results in the same pattern being
repeated over and over again. As long as the conductor sticks to the same beat pattern,
he is in essence cycling through this pattern, with the beats marking distinct points in the
cycle and the first beat in the pattern marking the boundary between subsequent cycles.
Each full beat pattern drawn in The Grammar of Conducting represents one complete
cycle in executing the beat pattern, showing the shape of the trajectory corresponding to
the beat pattern’s conducting gesture. From the shape of this trajectory follow certain
features, such as the speed of the tip of the baton or the direction of its movement and
so on. Outstanding features allow to identify a certain beat pattern, e.g., the overall
shapes of the neutral-legato and full-staccato 4-beat patterns in Figure 4.1 might look
very similar, but the stops featuring in the full-staccato pattern’s trajectory allow to tell
the patterns apart. Repetitive occurrences of distinct features make it possible to track
the execution of a beat pattern, using those and other features to derive conducting
information like tempo, volume, targeted instrument group, and so forth.

The conga framework provides objects that can be interconnected to process and
analyze input data corresponding to points of the trajectory of the conductor’s baton or
right hand sampled at regular time intervals. It also provides the means to build feature
detectors and to model the gesture cycles of beat patterns.

4.2 Choice of Platform and Implementation Language

The Media Computing Group uses mostly Apple Macintosh computers running the
Mac OS X operating system, and a lot of existing code used and/or developed by the
group has been implemented either in C++ or in Objective-C. Apple’s development tools
allow to mix Objective-C and C++ code, and the more modern parts of Mac OS X are
mostly based on Objective-C, including the Cocoa APIs providing access to much of the
functionality of Mac OS X. Because of this, conga was implemented as an Objective-
C framework for Mac OS X. One additional advantage to Objective-C frameworks in
Mac OS X is that they do not have to be linked statically. An application can load them
at startup, making it easy to give applications depending on such frameworks access to
improved versions, without having to recompile the applications.

4.3 Early Approaches and Their Problems

The conga framework was developed with Apple’s integrated development environment
XCode. Most of the testing and debugging work was done on an Apple PowerMacintosh
workstation with 512 MB of RAM and dual G5 processors running at 2 GHz, using a
Buchla Lightning II1 infrared baton system as main input hardware.

1The Buchla Lightning II system consists of two batons that emit infrared light, a sensor unit
and a control unit that processes the sensor input, acts as MIDI interface and also contains a
General MIDI synthesizer. It is manufactured and sold by the company Buchla and Associates.
Their website can be found at http://www.buchla.com with information about the Lightning II at
http://www.buchla.com/lightning/index.html

27

4 The Conga Framework

During the early approaches to create the framework, some rather time-consuming
mistakes were made by the author. For example, one mistake was to test the very first
attempts to track conducting gestures by using a mouse and a Wacom graphics tablet
as input devices. Only some time later was the Buchla Lightning baton employed as
input hardware instead, with the result that components of the gesture tracker that had
seemed to work ceased functioning properly. This could have been avoided if the input
device with the most problematic characteristics had been identified first and then used
for most of the testing right from the start.

Another mistake in the beginning phases of the framework was to develop framework
components and code to track conducting gestures depending on the framework in par-
allel. The problem of that approach was that changes to the framework’s structure and
way of processing data required changing the tracking code as well. But changes were
frequent because the underlying model of what constitutes a conducting gesture kept
changing, as did the way the framework would handle conducting gesture analysis — the
definitions given in Section 4.1 are only the end result. For instance, an early version
of the framework focused on detecting the presence of certain features from position,
velocity and acceleration input, but did not provide the means to assemble new feature
detectors from existing ones. Code depending on this version of the framework had to be
reworked substantially every time the framework changed. After that, another approach
was taken: First a simple tracker for the 4-beat neutral legato pattern was built by
iteratively adding improvements to the code of one central function. When the tracker
was working reasonably, this central function was decomposed into its building blocks
and from then on the next version of the conga framework was developed from scratch,
by creating components corresponding to said building blocks.

Yet another unfortunate early decision was to use short sounds to indicate detected
features. A better decision would have been to visualize detected features and the input
data for the feature detectors. Because progress was a slower than expected, visualization
tools were implemented later on and did provide valuable insight. It turned out that
velocity and acceleration values calculated from position data delivered by the Buchla
system were varying wildly because the Buchla system did not deliver data at regular
time intervals, with noise being exaggerated by very short time intervals. Resampling
the input data at regular time intervals reduced the noise considerably. If visualization
had been used from the start, important characteristics of the input data would have
been apparent much earlier.2

Unnecessary complexity was a problem that arose again and again. Several times in
the development process it turned out that a structure or way of processing that had
been added to provide certain functionality could be merged with an older counterpart or
even discarded completely by changing the older counterpart slightly. Up to that point,
creation and maintenance of the added part consumed time and effort, and depending
source code is of course more complex when it uses two different concepts instead of

2Incidentally, the first visualization tools worked offline. Later a version was created that ran in parallel
to the tracking code, based on Apple’s Cocoa objects for drawing lines. But these Objective-C objects
are optimized for printing and not for fast display on a monitor, so visualization choked off tracking
until both were decoupled. It would have been better to base the visualization on OpenGL instead.

28

4.4 Basic Processing Model

one unified concept. For instance, as opposed to the final approach described in Sub-
section 4.4.1, some earlier versions of the framework distinguished between several types
of data but processed these types in similar ways. In effect, there were several separate
code structures that did basically the same processing. Another example of unnecessary
complexity were the predecessors of the specialized finite state machine (FSM) and the
corresponding states presented in Section 4.6. These predecessors were based on feature
detection events being generated outside the FSM and then being passed to the FSM to
be analyzed by the FSM’s states. Removing the events altogether resulted in an FSM
and states that were less complex and more flexible. Analyzing how existing structures
and ways of processing could be improved to support new functionality before creating
new ones would have saved a lot of effort, but it is unlikely that this would have been
feasible in every case. Sometimes one has to work out a concept first in order to see the
similarities to established concepts. But even then comparing each new concept with
the established ones as soon as it had been fleshed out it would have saved time and
effort later on.

Not a mistake but likewise time-consuming was the fact that by designing conga from
scratch, as opposed to basing it on one of the frameworks introduced in Section 2.1,
some functionality that would already have been present in an existing framework had
to be implemented and tested. This could have been avoided by designing the important
parts of conga as a set of modules extending an existing framework. But that would
have meant to accept the drawbacks described in Chapter 3.

Because of these circumstances, conga was developed in several iterations. The com-
ponents of the first framework attempts were disposed of completely and the following
attempts evolved with concepts being added and refined, occasionally being merged with
other concepts and sometimes just being discarded. Even after the fundamental concepts
of the framework had stabilized, components were still added and improved iteratively.
As a result, conga has a grown structure and source code and its design is not as clear
and elegant as the author had originally hoped for.

4.4 Basic Processing Model

The final version of the conga framework has not only been influenced by the experiences
made in the context of the earlier approaches. Its basic processing model also incorpo-
rates some ideas already present in LabVIEW, EyesWeb and Max/MSP. These existing
frameworks feature processing units that can be connected to form a graph with data
flowing along its edges and being processed in its nodes. Similar processing units are
part of conga. In fact, conga consists mostly of components that are either processing
units or used in processing units. Those units are meant to be connected into directed
acyclic graphs and are called conga nodes accordingly. As conga graphs are created
in source code and not in a graphical programming environment, objects called conga
ports, representing the edges of the graph, are used to connect the nodes. Each process-
ing node supplies one or more port objects that can be used for outgoing connections
and accepts a certain number of port objects as connections going into the node. The

29

4 The Conga Framework

represents a conga port

represents a connection
from a conga port to an
input port slot of a node

represents a conga node
that takes two input ports
and has one output port

Figure 4.2: Visualization of the structure of a conga graph. Evaluation of the graph
starts at the output ports of the nodes on the right end of the graph, and
data flows from its left end along the connections to the right end.

input port objects a node takes have to be output port objects of other nodes — in this
model a port that does not belong to a node would represent a connection from nowhere
and thus does not make sense. Figure 4.2 visualizes the structure of a conga graph.

An outgoing port of one node can be used as input port for an arbitrary number of
other nodes and not all outgoing ports of a node have to be used as input ports by
other nodes. To accommodate this fact, data is only transported through the graph
upon request from subsequent nodes. I.e., to evaluate a conga graph, input data is first
supplied to the entrance nodes of the graph and then the outgoing ports of the exit
nodes of the graph are asked to present their current values. The ports ask the nodes
they belong to to calculate their values. To do so, the nodes request the current values
of their input ports. The pattern repeats until the request reaches the nodes that have
been supplied with input data. These can calculate a result and pass it on, so data
travels through the graph in the reverse direction of the requests for it. In order to
avoid repeated calculations to evaluate the same node, each request is marked with a
timestamp. All nodes cache the result values for the evaluation request with the most
recent timestamp and only recalculate their results if a newer timestamp is used by the
next request. But due to the caching mechanism, all exit nodes of a conga graph have
to be queried for results every time the graph is evaluated, otherwise there might be
gaps in the sequence of data values that reach a given node. Because data flows only
upon request, each node in the graph must get at least one request for each timestamp
or else later requests with more recent timestamps might produce wrong results.

A simple conga graph will serve to demonstrate this. The graph calculates 5 + x
y as

well as 3x
y , with x and y standing for the values of two input signals. Figure 4.3 shows

how this graph might be created, starting with the nodes that hold the input values and
then creating and connecting all other nodes in steps that ensure that a given node is
created after all the nodes it depends on.

30

4.4 Basic Processing Model

x

y

a) create input data nodes

x

y

/

b) create and connect processing node

x

y

/

5

3

c) create nodes for constants

x

y

/

5

3

+

*

d) create and connect processing nodes

Figure 4.3: Creation of a simple conga graph. The nodes x and y are of the same type
as the nodes 5 and 3, they are simply marked with characters to clarify that
their values will be changed between successive graph evaluations.

Figure 4.4 walks through the steps of evaluating this graph:

a) The graph has been created with an initial timestamp of 0 and supplied with the
current values of the input signal, x has been set to 4 and y has been set to 2.

b) The evaluation is started by requesting the value of 5 + x
y for timestamp 1.

c) The corresponding node has not been evaluated for this timestamp yet and in
response first requests the value of the node with constant value 5, with no further
requests being issued by that node.

d) The node calculating x
y is asked next to yield its value for timestamp 1.

e) It requests the value of x, because timestamp 1 is more recent than timestamp 0.

f) It also requests the value of y for timestamp 1.

g) With those values, x
y can be resolved to 2 and 5+ x

y can be resolved to 7, which the
corresponding nodes cache alongside the timestamp 1. Then begins the evaluation
of the graph’s second output by requesting the value of 3x

y .

h) The associated node has no cached value for timestamp 1 and so requests for this
timestamp the value of the node with constant value 3.

i) Afterwards it requests the value of x
y .

j) The corresponding node already has a value for timestamp 1, so 3x
y can be resolved

to 6 and cached in the associated node. In addition, the graph gets prepared for
the next round of evaluation at timestamp 2, with new values set for x and y.

31

4 The Conga Framework

Section 5.1 has a short piece of Objective-C source code performing creation and evalu-
ation of this graph, according to Figures 4.3 and 4.4.

The aforementioned properties of a conga graph, demonstrated by the given graph
example, explain why conga processing units have to form directed acyclic graphs. The
graphs have to be directed in order to allow data and requests for data to flow through
them. They have to be acyclic because a cycle in a graph would result in a processing
unit to request data from itself recursively, without an end condition for the recursion:
an endless loop is born and the request is never answered.

4.4.1 Types of Nodes, Ports and Processed Data

conga needs basically three types of nodes. The first type just holds a data value and
presents this value when queried for its current value. This type takes no input ports
and can consequently be used for entry nodes of a conga graph, because requests for
data reaching this type of node travel no further. The second type simply processes
data presented by its input ports and passes on the results via its output ports. The
third type is used to analyze data, to detect if a certain feature is present in its input
data at a certain time or not and maybe to derive some values corresponding to the
feature, if it is present.

