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Abstract

As interactive tabletops are becoming increasingly relevant for the use in everyday
applications, there is a need for general-purpose controls to manipulate arbitrary
virtual data. When designing these controls, the time it takes to build early
prototypes is critical, since it affects the number of design iterations possible in
the available time, which eventually influences the quality of the final product (as
stated in Nielson [1993].)

Actuated tabletops offer a rich user experience by supporting a bilateral haptic
communication between the user and the system. These systems actuate tangible
controls to keep them consistent with their virtual representation. The implemen-
tation of the actuation technology inside the tabletop (e.g., the Actuated Workbench
by Gian Pangaro [2003]) is particular helpful for prototyping. This enables the
usage of passive tangibles, which are low-cost and easy to build since they do
not contain any electronics. While recent tabletop actuation systems facilitate
prototyping of new tangibles theoretically, toolkits to do so practically have
received only little attention.

In my thesis I present a toolkit to leverage the prototyping capabilities of Madgets
(see Actuated translucent controls for dynamic tangible applications on interactive table-
tops by Weiss et al. [2009]). A user study has been conducted that gives empirical
evidence of the prototyping capabilities of the Madgets technology using this tool-
kit. Although the software prototype is limited to a small set of Madgets it already
shows that it is possible to prototype a fully functional Madget in under two hours.
The results show that the visual programming paradigm of the toolkit offers a low
threshold for the integration of a new Madget from scratch. Furthermore, teething
problems of the Madgets tabletop hardware could be identified as causes of diffi-
culties in the prototyping process.
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Überblick

Der Einsatz von interaktiven Tischen wird immer relevanter für alltägliche An-
wendungen. Dadurch steigt auch die Notwendigkeit von Eingabegeräten für diese
Technologie, die Anwendungs übergreifend einsetzbar sind. Die Zeit, die zum
Entwerfen dieser Eingabegeräte gebraucht wird, bestimmt wieviele Iterationen
in der zur Verfügung stehenden Zeit möglich sind. Nach Jakob Nielson (Nielson
[1993]) ist dies ein kritischer Faktor, da die Anzahl der Iterationen in der frühen
Prototyping-Phase einen starken Einfluss auf die Qualität des Endprodukts habe.

Aktuierende interaktive Tische sind Systeme, die die physikalischen Eingabegeräte
aktuieren, d.h. steuern können. Dadurch ist eine bilaterale, haptische Kommunika-
tion zwischen dem Benutzer und dem System möglich, so dass die Eingabegeräte
mit ihren digitalen Repräsentationen synchronisiert werden können. Wird die
Aktuierung durch Technologie im interaktiven Tisch ermöglicht (z.B: the Actuated
Workbench von Gian Pangaro [2003]), kommen die Eingabegeräte selbst ohne
Elektronik aus. Dieser Ansatz ist für das Prototyping besonders nützlich, da
die Eingabegeräte einfacher und günstiger zu konstruieren sind. Es gibt bereits
einige Technologien interaktiver Tische, die Prototypen aktuierter Eingabegeräte
ermöglichen. Allerdings fanden Software Toolkits zur Unterstützung dieses
Prototyping Prozesses eher wenig Beachtung.

In meiner Diplomarbeit stelle ich ein Software Toolkit vor, dass das Prototyping
von physikalischen Eingabegeräten für aktuierende, interaktive Tische ermöglicht.
Die Software unterstützt das Madgets System (siehe Actuated translucent controls
for dynamic tangible applications on interactive tabletops von Weiss et al. [2009]). Um
die Fähigkeiten von Madgets als Prototyping Werkzeug zu testen, wurde eine em-
pirische Studie durchgeführt. Die Ergebnisse zeigen, dass bereits der Software
Prototyp, der auf wenige Madgets limitiert ist, das Prototyping eines voll funk-
tionsfähigen Madgets in unter zwei Stunden ermöglicht. Desweiteren kann gezeigt
werden, dass das Toolkit durch seine visuelle Programmierumgebung eine geringe
Einstiegshürde aufweist. Außerdem können Schwierigkeiten der Probanden beim
Prototyping auf technisch nicht ausgereifte Details der Hardware des Madget’s
Tisches zurückgeführt werden.
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Conventions

Throughout this thesis I use the following conventions.

UML class diagrams

The notation of UML class diagrams is slightly adapted
to fit to the Objective-c language, namely the notation of
methods: Only the important properties and methods ac-
cording to the context referring the diagram are listed; un-
less stated otherwise. Method signatures starting with the
plus sign (+) are class methods, whereas the minus sign (-)
denotes an instance method.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.
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Chapter 1

Introduction

Rapid prototyping is “a specific strategy for performing re-
quirements definitions wherein user needs are extracted,
presented, and successfully refined by building a working
model of the ultimate system quickly” (Boar [1984]). It is
an iterative and user-centered methodology, where the user
interface (UI) is designed, implemented, evaluated and re-
fined again. The test purpose is a quick identification of
functional requirements, the investigation of the needs of
the user and to find usability flaws. The time these iter-
ations take is critical, since it affects the number of itera-
tions possible in the available time, which eventually influ-
ences the quality of the final product. (As stated in Nielson
[1993].)

When prototyping tangible UIs, the physicality of the pro-
totype has a big impact on the user’s experience of the UI.
The physical part oftentimes requires profound knowledge
in electronics, the integration into a software system is hin-
dered by the required skills in programming. Some tool-
kits provide help with the electronics part by providing all
kinds of sensor parts that can be attached to the physical
prototype to extend its functionality, but still require a low-
level programming language to use those. Other toolkits
concentrate on the programming part only and e.g., pro-
vide mechanisms to program UIs by simply demonstrating
gestures one want to get recognized (Exemplar). But it is
important to decouple form and functionality, so that both
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aspects – the functionality and the physicality of the UI –
can be dealt with independently and iterated at the same
time. (see Avrahami and Hudson [2002]).

This work is about prototyping of tangible controls for
the tabletop domain. The systems in that domain can be
grouped into supporting one-directional and bi-directional
communication, whereas the latter features richer feedback
capabilities. Bidirectional communication is guaranteed ei-
ther via electronics inside the tangibles (Rosenfeld et al.
[2004]) or actuation technology incorporated into the table-
top (Gian Pangaro [2003]). Untethered tangibles are more
appropriate for rapid prototyping for the following reason:
They are faster and easier to construct since they do not
contain any electronics, which also enables more freedom
in their visual gestalt.

While there are several tabletop technologies that theoret-
ically allow prototyping of tangible UIs, software toolkits
to rapidly create functional prototypes have received only
little attention. In this work, a toolkit is developed and eval-
uated to provide empirical evidence about the appropriate-
ness of Madgets (Weiss et al. [2010]) as prototyping tool.

A toolkit for rapid prototyping should have a low threshold
and high ceiling. A low threshold enables many iterations
in the early prototype stage and eventually enhances the
quality of the final product. A high ceiling allows the pro-
totype to extend after the initial phase. This toolkit should
support both goals with one consistent way of operation,
i.e., more advanced prototypes should not require to switch
to a different programming paradigm. Furthermore, the
toolkit should support the work flow of the user. In or-
der to achieve this goal, the design starts with a low fidelity
prototype and a pilot study, to get a system image close to
the user’s mental model of how the system works.

After that, a medium fidelity prototype is implemented that
runs on the targeted tabletop hardware. The feature set
will be limited to a scenario that enables the construction of
Madgets that can dynamically change their physical prop-
erties as described in Rendering physical effects in tabletop con-
trols (Weiss et al. [2011]). This set of Madgets best represents
the degree of freedom of functionality and physicality the
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technology offers.

Overview

In Chapter 2—“Related work”, I show several systems that
have been developed to support the prototyping process in
related fields, of tangible user interfaces and of controls for
tabletops.

In Chapter 3—“Fundamentals”, I will show how the actu-
ated tabletop and its tangible widgets work. I also show
two frameworks that were developed for this hardware to
enable a bidirectional communication between the user and
this system.

I then present my own toolkit to prototype new tangibles
for the actuated tabletop which incorporates ideas of Hart-
mann et al. [2007] to ease the programming of the tangible.
The storyboard and paper prototype implementing the UI
are discussed in chapter 4—“Low fidelity prototype”. A
software prototype is developed that runs on the Madgets
tabletop. This prototype is discussed in detail in chapter
5—“Medium fidelity prototype”. A final evaluation is car-
ried out to test the appropriateness of the developed pro-
totyping system. Chapter 6—“Final evaluation” describes
the setup of the user study and discusses its results.

Chapter 7 summarizes the results and contribution of this
work and gives an outlook on future research ideas.
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Chapter 2

Related work

“Every tool carries with it the spirit by which it
has been created.”

—Werner Karl Heisenberg

This section discusses previous work in related fields, es-
pecially in the field of tangible user interfaces (TUIs). Pro-
totyping TUIs requires technical expertise in several fields
to cope with the following problems: The physicality of the
prototype must be carefully crafted to have the desired af-
fordances and form factor. Also, the choice of supported
input/output technology – to study the user’s interaction
with the device or e.g., render tactile feedback – influences
the form factor and vice versa. The other field is the pro-
gramming of the device or software to acquire, abstract and
use the input.

The following toolkits try to eliminate these obstacles and,
as a consequence, reduce the development time. The first
toolkits listed here focus primarily on the tangibles and ac-
quisition of the physical data. The latter focus on the ab-
straction of the input data and support for the program-
ming part. Finally, toolkits about the prototyping of TUIs
in the tabletop domain are discussed.

Switcharoo (Avrahami and Hudson [2002]) is a tool to en-
able designers to prototype physical interactive products
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without any special technical knowledge. Prototypes are
augmented with input components that are both wireless
and passive, so that the technology does not interfere with
the form factor or the experience of the interaction – the au-
thors stress the importance to explore the form and interac-
tivity of physical prototypes at the same time. The com-
ponents can communicate to Macromedia Director (Adobe
Director was formerly named Macromedia Director. It is a
multimedia application authoring platform using a movie
metaphor and own scripting language. to originally build
animation sequences. The scripting language is aimed for
designers rather than programmer. See Adobe’s Director
Homepage1 for more information.)

As proof of concept a small-scale button is presented (see
Figure 2.1) that uses passive RFID2 , so that it does not re-
quire batteries and works wirelessly. An antenna must be
installed nearby to transfer power to the component.
The advantage of this system is that these components can
easily be integrated in physical prototypes and make only
minimal restrictions on the form factor. Several buttons can
be composed to more complex devices like a slider but the
complexity is strongly limited.

