
by

Master’s Thesis

submitted to the

Media Computing Group

Prof. Dr. Jan Borchers

Computer Science Department

RWTH Aachen University

Thesis advisor:

Prof. Dr. Jan Borchers

Second examiner:

Using Machine
Learning to
Enable Material
Substitutions in

Mark Christy George

Marcel Lahaye

Submission date: 24.08.2022
Registration date: 24.02.2022

Maker Projects

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

 *Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

v

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

1.1 Structure of thesis 3

2 Foundation 5

2.1 Data and Representation 5

2.1.1 Types of Data 5

2.2 Machine Learning 7

2.2.1 Supervised vs. Unsupervised Learning 8

2.2.2 Deep Learning 8

2.2.3 Neural Network 9

vi Contents

Training of Neural Network 12

2.3 Natural Language Processing 13

2.3.1 Named Entity Recognition 13

2.3.2 spaCy 14

2.3.3 Word2Vec 18

Learning Word Vectors 19

2.3.4 Transformers 19

Pre-trained Models 21

2.3.5 Evaluation of Machine Learning
Models 23

Confusion Matrix 23

F1-Score 25

3 Related work 27

4 Concept 31

4.1 Conceptual Design 32

4.2 Data Scraping 33

4.3 Data Preprocessing 37

Tokenization 37

Stop word removal 38

Token Normalization 38

4.3.1 Applying Preprocessing 39

Contents vii

Customized Pre-Processing for Hug-
gingface 42

Customized Pre-Processing for Hug-
gingface 42

4.4 Training . 46

5 Evaluation 51

5.1 Named Entity Recognition 52

5.1.1 Quality Metrics 53

5.1.2 Evaluating in depth: The problem areas 57

Evaluating the generative data set ap-
proach 62

5.1.3 Optimization possibilities 63

5.1.4 GUI for interactive optimization . . . 66

The technical process of the GUI . . . 69

6 Future work 71

7 Conclusion 75

7.1 Overview . 75

A Computational Metrics before optimization 79

B Computational Metrics after optimization 81

Bibliography 83

ix

List of Figures

1.1 Instructables.com and the search for bird-
houses. 2

2.1 Types of Structured Data 6

2.2 digits ML . 7

2.3 Neural Network Structure 9

2.4 Weighting and Bias 11

2.5 NER Example 14

2.6 Word2Vec Representation 18

2.7 Transformer Architecture 22

2.8 Confusion Matrix 23

4.1 Pipeline Overview 33

4.2 Search on Instructables for birdhouses and
browsers inspection tool. 35

5.1 Confusion Matrices before optimization. . . 55

5.2 The error classes. 61

x List of Figures

5.3 Visualization Tool 64

5.4 GUI for optimization 67

5.5 Adding an material with the GUI. 67

5.6 Deleting the marking with the GUI. 68

A.1 Confusion Matrices before optimization. . . 80

B.1 Confusion Matrices after optimization. . . . 82

xi

List of Tables

2.1 Transition sequence for Mark Christy George
visited HCI with the Stack-LSTM model. . . 17

5.1 Computational metrics of all three models . . 54

A.1 Computational metrics before optimization . 79

B.1 Computational metrics after optimization . . 81

xiii

Abstract

DIY tutorial platforms like Instructables and Thingiverse often contain multiple tu-
torials of similar projects, which only differ slightly in the utilized materials and
tools. Users who look up tutorials have limited possibilities to filter the given tu-
torials aside from reading the titles and skimming the tutorial’s content. However,
Makers tend to explore tutorials looking for certain materials or tools, and those
limited filter possibilities can be frustrating for the user. Thus, extended filtering
on characteristics such as materials or tooling will benefit the user. On these plat-
forms, there is a large number of existing tutorials that accommodate information
such as what materials or tools are used. Manually extracting such information
from the tutorials can become very cumbersome as the community and the num-
ber of newly created tutorials are growing.

In recent years, NLP has gained a lot of attention, and with it, the techniques for
understanding textual data have evolved, which we can use for the problem men-
tioned above. In our work, we will explore the named entity recognition tech-
nology (NER). We will develop a pipeline that will allow us to create such NER
models very efficiently. Moreover, we will also use this pipeline to develop models
that can extract materials from these tutorials. This pipeline provides a foundation
for building models based on different neural network architectures. We will form
and compare three different models. We will build a convolutional neural network
with and without word embedding and a transformer model, specifically the BERT
model. The result shows that the transformer model performs the best. We will
analyze and address the errors of the models. Furthermore, we will conceptualize
a tool that platform users can use interactively to improve the models. In addi-
tion, we will talk about how our results benefit the user and what other research
questions can be derived from the results for HCI.

xiv Abstract

xv

Überblick

Auf Tutorial-Plattformen wie Instructables und Thingiverse finden sich oft mehrere
Anleitungen ähnlicher Projekte, die sich nur in den verwendeten Materialien und
Werkzeugen minimal unterscheiden. Nutzer, die nach Tutorials suchen, haben
nur begrenzte Möglichkeiten, die gegebenen Tutorials zu filtern, abgesehen vom
Lesen des Titels und dem Überfliegen des Inhalts des Tutorials. Jedoch neigen
Maker dazu, Tutorials nach bestimmten Materialien oder Werkzeugen zu durch-
suchen, sodass diese begrenzten Filtermöglichkeiten für den Nutzer frustrierend
sein können. Daher ist eine erweiterte Filterung nach Merkmalen wie Materialien
oder Werkzeugen für den Benutzer von Vorteil. Auf diesen Plattformen gibt es eine
große Anzahl von Tutorials, die Informationen über die verwendeten Materialien
oder Werkzeuge beinhalten. Die manuelle Extraktion solcher Informationen aus
den Tutorien kann sehr mühsam werden, da die Community und die Anzahl der
neu erstellten Tutorien immer größer werden.

In den letzten Jahren hat NLP viel Aufmerksamkeit erlangt, und damit haben
sich auch die Techniken zum Verstehen von textuellen Daten entwickelt, die wir
für das oben genannte Problem nutzen können. In unserer Arbeit werden wir
die Technologie der Named Entity Recognition (NER) untersuchen. Wir wer-
den eine Pipeline entwickeln, mit der wir solche NER-Modelle sehr effizient er-
stellen können. Darüber hinaus werden wir diese Pipeline auch zur Entwick-
lung von Modellen verwenden, die Materialien aus diesen Tutorials extrahieren
können. Diese Pipeline bietet eine Grundlage für den Erstellen von Modellen, die
auf verschiedenen neuronalen Netzwerkarchitekturen basieren. Wir werden drei
verschiedene Modelle bilden und vergleichen. Hierzu werden wir ein Gefaltetes
Neuronales Netzwerk mit und ohne Worteinbettung und ein Transformer-Modell,
nämlich das BERT-Modell, erstellen. Das Ergebnis zeigt, dass das Transformer-
Modell am besten abschneidet. Wir werden die Fehler der Modelle analysieren
und beheben. Darüber hinaus werden wir ein Tool konzipieren, mit dem Plattform-
nutzer interaktiv die Modelle verbessern können. Außerdem werden wir darüber
sprechen, wie unsere Ergebnisse dem Nutzer zugutekommen und welche weiteren
Forschungsfragen sich aus den Ergebnissen für HCI ableiten lassen.

xvii

Acknowledgements

First of all, I would like to thank Prof. Dr. Jan Borchers and PD Dr. Ralf Klamma
for examining this thesis. Furthermore, I would like to thank my advisor Marcel
Lahaye, who supported me through the whole Thesis with his invaluable patience
and feedback. Additionally, this endeavor would not have been possible with-
out my friends and family, for their editing help, late-night feedback sessions, and
moral support.

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

The whole thesis is written in Canadian English.

For the use of the first person, the pronoun ”we” is used.

1

Chapter 1

Introduction

The rise of Do-it-yourself (DIY) culture in the past decade The usage of DIY
platforms and the
need to extract
information out of
these tutorials.

has brought hobbyists and designers together who now
share the ideals of personal fabrication and customization
of handcrafted projects. The movement has been supported
by online communities that help democratize the making
process [Tseng and Resnick [2014]]. This also induced a
large audience for creators, who can share their skills and
knowledge in a step-by-step instructional tutorial. These
tutorials are vital for sharing knowledge, learning from
others, and exchanging with the community through com-
menting and asking questions [Glaser et al. [1968]]. More-
over, this emergence of DIY tutorials also disrupted the
way how design projects are produced and especially who
produces them now. A decentralization of design and pro-
duction evolved within these practices, empowering ama-
teurs and hobbyists to become designers and producers by
active participation in these communities [Wakkary et al.
[2015]]. A tutorial is filled with a lot of information and ex-
plains the components, tools, and processes required to do
a DIY project. However, the overview of all these tutorials,
which are very rich in information, is very limited avail-
able for a user. For this, we will devote ourselves to the
platform Instructables in order to understand the problem
in more detail.

Instructables is a popular DIY community for “passionate
people [to] share what they do and how they do it, and

2 1 Introduction

Figure 1.1: Two snapshots of the website instrubtables.com. (A) The starting page,
with some general information of instructables and (B) a search on birdhouses on
instructables, which will list all the tutorials related to birdhouses.

learn from and collaborate with others [ins [2022]]. WhenExample of limitation
based on

Instructables.
we enter the website, we will get some information about
what Instructables is and suggestions for recently created
DIY tutorials. You can use the search bar as a filter option
to find a specific domain or tutorial and limit the listed tu-
torials to the search itself (see figure 1.1 (A)). A search for
birdhouses shows us several tutorials that are specifically
dedicated to the creation of birdhouses. What you can ob-
serve in figure 1.1 (B) is that the elements only list a title
image, title, and a few meta information, such as the num-
ber of likes and number of views. But we as readers can-
not grasp information such as what materials are used or
what kind of tools are necessary for building such a bird-
house. This limitation may make it difficult for the user to
find individual tutorials that they find relevant. This rele-
vance can be justified by the availability of materials to re-
build such a tutorial or to replace materials with others. In
a survey on Representing and Appropriating DIY Projects
Online by Teng et al. [Tseng and Resnick [2014]], one ques-
tion was about the ways of using online platforms. The
number one reason for using the forum is to get ideas for
a project. Learning a particular technique and looking for
projects to recreate were also crucial for many survey par-
ticipants. This showcases that many users can benefit from
tools such as filtering and searching and some more infor-
mation that are only available within each tutorial.

One way of achieving this information retrieval is with theThe need for NLP to
extract materials

from DIY tutorials.
help of natural language processing (NLP). Therefore, we
will primarily use the technology of Named Entity Recog-

1.1 Structure of thesis 3

nition (NER) to extract keywords, which would be extract-
ing materials out of the DIY tutorials. Named Entity Recog-
nition (NER) aims to detect chunks in a sentence represent-
ing an entity and assign a class to that entity [Syed and
Chung [2021]]. The task will be to create models that al-
low such extractions and make them perform well, espe-
cially for DIY projects documented in online platforms like
Instructables. Thus, the present work will address the ques-
tion of whether modern neural networks and appropriately
trained models can provide added value for the develop-
ment of this extraction task for specific domains. For this
purpose, we will restrict ourselves to the domain of bird-
houses on the platform Instructables and develop three dif-
ferent models to achieve the extraction of materials out of
the tutorials. The approach is generalized and is not only
restricted to materials. The approach can be used to create
models for different kinds of categories in various types of
domains.

1.1 Structure of thesis

The rest of the thesis is structured as follows: Chapter 2
will cover some related work, starting with the research
on DIY platforms, which shows how users use this plat-
form and what difficulties are hidden in the documenta-
tion. Here, we will focus on the platform’s usage and reaf-
firm the benefits of information extraction. We will also
discuss related work that deals with NLP and models that
deal specifically with Named Entity Recognition. More-
over, we will also discuss what problems NLP is exposed
to and how to collaborate HCI with NLP to improve NLP
tasks and dig deeper into a paper that focuses on the col-
laboration of NLP and HCI. Chapter 3 will explain the fun-
damental knowledge of the used technologies. Chapter 4
describes the conceptual approach and the implementation
of the system. A data pipeline will be built, which can be
used to utilize the approach and build other models for dif-
ferent use cases. This work will explain a more detailed
example of the pipeline and the creation of the models us-
ing the domain of birdhouses within the Instructables plat-
form. The next chapter will cover the evaluation of these

4 1 Introduction

created models, and we will address the quality measures
described in the fundamentals chapter. In addition, the re-
view will also go beyond purely computational measures
and evaluate the results for impact on the user. In chap-
ter 6, we will address the advantages of these built models
for HCI and how we can use this extracted information to
generate value for the user of these DIY platforms. Finally,
Chapter 7 concludes the thesis with a summary and a dis-
cussion of the thesis.

5

Chapter 2

Foundation

This chapter explains the principles and technologies used
in this thesis to extract the materials used from Maker
projects.

2.1 Data and Representation

This section provides an overview of data and their at-
tribute representation in the context of machine learning.
We will focus on a generic representation approach for ma-
chine learning algorithms, specifically for the use of text
representations.

2.1.1 Types of Data

In the approach section, we will elaborate on how the data Explanation of what
types of structured
data exist.

for our task will be extracted. Therefore, we will now pro-
vide a general idea of what type of data exist and how we
can utilize it. In general, data can be distinguished between
structured data and unstructured data. When we refer to
structured data, we are talking about numerical data, as
well as categorical data. Numerical data can be, for exam-
ple, the age, time or temperature and are mostly used as a
form of measurement. Categorical data, on the other hand,

6 2 Foundation

Figure 2.1: Visualization of types of structured data.

is data such as gender, color, or country, which is classified
into groups or categories with the aid of names or labels. In
figure 2.1 you can see that categorical data can be divided
into nominal data and ordinal data. Nominal data is used
to label the data without providing any quantitative value.
For example, the data value wood can be categorized as
nominal data. Ordinal data is very similar with the differ-
ence that it can be ranked, ordered, or assigned a rating
scale, e.g. school grades. Numerical data can be divided
into discrete, as well as continuous data. Discrete data are
either be countably finite or countably infinite, meaning the
elements have a one-to-one mapping with natural num-
bers. Simple examples would be age or the number of stu-
dents in a lecture hall. Continuous data on the other hand,
is a numerical data type with uncountable elements. They
are represented by the real numbers. Continuous data can
be further divided into interval data and ratio data. Interval
numbers have no absolute zero and are usually not multi-
plied or divided. For example, the temperature in Celsius.
Just like interval numbers, ratio data have units of the same
size, but this time on a scalar with an absolute zero.

The other type of data are unstructured data. This data canExplanation of what
unstructured data is. be text, audio, video, or images. We talk about unstruc-

tured data when they are not defined or have a structure.
Humans can work very efficiently with such data, but most
machines and algorithms are designed on structured data.

2.2 Machine Learning 7

Figure 2.2: Handwritten digits presented by Bishop
[[Bishop and Nasrabadi, 2006]], originally taken from US
zip code.

It is possible to represent this data mathematically, but it
does not change the fact that it is still unstructured. To cope
with this, Deep Learning comes to our rescue.

2.2 Machine Learning

Machine learning is a subarea of artificial intelligence. With General description
of Machine Learning.the aid of machine learning, it is possible to recognize pat-

terns and regularities on the basis of existing databases and
algorithms as well as to develop solutions. In order for the
software to learn and find solutions independently, prior
action by individuals is usually necessary. For example, the
models must first be supplied with the data and algorithms
relevant for learning. A preprocessing of the data is also
usually necessary to achieve good results. [Raschka and
Mirjalili [2017]]

To get a feeling for machine learning in general, we will
take a look at an example of machine learning known as
the handwritten numbers problem. The problem is often
used in the context of machine learning, but we will stick
to the version of Bishop [[Bishop and Nasrabadi, 2006]].