Ignoring the node type that simply holds data as exceptional case, different nodes of
even the same type may still operate on data of different dimensions. As conga is built
on the assumption that conducting gestures have two-dimensional shapes, there are a
lot of conga nodes that take two-dimensional input. But there are other nodes that
take one-dimensional input and some nodes can even take an arbitrary number of input
ports. The dimension of the output data of a node does not have to be, and in a lot of
cases is not, the same as the dimension of its input data.

In order to be able to interconnect all types of nodes, all ports have the same interface
and there is only one type of data that is passed through the ports. The data takes
the form of two simple numbers. One is the value of the port and the other is an
estimated time when said value originated. Because different input sources have different
latencies and processing may, and indeed most of the time will, add further delays,
passing the estimated origination time of a value along and modifying it as needed
means that code using conga graphs can take accumulated latency into account, which
for example is very useful for determining the actual time when a certain beat was given
by the conductor. Some nodes use the timestamps of evaluation requests to modify
the estimated origination time. Therefore, those timestamps should have a meaningful
relationship to the origination time values given to the starting nodes of a conga graph.

Going back to the topic of node types and input/output data dimensions, the unified
interface for ports means that the data dimension is reflected in the number of ports. A
node taking two-dimensional input and giving one-dimensional output takes two input
ports and has one output port, respectively. The unified port interface also means that a
feature detecting node has to use numbers to indicate boolean values. For that purpose,
conga incorporates the same trick that, for example, is used in the C programming
language. A number equal to zero represents the boolean value false and any non-zero

32

4.4 Basic Processing Model

x

y

/

5

3

+

*

a) supply data to graph before evaluation starts

x

y

/

5

3

+

*

get value for
timestamp 1

b) start graph evaluation

x

y

/

5

3

+

*

get value for
timestamp 1

get value for
timestamp 1c)

x

y

/

5

3

+

*

get value for
timestamp 1

get value for
timestamp 1

d)

x

y

/

5

3

+

*

get value for
timestamp 1

get value for
timestamp 1

get value for
timestamp 1

e)

x

y

/

5

3

+

*

get value for
timestamp 1

get value for
timestamp 1

get value for
timestamp 1

f)

x

y

/

5

3

+

*

g)

x

y

/

5

3

+

* get value for
timestamp 1

h)

x

y

/

5

3

+

* get value for
timestamp 1

get value for
timestamp 1

i)

x

y

/

5

3

+

*

j) supply new data for next graph evaluation

get value for
timestamp 1

get value for
timestamp 1

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 5

yields 3

yields 4

yields 2

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 5

yields 3

yields 4

yields 2

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 5

yields 3

yields 4

yields 2

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 5

yields 3

yields 4

yields 2

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 5

yields 3

yields 4

yields 2

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 0 for
timestamp 0

yields 5

yields 3

yields 4

yields 2

yields 2 for
timestamp 1

yields 7 for
timestamp 1

yields 0 for
timestamp 0

yields 5

yields 3

yields 4

yields 2

yields 2 for
timestamp 1

yields 7 for
timestamp 1

yields 6 for
timestamp 1

yields 5

yields 3

yields 3

yields 8

yields 2 for
timestamp 1

yields 7 for
timestamp 1

yields 0 for
timestamp 0

yields 5

yields 3

yields 4

yields 2

yields 2 for
timestamp 1

yields 7 for
timestamp 1

yields 0 for
timestamp 0

yields 5

yields 3

yields 4

yields 2

Figure 4.4: Sample evaluation of the graph from Figure 4.3 for the first time immediately
after the graph was created.

33

4 The Conga Framework

number represents the boolean value true. Just like in C this presents the opportunity
to use a node that was not actually intended to be a feature detector in place of a
genuine feature detector, if it is convenient, and just like in C this poses the danger of
not noticing that something is used as a boolean value although it is not appropriate
to do so. However, there is an additional benefit to this arrangement: conga can use a
numeric value to not only indicate if a feature is present, but also to indicate to what
extent it is present.

To simplify matters, conga has been implemented with a unified basic interface for
nodes as well, so that this basic interface depends neither on the number of input ports
a node takes nor on the number of output ports it has. Since the behavior of a lot
of conga nodes can be configured, those nodes extend the basic node interface with
whatever methods they need to be set up properly.

In order to encapsulate a complete or a partial conga graph into a new conga node,
this new node at least has to implement the methods in the basic interface for nodes. If
the encapsulated graph does not need to be configurable and does not depend on activity
outside conga (like, say, the input nodes being set to the current input values prior each
graph evaluation), then all the new node has to do is to create this graph correctly, pass
provided input ports to the right nodes of the graph and present the graph’s exit ports
as the new node’s output ports. If the encapsulated graph does have to be configurable
or or does have to be accessible outside conga’s basic processing model, the new node
also has to extend the basic node interface in order to provide the needed configuration
and access methods.

4.4.2 Implementation-Specific Processing and Initialization Issues

Ports and nodes in conga are implemented as Objective-C classes. To form a conga
graph, objects of these classes are instantiated, and for evaluation requests, messages
are sent to the appropriate objects. Objective-C determines at runtime if a given object
implements a method corresponding to a given message. A message passed to an object
thus results in a method lookup and a subsequent method call. This process takes more
time than a simple function call and because a conga graph might consist of a lot of node
and port objects, the overhead of this process could impact noticeably the time it takes
to evaluate the graph. To avoid this, conga nodes and ports have been implemented
so that they construct function pointers to the important methods of their input ports
and host nodes whenever those are being set. This makes it possible to circumvent the
method lookup and speed up the evaluation of a conga graph. It also makes the source
code of the nodes and ports less elegant and more prone to bugs.

All conga nodes share the same basic interface which is defined as an Objective-C
protocol. It contains an initialization method taking a timestamp as parameter, so that
during creation of a conga graph, all of the graph’s nodes can be initialized with the
same specific start time. To keep the interface independent of the number of input ports
a node takes, there is a method to set the node’s input ports with an array of conga
port objects as parameter. All conga nodes are implemented to take the number of
input ports they need, starting with the first array element and ignoring surplus array

34

4.4 Basic Processing Model

elements. If a node is provided with less input ports than it needs, it will simply not
carry out the processing it is intended to. To keep the node interface independent of the
number of output ports a node has, there is a method that reports the concrete number
of output ports of the node plus a method that is given a number as input and returns
the corresponding output port of the node or nil if there is no corresponding output
port. So the way conga nodes are implemented, input ports are supplied to a node all
at once while output ports can only be acquired from a node one by one. Last but not
least, the node interface contains a method that can be called to update all output ports
of a node for the current time.

The common interface of all conga ports is defined as an Objective-C protocol as well
and is kept very simple, consisting of only one method to evaluate the port. This method
receives a timestamp of the current time as input and delivers the value of the port and
the estimated origination time of the value as output. For nodes with several output
ports, conga provides the CONGASimpleNodeOutputPort class that has to be provided
with a reference to its host node and implements the port evaluation method so that it
causes the host node to update all of its output port values and value origination times as
soon as the first output port is evaluated for a new timestamp. As this step of indirection
would represent unnecessary processing overhead in the case of conga nodes with only one
output port, these nodes do not use CONGASimpleNodeOutputPort objects. Instead,
they implement the conga port interface and thus serve as their own output port.

One final thing to keep in mind is the fact that conga has been developed for processing
data at regular time intervals. In other words, there are some conga nodes that rely on
their data input sequence being made up of input values that are more or less evenly
spaced in time. For example, nodes that calculate weighted averages of successive input
values might produce meaningless results otherwise. Input data provided to the starting
nodes of a conga graph should be resampled, if it is not evenly spaced in time, and the
timestamps of evaluation requests should be evenly spaced as well.

35

4 The Conga Framework

4.5 Some Examples of Basic Processing Nodes

In the previous section, conga’s basic processing model has been discussed. This section
demonstrates how the concepts mentioned in the previous section have been realized
in conga by giving some examples of actual conga nodes. Working through all of the
nodes contained in the conga framework would require more space than is appropriate,
without going beyond the essential insights already provided by the given examples.

The first example, CONGAPassiveValueNode, embodies the first of the three funda-
mental node types, the one that just holds data. It is followed by several examples of
the node type that simply processes data and passes it on, with varying functions and
input and output port counts. CONGADetectZeroCrossingNode serves as an example
of the third node type, the one that analyzes data for a certain feature and indicates if
the feature is present. Finally, CONGANotNode shows an example of a node that treats
numeric values as boolean values. Such logic nodes are needed because conga does not
have a separate data type for boolean values.

4.5.1 CONGAPassiveValueNode

Input ports taken:
CONGAPassiveValueNode objects do not take any input ports.

Output ports provided:
CONGAPassiveValueNode objects provide only one output port.

Processing carried out:
As CONGAPassiveValueNode objects do not take any input ports, they perform
no processing of input values. They just store a number as well as the estimated
origination time of that number and present those when being queried for their
current values.

Possible use:
CONGAPassiveValueNode objects are best suited as starting nodes of a conga
graph or as nodes providing constant values needed by other nodes. Code using
conga graphs can change the values stored in a CONGAPassiveValueNode object at
any time, but should refrain from doing so while the corresponding graph is being
evaluated. If a CONGAPassiveValueNode object is used as a source for a constant
value, it can be configured to present the timestamp of the evaluation request as
estimated origination time instead of the stored origination time value.

36

4.5 Some Examples of Basic Processing Nodes

4.5.2 CONGAOnePoleFilterNode

Input ports taken:
CONGAOnePoleFilterNode objects take one input port.

Output ports provided:
CONGAOnePoleFilterNode objects have one output port.

Processing carried out:
CONGAOnePoleFilterNode objects represent infinite impulse response one-pole fil-
ters [Coo02]. In essence, their output value is calculated as the sum of the current
input value multiplied with a certain factor and the last output value multiplied
with another factor. The estimated origination time value of the output port is
simply set to the current one of the input port.

Possible use:
CONGAOnePoleFilterNode objects can be configured by setting the input value
and output value factors. Depending on these factors, they can be used as high-
pass filter or as low-pass filters, but with the wrong factor values, they can become
unstable as well. As low-pass filters they might be applied to reduce noise.

4.5.3 CONGAAdderNode

Input ports taken:
CONGAAdderNode objects take two input ports.

Output ports provided:
CONGAAdderNode objects provide one output port.

Processing carried out:
CONGAAdderNode objects add the current values supplied by their two input
ports and set the value of their output port to the resulting sum. They compare
the current origination time values of both input ports and use the older one as
origination time value for their output port.

Possible use:
CONGAAdderNode objects are used for the very simple arithmetic operation of
adding two numbers. But even simple arithmetic operations have to be wrapped
in the guise of conga nodes so they can be incorporated into a conga graph. The
simple graph from Section 4.4 that calculates 5 + x

y as one of its results, produces
that result with the aid of a CONGAAdderNode object.

37

4 The Conga Framework

4.5.4 CONGAMaximumNode

Input ports taken:
CONGAMaximumNode objects take an arbitrary number of input ports, but be-
cause they compare the values of their input ports to produce output, they should
be given at least two input ports in order to be useful.

Output ports provided:
CONGAMaximumNode objects provide two output ports. The first output port
supplies the maximum of their input port values and the second one holds the index
of the input port carrying said value.

Processing carried out:
CONGAMaximumNode objects select the maximum of all the current input port
values and set the value of their first output port to this maximum value. The
value of their second output port is set to the index of the input port that carries
the maximum value and the estimated origination time value of this input port is
passed on to both output ports. If multiple input ports carry the maximum value,
the one with the most recent origination time value gets selected. Index counting
starts with zero, that is, the first input port is assigned an index of zero.

Possible use:
CONGAMaximumNode objects can simply be used to determine the maximum of
several values. But they can also be used to choose from different alternatives, if
it is possible to represent the quality of each of the alternatives as a characteristic
number that grows with quality.

4.5.5 CONGASwitchNode

Input ports taken:
CONGASwitchNode objects take an arbitrary number of input ports. In order to
be useful they should be supplied with at least three input ports, though.

Output ports provided:
CONGASwitchNode objects provide two output ports, with the actual node output
carried by the first output port and the second output port indicating if this is a
regular output.

