
by
Urs Enke

DanSense
Rhythmic Analysis

of Dance Movements
using Acceleration-Onset Times

Diploma Thesis at the
Media Computing Group,
Prof. Dr. Jan Borchers,
Dept. of Computer Science,
RWTH Aachen University

Thesis adviser:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Karl-Friedrich Kraiss

Registration date: 1 March 2006
Submission date: 1 September 2006

iii

Contents

Abstract (bilingual) vii

Acknowledgements xi

Conventions xiii

1 Introduction 1
1.1 Background . 1
1.2 Tasks . 3
1.3 Structure . 5

2 Setting 7
2.1 Technical Environment . 7
2.2 Rhythm and Other Terms 12

3 Related Work 21
3.1 Dance Movements as Input 21
3.2 Rhythmic Analysis of Music 25
3.3 Intended Contribution . 38

4 Algorithmic Design 39
4.1 Movement Detection . 40
4.2 Rhythmic Analysis . 53

5 Implementation 71
5.1 Overview . 71
5.2 Auxiliary Programs . 75
5.3 DanSense . 82
5.4 Personal Orchestra . 97

6 Evaluation 103
6.1 Test of Intended Features 103
6.2 Suitable Parameters . 108
6.3 Tests with Dance Movements 109
6.4 Conclusions . 112

7 Summary & Future Work 115
7.1 Summary . 115
7.2 Future Work . 116

iv Contents

A Methods of Frequency Analysis 121
A.1 Fourier Transformation and the Frequency Domain . . . 121
A.2 Auto-Correlation . 124

B Introduction to Max/MSP 127

Glossary 129

Bibliography 131

Index 135

v

List of Figures

2.1 Hardware setup of RST’s acceleration sensor package . . 8
2.2 RST’s acceleration sensors attached to a person 8
2.3 Sensor data graph showing sufficiency of precision . . . 11
2.4 The Sense4Motion server application 12
2.5 Intuitive representation of a rhythm 15
2.6 Comparison of Inter-Impulse with Inter-Onset Intervals . 16
2.7 An example of a metric grid 18
2.8 A beat’s prevalence despite gaps in its impulse series . . 19
2.9 The redundancy of classical music notation 20

3.1 Pitch-induced rhythm . 26
3.2 Candidate clocks for the downbeat 29
3.3 Idealized formation of an IOI histogram 31
3.4 Formation of an IOI histogram from a musical score . . . 32
3.5 Rhythmic analysis using wavelet transformation 33
3.6 An audio recording’s amplitude envelope 34
3.7 Computation of an Harmonic Product Spectrum 37

4.1 Acceleration graph of a sudden drop of the sensor 41
4.2 — of a down-and-up movement 41
4.3 — of a continuous up-and-down movement 41
4.4 — of a continuous waltz-like movement of one sensor . . 42
4.5 — of a staccato waltz-like movement of one sensor 42
4.6 —s of the shins of a dancer moving to a Cha-Cha rhythm 44
4.7 —s of sideways and longitudinal leg movement 44
4.8 —s of all limbs of a dancer moving to Rhythm Is A Dancer 45
4.9 — of a direction-alternating sequence of movements . . . 50
4.10 Rhythmic analysis of sensor signals 55
4.11 Derivation of metric information from sensor data 57
4.12 An III histogram mindful of intervals’ magnitudes 58
4.13 Updating an inert histogram of metric quotients 60
4.14 Derivation of rhythm by impulses and metric structure . 63

vi List of Figures

4.15 Histogram-based downbeat induction 64
4.16 Loss of information by synchronization of channels . . . 65
4.17 Fitting channels to each other by stretching 66
4.18 Finding the maximal sequence of downbeat impulses . . 66
4.19 Two methods of clustering impulses 67
4.20 Clustering across measure boundaries 68

5.1 Overview of DanSense and related programs 72
5.2 The main dialogue of RecorderS4M 80
5.3 A screenshot of BeatTapper 81
5.4 DanSense’s class structure 83
5.5 A Max/MSP patch for DanSense 98
5.6 The DanSense adaptation of Personal Orchestra 100