Figure 2.2 represents a subset of the input data, a number
of hand-written digits. Each digit is represented as a 28×28

8 2 Foundation

pixel images, i.e. it can be represented as a flat vector X con-
sisting of 784 numbers. In this case, a binary scale is used,Machine Learning

explained with an
example.

whereas 0 represents white and 1 represents blue or real
numbers which are capable of representing more color nu-
ances. Now apart from the X vector, we also need another
variable, which tells us which of the digits 0,...,9 our vec-
tor corresponds to. This variable is often called f*(x), f(x) or
simply y and is also called label or target variable. The task
of machine learning now is, to use a learning algorithm to
learn a so-called predictor or model f(). To train this model,
we use a large number of hand-written digits X and their
actual label y, i.e. we have a large set (X1,y1),. . . ,(Xn,yn).
The trained model f() takes a hand-written digit represen-
tation X, which it has never seen, as input and will predict
which digit is most likely meant to be.

2.2.1 Supervised vs. Unsupervised Learning

The handwritten numbers problem described above is formExplanation of
supervised and

unsupervised
learning.

of supervised learning. This requires predefined data that
is labeled. Also, in most cases, this labeled data must be
created manually to generate qualitative training data. The
other type of learning is unsupervised learning. In this
case the training data has no label and we usually do not
make predictions on unlabeled data points but rather want
to classify a set of unpredicted data points [Bishop and
Nasrabadi, 2006].

2.2.2 Deep Learning

Deep Learning is a subfield of machine learning and thusOverview of Deep
Learning also a subfield of artificial intelligence. In Deep Learn-

ing, neural networks are used to analyze and process large
amounts of data [[Mehlig, 2021]]. The algorithms used in
Deep Learning to process these large amounts of data are
based on the function of the human brain and are mod-
eled on it. Especially in recent years, there have been ma-
jor breakthroughs in image recognition, text understand-
ing, and decision problems. [[van der Aalst, 2021]]

2.2 Machine Learning 9

Figure 2.3: Neural network example structure: Consisting
of an input layer with 2 nodes (neurons), two hidden layers
with 3 and 4 nodes (neurons) respectively and an output
layer consisting of 2 nodes (neurons).

2.2.3 Neural Network

Neural networks, often called artificial neural networks
(ANN), are a set of algorithms that mimic the way the hu-
man brain works. Similar to its biological counterpart, an
ANN consists of many neurons that are interconnected to
process and transmit data among themselves. Artificial
neural networks can learn by restructuring and adapting
these neuron-to-neuron connections. [[Mehlig, 2021]]

Figure 2.3 shows a typical neural network. Such a neu- Introduction into
neural network.ral network usually consists of an input layer, the hidden

layer, and an output layer. Each of these layers can have
any number of nodes (neurons). The hidden layer can also
consist of several layers that follow each other. The neural
network shown in Figure 2.3 has an Input layer consisting
of 2 nodes, which are drawn in blue. The hidden layer in
this example consists of 2 separate layers, one with 3 nodes
drawn in brown and the other with 4 nodes drawn in green.
Finally, the output layer follows, which in this example con-

10 2 Foundation

sists of the two orange nodes. It should be noted that the
number of nodes in the input and output layers does not
have to be identical. The number of nodes in a layer de-
pends entirely on what is required of the neural network.

The hidden layers are optional and turn out to be moreExplanation of the
layers that a neural
network consist of.

difficult to calculate in the sense of how many of the hid-
den layers are needed and its optimal number of layers
and nodes can often only be determined by trial and error.
Some approaches and recommendations do exist, e.g., that
the number of nodes should be less than 2 × #NodesInput-
Layer. Another commonly used formula for determining a
suitable number of nodes the following: (2/3 × #NodeIn-
put) + #NodeOutput.
However, as mentioned earlier, these are only recommen-
dations. Often these formulas are only used as a starting
point to test the performance of the models, and then these
parameters are further optimized to improve the result.

Apart from the different layers and nodes that make upExplanation on
neural networks bias. a neural network, the second most important feature of a

neural network is the paths that connect the nodes in an or-
dinary NN, a node from one layer is connected to all nodes
of the following layer. These paths usually have a weight-
ing. In addition, there is a so-called bias, for which different
notations exist. Bias in Neural Networks can be thought of
as analogous to the role of a constant in a linear function,
whereby the line is effectively transposed by the constant
value. [[Mehlig, 2021]] [[Bishop and Nasrabadi, 2006]] Of-
ten the bias is noted directly on a node, so that it is applied
to all incoming paths of this node. Another notation is the
one used in Figure 2.4, where the bias is noted on the path
as well as the weighting. However, it is important to note
that all paths to a single node have the same bias. So, it is
not possible to have a different bias of two separate paths
to the same node.
Let’s take a closer look at Figure 2.4. We have mapped an
input node connected to two nodes in a hidden layer. The
upper path has a weight of 0.64 and a bias of 2.12. If there
were another input node, it would also have a path to that
very node in the hidden layer. The path would also have a
weight and a bias. The bias must have a bias of 2.12 as well.
However, the weighting can have any other value.

2.2 Machine Learning 11

Figure 2.4: Example connection between Input Layer nodes
and 2 nodes in a Hidden Layer. Weighting and bias is
shown.

Each node in a hidden layer has a so-called activation func- Description of neural
networks activation
function.

tion [[Bishop and Nasrabadi, 2006]]. This is always applied
to any value that arrives at the node before the value is
passed on to the next node. There are many different ac-
tivation functions that are applied to neural networks, in-
cluding the following: Sigmoid, Tanh, RelU, softplus.

Initially, sigmoid was very often used as an activation func-
tion to map the incoming numbers between -1 and 1, but it
has since been established that using RelU as an activation
function is more efficient and gives a better result. Which
activation function is used in the end depends on the neural
networks use case, and this is often determined by testing.
[[van der Aalst, 2021]]

12 2 Foundation

Training of Neural Network

We covered the topic of supervised and unsupervisedExplanation of
supervised learning

in neural network.
learning, which differ in whether you have labeled data or
not and you execute the training with that labeled data or
without that data. The neural network can also be used
to train a model using both methods. Since we will only
deal with supervised learning later on, I will now discuss
how supervised training of neural networks operates. In
general, training a neural network can also be considered
as solving an optimization problem. The goal is to opti-
mize the weights of the individual paths in such a way that
the results of the model improve with each training step
and approach the desired behavior [[van der Aalst, 2021]]
[[Mehlig, 2021]].

In supervised training, the model is provided with inputIntroduction of
error-based learning. training data as well as the corresponding output training

data during the training process, so that the model can up-
date the weights of the individual paths between the neu-
rons accordingly. That is, the network can process the input
passed in and calculate a prediction for that input. This pre-
diction can then be compared to the actual output from the
network. An error is calculated, which is then propagated
from the output node of the network back through the en-
tire network. That is why this type of technique belongs to
the area of error-based learning. In this process, the weights
used for the calculated prediction are updated according to
the error, so that the error is minimized. This is also called
minimizing the loss function. This function can be defined
differently depending on the application, but often the root
mean square error function is used as loss function, but this
can be adapted by the developer. [[Bishop and Nasrabadi,
2006]]

This process just described is repeated many times duringHaving validation set
to improve

generalizing the
outcomes.

training, and thus the weighting of each path between the
different nodes is further adjusted with each repetition. A
single repetition is also known as an epoch. However, a
model should also not be explicitly trained for too long on
a certain training set, in the sense of too many epochs, be-
cause otherwise there is a danger of overfitting. This means

2.3 Natural Language Processing 13

that a network learns the existing training set extremely
well, but then performs poorly on previously unseen input
data because it is too fixated on the training data. This can
be improved by using a validation set in order to estimate
how well your model has been trained. The validation set
is like a test set during training such that the model can
validate its current training results on an unseen data set.
Conclusively, we can say that training a network is also not
a trivial process and there is no single best approach for all
networks, but one often requires a lot of experimentation
based on the training dataset itself, the network architec-
ture and the use case, to find an optimal training for a spe-
cific network.

2.3 Natural Language Processing

Natural language processing (NLP) is the process by which Introduction into
natural language
processing.

a computer processes natural language text and extracts
and understands the semantic information contained in the
text [[Chowdhary, 2020]]. However, in order for a com-
puter or any machine to process a natural language text,
some preprocessing steps must first take place. As de-
scribed in the subchapter 2.1.1, there is structured and un-
structured data. The natural language is unstructured data
and this data must first be converted into a certain structure
for the training of the models. NLP is used, for example, in
machine translation, virtual assistants, spam detection, or
sentiment analysis [[Wolf, 2019]]. This work focuses on the
method of extracting used materials from tutorials, such as
Instructables which then can be used in other research areas
of HCI. Extracting specific keywords from an unstructured
corpus is also a use case in NLP and is called Named Entity
Recognition (NER).

2.3.1 Named Entity Recognition

Named entity recognition (NER), sometimes referred to as Named Entity
Recognition is a NLP
technique.

entity chunking, extraction, or identification, is a natural
language processing (NLP) technique that automatically

14 2 Foundation

Figure 2.5: The NER model recognized winter and Aachen
as entities and categorized winter as Time and Aachen as
Location.

identifies named entities in a text and classifies them into
predefined categories. Any word or group of words that
consistently refers to the same item is considered an entity.
People, organizations, locations, times, amounts, monetary
values, percentages, and other entities are examples of cat-
egories. [Eisenstein [2019]]

In figure 2.5, we identified two types of entities. One ofExplanation of the
NER example. them is a ”Time”: winter and the other category that was

found is ”Location”: Aachen. Training such entities re-
quires using the method of supervised learning, whereas
we train the model via labeled data. So, we need train-
ing data set, which consists of a lot of text and their cor-
responding labels. For example, we could train a model
only for the categories ”Time” and ”Location”. Our train-
ing data would be a lot of text were we specifically mark
the instances that belong to the category of ”Time” or ”Lo-
cation”. We would use a NN or another architecture that
allows to train a NER and train that network or model on
that given data.

2.3.2 spaCy

SpaCy is a library for advanced Natural Language Pro-Introduction into
spaCy. cessing in Python and Cython. It comes with pretrained

pipelines for specific NLP task and features state-of-the-art
NN models. Moreover, it is commercial open-source soft-
ware, released under the MIT license. [[Honnibal et al.,
2020]]

SpaCy has its own deep learning library called thinc used
under the hood for different NLP models. For most tasks,

2.3 Natural Language Processing 15

spaCy uses a deep neural network based on CNN. Specifi-
cally for Named Entity Recognition, spaCy uses:

• A transition based approach
A transition based approach inspired by shift-reduce SpaCy uses a

transition based
approach borrowed
from shift-reduce
parsers and a
framework that is
called Embed,
Encode, Attend,
Predict

parsers, which is described in the paper Neural Ar-
chitectures for Named Entity Recognition by Lam-
ple et al. [[Lample et al., 2016]]. The model re-
lies on stack data structure in order to incrementally
construct chunks and labels. It uses two stacks, the
output and the stack representing, respectively, com-
pleted chunks and scratch space and a buffer that
contains the words that have yet to be processed.
Then there is a transition inventory, which consists of
SHIFT, REDUCE and OUT, which are used as action
to cooperate with the stack architecture. The SHIFT
transition moves a word from the buffer to the stack,
the OUT transition moves a word from the buffer di-
rectly into the output stack. The REDUCE transition
creates a chunk and labels it accordingly and moves
the entity with its label to the output stack. The al-
gorithm is complete if the buffer and stack are com-
pletely empty [[Lample et al., 2016]]. Consider table
2.1, which shows the sequence of operations required
to process the sentence Mark Christy George visited
HCI. At the starting point both stack are empty and
only the buffer contains all the words of that sentence.
At the beginning, the first three words are popped
and pushed into the stack. After that these three en-
tities are considered as a chunk and are labeled with
label PER and the chunk will be moved into the out-
put stack. Thereafter, the word visited will be moved
into the output stack immediately with the transition
OUT. The last two steps will shift the word HCI into
stack and then it will be labeled with ORGANIZA-
TION and lastly, pushed into the output stack. Since
the buffer and the stack are empty, the algorithm ter-
minates. Now, the question is how the model decides
on which transition is performed in each step. This
is done with a statistical model which predicts each
transition in each step. So, we have to ask on how our
neural network is structured?

16 2 Foundation

• A framework that’s called ”Embed. Encode. Attend.
Predict”
The underlying framework that is used in spaCy is
“Embed, Encode, Attend, and Predict”. With Em-
bed, words are embedded using a Bloom filter, which
means that word hashes are kept as keys in the em-
bedding dictionary, instead of the word itself. This
maintains a more compact embeddings dictionary,
with words potentially colliding and ending up with
the same vector representations. Encode computes a
representation that is called sentence matrix, where
each row represents the meaning of each token in the
context of the rest of the sentence. To allow it to be
transferred to a typical feed-forward network for pre-
diction, the attend step converts the matrix represen-
tation created by the encode step into a single vector.
Once the text or pair of texts has been reduced into
a single vector, we can learn the target representation
and do structured prediction, by using the network as
the controller of a state machine such as a transition-
based parser. [[Honnibal et al., 2020]]

2.3 Natural Language Processing 17

Tr
an

si
ti

on
O

ut
pu

t
St

ac
k

B
uf

fe
r

Se
gm

en
t

[]
[]

[M
ar

k,
C

hr
is

ty
,G

eo
rg

e,
vi

si
ti

ed
,H

C
I]

SH
IF

T
[]

[M
ar

k
[C

hr
is

ty
,G

eo
rg

e,
vi

si
ti

ed
,H

C
I]

SH
IF

T
[]

[M
ar

k,
C

hr
is

ty
]

[G
eo

rg
e,

vi
si

te
d,

H
C

I]
SH

IF
T

[]
[M

ar
k,

C
hr

is
ty

,G
eo

rg
e]

[v
is

it
ed

,H
C

I]
R

ED
U

C
E

[(
M

ar
k

C
hr

is
ty

G
eo

rg
e)

-P
ER

]
[]

[v
is

it
ed

,H
C

I]
(M

ar
k

C
hr

is
ty

G
eo

rg
e)

-P
ER

O
U

T
[(

M
ar

k
C

hr
is

ty
G

eo
rg

e)
-P

ER
,v

is
it

ed
]

[]
[H

C
I]

SH
IF

T
[(

M
ar

k
C

hr
is

ty
G

eo
rg

e)
-P

ER
,v

is
it

ed
]

[H
C

I]
[]

R
ED

U
C

E
[(

M
ar

k
C

hr
is

ty
G

eo
rg

e)
-P

ER
,v

is
it

ed
,(

H
C

I)
-O

R
G

]
[]

[]
(H

C
I)

-O
R

G

Ta
bl

e
2.

1:
Tr

an
si

ti
on

se
qu

en
ce

fo
r

M
ar

k
C

hr
is

ty
G

eo
rg

e
vi

si
te

d
H

C
Iw

it
h

th
e

St
ac

k-
LS

TM
m

od
el

.

18 2 Foundation

Figure 2.6: Word2Vec Structure: Example shows how the
vector would look for the basic king, queen, man and
woman universum.