Processing carried out:
CONGASwitchNode objects use the current value of their first input port to select
one of the other input ports and pass the current value and estimated origination
time value of this input port on to their first output port. The value supplied by
their first input port gets truncated and the result is interpreted as index of one of
the remaining input ports. That is, an index value of zero selects the second input
port, an index value of one selects the third input port, and so on.

38

4.5 Some Examples of Basic Processing Nodes

If there is no corresponding input port for the index value, the first output port
is set to the current value and estimated origination time value of the first input
port. CONGASwitchNode objects indicate with their second output port if their
index input is valid. That is, if there is an input port corresponding to the index
value, the second output port value is set to one and otherwise it is set to zero. The
origination time value of the second output port is simply set to the same value as
the one of the first output port.

Possible use:
CONGASwitchNode objects supplement nodes that choose from alternatives but
cannot output all data associated with each alternative. For example if a CON-
GAMaximumNode object is used to select an alternative based on a characteristic
number, as mentioned in CONGAMaximumNode’s description, it can only output
the characteristic number and the selected index. But needed data of the selected
alternative can still be obtained by feeding the selected index and the data of all the
alternatives into a CONGASwitchNode object in the correct order. If multidimen-
sional data has to be handled this way, several instances of CONGASwitchNode
can be employed.
CONGASwitchNode produces boolean values as part of its output but it is no
feature detection node in the strict sense.

4.5.6 CONGAHysteresisNode

Input ports taken:
CONGAHysteresisNode objects take an arbitrary number of input ports.

Output ports provided:
CONGAHysteresisNode objects provide one output port for each input port they
have been supplied with.

Processing carried out:
CONGAHysteresisNode objects consider their input port and output port values to
be the values of a vector’s elements. They keep their output steady as long as the
current input vector is within a certain distance of the output vector. If the distance
between input vector and output vector exceeds a preset distance, the output vector
is set to the values and origination times of the current input vector. The distance
between the two vectors is calculated according to the Euclidean metric.

Possible use:
CONGAHysteresisNode objects can be used to reduce noise because they suppress
changes in multidimensional data below a certain threshold. They also work on
one-dimensional data, so unlike CONGAMaximumNode objects they do perform a
useful function if provided with only one input port.

39

4 The Conga Framework

4.5.7 CONGADetectZeroCrossingNode

Input ports taken:
CONGADetectZeroCrossingNode objects take only one input port.

Output ports provided:
CONGADetectZeroCrossingNode objects provide two output ports. The first out-
put port carries a boolean value, telling if a valid zero crossing has been detected,
and the second output port holds the sign of the node’s input prior to the last
detected valid crossing of zero. Like other feature detection nodes, CONGADe-
tectZeroCrossingNode uses the first output port to signal detection of the feature
and the remaining output port to deliver additional information. Other feature
detection nodes may have more than one output port providing additional informa-
tion — or none, if they merely have to detect whether their corresponding feature
is present or not.

Processing carried out:
CONGADetectZeroCrossingNode objects analyze the sequence of values of their
input port and indicate if the values of this sequence cross zero in a certain way.
If a valid zero crossing has been detected, the value of the first output port is set
to one, otherwise it is set to zero. Whether or not a valid zero crossing has been
detected, the estimated origination time of the first output port is always set to the
current one of the input port. The second output port is only updated when a valid
zero crossing has been detected and carries the sign of the last non-zero input value
previous to the detected zero crossing as well as the estimated origination time of
that input value.
What CONGADetectZeroCrossingNode objects consider to be a valid zero crossing
can be configured in several ways. It can be set if and for how many consecutive
samples the input may linger on zero. It is also possible to set a threshold value that
has to be exceeded previous to crossing zero in order for the crossing to be valid,
and it can be configured whether exceeding this threshold has to happen after the
last crossing or the last grazing of zero, for the next zero crossing to be considered
valid.

Possible use:
CONGADetectZeroCrossingNode objects turn out to be useful in a lot of cases.
For example, if the input values are values of one component of the velocity of the
tip of the baton, crossing zero indicates a reversal of direction of the baton tip’s
movement in this component. But if the tip of the baton is moving mainly along the
x axis, noise could trigger a lot of zero crossings in the velocity’s y component. The
configurability of CONGADetectZeroCrossingNode objects helps to avoid detecting
these inappropriate zero crossings.

40

4.5 Some Examples of Basic Processing Nodes

4.5.8 CONGANotNode

Input ports taken:
CONGANotNode objects take one input port.

Output ports provided:
CONGANotNode objects provide a single output port.

Processing carried out:
CONGANotNode objects regard the numeric value supplied by their input port as
a boolean value, negate this boolean value and output a numeric value representing
the result. That is, if the current input port value is zero, the output port value is
set to one. If the current input port value is not zero, the output port value is set
to zero. The current estimated origination value of the input port is simply passed
on to the output port in both cases.

Possible use:
CONGANotNode objects can be used to negate the boolean output of a feature
detector node. Like CONGAAdderNode, CONGANotNode represents a simple
operation that has to be implemented as a conga node in order to be usable inside
a conga graph.

41

4 The Conga Framework

4.6 Beat Pattern Tracking

Basic processing and analysis of the trajectory of the conductor’s baton or right hand can
be achieved with the concepts introduced in the previous section. But conga contains
more advanced parts to aid the tracking of conducting gestures. In particular, there are
components to handle the first beat of a beat pattern and components to model beat
patterns and to track their execution.

4.6.1 Handling the First Beat

The first beat of a beat pattern deserves special attention because it is the most impor-
tant beat in a measure3, and it also serves to separate subsequent beat pattern cycles.
The trajectory of a conducting gesture before the first beat is very recognizable. Nearly
all of the beat patterns with several beats given in Max Rudolf’s book show the same
trajectory leading up to the first beat: The baton moves up and left, then turns straight
down, giving the trajectory a spike, and the location of the first beat is at the lowest
point of the movement straight down. The trajectories of the 1-beat patterns only differ
from this trajectory leading up to the first beat in that they do not feature movement to
the left while moving up. Of course, every beat is a first beat when conducting a 1-beat
pattern, so the described part of the trajectory in most cases represents a complete cycle
of a 1-beat pattern.

A description of the conga feature detector that helps handling the first beat in a
measure follows below. This node, called CONGADetectBeat1Candidates2DNode, is
built to detect the very distinct part of the trajectory of the beat patterns leading up
to the first beat. Not every detected candidate for the first beat does have to be a first
beat, though, because the characteristic trajectory can occur in other parts of some beat
patterns as well.

There are, however, no specialized beat detectors in conga for the other beats in a
measure because the parts of the trajectories corresponding to other beats vary a lot more
in different beat patterns. Depending on the beat pattern, different feature detectors
are suited for detection of beats other than the first one.

CONGADetectBeat1Candidates2DNode

Input ports taken:
CONGADetectBeat1Candidates2DNode objects take two input ports. They inter-
pret the values of the first input port as velocity values of the x component of the
movement of the tip of the baton and the values of the second input port as velocity
values of the respective y component.

3At least normally it is. A measure is the smallest group of notes, defining what number of notes of
which length make up such a group. Most of the time, a beat pattern is chosen that covers one
measure and has a compatible number of beats (often the number of beats and notes in a measure
are the same). If this is the case, the first beat is the most important beat in a measure. But there
are some cases when one cycle of the beat pattern does not correspond to one measure, for example
a 1-beat pattern can be chosen with each (first) beat corresponding to a note.

42

4.6 Beat Pattern Tracking

Output ports provided:
CONGADetectBeat1Candidates2DNode objects provide three output ports. The
first output port signals detection of a possible candidate for the first beat and
the second output port carries how far the baton tip was moving down previous to
the last detection of a candidate for the first beat. The third and last output port
supplies the time it took the tip of the baton to move down to the last detected
candidate for the first beat.

Processing carried out:
CONGADetectBeat1Candidates2DNode objects detect if the baton tip moved up,
moved straight down afterwards and then came to a halt. Positive velocities of the
y component correspond to moving up, negative velocities correspond to moving
down. So CONGADetectBeat1Candidates2DNode objects wait for the y velocity
to become positive at first, then negative and then zero or positive again. If at this
point the previous movement down was straight, then and only then the first output
port is set to a value of one (otherwise it is set to a value of zero) and the origination
time of all three output ports is set to the one of the current y velocity input. In
addition, the second output port value is is set to the distance the baton tip covered
while moving down. The third output port value is set to the time delta between the
time of the current y velocity input and the last y velocity value previous to moving
down. A downward movement is considered to be straight if the distance it covered
in y is at least the distance it covered in x multiplied by a certain factor, which has
a default value of three and can be set to other values. To calculate the distance a
downward movement covers, CONGADetectBeat1Candidates2DNode objects sum
the absolute values of all velocity values provided by the input ports during the
downward movement.
CONGADetectBeat1Candidates2DNode objects can be configured to indicate de-
tection of a candidate for the first beat not immediately when the baton halts after
moving down but instead when it is moving up again. This way robustness in-
creases because the node then always places the first beat at the lowest point of the
downward movement, but latency increases as well.

Possible use:
CONGADetectBeat1Candidates2DNode objects are rather specialized. They are
intended to be used to detect candidates for the first beat and are probably of
not much use for other purposes. If a 1-beat pattern is conducted, they might be
sufficient to track the complete pattern, using the second and third output port
values to derive volume and tempo information. Other beat patterns require more
complex components to model and track them, but those components will still use
CONGADetectBeat1Candidates2DNode objects to help them detect the first beat
of the pattern.

43

4 The Conga Framework

a) select first state that can activate

state that cannot activate
because its characteristic
feature was not detected

state that can activate
because its characteristic
feature was just detected

marker for the next
current state of the FSM

1

0.0

2

0.9

3

0.0

4

1.3

5

0.0

b) select first state of states with highest feature detection value

1

0.0

2

0.9

3

0.0

4

1.3

5

0.0

6

1.3

6

1.3

Figure 4.5: Two strategies for choosing the next active state of the conga FSM. The
numbered slots represent the ordered list of possible successor states of the
state that is active at the moment. The values underneath the state symbols
are the values reported by their corresponding feature detectors.

4.6.2 Modeling and Tracking the Cycle of a Beat Pattern

For modeling the complete cycle of a beat pattern, conga provides a package of a custom
finite state machine and states suited to this special form of finite state machine. The
basic idea is that distinct features of the trajectory of a beat pattern occur at more
or less fixed times in the cycle of this beat pattern. For example, in a 4-beat pattern
executed at an even tempo, the first beat marks the start of the pattern, the second
beat occurs after a quarter of the time it takes to complete the pattern, the third beat
occurs at half the time, the fourth at three quarters of the time and the next first beat
concludes the cycle and starts a new one. Detecting the characteristic features then
allows to follow the conductor as he progresses through the beat pattern. To represent
points in the cycle of a beat pattern, conga uses the FSM states. Each state object is
given a value between zero and one, corresponding to its point in the gesture cycle, and a
feature detector that tells, if its characteristic feature is present in the conducting input.

The complete cycle of a beat pattern is represented as a network of connected states,
where each state has one or several states that are legal successor states. A conga FSM
goes through this cycle by stepping from one state to the next. That is, if the last
detected characteristic feature corresponded to a certain state, causing it to become the
FSM’s active state, it is then valid to assume progress in the beat pattern up to the

44

4.6 Beat Pattern Tracking

0.0

0.25

0.5

0.75

0.0
represents a state (the number
inside the circle gives the state's
point in the gesture cycle)

represents a possible transition
from a state to one of the state's
subsequent states

0.0

0.2

0.45

0.35

0.6

0.85

a) b)

Figure 4.6: Examples of conga state networks. The left one shows an idealized network
for a 4-beat pattern. The right one shows a more realistic but still hypothet-
ical network.

point in the cycle of a successor state of said state, if that successor state detects its
characteristic feature. Furthermore, it is only possible to advance in a beat pattern, it
is not possible to go back. This means that activation of a state by the FSM starts the
next beat pattern cycle, if the cycle position of this state is equal to or less than the one
of the previously active state4.

In conga, states and FSM work hand in hand to track a beat pattern, the states are not
passive. The FSM stores which state is the active state and controls when a transition
to a successor state can take place. The active state controls which state becomes the
next active state. Figure 4.5 shows the two strategies that can be employed by the active
state to choose the next active state from the list of its successor states. It can simply
take the first one that is able to activate, or it can take the values of the corresponding
feature detectors into account and go for the first one of the states with the highest
feature detection value.

