
by
Viola Valery Johanna Graf

Designing a
Modular Browser

Extension for Visual
Countermeasures

Against Dark
Patterns

Bachelor’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Ulrik Schroeder

Registration date: 08.01.2024
Submission date: 10.04.2024

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

 *Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

v

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

2 Related Work 5

2.1 Taxonomies & Prevalence 5

2.2 Automated Detection 9

2.3 Countermeasures 10

3 Introducing the Browser Extension Framework
Deceptive Defender 15

3.1 Requirement Analysis 16

3.2 Architecture Design 21

vi Contents

4 Implementation 25

4.1 Security . 25

4.2 Manifest . 27

4.3 User Interface 27

4.4 Service Worker 27

4.5 Content Script 30

4.5.1 Detecting DOM Changes 31

4.5.2 Extracting Webpage Contents & In-
jecting IDs 31

4.5.3 Injecting Visual Countermeasures . . 32

4.6 Modules . 34

4.6.1 Detector 34

4.6.2 Converter 35

5 Evaluation & Discussion 37

5.1 Proof of Concept 37

5.2 Discussion . 39

6 Summary & Future Work 43

6.1 Summary . 43

6.2 Future Work 44

A JSON schema 47

Bibliography 53

Contents vii

Index 59

ix

List of Figures

2.1 Example of cognitive biases being exploited
when attempting to delete a user account . . 6

2.2 Countermeasure Highlight with Explana-
tion, tested in a user study by Schäfer et al.
[2023] . 12

2.3 Example of a countermeasure, applied by
the Dapde Pattern Highlighter browser extension 13

2.4 Popup of the Dapde Pattern Highlighter
browser extension 14

3.1 Diagram showing data transfer between the
DOM, the framework, the Detector module
and the Converter module 22

4.1 Diagram showing the sequence of actions for
one run-trough 26

5.1 Applied countermeasures using the Decep-
tive Defender framework and hard-coded
modules . 38

xi

List of Tables

3.1 Countermeasures designed by Schäfer et al.
[2023] and their required functions for injec-
tion. 18

xiii

Abstract

Dark patterns are manipulative design patterns that aim to mislead users into ac-
tions that favour the service provider’s interests, often at the user’s expense. With
the rise of such deceptive practices, active research is going into theoretical aspects
like categorisation and underlying psychological aspects as well as practical solu-
tions against dark patterns. This thesis deals with the practical side: applying vi-
sual countermeasures directly in the browser. Although there are existing browser
extensions for this purpose, they are often times limited by using simple detec-
tion algorithms or countermeasures. In this project, a browser extension frame-
work with the same purpose is developed, namely Deceptive Defender. It introduces
a novel architecture design enabling flexible integration of two modules, one for
implementing a detection algorithm and one for implementing an algorithm for
creating countermeasures. This approach aims to address limitations of existing
solutions, being adaptable to future developments of DPs, and to support future
research on novel detection and countermeasure strategies.
We describe the development process of the framework, beginning with a require-
ment analysis, focusing mainly on inter-module and DOM communication. It then
proceeds to present the architecture design and implementation of the framework’s
individual parts.
For evaluation, the framework is applied to a test webpage using hard-coded
modules, implementing each three countermeasures against three dark pattern in-
stances. This proof of concept validates the feasibility of the approach.
We conclude with a discussion and possibilities for future work, emphasising the
need for the development of the corresponding modules and future enhancements
of the framework itself.

xiv Abstract

xv

Überblick

Dark Patterns sind manipulative Designmuster, die darauf abzielen, Nutzer zu
Handlungen zu verleiten, die den Interessen des Dienstanbieters dienen, oft auf
Kosten der Nutzer. Mit dem Aufkommen solcher Praktiken wird sowohl an the-
oretischen Aspekten wie der Kategorisierung und den zugrundeliegenden psy-
chologischen Aspekten geforscht, als auch an praktischen Lösungen gegen Dark
Patterns gearbeitet. Diese Thesis befasst sich mit der praktischen Seite: der An-
wendung visueller Gegenmaßnahmen, die direkt im Browser angewandt werden.
Obwohl es bereits Browser Erweiterungen zu diesem Zweck gibt, sind diese häufig
durch unausgereifte Algorithmen zur Erkennung von Dark Patterns oder sehr sim-
ple und unerforschte Techniken für visuelle Gegenmaßnahmen eingeschränkt. In
diesem Projekt wird ein Framework einer Browser Erweiterung mit demselben Ziel
vorgestellt: das Deceptive Defender Framework. Es führt ein innovatives Architek-
turdesign ein, das eine flexible Integration von zwei Modulen ermöglicht; eines für
die Implementierung eines Algorithmus zur Erkennung von Dark Patterns und
eines für die Implementierung von visuellen Gegenmaßnahmen. Dieser Ansatz
zielt darauf ab, die Einschränkungen bestehender Lösungen zu überwinden, an-
passungsfähig an zukünftige Trends zu sein und die Forschung an neuen Strate-
gien zur automatischen Erkennung und Gegenmaßnahmen zu unterstützen.
Wir beschreiben den Entwicklungsprozess des Deceptive Defender Frameworks, be-
ginnend mit einer Anforderungsanalyse, die sich hauptsächlich auf die Kommu-
nikation zwischen den Modulen und mit dem DOM konzentriert. Anschließend
wird das Architekturdesign und die Implementierung der einzelnen Teile des
Frameworks präsentiert. Zur Auswertung wird das Framework auf einer Testweb-
seite mit hartkodierten Modulen angewendet, die jeweils drei Gegenmaßnahmen
gegen drei Instanzen von Dark Patterns implementieren. Dieser konzeptionelle
Nachweis validiert die Machbarkeit des Ansatzes. Wir schließen mit einer Diskus-
sion und schlussfolgern Möglichkeiten für künftige Arbeiten, welches notwendi-
gerweise die Entwicklung der Module enthält, sowie die Weiterentwicklung des
Frameworks selbst.

xvii

Acknowledgements

I would like to thank Prof. Dr. Jan Borchers and Prof. Dr.-Ing. Ulrik Schroeder for
examining this thesis.

A special thanks to my supervisor René Schäfer, who sacrificed his time for my
questions and discussions. You gave me the support and motivation I needed so
that I felt confident throughout the process and also had a lot of fun.

I would also like to thank all people in the Media Computing Group for supporting
me, especially Sarah Sahabi, Kevin Fiedler and Florian Plümäkers.

Finally, a big thank you to my (extended) family, my flatmates and to David, who
have supported me over the last years and during this thesis project.

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in British English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file

http://hci.rwth-aachen.de/public/folder/file_number.file

1

Chapter 1

Introduction

The internet has evolved from merely a few lines of text on
a screen into a source of boundless information where vi-
sual and interactive elements dominate [Ross, 1995]. While
companies are making use of it for online selling and ad-
vertisement, the web has grown into a crucial economic
factor for many of them [Cockburn and Wilson, 1996].
Among these sophisticated user interfaces arises a trend
towards the implementation of malicious designs on web-
pages [Lacey and Beattie, 2023, Utz et al., 2019], collectively
referred to as dark patterns. These patterns aim at exploit-
ing cognitive biases to manipulate user behaviour [Bösch
et al., 2016, Waldman, 2020], often times benefitting com-
panies at the user’s expense [Mathur et al., 2019, Nouwens
et al., 2020, Conti and Sobiesk, 2010].

DARK PATTERN / DECEPTIVE PATTERN (DP):
Harry Brignull was the first to define the term dark
pattern (DP) on his website1 in 2010. Later, the term was
exchanged with the synonym deceptive pattern (DP) and
is now defined as:

”tricks used in websites and apps that make you do
things that you didn’t mean to, like buying or signing
up for something”2.

Definition:
Dark Pattern /
Deceptive Pattern
(DP)

1darkpatterns.org Published in 2010
2deceptive.design (formerly darkpatterns.org) Accessed: March 2024

2 1 Introduction

Studies by Lacey and Beattie [2023] and Utz et al. [2019]The use of DPs is
widespread. reveal a prevalence of DPs, with over half of the 100 most

popular sites in New Zealand (54%) employing at least
one, and approximately 57.4% of consent notifications in
the European Union integrating one or more DPs.
Minor differences in text or design can already have a
decisive impact on user interactions, for instance using
technical language (”This site uses cookies” instead of
”This site collects your data”) [Utz et al., 2019]. Also
commonly integrated in consent notifications are targeted
differences in size and color of ’accept’ and ’decline’
buttons to influence user’s decision process [Mathur et al.,
2019, Utz et al., 2019]. Such a design instance would be
categorised as False Hierarchy in Gray et al. [2018]’s taxon-
omy, or Visual Interference, following Mathur et al. [2019]’s
taxonomy. Conti and Sobiesk [2010] argue based on their
study with experienced users, that even when users are
unconsciously aware of these patterns, they can have a
psychological impact [Conti and Sobiesk, 2010, Waldman,
2020]. The informed user is likely to weigh up the costs
and benefits of using websites that integrate manipulations
[Conti and Sobiesk, 2010].
These developments are not only outraging consumers,The HCI community

is actively seeking
lutions to inform and

protect the user.

referring to them as ”assholedesigns”3, but also motivating
the Human-Computer Interaction (HCI) community to
actively seek solutions to inform and protect the user
[Lukoff et al., 2021]. They have systematically approached
this by gathering data about DPs [Mathur et al., 2019] and
by categorising them [Gray et al., 2018, Chen et al., 2023,
Mathur et al., 2021, Conti and Sobiesk, 2010]. To bring
back the user’s self-determination in the web, Mathur et al.
[2021] propose the use of visual countermeasures and a
possible design. Following this suggestion, Schäfer et al.
[2023] created seven countermeasure designs and tested
them in a user study.
This thesis deals with the approach of using visual coun-Browser extensions

are viewed as a
promising tool to

battle DPs.

termeasures directly in the browser. Browser extensions
(subsequently referred to as extensions) are often mentioned
as a promising tool for this purpose [Conti and Sobiesk,
2010, Mathur et al., 2019, Bösch et al., 2016, Schäfer et al.,
2023]. There are existing solutions, such as the Insite4

3Subreddit about DPs: ’r/assholedesign’ Accessed: March 2024
4https://github.com/NicholasTung/dark-patterns-recognition Ac-

3

extension, developed at Teenhacks in Fall 2019 or the
Dapde Pattern Highlighter5 extension. Additionally, there
are several extensions available in the Chrome Webstore6.
It appears that existing extensions are either limited by Existing solutions

have strong
limitations.