6.1 Circular sensor movements I 104
6.2 Circular sensor movements II 105
6.3 Circular sensor movements III 105
6.4 Circular sensor movements IV 106
6.5 III histograms of a movement with metric quotient six . . 107
6.6 Attempts at creating rhythms through phase differences 107
6.7 Rhythm output for Rhythm Is A Dancer 110
6.8 Faulty rhythm output for Rhythm Is A Dancer 110
6.9 Rhythm output for a Cha-Cha dance 111

A.1 The Hann windowing function 122
A.2 Application of a comb filter 125

B.1 Example of a Max/MSP patch 128

vii

Abstract (English)

Numerous projects around the world have already dealt with the idea to turn dance into
music. The advantage of a system doing this over conventional musical instruments
would be the intuitiveness with which even laymen move rhythmically. In comparison,
the learning of an instrument is usually an elaborate endeavour. However, past such
approaches were more or less rule-based, forcing their users to, again, learn how to master
the devices.

The Sensor Music Project, as part of which this thesis was initiated, also aims to build a
device to turn motion into sound, but based on the latter’s inherent rhythm. Envisaging
various ways of using this to fittingly find, influence or even generate music, it is hoped
that the moving person will appreciate the intuitive control and not perceive the system
as something to be learned.

Given a prototype of an acceleration sensor package to use as motion input, this thesis
describes a way of turning such sensor data into a representation of rhythm suitable for
said further processing.

The questions on how to represent rhythm and which methods to use for its derivation
first remain answered ambiguously, studying diverse works in the field of the rhyth-
mic analysis of music. Finally, a pipeline of algorithms considered sensible is built and
implemented in a software package called DanSense.

Having been intended as one step among several in the attempt to derive music from
dance, DanSense turns out to itself require, but also invite to, further development until
it can satisfy the probable demands in detection stability and accuracy of the (not yet
existing) application that is to use its output.

viii Abstract

ix

Abstract (Deutsch)

Zahlreiche Projekte haben sich bereits an der Umwandlung von Tanzbewegungen in
Musik befasst. Der Vorteil eines solchen Systems gegenüber konventionellen Musikinstru-
menten wäre die Intuitivität, mit der sich selbst Laien rhythmisch bewegen. Im Vergleich
dazu ist das Erlernen eines Instruments üblicherweise ein aufwendiges Unterfangen. Dies-
bezügliche Ansätze jedoch waren in der Vergangenheit mehr oder weniger regelbasiert,
zwangen ihre Benutzer also wiederum dazu, das Gerät erst einmal beherrschen zu lernen.

Das Sensor Music Project, als Teil dessen diese Diplomarbeit initiiert wurde, zielt eben-
falls auf die Erstellung eines Gerätes ab, das Bewegungen in Töne verwandelt, allerdings
basierend auf deren inhärentem Rhythmus. Mit Blick auf verschiedene mögliche Metho-
den, diesen Rhythmus zum passenden Finden, Beeinflussen oder gar Erzeugen von Musik
zu nutzen, besteht die Hoffnung, die sich bewegende Person möge die Intuitivität eines
solchen Systems wertschätzen und seine Automatismen nicht als zu erlernen betrachten.

Unter Vorgabe des Prototyps eines Beschleunigungssensoren-Pakets beschreibt diese
Arbeit einen Weg, aus Daten solcher Sensoren eine für die genannte Weiterverarbeitung
brauchbare Darstellung ihres Rhythmus zu extrahieren.

Antworten auf die Fragen nach einer geeigneten solchen Darstellung und nach den besten
Methoden für die genannte Extraktion bleiben zunächst nur vage beantwortet, während
vielfältige Arbeiten aus dem Bereich der rhythmischen Analyse von Musik betrachtet
werden. Schließlich wird eine als sinnvoll erachtete Kette von Algorithmen erstellt und in
einem Programmpaket namens DanSense implementiert.

Selbst nur als ein Teilschritt auf dem Weg zu einer Umwandlung von Tanz in Musik
gedacht, stellt sich DanSense in seiner gegenwärtigen Fassung als verbesserungsbedürft-
iger, aber auch als verbesserungsfähiger Ansatz heraus, was die angenommenen Bedürf-
nisse der noch inexistenten Anwendungen angeht, welche einmal die rhythmische Reprä-
sentation weiterverarbeiten sollen.

xi

Acknowledgements

Working on this thesis was made especially enjoyable by the friendly atmosphere at the
Media Computing Group, thanks to Prof. Dr. Jan Borchers probably the faculty’s most
egalitarian chair. Although exams are probably a bit less attractive than hands-on project
work, I regret having previously been oblivious to the group and its interesting field of
activity.