Examples of conga state networks representing beat patterns can be seen in Figure 4.6.
The network on the left side is an idealized model for a 4-beat pattern, assuming that the
feature detectors of the states always detect their characteristic feature without fail and
that the features corresponding to the beats are the ones that are easiest to recognize.
The network on the right side is a more realistic but still hypothetical network. If it was

4In theory, any FSM advance could cover more than one complete cycle of the beat pattern. In practice,
the feature detectors or the state network of the affected gesture tracker need to be revised, if that
happens too often.

45

4 The Conga Framework

a) b) c) d)

e) f) g)
state that cannot activate
because its characteristic
feature was not detected

state that can activate
because its characteristic
feature was just detected

marker for the current
state of the FSM

Figure 4.7: Hypothetical tracking of one of the beat pattern state networks from Fig-
ure 4.6.

a network for a 4-beat pattern, only the first beat would coincide with a state5. The
network allows to skip states because sometimes features will not be detected properly.
Figure 4.7 shows how this beat pattern might be tracked, if several states would be able
to activate on detection of the same feature6. In Figure 4.7, the states at times 0.0 and
0.45 in the cycle correspond to a feature A, the states at times 0.2 and 0.6 correspond
to a feature B and the states at times 0.35 and 0.85 correspond to a feature C:

a) The FSM starts in the state placed at time 0.0.

b) Then feature B is detected and the state at time 0.2 becomes the new active state.

c) After that, the feature detector for the state at time 0.35 misses feature C, so the
active state of the FSM does not change.

d) Next, feature A is detected and the state at time 0.45 becomes the active state,
skipping the state at time 0.35.

e) Afterwards, detection of feature B leads to the state at time 0.6 becoming the new
active state.

f) Then feature C is detected and the state at time 0.85 becomes the new active state.

g) When feature A gets detected, one cycle in the execution of the beat pattern is
completed as the state at time 0.0 becomes the active state.

5For example, in the 4-beat neutral-legato pattern from Figure 4.1 it is easier to detect the spikes than
to detect the beats that do not fall on spikes.

6Very similar features can occur multiple times in one cycle of a beat pattern. In Figure 4.1, the 4-beat
neutral-legato pattern shows a partial trajectory directly after the first beat that looks like a scaled
down version of the partial trajectory immediately before the first beat.

46

4.6 Beat Pattern Tracking

1

3
2

4

b)a)

1

4

ATT

Figure 4.8: a) Trajectory for the start of a piece on the first beat, using the fourth beat
in 4-beat legato as preparatory beat. b) Trajectory of the cycle of the 4-beat
neutral-legato pattern. Drawings after [Rud95].

4.6.3 How to Enter the Cycle of a Beat Pattern

Conductors start conducting a piece of music by giving a preparatory beat to set the
tempo. The baton or the right hand travels to this preparatory beat from a special
position of attention. As a result, the trajectory leading up to this beat from the position
of attention does not have the same shape as the trajectory leading up to this beat from
the previous beat when the beat pattern is executed repeatedly. Figure 4.8 gives an
example of this phenomenon for the 4-beat legato patterns, with the piece starting
on the first beat and the fourth beat being used as preparatory beat. Comparing this
preparatory beat trajectory with the trajectory of the normal cycle of the 4-beat neutral-
legato shows that the trajectory features for a preparatory beat can differ from the
trajectory features of the same beat when the pattern is executed repeatedly. Moreover,
conductors do not even have to start or resume conducting a piece on the first beat of a
measure.

To accommodate this, the FSM provides a way to enter the cycle of a beat pattern
without using one of the states that make up this cycle. A state network for a beat
pattern can include state chains that lead into the cycle of the beat pattern but cannot
be reached from states that are part of the cycle. The start points of these state chains
are also used by the FSM if it was already tracking a beat pattern, has been stopped and
then should pick up tracking the same beat pattern as conducting resumes. For this, the
start state and pick-up states are assigned a point in time of the beat pattern cycle and
the FSM picks up tracking with the pick-up state whose point in time comes directly
before the last known position of the FSM in the cycle. Figure 4.9 shows a hypothetical
state network of a 4-beat pattern, with pick-up states for each beat.

47

4 The Conga Framework

0.0

0.25

0.5

0.75

0.0

0.5

0.250.75

0.13

0.38
0.63

0.88

Figure 4.9: Separate start/pick-up states allow to handle starting a musical piece or
picking up conducting after a stop differently from handling the execution of
the cycle of the corresponding beat pattern.

Instead of being stopped, the FSM can be paused as well, with the effect that no state
transitions take place as long as the FSM is paused, but the cycle of the beat pattern
state network will not be left either. After the end of the pause, tracking of the beat
pattern resumes with the same state that was active before the pause began.

4.6.4 Actual Conga Components for Finite State Machine and States

The actual conga classes implementing FSM and states have been designed to be conga
nodes so that they can be placed in a conga graph much like other nodes, taking their
input data from parts of the graph and allowing other parts of the graph to process
their output. However, they differ from normal nodes because they are of not much
use as separate components. An FSM object without a state network is useless, a
state object that is not associated with an FSM does not improve on what its feature
detector can do. So FSM and states have to be combined and the process of combining
them cannot be mapped properly on the process of combining normal conga nodes.
conga defines Objective-C protocols for the interfaces of FSM and states that cover the
methods needed for them to be set up, to be combined and to interact.

The interface of conga FSM states is defined in the CONGAState protocol. It contains
a method to set a state’s successor states, providing those states inside an array in their
correct order. Code that creates a beat pattern tracker will use this method. Then there
is a method to be used by the FSM to ask the active state which, if any, of its successor
states can become the next active state for the current timestamp. This method either
returns nil, if no successor state can activate, or it returns the chosen successor state, as
well as its activation value, the corresponding origination time and its current position

48

4.6 Beat Pattern Tracking

in the cycle of the beat pattern7. To implement this method, states can use another
method of the interface that reports for the current timestamp the activation value of a
state as given by its feature detector, the corresponding origination time value and the
current position in the beat pattern’s cycle. Also included in the interface is a method
that allows the FSM to tell a state whether it is the active state or not. Finally there
is a method that simply returns the current position in the beat pattern’s cycle for the
current timestamp. This method is used by an FSM object to query start and pick-up
states for their cycle position as these states normally do not occur as successors of
other states. CONGAState does not define methods to set a state’s feature detector
or position in the cycle. As states are meant to be conga nodes as well, these will be
supplied via input ports to the state nodes.

The interface of conga finite state machines for beat pattern tracking is defined in
the CONGAFiniteStateMachine protocol. It features several methods to configure an
FSM and several methods to request information while tracking a beat pattern. On the
configuration side, there is a method to provide the FSM with an array containing all
state objects needed to track a certain beat pattern. The order of the state objects in
the array does not matter, but states are also nodes and often will be the end points of
a conga graph with no further nodes connected to their output ports. Because of the
basic processing model of conga, all state nodes have to be evaluated each time step, and
the FSM does so. There is also a method to set the first active state of the FSM, i.e.,
its start state. Another method supplies the FSM with an array containing all states
that should serve as pick-up states after a stop. When picking up after a stop, the FSM
is meant to select the pick-up state with the cycle position that is closest but after the
cycle position of the active state before the stop. In addition, there is a method to set a
minimum amount of time that has to pass after a state became active state before the
next state can be activated, based on the origination times of the activation values of
both states. All other methods of CONGAFiniteStateMachine can be used to request
information concerning the tracking of a beat pattern, such as if the tracking did advance
for the current time stamp, if an advance started a new cycle of the pattern, when did
the activation of the active state originate, what is the cycle position of the active state,
what was the difference of origination times of the activations of the current active state
and the previous one and what was the corresponding distance of their cycle positions.
But as conga FSMs are conga nodes as well, it is not necessary to use those methods in
order to track a beat pattern. A conga FSM node has to provide all tracking information
via its output ports, and stopping or pausing an FSM node should be done via input
ports supplied to it.

A description of the conga nodes implementing the state and FSM protocols follows.

7The position of a feature in the cycle of a beat pattern might vary slightly, for example if the beat
pattern is conducted at different speeds or by different conductors. By not fixing the cycle position
of a state, conga allows to build conducting gesture trackers that can be adapted without having
to be reinitialized. Cycle positions that shift too much can pose a problem, though: conga’s FSM
model assumes that a new cycle has been started, if the current cycle position of the state becoming
the active state marks an earlier point in the cycle than the cycle position the last active state had,
when it was activated.

49

4 The Conga Framework

CONGASimpleState

Input ports taken:
CONGASimpleState objects take two input ports. As states represent points in
beat pattern trajectories, a CONGASimpleState object needs a feature detector to
signal detection of the characteristic feature of the point it represents. This is done
via the first input port. It also needs the position of the point in the cycle of the
beat pattern, which is supplied by the second input port.

Output ports provided:
CONGASimpleState objects provide three output ports. The first output port
indicates if the state is the active state of the corresponding FSM, the second
carries the value the state activated with and the third supplies the cycle position
held by the state when it became the active state.

Processing carried out:
For processing, CONGASimpleState objects need a corresponding FSM, or else
their output will never change. When a CONGASimpleState object is evaluated as
a conga node, it just queries both input ports and caches the current value provided
by its feature detector, the associated origination time and the cycle position value.
Each time the corresponding FSM is itself evaluated, it will first evaluate all of its
state nodes, ignoring their output but causing them to update their cached values,
and then decide whether or not to switch the active state. In the process, the
current active state requests the cached values of its successor states to determine
which one of them, if any, it will present to the FSM as possible next active state.
If the FSM switches states, it deactivates the old active state and activates the
new one. Only this causes a change in the output of both states. The freshly
activated state sets the first output port value to one, the second output port
value to the current value reported by its feature detector and the third output
port value to its current cycle position. The other state only updates the first
output port with the value zero. Both states use a time value provided by the
FSM as estimated origination time for all output ports that they updated. In the
case of CONGASimpleFiniteStateMachine, this is simply the origination time value
reported by the feature detector of the state that becomes the new active state.
To avoid inconsistencies in the caching mechanism of conga’s basic processing, CON-
GASimpleState objects change their output port values after being activated or de-
activated not until they get evaluated with a more recent timestamp. Because they
are conga nodes, they might have been evaluated for a certain timestamp by other
nodes before their corresponding FSM is evaluated for the same timestamp. If they
changed their output port values immediately and were afterwards evaluated again
for the current timestamp, they would have supplied different output for the same
timestamp, thereby violating the basic processing model.

50

4.6 Beat Pattern Tracking

Possible use:
CONGASimpleState objects are meant to be used to model and track beat patterns
in combination with a conga FSM. They employ the simply strategy to choose the
next possible active state from their successor states by selecting the first one that
can activate, as shown in part a) of Figure 4.5, and should be used whenever this
state transition behavior is appropriate.

CONGASelectSuccessorByValueState

Input ports taken:
CONGASelectSuccessorByValueState objects take two input ports.

Output ports provided:
CONGASelectSuccessorByValueState objects provide three output ports.

Processing carried out:
Processing done by CONGASelectSuccessorByValueState and CONGASimpleState
objects is very similar, only differing in the strategy used to determine the next
possible active state of the corresponding FSM.

Possible use:
CONGASelectSuccessorByValueState objects choose the next possible active FSM
state from their successor states by comparing the feature detection values of the
successor states, as shown in part b) of Figure 4.5. They can be used if the feature
detector for a state’s characteristic feature is able to tell how strong this feature is
and not only if it is present or not. It is possible to mix CONGASelectSuccessor-
ByValueState and CONGASimpleState objects in the state network of an FSM.

CONGASimpleFiniteStateMachine

Input ports taken:
A CONGASimpleFiniteStateMachine object takes three input ports. The first input
port indicates if the FSM should be stopped, the second one indicates if it should
be paused and the third one indicates if it should be restarted.