Madgets have only few form constraints too and allow an
exploration of form and functionality at the same time.
They support a wider range of tangibles and do not require
a nearby power source, which can complicate the setup.

Phidgets (Greenberg and Fitchett [2001]) is a toolkit contain-
ing several general-purpose physical user interface compo-
nents that can be combined into more complex ones. The
toolkit’s primary aim is to hide the electronics details from
the designer. The communication is encapsulated into an
API to circumvent low-level hardware programming. Fig-
ure 2.2 shows phidgets of the general-purpose construction
kit like switches, LEDs and sensors. This toolkit features
several different sensors allowing to test a variety of differ-
ent interactions. Phidgets are quite small, which is optimal
in regard of the form factor of the prototype. But the com-

1http://www.adobe.com/de/products/director/
2Radio-frequency identification (RFID) is a technology that uses ra-

dio waves to transfer data from an electronic tag through a reader for
the purpose of identifying and tracking objects.

http://www.adobe.com/de/products/director/
http://www.adobe.com/de/products/director/
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Figure 2.1: Sketch and construction of a small-scale button
of the Switcharoo toolkit. The three pins on the back are for
attachment. This button uses passive RFID technology and
requires an antenna nearby for power transfer.

ponents are not wireless, which in turn can interfere with
the physicality of and interaction with the prototype.

Madgets do not require any wiring and thus, are easier to
construct. Although the Phidgets toolkit is obviously tar-
geted at programmers, the tasks of data acquisition and
processing is unnecessary complex. ProMadgets offers a
visual programming language, which accelerates the pro-
gramming task significantly.

Figure 2.2: The Phidgets toolkit provides a general-purpose
construction kit consisting of several switches, LEDs and
sensors. These can can be connected via USB to a PC and
communicate via an API, which eliminates the need for
low-level programming.



8 2 Related work

CookieFlavors (Kimura et al. [2006]) is also a toolkit that tries
to reduces the complexity of the prototyping task by hid-
ing the heterogeneous nature of input devices. To do so, it
provides a set of general-purpose components, which are
called Cookies. These Cookies are coin-sized, wireless com-
ponents (see Figure 2.3) with different types of sensors for
different input primitives: rotating, tilting and knocking.
The components communicate sensory data via bluetooth.
The small form factor and wireless communication are ad-
vantageous for prototyping the physicality of the tangible
(for the same reasons as stated before.) But this work does
not provide any support for data acquisition. Also, in or-
der to customize Cookies the firmware has to be edited.
Although the components cover interesting input dimen-
sions, position tracking is missing. Another obstacle is the
short battery life (about two hours), which disturbs the pro-
totyping process and makes extended tests impractical.

Figure 2.3: Components of the CookieFlavor toolkit are coin-
sized, communicate wirelessly via bluetooth and support
different kinds of sensors; e.g., (a) 2-axis linear acceleration,
(b) 3-axis magneto impedance. The onboard battery lasts
for about 2 hours.

In Kimura et al. [2007] this work is extended to eliminate
the shortcomings stated above. It offers location tracking
via visual tags and adopts Apple’s Quartz Composer.
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Quartz Composer is a visual programming language for
processing and rendering graphical data. (See Quartz Com-
poser User Guide3

for more details.) While its visual programming paradigm
lowers the threshold for non-programmers, it also has clear
limitations: More complex interaction sequences require
some kind of Finite state machine, which is not supported
by Quartz Composer. ProMadgets also supports a visual
programming environment to lower the threshold for non-
programmers.

Other toolkits like Papier-Maché (Klemmer et al. [2004]) or
DisplayObjects (Akaoka et al. [2010]) use vision-based ap-
proaches to track the tangible controls and achieve a bet-
ter decoupling of physicality and functionality of the tangi-
bles. DisplayObjects uses an accurate 3D model of the phys-
ical prototype, texture-mapped with interactive elements
like buttons, to project a realistic looking interface onto the
physical prototype. Retroreflective markers on the proto-
type and on the user’s finger (as seen in Figure 2.4) are cap-
tured by a Vicon motion capture system4 to track the orienta-
tion of the prototype and to enable the interaction with the
interface.

The vision-based approach best decouples the physicality
and functionality of the prototype, since the tangible does
not require any electronics to function. The retroreflective
markers make only very small limitations to form factor,
but the projection of the interface on the prototype will be
occluded by the user, which can negatively impact the ex-
perience of the interaction.

The Madgets tabletop uses vision-based tracking too, but
the back projection does not lead to occlusion problems.
Instead of the Vicon motion capture system Diffused Sur-
face Illumination (see 3.1—“Tabletop hardware”) is incor-
porated to track the tangibles. The required markers to
track Madgets set comparable limitations on the form fac-
tor.

3http://developer.apple.com/library/mac/#documentation/
GraphicsImaging/Conceptual/QuartzComposerUserGuide

4Vicon motion capture system is an infrared marker-tracking system
that offers millimeter resolution of 3D spatial displacements.

http://developer.apple.com/library/mac/#documentation/GraphicsImaging/Conceptual/QuartzComposerUserGuide/qc_intro/qc_intro.html
http://developer.apple.com/library/mac/#documentation/GraphicsImaging/Conceptual/QuartzComposerUserGuide/qc_intro/qc_intro.html
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Figure 2.4: A physical prototype made out of Styrofoam
with retroreflective markers is used with the DisplayOb-
jects toolkit. The markers are attached to enable a Vicon
system to capture its location, orientation and deformation.
A 3D model of the prototype is used to project an interface
onto the object’s surface. Another marker on the user’s fin-
ger is used to interact with the interface.

Toolkits supporting the abstraction and processing of the
input data

A CAPpella by Dey et al. [2004] is a prototyping environ-
ment for context-aware recognition-based (desktop) sys-
tems, combining data streams from discrete sensors, a vi-
sion algorithm and a microphone. It allows programming
context recognizers by demonstration and selecting the rel-
evant data inside a GUI. A CAPpella uses pattern recogni-
tion to substitute algorithm tinkering with generalization
from the annotated samples. This programming by demon-
stration (PBD) approach enables to build context-aware rec-
ognizers without writing any code, i.e., would otherwise
require advanced programming skills and cost much time.

The PBD paradigm is used in other prototyping systems as
well (Hartmann et al. [2007], Fails and Olsen [2003], Li and
Landay [2005]) since it offers an intuitive input method that
lowers the threshold of programming.
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ProMadgets implements the PBD paradigm for authoring
the possible movements and actuation paths of new con-
trols for the Madgets tabletop. A slider is programmed by
demonstrating the linear movement of the carriage to the
system. The tabletop registers the shape of the path and
adds functionality to, e.g., use the position data of the slider
to control the viewport of a text document.

Interactive tabletops

Interactive tabletops are a technology that displays data
and detects touch and tangible object input. Its main char-
acteristics is direct interaction with data through tangible
objects (or tangibles); the digital bits become tangible (Ishii
and Ullmer [1997]). Compared to traditional desktops with
keyboard and mouse the interaction is more direct. An-
other characteristic is that physical objects have become
augmented with computational abilities; the body becomes
more relevant for the interaction (Dourish and Dourish
[2004]).

To track touches tabletop systems use capacitive or resistive
sensing. In order to track objects too, optical tracking tech-
nologies with infrared cameras are commonly used. The
most prominent variants are Frustrated Total Internal Reflec-
tion and Diffused Surface Illumination. Bill Buxton provides
a good overview of multi-touch systems on his homepage
(www.billbuxton.com5 ).

A bilateral communication between the user and the table-
top system can be achieved in two ways: One approach is
to let tangibles actuate themselves like in the Planar Manip-
ulator Display (Rosenfeld et al. [2004]). But that makes them
harder to construct, besides the disadvantage that more
maintenance is required, e.g., for changing the battery. An
alternative is to use passive tangibles and incorporate the
actuation technology inside the tabletop like the Actuated
Workbench (Gian Pangaro [2003]). These systems decouple
form and functionality of the tangibles, which is advanta-
geous for prototyping.

5http://www.billbuxton.com/multitouchOverview.html

http://www.billbuxton.com/multitouchOverview.html
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Toolkits to prototype tangible controls on tabletops

Reconfigurable ferromagnetic input devices (Hook et al. [2009])
are input devices that have a free physical form and must
include ferrous objects. The tabletop hardware can detect
the presence, position and deformation of the ferrous ob-
jects inside the tangible controls.

This work provides a new degree of freedom in the design
of the input devices and the type of input – the deforma-
tion – for tabletop controls. A C# library pre-processes the
input data to provide clean and reliable data, but this data
can be acquired via a shared memory only, which requires
profound programming knowledge to query and interpret
the data.

Madgets (Weiss et al. [2010]) keep the idea of passive tan-
gibles, and extend it to more complex widgets. These are
handled as a collection of rigid bodies that can be actuated
independently. This permits the physical shape to remain
very basic and at the same time offers a high degree of free-
dom.

While these toolkits help to design controls for tabletops,
they lack support to acquire and process this data. ProMad-
gets alleviates these issues by providing a visual authoring
environment that offers easy registration and integration of
physical prototypes into the Madgets tabletop.
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Chapter 3

Fundamentals

“If anything can go wrong, it will.”

—Murphy’s law

This chapter discusses the hardware and software this
work is based on. The first section explains the assembly
of the Madgets tabletop and its tangible widgets. The second
section discusses two frameworks that were developed for
this hardware and are used for the software prototype of
the toolkit.

3.1 Tabletop hardware

Figure 3.1 shows the different layers of the hardware setup.
The Madgets tabletop combines Diffused Surface Illumina-
tion1 with electromagnetic actuation. An array of electro-
magnets underneath the TFT panel is used to actuate ob-
jects on top of the tabletop. In order to track objects an
Endlighten acrylic is employed as top layer, fed with in-
frared (IR) light by the surrounding LEDs. An IR camera

1Diffused Surface Illumination is a multi-touch technique that uses a
special acrylic named Endlighten. This acrylic disperses even light if the
edges are lighted. This technique is generally inspired by Tim Roth. See
http://iad.projects.zhdk.ch/multitouch/ for more details.

http://iad.projects.zhdk.ch/multitouch/?p=90
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Figure 3.1: Schematic view of the employed tabletop tech-
nology. a) Endlighten acrylic. b) TFT Panel. c) EL foil. d)
IR LED. e) Iron rod core. f) Electromagnet. g) Fiber optic
cable. h) IR camera.

beneath the table captures the light, which is diffusely re-
flected from objects touching the Endlighten layer. To cir-
cumvent the occlusion of the light by intermediate layers, a
matrix of fiber optic cables among the electromagnets and
around their iron rod cores is used. The cables pierce the EL
foil underneath the TFT panel and transport the light to the
camera. This technique provides a heavily down-sampled
tracking resolution (58× 37).