Speaking of the field of activity, I imagined it hard to find a secondary examiner, but
Prof. Dr. Karl-Friedrich Kraiss’ quick acceptance of my request made the search a short
one.

Concerning the work itself, the most valuable input came from my supervisor, Eric Lee,
regarding procedure, algorithmic content and implementation, as well as such aimed at
my pretentious language, especially elaborate hypotaxes, of which this sentence is to be a
lucid example, and whose tiring nature the already scared reader can hopefully be sure
never to find surpassed in the forthcoming chapters.

Further thanks go to Leo de Jong, without whom this very special thesis topic would not
have existed, and Jeroen Groot, who often helped me with questions regarding Max/MSP.

Martin Neuhäußer, Alena Sudholt, Lorenz Merdian, Niels Gürtler and Thomas Rath
actively helped me to some recordings of ‘real’ dance movements that I could hardly have
produced myself and even less liked to. Michael Herchenbach, Georgios Dilgerakis and
my brother Lutz all took the pains of looking for errors or other deficiencies in the ensuing
document. Thanks to all for being my second pair of feet and eyes!

My parents did not feel qualified to contribute corrections. One could say that basically,
they contributed everything that was correct in the first place.1

1This is not meant as a violation of the DPO!

xiii

Conventions

Language

This thesis is written in contemporary British English concerning both
orthography and grammatical style.2 This includes the choice to avoid
the serial comma.

Single quotation marks are used as ‘scare quotes’, double ones remain
reserved for actual quotations.

Highlighting

Source code, command lines and internet links are typeset in fixed-
width font. For brevity, the latter omit any leading http://. In the PDF
version, however, the complete address is linked.

Terms or program names being introduced are typeset in italics. Names
of program classes and methods appear without serifs; constants as well,
but in capital letters and in a smaller font. Programming languages and
frameworks are not highlighted.

Definitions of technical terms are set off in coloured boxes:

TERM: Definition:

TermA word with a precise meaning in a specific context.

They can also be looked up in the glossary at the back.

Figures depicting sensor data always show graphs of the same recording
and during the same time interval. Different recordings are never shown

2Note deviations from what one might expect: for example, the Oxford English Dictio-
nary gives program as the preferred spelling in a computing context and uses -meter
for measurement devices.

xiv Conventions

in one figure; where the need for a comparison arises, this takes place
across figures.

Hyperlinked Version

This document’s digital version (PDF, 5 MB), together with source codes
and other related material, is downloadable at
media.informatik.rwth-aachen.de/enke.html,

and features clickable
• tables of contents (each chapter has its own)
• references to bibliographic entries,
• internal references to sections and figures and
• internet links.

The latter are especially helpful in the case of the bibliography, as most
entries there do have a link.

media.informatik.rwth-aachen.de/enke.html

1

1 Introduction

1.1 Background . 1

1.2 Tasks . 3

1.2.1 Data Recording and Preliminary Analysis . . . 3

1.2.2 Rhythm Extraction 4

1.2.3 Evaluation . 4

1.3 Structure . 5

1.1 Background

For thousands of years, people have been moving to rhythms, be it
as part of a ritual, to improve morale when working together or just
as the casual tapping of fingers on an office desk. Formalized dances
may be hard to learn, but the latent urge to move to auditory stimuli
appears rather instinctive. Creating audible rhythms, which usually is
chosen to induce rhythmical movement, is similarly easy, but requires
the creator’s concentration on producing these sounds.

Even more so, the playing of melodic music requires an instrument Creating music by

dancing?to be learnt and played more than casually. In both cases, the ability
to simultaneously dance is hampered by the devices used for creating
rhythm or melody. It appears that a device that could turn intuitively
performed movements into music could be quite popular and, as with
all technological gadgets, become increasingly affordable.

2 1 Introduction

The Sensor Music Project

Initiated by Prof. em. Leo de Jong, the Sensor Music Project [dJ04] aims
to develop such a device, capturing motion using unintrusive wireless
acceleration sensors and processing the taken measurements for rhyth-
mic structures, as well as for hints on which sounds could be fittingly
supplemented. Intended uses for this way of deriving music are largely
leisure-related, ranging from motivating acoustic feedback during aero-
bics sessions to an ‘automatic DJ’ picking music with a rhythm fitting
that of the dance, but also include therapeutic ones with autistic children
in mind.