Output ports provided:
A CONGASimpleFiniteStateMachine object provides seven output ports. The first
output port signals if the FSM advanced in the cycle of the beat pattern it models.
The second one tells if the last advance started a new cycle. The third one holds
the feature detection value that caused the active state to be activated. The fourth
output port carries the current position of the FSM in the cycle. The fifth one
supplies the distance the FSM moved forward in the cycle with the last advance.
The sixth one provides the difference of the activation times of the current active
state and the previous one. The final output port tells how many cycles have already
been tracked by the FSM.

51

4 The Conga Framework

Processing carried out:
Evaluation of a CONGASimpleFiniteStateMachine causes it to query the input
ports and update all its state objects. If the third input port signals a restart, the
FSM resets internal values, activates its start state and updates all output ports,
using the current timestamp as estimated origination time. Neither does this count
as advance in the cycle, nor does it start a new cycle. The activation value of the
start state is defined to be zero. The FSM’s current position in the cycle is set to
the one provided by the start state and the position delta is set to zero. Activation
time delta is set to one, mainly to avoid a division by zero if other components use it
to calculate tempo. Finally, the number of cycles already tracked by the FSM is set
to minus one, because zero would correspond to the first cycle and the preparatory
beat to start a piece lies outside the first cycle.
If no restart takes place but the input ports indicate that the FSM should be
stopped or paused, only the first output port is updated. Its value is set to zero
and its origination time is set to the one of the first input port when stopping or
of the second input port when pausing the FSM. If the FSM stops, it prepares to
pick up tracking again by activating the correct pick-up state.
In case the FSM does not stop or pause, it requests from the active state a successor
state that could activate. If there is no such successor state, the FSM sets the
first output port value to zero and the associated origination time to the current
timestamp. It does the same if the the difference between the origination time
value provided by the successor state’s feature detector and the activation time
value of the current active state is less than the FSM’s minimum time between
advances. Otherwise the FSM uses the activation value, the associated origination
time value and the current cycle position of said successor state to calculate and
store the relevant information for its output. Then it activates the successor state
and deactivates the previously active state. Finally, the FSM signals an advance
in the cycle by setting the first output port value to one and all the other output
ports to their appropriate values, passing on to all output ports the origination time
value reported by the new active state.
Start and pick-up states usually correspond to positions of attention, consequently
their activation is not considered to be an FSM advance. Normally, their successor
states correspond to a preparatory beat or something like that, so these are still
positioned outside the cycle of a beat pattern. Therefore, CONGASimpleFiniteS-
tateMachine treats their activation as silent advance. A silent advance is handled
like a normal advance, but it cannot start a new cycle and and the first output port
does not signal it as advance.

Possible use:
CONGASimpleFiniteStateMachine is a very specialized conga node, intended to
model and track beat patterns according to conga’s model of conducting gestures,
aided by conga state objects. Appendix A describes a component that transforms
cycle count and cycle position into an absolute time value inside a musical piece,
useful for some forms of output of computer-based conducting systems.

52

5 Using the Framework

This chapter gives two examples how conga can be used. It presents as first example
the simple graph from Section 4.4, which, despite probably being of not much real use,
is well suited to demonstrate graph creation and evaluation with a short piece of source
code. In contrast to this very simple graph, the second example is taken from a working
tracker for the 4-beat neutral-legato pattern. The code to create and configure this beat
pattern tracker is a lot more complex, even though it clearly shows repeating patterns.
Any useful tracker of a 4-beat pattern will be about as complex or even more complex
than the second example.

5.1 Source Code for Figures 4.3 and 4.4

The simple graph mentioned in Section 4.4 calculates 5 + x
y and 3x

y . Figure 4.3 shows
how this graph might be created and Figure 4.4 shows how it might be evaluated. The
following Objective-C source code realizes those figures:

// graph creation according to Figure 4.3
float now = 0.0f;

// Figure 4.3 part a)
CONGAPassiveValueNode *xNode;
xNode = [[CONGAPassiveValueNode alloc] initWithTime:now];

CONGAPassiveValueNode *yNode;
yNode = [[CONGAPassiveValueNode alloc] initWithTime:now];

// Figure 4.3 part b)
CONGADividerNode *dividerNode;
dividerNode = [[CONGADividerNode alloc] initWithTime:now];
[dividerNode inputPorts:[NSArray arrayWithObjects:xNode, yNode, nil]];

// Figure 4.3 part c)
CONGAPassiveValueNode *constant5Node;
constant5Node = [[CONGAPassiveValueNode alloc] initWithTime:now];
[constant5Node useCurrentTimeAsTimeOfValue:YES];
[constant5Node value:5.0f];

53

5 Using the Framework

CONGAPassiveValueNode *constant3Node;
constant3Node = [[CONGAPassiveValueNode alloc] initWithTime:now];
[constant3Node useCurrentTimeAsTimeOfValue:YES];
[constant3Node value:3.0f];

// Figure 4.3 part d)
CONGAAdderNode *adderNode;
adderNode = [[CONGAAdderNode alloc] initWithTime:now];
[adderNode inputPorts:
[NSArray arrayWithObjects:constant5Node, dividerNode, nil]];

CONGAMultiplierNode *multiplierNode;
multiplierNode = [[CONGAMultiplierNode alloc] initWithTime:now];
[multiplierNode inputPorts:
[NSArray arrayWithObjects:constant3Node, dividerNode, nil]];

// graph evaluation according to Figure 4.4
float resultA, timeA;
float resultB, timeB;

[xNode value:4.0f];
[yNode value:2.0f];
now = 1.0f;

[adderNode getValue:&resultA andTimeOfValue:&timeA forCurrentTime:now];
[multiplierNode getValue:&resultB andTimeOfValue:&timeB forCurrentTime:now];

NSLog(@"5 + x/y = %f, 3*x/y = %f", resultA, resultB);

// prepare next graph evaluation
[xNode value:3.0f];
[xNode timeOfValue:now];
[yNode value:8.0f];
[yNode timeOfValue:now];
now = 2.0f;

In the code above, all nodes have only a single output port. Normally, output port
objects of a node are acquired with a call of the node’s outputPort: method, but conga
is implemented so that node objects with only one output port serve as their own output
port object, so the corresponding port objects and lines like [someNode outputPort:0];
to acquire them have been left out of the sample code.

54

5.2 Simple Tracker for 4-Beat Neutral-Legato Pattern

5.2 Simple Tracker for 4-Beat Neutral-Legato Pattern

It is possible to track the 4-beat neutral-legato pattern by using five characteristic fea-
tures of its trajectory, as shown in Figure 4.1: The partial trajectory leading to the first
beat, the baton changing direction in y after going up from the first beat, the baton
changing direction in x after the second and third beat plus the spike after the fourth
beat1. Detecting these features is easier than trying to detect all of the beats directly.
Figure 5.1 illustrates the conga graph that analyzes if those features are present in an
input sequence of position values of the tip of the baton. The states present in Figure 5.1
get connected to form a state network, and this network is inserted into an FSM object
to track the beat pattern, as depicted in Figure 5.2.
All components needed by this simple tracker can be created and configured as follows:

startTime = 0.0f;

// input nodes
xNode = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
yNode = [[CONGAPassiveValueNode alloc] initWithTime:startTime];

// nodes for smoothing input and calculating velocities
smoothXNode = [[CONGAHanningSmoothingNode alloc] initWithTime:startTime];
[smoothXNode setBufferSize:31];
[smoothXNode inputPorts:[NSArray arrayWithObject:xNode]];
smoothYNode = [[CONGAHanningSmoothingNode alloc] initWithTime:startTime];
[smoothYNode setBufferSize:31];
[smoothYNode inputPorts:[NSArray arrayWithObject:yNode]];

smoothDeltaXNode = [[CONGADeltaNode alloc] initWithTime:startTime];
[smoothDeltaXNode inputPorts:[NSArray arrayWithObject:smoothXNode]];
smoothDeltaYNode = [[CONGADeltaNode alloc] initWithTime:startTime];
[smoothDeltaYNode inputPorts:[NSArray arrayWithObject:smoothYNode]];

// partial graph up to feature detector for first beat
hysteresisNode = [[CONGAHysteresisNode alloc] initWithTime:startTime];
[hysteresisNode inputPorts:[NSArray arrayWithObjects:xNode, yNode, nil]];
[hysteresisNode distanceThreshold:(2.0f/127.0f)];
xPort = [hysteresisNode outputPort:0];
yPort = [hysteresisNode outputPort:1];

filteredXNode = [[CONGAOnePoleFilterNode alloc] initWithTime:startTime];
[filteredXNode inputPorts:[NSArray arrayWithObject:xPort]];
[filteredXNode currentInputValueWeight:0.1f];
[filteredXNode previousOutputValueWeight:0.89f];

1This tracker can also track the 4-beat expressive-legato pattern from Figure 4.1 because it does not
search for spikes in the trajectory after the second and third beat. But the two beat patterns do not
position those features at the very same points in their cycles, so timing will be slightly off if the
tracker is configured for one of both patterns and then used to track the other one.

55

5 Using the Framework

CONGA-
SimpleState

0.0

CONGADetect-
Beat1Candidates2D-

Node

CONGA-
PassiveValue-

Node

CONGA-
DeltaNode

CONGA-
DeltaNode

CONGA-
Hysteresis-

Node

CONGAOne-
PoleFilterNode

CONGAOne-
PoleFilterNode

x

y
CONGA-

PassiveValue-
Node

CONGA-
PassiveValue-

Node

CONGA-
SimpleState

0.12

CONGA-
AndNode

CONGA-
PassiveValue-

Node

CONGA-
DetectZero-

CrossingNode

CONGA-
EqualNode

1.0

CONGA-
PassiveValue-

Node

CONGA-
DeltaNode

CONGA-
Hanning-

Smoothing-
Node

CONGA-
SimpleState

0.84

CONGA-
DetectPrimitive-
Bounce2DNode

CONGA-
PassiveValue-

Node

CONGA-
SimpleState

0.31

CONGA-
AndNode

CONGA-
PassiveValue-

Node

CONGA-
DetectZero-

CrossingNode

CONGA-
EqualNode

-1.0

CONGA-
PassiveValue-

Node

CONGA-
DeltaNode

CONGA-
SimpleState

0.63

CONGA-
AndNode

CONGA-
PassiveValue-

Node

CONGA-
DetectZero-

CrossingNode

CONGA-
EqualNode

1.0

CONGA-
PassiveValue-

Node

CONGA-
Hanning-

Smoothing-
Node

state1

state2

state3

state4

state5

Figure 5.1: conga graph for detecting characteristic features in the 4-beat neutral-legato
pattern’s trajectory. The states needed to track the pattern are included,
but not the FSM because it is not linked to this graph as conga node.