only targeting cookie banners or certain websites, by
their small number of covered DPs, or due to their naive
detection and countermeasure techniques. For instance
all of the extensions to our knowledge are using only one
countermeasure style, which is highlighting the malicious
elements and partly by additionally providing a popup
when hovering over them.
This follows from the fact that research is still in early
stages on detection algorithms and countermeasures [Gray
et al., 2023a]. The fact new patterns continually emerge
is not helpful, and it demands reactive detection- and
countermeasure strategies [Hausner and Gertz, 2021].
It is inconvenient for the user to use each one extension for
targeting Cookie Banners7 and one to countermeasure the
patterns Bait and Switch & Hidden Information8.
To tackle named problems, this thesis is dedicated to the Deceptive Defender

framework aims at
enabling flexible
integration of
detection and
countermeasure
strategies.

development of modular Chrome™ extension framework
(namely Deceptive Defender), that enables flexible integra-
tion of a module for detection and a module for counter
measuring. The detection module Detector can implement
any detection algorithm that is based on the HTML and
CSS data of the web page. The countermeasure module
Converter can implement a wide range of countermeasure
strategies. It uses the tools provided by the extension
framework, such as inserting/deleting elements or modi-
fying attributes and styles of the websites elements.
The Deceptive Defender framework aims at simplifying
testing and updating of detection algorithms and coun-
termeasures. It assures adaptability to future trends and
scientific developments with its modular structure. For
evaluation, selected visual countermeasures will be imple-
mented exemplarily on a webpage.

cessed: March 2024
5https://github.com/Dapde/Pattern-Highlighter Accessed: March

2024
6https://chromewebstore.google.com Accessed: March 2024
7https://github.com/wsg-ariadne/ariadne Accessed: March 2024
8https://github.com/Carmineh/Dark-Pattern-Identifier Accessed:

March 2024

5

Chapter 2

Related Work

2.1 Taxonomies & Prevalence

The UX designer Harry Brignull was not only the first to
use the term DP, but he set the stage for public awareness
and academic inquiry into DPs. He wanted to educate
the public by launching a website1, providing both a list
of DPs with explanations and a ’hall of shame’ showing
DP examples and shaming companies for the use of
malicious designs. One example is illustrated in Figure
2.1. Raising awareness is an effective way of battling DPs
[Conti and Sobiesk, 2010, Bongard-Blanchy et al., 2021].
When awareness rises, the user tends to view integrations
of malicious designs more negatively [Commission et al.,
2022]. However, they can still psychologically impact
users, even when the user is subconsciously aware of
them [Conti and Sobiesk, 2010, Waldman, 2020]. In such
cases, informed users may begin to carefully consider the
trade-offs of interacting with websites that employ these
manipulative tactics [Conti and Sobiesk, 2010].

Later, researchers followed the initial step taken by Harry The initial step is to
create taxonomies.Brignull and created taxonomies [Conti and Sobiesk, 2010,

Gray et al., 2018, Mathur et al., 2019, Chen et al., 2023] to

1https://www.deceptive.design/ Accessed: March 2024

6 2 Related Work

Figure 2.1: Dark pattern Immortal Accounts on booking.coma as described by Bösch
et al. [2016]. After clicking on the button delete account, the user is presented with
three additional options. The user is forced to read the options before realising
that only the third choice actually deletes their user account. After selecting the
correct option, the service provider continues to increase the workload for the user
by forcing a further confirmation via email.

ahttps://www.booking.com/ Accessed: March 2024

grasp the scope of application and variety of DPs.

But these practices are not only used on websites. Conti
and Sobiesk [2010] formulated a categorisation based on a
long-term study that involved websites, desktop software
and other media. For instance, designing uninstalling of
an application difficult is categorised as a DP by Conti and
Sobiesk [2010] and is a specialty of mobile applications and
can be encountered when trying to remove an operating
system’s default application. More recent, Chen et al.
[2023] published a research paper that was solely based on
mobile applications, including a taxonomy.
In a widely popular work by Gray et al. [2018], two
researchers collected 118 artefacts from selected online

2.1 Taxonomies & Prevalence 7

platforms. While trying to categorise them, they found
that some content needed either more specific or broader
categories than the ones Brignull had published on his
website. Therefore, they expanded Brignull’s concept and
named 5 broad categories of DPs: Nagging, Obstruction,
Sneaking, Interface Interference and Forced Action, with more
specific sub-categories.
Mathur et al. [2019] used a crawler on 11,000 websites
and collected 1,818 instances of DPs on approximately
11% of the websites. When targeting specifically shopping
websites, it is likely to encounter an instance of Interface
Interference or Forced Action [Lacey and Beattie, 2023].

There is a great deal of variation in the creation of tax- A consensus on the
terminology of DPs is
needed.

onomies and sometimes two authors will choose a different
name for the exactly the same category. For example, Conti
and Sobiesk [2010] name categories such as Forced Work and
Interruption, which correspond to Nagging and Obstruction
in Brignull’s taxonomy2. Existing taxonomies are also used
as a basis and extended or refined [Chen et al., 2023, Gray
et al., 2018, Mathur et al., 2019], or a different target is
addressed (e.g. mobile applications) [Conti and Sobiesk,
2010, Chen et al., 2023]. This calls for a consensus about
the categories of DPs. Gray et al. [2023b] have already
published a preliminary three-level ontology aimed at
supporting translational research and regulatory action.
Soe et al. [2022] mention that such a codebook consensus
would need to ”account[..] for newly identified patterns in
future work”[Soe et al., 2022].

Lacey and Beattie [2023] selected the top 100 New Zealand
websites using Alexa rankings to investigate the occurrence
and clustering of DPs. More than half of these websites
(54%) implemented at least one DP [Lacey and Beattie,
2023]. Based on a screening of 6,146 cookie banners, Coud-
ert [2020] found instances of Obstruction or Interface Interfer-
ence [Gray et al., 2018] on 89.63% of them.
Lacey and Beattie [2023] pinpointed that DPs are frequent
during purchases, on homepages and when cancelling ser-
vices. It is likely to encounter fake timers, pressuring

2https://www.deceptive.design/ Accessed: March 2024

8 2 Related Work

the user during purchases, and forced registrations on e-
commerce sites. Mathur et al. [2019] state that the most
common types of DPs are covert, deceptive, or hiding in-
formation. Many are aimed at influencing the user, usingDPs exploit cognitive

biases. cognitive biases [Gray et al., 2018, Bösch et al., 2016, Wald-
man, 2020].

COGNITIVE BIASES:
Kahneman [2003] describes cognitive biases as system-
atic patterns of deviation from rationality in judgment.
Biases stem from the mind’s attempt to simplify informa-
tion processing through heuristic thinking, due to insuf-
ficient capacity for comprehensive analysis before mak-
ing decisions.

Definition:
Cognitive Biases

Partly, these psychological effects are described when
creating taxonomies [Bösch et al., 2016, Mathur et al.,
2019]. According to Waldman [2020], the five most
persuasive biases are anchoring, framing, hyperbolic
discounting, overchoice, and metacognitive processes in
decision-making. Another example is the state of cognitive
dissonance, which is likely to emerge when the user fails to
delete their account due to the service provider designing
the process of deletion to be challenging [Bösch et al., 2016].

COGNITIVE DISSONANCE:
According to Festinger [1957], cognitive dissonance oc-
curs when an individual experiences a conflict between
two or more cognitions (thoughts, beliefs, or attitudes),
where one cognition directly contradicts another. This
state of psychological tension is uncomfortable for the
individual and motivates them to reduce it by changing
their cognitions, justifying their behaviour [Festinger,
1957].

Definition:
Cognitive

Dissonance

This state of psychological tension may cause the user to
reconsider their original intention to delete the account, in
order to reduce the inconsistent mental state they are in
(see Figure 2.1).

2.2 Automated Detection 9

2.2 Automated Detection

The taxonomies discussed in Section 2.1 are partly based
on (semi-)automated detection of DP instances [Mathur
et al., 2019, Lacey and Beattie, 2023]. Automatic detection
not only facilitates analysing the prevalence of DP and
categorising of DPs, but can be used as a tool to enable the
application of countermeasures directly in the browser.
Two fundamentally different approaches can be used for Text-based detection

of DPs is promising.data retrieval: analysing the Document Object Model
(DOM) of a website and using visual detection. Detecting
DP instances in screenshots has the advantage of gen-
eralisability across platforms, while still being able to
extract textual information [Chen et al., 2023]. Considering
today’s websites are heterogeneous, detecting text-based
DPs is promising since text can be identified on almost any
website [Hausner and Gertz, 2021].
Mathur et al. [2019] found DP instances on approximately
11% of the analysed websites, by solely analysing text
contents. They emphasise, that this number constitutes a
lower bound due to their restricted detection method. The
detection of DPs using solely textual contents introduces
difficulties in maintaining low false positive rates, due to
the context-dependent nature of most DPs [Hausner and
Gertz, 2021].
As a part of a master’s thesis project, Coudert [2020]
collects a dataset of cookie banners, trying to adapt the
methodology of Mathur et al. [2019]. The authors uses
a segmentation algorithm derived from Mathur et al.
[2019], and then assigns a score to each segment, based
on ”typical” vocabulary used in cookie banners [Coudert,
2020].
Soe et al. [2022] trained a prediction model on 300 websites
to detect DPs on cookie banners. Before being fed into the
prediction model, the data needs to be processed into a set
of feature values.
Recently, Chen et al. [2023] identified six key characteristics Prediction models

are fed with feature
values of DOM
elements.

for such a prediction: coordinates and element types, text
content, status (e.g., of checkboxes), icon semantics, text
colours, and relationships between UI elements. They
developed a detection tool specifically for mobile appli-
cations, and propose using it for a one-time screening to

10 2 Related Work

determine if the user wants to make use of a particular app
[Chen et al., 2023].
Soe et al. [2022] note that the complexity of informationSome DPs may be

undetectable. presented to users makes it is difficult for both humans
and machines to read the intent behind it [Soe et al.,
2022]. Curley et al. [2021] state that some DPs are even
undetectable. This may be due to the variety in which
they occur [Curley et al., 2021], and the rarity of some
cases [Hausner and Gertz, 2021]. Hausner and Gertz [2021]
propose exploring rare pattern detection and unbalanced
classification solutions. They themselves chose graph
neural networks for their detection, leveraging the natural
tree structure of the DOM for more effective pattern
recognition. Another problem are the high false positive
rates of existing approaches Coudert [2020].
It should be noted, that most of the detection approaches
are semi-automatic and only used for dataset creation
[Coudert, 2020, Soe et al., 2022]. Most would not suffice
as a foundation to visually countermeasure DPs in the
web. Gray et al. [2023a] report that work on deployment of
automated detection techniques is generally not common.

2.3 Countermeasures

Bongard-Blanchy et al. [2021] propose different interven-
tion measures against DPs; educational-, design-, technical-
and regulatory measures. Additionally, the authors discuss
four different aims of these measures: DP Awareness,
DP Detection, DP Resisting and DP Elimination. An
educational measure within the scope of DP Awareness
would be for instance the education of developers to use
more user-friendly designs [Gray et al., 2018, Lukoff et al.,
2021]. However, this approach may not be effective when
these designs are used intentionally. Design patterns that
have a negative impact, whether intentional or not, are
commonly referred to as Anti-Patterns [Greenberg et al.,
2014]. The intervention measure can be aimed at educating
users too. Bongard-Blanchy et al. [2021] claim, that when
a user recognises a DP instance, they are less likely to be
influenced by it.