2.3.3 Word2Vec

Word vectors are mathematical representations of wordsWord vectors used to
understand the

context in a
mathematical way.

in a multi-dimensional space. With this machine learning
models can understand words and context. The word vec-
tor in its simplest form is a simple 1-to-N (one-hot) encod-
ing, where the vector in which the corresponding element
is set to one, and all other elements are zero. For example if
we consider that our vocabulary has only four words with
King, Queen, Man, and Woman, then Queen could be rep-
resented as (0,1,0,0). With the introduction of word2vec a
distributed representation of a word is used. Here, most
words are represented with hundreds or even thousands
of dimensions. Each word is represented by a weighting
distribution among those elements. The representation of a
word is therefore distributed throughout all of the items in
the vector rather than being mapped one to one to a word,
and each element in the vector contributes to the definition
of a number of words. In figure 2.6 we can see how it would
look like for the example of King, Queen, Men, Woman.
[[Mikolov et al., 2013a]][[Mikolov et al., 2013b]][[Mikolov
et al., 2013c]]

2.3 Natural Language Processing 19

Learning Word Vectors

Mikolov et al. introduced a practical way to learn high Word vectors learn
the context with a
given window size.

dimensional word vectors on a large amount of data
[[Mikolov et al., 2013a]]. Two architectures are proposed,
the Continuous Bag-of-Words model (CBOW), and the
Continuous Skip-gram model. The contexts forms the in-
put layer of the neural network. Each word is encoded in
one-hot form, so as a simple 1-to-N mapping. So with a
vocabulary size of N every input is N long, with the corre-
sponding element set to one and the rest to zeros. The goal
of training is to increase, given the input context words and
weights, the conditional probability of observing the actual
output word (the focus word). The skip-gram model is the
opposite of the CBOW model. It is constructed with the fo-
cus word as the single input vector, and the target context
words are now at the output layer. Here the goal is to mini-
mize the summed prediction error across all context words
in the output layer.

2.3.4 Transformers

Over the years, research continues on newer neural models. Transformers model
were introduced with
the paper Attention is
all you need.

In the field of NLP, Transformer models were introduced
in 2017 in the paper ’Attention Is All You Need’ [Vaswani
et al., 2017]. These neural networks are models that can
be applied particularly effectively to common NLP tasks.
[Vaswani et al., 2017] The special feature of the Transformer
models is the novel architecture, which although also simi-
lar to the Sequence-to-Sequence (Seq2Seq) architecture 13
[Sutskever et al., 2014], has the task of transforming in-
put sequences while solving a previously common problem
with Seq2Seq architectures.

The Seq2Seq model has already been used in various ar- Seq2Seq model has
a similar architecture
as the Transformer
model.

chitectures, especially in the older and widely used LSTM
(Long Short Term Memory) models. As the name reflects,
these models built on such an architecture are designed
to transform the sequence of elements (in NLP usually a
sequence of words) into another sequence. Hence, such
models are often used for tasks such as translating from

20 2 Foundation

one language to another. LSTM models have been the pre-
ferred models for solving these tasks for a long time, be-
cause LSTM models can filter and store important informa-
tion from a sequence while ”forgetting” unimportant infor-
mation in the case of sequence-dependent data. [Sutskever
et al., 2014]

Seq2Seq models consist of an encoder block and a decoderArchitectural design
which includes an

encoder and a
decoder.

block, where the encoder receives an input sequence and
transforms it into a multidimensional space by word em-
bedding. The size of the dimensions varies from model
architecture to model architecture. The resulting vector is
decoded in the decoder block to an output sequence. This
output is then usually changed from the input, for exam-
ple into a different language or a particular sentence struc-
ture. This output is then usually changed from the input,
for example into a different language or a particular sen-
tence structure. [Sutskever et al., 2014]

Before the introduction of Transformer models, two singleAttention mechnism
as main driver for

Transformer models.
LSTM models were often used for these tasks, acting as the
encoder and decoder of a Seq2Seq architecture. The big
advance now is the introduction of the Transformer mod-
els. The Transformer architecture is designed to convert
an input sequence into another new sequence, just like the
Seq2Seq architecture. In contrast to LSTM or GRU models,
however, Recurrent Neural Networks (RNN) are not used,
but an approach called ’Attention Mechanism (AM)’, hence
the name of the paper published on this topic ’Attention Is
All You Need’ [Vaswani et al., 2017].

First, let’s clarify what is meant by Attention. When an in-Explanation of
Attention

Mechanism.
put sequence is passed, the AM decides in each step which
sequence parts are perceived as important, this is a similar
process that a human unconsciously performs when read-
ing a text sequence. When reading a text, humans always
focus on the word they are reading, but at the same time
the brain remembers the important keywords from the text
to generate context. The AM works similarly for a passed
sequence and creates an attention matrix at word embed-
ding (i.e., transforming the sequence into a vector). The
Attention Matrix calculates a value for each token in the
sequence, which indicates how important this token is for

2.3 Natural Language Processing 21

the whole sequence. It also calculates the position of the
token in the sequence. This way, AM can be used to cre-
ate a context for an input sequence, which ensures that the
sequences are transformed into a multidimensional space
much more accurately and contextually.

This very principle is used by the Transformer models in
their respective encoder and decoder block and therefore
distinguishes them from the usual Seq2Seq models which
are based on recurrent networks. In the presented paper,
it was shown and proved that the Transformer architec-
ture with the AM could achieve better results in many NLP
tasks than the previously used Seq2Seq models based on
RNN. [Vaswani et al., 2017]

In figure 2.7, the transformer architecture model is illus- Explanation of the
Transformer
architecture.

trated, which was initially presented in the paper of ‘At-
tention Is All You Need’. It can be seen that the architecture
consists of two blocks, as with the Seq2Seq architecture, the
Transformer architecture consists of a decoder (left) and en-
coder (right) block. The gray area of the two areas indicates
that both blocks are of modular design. These modules
can be arranged in sequence as often as desired and con-
sist mainly of multi-head attention and feed-forward lay-
ers. Moreover, during embedding, which is the transfor-
mation in an N-dimensional space, an additional positional
encoding is generated for the input sequence as well as for
the output sequence. This is added to the generated vec-
tor to encode the position of each element in the sequence.
For a more detailed explanation of each of the multi-head
attention and feed-forward levels, the reader is referred to
the corresponding paper [Vaswani et al., 2017].

Pre-trained Models

Since the release of the Transformer architecture, a num- Training Transformer
model from scratch is
a highly expensive
task. Fine-tuning
pre-trained model
was deduced by it.

ber of new models based on the Transformer architecture
have been developed and presented. For this purpose,
these models have been trained on huge data sets. Espe-
cially with respect to NLP, this approach has been used
to develop models that understand a language in a better

22 2 Foundation

Figure 2.7: Transformer Model Architecture [Vaswani et al.,
2017].

way. To do this, the model is trained beforehand on a huge
amount of data, for example the entire Wikipedia dump. In
this way, the model learns to understand the language. The
model can then be further trained on specific tasks using a
task-specific training set. This procedure is also called fine
tuning.

2.3 Natural Language Processing 23

Figure 2.8: Confusion Matrix depicting all four classes.
True Positive, True Negative, False Positive, False Negative.

2.3.5 Evaluation of Machine Learning Models

In this section, we will list out the evaluation metrics that
will be used to evaluate the performance of our created
models. We will start by explaining the confusion matrix.

Confusion Matrix

The confusion matrix is a performance measurement for
machine learning classification problems where the output
classes can be two or more. It tries to visualize the outcomes
in a matrix form where the rows represent the predicted
value, and the columns represent the actual value. With
this, additional metrics for performance measurement can
be calculated such as precision, recall, or f1-score. Let’s first
focus on the confusion matrix with two classes as output.

In figure 2.8, we can see a confusion matrix of the output Description of
confusion matrix.class. The matrix depicts four different combinations of

predicted and actual values. So, we compare the predicted

24 2 Foundation

results of the model being evaluated with the actual values
from the test data. The true positive value describes that
the model predicted the value to be true or positive and
the actual value is also true. The true negative describes
that our model predicted the value to be false or negative
and the actual value is also negative. False positive means
that the model predicted a positive value but which is in-
correct and the similar for false negative, where the model
predicted the outcome to be negative or false but the actual
value is positive. The latter two combination are also called
the misclassification rate.

As stated before, with these values we can easily calculate
the Accuracy, Precision, Recall, and F1-Score.

ACCURACY:

Accuracy =
TN + TP

TN + FP + TP + FN

Definition:
Accuracy

Accuracy represents the number of correctly classified dataDescription of
accuracy. instances over the total number of data instances. We try

to reach a high number close to one, so that our misclassi-
fication rate, the incorrectly identified entities, are close to
0. Anyhow, the accuracy can be misleading. If the dataset
is not balanced, so both negative and positive classes have
different size, the model will predict always the class which
size is bigger. This will lead to an high accuracy if the
test dataset unbalanced in a similar way. But in reality our
model will most likely predict only one of the classes and
thus, it isn’t a good model.

PRECISION:

Precision =
TP

TP + FP

Definition:
Precision

Precision should ideally be 1 (high) for a good classifier.Description of
precision. This means the False Positive rate should be zero. As FP

increases the value of denominator becomes greater than
the numerator and precision value decreases, which is un-

2.3 Natural Language Processing 25

desired. Precision answers the following question: What
proportion of positive identifications was actually correct?
So, we only focus on the positive outcomes of our models
and verify its correctness.

RECALL:

Recall =
TP

TP + FN

Definition:
Recall

Recall should also be 1 (high) for a good classifier. Similar Description of recall.
to Precision as False Negative increases the value of denom-
inator becomes greater than the numerator and recall value
decreases. The question recall is answering is what propor-
tion of actual positives were identified correctly. Here, we
focus on the actual positives instead of only what the model
predicted and then compare it with the positive outcomes
of the model.

F1-Score

Ideally, we want both precision and recall to be one which Description of
F1-Score.also means that the false positive and false negative are

zero. Therefore we need a metric that takes into account
both precision and recall. This is where the F1-Score comes
into play.

F1-SCORE:

F1− Score = 2 ∗ Precision ∗Recall

Precision+Recall

Definition:
F1-Score

F1 score is the harmonic mean of precision and recall. F1
Score becomes 1 only when precision and recall are both 1.
F1 score becomes high only when both precision and recall
are high.

27

Chapter 3

Related work

This chapter discusses the related work, addressing the
area of HCI and NLP. In doing so, we address the problems
of DIY portals and give evidence that HCI can benefit from
machine learning methods, such as NLP. Furthermore, we
refer to papers that use different methods to enable tasks
such as NER, especially in the domain-specific understand-
ing of texts. We will also briefly address what problems
NLP is exposed to and how to collaborate HCI with NLP to
improve NLP tasks. For this, we will dedicate ourselves to
a paper that composes methods for designing and evaluat-
ing HCI and NLP systems.

The paper of Tseng et al. [Tseng and Resnick [2014]] focuses Paper talks about the
usage of platforms
like Instructables.

on the methods by which project documentation is created
and utilized. Therefore, they made a case study through
interviews and surveys about how design documentation
is created and used by authors and readers of Instructa-
bles. Until now, the documentation tools designed specif-
ically for their unique workflow are disruptive and time-
consuming. With the results’ aid, they encourage HCI com-
munity members to develop tools to better support people
sharing creative work online. It should be mentioned that
user-generated content has become increasingly important
as a form of knowledge sharing with the change of tools,
materials, and techniques [Wakkary et al. [2015]]. This in-
dicates that the amount of data in human written form is
large, and drawing conclusions or gaining valuable infor-

28 3 Related work

mation from this amount of data can be a challenge for hu-
mans. One of their survey questions is how the users of
Instructables use the platform. For this, the interviewees
were asked to rank the following use cases: “To learn a par-
ticular technique, To look for projects I want to recreate,
and Getting ideas for a project”. The results clearly show
that “Getting ideas for a project” is the primary use case on
Instructables, which reinforces that the user could benefit
from further information about these tutorials. For exam-
ple, Instructables does not offer any special filter or search
options on materials or tools used in the instructions. Fur-
thermore, the case study shows that modification and per-
sonalization are essential practices for people who recreate
Instructables as they don’t necessarily have all the required
materials or tools. Extracting information such as materials
or tools can benefit the user. To deal with the tremendous
amount of data and be able to extract these keywords for
further tooling possibilities, we will be using NER, a sub-
area from NLP.

We will be creating three different models using the sameA comparison of a
suite of neural

network models and
how we will lay our

focus.

training data and performing evaluations on each of them.
Korpusik et al. present a comparison of deep learning
methods for language understanding in their paper. Here,
they compare a suite of neural networks (NN) such as re-
current NN, convolutional NN, and Transformers, espe-
cially the BERT model with hand-crafted features on three
semantic corpora. In general, they state that the perfor-
mance improvement from eliminating examples where the
model is less certain indicates that the model is more con-
fident when its predicted tag is correct and less confident
when it makes errors. Our approach will also focus on im-
proving the training data set rather than on the data sets’
sparsity and inaccuracies. They have demonstrated that
BERT outperforms prior state-of-the-art methods on three
spoken language understanding tasks. Yet, this paper fo-
cuses on spoken languages and doesn’t incorporate a feed-
back mechanism that can improve the model. [Korpusik
et al. [2019]]

The paper MenuNER by Syed et al. focuses on menu en-
tity extraction from online user reviews for the restaurant
and proposes a simple approach for NER tasks on a new

29

domain where a large dataset is rarely available or dif-
ficult to prepare. They are facing a similar challenge of Related work on

domain-specific NER
task, while using
pre-trained models to
further finetune it on
its specific use case.

user-generated content with its unique characteristics and
use of informal language, which is typically short context,
noisy, sparse, and ambiguous content [Lin et al. [2017]]. In-
stead of creating a neural network model such as BERT,
developing such a pre-trained model for a new domain
from scratch will be pretty expensive since the BERT-base
model has 12 layers with roughly 110 million parameters.
So, instead, they further pre-train the original off-the-shelf
BERT with a limited target-domain dataset. When fur-
ther pre-trained on domain-specific corpora, the BERT pre-
trained model can improve performance in domain-specific
tasks while maintaining good performance in general do-
main tasks [Rongali et al. [2020], Ma et al. [2019]]. Post-
training approaches for domain adaptation are highly ef-
fective for tasks where the training dataset is limited [Ron-
gali et al. [2020]]. Thus, we will use a similar approach of
fine-tuning a given Transformer model instead of training
it from scratch. [Syed and Chung [2021]]

During our research, we found out that the field of NLP Related work on NLP
research on DIY
content.

is still very low, regarding DIY content. The paper “Ex-
tracting terms and their relations from German texts: NLP
tools for the preparation of raw material for specialized e-
dictionaries” by Rösiger presents an approach of data ex-
traction from German texts in the domain of do-it-yourself
(DIY) instructions, where the objective is to extract nom-
inal term candidates with high quality. This paper’s ob-
jective is to collect German terminological data from het-
erogeneous corpora. This paper, however, was published
in 2015 and applies outdated methods of NLP to perform
data extraction. Moreover, the focus here is to extract
predicate-argument structures involving the term candi-
dates, relate German word formation products with syn-
tactic paraphrases, and use only a prototype to perform the
extracting task. [Rösiger et al. [2015]]

Many modern NLP tasks will face the challenge of data Methods for
designing and
evaluating HCI
combined with NLP
systems.

sparsity with unique fine-tuning methods by changing
the parameters and using particular architectures [Alawad
et al. [2017]]. Another way to improve the model perfor-
mance is by improving the data sets used [Syed and Chung

30 3 Related work

[2021]]. Heuer et al. present methods for designing and
evaluating HCI combined with NLP systems [Heuer and
Buschek [2021]]. For this purpose, they developed practices
that we consider useful in advancing research in both fields.
The first method describes a user-centered NLP approach
where user studies can ensure that users understand the
output and the explanations of the NLP systems. The idea
of user-centered NLP was inspired by an unpublished ma-
chine learning-based fake news detection. The outcomes
have been excellent on paper, but the rationale was mean-
ingless to the user [Heuer and Buschek [2021]]. Moreover,
they discussed a method called Co-Creation, where involv-
ing users in designing, implementing, and evaluating in-
teractive computing systems can yield insights into UI and
interaction design and its output. Our work uses this as
inspiration, and we will analyze if user involvement in the
NLP task can be a possible improvement of the model’s re-
sults. Moreover, we will also explore the meaningfulness
behind the results. For this purpose, we will first evaluate
the results using computational metrics and manually ana-
lyze the significance. We will take a part of the data and im-
prove it with our understanding of materials and eliminate
errors due to erroneous data sets or erroneous predictions.
We will investigate the model properties of the finetuning
and related to the models’ optimizations by further train-
ing and show if such an improvement enhances the results.
Once such optimization has been validated, we will create
a concept that allows the user to perform such an evalua-
tion and be involved in the training process. This concept
will provide a GUI, and the user will be able to complete
the improvement steps we have performed manually for
our proof of concept. Validation of the user’s participa-
tion and whether the user-manipulated data is as accurate
as our manual corrections will need to be tested in future
work.