56

5.2 Simple Tracker for 4-Beat Neutral-Legato Pattern

0
CONGAPassive-

ValueNode

0.0

0.84

0.63

0.31

0.12

0
CONGAPassive-

ValueNode

0
CONGAPassive-

ValueNode
CONGASimpleFiniteStateMachine

Figure 5.2: conga FSM with state network for tracking the 4-beat neutral-legato pattern.

filteredYNode = [[CONGAOnePoleFilterNode alloc] initWithTime:startTime];
[filteredYNode inputPorts:[NSArray arrayWithObject:yPort]];
[filteredYNode currentInputValueWeight:0.1f];
[filteredYNode previousOutputValueWeight:0.89f];

filteredDeltaXNode = [[CONGADeltaNode alloc] initWithTime:startTime];
[filteredDeltaXNode inputPorts:[NSArray arrayWithObject:filteredXNode]];
filteredDeltaYNode = [[CONGADeltaNode alloc] initWithTime:startTime];
[filteredDeltaYNode inputPorts:[NSArray arrayWithObject:filteredYNode]];

detectBeat1Node = [[CONGADetectBeat1Candidates2DNode alloc]
initWithTime:startTime];

[detectBeat1Node inputPorts:
[NSArray arrayWithObjects:filteredDeltaXNode, filteredDeltaYNode, nil]];
[detectBeat1Node waitForUpwardMotionToAcknowledgeBeat1Candidate:YES];
detectBeat1Port = [detectBeat1Node outputPort:0];

// partial graph up to feature detector for turnaround in y after first beat
detectZeroCrossingDYNode = [[CONGADetectZeroCrossingNode alloc]

initWithTime:startTime];
[detectZeroCrossingDYNode threshold:0.0015f];
[detectZeroCrossingDYNode grazingZeroCancelsExceedingThreshold:YES];
[detectZeroCrossingDYNode limitStayAtZero:YES];
[detectZeroCrossingDYNode maxCountInputStaysAtZero:5];
[detectZeroCrossingDYNode inputPorts:[NSArray arrayWithObject:smoothDeltaYNode]];
detectZeroCrossingDYPort = [detectZeroCrossingDYNode outputPort:0];
signZeroCrossingDYPort = [detectZeroCrossingDYNode outputPort:1];

signValueNodeState2 = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[signValueNodeState2 value:1.0f];
[signValueNodeState2 useCurrentTimeAsTimeOfValue:YES];

57

5 Using the Framework

checkSignNodeState2 = [[CONGAEqualNode alloc] initWithTime:startTime];
[checkSignNodeState2 inputPorts:
[NSArray arrayWithObjects:signZeroCrossingDYPort, signValueNodeState2, nil]];

detectorNodeState2 = [[CONGAAndNode alloc] initWithTime:startTime];
[detectorNodeState2 inputPorts:
[NSArray arrayWithObjects:detectZeroCrossingDYPort, checkSignNodeState2, nil]];

detectorPortState2 = [detectorNodeState2 outputPort:0];

// partial graph up to feature detector for turnaround in x after second beat
detectZeroCrossingDXNode1 = [[CONGADetectZeroCrossingNode alloc]

initWithTime:startTime];
[detectZeroCrossingDXNode1 threshold:0.0015f];
[detectZeroCrossingDXNode1 grazingZeroCancelsExceedingThreshold:NO];
[detectZeroCrossingDXNode1 limitStayAtZero:YES];
[detectZeroCrossingDXNode1 maxCountInputStaysAtZero:10];
[detectZeroCrossingDXNode1 inputPorts:[NSArray arrayWithObject:smoothDeltaXNode]];
detectZeroCrossingDXPort1 = [detectZeroCrossingDXNode1 outputPort:0];
signZeroCrossingDXPort1 = [detectZeroCrossingDXNode1 outputPort:1];

signValueNodeState3 = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[signValueNodeState3 value:-1.0f];
[signValueNodeState3 useCurrentTimeAsTimeOfValue:YES];

checkSignNodeState3 = [[CONGAEqualNode alloc] initWithTime:startTime];
[checkSignNodeState3 inputPorts:
[NSArray arrayWithObjects:signZeroCrossingDXPort1, signValueNodeState3, nil]];

detectorNodeState3 = [[CONGAAndNode alloc] initWithTime:startTime];
[detectorNodeState3 inputPorts:
[NSArray arrayWithObjects:detectZeroCrossingDXPort1, checkSignNodeState3, nil]];

detectorPortState3 = [detectorNodeState3 outputPort:0];

// partial graph up to feature detector for turnaround in x after third beat
detectZeroCrossingDXNode2 = [[CONGADetectZeroCrossingNode alloc]

initWithTime:startTime];
[detectZeroCrossingDXNode2 threshold:0.002f];
[detectZeroCrossingDXNode2 grazingZeroCancelsExceedingThreshold:NO];
[detectZeroCrossingDXNode2 limitStayAtZero:YES];
[detectZeroCrossingDXNode2 maxCountInputStaysAtZero:25];
[detectZeroCrossingDXNode2 inputPorts:[NSArray arrayWithObject:smoothDeltaXNode]];
detectZeroCrossingDXPort2 = [detectZeroCrossingDXNode2 outputPort:0];
signZeroCrossingDXPort2 = [detectZeroCrossingDXNode2 outputPort:1];

signValueNodeState4 = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[signValueNodeState4 value:1.0f];
[signValueNodeState4 useCurrentTimeAsTimeOfValue:YES];

58

5.2 Simple Tracker for 4-Beat Neutral-Legato Pattern

checkSignNodeState4 = [[CONGAEqualNode alloc] initWithTime:startTime];
[checkSignNodeState4 inputPorts:
[NSArray arrayWithObjects:signZeroCrossingDXPort2, signValueNodeState4, nil]];

detectorNodeState4 = [[CONGAAndNode alloc] initWithTime:startTime];
[detectorNodeState4 inputPorts:
[NSArray arrayWithObjects:detectZeroCrossingDXPort2, checkSignNodeState4, nil]];

detectorPortState4 = [detectorNodeState4 outputPort:0];

// feature detector for spike after fourth beat
detectBounceNode = [[CONGADetectPrimitiveBounce2DNode alloc]

initWithTime:startTime];
[detectBounceNode minRatioAccumulationFirstInputToAccumulationSecondInput:4.0f];
[detectBounceNode accumulationBufferSize:23];
[detectBounceNode threshold:0.001f];
[detectBounceNode grazingZeroCancelsExceedingThreshold:YES];
[detectBounceNode limitStayAtZero:NO];
[detectBounceNode inputPorts:
[NSArray arrayWithObjects:smoothDeltaYNode, smoothDeltaXNode, nil]];

// the five states and their position nodes
cyclePositionNodeState1 = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[cyclePositionNodeState1 value:0.0f];
[cyclePositionNodeState1 useCurrentTimeAsTimeOfValue:YES];
state1 = [[CONGASimpleState alloc] initWithTime:startTime];
[state1 inputPorts:
[NSArray arrayWithObjects:detectBeat1Port, cyclePositionNodeState1, nil]];

cyclePositionNodeState2 = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[cyclePositionNodeState2 value:0.12f];
[cyclePositionNodeState2 useCurrentTimeAsTimeOfValue:YES];
state2 = [[CONGASimpleState alloc] initWithTime:startTime];
[state2 inputPorts:
[NSArray arrayWithObjects:detectorPortState2, cyclePositionNodeState2, nil]];

cyclePositionNodeState3 = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[cyclePositionNodeState3 value:0.31f];
[cyclePositionNodeState3 useCurrentTimeAsTimeOfValue:YES];
state3 = [[CONGASimpleState alloc] initWithTime:startTime];
[state3 inputPorts:
[NSArray arrayWithObjects:detectorPortState3, cyclePositionNodeState3, nil]];

cyclePositionNodeState4 = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[cyclePositionNodeState4 value:0.63f];
[cyclePositionNodeState4 useCurrentTimeAsTimeOfValue:YES];
state4 = [[CONGASimpleState alloc] initWithTime:startTime];
[state4 inputPorts:
[NSArray arrayWithObjects:detectorPortState4, cyclePositionNodeState4, nil]];

59

5 Using the Framework

cyclePositionNodeState5 = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[cyclePositionNodeState5 value:0.84f];
[cyclePositionNodeState5 useCurrentTimeAsTimeOfValue:YES];
state5 = [[CONGASimpleState alloc] initWithTime:startTime];
[state5 inputPorts:
[NSArray arrayWithObjects:detectBounceNode, cyclePositionNodeState5, nil]];

// state network
[state1 subsequentStates:[NSArray arrayWithObjects: state2, nil]];
[state2 subsequentStates:[NSArray arrayWithObjects: state3, nil]];
[state3 subsequentStates:[NSArray arrayWithObjects: state4, state1, nil]];
[state4 subsequentStates:[NSArray arrayWithObjects: state5, state1, nil]];
[state5 subsequentStates:[NSArray arrayWithObjects: state1, nil]];

// dummy FSM input nodes - this example has no conga graphs that decide
// whether or not the FSM should be stopped, paused or restarted
stopFSMNode = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[stopFSMNode value:0.0f];
[stopFSMNode useCurrentTimeAsTimeOfValue:YES];

pauseFSMNode = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[pauseFSMNode value:0.0f];
[pauseFSMNode useCurrentTimeAsTimeOfValue:YES];

restartFSMNode = [[CONGAPassiveValueNode alloc] initWithTime:startTime];
[restartFSMNode value:0.0f];
[restartFSMNode useCurrentTimeAsTimeOfValue:YES];

// FSM for tracking the beat pattern
neutralLegato4BeatPatternFSM = [[CONGASimpleFiniteStateMachine alloc]

initWithTime:startTime];
[neutralLegato4BeatPatternFSM inputPorts:
[NSArray arrayWithObjects:stopFSMNode, pauseFSMNode, restartFSMNode, nil]];

[neutralLegato4BeatPatternFSM allStates:
[NSArray arrayWithObjects:state1, state2, state3, state4, state5, nil]];

[neutralLegato4BeatPatternFSM pickupAfterStopStates:
[NSArray arrayWithObject:state4]];

[neutralLegato4BeatPatternFSM startState:state4];
[neutralLegato4BeatPatternFSM minimumTimeBetweenAdvances:0.1];
fsmDidAdvanceForCurrentTimePort = [neutralLegato4BeatPatternFSM outputPort:0];
fsmLastAdvanceStartedNewCyclePort = [neutralLegato4BeatPatternFSM outputPort:1];
fsmActivationValueLastAdvancePort = [neutralLegato4BeatPatternFSM outputPort:2];
fsmPositionInCyclePort = [neutralLegato4BeatPatternFSM outputPort:3];
fsmPositionDeltaLastAdvancePort = [neutralLegato4BeatPatternFSM outputPort:4];
fsmTimeDeltaLastAdvancePort = [neutralLegato4BeatPatternFSM outputPort:5];
fsmCycleCountPort = [neutralLegato4BeatPatternFSM outputPort:6];

60

5.2 Simple Tracker for 4-Beat Neutral-Legato Pattern

Everything needed for processing conducting gesture input has to be configured in the
code above, making it rather extensive. In contrast to the code creating and setting up
all conga components used in the tracker, the code to actually track the beat pattern by
repeatedly evaluating those components is comparatively simple:

now = currentSystemTime - systemTimeAtInitialization;

// feed input data into graph
[xNode value:currentBuchlaXInput];
[xNode timeOfValue:(now - buchlaLatency)];
[yNode value:currentBuchlaYInput];
[yNode timeOfValue:(now - buchlaLatency)];

// get tracking output from FSM
[fsmDidAdvanceForCurrentTimePort getValue:&didAdvance

andTimeOfValue:&didAdvanceTime
forCurrentTime:now];

[fsmLastAdvanceStartedNewCyclePort getValue:&newCycle
andTimeOfValue:&newCycleTime
forCurrentTime:now];

[fsmActivationValueLastAdvancePort getValue:&activationValue
andTimeOfValue:&activationValueTime
forCurrentTime:now];

[fsmPositionInCyclePort getValue:&positionInCycle
andTimeOfValue:&positionInCycleTime
forCurrentTime:now];

[fsmPositionDeltaLastAdvancePort getValue:&positionDelta
andTimeOfValue:&positionDeltaTime
forCurrentTime:now];

[fsmTimeDeltaLastAdvancePort getValue:&timeDelta
andTimeOfValue:&timeDeltaTime
forCurrentTime:now];

[fsmCycleCountPort getValue:&cycleCount
andTimeOfValue:&cycleCountTime
forCurrentTime:now];

The FSM’s tracking output allows to derive the conducting tempo during the last
advance from positionDelta and timeDelta. To calculate the conducted volume,
the second output port of detectBeat1Node could be used: each time an advance of
neutralLegato4BeatPatternFSM starts a new cycle, the value of this output port gives
the height of the last cycle’s conducting gesture, indicating the volume. Also, when
a new cycle starts, the output port values of filteredXNode and filteredYNode ap-
proximate the position of the first beat in the beating plane, which might be useful to
determine what instrument group the conductor focuses on.

To keep the tracker simple, there are no facilities to stop, pause or restart the FSM.
Consequently, there are also no states outside the normal cycle of the beat pattern.

61

5 Using the Framework

All code in this example is taken from a program working on Buchla Lightning II baton
input data, with position values of the baton rescaled to values between zero and one.
One thread of this program takes in and stores baton data, while another thread is run
repeatedly every 9 ms, supplying the conga components with the current baton data
and evaluating them in order to track the beat pattern2. All time values that are used
in the code are measured in seconds.