3.1.1 Tangibles of the Madgets tabletop

Madgets are tangible controls for the Madgets tabletop.
They are used as interactive widgets, i.e., they are used to
control the system but can also be controlled vice versa. The
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widget has magnets attached to it to enable the tabletop
to hold it in place or move it around. This ensures a bidi-
rectional communication between the user and the system.
Furthermore, cylindric markers attached to the bottom of a
Madget provide reference points for tracking. These mark-
ers are made of bright paper to best reflect the IR light in-
side the Endlighten acrylic.

The radio-button Madget in Figure 3.2 is made of transpar-
ent acrylic, so that its appearance can be changed dynami-
cally using the display. The arrangement of the three mark-
ers at the edges produce its unique footprint. The markers
on the button plates tell the system whether they are cur-
rently lifted.

Figure 3.2: Photo of a radio-button Madget with two but-
tons. To be able to elevate the button plates there are mag-
nets attached to them. The markers on the plates allow to
check if the actuation succeeded.

Additionally, there is a permanent magnet for every
marker. This allows the system to control the Madget’s
state, as illustrated in figure 3.3: A positive magnetic force
pulls one button plate whilst the other one is repelled us-
ing a negative magnetic force to indicate the button’s state
as off or on respectively. Furthermore, the Madget is hold
in place by pulling the magnets at the corners.

3.1.2 Construction constraints of Madgets

In this hardware setup the following constraints are set to
the design of Madgets: If two magnets are too close to-
gether, they cannot be controlled independently. This is
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Figure 3.3: Schematic of an actuated radio-button Madget.
The plates are pulled or pushed to indicate their state as off
or on. The edges are pulled too to keep the Madget in place.

due to the size and alignment of the electromagnets. There-
fore, the minimal distance between each pair of magnets
is about 3 cm. Furthermore, the maximal (magnetic) force
with which Madgets can be actuated is very limited. An
informal experiment showed that the maximal weight that
can be lifted is about 16 gram. Thus, the maximal weight
and friction of movable parts has to be reduced as much as
possible.

Another limitation is the size of and distance between
markers due to the input resolution. In a first experiment
3 cm for the diameter and 3 cm for the minimal distance be-
tween markers were determined, so that the markers can be
distinguished from each other and are visible all the time.

3.2 Software frameworks

The following two frameworks provide the basis for a bi-
directional communication between the user and the table-
top system. One direction is the user inputting data to the
system via the Madgets. This is done (amongst others) by
the SLAP framework. The other direction is the system out-
putting data to the user. This is accomplished by the Actua-
tion framework, which manipulates the Madgets using the
electromagnet array to represent an update of their current
state or to react to internal events.
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SLAPFootprint SLAPFootprintItem

+sharedUITK
+createFrontWindowInterfaceWithTitlebar:

-addGUIObject:withRect:rotation:inParent:
-addWidget:atPosition:
-detectWidgetsFromTouches

slapRootGUIObjects 
slapWidgetClasses
slapWidgets
touchedObjects

SLAPUITK

-initWithFrame:

-center
-draw
-isHit:
-pointToGlobalCoordinates:
-rotation

affineTransform
parentObject
size
visible

SLAPAlignableObject

-initWithFrame: onGUIObject:

-addChildGUIObject:
-removeChildGUIObject:

children

SLAPGUIObject

-initWithPosition:

-addTouch:
+footprint
-removeTouch:
-touchesUpdated

widgetFootprintTouches
widgetId

SLAPWidget

1    *

1    *

1    *

Figure 3.4: Class diagram of the most important classes of the SLAP framework.

3.2.1 SLAP framework

Figure 3.4 shows the most important classes of the SLAP
framework. As stated above, one of its main functionality
is the tracking of Madgets. Note that it is working with in-
stances of the SLAPWidget class. It is the Actuation frame-
work that synchronizes these with Madget instances.

The SLAPUITK singleton periodically invokes
detectWidgetsFromTouches to traverse all incom-
ing touch events in a pattern matching algorithm. The
search-patterns are footprints of Madgets represented by
SLAPFootprint objects. They are retrieved by invoking
the footprint method on the SLAPWidget classes listed
in the slapWidgetClasses property of the SLAPUITK
singleton. If a pattern matches a footprint the corre-
spondent SLAPWidget is created and its position and
orientation is set accordingly.

The SLAP framework also provides a basic GUI sys-
tem allowing the composition of SLAPGUIObject ob-
jects and handles touch events to, e.g., drag or resize
those objects. The properties and methods for posi-
tioning, resizing and to perform a hit test are encap-
sulated in the SLAPAlignableObject class, which is
the super class of SLAPGUIObject and SLAPWidget.
The SLAPGUIObject class extends this functionality with
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methods for compositing. No visuals are provided but can
be implemented in subclasses by overwriting the draw:
method.

The touchedObjects property of the SLAPUITK single-
ton keeps track of all touch events that are associated with
instances of SLAPGUIObject or SLAPWidget.

3.2.2 Actuation framework

Figure 3.5 shows the most important classes of the
Actuation framework. It is initialized by invok-
ing the createWithSLAPUITK: method on the
ActuationFramework class with a reference on the
above mentioned SLAPUITK singleton. This sets up the
ActuationFramework singleton which stores a weak
reference on the SLAPUITK instance and creates and
retains an ActuationProcessor instance.

The ActuationFramework singleton periodically
queries the SLAPUITK instance for a list of recog-
nized SLAPWidget objects. Upon detection of a new
object the correspondent Madget class gets instan-
tiated. If a correspondent object already exists, its
position and orientation is synchronized to match its
SLAPWidget pendant. The association of SLAPWidget
subclasses to Madget subclasses is set up via the
SLAPWidgetClasses:forMadgetClasses: method of
the ActuationFramework singleton. The list of created
Madget objects is managed in the madgetArray property.

The Madget class is initialized with a reference on its
correspondent SLAPWidget instance and provides meth-
ods to synchronize with it. The footprintItemList
property holds a list of FootprintItem objects encap-
sulating information about the permanent magnets at-
tached to the physical Madget. The standard initializa-
tion initWithSLAPWidget: creates FootprintItem
instances analogous to the footprint definition of the asso-
ciated SLAPWidget. This is due to the assumption, that
there is a permanent magnet attached to every marker of
the Madget.
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+sharedActuationFramework
+createWithSLAPUITK:

-SLAPWidgetClasses: forMadgetClasses:

actuationProcessor
madgetArray
slapUITK

ActuationFramework

-startActuation
-stopActuation

linearOptimizationProcessor

ActuationProcessor

-initWithSLAPWidget:

-doActuationStepForTimeInterval:
-synchronizeFromSLAPWidget
-synchronizeToSLAPWidget

correspondingSLAPWidget
footprintItemList

Madget

1

*

1    *

-initWithPermanentMagnetForceFactor:
                                          localPosition:

-updateGlobalTransform:

localPosition
globalTransform
pPermanentMagnet

FootprintItem

vPosition
vTargetForce

PermanentMagnet

Figure 3.5: Class diagram of the most important classes of the Actuation frame-
work.

Every FootprintItem object has its instance of
PermanentMagnet. The most important variables
are three dimensional vectors called vPosition and
vTargetForce. The former specifies the relative posi-
tion of the represented magnet according to the owning
Madget instance. The latter vector is used to specify in
which direction the represented magnet should be moved.

The ActuationProcessor instance is responsible to per-
form the actuation. When startActuation is called a
new thread is created working off the following steps:

1. doActuationStepForTimeInterval: is invoked
on every Madget object in the madgetArray list of
the ActuationFramework singleton.

2. A linear equation system is created to solve the
assignment of electromagnets to perform the de-
sired actuations specified in the above mentioned
vTargetForce vectors.

3. The solution of the linear equation system is sent to
the hardware layer controlling the electromagnets.

4. The time passed until the last calculation is measured
to optionally adjust the frame rate.
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5. Start over.

In step one doActuationStepForTimeInterval: is
sent to a Madget instance along with the time interval
since the last execution. It should set the vTargetForce
values as mentioned earlier to let the system actuate the
Madget according to its current state. In the second step
the PermanentMagnet instances of the various Madgets
are collected to retrieve a list of all permanent magnets cur-
rently present on the tabletop. A solution for the desired
actuations is calculated and realized in the third step. The
last steps are self-explanatory.
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Chapter 4

Low fidelity prototype

“One of the most laudatory terms used to
describe an interface is to say that is is ’intuitive’.
When examined closely, this concept turns out to
vanish like the pea in a shell game and be replaced

with the more ordinary but more accurate term
’familiar’.”

—Jef Raskin, the Humane Interface

The first section 4.1 describes a storyboard comprehend-
ing the necessary steps to construct and integrate a new
Madget into the tabletop system. At the end, design al-
ternatives influenced by hardware considerations are dis-
cussed.

The next section 4.2 is about the first paper prototype im-
plementing the UI based on one of the storyboards. The
evaluation and revision of the UI is discussed in section 4.3.

Section 4.4 is about the evaluation of the second paper pro-
totype which implements the revised UI.
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4.1 Storyboard

The storyboard in Figure 4.1 has been the first approach to
the UI of the toolkit to get an unbiased system design that
reflects the user’s mental model more closely. It shows the
programming of a Madget with a slider and a LED. The
story goes as follows:

1. The Madget prototype is laid onto the tabletop.

2. The system has perceived the markers attached to the
Madget and shows a digital representation of it. It
differentiates between two types of markers: Dynamic
markers indicating movable parts and static markers at-
tached to the static body. A legend explains the sym-
bols used for the different types.

3. The user draws onto the digital representation the
path on which the slider can move.

4. An overlay shows details about the drawn path that
was transformed into a straight line: The name of the
path and the number of distinguishable positions on
this path. Additionally, a button is displayed to con-
trol the strength of the rendered friction.

5. When moving the slider, the digital representation
updates automatically. This way, the user can test if
the position is tracked and updated correctly.

6. + 7. When dragging the digital slider, the system actuates
the Madget to keep it synchronized. This is to test
whether the system is able to actuate the Madget.