31

Chapter 4

Concept

The rise of DIY culture over the past decade has allowed To extract material
out of DIY tutorials,
we will rely Named
Entity Recognition.

designers to share their ideas and skills on platforms such
as Instructables or Thingiverse and share them with other
designers or interested individuals. Thus, large amounts
of data have accumulated in the form of a step-by-step tu-
torial, which becomes increasingly difficult for the reader
to manage. Information such as materials or tools used
in the designers’ projects are not comprehensible at first
glance, and filter options within a domain are also only pos-
sible very restrictive. Tooling like filtering and searching for
domain-specific projects can help the reader or users who
want to recreate such projects to find more relevant tuto-
rials. This leads us to the path of Natural Language Pro-
cessing, particularly Named Entity Recognition. The exist-
ing data must first be understood to enable such filter or
search tooling. More precisely, specific information must
be extracted from the individual tutorials to offer filtering
or search options based on these information. In this work,
we will deal with techniques that enable such extraction
of specific data, focusing on materials that are needed or
have been used for the construction such projects. Benefits
that can be gained from the information of such materials
have been described in the introduction chapter 1 and fu-
ture work 6.

32 4 Concept

4.1 Conceptual Design

In the beginning, we will give you a general idea of theStructure of
conceptual design. chosen approach of how we enable tackling the problem

of extracting materials from the platform of Instructables.
Here, we will briefly discuss the pipeline that allows us to
set up and train NER models. After that, we will discuss the
pipeline’s elements and explain our strategies to develop
each model.

To ensure the extraction of materials from tutorials, we will
turn to Named Entity Recognition. As described in the
foundation chapter 2, this enables the targeted training of
categories in the NER model, which can filter out words
of these categories for new and unseen texts. In our case,
the category material will be trained, and we will prepare
the models to recognize materials from any texts. It should
also be mentioned that for this work, we are limited to the
domain of birdhouses, and our results are optimal for such
tutorials. However, the models are trained to understand
from the context if it is a material. Thus, theoretically, these
models could be applied to any domain, but it remains to
be shown how well they perform. Furthermore, we will
build a pipeline that allows us to generate such models very
quickly and efficiently. We recommend using this pipeline
for different domains and, thus, training the models on spe-
cific domains. Our NER models perform particularly well
when trained on a particular domain, and we will demon-
strate this using our example domain of birdhouses. TheOverview of the

chapters procedure. pipeline will be depicted in figure 4.1:

The first part is Data Scraping. In order to train such mod-Explanation of the
three steps of the

pipeline.
els, it requires data. We will use the data from Instructables
by using an HTTP library and HTML parser library. After
we have our data, we need to perform some pre-processing
steps. Since machines can be influenced by noisy data,
those that do not add value to the context but facilitate the
reader’s reading flow. We will also generate three models
using the same data and evaluate them with the same test
data. We use two libraries for the models, whereby we also
adapted our pipeline with an adjusted pre-processing step.
In the end, we can train our model using the built-in func-

4.2 Data Scraping 33

Figure 4.1: An overview of the pipeline with which we will
create three models to extracts informations out of DIY tu-
torials.

tions of both libraries

4.2 Data Scraping

A lot of data is required to apply machine learning mod- Motivation on why
data scraping is
necessary.

els and obtain information from the Maker Community fo-
rums. Before processing and analyzing this data, it is neces-
sary to acquire it from certain sources and make it available
for the processes just mentioned. Nowadays, the Internet
offers vast amounts of data, most of which are in unstruc-
tured forms, such as text, images, or videos. To effectively
harvest such data from the web, one can apply a technique
called web scraping.

Web scraping is the process of gathering information from Description of web
scraping.the internet [Glez-Peña et al. [2014]]. One easy way of web

scraping would be copying the text and pasting it into a file.
However, with the current amount of data, web scraping is
used as an automatic process. With the help of tools and
scripts, larger amounts of data can be automatically col-
lected and made available. In general, there are many tools
available that can be used with different programming lan-
guages. The two main tools used in the python context are
Beautiful Soup and Selenium.

Beautiful Soup is a python library built for scraping struc- Beautiful Soup
allows working with
HTML code. You can
parse the code and
grab information that
is of interest.

tured HTML or XML data. One could ingest a web page’s

34 4 Concept

source code and filter through it with Beautiful Soup to find
specific content used on the page. For that, we first need
to understand how HTML is structured. HTML consists
of a head element, which can be a title, section, footer or
divider, and many more. These elements can then be pop-
ulated with class attributes or certain ID flags, mostly used
to keep the elements unique. This makes it possible to find
certain elements more easily. E.g. if you want to include the
main part of an article in HTML, you can include this with
⟨div class = ”main”⟩Main Part⟨\div⟩. The class ”main” is
only used in this context. We can now use Beautiful Soup’s
helper functions to filter out the main part easily. But using
Beautiful Soup requires another python dependency, which
allows us to get the HTML document we want to use. One
of the libraries is called Request. It allows you to get the
HTML source page into your script that you can parse with
Beautiful Soup and scrape the necessary content.

Selenium, on the other hand, is a general-purpose render-Selenium as
alternative method to

perform web
scraping.

ing tool [Sel [2022]]. It was initially designed to render web
pages for test automation of web applications. You could
consider Selenium as a barebone web browser that executes
JavaScript and renders HTML to your script. Since many
websites rely on JavaScript to create dynamic content on
the page, Selenium can also be beneficial for web scrap-
ing. Selenium is an excellent alternative for scraping when
a page needs to be loaded first before JavaScript can dis-
play the dynamic content. It is a versatile tool that can do
activities like button clicks and choosing items from drop-
down menus. So, Selenium allows scraping on more com-
plex web applications with some dynamic content. On the
other hand, it comes with the disadvantage of being slower
in the process than Beautiful Soup with Request.

The choice between these tools depends on the complex-The use of Beautiful
Soap over Selenium

is justified by the
given simplicity of

Instructables.

ity of the web application you want to get the data. Our
main goal is to understand the context of Maker tutori-
als and extract the materials used in these tutorials. This
can help us advance in user-friendly features such as fil-
ter and search and, in general, give the user and Maker a
better overview of the possibilities of making such hand-
craft ideas. We will restrict ourselves to Instructables as
our primary source for this work and build our approach

4.2 Data Scraping 35

Figure 4.2: Two snapshots of the website instrubtables.com. (A) The search of bird-
houses listing all tutorials related to that and (B) inspection tool showing how to
find the class attributes to filter on with Beautiful Soup.

using this data. Instructables is a website specializing in
user-created handcraft tutorials. The user post instructions
on a specific domain, usually accompanied by visual aids,
and then interact through the comment section below. The
website is built in a simple way so that you can look at
the content without much interaction with it. For this rea-
son, we will use Beautiful Soup and Request in this work
to scrape the necessary data from Instructables. The ap-
proach works for static websites, such as Instructables. For
more complex web applications, Selenium can be used as
described above. We will now explain the web scraping
procedure with Beautiful Soup and Request in the context
of birdhouse tutorials on Instructables.

When we are on the website instructables.com, we can Getting the
information from
browsers inspection
tool for Beautiful
Soup

quickly use the search bar to filter for birdhouses by typ-
ing in “birdhouse”. This will lead to a new URL opening
up a new site listing out the birdhouse tutorials on the plat-
form (c.f. figure 4.2 (A))). But the content we want is in-
side each one of these tutorials. Clicking on one of them
will lead us to the tutorial with the textual data we want

36 4 Concept

to retrieve. One possibility is to use Selenium to use the
click functionality so that we can reach each tutorial. But
instead, we know that each tutorial can be acquired by the
URL https://www.instructables.com/{id}/. Every tutorial has
a specific id, which can be fetched by the HTML Document
that lists all the available birdhouse tutorials (c.f. figure 4.2
(A)). If we inspect by using the browser’s Inspection tool,
we can click on one of the elements and see its HTML ele-
ment. Every tutorial item is built in a div and has the class
attribute “desktop-search-feed-ible”. One of their child el-
ements is an anchor element ⟨a⟩. This special element of
HTML, which is used to create a hyperlink on the web-
page, is provided with an absolute reference or a relative
reference as its “href” value. In figure 4.2 (B), we can see
that the relative link is provided as the id of the tutorial. So
the ids of each tutorial will be extracted with the following
code:

u r l = ” ht tps ://www. i n s t r u c t a b l e s . com/howto/birdhouse/”
def scrape data () :

r e s u l t = ””
h t m l t e x t = reques ts

. get (u r l)

. t e x t

. encode (’ utf8 ’)

. decode (’ a s c i i ’ , ’ ignore ’)

soup = Beauti fulSoup (html text , ’ lxml ’)
j o b s = soup

. f i n d A l l (
’ div ’ ,
c l a s s = ’ desktop −search −feed − i b l e ’

)

l i n k s = []
f o r job in j o b s :
component = job . f ind (’ a ’ , hre f=True)
l i n k s . append (component [’ href ’])

With the request and the given URL, we can retrieve theUsing the inspection
tool to cope with
infinity scroll and

data loading, fetching
over 160 documents.

whole HTML source code and then encode it with encod-
ing into a uniform encoding, which we then convert with
the decoder into a usable format. We use UTF-8 encoding,

4.3 Data Preprocessing 37

the most widely used Unicode character [uni [2022]]. The
URL we used to retrieve the data only included 20 tuto-
rials. If we want a more representative dataset, we need
more tutorials. So, by scrolling down, we will retrieve 20
more data sets. This, again, is a complex process that is not
reproducible in Beautiful Soup and Request. But when we
go back to our browser inspection tool under the tab net-
work, we can see all the requests made and responses that
came back. One request is responsible for retrieving the fol-
lowing 20 tutorials. It has the parameters limit and offset.
Every time this call is called, we limit the call by 20 new
data points, and the offset will be set on how many tutori-
als are already loaded, in this case, 20 as we already have
loaded the first 20. We will use this request with these pa-
rameters to load the next 140 tutorials.

Like before, with BeautifulSoup, you have to parse all the After fetching bigger
data set, the data
needs to be
processed with
Beautiful Soup with
the same procedure
as before.

fetched tutorials and then pull out the desired data with the
given functions. To do this, you can use the browser’s in-
spection tool and filter out the class attributes you are look-
ing for. Here, we have to look out for the HTML elements
“div” with the class “main-content” and in it get all HTML
elements “section” with the class attribute of “step”.

4.3 Data Preprocessing

After obtaining the data, we will be using it to train our
model and test it. The first thing we have to do is clean
some noisy data and prepare the data in a way that our
models can utilize it. Some common preprocessing steps
are used in the context of machine learning. In the follow-
ing, we will cover some of them and discuss which of them
we will use.

Tokenization

Tokenization is a way of separating a piece of text into Description of
Tokenizationsmaller units called tokens. Thereby, each segment or text

can be divided into words, characters, or subwords. In

38 4 Concept

many NLP tasks, the models process the raw text at the to-
ken level [Bishop and Nasrabadi [2006]]. Splitting the sen-
tences into words can still be challenging as you have to un-
derstand the rules of that language. Let’s focus on the En-
glish language. A simple strategy for splitting is to use the
white space as a splitting operator. But sometimes words
can consist of many other words, i.e., New York City could
be considered as one word and in the given split strategy
as three words. Another problem could also be that multi-
ple words are concatenated together. For example, the two
words “He is” is mainly used as “He’s”. SpaCy and Hug-
gingface are libraries that provide many pre-trained models
in the area of NLP and offer several preprocessing function-
alities. We will make use of their tokenization functions.

Stop word removal

Stop word removal refers to removing words that are notDescription of Stop
word removal informative. For example, articles, prepositions, and pro-

nouns, such as “the”, “as”, “which”, etc., add some mean-
ing for the reader. But for a ML model, it can be noisy. A
stop list, which are the stop words that will be removed,
consists commonly of “be”, “have” verbs, articles, auxil-
iary verbs and prepositions. There are some common stop
lists that can be imported. [Bishop and Nasrabadi [2006]]
[Mehlig [2021]]

Token Normalization

Stemming and Lemmatization are a type of token normal-Description of Token
Normalization ization. In Stemming, the words will be reduced to their

word stem, base, or root form. So, for example, the word
“compute”, “computer”, “computers”, “computing”, and
“computational” will all be reduced to “comput”. Lemma-
tization is similar, but unlike stemming, it applies vocab-
ulary and morphological analysis. This means it aims to
remove inflectional endings only and to return the base or
dictionary form of a word, the lemma. If we look at the
previous example, “compute”, “computer”, “computers”,
“computing”, and “computational” the words now will be

4.3 Data Preprocessing 39

reduced to compute with an e. The main goal is to reduce
the randomness, bringing the language to a predefined
standard and reducing the vocabulary used for training. In
our task for Named Entity Recognition, this preprocessing
isn’t sufficient as it will generalize, and we especially want
to extract words such as “wooden dowels” and “wood”.
In contrast, token normalization would have transformed
the “wooden” into “wood”. [Bishop and Nasrabadi [2006]]
[Mehlig [2021]]

4.3.1 Applying Preprocessing

Before we apply these NLP preprocessing steps, we will Performing steps to
clean the fetched
corpus.

also have to clean the corpus and bring it into a more stan-
dardized way. When we look at our acquired data cor-
pus, there are some white spaces we have to remove. Then
we can start removing the labels from the enumerations,
such as numeric or alphabetic numbers and Latin numer-
als. Herefore, we will run our corpus over a customized
function that will catch all these unnecessary words or char-
acters by using regular expressions. A regular expression
is a sequence of characters specifying a text search pat-
tern. Moreover, we will revise the whole corpus with low-
ercase letters to avoid redundancy. This will allow the word
”Wood” and ”wood” to be the same and make the train-
ing more efficient. Another preprocessing step is to con-
sider missing values. Some documents will have no ma-
terial listed or mentioned in their text. These could be re-
garded as outliers, meaning we won’t consider them in our
data set. But as we will see, we will have to label our data
to train our model. For that, we will specify which parts
of the corpus are material and which aren’t. The outliers
will be marked as not material and can still be used in our
training data set.

After cleaning the corpus and bringing it into a standard- Splitting the corpus
after building the
training and test data
set in the JSON
format.

ized form, we can start building our training data set out of
this corpus. As mentioned before, we have to label our data
set as we perform supervised learning techniques. In the
foundation section 2, we mentioned our focus on the par-
ticular type of NLP Named Entity Recognition. This allows

40 4 Concept

us to automatically identify entities in a text and classify
them into predefined categories, in our case, into materials.
Thus, we have to go through the corpus and mark the la-
bels so that the model can learn which part of a segment or
text materials are used. Furthermore, after we have trained
our model, we can use a test data set that is also labeled
in the same way to test how well our model performs such
entity extraction task. For this purpose, we will split our
corpus into segments into two equal parts, and for labeling
our data set, we will use a JSON format to mark the mate-
rial position in that segment. The following example rep-
resents how such a training dataset would look in a JSON
format.