It would be possible to change the resampling rate or to switch to another input
device with different noise characteristics, without having to change the structure of this
tracker. This allows to encapsulate the whole tracker into a single conga node for later
reuse. But the configuration parameters of the following nodes would probably have to
be changed in order to achieve acceptable tracking results for each input device:

• smoothXNode

• smoothYNode

• hysteresisNode

• filteredXNode

• filteredYNode

• detectZeroCrossingDYNode

• detectZeroCrossingDXNode1

• detectZeroCrossingDXNode2

• detectBounceNode

Thus the interface of the conga node representing the whole tracker would have to include
methods for configuring all of these nodes.

2Resampling at 9 ms and using a one-pole filter as configured in the code are ideas taken from Guy Gar-
nett’s Adaptive Conductor Follower (presented in Subsection 2.2.7). The ideas work for this example,
because the Adaptive Conductor Follower also used a Buchla baton system as input hardware.

62

6 Conclusions and Future Work

In summary, conga was intended to be an input hardware independent framework that
helps to create and reuse components that can process, analyze, recognize and track
conducting gestures of the conductor’s baton or right hand.

conga uses simple numbers as input data and can pass on associated latency of an
input device. The framework mainly consists of processing nodes that can be connected
to form directed acyclic graphs, which serve to process and analyze conducting input.
It includes a special finite state machine and corresponding states to model and track
beat patterns. Combined with conga graphs that detect characteristic features of the
trajectory of a conducting gesture, they allow recognition and tracking of conducting
gestures. Components built with conga can be reused by encapsulating them in a conga
graph node or in an Objective-C class, and they can be adapted to changing require-
ments by reconfiguring the nodes of their conga graphs or, if that is not sufficient, by
restructuring these graphs. conga components can be mixed with C++ and Objective-C
source code to form a single Mac OS X application.

6.1 Conclusions

The conga framework meets a lot of the goals for its development, but not all of them.

On the positive side, conga as framework is independent of the input hardware that
is used, and it does enable and aid the construction of components to process, analyze,
recognize and track conducting gestures of the conductor’s baton or right hand, as long as
input and gestures conform to conga’s model of conducting gestures as two-dimensional
trajectories of a point. The framework might even be useful for at least processing input
that does not conform to its conducting gesture model, if the processing can be modeled
as directed acyclic graph of processing units and said input consists of simple numbers.

conga also supports reuse of components implemented with it: they can be encapsu-
lated as Objective-C classes for direct reuse in other projects, or they can be encapsulated
as conga nodes to make them reusable inside a conga graph. If these container com-
ponents provide access to the configuration methods of the encapsulated components,
they can be adapted to changed requirements, if these requirements can be met without
changing the internal structure of the container components.

One important strength of conga is that it does not force a programer to use it for
everything. If some processing cannot be expressed easily as a directed acyclic graph and
consequently is hard to model with conga, it can be implemented without using conga
and then be combined with conga graphs that perform the processing conga is suited

63

6 Conclusions and Future Work

for. Creating glue code to combine conga and non-conga components is comparatively
simple: Either a wrapper node has to be built in order to be able to embed the non-
conga component in a conga graph, or the glue code has to split the conga graphs where
necessary, passing data directly between conga graphs and non-conga components and
evaluating all of them in the correct order.

Processing in conga is definitely fast enough to handle real-time conducting input.
One of the testing programs created by the author during development of conga reads
recorded Buchla Lightning II baton input data from a file, resamples the recorded data
at time intervals of 9 ms and feeds the resampled data into the simple beat pattern
tracker presented in Section 5.2. When executed on an Apple iBook notebook with
320 MB of RAM and a G3 processor running at 500 MHz, all processing done by the
tracker in this simulated tracking of conducting input needs less than two percent of
the time span covered by the recorded data. Therefore, more recent hardware like a
PowerMacintosh with 512 MB of RAM and dual G5 processors running at 2 GHz, as
used during development of conga, should be able to run several more complex trackers
in parallel plus a demanding algorithm for sound synthesis, like a phase vocoder.

On the negative side, although conga itself is independent of the input hardware that
is used, modules to recognize and track conducting gestures that are implemented with
conga components are not. If such a module has been configured for one input hardware
and is then switched to another one, it will probably have to be reconfigured if the new
input hardware differs significantly from the old one in important characteristics like
noise. In some cases it might be possible to preprocess the input of the new hardware
to mimic the characteristics of the old one, for example by trading reduced noise for
increased latency, adjusting the origination times of the values passed on to the original
module to reflect the added latency.

Building beat pattern trackers from scratch takes a lot of time. One not only has to
figure out which conga components to use and how to connect them, but also how to
configure all those components, with each conga node influencing its subsequent nodes in
a conga graph. Even a simple tracker like the one from Section 5.2 is complex enough to
make fine-tuning it a lengthy process of trial and error. So conga aids the construction
of components to track conducting gestures, but conga does not make it easy.

conga includes optimizations that improve processing speed. Because these optimiza-
tions add complexity to the source code of conga components and also influence how
code is executed, they impede debugging of the framework’s components and they im-
pede extending the framework.

Despite the amount of work that has gone into conga, it does not feel finished yet. Sec-
tion 4.6 mentions conga components that model conducting-specific concepts, but there
should be more such components for other conducting-specific concepts. For example, it
is possible to use conga to construct gesture trackers that distinguish between staccato
and legato gestures, but there was not enough time to develop and include components
in conga that correspond to staccato or legato features of the trajectory of a conducting
gesture.

64

6.2 Future Work

6.2 Future Work

In the application domain of conducting, conga can be improved in several ways. The
node to detect candidates for the first beat in a beat pattern can be split up into several
nodes that are more specific to the beat patterns: the trajectory leading to the first beat
in patterns with multiple beats differs from the trajectory used in 1-beat patterns and
there is a difference between the staccato and legato version of this trajectory. conga
might also benefit from being extended with components incorporating neural networks
and hidden markov models. Using neural networks or HMMs to recognize complete beat
patterns will often result in the need to train them to individual conductors. But if they
are applied to distinct features of a beat pattern’s trajectory, it could turn out that there
exist features that do not need to be retrained. Again, the partial trajectory leading to
the first beat is a possible candidate for such an improvement.

The current version of conga focuses on conducting gestures performed with the right
hand, which are well suited for time-beating and can indicate musical expression as well.
An opportunity for future research would be to expand conga in the direction of less
formal input, like expressive gestures of the left hand or even patterns of physiolog-
ical signals, as covered in the research of Paul Kolesnik ([Kol04]) and Teresa Marrin
([Nak00]), respectively. Less formal input might give the conductor more expressive
control, but the important signals probably vary from person to person. Tracking them
will thus probably require components that can be trained to an individual conductor,
like the already mentioned neural networks and HMMs.

Another promising area to extend conga is the handling of latency. A system using the
Buchla Lightning II as input hardware can have an overall latency in the range of 100 ms
[LWB05]. For conducting, this is quite high, and conga does nothing to reduce latency, it
simply passes on the accumulated latency. Components that predict features instead of
detecting them could be added to conga to alleviate this problem. If these components
present the predicted time when their associated features will occur instead of passing on
the origination time of their current input sample, they can be used in gesture trackers
without the existing FSM and state classes having to be modified. Furthermore, if such a
component calculates the prediction value as a probability value, this value will grow as
the time approaches that the corresponding feature actually occurs, making it possible
to use a threshold to balance out latency and reliability. The paper A New Control
Paradigm: Software-Based Gesture Analysis for Music by Ben Nevile, Peter Driessen
and W. A. Schloss applies similar ideas to the Radio Drum [NDS03].

A more fundamental area of future work on conducting gestures concerns the question
of where exactly conductors place the beats. The placement of some beats in the beat
patterns according to Max Rudolf does not correspond to a position where the trajec-
tory of the tip of the baton has reached its lowest point, yet several of the conducting
systems presented in Section 2.2 assume that all beats sit at locally lowest points of the
conducting gesture’s trajectory. To find out where trained conductors place the beats,
a study could survey conductors either conducting to a metronome or conducting while
saying out loud which beat they are currently conducting. It would be beneficial, if
different schools of conducting were represented in this study with several conductors

65

6 Conclusions and Future Work

each, to see if the different schools agree on the placement of beats, or if at least all
conductors of each school place beats the same way. In addition, the participants should
conduct a variety of commonly used beat patterns, each in several tempi, and it should
be analyzed how this influences beat placement. For optimal results, the study should
record the conductors with input devices that have high temporal and spatial resolution
and precision.

There are also promising extensions to conga that do not focus on conducting. For
example, LabVIEW, EyesWeb and Max/MSP provide graphical programming environ-
ments and allow to do all programming graphically. Because conga graphs and non-conga
components can be mixed freely in source code, it is not possible to create a graphical
programming environment for conga that simply reads in source code that uses conga
components, allows to change those graphically and then writes the results back to
source code without ever breaking the non-conga components. But it is possible and
would be worthwhile to create a graphical programming environment that handles only
conga components and includes the ability to transform the graphic representations of
conga graphs into source code. As the sample code in Section 5.2 shows, code to cre-
ate and configure a conga graph is rather schematic anyway, so building a source code
generator for conga graphs should not be too hard. Such a graphical programming envi-
ronment could speed up the development of conga graphs, at least up to the point where
non-conga components have to be added.

Computers still keep getting faster and their performance will increase for at least a
few years, a trend that might render the speed optimizations in conga obsolete. The ever
growing processing power could also make it feasible to implement conga in a platform-
independent language like Java. But that would only be of interest, if demanding forms
of output for computer-based conducting systems could be implemented in the same
language, in a platform-independent way, and still be executed without glitches. Other-
wise one would be forced to split the handling of input and output of such a system into
separate applications, something conga was intended to help avoid in the first place.

Some computer-based conducting systems track the conductor’s baton in three dimen-
sions, but conga is built to aid tracking of the baton in two dimensions, because most
of the information contained in a baton gesture can be represented in two dimensions
of space and one dimension of time. It would be easy to extend conga to support three-
dimensional tracking, so it could be applied in domains where fully three-dimensional
gesture input is useful. Mobile computing might become one of those domains as cell
phone makers already plan to equip their phones with sensors to acquire gesture input
from three-dimensional movements of the phone1.

Another application domain outside conducting where conga could be useful might be
pen computing. conga employs a special variant of a finite state machine because while
a certain beat pattern is being conducted, the same gesture occurs again and again
without interruption. By turning the FSM into a finite automaton, conga could be

1Samsung Electronics introduced their mobile phone SCH-S310 in January 2005, featuring sen-
sors and algorithms to recognize three-dimensional movements. The press release can be
found at http://www.samsung.com/AboutSAMSUNG/ELECTRONICSGLOBAL/InvestorRelations
/NewsPublicDisclosure/PressRelease/PressRelease.asp?seq=20050112 0000096403

66

6.2 Future Work

used to implement modules that recognize gesture input with the gestures occurring as
separate entities. In pen computing this could be used to interpret each sequence of pen
positions between the pen being put down and being lifted up again as a gesture. Several
automata standing for different input gestures could be evaluated in parallel and the
one accepting the complete input sequence would determine which gesture is recognized.
Afterwards, conga graphs associated with the recognized gesture could process the same
input sequence, to derive parameters from it that provide further information to an
action triggered by the recognition of this gesture.

67

6 Conclusions and Future Work

68

A Interpolating Beat Times

conga allows to track a beat pattern using points in the trajectory of the beat pattern
that do not correspond to beats, and the output of a conga FSM does not say where
in the cycle of a beat pattern the beats are placed. It does, however, tell where the
active state of the FSM is placed in this cycle and CONGASimpleFiniteStateMachine
also outputs how many cycles have already been completed. With this information, it
is easy to calculate which beat of the beat pattern was the last conducted beat and how
many beats have been conducted in total. But some forms of output of a computer-based
conducting system not only need to know how many beats have already been conducted.
They need to know the exact time the current position of the gesture tracker corresponds
to in the piece being conducted. For example if a score format is used that just stores
notes and the times they are played or if an audio and video recording of a real orchestra is
played back, each advance of the beat pattern tracker should yield the corresponding time
in the score or in the movie. conga provides a node that works on an array containing
the absolute times of all beats in the musical piece and that can interpolate between
these times based on the output of CONGASimpleFiniteStateMachine.