8. + 9. The user draws the symbol of a LED which is trans-
formed into a drag-able icon.

10. The user drags the icon onto the digital representation
to plan the installation of a LED into the Madget.

11. Rulers are displayed to help the user maintain the
minimal spacing for optimal operation of the Madget.

12. The Madget is rebuilt to hold a LED and enable power
transfer to it.
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13. The Madget is laid onto the tabletop and the LED icon
in the digital representation is pushed to test the func-
tioning of the LED.

14. A rubber strap appears in the right top corner.

15. - 18. The rubber strap is dragged to connect two items in-
side the digital representation: The dynamic marker
on the path and the LED icon.

19. An overlay shows details about the new established
connection between the slider and the LED: The name
of the connection and a graph.

20. By drawing into the graph the user defines the map-
ping between the states of the slider and the states of
the LED.

Every time the Madget is laid onto the tabletop
the digital representation of it, the Shadow, appears.

SHADOW:
The Shadow is the digital representation of the Madget. It
gives visual feedback about the perceived objects of the
Madget and its state and provides means to interact with
it. The types of items that are displayed depend on the
progress of the interaction.

Definition:
Shadow

Design considerations

The Madget remains onto the tabletop throughout theThe UI embodies the
liveness property,
i.e., the Madget
responds to changes
immediately and
information about the
Madget updates
continuously.

whole interaction. This way, the Madget directly reacts to
changes made to its properties via the UI and the other
way around. This liveness property, which is inspired by
the Morphic UI construction kit Maloney and Smith [1995],
spares the separation between an edit and run mode. This
eases the programming task in two ways:

1. The mental load on the user is reduced by saving the
user to contexts.

2. No time is spent on a compile step, which would be
necessary to switch from the edit to the run mode.
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The interaction incorporates pen input to let the user define Sketching paradigm
allows drawing icons
that are transformed
into functional
widgets.

graphs or execute commands by drawing gestures. Sim-
ilar to VoodooSketch Block et al. [2008] the user can draw
shapes that are transformed into functional widgets like
the LED icon to control the power transfer to the LED of
the Madget. Additionally, the visual gestalt of the Madget
could be drawn with the pen. The sketching of the UI seems
more natural and is, thus, preferred over traditional inter-
face builders (see Landay and Myers [1995], Plimmer and
Apperley [2004]).

Rulers are displayed to help the user adhere to the various
constraints mentioned in 3.1.2—“Construction constraints
of Madgets”.

Alternative UI

Ultimately, the available hardware and time factors have
to be considered. The present Madgets tabletop does not Sketching idea is

rejected due to
hardware
considerations.

support pen input and the setup change would cost time
that is not available. A Wacom tablet is available and could
be used side by side with the Madgets tabletop. But this
would make the user switch forth and back between the
pen to control the UI and a two-hand interaction to control
the Madget. This interrupted work flow could impact the
user’s experience negatively. Thus, I rejected the sketching
idea.

The alternative UI is similar to the presented one but uses Programming by
Example paradigm
eases the definition
of paths.

solely touch input. Instead of sketching, new widgets are
dragged from a panel containing predefined buttons and
labels. These can be further refined via option dialogs. The
definition of paths is done by demonstration according to
the Programming by Example paradigm in Exemplar Hart-
mann et al. [2007].
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Figure 4.2: Photo of the first paper prototype. The menu on the left currently shows
commands for the first two sub tasks. The post-its in the middle represents the
digital representation of the Madget. The post-it in the right corner is a pop-up
with options for an object of the Shadow.

4.2 Paper prototype of the UI

The storyboard gives a good impression of the comprehen-
siveness of the task of integrating a new Madget. But the
UI is still vague and must be further elaborated and eval-
uated. This section describes a paper prototype that has
been developed to test the appropriateness of the UI and
the presented interaction technique.

Figure 4.2 shows a photo of the first paper prototype. As
one can see, the graphical user interface (GUI) is divided
vertically into two parts: On the left hand side is the Con-
trol area containing the menu. The Workbench area on the
other side is initially empty. This area provides sufficient
free space, so that the Madget can be laid down there, and
to contain the shadow.
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Details about a recognized path or options of an actua-
tion are displayed inside pop-ups. These pop-ups are non-
modal, i.e., the user is free to control different parts of the
toolkit without having to close pop-ups first.

The whole task of programming a Madget is partitioned
into several sub tasks. The menu in the Control area
presents those tasks in the proposed order of execution; i.e.,
the first sub task is presented as top most menu item and
the last sub task is at the bottom. The steps are the follow-
ing:

1. Definition of the footprint.

2. Definition of movable parts that are monitored and
mapped to numerical values.

3. Definition of magnetic parts that can be actuated by
the system.

4. Definition of actuation patterns or conditional events.

5. Definition of the visual gestalt.

The first step is the definition of the footprint of the Madget.
As soon as the Madget is laid onto the tabletop the shadow
appears and shows a representation of its markers and their
status. They are initially not categorized and have to be as-
signed static or dynamic. The menu in the Control area pro-
vides buttons for both types; although the dynamic type is
called moveable. The assignment of a marker to one of those
types is achieved by pressing the marker and the button for
the desired type at the same time.

Magnets attached to the Madget can not be perceived by
the system. Therefore, the position of magnets is manually
entered by touching the corresponding position inside the
Shadow while holding the Register invisible magnet button
pressed.

The second step comprehends the definition of paths on
which dynamic markers (objects categorized as movable in
the previous step) can move. These paths can be either
a straight line, a circle or a movement orthogonal to the
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tabletop surface; e.g., a push button requires an actuation
orthogonal to the tabletop surface. The physical prototype
lays on the tabletop while the user holds the button for the
desired path pressed and demonstrates the movement on
the Madget. Consequently, a new path will be generated
from the demonstrated movement.

The third step is used to define which parts of the prototype
should be moved and how. The available path types are the
same as in the previous step. The path is entered with the
finger while one of the button for the desired path type is
pressed down. Additionally, there is an option to use pulse
width modulation which is necessary for power transfer to
a LED.

The fourth step is required to composite actuations in a se-
quence or trigger them upon certain events. But it is not
further specified in this paper prototype.

The last step is about composing the visual gestalt of the
Madget by dragging building bricks like rectangles or la-
bels onto the Shadow.

4.2.1 Design considerations

“MODES” AND “MONOTONY”:
In his book “the Humane Interface” (Raskin [2000]) Jef
Raskin uses the term monotony to describe an UI that has
only one way for every command to be invoked.

A mode is defined with respect to an action to invoke a
command: If the system responds to the user’s action dif-
ferently depending on its state, and the user is currently
not paying attention to this state, then the UI is modal
with respect to this action. Consequently, modelessness is
defined as lack of modes.

Definition:
“Modes” and
“Monotony”

The design of the UI strikes for modelessness and monotonyThe UI is designed to
be humane. to be as “humane” as possible — Jef Raskin proposed these

properties in his book “The Humane Interface” (Raskin
[2000]) to increase the user’s performance and positive ex-
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perience. 1

To satisfy the monotony property there is only one button
for every action of the UI; these are inside the Control area
or inside pop-ups.

In order to conform to the modelessness property some
commands have been designed as quasi-modes; i.e., the
mode is only active as long as the corresponding button is
pressed down. For example, the button to define movable
parts of the Madget must be hold down to demonstrate the
movement of a dynamic part. As soon as the user releases
the button the demonstration ends and the recorded data is
evaluated. This way, the user can not confuse the current
mode the system is in.

The Programming by Example method is not implemented
for defining parts that ought to be actuated. (In contrast
to the second menu “Recognize movement”.) This is due
the fact that the system is not able to track magnets. Under
these circumstances, the paths have to be manually entered
with the finger. But for reasons of monotony, there should
not be two different input methods.

4.3 Evaluation of the paper prototype

The UI of the paper prototype is evaluated in a small user
study with two participants. The following sections de-
scribe the tasks (4.3.1), presents the results (4.3.2) and dis-
cusses improvements (4.3.3).

1 “I believe that an interface that is both modeless and [. . . ]
monotonous [. . . ] would be extraordinarily pleasant to use. A user
would be able to develop an unusually high degree of trust in his habits.
The interface would, from these two properties alone, tend to fade from
the user’s consciousness, allowing him to give his full attention to the
task at hand.” (p.68)
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4.3.1 Tasks

As first assignment the user has to implement the Madget
on the left of Figure 4.3 consisting of a rotatable knob,
which can be pushed down. The construction is already

Figure 4.3: Photo of the Knob (left) and Clutch (right). These
Madgets are used in the first evaluation of the paper proto-
type.

complete and has the required magnets and markers at-
tached to it. To complete this task, the system must measure
the angle of the rotatable knob and detect if it is pushed
down. After that, a pie chart should be added for visual-
ization.

The second assignment is the integration of the Clutch: A
Madget consisting of a push button which can be locked
by a bar. The bar can not be reached from above but has a
magnet attached to it, i.e., if the Madget lays on the table-
top only the system can move the bar. The Clutch must be
programmed to register the status of the push button. Also,
the path on which the bar is actuated must be defined. Af-
ter that, the background should change colors to indicate
the status of the button.

4.3.2 Results

The participants of the evaluation have experienced the fol-
lowing problems:

The meaning of the “Register invisible magnet” function
was unclear. The users did not know that this function has
to be used to define the magnet of the Clutch. Since there is
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no marker attached to the bar its position cannot be recog-
nized by the system.

Markers can be tracked by the system, which allows using
the Programming by Example paradigm in the “Recognize
Movement” menu. Magnets cannot be tracked and thus,
require a separate input method in the “Actuating Move-
ment” menu. The users were confused why some paths
have to be defined redundantly in both menus and in sep-
arate ways. Besides, they were annoyed to have to indicate
the type of the path in the “Recognize Movement” menu.

Furthermore, the participants were sometimes unsure how
to proceed and found the menu confusing.

4.3.3 Discussion

The UI has been revised to address usability issues and to
implement missing functionality. Figure 4.4 shows the new
paper prototype for the revised UI, which has two new des-
ignated areas: Storage area and Help area.

The Storage area offers a saving and loading function. To
help to recover recent work it lists the names and thumb-
nails of the Madgets.

Help texts were clearly missing to guide the user and ex-
plain the functioning of the commands. Therefore, the Help
area is introduced; to provide a short description of the com-
mands that are currently available.