[”1/2 or 3/4 inch thick wood. (whatever kind you like)”,
”entities”: [[22,26,”MATERIAL”]]]

The JSON object would have two attributes, one contain-Marking the material
in the training and

test data set will be
done in the JSON

format.

ing the segment and the second containing a list of entity
objects. The entity object will have the label, start-, and
end-position of each material occurring in the given seg-
ment. In that way, we know precisely which parts of the
segments are material and which aren’t. One way of gener-
ating such training data is to go manually over the corpus
and extract the information by hand. Since our corpus is al-
ready very large and this approach generally also takes too
much time, let us introduce an automated process for gen-
erating such datasets. For this, we will use the EntityRuler
pipeline provided by spaCy. The matches found by the En-
tityRuler are in the doc attribute of the EntityRuler class. By
creating these special pattern labels, we can run EntityRuler
on the corpus and transform the entities we find in the form
we expect them to be in our training data. Creating such a
pattern requires a list of materials.

ENTITYRULER :
EntityRuler will help to find matches in a document or
text and add them as entities to its properties, using spec-
ified pattern label as the entity label.

Definition:
EntityRuler

A material list can be gained from other sources on the in-Creation of material
list to mark the

training and test data
sets will be done

manually.

ternet, i.e., Wikipedia. But to keep the training data’s ac-

4.3 Data Preprocessing 41

curacy high and thus generally increase the performance
of the models yet to be created, we will manually create a
list of materials from the corpus. High accuracy refers to
mistakes that will occur through auto-generated data. In
the evaluation chapter 5, we will elaborate more on how
well our data sets are and what a higher accuracy means in
terms of model performance. Having such a list, we will
make sure that the list contains all materials from the cor-
pus within singular form and plural form. You can do this
manually because of the relatively small size of the list of
materials. Otherwise, you could also use English language
rules to generate each word’s plural form. Besides, we will
apply the lower-case letter function here as well.

def c r e a t e t r a i n i n g d a t a (f i l e , type) :
data = load data (f i l e)
p a t t e r n s = []
f o r item in data :
pa t te rn = {

” l a b e l ” : type ,
” pat te rn ” : item

}
p a t t e r n s . append (pat te rn)
re turn (p a t t e r n s)

def g e n e r a t e r u l e s (pat terns , model name) :
nlp = English ()
r u l e r = nlp . add pipe (” e n t i t y r u l e r ”)
r u l e r . add pat terns (p a t t e r n s)
nlp . t o d i s k (f ” ./ e n t i t y r u l e r s /{model name }”)

This code shows how we can now create an empty model
with the EntityRuler as a pipeline. We will use the model
English() from spaCy that is trained on English text. With
the utility function add pipe, we include the pipeline En-
tityRuler in the model. Now, this model can use rules-
based matching. The EntityRuler has a function called
add patterns, which will integrate the pattern we created
before. This allows the model to find these entities in the
corpus. We will save this model and use it for generating
the training dataset.

To generate the training dataset, we will run over the cor- Using EntitiyRuler to
generate training and
test data sets
automatically.

42 4 Concept

pus and split it into segments. Each of these segments is
then run over with the EntityRuler model, and the matches
the model finds are stored in the JSON object form de-
scribed earlier. This gives us a training dataset with about
1400 entries, where each entry contains at least one material
but may have more. How good the approach of automated
generation of training data is will be discussed in the eval-
uation chapter. If we train our data on this specific data set
and test it on the same data, the results will always be ex-
cellent, even if our model is very bad. Therefore, we also
need a test data set that is unknown for the trained model.
The structure of the test data set will be similar to that of
the training data set. We have a large dataset partitioning
into training, and test data is still sufficient to achieve good
results with the trained model. Moreover, it is common to
have a validating set in training a machine learning model.
Validation datasets ensure that the model is not overfitted
to the training dataset. It helps generalize the model, which
can perform better on unseen datasets. The validation step
can be performed after each epoch, after several epochs, or
even for each data point. The user must try these strate-
gies and apply the one that best suits his use case. We stuck
with validating after each training epoch as it gained the
best results.

Customized Pre-Processing for Huggingface

SpaCy models allow the training with the command lineConvert data in a
binary form for

efficiency.
with one command. But for this, the data has to be in a
particular form. Once we have the JSON-formatted train-
ing data, we can use spaCy’s utility function make doc(),
which will convert the JSON into a DocBin. The DocBin
class is a binary serializer, which let’s you be more efficient
in the training process as the data is less in size [spa [2022]].

Customized Pre-Processing for Huggingface

The Huggingface model requires specific input set to startChange data format
for the library
Huggingface.

the training process. For this purpose, the library of-
fers a specialized data structure called Datasets. It is a

4.3 Data Preprocessing 43

lightweight library that provides one-line data loaders for
many public datasets and efficient data preprocessing. We
want to go from the JSON-Object, where the first attribute
is the segment and the second is a list of the absolute po-
sition of materials occurring in the segment, to a tokenized
form. This means we will tokenize each segment and have
a list of tokens. Besides the list of tokens, we create another
list, which has the same length, and we will fill this with
the label “MATERIAL” at the same indices where the ma-
terial occurs in the token list otherwise, we fill it with the
label ”O”. “O” stands for other and should indicate that
the token at that position is not material. Since we have
only one label, this word label list is a binary classification
with the labels ”MATERIAL” and ”O”. An example of this
conversion can be found in example (c.f. List of labels and
tokens).

BILOU TAGGING :
BILOU encodes the Beginning, the Inside, and the Last
token of multi-token chunks. Moreover, it differentiates
a single unigram token and marks it with U for Unit or
Unigram. The O stands for others and marks all the non-
materials.

Definition:
BILOU Tagging

Another technique that we will make use of is BILOU tag-
ging. As the NER task is commonly viewed as a sequen- Using BILOU tagging

for multi-word
recognition.

tial prediction problem in which we aim to assign the cor-
rect label for each token, one token could also be just a part
of the whole named entity. For example, “wooden dowel”
is a material consisting of two words. Instead of consid-
ering it as two materials by just tagging it with the label
MATERIAL, we will be using BILOU. The sentence “The
douglas fir board was shipped from South Korea to Ger-
many.” would be labeled as follows: [O, B-MATERIAL, I-
MATERIAL, L-MATERIAL, O, O, O, B-LOC, L-LOC, O, U-
LOC, O]. For encoding the labels, we can use one of spaCy’s
utility functions offsets to biluo tags, which will use the
positions of the JSON dataset and convert it into the form
we need.

After transforming the training, validating, and test data to Aligning the input
data with the labels
as Huggingface uses
special token to
understand the start
and end of each
segment.

the object containing the sentence, which is the list of to-

44 4 Concept

kens, and the word labels, which is the list of labels, the
three objects can be added into a new DatasetDict. The
Huggingface model requires another preprocessing step for
the inputs. They expect the input to be in a mathematical
representation. To achieve this, we can use the AutoTok-
enizer of their library, which will tokenize the inputs and
put them into a format the model expects. It will also con-
vert the tokenized tokens into a corresponding ID that the
models have used in their pre-trained vocabulary. With the
Autotokenizer.from pretrained, we can fixate the model we
want to use from the large variety of models available at
Huggingface. However, using the tokenizer will raise the
problem that the record length will no longer match the size
of the labels. This leads to the fact that these two lists do
not correspond anymore, which is necessary to inform the
model correctly whether the tokens are material or not. To
elaborate on this problem and how we can fix it, we will use
an example to explain the tokenizer in more detail. Con-
sider the following code snippet:

def t o k e n i z e a n d a l i g n l a b e l s (examples) :
l a b e l a l l t o k e n s = True
tokenized inputs = token izer (

examples [” sentence ”] ,
t r u n c a t i o n=True ,
i s s p l i t i n t o w o r d s =True

)

l a b e l s = []
f o r i , l a b e l in enumerate (

examples [” word labels ”]
) :

word ids = tokenized inputs
. word ids (batch index= i)

previous word idx = None
l a b e l i d s = []
f o r word idx in word ids :

i f word idx i s None :
l a b e l i d s . append (−100)

e l i f l a b e l [word idx] == ’ 0 ’ :
l a b e l i d s . append (0)

We s e t the l a b e l f o r
the f i r s t token of each word .
e l i f word idx != previous word idx :

4.3 Data Preprocessing 45

l a b e l i d s . append (
l a b e l e n c o d i n g d i c t [

l a b e l [word idx]
]

)
For the other tokens in a word ,
we s e t the l a b e l to e i t h e r the current l a b e l
or −100 , depending on
the l a b e l a l l t o k e n s f l a g .
e l s e :

l a b e l i d s . append (
l a b e l e n c o d i n g d i c t [

l a b e l [word idx]
] i f l a b e l a l l t o k e n s e l s e −100

)
previous word idx = word idx

l a b e l s . append (l a b e l i d s)

tokenized inputs [” l a b e l s ”] = l a b e l s
re turn tokenized inputs

By tokenizing the following sentence, the tokenizer will re-
turn a dictionary with three items: The input ids, which are
the indices corresponding to each token in the sentence, the
attention mask, which indicates whether a token should
be attended to or not and the token type ids that identi-
fies which sequence a token belongs to when there is more
than one sequence. If we check now the length of the list of
sentence tokens and the tokenized input ids, they will be
different. With the utility function convert ids to tokens,
we can convert the ids back into readable words. A closer
look shows us that besides the sentence there are also some
special tokens. The CLS token is the classifier token and
always appears at the start of the text, whereas the SEP to-
ken helps the model to understand the end of one input
and the start of another input. That is why it is called the
separator token. It should also be noted that transformers
are pre-trained with subword tokenizers and thus use such.
This means that even if the sentences are already split into
words, each of those words could be split again by the to-
kenizer into subwords. In the code we can see, how one of
the token is split into multiple token. All these will lead to

46 4 Concept

a bigger length of inputs. By using the word ids() method,
we can inspect whether the token is a special token by the
id of -100 or is split into subwords where the ids are the
same. This allows us to write a general alignment function
that will set the length of the input ids equal to the length of
the labels list. We can set the labels of all special token to be
-100 which indicates PyTorch to ignore that token and the
labels of all other tokens to the label of the word they come
from. Then we can run over the sentence and align the la-
bels, where we get the information out of the word ids()
method.

4.4 Training

We have built a labeled dataset, split into training, validat-
ing, and testing sets. The spaCy model and the Hugging-
face model will be used to train specific NER models, for
which we have preprocessed the datasets. For spaCy, we
had to convert the data into the particular DocBin format,
and Huggingface expected the datasets to be tokenized so
that we could train the models in both of these libraries.
This chapter will briefly discuss how to conduct such train-
ing and the strategy we used to do so.

Since spaCy3.0, the training can be performed in a fewTraining and
configuration of

spaCy CNN model.
steps. The standard way to complete spaCy training is via
the spacy train command on the command line. It only re-
quires a single configuration file that includes all settings
and hyperparameters. A first starter setting can be found
on their main page, spaCy.io. Under the hood, the training
config uses the configuration system provided by the ma-
chine learning library Thinc. You can configure the path for
training and validating data, the optimizer function, how
many iterations it should train, and many more. We will
use our preprocessed data and set the epoch to 10, as the
results decreased by increasing the epoch more than 10. We
used the default settings for the learning rate as it is modu-
lar and will be adjusted after each epoch. For the dropout
rate, we set it to be 0.1, which means that about 10% of
the neurons used in this model will be dropped randomly
during the training. This is another regulator for reducing

4.4 Training 47

overfitting in artificial neural networks by preventing com-
plex adaptations on training data. The main idea behind
the settings is to increase the performance by trial and error.
Now by using the terminal, we can start training the model
with the given training and validating data and the config-
uration. We trained our model on the CPU, as we are using
only fine-tuning the bert-base model, and the training does
not consume too much capacity as if you had to train a com-
plete empty model from the beginning. This will generate
a model that can extract materials from a human-written
text. To test this, we can load our model and the test data
and run them against each other. The result can be seen
in the appendix [table A.1 (Spacy CNN Model) and figure
A.1 (A)]. The evaluation chapter will discuss more detailed
evaluation of these results and improvements.

In the foundation chapter 2, we also discussed the word Creation of word
vectors and
embedding it into our
existing model for
further training.

vectors and the benefits of using these word vectors. In
essence, it can help us to generalize the model and, thus,
perform better on unseen data. SpaCy offers the possibil-
ity to integrate third-party word vector libraries into their
model. We will be using the Gensim library to create such
word vectors out of our corpus and then incorporate them
into a spaCy model, where we perform similar training
steps as before. We start making the word2vec model by
first preprocessing the corpus. In this case, we are no
longer interested in the sequence, rather focusing on the
relevant words that are available in the domain of bird-
houses. That’s why we will first remove the stopwords
and punctuation. We will use the NLTK library to get a
stop list and common punctuations, which we will use for
cleaning the corpus. Afterward, we can start building our
Word2Vec model that is done with Word2Vec class from
Gensim. Here, the parameters have to be adjusted. We
will set the min count to be 1. This will ensure that our
model will use all the words, even if the frequency of the
word in the whole corpus is only one. We use this strat-
egy as we want to extract all kinds of materials that are
used for birdhouses, especially those which are used very
rarely. Moreover, since we have already cleaned the cor-
pus, irrelevant words will not affect the model much ei-
ther. For the window size parameter, we set it to 2 as
recommended. Word2Vec works with a specific window

48 4 Concept

size to detect similarities to other words. When adjusting
this value, there were no substantial improvements that
were relevant. Also, the size parameters were adjusted a
few times and tested for performance. The size represents
the dimensionality of each individual word. The dimen-
sionality increases the ability of the model to harmonize
a more extensive vocabulary and bring words closer to-
gether. Here, a size of 500 was enough for good results.
As soon as we build and set up the Word2Vec object, we
can start to build the vocabulary with it, which will inte-
grate the corpus into the model. After that, we will train
the model for 30 epochs and save the created word vectors
as a text file, which we can use in spaCy. The results on
the model with word embeddings is also depicted in the
appendix [table A.1 (Spacy WV Model) and figure A.1 (B)].

The last strategy is to use a transformer model to help usIntroduction into
training of

Huggingface models.
extract the material from the birdhouse tutorials. There-
fore, we will be using one of the Huggingface pre-trained
models. Some of the primarily used Huggingface mod-
els are BERT, RoBERTa, BART, DeBERTa, GPT-3 and many
more [Huggingface.com]. Transformers are language mod-
els and have been trained on a large amount of text in
a self-learning fashion. The architecture and how trans-
former work is explained in the foundation chapter 2. We
will be using the BERT model that is already tested to be
a performing model [Korpusik et al. [2019]]. To use the
Huggingface libraries, we performed some pre-processing
steps and built a Datasetdict, which is tokenized. Now for
training, we first will download the BERT model from the
repository of Huggingface. Since we want to perform NER,
which is also regarded as a unique form of token classifi-
cation, we will be using AutoModelForTokenClassification
class. With this, we need to specify which model we are
using, and in addition, we have to determine how many
labels we are using. We now have more than two labels
because we are using the BILOU label tagging approach,
so we need to find out how many labels we are using. This
can be done by running over each label list and checking for
a new label or with pandas dataframe functions explode()
and unique().

To perform the training with our pre-processed data, weTraining and
configuration of the
BERT-Transformers

model.