2.3 Countermeasures 11

Early on, Conti and Sobiesk [2010] conducted a survey, Varied
countermeasuring
tools were conducted
early-on.

asking 47 security experts to rate the ease of use and
effectiveness of seven available counter measuring tools
such as pop-up blockers, which is a technical intervention
measure for the elimination of DPs within the dimensions
of Bongard-Blanchy et al. [2021]. The browser-plugin was
identified as the most effective at that time, but the authors
emphasise the need for more effective ways of counter
measuring.
Later, Bösch et al. [2016] delved into privacy-related DPs,
recommending tools for specific privacy concerns. These
correspond partly to the category of technical intervention
measures by Bongard-Blanchy et al. [2021], with the scope
DP Resistance. One example is the Privacy Bird software,
which is a tool that helps the user identify, whether the a
website is conform with the user’s security preferences.
As mentioned in Section 2.1, Mathur et al. [2019] propose
leveraging their data set to develop tools to counteract
DPs, specifically mentioning browser extensions (subse-
quently referred to as extensions) to detect and visually
countermeasure them [Mathur et al., 2019]. Recently,
Schäfer et al. [2023] expanded on the proposed design
concept of Mathur et al. [2019].The authors conducted There is already a

study on visual
countermeasure
designs.

a user study on visual countermeasures, exploring six
different designs applied to three DPs: Low-stock Messages,
Visual Interference, and Confirmshaming. The most promis-
ing countermeasure design from a user perspective was
highlighting the respective elements plus providing an
explanation using a popup (also known as Highlight with
Explanation (HL+E)) shown in Figure 2.2 [Schäfer et al.,
2023]. Completely hiding the DP (also known as Hide
without Marking (HD)) without the user’s knowledge
was seen as controversial, due to lack of transparency and
distrust of the user. According to Schäfer et al. [2023],
some countermeasures might be more useful for specific
application areas, such as the countermeasure Lowlight
(LL) (making the malicious content less noticeable) being
helpful against Low-Stock Messages and HL+E or HD being
better for Confirmshaming and Visual Interference.
Corresponding to the categorisation by Bongard-Blanchy Browser extensions

to raise awarness
about and eliminate
DPs are available.

et al. [2021], browser extensions are a technical intervention
method. The authors assigned this measure to the scope
of DP Elimination. But there is the possibility for browser

12 2 Related Work

Figure 2.2: Countermeasure Highlight with Explanation,
tested in a user study by Schäfer et al. [2023].

extensions just to aim at raising awareness (intervention
scope DP Awareness), taking browser extensions such as
My cognitive bias3 or Brainy Tab4 as a role model. These
extensions aim to educate the user about cognitive biases
that underlie many DPs (as outlined in Section 2.1).

The use of browser extensions with the aim of eliminating
DPs (intervention scope DP Elimination [Bongard-Blanchy
et al., 2021]) was mentioned by Mathur et al. [2019] as a
tool to apply countermeasures directly in the web browser.
There are existing projects for this specific purpose, pub-
lished on GitHub5 (under the keyword ”dark+patterns”)
and the Chrome™ Webstore6.
Some of them focus on one or two DP types, such as the
Dark Pattern Identifier7 and the extension Trick Question
Detection8, both developed by students of the University of
Salerno. Another extension is even limited to one website9,
specifically helping the user to identify sponsored prod-
ucts, which is designed to be difficult (categorised as the
DP Disguised Ad by Gray et al. [2018]).
Ariadne10 is a browser extension, developed as a part
of a research project by students of the University of
Philippines - Dilimanon. This extension is available in the

3https://chromewebstore.google.com/detail/my-cognitive-
bias/cmapeoagadpppgajnicpagcgpdklfhch Accessed: March 2024

4https://microsoftedge.microsoft.com/addons/detail/brainytab/
hepiifekbekhoabjbnapgpdjdgkmhgpf Accessed: March 2024

5https://github.com/ Accessed: March 2024
6https://chromewebstore.google.com/ Accessed: March 2024
7https://github.com/Carmineh/Dark-Pattern-Identifier Accessed:

March 2024
8https://github.com/xrenegade100/trick-question-detection Ac-

cessed: March 2024
9https://github.com/keybraker/reSkroutzed Accessed: March 2024

10https://github.com/wsg-ariadne/ Accessed: March 2024

2.3 Countermeasures 13

Figure 2.3: Example of a countermeasure, applied by
the Dapde Pattern Highlightera browser extension on ama-
zon.comb, outlining two counters in black.

ahttps://github.com/Dapde/Pattern-Highlighter Accessed: March
2024

bhttps://www.amazon.com/ Accessed: March 2024

Chrome™ Webstore and is aimed at detecting deceptive
designs in cookie banners such as Unclear Language, using
a Naive-Bayes classifier, and Weighted Options, using an
image classifier.
The extension Insite11 was developed by the winning team
of Teenhacks12 in 2019, building upon the segmentation
algorithm and dataset of Mathur et al. [2019] for automatic
detection of DPs. Insite highlights identified DP instances
and provides popups explaining the category of the de-
tected DP. The extension relies on a back-end server for the
use of their Bernoulli Naive-Bayes model for text classifi-
cation. This server must be launched by the user in order
to enable detection. It theoretically covers all DP categories
present in Mathur et al. [2019]’s dataset: Sneaking, Urgency,
Misdirection, Social Proof, Scarcity, Obstruction and Forced
Action [Mathur et al., 2019].

As a part of the Dark Pattern Detection Project (DAPDE)13,
a collaborative project between the Institute of Computer
Science at the University of Heidelberg and the German
Research Institute for Public Administration, a similar
extension was developed: The Dapde Pattern Highlighter.

11https://github.com/NicholasTung/dark-patterns-recognition Ac-
cessed: March 2024

12https://teenhacksli.com/ Accessed: March 2024
13https://dapde.de/de/ Accessed: March 2024

14 2 Related Work

Figure 2.4: Popup of the Dapde Pattern Highlightera browser
extension, including a button to toggle detection on/off
and a counter of dark pattern instances found on the re-
spective webpage.

ahttps://github.com/Dapde/Pattern-Highlighter Accessed: March
2024

This extension implements graph neural networks on the
Document Object Model (DOM), using regular expressions
for detection. To allow the detection of a countdown on e.g.
shopping websites, two temporary copies of the webpage
are created and analysed (see Figure 2.3). The extension
also shows a counter for the number of DP instances found
in one tab (see Figure 2.4).

15

Chapter 3

Introducing the Browser
Extension Framework
Deceptive Defender

Reflecting on the existing body of work, there is an increas-
ing interest to utilise browser extensions to deploy visual
countermeasures against DPs. In the following, the advan-
tages of designing a modular browser extension for the HCI
research community are outlined.
Unlike existing solutions, we aim for the design of a modu-
lar browser extension by implementing an extension frame-
work, which features two interfaces for a separate detec-
tion module (Detector) and a countermeasure module (Con-
verter). These modules are not part of this work and will be
hard coded for testing purposes. The modular architecture
of Deceptive Defender offers several advantages for future re-
search:

1. Flexibility in testing: By decoupling the detection The modular design
offers advantages for
future research.

and countermeasure processes, independent testing
of new approaches for both processes is possible.

2. Future-proofing: The possibility to adapt to future
developments easily, whether to expand the set of de-
tectable DPs or to introduce new countermeasures.

16 3 Introducing the Browser Extension Framework Deceptive Defender

Considering the current state of research in detection
algorithms and visual countermeasures (outlined in Sec-
tion 2), the Deceptive Defender aims to establish a basis
for the HCI community to trial novel methods. Existing
extensions are often restricted to specific types of DPs,
targeting only one website, or relying on naive detection
techniques. Typically, these extensions employ the same
countermeasure: highlighting malicious elements.
The framework enables other developers to plug in their
custom Detector and Converter modules, facilitating ex-
perimentation and the deployment of novel solutions
without the need to build a new browser extension from
the ground up. Utilising the independence of the modules,
interactive prototypes can be used for in-depth evaluation
of countermeasures in user studies, which was proposed
by Schäfer et al. [2023] as the next step.

3.1 Requirement Analysis

In the following, we will outline the functional and non-
functional requirements for a successful implementation
of our modular concept. We do not follow a specific
methodology, doing an in-depth analysis of every part of
the implementation, but rather concentrate on the main
actions and features that are required to be implemented
by the framework. Also we are elaborating on the data
requirements of the modules, as well as functionalities that
have to be provided at their interfaces to ensure a seamless
integration of the Detector and Converter module.

3.1 Requirement Analysis 17

Functional requirements:

1. User interaction

• Activate and deactivate detection

2. Communication with the Document Object Model

• Extracting HTML content

• Extracting CSS content

• Injecting stylesheet

• Adding/deleting elements

• Changing attributes and styles

3. Communication between scipts/modules

• Assigning data to the correct tab

• Enabling referencing each element individually

• Extensibility

Non-functional requirements:

1. Security

2. Documentation

The initial functional requirement is to enable user inter- The user should be
able to detection on
and off.

action. The user should be able to control the detection
process by toggling it on or off based on individual prefer-
ences. This state needs to be saved across browser sessions.
Keeping it simple is due to the limited time frame, with
priority given to the following requirements.

The communication with the Document Object Model HTML and CSS data
is essential for
informed
decision-making.

(DOM) includes reading the HTML and CSS content,
which is essential for the Detector to make informed de-
cisions. With this information, the Detector can consider
element styles and attributes as well as placement and
relationships between elements. Both HTML and CSS
content can be used to determine visual characteristics of

18 3 Introducing the Browser Extension Framework Deceptive Defender

elements. Thus, both files are crucial for the detection of
DPs based on visual cues, and possibly for the Converter
when trying to match the design of two related elements.
The Deceptive Defender framework is required to handle the
injection of changes that are requested by the Converter.
The functionalities to be provided at the Converter interfaceA wide range of

possible content
alterations is

required.

should cover all necessary actions to implement a large set
of visual countermeasures. This framework aims specif-
ically at being able to implement the countermeasures
created and tested by Schäfer et al. [2023]. The required
functions to be implemented by the framework for each of
the countermeasures by Schäfer et al. [2023] are listed in
Table 3.1.

Countermeasure Required function
Highlight with Explanation (HL+E) ADD
Highlight without Explanation (HL) ADD
Lowlight (LL) ADD, STYLE, ATTR
Hide without Marking (HD) DEL, STYLE, ATTR
Hide with Marking (HD+M) DEL, ADD, STYLE, ATTR
Switch (SW) DEL, ADD, STYLE, ATTR

Table 3.1: Countermeasures designed by Schäfer et al.
[2023] and their required functions for injection, listed us-
ing the following abbreviations: ADD for adding a custom
element to the webpage, DEL for deleting an element from
the webpage, STYLE for changing style property of one or
more elements and ATTR for changing attribute property
of one or more elements.