The first example should be the least demanding task, if simple sounds
are to be played for each high-acceleration movement like a kick with
one’s foot. The second involves an analysis of several movements in
a row, detecting structures that would then allow to find a match in a
database of known rhythms.

Example number three raises the question how a melody should be
derived from a dance performance, even provided that a rhythm could
be properly detected: de Jong’s central idea in this context is that both
rhythmic patterns and harmonic sounds are characterized by their com-
position of frequencies. He suggests converting one into the other by
playing the rhythm at a faster pace. In addition, a database of rhythms
could be set up like for example three, that would be used to choose
tonality and instrumentation according to which cultural background is
known to belong to the given rhythmic pattern.

Still, the resulting ’melody’ would hardly deserve its name if a constantExtraction of

rhythm more

feasible than of

melody

rhythm led to a constant harmonic interval being played. The fact
that dance hardly reproducibly captures melodic aspects of music thus
makes the question of how to use movements to synthesize a fitting
sequence of harmonics seem rather artistic. The extraction of rhythm, in
contrast, appears more algorithmically feasible in so far as the model
solution could be defined rather uncontroversially.

This Thesis’ Role

However successful an inference of melody might be, the derivation
of rhythmic information from movements is a prerequisite. This the-
sis deals with this very derivation, using the Sensor Music Project’s
hardware prototypes as input devices. It discusses ways of how to
convert measurements of acceleration into a representation of the under-
lying rhythm and develops a comprehensive algorithm using the most
promising methods.

1.2 Tasks 3

A Java program, DanSense, was created to demonstrate these algorithms. DanSense derives

rhythm from

accelerometer

data

Due to its modular structure, its example front-end, which graphically
displays the rhythm, could be replaced by further processing as envis-
aged by de Jong. It employs OpenSound Control (OSC) for data reception,
an open application-layer communications protocol making the system
independent from the specifics of the sensors used for development.

A more precise description of the goals set and the steps involved in
attaining them is given in the next section, although a clarification of
some essential terms, including rhythm itself, is deferred to Section 2.2.

1.2 Tasks

Expanding on this thesis’ title, its primary aim can be summarised Primary aim:

rhythmic analysisas follows: a person’s movements’ pace and a representation of their
rhythmic structure are to be derived by real-time evaluation of attached
acceleration sensors’ data.

The method finally opted for employs, as stated in the title, “acceleration
onsets”, the points in time that each mark the beginning of a significant
movement. Thus, the work can be divided into two steps: first, these sig-
nificant movements have to be detected, then their occurrences analysed
to derive a rhythm.1

As the resulting real-time algorithm should yield information about a Secondary aim:

conducting of

music

performance’s rhythmic patterns in a reusable representation, an ad-
ditional conversion into sound like envisioned for the Sensor Music
Project is just one possible use of the resulting data. The conducting of
music is an exemplary other, which appears to be sensible to include
in this thesis as a secondary aim: with Personal Orchestra [LKD+06],
the advising chair (RWTH’s Media Computing Group) has already devel-
oped (and is still in the process of improving) a successful system for
conducting recorded audio with the help of optically tracked batons.

1.2.1 Data Recording and Preliminary Analysis

The first task is to read data from the accelerometers and analyse it with
respect to the features that should be extracted for automatic rhythmic
analysis.

1In retrospect, it would have been better to talk of ‘acceleration impulses’ as move-
ments’ beginnings are not necessarily their most relevant point in time for analysis.
Still, the additional line in the title gets across that the detection of pivotal points in
time is an important aspect of the employed method.

4 1 Introduction

To visualize data, an auxiliary program of the Personal Orchestra appli-
cation, called Beat Tapper, appears suitable to determine characteristic
properties of certain movements’ acceleration graphs. Originally show-
ing a video recording and a graphical representation of its audio track
to facilitate the annotation of perceived musical beats’ position, it can
be complemented by graphs of data recorded in parallel to the video.

To be able to align the sensor recording with an audio/video track in
the first place, a recording application is required that enriches sensor
output with time stamps of the audio file that is being danced to.