A.1 CONGABeatTimeInterpolatorNode

Input ports taken:
CONGABeatTimeInterpolatorNode objects take two input ports. The first input
port value is interpreted as the number of complete beat pattern cycles already
conducted and the second input port value is interpreted as a position inside the
current beat pattern cycle.

Output ports provided:
CONGABeatTimeInterpolatorNode objects provide one output port that supplies
the interpolated absolute time value.

Processing carried out:
Before they can be used, CONGABeatTimeInterpolatorNode objects have to be
provided with an array containing the absolute time values of all beats in ascending
order. Per default, they assume that there are four beats in each cycle, but this
can and must be changed, if a beat pattern uses a different number of beats. When
a CONGABeatTimeInterpolatorNode object is evaluated, it queries its first input
port for the number of full cycles that have already been conducted and its second

69

A Interpolating Beat Times

input port for the position inside the current cycle, cropping the value if it is less
than zero or greater than one. These values allow to calculate the index of the
last conducted beat in the array of all beats, as well as the point between this
beat and the next, assuming all beats to be evenly spaced in time. As the beats
do not have to be evenly spaced in time according to their absolute time values,
CONGABeatTimeInterpolatorNode then uses linear interpolation to transform the
ideal point between those two beats into an absolute time value between their
absolute time values. Then it sets its output port value to this interpolated absolute
time value and passes the oldest origination time value of its two input ports on
to its output port. If the input values reference a point outside the beat array, the
output port value is set to the time of either the first or the last beat, whichever is
closest.

Possible use:
CONGABeatTimeInterpolatorNode objects can be used the way described at the
beginning of this appendix. They can also be abused as simple linear interpolators
by setting the number of beats in a cycle to one and filling the array of beat times
with whatever values one wishes to interpolate. This enables to interpolate two
successive array entries by providing the index of the first entry to the first input
port of CONGABeatTimeInterpolatorNode and the point of interpolation to the
second input port.

70

Bibliography

[BC92] Graziano Bertini and Paolo Carosi: Light baton: A System For Conduct-
ing Computer Music Performance. In Proceedings ICMC92, pages 73–76.
ICMA, 1992.

[BG95] Bennett Brecht and Guy E. Garnett: Conductor Follower. In ICMC Pro-
ceedings 1995, pages 185–186. ICMA, 1995.

[BM97] Richard Boulanger and Max Mathews: The 1997 Radio Baton and impro-
visation modes. In Proceedings ICMC97, pages 395–398. ICMA, 1997.

[BMS89] Bob Boie, Max Mathews and Andy Schloss: The Radio Drum as a synthe-
sizer controller. In Proceedings ICMC89, pages 42–45. ICMA, 1989.

[Bor97] Jan O. Borchers: WorldBeat: Designing a Baton-Based Interface for an
Interactive Music Exhibit. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 131–138. ACM, 1997.

[Bor01] Jan Borchers: A Pattern Approach to Interaction Design. Wiley Series in
Software Design Patterns. John Wiley & Sons Ltd, May 2001.

[BRF+80] W. Buxton, W. Reeves, G. Fedorkow, K. C. Smith and R. Baecker: A
Microcomputer-based Conducting System. Computer Music Journal, 1/1980,
pages 8–21.

[CCM+04] Antonio Camurri, Paolo Coletta, Alberto Massari, Barbara Mazzarino, Mas-
similiano Peri, Matteo Ricchetti, Andrea Ricci and Gualtiero Volpe: Toward
real-time multimodal processing: EyesWeb 4.0. In Proc. AISB 2004 Con-
vention: Motion, Emotion and Cognition, March 2004.

[CMV03] Antonio Camurri, Barbara Mazzarino and Gualtiero Volpe: Analysis of ex-
pressive gestures in human movement: the EyesWeb expressive gesture pro-
cessing library. In Proc. XIV Colloquium on Musical Informatics, May 2003.

[Coo02] Perry R. Cook: Human Computer Interface Technology -
Digital Signal Processing for HCI.
http://soundlab.cs.princeton.edu/learning/tutorials/DSP/DSP.html, Octo-
ber 2002.

71

Bibliography

[GJE+01] Guy E. Garnett, Mangesh Jonnalagadda, Ivan Elezovic, Timothy Johnson
and Kevin Small: Technological Advances for Conducting a Virtual Ensem-
ble. In ICMC Proceedings 2001, pages 167–169. ICMA, 2001.

[GMRS99] Guy E. Garnett, Fernando Malvar-Ruiz and Fred Stoltzfus: Virtual Con-
ducting Practice Environment. In ICMC Proceedings 1999, pages 371–374.
ICMA, 1999.

[Ilm] Tommi Ilmonen: DIVA - Digital Interactive Virtual Acoustics.
http://www.tml.hut.fi/Research/DIVA/.

[Ilm98] Tommi Ilmonen: Tracking conductor of an orchestra using artificial neu-
ral networks. In STeP’98, Human and Artificial Information Processing.
Finnish Conference on Artificial Intelligence, 1998.

[Ilm99] Tommi Ilmonen: Tracking conductor of an orchestra using artificial neural
networks. Master’s thesis, Helsinki University of Technology, April 1999.

[Ins] Native Instruments: LabVIEW FAQs. http://ni.com/labview/faq.htm.

[IT99] Tommi Ilmonen and Tapio Takala: Conductor Following With Artificial
Neural Networks. In ICMC Proceedings 1999, pages 367–370. ICMA, 1999.

[Kar05] Thorsten Karrer: PhaVoRiT - A Phase Vocoder for Real-Time Interac-
tive Time-Stretching. Master’s thesis, Rheinisch-Westfälische Technische
Hochschule Aachen, August 2005.

[KG89] David Keane and Peter Gross: The MIDI Baton. In Proceedings ICMC89,
pages 151–154. ICMA, 1989.

[Kol04] Paul Kolesnik: Conducting Gesture Recognition, Analysis and Performance
System. Master’s thesis, McGill University, Montreal, June 2004.

[KW91] David Keane and Kevin Wood: The MIDI Baton III. In Proceedings
ICMC91, pages 541–544. ICMA, 1991.

[LGW92] Michael Lee, Guy Garnett and David Wessel: An Adaptive Conductor Fol-
lower. In Proceedings ICMC92, pages 454–455. ICMA, 1992.

[LNB04] Eric Lee, Teresa Marrin Nakra and Jan Borchers: You’re The Conductor:
A Realistic Interactive Conducting System for Children. In NIME 2004
International Conference on New Interfaces for Musical Expression, pages
68–73, 2004.

[LWB05] Eric Lee, Marius Wolf and Jan Borchers: Improving Orchestral Conduct-
ing Systems in Public Spaces: Examining the Temporal Characteristics and
Conceptual Models of Conducting Gestures. In Proceedings of the CHI 2005
Conference on Human Factors in Computing Systems, pages 731–740. ACM,
April 2005.

72

Bibliography

[MAJ03] Declan Murphy, Tue Haste Andersen and Kristoffer Jensen: Conducting
Audio Files via Computer Vision. In Proceedings of the 2003 International
Gesture Workshop, 2003.

[Mar96] Teresa Anne Marrin: Toward an Understanding of Musical Gesture: Map-
ping Expressive Intention with the Digital Baton. Master’s thesis, Mas-
sachusetts Institute of Technology, June 1996.

[Mat00a] Max Mathews: CONDUCTOR PROGRAM.
http://www.csounds.com/mathews, December 2000.

[Mat00b] Max Mathews: RADIO-BATON INSTRUCTION MANUAL.
http://www.csounds.com/mathews, December 2000.

[MHO91] Hideyuki Morita, Shuji Hashimoto and Sadamu Ohteru: Computer Music
System that Follows a Human Conductor. IEEE Computer, 7/1991, pages
44–53.

[MM70] M. V. Mathews and F. R. Moore: GROOVE - A Program to Compose,
Store, and Edit Functions of Time. Communications of the ACM, 12/1970,
pages 715–721.

[MOH89] H. Morita, S. Ohteru and S. Hashimoto: Computer Music System which Fol-
lows a Human Conductor. In Proceedings ICMC89, pages 207–210. ICMA,
1989.

[MP97] Teresa Marrin and Joseph Paradiso: The Digital Baton: a Versatile Perfor-
mance Instrument. In Proceedings ICMC97, pages 313–316. ICMA, 1997.

[MP98] Teresa Marrin and Rosalind Picard: The Conductor’s Jacket: A Device
for Recording Expressive Musical Gestures. In Proceedings ICMC98, pages
215–219. ICMA, 1998.

[Mur03] Declan Murphy: Tracking a Conductor’s Baton. In Proceedings of the 12th
Danish Conference on Pattern Recognition and Image Analysis 2003, 2003.

[MWH+90] Hideyuki Morita, Hiroshi Watanabe, Tsutomu Harada, Shuji Hashimoto and
Sadamu Ohteru: Knowledge Information Processing in Conducting Com-
puter Music Performer. In ICMC Glasgow 1990 Proceedings, pages 332–334.
ICMA, 1990.

[Nak00] Teresa Marrin Nakra: Inside the Conductor’s Jacket: Analysis, Interpre-
tation and Musical Synthesis of Expressive Gesture. PhD thesis, Mas-
sachusetts Institute of Technology, February 2000.

[NDS03] Ben Nevile, Peter Driessen and W. A. Schloss: A New Control Paradigm:
Software-Based Gesture Analysis for Music. In IEEE Pacific Rim Confer-
ence on Communications, Computers and Signal Processing, Band 1, pages
360–363. IEEE, August 2003.

73

Bibliography

[Rud95] Max Rudolf: The Grammar of Conducting: A Comprehensive Guide to
Baton Technique and Interpretation. Schirmer Books, 3rd edition, June
1995.

[Sam02] Wolfgang Samminger: Personal Orchestra: Interaktive Steuerung syn-
chroner Audio- und Videoströme. Master’s thesis, Johannes Kepler Uni-
versität Linz, September 2002.

[SFMB01] Johan Sundberg, Anders Friber, Max V. Mathews and Gerald Bennett: Ex-
periences of combining the Radio Baton with the Director Musices perfor-
mance grammar. In MOSART - Workshop on Current Research Directions
in Computer Music, 2001.

[SMG00] Jakob Segen, Aditi Majumder and Joshua Gluckman: Virtual Dance and
Music Conducted by a Human Conductor. EUROGRAPHICS ’2000, 3/2000.

[Sol] Realtime Music Solutions: Realtime Music Solutions.
http://www.rms.biz/index.htm.

[Spo01] Bruno Spoerri: Dirigieren mit Trommelschlegeln - Max Mathews, Vater der
Computermusik. Neue Zürcher Zeitung, Ressort Medien und Informatik,
97/2001, page 85.

[TF96] Forrest Tobey and Ichiro Fujinaga: Extraction of Conducting Gestures in
3D Space. In ICMC Proceedings 1996, pages 305–307. ICMA, 1996.

[Tob95] Forrest Tobey: The Ensemble Member and the Conducted Computer. In
Proceedings ICMC95, pages 529–530. ICMA, 1995.

[UM98] Satoshi Usa and Yasunori Mochida: A Multi-Modal Conducting Simulator.
In Proceedings ICMC98, pages 25–32. ICMA, 1998.

[Vol03] Gualtiero Volpe: Computational models of expressive gesture in multimedia
systems. PhD thesis, University of Genova, April 2003.

All internet URLs given here or anywhere else in this thesis were up to date in April
2005. Due to the nature of the internet, there is no guarantee that these URLs stay
valid afterwards, and even if they do, the contents of the corresponding websites may
still change.

74

Application of Tools in the Creation of this Diploma Thesis

Several tools were used to create this diploma thesis. Typesetting was done with LATEX.
All illustrations produced for this thesis have been drawn with Adobe Illustrator. Im-
ages and illustrations taken from referenced works have been processed using Adobe
Photoshop. This processing was done to improve reproduction of said illustrations and
images, including steps like slight changes of coloring or contrast of certain elements or
whole pictures, noise reduction and marginal cropping.
No photomontage was done to change the contents of pictures. No elements have been re-
moved or added apart from combining images into a single PDF file for easier placement
in LATEX.

Name: Ingo Grüll Matrikel-Nr.: .

Erklärung

Ich erkläre, daß ich die Diplomarbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den .
(Unterschrift)