The requirements in Table 3.1 are simplified and depend
on the implementation of the Converter.
The countermeasures Highlight with Explanation (HL+E),
Highlight without Explanation (HL), Hide with Marking
(HD+M) and Switch (SW) require adding elements, such
as a container for enclosing two elements that should be
highlighted together (see Figure 2.2), adding icons for
indicating an available popup or buttons to implement the
switch functionality for the countermeasure SW proposed
by Schäfer et al. [2023]. The countermeasure LL requires
at least ADD, STYLE and ATTR, for instance in case of
a button label text being implemented as an innertext
attribute. For instance, if a button label text is implemented

3.1 Requirement Analysis 19

as an innertext attribute, the text has to be featured through
two or more additionally added elements, which allow
changing STYLES (e.g. text transparency levels or colours)
separately for two or more parts of the text content.
The countermeasures HD, HD+M and SW require either
the action of deleting (DEL) or changing styles and at-
tributes of elements, depending on whether the attribute
visibility is changed to hidden (and back to visible in case of
SW), or the element is deleted completely (and then added
again in case of SW).
Additionally, there may arise the necessity to utilise the
options STYLE and ATTR for the implementation of HL
and HL+E too, in order to correct the placement after
adding or deleting other elements.
To sum up, it should be possible to execute all the coun-
termeasures proposed by Schäfer et al. [2023] with the
functions DEL, ADD, STYLE & ATTR. Hence, these func-
tions are mandatory to be incorporated in the framework.
Further expansion of these functionalities is discussed in
Section 6.
The function ADD underlies special requirements for There are special

requirements for the
process of adding
elements.

implementation. Firstly, the framework must be able to
provide a proper selection of element types to be creatable,
for example div-elements or p-elements. Furthermore the
Converter module must be provided with placement op-
tions of these created elements as parents or child elements
of already existing ones. When placed as a child element,
it should be possible to position it in a precise ordinal rank
among other child elements.
For evaluation, the framework should be evaluated us- The

countermeasures
HL+E, LL and SW
are used for the
evaluation.

ing hard-coded modules, applying the countermeasures
HL+E, LL and SW on selected DPs. This selection of
countermeasures is justified by the fact that the remaining
ones by Schäfer et al. [2023] that we discussed are merely
variations of these three and do not offer any additional
value for our proof of concept. HL is covered by HL+E
and SW implements HD with the additional function
to reverse back to the original state. Also the principle
of marking the area where the countermeasure HD was
applied (namely HD+M) is basically the countermeasure
HD plus highlighting the area as in HL.

20 3 Introducing the Browser Extension Framework Deceptive Defender

Another essential requirement is a smooth communication
between the modules and the Deceptive Defender frame-
work. The framework has to provide clear interfaces and
minimise the requirements for module implementation.
In theory, there must be at least each two data streams
(back and forth) between the modules and the service
worker. First, there is the outgoing data to the Detector. As
already outlined, this module requires at least the HTML
and CSS contents. Additionally, because the framework
must be able to handle requests from multiple tabs, there
has to be some kind of identification inside of the payload
of each message, to identify, which tab the message belongs
to.
Next, there is the data stream back from the Detector to
the service worker. This detection data is essential for the
Converter. However, the modules should not communicate
directly with one another, to ensure that the framework’s
interfaces and the requirements for the modules are
untouched by changes in the modules. To outline the
requirements for the format for (indirect) communication
between the modules is challenging, because it depends
very much on the detail with which the detection and the
countermeasure process is implemented. For the purpose
of this proof of concept, the requirements are kept low:
The Detector must be able to point out detected elements
individually and to name the category of DP they belong
to. Additionally to the outgoing data of the Detector, the
Converter requires the HTML and CSS contents to consider
the original state and context of the detected elements
while choosing appropriate alterations.
Lastly, the outgoing data of the Converter must contain
detailed instructions on how to implement changes on
the website that are needed for effective countermeasures.
The format of the outgoing data of the Converter is most
sensitive to mis-planning because of possible dependen-
cies between different element inside of an enquiry. For
instance when this module commands the creation of an
element, it has to be considered that it can be object of style
changes or must serve as the parent element of other to be
added elements in the same enquiry.
In general, the definition of data formats for this commu-The communication

format must be
extensible.

nication harbours challenges. The data has to be clearly
arranged and the process of encoding and decoding easily

3.2 Architecture Design 21

comprehensible. The chosen format for communication
should be extensible, considering that this thesis project
serves merely as a design outline of a modular browser
extension and a proof of concept. It is possible that not all
requirements will be met, creating the necessity to extend
the data formats because of unpredictable challenges when
implementing the Detector and Converter.

On the non-functional front, security is factor that must
be considered. The biggest concern would be injection
of malicious code. Counteractions in the implementation
can be for instance minimising the manifest permissions
or restricting capabilities of the modules to communicate
with the DOM directly.

Code Documentation, the second non-functional require-
ment, is important for the extension’s further development.
This includes both commenting the codebase and provid-
ing information that is helpful for the implementation
of compatible Detector and Converter modules. Also the
framework itself probably can be enhanced afterwards and
therefore should be comprehensible.

3.2 Architecture Design

This chapter outlines the conceptual design and archi-
tecture of the Chrome™ extension framework Deceptive
Defender, discussing specific roles and contributions of the
framework itself and the connected Detector and Converter
(in the following referred to as modules).

Figure 3.1 illustrates the data flow between the follow-
ing components: DOM, extension framework, Detector and
Converter. The core part, labelled as Deceptive Defender
Framework in Figure 3.1, consists of the popup, the service
worker and a content script. The framework acts as the cen-
tral command, fulfilling the requirements set in Section 3.1:

22 3 Introducing the Browser Extension Framework Deceptive Defender

DOM

Converter

Deceptive Defender Framework

Detector

Tab ID, HTML & CSS

Tab ID &
detected elements

Tab ID, HTML, CSS &
detected elements

Tab ID, elements to
add/delete, styles and
attributes to change

element IDs

HTML & CSS

Stylesheet,
elements to add/delete,

styles and attributes to change2

1

3

6
4

5

7

Figure 3.1: Diagram showing the data transfer between: DOM, Extension Frame-
work, Detector module and Converter module.

1. User interaction

2. Communication with the Document Object Model

3. Communication between scripts/modules

The responsibility of the popup is the deactivation and
activation of the extension’s feature. The implementation
of the popup will be explained in detail in Section 4.3. One
run-through for the application of countermeasures on a
specific tab starts for example when the popup signalises it.

The only content script used in this framework (referredThe content script
handles any

communication with
the DOM, except the

injection of the
stylesheet.

to as the content script hereafter) arranges the injection of
unique identifiers for each element on the webpage for
the identification of specific elements during detection

3.2 Architecture Design 23

or conversion processes (labelled as the second step in
Figure 3.1). Furthermore, as the second step, it extracts the
necessary data for detection, enabling a thorough analysis
of the webpage’s structure and styling by the Detector.
The extension is build on Chrome’s™ Manifest Version 3 The framework uses

Chrome’s™ Manifest
Version 3.

(MV3)1, the latest evolution in the framework governing
Chrome™ extensions. In accordance with this version, the
extension framework employs a service worker to handle
various background tasks, essential for its operation (see
Section 4.4). This includes managing requests by multiple
tabs in parallel and ensuring that the data is routed to the
correct instance of a content script.
Subsequently, in the third step, the service worker sends
the required data to the Detector. The Detector’s primary The Detector

identifies DP
instances.

function is to analyse the information provided by the
extension framework for elements that represent a DP
(see Section 4.6.1). Upon detection, it communicates the
identified deceptive elements back to the extension’s ser-
vice worker in step 4, and the services of the Converter are
demanded by the service worker in step 5 (as illustrated in
Figure 3.1).
Receiving the detected elements, the Converter is tasked The Converter

decides how to
counter act visually.

with deciding how to counteract (see Section 4.6.2). It
determines which elements need style or attribute modifi-
cations and whether elements should be added or deleted.
The Converter’s output includes instructions on these
changes, which are then sent back to the framework. The
injection of a custom stylesheet is done by the service
worker of the framework, and the implementation of these
changes in the DOM is handled by the same content script
as before (see step 7 in Figure 3.1).

The choice of our data transfer format between the exten- The JSON format is
used for inter-module
communication.

sion framework and the modules is the JSON format. This
communication embodies the requirements for modularity
and extensibility (see Section 3.1), being adaptable to
potential detection techniques, future trends of DPs and
countermeasures.

1https://developer.chrome.com/docs/extensions/develop/
migrate/what-is-mv3 Accessed: March 2024

24 3 Introducing the Browser Extension Framework Deceptive Defender

The Detector and Converter modules are both hard coded
in the course of this thesis, as they are intended to be
exchangeable by other developers through their respective
approaches. Further explanations regarding their integra-
tion into the framework and the required data formats will
be worked out in Chapter 4.

25

Chapter 4

Implementation

This chapter discusses the practical realisation of the
Deceptive Defender framework, translating the conceptual
designs from Section 3.2 into working components, while
addressing the requirements, analysed previously in Sec-
tion 3.1.
The structure of the following sections largely mirrors the
sequence of actions outlined in Figure 4.1. Central to our
discussion are the roles of the core components and their
communication: the DOM, the extension framework, and
both modules (illustrated in Figure 3.1).

4.1 Security

The factor security was considered during development,
among others, by following a guide for security in browser
extensions by Chrome™1.
The extension is built on Chrome’s Manifest Version 3
(MV3), which introduces significant improvements in se-
curity, privacy, and performance compared to its predeces-
sor. MV3 enhances security through more granular permis-
sion controls and the introduction of service workers for

1https://developer.chrome.com/docs/extensions/develop/security-
privacy/stay-secure Accessed: March 2024

26 4 Implementation

Popup Storage API Service worker Content scriptDetector

Popup Storage API Service worker Content scriptDetector Converter

update button state

listen to button state
request webpage contents

webpage contents

request countermeasure data

countermeasure data

Converter

detection data

request detection data

request injection

Figure 4.1: Action diagram showing the sequence of actions for one run-trough.
Including actions between the popup scripts, the storage API (chrome.storage), the
service worker, the content script, the Detector and the Converter.

background processes, replacing the previously used back-
ground pages. This change mitigates the risk of excessive
resource usage and potential privacy infringements by en-
suring better controlled background activities.