The Control area is redesigned to enumerate the sub tasks.
Only the commands of the current step are displayed, the
other groups show only the heading. Thus, when working
off these groups one after another, the user has less com-
mands to choose from. This narrows the decision tree of
the task helping the novice user navigate the system.

The concept of invisible magnets was not well understood by Madgets constrained
to have a marker on
every magnet to
abolish the “invisible
magnet” method.

the participants. To circumvent this problem the Madget is
restricted to have a marker for every magnet. This does not
essentially limit the set of realizable prototypes but renders
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Figure 4.4: Photo of the second paper prototype for the revised UI.

the definition of magnets superfluous. This leads to a cou-
ple of advantages: A separate definition of paths for recog-
nizing and actuating movements is not required anymore.
Consequently, the two menus (“Recognize Movement” and
“Actuating Movement”) are merged into one named “Mov-
ing parts”. Furthermore, it is possible to check whether
an actuation is successful by comparing the corresponding
marker’s position with the target position.

To spare the user to indicate the type of path when they are
going to define a path, the method should automatically
recognize the drawn shape.

The menu “Compositing actuation” is renamed to “Behav-
ior”. The new name is a better indication for the contained
commands and should help the user navigate the UI.
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4.4 Evaluation of the second paper proto-
type

A new paper prototype has been developed to implement
the changes of the UI discussed in section 4.3.3. Below, the
results of another user study evaluating the revised UI are
discussed. The tasks of the study are the same as before.

4.4.1 Results

While users interacted with the paper prototype the follow-
ing problems occurred:

The participants were annoyed by the help texts. They
found it too unstructured to browse and find the right topic
for the current menu, e.g., whether buttons of a Madget
have to be defined as dynamic markers.

They were missing the option to set the initial state of an
actuation or to set the rectangle visualization block to be
initially invisible. Furthermore, the UI lacks the possibility
to label a position on a path in order to refer to it when
programming an actuation.

It is possible to have several pop-ups open at the same time,
since they do not close automatically. But then, the GUI
gets easily cluttered and one participant complained to lose
track of which pop-up is associated to which item.

4.4.2 Discussion

First at all, the missing functions have to be implemented;
i.e., the initial state of an actuation, the “invisible color”
of an visualization building block and the labeling of posi-
tions on a path.

The problem with the lost association of the pop-ups will
be solved by implementing visual clues like a simple line
connecting the pop-up with the associated object.
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The help texts should be revised to provide two sentences
for every command in the currently selected menu to sup-
port fast browsing. Nevertheless, a more detailed docu-
mentation should be provided as hardcopy form. It should
cover different aspects of a Madget and how these are to be
entered in the UI.
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Chapter 5

Medium fidelity prototype

“Never worry about theory as long as the
machinery does what it’s supposed to do.”

—Robert A. Heinlein

This chapter discusses the implementation of the medium
fidelity prototype, a software prototype that runs on the
Madgets tabletop to enable an evaluation of the system as
prototyping tool.

Section 5.1 describes the scenario the medium fidelity pro-
totype is limited to, the Madgets that should be supported
and the feature set that is required to realize these.

Section 5.2 is about the architecture of the software proto-
type. At first, the involved classes in the communication
of the toolkit with the SLAP & Actuation framework is ex-
plained. After that, the main classes of the software proto-
type are discussed involving a state machine that controls
the whole system. Additionally, the encapsulation and vi-
sual representation of the Madget is explained.

In section 5.3 a pilot study is described to evaluate the tool-
kit. This study serves as preparation for the extended user
study described in the next chapter.
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5.1 Feature set of the medium fidelity
prototype

The medium fidelity prototype is running on the Madgets
tabletop to enable an evaluation of the system as pro-
totyping tool. In order to access the hardware and to
use the functionality of the frameworks (discussed in
3.2—“Software frameworks”) the programming language
Objective-C has to be used.

The scope of functionality has to be limited to enable an
evaluation as early as possible, but a horizontal or verti-
cal prototype is not goal-oriented: A horizontal prototype
would not implement any feature in depth and thus, would
not support a fully functional Madget. A vertical prototype
would implement only one feature (or a few) completely
and spare the remaining ones, which allows constructing
at most one type of Madget. For a meaningful study of the
prototyping capabilities the system must support several
kinds of Madgets. Thus, the sensible solution is to limit the
software prototype to a certain scenario that covers several
Madgets with a high degree of freedom.

In the paper Rendering physical effects in tabletop controls by
Weiss et al. [2011] the author presents a set of Madgets
with dynamic physical properties. Attributes such as per-
ceived weight, spring resistance, friction, and latching can
be adapted through the tabletop actuation. Since this set
fulfills the above mentioned criteria the scenario is tailored
to the following Madgets:

• Radiobutton with dynamic spring resistance.

• Rotatable knob with dynamic friction.

• Slider with dynamic detents.

The functioning of the first Madget is pictured in Figure
5.1. It is a radio-button, i.e., at all times exactly one but-
ton out of a group of several is active. The others must
be lifted to indicate their state as inactive. According to
the paper “the magnetic force increases quadratically with
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height, [and thus,. . . ] simulates a button containing a pro-
gressive spring.” The toolkit should support a way to vary
the applied power to the electromagnets to manipulate the
perceived resistance of the button.

!
"

!
"

!
"

!
"

+ + – +

Figure 5.1: Schema of an actuated radio-button Madget.
Magnets at the edges are pulled to hold the Madget in
place. The left button is pulled to indicate its state as on.
The right one is repelled to indicate an off state.

The second Madget is a knob, which can be rotated. Mag-
nets are installed that can be pushed against the rotatable
part to function as brake blocks. The assembly is shown
in Figure 5.2. According to the paper the perceived fric-
tion depends on the normal force and on the materials of
the brake. The toolkit should support a way to change the
normal force to adjust the friction.

++

+ +

Figure 5.2: Schema of an actuation knob with dynamic fric-
tion. Two magnets are installed that can be elevated, so
that the brake (yellow) pushes against the disk and causes
friction. The red arrows indicate the normal force on these
magnets produced by the actuation.
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The third Madget is a slider that renders detents by actu-
ating the carriage depending on its current position. Two
cases have to be distinguished: In the first case, the carriage
lays between two virtual detents and has to be actuated to
the closest detent. As Figure 5.3 (a) illustrates, one magnet
is negatively charged to repel the carriage from its current
position and pulled to a positively charged magnet under-
neath the virtual detent. Figure (b) shows the second case,
when the carriage lays above a virtual detent and is locked
in place by positively charging the magnet underneath and
negatively charging the adjacent magnets.

The toolkit should support a way to simulate these detents
and adapt the step size to different scales.

+

– + –

–

+ –a)

b)

Figure 5.3: Schema of an actuated slider Madget. The car-
riage is locked in place by positively charging the magnet
underneath and negatively charging the adjacent magnets.

Furthermore, the scenario makes the following restric-
tions to reduce the implementation time and effort: The
programming of actuation sequences will not be part of
the medium fidelity prototype, because the above listed
Madgets do not need this feature. Moreover, a manage-
ment of several prototypes is not necessary, since it suf-
fices to restart the software in order to construct a new
Madget. This spares the implementation of a loading and
saving function. Also, a change of the static footprint of the
Madget after it has already been defined is not supported.
This simplifies the state graph of the toolkit since a couple
of edge cases do not need to be taken account of.
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5.2 Software architecture

5.2.1 Integration into SLAP-&Actuation frame-
work.

The diagram in Figure 5.4 shows the classes that are in-
volved in the integration of the SLAP & Actuation frame-
work. The highlighted classes belong to the toolkit.

ActuationFramework

Madget

SLAPUITK

SLAPWidget

Toolkit

PrototypeSLAPWidgetPrototypeMadget

MySLAPUITK

1

*

1

*

communicates with

1 1

Figure 5.4: Diagram of the classes that implement the com-
munication between the medium fidelity prototype and the
Actuation- and SLAP framework. The highlighted classes
are from the software prototype. The classes on the right
belong to the SLAP framework and primarily manage the
footprint recognition. The classes on the left are from the
Actuation framework and offer the actuation functionality.

The SLAPUITK object manages a list of SLAPWidget
classes in its widgetClasses property. When checking for new
widgets this list is traversed to obtain the footprint defini-
tions of the widgets. If one of those footprints match the
current touch events the corresponding widget class is ini-
tialized and added to the slapWidgets list. The position of
the widget is kept updated as long as the associated touch
events are available.

To make use of the functionality the SLAPUITK offers,
PrototypeSLAPWidget subclasses SLAPWidget
and is added to the widgetClasses list. The
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PrototypeSLAPWidget implements the Singleton pattern.
Hence, the Toolkit object can obtain a reference on the
PrototypeSLAPWidget instance when it is allocated by
the SLAP framework. Furthermore, the object forwards
method calls concerning touch events inside its footprint
to the Toolkit. This information is required to obtain the
position of dynamic markers.

The Madget class of the Actuation framework provides
methods to actuate a tangible. The idea is to have a
dedicated Madget subclass for every SLAPWidget sub-
class. The ActuationFramework singleton offers the
SLAPWidgetClasses:forMadgetClasses: method to setup this
association. It periodically queries the slapWidgets property
of SLAPUITK to check for new widgets. If it finds a new
entry the corresponding Madget subclass is initialized and
its position is synchronized to its pendant. Therefore, the
PrototypeMadget class is set up as corresponding class
for PrototypeSLAPWidget, so that it gets allocated as
soon as the user’s Madget is detected.

PrototypeMadget subclasses Madget to get access to
the actuation functionality the Actuation framework offers.
It further has to override the following methods: In the
initializer initWithSLAPWidget: the positions of the tangi-
ble’s permanent magnets are specified. There has to be
one permanent magnet for every marker of the footprint,
which is specified by its corresponding SLAPWidget in-
stance. PrototypeMadget overrides the default initial-
izer to add additional permanent magnets according to the
user’s prototype. The method doActuationStepForTimeInter-
val: is invoked regularly to tell the object to update its ac-
tuation strategy. A vector can be specified for every perma-
nent magnet setting the direction in which it ought to be
moved. PrototypeMadget overrides this method to al-
low the toolkit to dynamically adapt the actuation strategy.