All of these implementations will be revisited in Chapter 5, Implementa-
tion.

1.2.2 Rhythm Extraction

Using the attained knowledge about the looks of sensor graphs, anModular

implementation analysis pipeline needs to be set up that analyses the most recent data in
appropriate intervals for movements and their rhythmic patterns. The
pipeline should be modular in the sense that the core implementation is
independent from the sensors used as input.

Said intervals’ “appropriateness” and the extent of the time window
encompassing “recent” events is left for optimisation with respect to
quick adaptation to rhythmic changes on the one hand and avoidance
of too erratic output on the other. These topics will be discussed more
concretely in Chapter 4.

The patterns detected finally have to be output in a useful representation.
A useful representation will emerge from the discussions of rhythmical
terms in Section 2.2.

Motivation for most techniques employed is derived from the works
described in Chapter 3.

1.2.3 Evaluation

Algorithm development and implementation have to occur in contin-
uous alternation with short tests of their effectiveness. For those, as
well as for a final evaluation, it is required to make recordings of actual
dance movements. The algorithms’ application to such recordings is
discussed in Chapter 6.

1.3 Structure 5

1.3 Structure

In the remainder of this paper,

• Chapter 2, Setting, takes a look at the technical conditions set by
the used sensor package and clarifies some rhythm-related terms.

• Chapter 3, Related Work, then describes approaches taken by re-
searchers in the past that either concerned the processing of dance
movements or dealt with rhythmic analyses of audio recordings,
e.g., determining their tempo. Their aims are compared with those
of this thesis, useful approaches are highlighted and noted for later
use.

• The intended pipeline of algorithms for rhythmic analysis is dis-
cussed in detail in Chapter 4, Algorithmic Design, also explaining
the discardment of alternative ideas.

• These algorithms’ Implementation, but also that of auxiliary pro-
grams or such otherwise created as part of this thesis, is the focus
of Chapter 5.

• Chapter 6, Evaluation, discusses the developed algorithms’ effec-
tiveness.

• Chapter 7, Summary & Future Work sums up all previous ones and
outlines possible aspects of further study.

Finally, the appendices give an introduction into frequency analysis and
an overview of the prototyping environment Max/MSP.

7

2 Setting

2.1 Technical Environment 7
2.1.1 Acceleration Sensors 7
2.1.2 Driver Software 11

2.2 Rhythm and Other Terms 12
2.2.1 Rhythm without Music? 13
2.2.2 Rhythm without Order? 13
2.2.3 Towards a Useful Definition 14
2.2.4 Classical Terms and Metric Aspects 17

2.1 Technical Environment

As mentioned before, Prof. de Jong supplied the acceleration sensor
package used for this thesis. It, as well as its driver software, was created
by Radical Solutions Technology (RST), a group of Romanian engineers.

2.1.1 Acceleration Sensors

As actual sensors, RST used the two-axis accelerometers iMEMs ADXL- Used sensors

measure

acceleration along

two axes

203 of AnalogDevices.1 Although any device that is supposed to be used
on a dancing person should not require cables to run to a stationary
computer used for processing, the prototype package supplied by RST
for the practical tests did require cabling (see diagram and picture in
Figs. 2.1 and 2.2).

1For detailed specifications, see www.analog.com/UploadedFiles/Data_Sheets/

178749895ADXL103_203_a.pdf.

www.analog.com/UploadedFiles/Data_Sheets/178749895ADXL103_203_a.pdf
www.analog.com/UploadedFiles/Data_Sheets/178749895ADXL103_203_a.pdf

8 2 Setting

Figure 2.1: The hardware setup of RST’s acceleration sensor package. The
metal-cased circuit boards with the sensors (represented by the four
little boxes on the right) are attached to a hub (rounded box), which
in turn is connected via USB to the processing computer (in this
case a notebook).

Figure 2.2: RST’s acceleration sensors attached to a person. The actual at-
tachment is achieved using velcro fasteners, the USB hub is worn
mounted on the person’s belt.