The manifest permissions used by our framework areThe Deceptive
Defender framework

requires minimal
permissions.

minimal. With that, the intensity of attacks can be reduced
because every attacker is bound by the same rules [Aravind
and Sethumadhavan, 2014].
The permission activetab is used because unlike broad per-
missions that grant access to all the websites a user visits,
it provides access only to the current tab. The permission
activetab still ensures that the extension can perform its
intended functions while minimising unnecessary access
to user data. In Section 4.3, the purpose of the permission
tabs is explained in context. It is used, for example, to to
reload a webpage. The third permission is scripting, used to
wake up scripts before sending requests, to make sure they
are processed accordingly. The last permission is storage,

4.2 Manifest 27

facilitating the usage of the (chrome.storage) API2.

4.2 Manifest

The manifest file is a fundamental component of this
extension framework. It defines the service worker and
content scripts and configures resources and the previously
outlined permissions. The manifest is in accordance with
MV3.
If necessary, the host permissions of the extension can be
set in the manifest. For the purpose of testing the extension
framework on a locally hosted webpage, the permissions
are set to <all urls>.

4.3 User Interface

The extensions popup is the sole user interface, offering a The user interface
displays one button
to turn off detection.

single switch button to enable or disable detection for all
tabs throughout the current browser session. This status is
consistently stored for subsequent browser sessions using
the chrome.storage API.
It is worth noting that when deactivating detection, the
popup script uses a simple approach by reloading the page,
undoing any prior modifications made to the webpage.

4.4 Service Worker

The service worker acts as the background script in MV3. The service worker
handles background
processes.

It orchestrates the data flow and ensures that scripts are
executed in the correct order. While each tab has its own

2https://developer.chrome.com/docs/extensions/reference/api/storage
Accessed: March 2024

28 4 Implementation

version of the content script, the service worker remains
constant.
When a request for the analysis and application of coun-
termeasures in a tab is indicated by the popup (see Section
4.3) or the content script (see Section 4.5), the service
worker requests the execution of certain actions within the
content script, which are described in Section 4.5.2.
Once these actions have been performed, the service
worker receives a response from the content script, includ-
ing HTML and CSS content of the webpage (see Figure
3.1). Immediately afterwards, the service worker sends
a message to the Detector to initiate the detection process
(4.6.1). This message includes the necessary informationThe corresponding

tab ID, along with
HTML and CSS

content is sent to the
Detector.

for the detection process, using the JSON schema shown in
Listing 4.1. The keys html and css encode the HTML and
CSS content, and the tabId key encodes the tab id this data
belongs to. The tab id can easily be read from the metadata
of the content script response.

As illustrated in Figure 4.1, the service worker receivesThe detection data is
forwarded to the next

module.
the detection data from the Detector and forwards it to
the Converter. The detection data format is discussed in
Section 4.6.1. The countermeasure process takes place in
the Converter (see Section 4.6.2), and the service worker
expects a response message including the countermeasure
data, as described in Section 4.5.3.
It is crucial that the changes requested by the Converter,
are applied in the correct tab. This is ensured because theThe tab ID is used as

a message identifier. service worker not only sends the tab ID to the Detector (as
mentioned earlier) but also to the Converter. It also expects
the tab ID to be forwarded back to the service worker
within the payload of each response, in order to guarantee
the correct assignment at every point until injection.
The service worker is responsible for one requirement
of the communication with the DOM, as outlined in
the requirement analysis in Section 3.1: the injection of a
custom stylesheet. This stylesheet that can be used by the
Converter to add new CSS classes. Therefore it is carried
out right before the content script is tasked with injecting
the DOM changes as requested by the Converter.
The stylesheet is an asset, customisable by the Converter
module, where CSS style classes can be defined statically to

4.4 Service Worker 29

Listing 4.1: JSON schema - input for detection

1 {
2 "$schema": "https://json-schema.org/draft/2019-09/

schema",
3 "title": "Webpage Content Schema",
4 "description": "Schema for representing HTML and CSS

content of a webpage along with its tab identifier.
",

5 "type": "object",
6 "properties": {
7 "tabId": {
8 "description": "The unique identifier of the

browser tab.",
9 "type": "string",

10 "pattern": "ˆ[0-9]+$"
11 },
12 "html": {
13 "description": "The HTML content of the

webpage, including any inline data
attributes.",

14 "type": "string",
15 },
16 "css": {
17 "description": "The CSS styles associated with

the webpage.",
18 "type": "string",
19 }
20 },
21 "required": ["tabId", "html", "css"],
22 "additionalProperties": false
23 }

facilitate the countermeasure process. The service worker
itself is unaware of the files content, as it is only important
for the Converter and can not be of harm if used incorrectly
by the Converter module developer.
Listing 4.2 shows an example of a CSS class, that is used in
our proof of concept (see Section 5.1), when highlighting
two elements together like in Figure 2.2.
A new div-element would be added to the webpage,
enclosing the to be highlighted elements. Then, the class

30 4 Implementation

red-border (as in Listing 4.2) that was defined inside of the
stylesheet beforehand, would be added to the div-element
to change among others the border colour of this element.
Following the injection of the stylesheet, the content script
is tasked to inject the actual countermeasures. There is an
instance of the content script for each tab individually and
these instances have to be addressed with their respective
tab ID. Therefore, the service worker deletes the propertyThe

countermeasuring
data is forwarded to

the content script.

tabId from the countermeasure data and instead uses its
value within to trigger the correct content script (see 4.5.3).

Listing 4.2: CSS classes example
.red-border {

border: 2px dashed red;
display: inline-block;
padding: 5px;

}

4.5 Content Script

The content script is responsible for any communication
with the DOM and is hence one of the most intricate
components. It handles the observation of changes in the
DOM, which is described in Section 4.5.1.
This implementation also covers the first set of require-The content script

injects element IDs
and extracts the

website’s contents at
the beginning of the
process, and injects
changes at the end

of the process.

ments for the communication with the DOM, as outlined
in the requirement analysis in Section 3.1: Extracting
HTML and CSS contents. The implementation of these
actions, plus the injection of unique identifiers to each
HTML element, corresponds to the requirement of en-
abling precise referencing of individual elements under the
topic data formats for communication between scripts in
Section 3.1 (discussed in Section 4.5.2).
In Section 4.5.3 the injection of changes in the DOM by the
content script, based on information sent by the Converter
is presented.

4.5 Content Script 31

4.5.1 Detecting DOM Changes

When changes occur on the webpage, for instance when
a webpage is opened/reloaded or elements are changed
dynamically, the content script has the ability to monitor
these changes and restart the detection process. By utilis-
ing the MutationObserver3 interface, the script listens for
any additions, removals and other alterations within the
webpage’s structure. It aims to consider altered or new
elements, that could potentially harbour DPs.
The extension is however not operating like the implemen-
tation by Hausner and Gertz, the Dapde Pattern Highlighter,
which takes two screenshots of the DOM within an interval
of 1.5 seconds and analyses both copies in relation to
another to detect patterns that rely on dynamic changes,
such as countdowns.

A debounced callback function is implemented to balance
responsiveness and performance, preventing excessive
resource consumption on pages with frequent updates.
However, this function could possibly be improved after
testing on more than the test webpage, in order to find
right balance (see Section 5).
Additionally it is ensured that no observation takes place
during the injection,which would lead to an endless cycle.

4.5.2 Extracting Webpage Contents & Injecting IDs

Upon receiving a request to extract the webpage contents
from the service worker (see Section 4.4), the content script
begins its first phase of responsibilities.
As already mentioned in the requirement analysis in
Section 3.1, it is necessary to extract the HTML and CSS
content from the respective tab, for a comprehensive
detection. But more importantly, before reading this data,
a unique ID for each HTML element is injected into the

3https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
Accessed: March 2024

32 4 Implementation

DOM. The modules must be able to reference individualBefore extracting
data, element IDs

are injected into the
DOM.

HTML elements in the DOM to identify elements that are
part of a DP and to pinpoint which elements should be
altered. In this implementation, unique IDs are created
by the content script and added in the form of a dataset
property4, namely DecDefId. Dataset properties allow
data to be stored directly within HTML elements without
interfering with the page’s presentation or behaviour.
The decision to inject the property DecDefId before the
reading process is convenient because the HTML contents
can be read right afterwards, all IDs are already included
in this data and accessible for the Detector and Converter.
Furthermore, the IDs (decDefIds) are already present in
the DOM and can be used by the content script during
injection.
After the injection of the IDs is concluded, the content
script extracts HTML and CSS content from the current
context and it is sent back to the service worker.

4.5.3 Injecting Visual Countermeasures

The final responsibility of the content script, as a part
of the extension framework, is to implement requested
alterations of the webpage. The main objective of this
implementation is to equip the Converter with all the
necessary features specified in the requirement analysis
(see Section 3.1). The required features include changes to
the styles and attributes of existing elements, as well as the
removal and addition of elements.

The JSON schema in Listing A.1 provides a structuredThe requested
countermeasures,
encoded with the
JSON format, are

applied by the
content script.

blueprint for the countermeasure data sent from the
Converter to the service worker, dictating the modifica-
tions to be implemented within the webpage’s DOM. As
mentioned previously in Section 4.4, the property tabId is
part of the payload for every communication between the
modules and the service worker, but is not required as a

4https://developer.mozilla.org/en-US/docs/Web/API/
HTMLElement Accessed: March 2024

4.5 Content Script 33

part of the countermeasure data that is sent to the content
script for injection. Therefore, the content script receives
the information in a format shown in A.1, but without the
property tabId. As soon as this happens, the process of
injection is initiated.

The property addElements in Listing A.1 can hold a list Encoded within the
countermeasuring
data are: elements to
add, elements to
delete, changed
styles and attributes.

of items, each representing a new element to be created
and added to the DOM. This functionality is necessary for
example when adding an element that groups elements
together, to apply a countermeasure such as HL+E by
Schäfer et al. [2023], shown in Figure 2.2, using a red dotted
line for highlighting.
Each element to be added is characterised by their anchor New elements aree

encoded using:
anchor element,
type, attributes,
styles and placement

element, type, attributes, styles and placement (encoded
in the properties anchorElementId, type, styles, attributes and
placement). The name of the first property implies that it
serves as an anchoring point, to place the newly created
element using the property value of placement relative to
it. The placement keyword accepts four values: afterend,
beforebegin, beforeend & child. These options are chosen
to cover all potentially required placement options. This
involves adding parent elements (cloning the parent and
adding it as a child) or children to existing elements, but
also to elements that were added previously in the same
process. Moreover, it can be achieved to add child elements
in a specific order, using afterend, beforebegin or beforeend
with another child element as an anchoring point.
The anchor element itself could be either already part of
the DOM, or is created and added previously in the same
countermeasure process and referenced in the JSON for-
mat by its decDefId. When using the second approach, the
decDefId can be added as an attribute using the keyword
data-dec-def-id.
The value of type is used to define the type of element to be
created, such as a div-element or a span-element.
Lastly, the properties styles and attributes can feature a list
of modified styles or attributes to be changed after creation,
using for instance the key-value pair (display, inline-block)
as a style modification or (textcontent, ”Some text”) as an
attribute modification.
Entire CSS classes, like the ones shown in Listing 4.2, can be

34 4 Implementation

added or removed within the property styles. The contentCSS classes can be
used to group styles. script scans for the key classList.add or classList.remove and

simply adds or removes the corresponding value as a class
of the respective element.