5.2.2 Classes of the toolkit

The class diagram in Figure 5.5 shows the Toolkit class
and the classes it interacts with. The Toolkit object is re-
sponsible for resetting the state machine and initializing the
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-initWithSLAPUITK:andActuationFramework:

-loadPrototype
-savePrototype
-startNewPrototypeWithCurrentTouches

currentSLAPWidget
currentPrototype
currentShadow
stateMachine
theSLAPUITK
theActuationFramework
viewController

Toolkit

-createGUI

madgetArea
optionMenu
workbenchArea

ViewController

+shadowWithPrototype:optionMenuRef:            
        stateMachine:

containerObject
delegate
theOptionMenu
thePrototype
theStateMachine

Shadow

-init
-reset

currentState
StateMachine

+sharedUITK

freeTouchesList
madgetArea

MySLAPUITK

+slapWidgetWithFootprint:
+sharedSlapWidget

boundingBox
footprint
prototype

PrototypeSLAPWidget

+pathWithArrayOfPoints:

PathRecognizer

-initWithSLAPWidget:
+sharedMadget

thePrototype
PrototypeMadget

+prototypeWithArrayOfTouches:

query and manipulation methods

modules
Prototype

+createWithSLAPUITK:
+sharedActuationFramework

MadgetArray
ActuationFramework

Figure 5.5: UML diagram of the main classes of the software prototype.

ViewController, which creates the GUI. It manages in-
stances of the Prototype and Shadow class to represent
the Madget of the user. Furthermore, it has weak references
to the PrototypeSLAPWidget and PrototypeMadget
objects to use the functionality the SLAP- & Actuation
frameworks offer as described above.

The ViewController class creates the GUI of the toolkit
and handles its events. A set of basic GUI widgets has
been developed like colored rectangles, buttons or drag-
able elements. Also more complex widgets like menus or
pop-ups have been implemented to match the user’s ex-
pectations of an ordinary GUI. These widgets extend the
SLAPGUIObject class to integrate the basic (GUI) func-
tionality the SLAP framework provides (discussed in 3.2—
“Software frameworks”).

The PathRecognizer class implements functions to rec-
ognize the shape of a line or a circle from a list of points.
This is used to apply the programming by demonstration
paradigm (discussed in 4.1—“Storyboard”) when the user
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demonstrates moveable parts of the tangible to the system.
The low input resolution of the tabletop results in unpre-
dictable variations in the recorded position data. Addi-
tionally, the user might demonstrate the path only partially.
Thus, the resulting shape is likely to deviate from the exact
one. The algorithm has to account for these inaccuracies.

The StateMachine class is designed to drive the whole
software system. This centralized approach should prevent
unforeseen states or sinks the user cannot leave. It imple-
ments the state graph illustrated in Figure 5.6.

No Active 
Prototype

placeMadget
[Madget on tabletop]

liftMadget
[no Madget on tabletop]

Active Prototype

Footprint

No modifier

"Static" 
modifier

"Dynamic" 
modifier

Behavior

H

[press "Dynamic" button] [press "Static" button]

[release button]

press "Done" [Footprint validates]

Dynamics
Not recording

recording

press 
"Recording"

button

release 
"Recording"

button

Visualization
show all
modules

show one 
module

select a 
module
from list

deselect
module
from list

click 
menu item

Figure 5.6: UML state chart of the state machine of the
software prototype. Two top-level states to distinguish if
a Madget is currently on the tabletop. One state is further
refined to contain a sub state for every task of the toolkit.
Among other things, these are used to determine the cur-
rently active menu and the visualization of the Shadow.



5.2 Software architecture 43

The state chart starts in No Active Prototype state and
switches to Active Prototype state as soon as a Madget is
present on the tabletop. The latter has a sub state for ev-
ery task of the toolkit: Footprint, Dynamics, Visualization and
Behavior state. These have further sub states to handle mod-
ifier methods; e.g., to assign the static or dynamic type to a
marker. The Footprint state is the entry state, since the inter-
action starts with the definition of the footprint. If the user
presses “Done” the footprint definition is validated and if
successful, switches to Dynamics state. From there on the
user can switch freely between the sub states of Active Pro-
totype but is prevented from returning to Footprint state. If
the Madget is not recognized anymore, e.g., because it was
lifted from the tabletop, the state machine returns immedi-
ately to No Active Prototype. When the Madget is present
again the previously active sub state of Active Prototype is
entered.

The Prototype object represents the tangible control the
user constructs. It encapsulates all information for a func-
tional Madget like footprint, visual gestalt and paths of
movable parts. It is discussed in more details in section
5.2.3—“Encapsulation of the Madget prototype”.

The Shadow class implements the Shadow as introduced in
the UI of the low fidelity prototype. It is discussed in more
detail in section 5.2.4—“Representation of the Madget pro-
totype”.

MySLAPUITK is a subclass of SLAPUITK of the SLAP frame-
work to access the touchedObjects variable which keeps
track of all SLAPAlignableObject instances currently
associated with touch events. Since the GUI of the tool-
kit uses subclasses of SLAPAlignableObject this vari-
able is used to distinguish touch events that are associ-
ated to GUI elements from free touches, i.e., non-associated
ones. This is required to determine the footprint of a new
Madget. As soon as the footprint is defined it is detected
as SLAPWidget instance as discussed earlier (see section
5.2.1—“Integration into SLAP-&Actuation framework”).
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5.2.3 Encapsulation of the Madget prototype

Figure 5.7 shows the Prototype class and all related
classes it manages to encapsulate all information a Madget
consists of. There is a specialized class for every component
of a Madget:

Prototype

MadgetMarker Behavior

Actuator

PathVisualizer

Recognizer

CircleActuator

LinearActuator

ButtonActuator

CircleRecognizer

LinearRecognizer

ButtonRecognizer

10%

Figure 5.7: Diagram showing all required classes to encap-
sulate the Madget prototype.

The MadgetMarker objects represent marker and magnets
attached to the tangible.

A Path object is associated with a MadgetMarker to en-
capsulate the path on which the marker moves.

A Recognizer object uses an instance of the Path and
MadgetMarker class to map the position of the marker to
a numerical value with a function f :

f : (x, y, z)→ <+

The three dimensional vector (x, y, z) represents the posi-
tion of the marker. The third component z ∈ {0, 1} is
used for height actuation, i.e. orthogonal to the table-
top surface. The only distinguishable states are 1 for lay-
ing on the surface and 0 if the marker is not perceived or
lifted respectively. The subclasses CircleRecognizer,
LinearRecognizer and ButtonRecognizer imple-
ment the mapping for the circle, line or button type of path;
e.g. LinearRecognizer implements f in such a way, that



5.2 Software architecture 45

0 is the result if the marker is located at the start of the as-
sociated line and 1 if it is at the end. The other positions on
the line are associated accordingly.

The Actuator class extends the Recognizer class
with a method to actuate the position of the marker
according to the inverse mapping f−1. The sub-
classes CircleActuator, LinearActuator and
ButtonActuator implement this method for the corre-
sponding types of path.

Visualizer subclasses implement the building blocks
the visual gestalt of the Madget is composed of. The
RectangleVisualizer is an exemplary subclass that
draws a rectangle area in the specified color. It can be used
to set a background for the Madget.

Behavior instances encapsulate conditional events or
actuation patterns. For example to change the back-
ground color of a Madget depending on the position of
its slider a connection between an LinearRecognizer
and RectangleVisualizer instance is required. A
Behavior object would store this connection, query the
LinearRecognizer to obtain a numerical value from the
position of the slider and set the color property of the
RectangleVisualizer accordingly.

5.2.4 Representation of the Madget prototype

The Shadow object implements the digital representation
of the Madget as presented in the UI of the low fidelity pro-
totype in 4.1—“Storyboard”. Figure 5.8 shows its auxiliary
classes to split up the visualization task according to sep-
arate subsets of the Madget’s properties. Since not all of
these properties are relevant at all times, the Shadow ob-
ject initializes only one class at a time. To ease the switch
between different visualization strategies and to keep the
code more structured, the Shadow class implements the
Delegates pattern and the visualization classes have to ad-
here to the ShadowVisualization protocol.
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+shadowWithPrototype:optionMenuRef:            
        stateMachine:

delegate
thePrototype

Shadow

-beginVisualizationForPrototype:shadow:         
                                        optionMenuRef:
-draw
-endVisualization

<< protocol >>
ShadowVisualization

thePrototype
theShadow

FootprintVisualizer
thePrototype
theShadow

DynamicsVisualizer
thePrototype
theShadow

VisualsVisualizer
thePrototype
theShadow

BehaviorVisualizer

Figure 5.8: UML diagram showing all required classes to realize the digital rep-
resentation of the Madget. The Shadow class implements the Delegates pattern to
allow switching the visualization strategy as required. The different visualization
techniques are implemented in separate classes implementing a common protocol.

The FootprintVisualizer is used when the footprint of
the Madget is defined. It displays all markers that make up
the preliminary footprint. The user can select these repre-
sentations to define the static and dynamic part and mark-
ers that were mistakenly added and should be ignored.

The DynamicsVisualizer shows the paths on which dy-
namic parts move. Additionally it provides options to e.g.
add detents or change the spring resistance of a button.

The VisualsVisualizer shows the graphical building
bricks that were added to the visual gestalt of the Madget.
It provides options to change their attributes like color and
opacity.

The BehaviorVisualizer lists the properties of the
Madget that can be combined. On the one side are Rec-
ognizer items and on the other side are Actuator and Vi-
sualizer items. Since the Recognizers supply data about
the Madget’s state, and Actuators and Visualizers take data
to produce feedback, only connections from Recognizers to
Actuators or from Recognizer to Visualizers are valid.
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5.3 Evaluation of the software prototype

Before the actual user study (see chapter 6—“Final evalua-
tion”) a pilot study with two participants will test the setup
and toolkit.

The photo in Figure 5.9 shows the setup for the pilot study.
On the table in the back are laying materials to assemble
the Madget like glue, markers and magnets. In the front is
the Madgets tabletop. In order to use the laser cutter the
participant has to go to the workshop.

Figure 5.9: Photo of the setup for the pilot study of the
medium fidelity prototype. In the front is the Madgets
tabletop. On the table in the back are markers, magnets,
a scissor and glue to assemble the Madget.

5.3.1 Tasks

The participant gets a brief introduction into the tabletop
technology, the assembly of Madgets and the functions of
the toolkit. Then, the slider Madget is presented to him.1 To

1The Madgets in this section refer to the description of the scenario
in 5.1—“Feature set of the medium fidelity prototype”.
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complete the first task the user has to work off the following
steps:

1. Define the static footprint of the Madget and the dy-
namic markers.

2. Demonstrate the movement of the slider.

3. Add a rectangle in the visualization step and resize it
to cover the whole Madget.

4. Optionally adapt the color property of the rectangle.

5. In the behavior menu connect the recognizer compo-
nent to the visualization component, so that the opac-
ity of the background is defined as function of the
slider’s position.