2.1 Technical Environment 9

The following table summarizes the sensor package’s technical speci-
fications and contrasts them with those envisaged for a market-ready
version:

prototype final version
communication with computer wired USB wireless USB
sampling rate 160 Hz 500 Hz
acceleration range2 [–2 g, +2 g] [–2 g, +2 g]
sensitivity 8 bit (16 mg) 10 bit (4 mg)
axes measured per sensor 2 2
number of sensors 4 8

Discussion of Properties

The manufacturer’s data sheet gives the acceleration range as ± 1.7 g,
but the output data range attainable by moving the sensors is clearly
twice as large than that covered when merely turning them through
Earth’s gravity field (± 1 g). Also, the accelerometers’ native sampling
period is variable up to 2.5 kHz, merely fixed by RST’s driver software,
which has to take care of other hardware constraints. In the final version,
the software’s theoretical limit is 8000 Hz, which gets divided among
the used channels. So if not all of the 16 available channels are used,
more then the stated 500 Hz are be possible.

All properties may raise questions about their potentially limiting nature.
The physically restricting nature of the prototypes’ cabling set aside, a
discussion of the remaining ones follows.

• Sampling rate
By Nyquist’s theorem, a sampling frequency of 160 Hz allows
the reconstruction of periodic accelerations at frequencies of up
to 80 Hz without aliasing. Considering the rate at which human
(dance) movements occur and the spacing of rhythmic elements
in music, this appears to be comfortably sufficient to capture their
corresponding features even with a certain smoothness. Smith
[p. 66 Smi99], for example, calls a period of 200 Hz appropriate.

• Acceleration range
Depending on the orientation of a sensor, even at rest there can
naturally be a reading of ± 1 g, making the addition of any signif-
icant acceleration away from Earth result in clipped values near
± 2 g. Unfortunately, the sensors used make this worse by not be-
ing centered at zero, i.e., actually having a range of about [–2.8 g,
+1.2 g]. When moving a sensor with one’s hand, this problem can

2Note that the italicized g denotes a unit of acceleration equalling that of Earth’s
gravity at sea level, about 9.8 m

s2 .

10 2 Setting

be offset by looking at the resulting data and tilting the accelerom-
eter into a base position that makes clipping unlikely. In a real
dance setting, this is impossible. Whether or not this has an effect
on the used algorithms’ effectiveness is discussed in Chapter 6.

• Sensitivity
Just like the sampling rate (the temporal resolution), the sensors’
sensitivity (the acceleration resolution) is more than sufficient. Fig.
2.3 gives an impression of the graphed sensor data’s smoothness.

• Axes measured per sensor
Not being able to read data for all possible directions appears
an obvious deficiency: the prospect of having sensors that mea-
sure acceleration in all three dimensions may seem to enable an
extrapolation of the moving limb’s direction as well as a correct
scalar value for its acceleration. By double integration over time,
one might even hope to derive its position in space. Distinguish-
ing mere turning of the sensors from their directional movement
seems to be hard, but perhaps feasible. However, further thought
makes it clear that the task can only be about the evaluation of the
time and scalar magnitude of accelerations, not their direction and
derived values:

– The sensors’ starting positions and orientations would have
to be measured beforehand.

– Imprecision will accumulate, especially when accelerating
out of the sensors’ range. Gradually, it will degrade any
positional reading.

Should a third axis turn out to be useful, however, one might
position two sensors at the same limb, thus acquiring data on
‘four’ dimensions (one being redundant) and having one sensor
less for the other limbs. As mentioned, a third axis would allow the
extraction of an movements’ direction and absolute acceleration.

• Number of sensors
Admittedly, even with three measured axes per sensor, eight sen-
sor locations are not enough to fully describe a person’s move-
ments. But for this thesis’ purpose, the evaluation of four sensors’
data is sufficient, as it allows the testing of algorithms that com-
bine their readings. Those readings’ relevance, in turn, could be
improved by determining the most promising positioning setup,
given a particular style of dance.

2.1 Technical Environment 11

-2

 0

 2

 1 2 3

ac
ce

le
ra

ti
on

 [g
]

time [s]

Figure 2.3: A graph showing three seconds’ sensor data featuring one signifi-
cant movement in the middle. As no interpolation of samples was
used, the picture gives an indication, though not a proof, that the
256 available acceleration values and the 160 samples per second
sufficiently capture the movement.