The next main property stylesAndAttributes, holds a list ofTo alter existing
elements, their ID

along with new styles
and attributes are

encoded.

items where each item encloses the properties elementId,
styles and attributes. The decDefId of the element, encoded
in elementId, refers to an existing element of the webpage.
The Converter can encode styles and attributes to be mod-
ified on the corresponding element within the keywords
styles and attributes the same way as with the newly created
elements.

The last property of the format is deleteElements, consistingElements are
deleted, using their

ID.
just of a list of element IDs (decDefIds). The corresponding
elements to the encoded IDs will be deleted from the web-
page.

4.6 Modules

The extension framework provides two interfaces for the
integration of a module to detect DPs (the Detector) and a
module for applying countermeasures (Converter), to com-
plete this framework. These modules are intended to be
exchangeable by other developers through their respective
approaches. In the course of this thesis, both modules are
hard coded for the purpose of testing the extension frame-
work on a test webpage. The requirements for the Detector
and Converter are discussed in the following subsections.

4.6.1 Detector

The Detector module is the first in line, being providedDP instances are
detected based on

HTML and CSS
contents by the

Detector.

with the extracted webpage contents by the service worker.
In essence, the Detector should consider all available
information to determine which elements of the HTML

4.6 Modules 35

constitute a DP. The HTML and CSS provides a compre-
hensive database for detection, as discussed in Section 3.1,
covering among others information about the six essential
properties for detection identified by Chen et al. [2023].
The IDs (DecDefId) that were assigned earlier by the con-
tent script (see Section 4.5.2) can be used to pinpoint the
detected elements to the service worker.

The implementation of this module only requires a listener The Detector
requires a listener
and a response for
the service worker’s
messages.

to receive requests by the service worker as well as a re-
sponse with detection data as shown in Figure 4.1.
This response is extended by the service worker before for-
warding it to the countermeasure module. Additionally,
the HTML and CSS content that was sent to the Detector
is added too, fulfilling the requirements outlined in Sec-
tion 3.1. The Detector must not send the tabID back to the
service worker, because the response is sent in the same
messaging channel. Considering the deliberately low-kept
requirements for communication in-between the modules,
we use the JSON schema from Listing A.2. Additionally
to encoding the tab ID within the property tabId, there is
another property pattern which holds a list of items, each
constituting one element on the page. The two main prop-
erties of each item are elementId and patternId to pinpoint
the specific element on the webpage and provide informa-
tion about which DP category it belongs to, corresponding
to the requirements outlined in Section 3.1.
Since single elements of a web page are rarely a DP in iso-
lation [Hausner and Gertz, 2021], there is an optional prop-
erty related which lists IDs of elements that belong to the
same DP instance.

4.6.2 Converter

The job of the Converter module is to choose countermea- Detection data is
converted into
countermeasuring
data.

sure strategies tailored to the detected DP instances by
the Detector. More specifically, it decides which styles and
attributes of which element should be altered, and whether
to add new elements or to delete some.
Like the Detector, the Converter requires a listener to receive The Converter

requires a listener
and a response for
the service worker’s
messages.

36 4 Implementation

requests by the service worker as well as a response with
conversion data as shown in Figure 4.1.
The Converter receives the detection data from the Detector,
which was extended from the service worker by HTML
and CSS content, as explained in Section 4.4. Access to this
information enables the Converter to consider the original
state and context of each detected element and choose
appropriate alterations.
In Section 4.6.1 the format for the detection data was
introduced. The Converter module must adapt to this JSON
schema.
Additionally, the Converter has to meet the required en-The countermeasure

data has to be
encoded using the
framework’s JSON

format.

coding format for the response to the service worker, as
described previously in Section 4.5.3.

The prior injection of a custom stylesheet by the service
worker (see Section 4.4), allows the Converter to use CSS
classes for grouping related style changes together. This
way, the module can communicate the injection of entire
blocks of style changes to the extension framework, by
encoding the class key within a property inside of styles
within the JSON schema A.1. Using for instance the
key-value pair (classList.add, red-border) as a property of the
keyword styles, the class red-border shown in Listing 4.2 can
be applied.

37

Chapter 5

Evaluation & Discussion

5.1 Proof of Concept

As a final step, the extension framework was tested with
hard-coded modules on a website that was solely created
for this purpose. Hard-coded means in this case, that the
modules only implement the necessary listeners and re-
sponse mechanisms as outlined in Section 4.6.1 and 4.6.2,
but there is no implementation of an algorithm for detec-
tion or for applying countermeasures.

The countermeasures HL+E, LL and SW were implemented The
countermeasured
HL+E, LL and SW
were implemented
testwise.

test-wise on the locally hosted webpage. As outlined in
the requirement analysis from Chapter 3.1, these counter-
measures reflect all necessary functions for the implemen-
tation of the remaining designs for countermeasures tested
by Schäfer et al. [2023].
It was possible to showcase the three countermeasure de-
signs on three DP types: Confirmshaming, Visual Interference
and Low-stock Message. We chose them, because these DP
types were the ones tested in the user study by Schäfer
et al. [2023]. Figure 5.1 shows the unaltered instance of Con-
firmshaming that was built into the test webpage,and three
replicas of this design, with countermeasures applied on
this instance. For the countermeasure HL+E, the Converter
module requests a modification of the border colour of the
element that encloses both buttons. Additionally, a new

38 5 Evaluation & Discussion

1

2

3

4

 BA Page 1

Figure 5.1: The countermeasures Highlight with Explanation (HL+E), Lowlight
(LL) and Switch (SW) applied on a test webpage using the Deceptive Defender frame-
work and hard-coded modules.
1) Unchanged DP instance 2) Countermeasure SW
3) Countermeasure LL 4) Countermeasure HL+E

icon element is added to the webpage, which displays a
popup when hovering over it, as shown in Figure 5.1. The
next DP instance is counter measured with LL. We added
each two child elements to the button, with the first ele-
ment just displaying the content yes and no in their original
colour, and the second element displaying the remaining
text contents that were detected to be with malicious intent,
slightly less visible.
For the countermeasure SW, a more a more complex alter-
ation had to be made. Firstly, the countermeasure HD was
applied on the detected elements. This is done by remov-
ing or hiding the text contents that were changed in color
or transparency in the previous countermeasure. Secondly,
a new button item had to be created, which should provide
the functionality to switch back to the original state of the
altered elements. It was possible to integrate this function
by only using CSS classes from the custom stylesheet that
was injected by the service worker.

5.2 Discussion 39

5.2 Discussion

The Deceptive Defender framework aligns with the category The Deceptive
Defender framework
is a technical
intervention measure
with varying
intervention scopes.

of technical intervention measures by Bongard-Blanchy
et al. [2021], which includes practical tools, developed to
disrupt or mitigate the effects of DPs. The authors cate-
gorised tools, similar to existing extensions like Insite or
the Dapde Pattern Highlighter, in the intervention measure
DP Elimination. However, this framework can not be
assigned to only one of the intervention scopes created
by Bongard-Blanchy et al. [2021], since the scope is set
by the implemented countermeasures. Visual counter-
measures align with the design intervention measure and
can correspond to more than one intervention scope. The
HL+E countermeasure by Schäfer et al. [2023] enhances
user awareness, not only highlighting the manipulative
elements but also providing explanatory notes that inform
the user about the nature of the deception. This design
aligns with the DP Awareness or DP Detection scope,
trying to enhance user’s ability to recognize this DP type
in the future.
The countermeasure HD on the other hand, seeks to elim-
inate the DP entirely from the user’s view [Schäfer et al.,
2023]. This intervention falls within the DP Elimination
scope, aiming to remove manipulative elements so that
they have no impact on user behaviour.

In Section 3, we outlined the key advantages kept in mind
when designing this modular framework: flexible testing
of new detection and countermeasure algorithms and
future proofing through an adaptable set of covered DP
types.
Considering the current state of research in detection algo-
rithms and visual countermeasures, outlined in Section 2,
the Deceptive Defender framework aims to establish a basis
for the HCI community to trial novel methods. In Section
3, we highlighted the flexibility of the Deceptive Defender
framework, particularly its ability to adapt to new types of
DPs without altering the core system. While maintaining The modular

approach harbours
restrictions, but more
freedom on other
ends.

the JSON schemas that are used on the interfaces of this
framework might appear restrictive, we believe this disad-

40 5 Evaluation & Discussion

vantage doesn’t weigh out the advantage of the developer
of the detection or countermeasure module being able to
focus more on developing corresponding solutions and less
on developing the extension’s fundamental components.

During this project, we encountered some challenges and
questions regarding the independence of the Detector from
the Converter module, which is one of the main focusses in
this work.
Firstly, we want to emphasise that the Detector is the bottleOur data format for

the detection data is
a double-edged

sword.

neck of the extension. No matter how many advanced and
specialised countermeasures the Converter implements, he
can not use them when the detection method is not as ad-
vanced.
Additionally, our chosen data format for the detection data
(see Listing A.2) is a double-edged sword. It offers the cate-
gorisation of detected elements into DP types, which means
that every kind of taxonomy can be used and the number
of DP types is not limited. This is an advantage because
this project aimed at providing the opportunity to detect
any kind of DP. On the other hand, the Converter module
has to be adapted to this encoding, in the sense that the
keywords used by the Detector as the value of the key pat-
ternId lead to the application of the correct countermeasure
by the Converter. This required ’common ground’ regard-
ing the DP categorisation restricts the independence from
the Converter.
The design of a communication schema in-between theThere is a need to

conduct how
fine-grained the

detection has to be
for the new

countermeasures
introduced by

Schäfer et al. [2023].

modules was challenging in general, while not being able
to comprehend how fine-tuned the detection has to be in
order to apply the countermeasures by Schäfer et al. [2023]
properly. For example, the question came up, whether it
is the Converter’s or the Detector’s responsibilities to detect
which part of the DP a specific element constitutes. When
there is a DP instance which consists of more than one ele-
ment, such as an instance of Visual Interference with differ-
ently coloured accept- and deny buttons, existing browser
extensions such as the Dapde Pattern Highlighter would just
highlight these buttons. However when using other coun-
termeasures, there may be the need for more fine-grained
information about the structure of the DP instance. For
example, when using the countermeasure HD by Schäfer

5.2 Discussion 41

Listing 5.1: Example of a JSON encoding strategy for relationships between ele-
ments

{
"patterns": [

{
"elementId": "0"
"patternId": "visualInterferenceAccept",
"related": ["denyButton"],

},
{
"elementId": "1"
"patternId": "visualInterferenceDeny",
"related": ["acceptButton"],

}
]

}

et al. [2023] on the described DP instance, the Converter
would require information about which element is the ac-
cept button and which is the deny button, to change the color
of the accept button to match that of the deny button. In
the JSON schema for communication between Detector and
Converter (see Listing A.2) this information could be actu-
ally encoded inside of the patternId property within the pat-
terns property. For instance these described accept- and deny
buttons could be encoded as shown in Listing 5.1, using
the keywords visualInterferenceAccept and visualInterference-
Deny to encode what role they take on in the DP. Again,
here arises the problem of the Converter loosing it’s inde-
pendence from the Detector module. In future work, for
instance when designing these modules, it has to be evalu-
ated which information is required for the Converter to ap-
ply specific countermeasure styles. Based on that, a more
advanced communication in-between the modules may be
developed.