4.4 Training 49

will use the Trainer class of Huggingface. The Trainer class
provides an API for feature-complete training in PyTorch
for most standard use cases. Moreover, the Trainer class is
optimized for Huggingface Transformer models and can be
customized by overriding the methods of this class. To in-
stantiate a Trainer, we will need to define three more things.
One is the TraningArguments which is a class that contains
all the attributes to customize the training. It requires one
folder name, which will be used to save the model, and all
other arguments are optional. Some of the configurations
we made are setting the evaluation to be done at the end of
each epoch, tweaking the learning rate, using the batch size
and defining it to be 16, and customizing the number of
epochs for training. Then, we need a Data Collator that
are objects that will form a batch by using a list of dataset
elements as input. To build batches, data collators may ap-
ply some processing (like padding), and each pad will be
padded to the length of its longest example. This is a nec-
essary step as a neural network’s input should always be
the same length. The last thing to define for our Trainer
is how to compute the metrics from the predictions. Here,
we will load the seqeval metric, commonly used to evalu-
ate results on the CONLL dataset, via the Datasets library, a
standard dataset to test NER models [con [2003]]. This met-
ric takes a list of labels for the predictions, and we had to
do some post-processing on the predictions to convert them
back to strings and ignore the special tokens. Now, we can
use the Trainer to start training. The results will be depicted
in the appendix [table A.1 (Transformer Model) and figure
A.1 (C)].

51

Chapter 5

Evaluation

This section will evaluate the concepts that have been ap-
plied so far. We will only discuss the conceptual design in
general depth and refer to chapter 4 for a deeper under-
standing, which covers the solution approach and imple-
mentation in detail. Our work deals with the extraction of Short summary of

conceptual design.materials from DIY tutorials, which are mostly written by
humans. Platforms that provide such tutorials usually do
not offer the possibility to get an overview of which mate-
rials are used in tutorials from specific domains. To gain in-
formation from these user-generated tutorials and to cope
with the large number of available tutorials, we turn to Nat-
ural Language Processing (NLP). With this technology, we
have created a pipeline that can be used to generate ex-
traction models very efficiently and quickly. We developed
three different models using two different neural network
architectures. For the model with the same architecture, we
introduced the concept of word embedding [Mikolov et al.,
2013a][Mikolov et al., 2013b][Mikolov et al., 2013c] to in-
crease generalization so that the model works better on un-
seen datasets. In this chapter, we will discuss the evalua- Structure of

evaluation.tion of these three models. In doing so, we will address the
quality measures described in the fundamentals 2 and eval-
uate them according to these values. In addition, the eval-
uation will also go beyond purely computational measures
and assess the results for impact on the user. For this pur-
pose, isolated specific results will be picked out, and their
meaningfulness will be analyzed. In the following, we will

52 5 Evaluation

talk about several concepts and use technical words that we
have already described in more detail in the fundamentals
chapter 2 and the concept chapter 4. Therefore, we point
out to read these chapters in case some terminologies are
not clear.

5.1 Named Entity Recognition

As described above, NLP was utilized to ensure the generic
extraction of materials from Maker projects. In particular,
we make use of Named Entity Recognition, which is the
task of identifying and categorizing key information (enti-
ties) in text. An entity can be any word or series of words
that consistently refers to the same thing. Every detected
entity is classified into a predetermined category. As men-
tioned, our task is to extract materials from unstructured
text, such as handwritten tutorials from instructables.com.
[Eisenstein [2019]]

In the concept section 4, we developed three models to ex-Test data was
developed in a
similar way as
training data.

tract materials out of the tutorials for birdhouses. There-
fore, we generated a training data that was preprocessed
to fit the use of different models. Hence, all three models
were trained by the same training data and are comparable
to each other. The comparison requires unseen test data,
where all three models perform their prediction, and their
results will be evaluated with the corresponding test data.
The test data is generated similarly to the training data. In
fact, when we took the data from Instructables, we used
half of the document to train the data and the other half to
test it. To generate the labels, we performed the same steps
by using the Entity Ruler and the manually created materi-
als list described in the concept chapter 4 while extending
the list of materials. Besides, the same preprocessing steps
were executed on the test data as on the training data (c.f.
chapter 4).

As it is described in the concept chapter 4, we are using
the approach of the Entity Ruler in order to generate more
extensive data sets in a faster way. But this comes with a
tradeoff that the accuracy of the data degrades. In the fur-

5.1 Named Entity Recognition 53

ther stage of the evaluation, we will deal with the accuracy
of the test dataset and train dataset and analyze the impact
in more detail 5.1.2.

5.1.1 Quality Metrics

To calculate the confusion matrix for all three models, we Quality metrics to
evaluate all three
models.

will be using the confusion matrix tool from the scikit-learn
library. The confusion matrix is a performance measure-
ment for machine learning classification problems where
the output classes can be two or more. It tries to visual-
ize the outcomes in a matrix form where the rows repre-
sent the predicted value, and the columns represent the ac-
tual value [Bishop and Nasrabadi, 2006]. Read the Eval-
uation of Machine Learning chapter 2.3.5 for more detail.
This will lead to a diagram where the True Positives (TP)
and True Negatives (TN), as well as the False Positives (FP)
and False Negatives (FN), are depicted. Multiple indica-
tors can be computed based on the TP, TN, FN, and FP to
measure a model’s performance. We will calculate qual-
ity metrics such as F1 Score, Precision, Recall, Accuracy,
and Error. These metrics are a common way of evaluating
the outcomes of machine learning models and can help us
compare the performance of different models [Bishop and
Nasrabadi, 2006]. We need to change the test data set to
calculate these metrics, where each tokenized word is rep-
resented by the corresponding label. Consider the follow-
ing example:

Spacy format: [‘I will be using wood to build
the birdhouse.’, entities: [16, 19, MATERIAL]]

Transform to:

List of labels and tokens

Labels: [‘O’, ‘O’, ‘O’, ‘O’, ‘MATERIAL’, ‘O’, ‘O’,
‘O’, ‘O’, ‘O’]

Tokenized Sentence: [‘I’, ‘will’, ‘be’, ‘using’,
‘wood’, ‘to’, ‘build’, ‘the’, ‘birdhouse’, ‘.’]

54 5 Evaluation

Spacy CNN Model Spacy WV Model Transformer Model
Precision 0,861 0,860 0,863
Recall 0,649 0,637 0,710
F1-Score 0,741 0,732 0,779
Accuracy 0,978 0,977 0,979
Error 0,022 0,023 0,021

Table 5.1: Computational metrics of all three models

We will make use of the utility function “off-Transformation of
outcomes for

evaluation.
sets to biluo tags” from the spaCy library to transpose the
spacy data format into the list of entity labels. The spaCy
models’ output will also be laid out in the spaCy format.
Thus, we will have to transpose the outcome in the same
fashion as we did with the test data. For the transformer
model, the output is already in the desired form.

In figure 5.1, the confusion matrices of all three modelsFirst description of
the results depicted

in the confusion
matrix.

are illustrated. The rows reflect the true labels, and the
columns the predictions. The two possible classes are “O”
(negative entity) if the entity is not a material; otherwise, it
is tagged as “MATERIAL” (positive entity). Even though
the two spaCy models and the Transformer model have
been given the same test data set, the number of individ-
ual instances is different from each other. The total num-
ber of instances of the two spaCy models is 35589, whereas
the number of instances of the Transformer model is 36648.
This is mainly due to the fact that both use different tok-
enizers, splitting the sentences with various rules. How-
ever, the difference is not too big and can be neglected when
comparing the two models.

Having a high score in the confusion matrix means havingTransformer model
performs the best

according to the
confusion matrix.

all entities represented in the True Positive or True Nega-
tive class, as the prediction predicted all instances correctly.
At first glance at figure 5.1, we can observe that the trans-
former model has performed best of the three models. We
can also support this statement with the quality metrics F1-
score, recall, and precision (cf. Table 5.1).

In general, both spaCy models including the model
with word embedding performed about similarly, with
the Transformer model performing better in each metric.

5.1 Named Entity Recognition 55

Figure 5.1: Confusion matrices of all three models before optimization. These re-
sults came out after the pipeline was built and the model were trained once with
the given pipeline. (A) Spacy CNN Model (B) Spacy Word Vector Model (C) Trans-
former Model

Precision attempts to answer the following question: What Explanation of
precision and
outcomes based on
precision.

proportion of positive identifications was actually correct?
In all three models, the precision was about the same.
When we look closer and take the transformer model (fig-
ure 5.1 (C)) as reference, we observe that we predicted 1607
identifications to be true, whereas 220 out of these were ac-
tually false, which means our model was a bit too general-
ized. But overall, all three models have a decent precision
score (table 5.1) with precision 1 beeing the best case.

When it comes to recall, we try to answer the following xplanation of recall
and outcomes based
on recall.

question: What proportion of actual positives was identi-
fied correctly? Looking at the result of all three models
(table 5.1), it is apparent that the Transformer model per-
formed the best. Out of 1953 positive entities, the Trans-
former model predicted 1387 entities to be positive and 566
entities as negative (figure 5.1 (C)). Thus, the value of the
recall is approximately 71% (table 5.1). Examining the Con-
fusion Matrix of the Spacy model with word embeddings

56 5 Evaluation

(figure 5.1 (B)), the model missed 566 out of 1671 positive
entities. These missed entities denote that the model could
not identify unknown materials from the given sequence
or even misidentified known materials from the context of
the sequence as negative examples. Both spaCy models,
perform worse than the Transformer model, with a recall
slightly less than 65%. This indicates that the Transformer
model is better at recognizing unknown positive entities
than the other two models.

The F1-score is a way to combine the precision and recall ofExplanation of
f1-score and

outcomes based on
f1-score.

the model, and it is defined as a harmonic mean of the pre-
cision and recall of the model. Since, it considers both pre-
cision and recall scores in its calculation, the Transformer
model performs best. Also, this value is commonly used
in evaluations of machine learning models proving to be a
good reference to evaluate these models. With an approxi-
mate F1 score of 80% (table 5.1), the transformer model per-
forms solidly. Optimizations will be described in the course
of the evaluation chapter 5.

In terms of accuracy, all three models are very high andUnbalanced dataset
can influence

accuracy results.
close to 100% (table 5.1). Accuracy is the fraction of pre-
dictions the model got right. However, these values should
only be taken with caution. Looking back at the confu-
sion matrix’s number of each class by rows, we can see that
the negative entities are much more represented and thus
the dataset is also unbalanced (e.g.: Transformer model:
Number of ‘O’-Entities: 34475; Number of ‘MATERIAL’-
Entities: 1953) (figure 5.1). In general, you want the data
set to be balanced, in the sense that all classes are more or
less equally represented. In our case, we are dealing with
NER and thus we are trying to extract certain entities from
a longer sequence. For this reason, the positive class is sig-
nificantly less represented than among the negative. Hence,
the prediction of negative entities is very good and this in
turn increases the accuracy, since it is determined almost
exclusively by this. But the F1-score reflects that the mod-
els also recognize positive entities relatively well and are
thereby not influenced by the high number of negative in-
stances. Since the error rate is inverse to the accuracy, the
same reasoning applies here, except that it is close to zero.

5.1 Named Entity Recognition 57

So far, we have mentioned that the Transformer model has SpaCy model with
word embeddings
performs worse than
without.

performed the best out of the three. The two spaCy models
perform similarly, whereas the model with the word em-
beddings performs minimally worse. In the approach sec-
tion, we mentioned that word embeddings are used to get
a better generalization. However, if you look at the recall
of both Spacy models, you will see that it is even worse,
and more positive entities are missed (figure 5.1(A), figure
5.1(B) and table 5.1). This has the simple reason that word
vectors are limited to a window size, which then bundles
”related” words in the vector space which also often oc-
curred together in the entire corpus. A more detailed ex-
planation of word vectors can be found in the foundations
section 2. But with this set up a material like wool, which
replaces wood will never be in a close distant to the word
wood in the vector space as they barely occur together in a
document. So, if the model never saw wool as a material, it
will most likely not get it with its prediction. Thus, the gen-
eralization is worse and the purpose of word embeddings
(word vectors) has no additional value.

5.1.2 Evaluating in depth: The problem areas

So far, we have limited our evaluation of the models purely
to computational metrics and evaluated them using the F1-
score, precision, recall, and accuracy. The scores are gener-
ally high with the F1 Score being around 0,75. In general,
the values can go up to 1 and this would correspond to the
best-case scenario. For values of 0, the metrics would cor-
respond to the worst-case scenario. We can observe that
the Transformer model is a very good model for extracting
materials related to human-written tutorials in the field of
Maker projects as they performed the best. Now, we are
more engaged in the meaningfulness of the models’ results
and trying to develop a better comprehension of the prob-
lem areas. We try to categorize the problem areas to address
them better. These can help us to clarify the optimization
possibilities. Below we will list some example sentences
with the markings (yellow) that we will talk about. Keep
in mind, the marking does not necessarily mean, that the
prediction marked it as a material. In some cases we also

58 5 Evaluation

highlighted the entity to emphasize on inaccuracies. With
it, we will evaluate how well the model did on some spe-
cific cases and also elaborate on the error cases.

First of all, we have already listed two categories of er-
rors in the Confusion Matrix (figure 5.1), which divides all
incorrect entities into the classes False Positive as well as
False Negative.

”hang with a string from some where that will
get smelly and could get dirty!” (Example 1)

The example 1 belongs to the class False Negative, as theExplanation of False
Negative example. prediction missed the entity string. The material string was

not present in the training dataset; therefore all three mod-
els did not detect it. Also, the models could not identify
string as material from the context of the sequence. All three
models have the ability to identify never before seen mate-
rials from the context of the given sequence. This is excep-
tionally well solved in the Transformer model, which can
also be deduced from the recall value (table 5.1). An ex-
ample of this kind can be reproduced with the material oil
(Example 2).

”I also used a spray bottle to soak the roof and
get the oil into all the nooks and crannies.”
(Example 2)

Here, the Transformer model correctly identified oil as aExample, in which
the Transformer

model found a
material that was
unknown before.

material, even though it never occurred in the training data.
Since, it was also marked in the test data to be an positive
entity, the identification was categorized into the class of
True Positives. Even with the ability to recognize unknown
materials, False Negatives are noted as a problem with all
three models (c.f. figure 5.1), which are all missed positive
entities. To create a reference to the context, we call the
class of False Negatives as Missed Entities. The Missed En-
tities are of different sizes in the different models (c.f. figure
5.1). However, if you take a closer look at the Missed Entity
class, you will see that some of these entities are not nec-
essarily materials. In example 3, the entity fence post wasCorrectly identified

non-material, which
was falsely marked in

the test data.

5.1 Named Entity Recognition 59

marked as a material (positive entity) in the test data set.
Yet, the models correctly did not identify this as a mate-
rial. The entity fence post is not used to create a birdhouse,
which we have set as a definition of materials (positive en-
tities) and therefore the entity should not be considered as a
material (positive entity). It follows that the test data set ac-
commodate some errors. We briefly discussed this problem
at the beginning of the evaluation. Since, we have chosen
an approach to quickly and easily generate more extensive
training as well as test data sets, we must deal with a trade-
off of getting a loss in accuracy in comparison to a manual
creation. Later, when the optimization possibilities are dis-
cussed, we will see how to tackle this problem. However,
since the computational results are generally high, we can
assume that the tradeoff does not impact much.

”You can mount it on a tree or a fence post ,
close to a source of water.” (Example 3)

Most errors are not caused by the generation of the training The materials list can
have mistakes as
well and does not
consider content of
tutorials.

or test data sets themselves, but by the manual preparation
and extraction of the materials. As in example 3, fence post
seems to appear in the list of materials that was used to
generate the test data set, even if no fence post is needed
directly in the creation of a birdhouse. This is one of the
main reasons for the inaccuracy of the data sets. The oc-
currence of fence post in the list of materials could be that
in one tutorial some old fence post were used for the bird-
house case. So, this shows again one of the disadvantages
of auto-generating training data sets. This means if in any
tutorial a fence post is used, it will be listed in the mate-
rials list. With it and the auto-generation of training data,
all fence post will be marked as materials. Later, we will
talk about how we can involve user to improve the dataset
5.1.3, 5.1.4. One should also not neglect the ambiguity of
language, which can also lead to undesirable inaccuracies.