2.1.2 Driver Software

As RST provided the driver software for the accelerometers only for Currently, only

drivers for

Windows available

Windows, a Windows PC always had to be involved when reading
the data, be it for near-real-time processing or recording. In addition
to the actual USB driver for the general-purpose translator unit they
had used (a Cypress EZ-USB FX23), they included a program named
Sense4Motion4, a screenshot of which can be seen in Fig. 2.4. It can
graph sensor data, record it into a Matlab-format 5 text file and offers the
possibility to set the sampling rate.6

Most importantly, Sense4Motion acts as a TCP7 server that allows pro- Sense4Motion

sends data, but

delayed

cessing of the data without having to rely on the intermediate step of
saving it as a Matlab file. Considering the closed-source nature of the
programs provided, this enables a comparably versatile encapsulation
of the data. However, in the old version, a data packet is only sent once
32 samples have been collected, thus adding an inescapable delay of
200 ms between a sensor excitation and its processing. Such a delay
severely hampers the real-time aspect of the implementation, but poses
no limitation to the rhythmic analysis as such.

3www.cypress.com
4Actually, the whole kit of sensors and software is to be marketed under that name, as

can be seen on www.sense4motion.com.
5Matlab is a software for fast numerical computing and its textual file format thus a

suitable choice to make. See www.mathworks.com/products/matlab.
6In the old 8 bit version, a setting of 6 ms per sample (166 Hz) in Sense4Motion actually

results in a sampling period of 6.25 ms. Likewise, in the new version, a setting of
3 ms results in a sampling period of 2.46 ms.

7Transmission Control Protocol, specified by the Internet Engineering Task Force in their
Request For Comments (RFC) no. 1122, available on www.ietf.org/rfc/rfc1122.txt.

www.cypress.com
www.sense4motion.com
www.mathworks.com/products/matlab
www.ietf.org/rfc/rfc1122.txt

12 2 Setting

Figure 2.4: The Sense4Motion application. On the top left, the sensors can be
chosen whose data should be processed (in the prototype, these
must be the four numbers displayed). Below, the desired sampling
period can be entered. Both choices are fixed while a recording
session is in progress, which can be started and stopped using the
black buttons on the bottom right. The red recording button saves
the data to disk in Matlab format. In the window’s centre, two
sensor channels can be chosen whose data should be graphed on
the right, covering the past second.

2.2 Rhythm and Other Terms

Given the technical setting, a more precise understanding of this the-
sis’ scope still requires the discussion and definition of various, in part
ambiguous, terms. For example, the previous use of the word “rhythm”
will hardly have forced any reader into contemplation. Beyond the gen-
eral agreement that the term somehow captures the temporal structure
of music, the question of which information exactly should be yielded
by DanSense deserves some thought.

In his thesis on rhythmic analysis of music, Seppänen [Sep01] illustratesRhythm is an

ambiguous term the vagueness of rhythm-related terms and their thus limited use for for-
mal statements, by quoting the Oxford Dictionary and Thesaurus [Aba96]:

“rhythm noun 1 periodical accent and duration of notes in music. 2 type
of structure formed by this. [. . .] (see also metre, [. . .])”
“metre noun (US meter) [. . .] 3 basic rhythm of music.”

2.2 Rhythm and Other Terms 13

It seems necessary to find one’s own fitting definitions to properly work
with this matter. Not only because of the ambiguous wording in en-
cyclopaediae, but also because of their fixation on rhythm as being a
property of music.

2.2.1 Rhythm without Music?

Taking on a challenge similar to this thesis in trying to let a dancer influ-
ence music, Guedes [Gue05] studied researchers’ views on definitions
of rhythm in general and the term’s applicability to dance in particular.
Adopting Parncutt’s [Par94, p. 453] definition that “a musical rhythm is
an acoustic sequence evoking a sensation of pulse”, he tried to justify
his hypothesis that “dance movement possesses musical qualities at the
temporal level”.

Guedes notes experimentally shown ambiguity in both the frequency
a listener would tap to and the intuitive counting he would apply. Fur-
thermore, the rhythmic perception when watching a dancer is strongly
determined by accompanying music and difficult to attain in silence.
But already for physical reasons, a dance cannot capture all of music’s
rhythmical elements. On the other hand, dance also adds spatial ele-
ments to the linear appearance of music, so even a person could not be
expected to easily derive a rhythm by watching a dancer.