Apart from that, the proof of concept showed that it is
possible to implement the countermeasures SW, LL and
HL+E on each three different DP instances. Even when not
for the purpose of this extension framework, it was proven

42 5 Evaluation & Discussion

that changes on the DOM, constituting these countermea-
sures by Schäfer et al. [2023], can be encoded within the
proposed JSON schema by the Converter and systematically
read and applied by this framework. Especially the switch
function could be implemented by just using CSS styles
instead of javascript functions.

Notably, when deactivating detection in this framework,
the popup script employs a straightforward approach by
reloading the page in order to revert prior modifications.
This approach is inconvenient for the user, because it
is time consuming and information can get lost. The
Dapde Pattern Highlighter shows how to implement a more
fine-tuned approach, by adding CSS classes to elements
associated with a DP, and removing those classes again
when the deactivation is requested.
Adapting this strategy within this extension frameworkAdapting the strategy

of the Dapde Pattern
Highlighter for

reversing applied
countermeasures is

more complex within
the context of our

extension.

presents challenges, because in contrast to the Dapde
Pattern Highlighter, our extension framework provides a
wider spectrum of countermeasure tools: Instead of using
exactly two predefined CSS classes that are added to each
detected DP instance, the Deceptive Defender framework
enables the implementation of any number of CSS classes
and single style and attribute changes. Subsequently it is
more complex to restore the original state of the webpage.
This example showcases, how the modular design of this
extension complicates implementation, which may lead
to the necessity of further development of the framework,
which is elaborated in Section 6.2.

43

Chapter 6

Summary & Future
Work

In this chapter, we conclude this project by providing a
summary of our work and outlining opportunities for fu-
ture work.

6.1 Summary

This thesis explored the design of a modular browser
extension for applying visual countermeasures in the web.
The goal was to build a foundation for easy integration
of different algorithms for automatic pattern detection
and applying countermeasures. The proof of this concept
process was accomplished in this thesis in three steps:

Firstly, we established the groundwork by defining the We outlined the
requirements for the
implementation of
Deceptive Defender.

functional and non-functional requirements critical to
the development of such an extension framework. The
requirements for the implementation of countermeasures
were based on the countermeasures by Schäfer et al.
[2023], covering addition and deletion of elements as
well as changing style and attribute properties of existing
elements. Also outlined were requirements regarding

44 6 Summary & Future Work

the communication between the extension framework
and the exchangeable modules, a method to reference
particular elements in the webpage, and to ensure the
correct assignment of detection and countermeasure data
to the corresponding tab.

Secondly, we provided a brief overview of the framework’sWe documented
each step of the
implementation

process.

architecture and the key responsibilities of its components,
including the modules. Chapter 4 documents each step of
the implementation, detailing decisions regarding timing,
responsibility distribution and communication formats.
The JSON schemes for communication from the service
worker to the Detector (see 4.4) as well as from the Con-
verter (see 4.5.3) back to the service worker are set, while
the communication format between the Detector and the
Converter is partly customisable by the module developer.
The extension framework has one content script that
features different injection functionalities to the Converter
module, that cover the required actions outlined in the first
step, the requirement analysis.

Lastly, a webpage was created to implement the maliciousWe performed a
proof of concept by
implementing three
countermeasures.

design patterns Confirmshaming, Visual Interference and
Low-stock Message. Specifically these DPs were used be-
cause we based our framework on the work of Schäfer et al.
[2023], using the same DPs as them in their study. This
webpage served as a prototype to test the extension frame-
workDeceptive Defender in combination with hard-coded
modules for the time being. The implementation of three
selected countermeasures on each of the DP instances,
although limited in scope, constituted a proof of concept.

6.2 Future Work

One limitation is that we tested the extension frameworkTesting was
performed only with

hard-coded modules
and a hard-coded

website.

only with hard-coded modules and on a webpage that con-
tains no dynamic changes. When developing the first de-
tection and countermeasure module, it may be necessary

6.2 Future Work 45

to refine the frameworks implementation. That especially
involves the observation of the DOM through the content
script. This observation must be well balanced in order to
prevent excessive demands but to initiate a new detection
process when necessary. Mathur et al. [2019] uses the Mu-
tation Summary1 library to observe changes in the DOM
during a crawl, stated by the authors of the library to be
useful especially for browser extensions.

Absolutely critical is the development of the Detector and The development
and integration of
modules is
necessary.

Converter modules. After implementing and integrating
the required modules, the extension’s effectiveness in a
real-world context can be fully assessed. There is also the
possibility to implement solely the Converter module based
on a hard-coded webpage (such as our test website) and
a hard-coded Detector module. With this configuration,
countermeasure algorithms are testable. Additionally, user
studies on countermeasure designs could be conducted
in a more realistic setting than compared to the study by
Schäfer et al. [2023]. This can be done either with the men-
tioned configuration, solely implementing the Converter
and a hard-coded Detector, or the implementation of both
modules and the use of real websites. Both ways, valuable
insights into their practical impact, user acceptance, and
areas for improvement can be gained.

As elaborated in Section 5.1, the communication in- Requirements of the
Converter must be
investigated more
closely.

between the modules has weaknesses, making the
Converter lose part of it’s independence from the Detector. I
propose, that the requirements of the Converter for apply-
ing specific countermeasures have to be investigated more
closely. Based on that, a more advanced communication
system in-between the modules may be developed.

A potential future improvement of the framework itself Possible
improvement: More
functionalities on the
extension’s popup.

is enabling the user to activate the countermeasures only
selectively across multiple tabs or webpages. Additionally,
users might benefit from the capability to toggle specific
countermeasures based on their preferences, since the user

1https://github.com/rafaelw/mutation-summary Accessed: March
2024

46 6 Summary & Future Work

study by Schäfer et al. [2023] indicated that user require-
ments may change when their expertise level increases and
some countermeasures could be perceived as annoying
over time.

An additional improvement opportunity for the frame-
work lays in the process of reverting the applied coun-
termeasures. Currently, the framework employs a
straightforward approach that was elaborated and dis-
cussed in Section 5.2. This procedure could be improved,
for instance by adapting a similar approach as the Dapde
Pattern Highlighter as described in Section 5.2.

47

Appendix A

JSON schema

In the following, the JSON schema that is expected by the
extension frameworks content script and therefore to be
implemented as the schema for outgoing responses by the
Converter, as well as the JSON schema for the communica-
tion between the detection and countermeasuring module
are listed.

48 A JSON schema

Listing A.1: JSON schema - output of Converter
1 {
2 "$schema": "https://json-schema.org/draft/2019-09/schema",
3 "title": "Message from the Converter module to the service

worker",
4 "properties": {
5 "tabId": {
6 "description": "Destination tab ID",
7 "type": "string"
8 },
9 "addElements": {

10 "type": "array",
11 "items": {
12 "type": "object",
13 "properties": {
14 "anchorElementId": {
15 "description": "Element ID of the anchor element

",
16 "type": "string"
17 },
18 "type": {
19 "description": "Type of the object for creation"

,
20 "type": "string"
21 },
22 "attributes": {
23 "description": "List of modified attributes for

the new element",
24 "type": "object",
25 "additionalProperties": {
26 "description": "Specific attribute

modification on the new element",
27 "type": "string"
28 }
29 },

49

38 "styles": {
39 "description": "List of modified styles for the

new element",
40 "type": "object",
41 "additionalProperties": {
42 "description": "Specific style modification on

the new element",
43 "type": "string"
44 }
45 },
46 "placement": {
47 "description": "Placement of the element for

creation, relative to the defined anchor
element",

48 "type": "string",
49 "enum": ["afterend", "beforebegin", "beforeend",

"child"]
50 }
51 },
52 "required": ["anchorElementId", "type", "placement"]
53 }
54 },
55 "stylesAndAttributes": {
56 "type": "array",
57 "items": {
58 "type": "object",
59 "properties": {
60 "elementId": {
61 "description": "Element ID of the element to

undergo modification",
62 "type": "string"
63 },
64 "attributes": {
65 "description": "List of modified attributes for

the element",
66 "type": "object",
67 "additionalProperties": {
68 "description": "Specific attribute

modification on the element",
69 "type": "string"
70 }
71 },

50 A JSON schema

76 "styles": {
77 "description": "List of modified attributes for

the element",
78 "type": "object",
79 "additionalProperties": {
80 "description": "Specific style modification on

the element",
81 "type": "string"
82 }
83 }
84 },
85 "required": ["elementId"]
86 }
87 },
88 "deleteElements": {
89 "description": "List of elements for deletion",
90 "type": "array",
91 "items": {
92 "description": "Element ID of the element for

deletion",
93 "type": "string"
94 }
95 }
96 },
97 "additionalProperties": false
98 }

51

Listing A.2: JSON schema - output of Detector
1 {
2 "$schema": "https://json-schema.org/draft/2019-09/

schema",
3 "title": "Message from the Detector module to the

service worker",
4 "type": "object",
5 "properties": {
6 "patterns": {
7 "description": "List of detected patterns with

their related elements",
8 "type": "array",
9 "items": {

10 "type": "object",
11 "properties": {
12 "patternId": {
13 "description": "Identifier of the

detected pattern",
14 "type": "string"
15 },
16 "elementId": {
17 "description": "Element ID

associated with the detected
pattern",

18 "type": "string"
19 }
20 },
21 "required": ["patternId", "elementId"]
22 }
23 }
24 },
25 "required": ["tabId", "patterns"],
26 "additionalProperties": false
27 }

53

Bibliography

V. Aravind and M. Sethumadhavan. A framework for
analysing the security of chrome extensions. In M. K.
Kundu, D. P. Mohapatra, A. Konar, and A. Chakraborty,
editors, Advanced Computing, Networking and Informatics-
Volume 2, pages 267–272, Cham, 2014. Springer Interna-
tional Publishing. ISBN 978-3-319-07350-7.