” stain or clear sealer may be applied on out-
side of box only.” (Example 4)

60 5 Evaluation

”Stubborn stains and rubber residues which
cannot be removed.” (Example 5)

Example 4 uses the word stain as a type of paint utilizedError example
caused by ambiguity

of the language.
to color wood, whereas Example 5 shows stain in a con-
text where it is not a material. This type of error is shallow
among the three existing models and in the training and
test data sets.

The second category of errors found in the Confusion Ma-Error class of False
Positives. trix (c.f. 5.1) is the class of False Positives. The models here

have attempted to identify certain entities as materials from
the context, which are not materials according to the test
data. In Example 6, mosaic is recognized as a material, but in
that sentence, there is only one material, which is tile. Thus,
the models are bit over generalized and misinterpreted the
as a material out of the sequence. To create the reference to
the context here, we also name the False Positives class as
Over Generalized.

”Step 4: Preparing the tile for the mosaic .” (Ex-
ample 6)

”Depending on the hinge you use, you’ll likely
need to make some last - minute adjustments to
get everything lined up.” (Example 7)

We should also keep an eye on the inaccuracy of the testInaccuracy of test
data causing another

error class.
data in this class. This imprecision leads us to assign posi-
tive entities found by the models, to the class of Over Gen-
eralized, although they are actually materials. If we look at
example 7, the entity hinge was considered an over gener-
alized prediction. Nevertheless, this is material that is used
in the constructed birdhouse. The reason for the error is the
sole fact that our test dataset incorrectly did not mark it as
a material. Compared to the incorrect records of the Missed
Entities class, the frequency of the incorrect records in this
class is much higher. Fixing these inaccurate datasets might
lead to an improvement in the overall score of the models.
In general, we can say that the Transformer model handled

5.1 Named Entity Recognition 61

Figure 5.2: The graphic depicts the error classes. (A) Describes the error classes that
will be catched by our evaluation methods. (B) Describes the error classes that are
not picked up by our evaluation.

the over generalization as well as the missed entities the
best.

The figure 5.2 (A) illustrates the class of errors we described The error classes
that are known in the
data set

above. As we can see, these errors intersect with the im-
precision of the test data set. As described earlier, we can
examine these areas collectively or individually and try to
address these issues. We have seen that the Confusion Ma-
trix depends on the test data’s accuracy. Moreover, we will
see in the optimization part 5.1.3, the accuracy of the test
data elevates the score of the evaluation metrics. So far,
we have been able to use the error classes to identify the
differences that occur between predicted entities and those
from the test dataset and thereby analyze the errors selec-
tively. However, the Confusion Matrix is not only limited
on the test data, but also limited on the quality of the train-
ing data. This leads to the fact that our models are trained
with smaller errors due to the inaccuracy of the training
data, although this is not visible in the evaluation. This is
the case that the predictions of the models and the actual
instances from the test data match and thus these instances
are evaluated as correct.

”Typically the filler will have set and hardened
sufficiently in 10 to 15 minutes” (Example 8)

”Hot glue gun with enough hot glue ” (Exam-
ple 9)

62 5 Evaluation

Example sentence 8 shows an exemplary case where an er-The error classes
that are unknown in

the data set
ror is introduced that the word filler in the test data set as
well as the predictions of the models have recognized it as
a non-material, but in reality, it should be a material. The
other case is illustrated in the example sentence 9, where
the word glue appeared twice in the sentence, but the first
referring to a tool and only the second entity is a material.
Then again, these erroneous classes are not so frequently
represented in the whole data set. The figure 5.2 addition-
ally shows the error classes of the unknown area, which is
very small in this case, but should not be neglected. We talk
about unknown, as they won’t be recognized by our tools.
This error, as well, can easily be increased through the am-
biguity of the language. While this is not the case with us,
it can impact the error class depending on the domain.

Evaluating the generative data set approach

To get an approximate sense of how much the individualThe generative
approach to creating
data sets introduces
some errors, but the

tradeoff is justified
because larger data
can be produced in

less time.

training data or test data lost accuracy from the generation
process, we took a small portion of the data and manu-
ally checked how much of the data suffered. For this, we
limited ourselves to the test data and looked at the first
10000 entities, whereas we used the tokenization of spaCy
which leads to an overall number of 35589 entities. So, we
tested approximately 30% of the data. We also made sure
that those chosen entities will cover about half of the seg-
ments with negative instances. In these first 10000 entities,
we discovered about 237 erroneous instances. This makes
up about 2% of the tested data. Moreover, we took more
than half of the segments with negative instances. If we
look more closely, we can also see that most of them come
from the Missed Entities class and also many of those that
belong to the Incorrect Data. Also, additional words were
identified as positive entity that specify the material more
precisely. For example, the word lumber was marked as a
material in the test data set, but two out of three models
predicted the word scrap lumber as a material. In addition,
in the 30% of instances we have already covered a lot of the
few wrong instances, which also account for most of the er-
roneous data. Conclusively, we can say that the generative

5.1 Named Entity Recognition 63

approach of test and training data is a valid approach as
they only produce minimal errors in contrast to the possi-
bilities of generating big data sets in less time.

5.1.3 Optimization possibilities

This subsection will focus on ways to optimize models that
already perform very well, but where some problem areas
can be eliminated through pre- and post-processing. We
can focus on the graphic (5.2) and its depicted classes to
improve our model. In the previous chapter, we described
each class in more depth. We will use that knowledge to
leverage the feasibility to optimize the model.

The most accurate way to improve on the inaccuracies of Using the
visualization tool to
bootstrap 30% of the
data.

the test data set is to address the issues in that data man-
ually. For this, we used 30% of the test data and built a
visualization tool to compare test data with the predicted
data in order to see how much improvement can be made.
In figure 5.3, a snippet of the visualization tool can be seen.
The model’s prediction is shown at the top and the actual
segment from the test data set is shown below. We could
quickly see differences, which helped us tackle the issue.
We can bootstrap the data manually by going over the visu-
alization, focusing first on the marked entities and whether
they are correct. As mentioned earlier, most errors related
to erroneous datasets occur in the Missed Entities class.
Eliminating these can vastly improve the data set. We will
also be fixing problems where the model found a more de-
scriptive material whilst the test data set only marked the
general material. We can ensure in later steps, e.g. through
post-processing that the meaning of both descriptive and
general forms of material are the same. The other class
Over Generalized data can be also bootstrapped manually
in a similar manner.

The Over Generalized class describes entities found from Handling the class
Over Generalization.the model but not marked from the actual data set. These

can’t be improved by manually bootstrapping the test data
if the marking from the test data is also accurate. How-
ever, the Confusion Matrix (figure 5.1) shows that this class

64 5 Evaluation

Figure 5.3: Snippet of the visualization tool to compare test
data with predicted outcome. The given example is ficti-
tiously chosen to represent all classes in this segment.

(False Positives) is generally low, so there is not much room
for improvement. But out of these, many of the predictions
seem to be correct and ergo the test data set lacks accuracy.
An adjustment in that particular area can improve the over-
all score.

We also talked about how the Confusion Matrix dependsErroneous data in
the unknown area

can worsen the
score.

on the input’s quality. This means that there are correctly
classified instances, meaning that the prediction and the ac-
tual test data match, whereas they should be classified in-
correctly. A correction for this does not improve the overall
score but may as well worsen the score. Fortunately, the
erroneous data in the unknown area are few, so they won’t
impact the end result much.

The pre-bootstrapping and post-bootstrapping data results8% boost by just pre-
and

post-bootstrapping
the data.

can be seen in the appendix as Confusion Matrices [table
B.1 (Transformer Model) and figure B.1]. As you can see,
the bootstrapping part was most effective with the Trans-
former model. Here, we got a total boost of about 8% in the
F1 score, and the recall values have improved enormously.
On the other hand, the improvements in the 30% of the
test data have only minimally improved the spaCy models.
This is also due to the fact that the spaCy models contained
more errors in the area of the Unknown Inaccuracies than
those of the Transformer model. We were able to show that
an improvement of the test data can improve the quality of
the model and that such a step is reasonable.

5.1 Named Entity Recognition 65

Another possible optimization area is to tackle the train Fine-tuning as
possible iprovement
step.

data. Due to the generative approach, we will be fac-
ing some issues in the training data set. Before we
even train the model, this must be handled in a pre-
processing step. But manual bootstrapping can improve
that data as well, when retraining the model with it. [KAV-
ZOGLU][[Brownlee, 2018]]

Up to now, we have limited our optimization possibilities Motivation of why
Transfer Learning is
needed.

to the improvement of the erroneous test as well as train-
ing data. These steps mainly help to eliminate or reduce
the classes of inaccuracies. However, there are also cor-
rectly identified differences between test data and predic-
tion. These are then also correctly recorded in the classes
Missed Entities and Over Generalized. We can assume
that more accurate training data would reduce these prob-
lems [KAVZOGLU]. However, there will always be a small
amount of error. To tackle this issue and to understand why
fixing this problem might be necessary, let’s first try to un-
derstand the problem and motivation of this thesis in more
detail. The thesis approach is heavily focused on extracting
materials from Maker tutorials, limiting ourselves to the
scope of birdhouses. These tutorials are all human-written
and therefore cannot be equipped with tools such as filter-
ing and explicit category searching or can only be equipped
with great difficulty.We can use extraction to solve the fun-
damental problem of understanding the materials needed
to build a birdhouse.In the evaluation, we also found that
the accuracy of the models that address the described ap-
proach is very high. However, our intention with this task
is to extract the materials that can replace main materials,
such as wood, used in the construction of birdhouses, in or-
der to ensure the functionalities mentioned in the introduc-
tion. These materials can vary from a soda can or wool, all
the way up to a plastic detergent bottle. Now, if the models
do not find new main materials, very valuable information
can be lost to the user, and the high scores of the models are
obsolete if something like this occurs more often. To target
this specific problem and thereby provide the user valuable
extraction solution, we will utilize Transfer Learning.

Transfer learning is a technique in which a deep learning Further fine-tuning
helps recognizing
materials that were
unknown and also
not recognized by
the models before.

model trained on a large dataset is used to perform simi-

66 5 Evaluation

lar tasks on a different dataset. We call such a deep learn-
ing model a pre-trained model. This proves to be an ex-
tremely robust technique to train an existing model further
[Lee et al. [2017]]. This allows you to up the computational
metrics and solves the problem with unknown main mate-
rials. To realize this, one would need more training data,
including new labeled materials. This data could then be
used for further fine-tuning. The new model should now
recognize the materials that were previously unknown to
it.

Over time, more and more birdhouse tutorials will emerge,Motivation of an
interactive Gui that

helps optimizing the
models.

and some will also use creative materials that the mod-
els have never seen before. Now, how can we verify our
models against the new documents? For optimal handling
of undetected new materials and erroneous predictions in
general, we should create an interactive GUI that allows us
to evaluate and improve the prediction evaluation. In the
following, we will discuss the concept of the GUI and ex-
plain how to use it.

5.1.4 GUI for interactive optimization

The graphical user interface should give us an option toBuilding an GUI that
will use the design of

the platform.
evaluate the prediction and improve the data set. This
should not only be used by our side, but external users
from the Maker projects should be able to operate this tool.
The tool’s design will be very similar to the tutorials of
Instructables itself. We believe that a familiar and unob-
trusive design can help the user quickly and easily under-
stand the user interface while allowing them to focus on
what matters most: reviewing and improving the predic-
tion. Similar to the visualization tool, we will mark the in-
dividual entities as material accordingly if the prediction
dictates so. Otherwise, the words will remain unmarked.
In the graphic 5.4, we see a small section of how the tool
marks the individual positive instances accordingly.

Now to make this tool also interactive, we will includeOperations that are
needed for the

interactive GUI.
some operations. On the one hand, we would like to be able
to mark positive instances that were not found as material.

5.1 Named Entity Recognition 67

Figure 5.4: Screenshot of GUI used on one of the tutorials
in Instructables

Figure 5.5: The graphic depicts an add item procedure. (A) By clicking onto any
entity you can mark them as material. (B) When clicked you have to confirm first
before it gets accepted as material.

On the other hand, we would also like to be able to unmark
instances that were incorrectly marked as material. This is
also made very simple and user-friendly so that one click
with another confirmation on one of the unmarked words
is enough to mark it as material. The deletion should also
be easy to perform. All marked materials will have a small
X symbol, with which you can remove the marking. This
should also be combined with a confirmation, as it is easy
to misclick (c.f. figure 5.5 and 5.6).

Before describing the technical process in more detail, we

68 5 Evaluation

Figure 5.6: The graphic depicts an delete marking procedure. (A) By clicking onto
the X symbol of an marked entity, you can delete the marking. (B) When clicked
you have to confirm first before the marking will be deleted.

would discuss how to use the tool. As described above,
the tool is designed very intuitively. It corresponds to the
design of the tutorials, and the individual predictions are
all marked in the text. A user can go over the tutorial and
verify the individual marked materials. If it is a material, it
is kept. Otherwise, the user can click on the X-symbol forProcedure of deleting

and adding item with
the GUI.

the corresponding material and deletes the marking after
confirmation (c.f. figure 5.6). Furthermore, the user can also
click on unrecognized materials to classify them as material
(c.f. figure 5.5). In order to prevent the whole system from
being only run by individual users or even being negatively
influenced by them, we will introduce you to the concept
of multi-user evaluation. We will continue to focus on the
Maker projects for Instructables, but this principle can also
be used on all Maker projects.

To take advantage of the tool, it must be approached ac-Concept on how user
can use this tool. tively and with precision. For this, you need active users

who perform the evaluation voluntarily and constantly.
Since most domains like birdhouses don’t necessarily gen-
erate a large number of new tutorials every week, a num-
ber of 5-10 users is sufficient. You can prompt users ei-
ther after a certain time interval or after a certain number
of newly created tutorials to perform the improvement or
verification. Either way, the users can be notified as soon
as such a request is due. If an evaluation of a document
is done, by marking the unidentified materials, deleting in-

5.1 Named Entity Recognition 69

correctly identified materials or taking no actions as in ver-
ifying its correctness, the document can be submitted and
the changes will be saved in the background. The user
would start with the next document, until he is finished
with all given documents. The number of documents to
be evaluated should be limited and can be configured by
someone who provides this tool. The reason for the multi-
user evaluation is to avoid manipulations or also error sus-
ceptibilities of individual users. After all users have per-
formed the evaluation, a threshold can be used to evalu-
ate which entities have been correctly evaluated and which
not. For example, you could always initiate a match of 80%
of users as a threshold. This means that at least 8 out of
10 user should have made the same correction so that the
change is included in our new data set. The threshold will
be also configurable and should be adjusted after some trial
runs.

The technical process of the GUI

We have already seen at the beginning that the data for the The training data and
test data can now be
manipulated with the
tool.

evaluation occur in the form of a list with tokens. The tool
will also make use of this form, and as described at the be-
ginning of the evaluation, the individual tokens will be pro-
vided with the corresponding label (c.f. List of labels and
tokens). This way all tokens marked as material in the tool
have the label ”MATERIAL” and the other tokens have the
label ”O”. A deletion of the marking means then simply
that the label is changed in the data record from ”MATE-
RIAL” to ”O”, and an addition of materials sets the labels
the other way around. Now, in addition to an evaluation,
a training dataset can also be generated to utilize Transfer
Learning. This is where the pipeline, which was introduced
in the concept chapter, comes in handy. The pipeline is set
up in such a way that we can fine-tune all three models
very simply with training data. These are even already in
the desired form and do not have to go through all the pre-
processing steps and can go directly to the fine tuning part
of the concept. For the spaCy models, however, the train-
ing data should still be converted into the object formats re-
quired by spaCy. However, these can be easily performed

70 5 Evaluation

by the utils functions of the library of spaCy. After train-
ing, the models should recognize the new learned materials
without any problems and the other errors should be better
understood in the models as well. Over time, the models,
especially the Transformer model, will be very reliable in
terms of extracting materials.