The second task is the constructing and programming of
a radio-button Madget. At first the functioning of this
Madget is explained. Then, the user is introduced to
the vector drawing software CorelDRAW2 with which the
blueprint is created. The assembly out of several layers of
2mm thick acrylic glass is explained using the example of
the slider Madget. A set of guidelines is provided compre-
hending:

• The maximal size of a Madget.

• The minimal distances of magnets and markers
(as discussed in 3.1.2—“Construction constraints of
Madgets”).

• The advise to construct as lightweight as possible and
reduce friction as far as possible.

To complete the second task the user has to work off the
following steps:

1. Design the blueprint of the Madget using Corel-
DRAW.

2 CorelDRAW Graphics Suite homepage, http://www.corel.com/

http://www.corel.com/servlet/Satellite/de/de/Product/1191272117978
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2. Use the laser cutter to print the blueprint out of a
2mm thick acrylic glass.

3. Glue the parts together and attach magnets and mark-
ers.

4. In the footprint menu: Assign the static and dynamic
marker type appropriately.

5. In the dynamics menu: Define the buttons.

6. In the behavior menu: Connect the recognizer com-
ponent of the first button to the actuation component
of the second and vise versa, so that one button is
lifted if the other is not.

5.3.2 Results

Table 5.1 shows the performance times of the user. The pro-
gramming task of the radio-button could not be completed
due to a software crash. This error has been resolved in the
next iteration.

Introduction 20 minutes
Programming of slider 30 minutes
Instructions for radiobutton 5 minutes
Design blueprint 45 minutes
Laser cutting 7 minutes
Assembly 20 minutes
Programming —–∑

2h 7m

Table 5.1: List of tasks of the pilot study with measured
duration.

During the test the user was confused what to do in which
step, was unsure about the function of some buttons and
whether he had completed all necessary steps. Also the
outcome of some actions taken in the visualization and be-
havior menu was not clear.

When the user tried to control elements of the GUI the sys-
tem sometimes misinterpreted the user’s touches for the
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footprint of the Madget. As a consequence, the digital rep-
resentation of the Madget was repositioned and the user
was unable to execute the desired GUI function.

The GUI was cramped with pop-ups. Many actions open
up new pop-ups which are not closed automatically, even
if the user finishes a sub task and switches to a different
menu.

The user did not pay attention to the polarization when
glueing magnets to the static body of the Madget. The tool-
kit actuates these magnets homogeneously in order to hold
the tangible in place. If these are installed differently the
Madget is unintentionally moved around.

5.3.3 Discussion

A documentation is missing that describes which actions
have to be taken in which step. This can help the novice
user navigate the UI.

The user’s confusion during the interaction points to a
missing connection between the action he has taken and
a perceivable result. When investigating the problematic
cases a lack of feedback is noticeable. An example is the
case of the visualization menu. When the user has clicked
the button to add a rectangle it was added as a new entry to
a list located inside a pop-up. The Madget’s visual gestalt
updated to show the new rectangle but that is not the user’s
locus of attention. Instead it is the Shadow which shows
the new rectangle only if it is selected in the list. This is
a mode error: The UI shows the desired result if it is in a
different mode, but the current mode is not the user’s lo-
cus of attention. To solve this problem the new list entry
gets highlighted for two seconds to draw the user’s atten-
tion to that particular area. Another solution would be to
merge the different modes of this menu and let the Shadow
always display all added building blocks.

The issue of the touch input that is mistaken with the
Madget’s footprint is caused by the SLAP framework.
The “widget detection” algorithm always considers all
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touch events when looking for a matching footprint even
if a touch event is located above a GUI element or
SLAPGUIObject respectively. Furthermore, the algorithm
is considering Madgets whose “footprint touches” are still
available. While these decisions might be advantageous
for the SLAP tabletop, they are leading to problems for the
Madgets tabletop. This is due to the fact, that the algorithm
is designed for a high input resolution allowing to distin-
guish between fingers and markers. To solve this problem
the algorithm is restricted to touch events inside a dedi-
cated area. The Madget has to reside inside this area further
called Madget area (see area 6 in Figure 5.10).

1

3

42 1

5

42

6

Figure 5.10: Revision of the GUI layout with different ar-
eas: (1) Control area (2) Workbench area (3) Storage area (4)
Help area (5) Details area (6) Madget area.

Since the polarization of magnets is important for the
correct functioning of Madgets a “pivot magnet” will be
handed out during the test. This is a magnet whose sides
are colored in red and green. The above mentioned docu-
mentation is extended with a note to always make the red
side attract the installed magnets from below the Madget.
This way, the orientation is as the software expects.

A new GUI widget is introduced in order to prevent the
creation of too many pop-ups. It can be accessed by the
Shadow class to place options inside that widget instead of
pop-ups. This widget is shared among all visualization del-
egates of the Shadow, so that the content is updated when
the state of the toolkit changes. The area this widget occu-
pies is called Details area (see area 5 in Figure 5.10).

The Storage area is removed because loading and saving is
not supported by the medium fidelity prototype.
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Chapter 6

Final evaluation

This chapter describes the final evaluation of the toolkit
with seven participants and discusses the results.

6.1 Tasks

The setup is based on the previous evaluation (see 5.3—
“Evaluation of the software prototype”). But the tasks in-
clude Madgets that are described in the feature set of the
medium fidelity prototype (see 5.1—“Feature set of the
medium fidelity prototype”).

A run takes approximately four hours; table 6.1 shows
the duration estimates of the separate steps. The partic-
ipants of the pilot study had difficulties constructing the
Madgets without any assistance. Therefore, the second task
is changed to an optimization task: The user will see an im-
perfect version of Madget C and is told its shortcomings,
so she knows what to optimize. The Rotatable knob with dy-
namic friction is taken out of the study, since it seems to be
too complicated to be completed in the allocated time.

The tasks are now as follows:

1. Introduction to the idea of ProMadgets, the technol-
ogy of the tabletop and Madgets.
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Introduction 15 minutes
Documentation 15 minutes
Demo 12 minutes
1st task

Explain Madget B 7 minutes
Programming task 30 minutes

Demo
CorelDRAW, Laser Cutter 10 minutes
Drawing of Madget A 5 minutes

2nd task
Explain Madget C 7 minutes
Design blueprint 60 minutes
Lasercut 7 minutes
Assembly 20 minutes
Programming 15 minutes

1st iteration
Revise blueprint 10 minutes
Lasercut 7 minutes
Assembly 10 minutes
Programming 5 minutes

2nd iteration Programming 5 minutes
3h 23min 3h 55min 4h 0min

Table 6.1: List of all tasks of the user study for the final evaluation with estimated
duration.

2. The user is asked to read the documentation, which
includes guidelines on how to create Madgets and
explains the toolkit (see A—“Materials of the user
study” for a copy of the user test manual). It is as-
sured that the user has understood everything and
that the system is being tested and not the user.

3. Presentation of the toolkit’s functions by demonstrat-
ing the programming of Madget A.

4. The user is told the functioning of Madget B and is
asked to program it accordingly. (1st task)

5. Explanation of the vector drawing software
CorelDRAW with the help of the blueprint of
Madget A. Demonstration of the usage of the laser
cutter.

6. The user is told the functioning of Madget C and is
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asked to construct and program it accordingly. (2nd
task)

Table 6.2 shows the combinations of Madgets used in the
user study. Since the Detent slider and Radio-Button are
more complicated than the other Madgets, these are prefer-
ably chosen as Madget C. This way, the level of difficulty is
incrementing from first to second task.

Participant ID Madget A Madget B Madget C
1 Button Slider Knob
2 Slider Button Knob
3 Slider Knob Detent slider
4 Knob Slider Button
5 Knob Slider Detent slider
6 Knob Slider Detent slider
7 Knob Detent Slider Radio-button

Table 6.2: List of all permutations of Madgets used in the
different runs of the final evaluation. The second and third
Madgets were randomly chosen.

6.2 Participants

Table 6.3 shows the background information about the par-
ticipants. The average age is 26 years (SD = 2.83). All par-
ticipants have a technical field of study.

Participant Age Field of study
1 29 Computer science
2 25 Mechanical Engineering
3 22 Mechanical Engineering
4 26 Computer science
5 29 Physics
6 23 Computer science
7 28 Computer science

Table 6.3: List of all participants of the final evaluation with
their age and field of study. All users are tech-savvy.
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6.3 Results

The first task was always completed successfully but per-
formance times varied strongly (AVG: 11.86 SD: 5.52).

In Figure 6.1 the programming times for the first task are
contrasted with the iterations of the second task. The graph
shows a monotonous decrement of the duration for all par-
ticipants.
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Figure 6.1: Graph showing the programming duration for
both tasks of all participants. The values are monotonously
decreasing indicating a good learning curve.

The second task could always be completed. The graph in
Figure 6.2 shows the time users spent on average on the
different aspects in percent.

The quality of the final prototype and the number of it-
erations are listed in table 6.4. While the Knob and De-
tent Slider were always fully functional, the radio-button
Madget was only partially functional. The problem of the
latter Madget was mostly that the tabletop provided insuf-
ficient magnetic force.

The user’s performances are contrasted with each other in
Figure 6.3 to bring out the individual differences. The con-
struction time averaged to 76.86 minutes (SD 17.04) and
programming time averaged to 10.14 minutes (SD 3.58).
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Figure 6.2: Time users spent on average on different aspects
of the second task in percent. The yellow area includes the
assembly of the Madget and all repairs. The constructing
proportion (88%) is dominating the prototyping process.
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Figure 6.3: The graph contrasts the time users spent on pro-
gramming (red) to constructing (blue). The time the laser
cutter was used is excluded since it is independent of the
user’s performance. The proportions already indicate that
the constructing dominates the prototyping process.

The result of the questionnaire is shown in Figure 6.4.
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UserID #Construction #Programming Quality of
iterations iterations final prototype

1 1 1 Fully functional
2 2 1 Fully functional
3 1 1 Fully functional
4 2 2 Partly functional
5 2 2 Fully functional
6 4 3 Fully functional
7 3 3 Partly functional

Table 6.4: List of all participants of the final evaluation
showing the number of iterations they required to complete
the second task and the quality of their final prototype

54321

I thought the toolkit 
was easy to use

I found the various functions 
in this toolkit were well integrated

I think that most people would 
learn to use this system very quickly

I needed to learn a lot things before 
I could get going with the 2nd task

I thought the Madget 
was easy to construct

I found the programming 
unnecessary complex

doing the 2nd task

navigating the toolkit

54321
agreedisagree

min -    [q1   - Mdn  -  q3]  -  max

Figure 6.4: Visualization of the results of the questionnaire.
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6.4 Discussion

Although the study is limited to a small set of Madgets it
already shows that it is possible to prototype a fully func-
tional Madget in under two hours.