K. Bongard-Blanchy, A. Rossi, S. Rivas, S. Doublet,
V. Koenig, and G. Lenzini. ”i am definitely manipulated,
even when i am aware of it. it’s ridiculous!” - dark pat-
terns from the end-user perspective. In Proceedings of the
2021 ACM Designing Interactive Systems Conference, DIS
’21, page 763–776, New York, NY, USA, 2021. Associ-
ation for Computing Machinery. ISBN 9781450384766.
doi: 10.1145/3461778.3462086. URL https://doi.
org/10.1145/3461778.3462086.

C. Bösch, B. Erb, F. Kargl, H. Kopp, and S. Pfattheicher.
Tales from the dark side: Privacy dark strategies and
privacy dark patterns. Proceedings on Privacy Enhanc-
ing Technologies, 2016:237–254, 07 2016. doi: 10.1515/
popets-2016-0038.

J. Chen, J. Sun, S. Feng, Z. Xing, Q. Lu, X. Xu, and C. Chen.
Unveiling the tricks: Automated detection of dark pat-
terns in mobile applications, 2023.

C. Cockburn and T. D. Wilson. Business use of the world-
wide web. Inf. Res., 1, 1996. URL https://api.
semanticscholar.org/CorpusID:43010893.

European Commission, Directorate-General for Jus-
tice, Consumers, F. Lupiáñez-Villanueva, A. Boluda,
F. Bogliacino, G. Liva, L. Lechardoy, and T. Rodrı́guez

https://doi.org/10.1145/3461778.3462086
https://doi.org/10.1145/3461778.3462086
https://api.semanticscholar.org/CorpusID:43010893
https://api.semanticscholar.org/CorpusID:43010893

54 Bibliography

de las Heras Ballell. Behavioural study on unfair commercial
practices in the digital environment – Dark patterns and ma-
nipulative personalisation – Final report. Publications Office
of the European Union, 2022. doi: doi/10.2838/859030.

G. Conti and E. Sobiesk. Malicious interface design: Ex-
ploiting the user. In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, page 271–280,
New York, NY, USA, 2010. Association for Comput-
ing Machinery. ISBN 9781605587998. doi: 10.1145/
1772690.1772719. URL https://doi.org/10.1145/
1772690.1772719.

R. Coudert. Automatically detect dark patterns in cookie
banners. Master’s thesis, École Polytechnique Fédérale
de Lausanne (EPFL), SPRING Lab, Computer Science
Department, Grenoble, France; Lausanne, Switzerland,
August 2020.

A. Curley, D. O’Sullivan, D. Gordon, B. Tierney, and
I. Stavrakakis. The design of a framework for the detec-
tion of web-based dark patterns. In Proceedings of the 15th
International Conference on Digital Society (ICDS). Techno-
logical University Dublin, 7 2021. Online conference.

L. Festinger. A Theory of Cognitive Dissonance. Stanford Uni-
versity Press, Redwood City, 1957. ISBN 9781503620766.
doi: 10.1515/9781503620766. URL https://doi.org/
10.1515/9781503620766.

C. M. Gray, Y. Kou, B. Battles, J. Hoggatt, and A. L.
Toombs. The dark (patterns) side of ux design. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI ’18, page 1–14, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN
9781450356206. doi: 10.1145/3173574.3174108. URL
https://doi.org/10.1145/3173574.3174108.

C. M. Gray, L. Sanchez Chamorro, I. Obi, and J. Duane.
Mapping the landscape of dark patterns scholarship: A
systematic literature review. In Companion Publication
of the 2023 ACM Designing Interactive Systems Conference,
DIS ’23 Companion, page 188–193, New York, NY, USA,
2023a. Association for Computing Machinery. ISBN
9781450398985. doi: 10.1145/3563703.3596635. URL
https://doi.org/10.1145/3563703.3596635.

https://doi.org/10.1145/1772690.1772719
https://doi.org/10.1145/1772690.1772719
https://doi.org/10.1515/9781503620766
https://doi.org/10.1515/9781503620766
https://doi.org/10.1145/3173574.3174108
https://doi.org/10.1145/3563703.3596635

Bibliography 55

C. M. Gray, C. Santos, and N. Bielova. Towards a prelim-
inary ontology of dark patterns knowledge. In Extended
Abstracts of the 2023 CHI Conference on Human Factors in
Computing Systems, CHI EA ’23, New York, NY, USA,
2023b. Association for Computing Machinery. ISBN
9781450394222. doi: 10.1145/3544549.3585676. URL
https://doi.org/10.1145/3544549.3585676.

S. Greenberg, S. Boring, J. Vermeulen, and J. Dostal. Dark
patterns in proxemic interactions: A critical perspective.
In Proceedings of the 2014 Conference on Designing Inter-
active Systems, DIS ’14, page 523–532, New York, NY,
USA, 2014. Association for Computing Machinery. ISBN
9781450329026. doi: 10.1145/2598510.2598541. URL
https://doi.org/10.1145/2598510.2598541.

P. Hausner and M. Gertz. Dark patterns in the interaction
with cookie banners. CoRR, abs/2103.14956, 2021. URL
https://ds.ifi.uni-heidelberg.de/files/
Team/phausner/publications/Hausner_Gertz_
CHI2021.pdf.

D. Kahneman. A perspective on judgment and choice:
mapping bounded rationality. The American psy-
chologist, 58 9:697–720, 2003. URL https://api.
semanticscholar.org/CorpusID:16994141.

C. Lacey and A. Beattie. Clusters of dark patterns
across popular websites in new zealand. 2023. URL
https://api.semanticscholar.org/CorpusID:
261077946.

K. Lukoff, A. Hiniker, C. M. Gray, A. Mathur, and S. S.
Chivukula. What can chi do about dark patterns? In
Extended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems, CHI EA ’21, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN
9781450380959. doi: 10.1145/3411763.3441360. URL
https://doi.org/10.1145/3411763.3441360.

A. Mathur, G. Acar, M. J. Friedman, E. Lucherini, J. Mayer,
M. Chetty, and A. Narayanan. Dark patterns at scale:
Findings from a crawl of 11k shopping websites. Proc.
ACM Hum.-Comput. Interact., 3(CSCW), nov 2019. doi:
10.1145/3359183. URL https://doi.org/10.1145/
3359183.

https://doi.org/10.1145/3544549.3585676
https://doi.org/10.1145/2598510.2598541
https://ds.ifi.uni-heidelberg.de/files/Team/phausner/publications/Hausner_Gertz_CHI2021.pdf
https://ds.ifi.uni-heidelberg.de/files/Team/phausner/publications/Hausner_Gertz_CHI2021.pdf
https://ds.ifi.uni-heidelberg.de/files/Team/phausner/publications/Hausner_Gertz_CHI2021.pdf
https://api.semanticscholar.org/CorpusID:16994141
https://api.semanticscholar.org/CorpusID:16994141
https://api.semanticscholar.org/CorpusID:261077946
https://api.semanticscholar.org/CorpusID:261077946
https://doi.org/10.1145/3411763.3441360
https://doi.org/10.1145/3359183
https://doi.org/10.1145/3359183

56 Bibliography

A. Mathur, M. Kshirsagar, and J. Mayer. What makes a
dark pattern... dark? design attributes, normative con-
siderations, and measurement methods. In Proceedings
of the 2021 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’21, New York, NY, USA, 2021. Associ-
ation for Computing Machinery. ISBN 9781450380966.
doi: 10.1145/3411764.3445610. URL https://doi.
org/10.1145/3411764.3445610.

M. Nouwens, I. Liccardi, M. Veale, D. Karger, and L. Ka-
gal. Dark patterns after the gdpr: Scraping consent
pop-ups and demonstrating their influence. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, CHI ’20. ACM, April 2020. doi:
10.1145/3313831.3376321. URL http://dx.doi.org/
10.1145/3313831.3376321.

C. P. Ross. What is the internet. Seg Tech-
nical Program Expanded Abstracts, pages 1537–1537,
1995. URL https://api.semanticscholar.org/
CorpusID:140121659.

R. Schäfer, P. M. Preuschoff, and J. Borchers. Investigat-
ing visual countermeasures against dark patterns in user
interfaces. In Proceedings of Mensch Und Computer 2023,
MuC ’23, page 161–172, New York, NY, USA, 2023. Asso-
ciation for Computing Machinery. ISBN 9798400707711.
doi: 10.1145/3603555.3603563. URL https://doi.
org/10.1145/3603555.3603563.

T. H. Soe, C. T. Santos, and M. Slavkovik. Automated de-
tection of dark patterns in cookie banners: how to do it
poorly and why it is hard to do it any other way, 2022.

C. Utz, M. Degeling, S. Fahl, F. Schaub, and T. Holz.
(un)informed consent: Studying gdpr consent no-
tices in the field. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’19. ACM, November 2019. doi: 10.
1145/3319535.3354212. URL http://dx.doi.org/
10.1145/3319535.3354212.

A. E. Waldman. Cognitive biases, dark patterns, and
the ‘privacy paradox’. Current Opinion in Psy-
chology, 31:105–109, 2020. ISSN 2352-250X. doi:

https://doi.org/10.1145/3411764.3445610
https://doi.org/10.1145/3411764.3445610
http://dx.doi.org/10.1145/3313831.3376321
http://dx.doi.org/10.1145/3313831.3376321
https://api.semanticscholar.org/CorpusID:140121659
https://api.semanticscholar.org/CorpusID:140121659
https://doi.org/10.1145/3603555.3603563
https://doi.org/10.1145/3603555.3603563
http://dx.doi.org/10.1145/3319535.3354212
http://dx.doi.org/10.1145/3319535.3354212

Bibliography 57

https://doi.org/10.1016/j.copsyc.2019.08.025. URL
https://www.sciencedirect.com/science/
article/pii/S2352250X19301484. Privacy and
Disclosure, Online and in Social Interactions.

https://www.sciencedirect.com/science/article/pii/S2352250X19301484
https://www.sciencedirect.com/science/article/pii/S2352250X19301484

59

Index

Action diagram, 26

Cognitive Biases, 8
- Cognitive Dissonance, 8

Dark Pattern, 1
Data transfer, 22

Example CSS class, 30
Example Immortal Accounts, 6

Injection functions, 18

JSON schema, 29–51
- JSON schema input Detector, 29
- JSON schema output Converter, 48–50
- JSON schema output Detector, 51

Proof of Concept, 37–38
- Countermeasures, 38

Requirements, 17

Typeset April 10, 2024

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related Work
	Taxonomies & Prevalence
	Automated Detection
	Countermeasures

	Introducing the Browser Extension Framework Deceptive Defender
	Requirement Analysis
	Architecture Design

	Implementation
	Security
	Manifest
	User Interface
	Service Worker
	Content Script
	Detecting DOM Changes
	Extracting Webpage Contents & Injecting IDs
	Injecting Visual Countermeasures

	Modules
	Detector
	Converter

	Evaluation & Discussion
	Proof of Concept
	Discussion

	Summary & Future Work
	Summary
	Future Work

	JSON schema
	Bibliography
	Index