71

Chapter 6

Future work

The idea of our research question on how we can gain in-
formation from these human-written tutorials and how we
can utilize modern neural networks and models to perform
these tasks are based on the motivation of how we can im-
prove users’ usability on such DIY platforms. Our research
focused on building models and performing good extrac-
tion models rather than on how information such as used
materials from these tutorials can now be leveraged for the
users’ usability. Thus, this chapter will be dedicated to the
value of the results and how they can now be used as a
starting point for further research in the field of HCI area.
In the beginning, we will elaborate again on the motivation.

DIY tutorial platforms like Instructables and Thingiverse Concept of using
material for filtering
and searching.

often contain multiple tutorials of similar projects, which
only differ slightly in the utilized materials and tools. Users
who look up tutorials have limited possibilities to filter
the given tutorials aside from reading the titles and skim-
ming the tutorial’s content. However, Makers often look
for projects that use certain materials or tools they either
have at hand or are interested in learning more about. Thus,
the limited possibility to filter tutorials by different param-
eters extends the user’s search time and leads to frustration.
Now that we can extract specific categories, we can apply
this extraction to all tutorials and collect the data. Directly
you can link this extracted data to the tutorials, e.g., as tags,
and thus use a filter option. A simple multi-select box can

72 6 Future work

now list all available materials in the case of materials. By
selecting specific materials, only those materials that have
been tagged will be displayed. Similarly, using the search
bar, you can now use these tags to narrow the search to spe-
cific materials. This can help the user find tutorials that are
relevant to them much more efficiently and quickly.

Another advantage of the work results is that the compre-Conceptual idea of
material substitution. hension of the materials can be used to replace certain ma-

terials. In a use case, this may be that the user does not
have one or more materials available for a particular tuto-
rial. Now instead of filtering tutorials based on available
materials, it would be beneficial for the user to be able to
swap out individual materials. This could be conceptual-
ized in a simplified way as follows. First, we run our extrac-
tion model on each tutorial and generate tabular data this
way, which stores all tutorial materials in a row. Now, we
can use association rules, a concept for understanding the
associations between entities. We will calculate the associ-
ations between materials using the rules in this case. After
the calculation, we have the probability of which materials
are likely to occur with which others. Thus, we can now
allow for simplified substitution. One way to realize this
is to provide a graphical tool that is given with each tuto-
rial. It could be a collection of multi-select boxes, which first
shows all materials of the tutorial itself. Now, you can click
on a single select box with the material you want to substi-
tute. The select box will show you the options that are most
likely to occur in this combination with the other available
materials. Here, it is referred back to the calculation of the
association rules. However, this idea limits the possibili-
ties of substituting materials since only associations with
an identical combination of materials are considered. One
could improve this by including at least subsets. Thus also,
such associations are considered, which do not necessarily
contain all materials of the tutorial, but only parts of it. This
can also be used the other way around, that you include the
superset for subsets.

Another extension would be to include the order of the ma-
terials and to allow the determination of the materials by
this order. This could look like this. First, a specific set of
materials is shown. E.g. Wood → Nail → Oil → Paint. Now,

73

if you want to change Nail to Glue, everything before that
would stay that way, and the algorithm would calculate the
most common materials with Wood and Glue. However, it
can be challenging to determine the order of materials. The
order is important to maintain the main materials.

The last benefit we will point out is giving recommenda- Recommendation
system based on
materials.

tions based on materials. The user can save the materials
that are available in his user profile and activate a kind of
notification, with which he can be notified when certain
materials are used in new tutorials. Additionally, with the
user’s consent, the platform can store data and send a rec-
ommendation to the user based on the data, e.g., frequently
searched materials. These types of utilization of materials
are just further examples but can be challenging to test in
the context of these platforms without having extended ac-
cess permissions to these platforms.

75

Chapter 7

Conclusion

In this chapter, we want to recapture the thesis’s main re-
sults and critically discuss our results’ meaning. We will
point out that we abstract the results here, as we have ex-
tensively discussed them in previous parts of this thesis.
Hence, we will only refer to the outcomes of these discus-
sions and comparisons. Afterward, we will shortly also
summarize other research areas that we already discussed
in chapter 6.

7.1 Overview

The goal of the thesis was to develop a framework or Summary of the
thesis.pipeline that facilitates the process of creating NER mod-

els which enable the extraction of certain keywords out of
DIY tutorials – mainly to reuse this information for further
HCI research questions. The pursued approach strongly
leaned on current NLP technologies, combined with an in-
teractive improvement tool inspired by the paper “methods
for design and evaluations of HCI combined with NLP sys-
tems” [Heuer and Buschek [2021]]. We have also looked at
other related work and demonstrated the extent to which
our work is differentiated and what aspects we find useful
to incorporate into our work. Our approach chapter de-
scribes the general pipeline to create models efficiently and

76 7 Conclusion

elaborates on all components. Moreover, we describe how
this implementation has to be realized. We will also ex-
plain individual strategy points in more detail and justify
the decision points. In this work, we create three different
models and also prepare our pipeline for all three models.
To make a comparison, we will use our training and test
data in the same way for all three models. The evaluation
showed us the results of each model executed on the same
test data. We saw that the transformer model performed
best out of all three models. In addition, through the man-
ual and targeted analysis, we found that some of the predic-
tions are wrong, and the training data and test data harbor
some errors due to their auto-generated creation. Improv-
ing this data and fine-tuning with the new, improved data
could boost our results and reduce inconclusive errors. At
the end of the evaluation, we conceptualized a tool with
the idea of improving erroneous data, which users can use
interactively. The goal is to enable similar improvements
of the datasets as we did manually in the evaluation as a
proof of concept. On the one hand, this should improve
the training and test data and avoid direct errors. On the
other hand, the user can utilize our pipeline with the out-
come of the interactive tool. The pipeline enables further
training as a basis for the improvement of the results. That
is, finetuning with better datasets will improve the model’s
performance, as shown in the evaluation section. Finally,
we also discussed the benefits of now having such extrac-
tion tools. For this, we used our results as a starting point
for further research in the area of HCI. In the future work
chapter, we discussed application examples based on the
extracted information, such as materials. In addition, we
have also developed concepts on how to design individual
applications that can provide added value for the user of
such DIY platforms.

In the context of this work, we have evaluated the correct-Future work should
include a user study

testing these tools.
ness and performance of our extraction models with re-
gard to quality measure-based benchmarks and baselines
and the requirements as we formulated them in Section 2.
Moreover, we also evaluated a part of the outcome man-
ually to understand the erroneous predictions. Our data
generation still showed some errors, which can now be im-
proved by interactive user participation. Yet, we have not

7.1 Overview 77

designed how the tool for enhancing these data sets can be
used within a platform as Instructables. Thus, an evalua-
tion of the usage of this tool has to be conducted, and the
value has to be validated. What cannot be left out is that
this work has been restricted to one particular domain for
the development of the approach. It is possible to adapt
this approach to other domains or to apply the models to
other domains. But also here, the performance has to be
validated first. The creation of such models, however, is
greatly simplified by the pipeline.

79

Appendix A

Computational Metrics
before optimization

Spacy CNN Model Spacy WV Model Transformer Model
Precision 0,861 0,860 0,863
Recall 0,649 0,637 0,710
F1-Score 0,741 0,732 0,779
Accuracy 0,978 0,977 0,979
Error 0,022 0,023 0,021

Table A.1: Computational metrics before optimization

80 A Computational Metrics before optimization

Figure A.1: Confusion matrices of all three models before optimization. These re-
sults came out after the pipeline was built and the model were trained once with
the given pipeline. (A) Spacy CNN Model (B) Spacy Word Vector Model (C) Trans-
former Model

81

Appendix B

Computational Metrics
after optimization

Spacy CNN Model Spacy WV Model Transformer Model
Precision 0,891 0,893 0,919
Recall 0,699 0,687 0,796
F1-Score 0,783 0,777 0,853
Accuracy 0,981 0,981 0,985
Error 0,019 0,019 0,015

Table B.1: Computational metrics after optimization

82 B Computational Metrics after optimization

Figure B.1: Confusion matrices of all three models after optimization. Here, about
30% of the data was picked out and manually removed errors. (A) Spacy CNN
Model (B) Spacy Word Vector Model (C) Transformer Model

83

Bibliography

Conll data set in huggingface. https://huggingface.
co/datasets/conll2003, 2003. Accessed: 2022-08-
15.

Selenium.dev. https://www.selenium.dev/, 2022. Ac-
cessed: 2022-08-15.

Instructables about page. https://www.
instructables.com/about/, 2022. Accessed:
2022-08-15.

spacy.io. https://spacy.io/, 2022. Accessed: 2022-08-
15.

unicodebook.readthedocs.io. https://unicodebook.
readthedocs.io/encodings.html, 2022. Accessed:
2022-08-15.

Mohammed Alawad, Hong-Jun Yoon, and Georgia
Tourassi. Energy efficient stochastic-based deep spiking
neural networks for sparse datasets. In 2017 IEEE Inter-
national Conference on Big Data (Big Data), pages 311–318.
IEEE, 2017.

Christopher M Bishop and Nasser M Nasrabadi. Pattern
recognition and machine learning, volume 4. Springer, 2006.

Jason Brownlee. Better deep learning: train faster, reduce over-
fitting, and make better predictions. Machine Learning Mas-
tery, 2018.

KR1442 Chowdhary. Natural language processing. Funda-
mentals of artificial intelligence, pages 603–649, 2020.

Jacob Eisenstein. Introduction to natural language processing.
MIT press, 2019.

https://huggingface.co/datasets/conll2003
https://huggingface.co/datasets/conll2003
https://www.selenium.dev/
https://www.instructables.com/about/
https://www.instructables.com/about/
https://spacy.io/
https://unicodebook.readthedocs.io/encodings.html
https://unicodebook.readthedocs.io/encodings.html

84 Bibliography

Barney G Glaser, Anselm L Strauss, and Elizabeth Strutzel.
The discovery of grounded theory; strategies for qualita-
tive research. Nursing research, 17(4):364, 1968.

Daniel Glez-Peña, Anália Lourenço, Hugo López-
Fernández, Miguel Reboiro-Jato, and Florentino
Fdez-Riverola. Web scraping technologies in an api
world. Briefings in bioinformatics, 15(5):788–797, 2014.

Hendrik Heuer and Daniel Buschek. Methods for the de-
sign and evaluation of hci+ nlp systems. arXiv preprint
arXiv:2102.13461, 2021.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem,
and Adriane Boyd. spaCy: Industrial-strength Natural
Language Processing in Python. 2020. doi: 10.5281/
zenodo.1212303.

KAVZOGLU. Increasing the accuracy of neural network
classification using refined training data. Environmental
modelling, 24; Jg. 2009(7):850–858. ISSN 1364-8152 (P),
1873-6726 (E). Quelldatenbank: info:sid/sfx:ULBD.

Mandy Korpusik, Zoe Liu, and James R Glass. A compar-
ison of deep learning methods for language understand-
ing. In Interspeech, pages 849–853, 2019.

Guillaume Lample, Miguel Ballesteros, Sandeep Subrama-
nian, Kazuya Kawakami, and Chris Dyer. Neural ar-
chitectures for named entity recognition. arXiv preprint
arXiv:1603.01360, 2016.

Ji Young Lee, Franck Dernoncourt, and Peter Szolovits.
Transfer learning for named-entity recognition with neu-
ral networks. arXiv preprint arXiv:1705.06273, 2017.

Bill Yuchen Lin, Frank F Xu, Zhiyi Luo, and Kenny Zhu.
Multi-channel bilstm-crf model for emerging named en-
tity recognition in social media. In Proceedings of the
3rd Workshop on Noisy User-generated Text, pages 160–165,
2017.

Xiaofei Ma, Peng Xu, Zhiguo Wang, Ramesh Nallapati, and
Bing Xiang. Domain adaptation with bert-based domain
classification and data selection. In Proceedings of the 2nd
Workshop on Deep Learning Approaches for Low-Resource
NLP (DeepLo 2019), pages 76–83, 2019.

Bibliography 85

Bernhard Mehlig. Machine Learning with Neural Networks:
An Introduction for Scientists and Engineers. Cambridge
University Press, 2021.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words and
phrases and their compositionality. Advances in neural in-
formation processing systems, 26, 2013b.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguis-
tic regularities in continuous space word representations.
In Proceedings of the 2013 conference of the north american
chapter of the association for computational linguistics: Hu-
man language technologies, pages 746–751, 2013c.

Sebastian Raschka and Vahid Mirjalili. Python machine
learning: Machine learning and deep learning with
python. Scikit-Learn, and TensorFlow. Second edition ed, 3,
2017.

Subendhu Rongali, Abhyuday Jagannatha, Bhanu
Pratap Singh Rawat, and Hong Yu. Continual domain-
tuning for pretrained language models. arXiv preprint
arXiv:2004.02288, 2020.

Ina Rösiger, Johannes Schäfer, Tanja George, Simon Tan-
nert, Ulrich Heid, and Michael Dorna. Extracting
terms and their relations from german texts: Nlp tools
for the preparation of raw material for specialized e-
dictionaries. In Proceedings of the eLex 2015 conference,
Ljubljana, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. Advances in
neural information processing systems, 27, 2014.

Muzamil Hussain Syed and Sun-Tae Chung. Menuner:
Domain-adapted bert based ner approach for a domain
with limited dataset and its application to food menu do-
main. Applied Sciences, 11(13):6007, 2021.

Tiffany Tseng and Mitchel Resnick. Product versus process:
representing and appropriating diy projects online. In

86 Bibliography

Proceedings of the 2014 conference on Designing interactive
systems, pages 425–428, 2014.

Wil van der Aalst. Lecture notes in introduction to data-
science, March 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Ron Wakkary, Markus Lorenz Schilling, Matthew A Dalton,
Sabrina Hauser, Audrey Desjardins, Xiao Zhang, and
Henry WJ Lin. Tutorial authorship and hybrid designers:
The joy (and frustration) of diy tutorials. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, pages 609–618, 2015.

Thomas Wolf. Lysandre debut, victor sanh, julien chau-
mond, clement delangue, anthony moi, pierric cistac,
tim rault, r’emi louf, morgan funtowicz, and jamie brew.
2019. Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs, 2019.

Typeset August 23, 2022

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Structure of thesis

	Foundation
	Data and Representation
	Types of Data

	Machine Learning
	Supervised vs. Unsupervised Learning
	Deep Learning
	Neural Network
	Training of Neural Network

	Natural Language Processing
	Named Entity Recognition
	spaCy
	Word2Vec
	Learning Word Vectors

	Transformers
	Pre-trained Models

	Evaluation of Machine Learning Models
	Confusion Matrix
	F1-Score

	Related work
	Concept
	Conceptual Design
	Data Scraping
	Data Preprocessing
	Tokenization
	Stop word removal
	Token Normalization

	Applying Preprocessing
	Customized Pre-Processing for Huggingface
	Customized Pre-Processing for Huggingface

	Training

	Evaluation
	Named Entity Recognition
	Quality Metrics
	Evaluating in depth: The problem areas
	Evaluating the generative data set approach

	Optimization possibilities
	GUI for interactive optimization
	The technical process of the GUI

	Future work
	Conclusion
	Overview

	Computational Metrics before optimization
	Computational Metrics after optimization
	Bibliography