The usability goal of the toolkit to have a low threshold is
accomplished according to question one and three of the The results show that

the toolkit offers a
low threshold.

questionnaire: All users found the toolkit easy to learn and
to use. The graph in Figure 6.1 supports this result: The
programming times are monotonously decreasing, which
indicates a good learning curve. A dependence on the level
of difficulty of the Madget can be precluded, since the types
and the order has been randomized (see table 6.2).

Positive results of question two (“I found the various func- The revised help
texts better assist the
users navigating the
UI.

tion in this toolkit were well integrated”) and eight (“I
felt very confident navigating the toolkit”) indicate that
the GUI is well structured. The revision of the help texts
was successful, since no users complained about getting
lost anymore. According to the result of question six (“I
found the programming unnecessary complex”) only one
user found the programming unnecessary complex.

The tabletop hardware turned out to be the bottleneck of
the prototyping process. Too much time was spent on re- The teething

problems of the
tabletop hardware
negatively influences
the prototyping
process.

fining the Madget to circumvent its shortcomings. Only lit-
tle time was spent on programming (12%, see Figure 6.2).
More construction iterations (AVG 2,14; SD: 1,07) were re-
quired than program iterations (AVG: 1,86; SD: 0,9). Espe-
cially in the case of the radio-button the Madget had to be
highly optimized to allow the elevation of the buttons.

A revision of the tabletop would ease the prototyping pro-
cess in several ways:
Firstly, a stronger magnetic force can overcome more fric-
tion, thus, less optimization of the Madget is required. Sec-
ondly, a higher input resolution allows for recognition of
smaller markers, which can be attached more closely to-
gether. Consequently, the whole Madget can be smaller
scaled and, thus, will be lighter.

A further improvement of the prototyping process can be
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achieved by a revision of the toolkit: The incorporation ofThe usage of the
Actuation framework
saves
implementation time
and effort but its
limitations are also
negatively
influencing the
prototyping process.

the Actuation framework saved a lot of time implementing
the medium fidelity prototype. But the actuation technique
it offers is too restrictive and needs to be extended. Cur-
rently, only a vector for every permanent magnet can be
specified and the electromagnets are controlled automati-
cally. A specification for the radius of influence for every
permanent magnet is missing, influencing the amount of
electromagnets that are used to actuate a certain perma-
nent magnet. This would enable to drive several perma-
nent magnets as one. For instance, the button plate of the
radio-button Madget requires a permanent magnet on each
edge to be elevated smoothly. The Toolkit currently does
not support that.

The result of question five (“I thought the Madget was easyFurther studies are
required to test a
correlation of
prototyping success
and experience with
the deployed tools.

to construct”) shows how differently the participants as-
sessed the difficulty of constructing a Madget. The value
ranges from 1 - complete disagreement to 5 - complete agree-
ment with first quartile on 2 and third quartile on 3, 5.
One reason for that high variance is the difficulty with
which users learned to use the new tools: Laser cutter and
CorelDRAW. (As the range of the answer to question four
shows.) Another reason is the experience with engineering
drawings. Although the correlation was not found to be
significant (τ = 0.0563, p = 1), users with prior knowledge
in that field have shown less problems with the design of
the blueprint and the adherence to the guidelines.
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Chapter 7

Summary and future work

In this final chapter I will summarize my research, state the
contributions to the prototyping community and give an
outlook on future research ideas.

7.1 Summary and contributions

I started with an introduction to prototyping in the field
of interactive tabletops and tangible user interfaces. After
discussing the appropriateness of recent systems in terms
of prototyping I summarized the strengths of the Madgets
tabletop. Then I pointed to the lack of toolkits (for interac-
tive tabletops) that not only allow prototyping the physical
shape of tangibles but also support the acquisition and pro-
cessing of data.

For a toolkit to explore the prototyping capabilities of
Madgets the following requirements have been identified:
A low threshold for the registration and integration of the
new tangible controls and a high ceiling to support all de-
grees of freedom the technology offers.

Based on the Madgets presented in the paper Rendering
physical effects in tabletop controls by Weiss et al. [2011] a soft-
ware prototype has been implemented that supports the
realization of Madgets rendering physical resistance and
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dynamic detents. In order to evaluate this toolkit seven
participants had four hours to construct and program sev-
eral Madgets with increasing level of difficulty. One task
was the construction and programming of a Madget from
scratch, which comprised the design of the blueprint, the
operation of a laser cutter and the assembly of the Madget.

As the test results show, the initial goal of a low threshold
has been accomplished, so that a fully functional tangible
control could be built from scratch in under two hours. But
the study also indicated areas to improve for future work.

To sum up, this work contributes the investigation of the
prototyping capabilities of the Madgets tabletop and gives
empirical evidence of the usability and usefulness of this
prototyping technique. This work should be beneficial to
the prototyping community as it provides insights that are
applicable to other tabletop technologies too.

7.2 Future work

The user study showed that the shortcomings of the
Madgets tabletop hardware and the limitations of the tool-
kit have a negative influence on the success of the prototyp-
ing process.

In future work, the tabletop hardware needs to be revised
to increase the maximal applicable magnetic force, the ac-
tuation resolution and the input resolution. This will re-
duce the amount of optimization that is required for some
Madgets in order to function properly.

Also, the visual programming capabilities of the toolkit
should be extended to support the full degree of freedom
the tabletop hardware offers. This comprehends arbitrary
pulse width modulation to, e.g., enable power transfer to
an LED embedded into a Madget. Programmable actua-
tion sequences allow the realization of more complex tan-
gible controls, which would increase the usefulness of the
tool.
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Further studies are required to investigate the influence of
prior knowledge in technical fields like experience with
laser cutter or engineering drawings on the prototyping
process. During the study, this effect has been observed
but have not been found significant.
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Appendix A

Materials of the user
study

List of all documents that will follow:

1. User test manual.



Idea of Madgets
Madgets are input/output devices for the 
actuated tabletop, like keyboard and 
mouse for the desktop PC. While the 
keyboard and mouse are standard 
controls, Madgets are specialized controls 
to allow the user to solve certain tasks 
more efficiently.
Furthermore, they can be used as output 
and input devices at the same time.

E.g., the knob in the picture on the right 
can be rotated to scroll through a video. 
Additionally, the timeline of the video is 
displayed as pie chart.

Why Madgets?
Madgets work without any electronics, which 
makes them easy to construct and thus, 
optimal to prototype. Ideas of new IO 
devices can rapidly be tested.
The ProMadgets toolkit is used to awake the 
Madgets to life without requiring any 
programming.  
Physical properties can be rendered 
dynamically saving some design cycles 
refining the prototype.

What are Madgets?
Madgets are made of transparent acrylic, 
markers and magnets.
Markers are round pieces of paper attached 
to the corners, so that the position and 
orientation of the Madget can be tracked. 
Additionally, markers are attached to 
moveable parts to perceive the state of the 
Madget;
E.g., the position of the slider in the picture 
on the right is perceived via the attached 
marker. The path on which it is able to move   
is used to derive its value.

The next section describes the process of 
constructing a Madget in more detail.

ProMadgets - User documentation - Page1/4



Madget construction
As one can see in the picture on the right, a 
Madget is made up of several layers of 
transparent acrylic. The layers are cut out of 
a 2mm acrylic plate using a laser cutter.
A blueprint must be drawn for the laser cutter 
to cut out the right parts.

The construction must adhere to several 
rules explained on the next page to achieve 
best performance of the produced Madget.

After the laser cutter has finished, the parts 
are glued together and markers and 
magnets are attached.

ProMadgets - User documentation - Page2/4



Guideline for Madget construction
For best performance, the construction must 
adhere to the following rules:

Limit size to 25cm in width, 12cm in height 

Build rectangle ground

Build as light weight as possible

Moveable parts should slide smoothly

Attach exactly 3 markers and magnets on 
the corners of the Madget in “L” shape. 
Attach those underneath the Madget, so 
that the markers touch the tabletop 
surface 

Keep distance between all markers at 
least one marker size

Keep distance between all magnets at 
least one marker size

ProMadgets - User documentation - Page3/4



Programming the Madget
Every Madget can be integrated working off 
these four steps:

1. Definition of the footprint
• Lift Madget from table before pressing 

“Start new prototype”. Hold button 
pressed while you lay the Madget onto 
the Madget Area. Move the Madget a 
bit around, then release the button.

• Recognized markers are represented 
as buttons in the workbench area; 

• Categorize the markers into static and 
dynamic by holding down the 
command button for the desired type 
(in the Control Area) and the pressing 
the marker representations (in the 
workbench area) at the same time.  

• If not all markers are recognized, try 
moving the Madget around while 
holding the “start new prototype” 
button pressed.

• Superfluous markers like faulty 
recognized ones can be set to be 
ignored!

2. Definition of dynamics 
• Demonstrate paths on which the 

markers declared as dynamic move. 
The Madget must be recognized, i.e., 
have a blue corner around it. If not, 
move it around until it gets recognized.

• Hold “Demonstrate movement” 
pressed to demonstrate linear or 
circular movements. The recorded 
path is indicated as green dotted line.

• Hold “Define button” pressed to select 
a marker declared as dynamic to move 
orthogonal to the tabletop surface. 
Simply choose one of the dynamic 
markers when they appear.

• Details about the defined dynamics 
can be revised in the object inspector

3. Placement of visual elements
• Press “Add rectangle” to add a 

rectangle shape to the Madget.
• Added shapes can be edited by 

clicking the corresponding button in the 
object inspector. The edit mode starts 
and the shape can be resized, scaled, 
rotated and tinted.

• If the Madget is recognized (blue 
border), you will immediately see the 
changes. Move the Madget around if 
not recognized.

4. Programming of autonomous behavior
• You create autonomous behavior by 

clicking one element of the input side 
and of the output side at the same 
time. 

• Created connections are listed in the 
object inspector and can be 
disconnected by clicking on the 
corresponding button in this list.

ProMadgets - User documentation - Page4/4
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