As conceded before, it is hard to extrapolate ‘fitting’ melodic music from Consider dancer’s

felt rhythm as

benchmark

mere rhythm, so it will be even harder trying to reconstruct music that
led to the dance. What can be aimed for is to capture not a rhythm
visually perceived, as Guedes contemplated, but that felt (or intended)
by the dancer. As Smith [Smi99] states: “Alternatively in prepared
performance situations, the rhythm can be transduced from sensors,
measuring the intensity of the instant of the beat, which is generalised as
a measure of intended accent.” For this, a definition devoid of acoustic
references has to be chosen. This could then also be applied to any kind
of ‘rhythmic’ movement, not necessarily music-induced dance.

2.2.2 Rhythm without Order?

Smith, also treating the modelling of rhythm, though in a purely musi-
cal context, points out that non-Western rhythms might lack persistent
hierarchical structures. Similarly casting into doubt the decisive role
of repetition, he quotes Clarke’s [Cla85] definition of rhythm as “the
grouped organisation of relative durations without regard to periodic-
ity”.

14 2 Setting

Although it may be justifiable to call a non-periodic and per se non-
hierarchical sequence of intervals a rhythm, an algorithm detecting such
would a) have no means of checking its own results for sanity and b)
be of questionable use. Especially keeping in mind de Jong’s intent of
exploiting rhythm’s harmonic properties, this thesis can with a good
conscience be limited to Western hierarchical and periodic rhythms.
Even those may turn out difficult to detect when the intended rhythm
actually consists of periodic variations of what on first sight appears to
be the recurring pattern.

2.2.3 Towards a Useful Definition

Another definition is Dowling’s and Harwood’s [DH86, p. 185]: they
call rhythm “a temporally extended pattern of durational and accentual
relationships”. This fits quite well what is needed for mapping to har-
monic patterns. Prior to coining a definition for rhythm, though, the
subjects of those ‘relationships’ should be defined. In this paper, they
are called an

IMPULSE:Definition:

Impulse An accented event in time.

In a music setting, impulses would be sounds and their accentuations
could be determined by their volume. In a dance setting, they could be
movements with their respective maximal momentum. Simplifying the
above quote a little, rhythm can now be defined as follows:

RHYTHM:Definition:

Rhythm A repeating series of accentuations of and intervals between impulses.

An intuitive graphical representation of an example rhythm is shown
in Fig. 2.5. A representation using traditional (Western) music notation
would suffer from a lack of precision concerning the differentiation
between impulses’ various magnitudes of accentuation. That is probably
due to its prescriptive instead of descriptive focus: rather than capturing
an interpretation of a piece, it invites the performer to his or her own.

The given definition captures both aforementioned properties of West-
ern rhythm: periodicity by demanding a series that repeats and hierar-
chy by attributing the series’ constituent impulses an accentuation. The
hierarchical aspect could be made more explicit by talking of a “repeat-
ing hierarchy” (in data-structure terms, a tree). However, deriving such
parent/child relationships among impulses appears speculative com-
pared to the physical measuring of a single one’s accentuation. Should
this information once be needed and not be computable from the mere

2.2 Rhythm and Other Terms 15

Figure 2.5: An intuitive representation of a rhythm. Each circle along the hori-
zontal time axis represents an impulse, its diameter signifying the
impulse’s magnitude. (Not some temporal extent: the impulses are
supposed to occur precisely at the points in time marked on the
time axis.) For example, the impulses could be drum hits of two
kinds of strength: every third hit is of the stronger type. As the pat-
tern strong–weak–weak is repeating, it can be called a rhythm. One
exemplary instance of the rhythm is coloured blue, an underlying
rectangle specifying its extent. In fact, any period of the rectangle’s
length could have been chosen as the rhythm.

rhythm as defined above, it could still be given as additional informa-
tion.

Also left open is the question of whether to give the intervals between
a rhythm’s impulses relative to each other or relative to the local time-
frame of the current recurrence’s period. What is important to note is
that in order to actually get intervals between impulses, those have been
defined to occur at one point in time, not over a period of time. In case a
precise point in time does not reflect the physical realities of the sound,
movement or other event in question, this can be additionally specified.
Thus, an impulse can be attributed

• a magnitude,

• a point in time (at which it occurs) and, in case the time of occur-
rence cannot be specified exactly,

• a certain spread over time, i.e., an interval over which the actual
time can be considered distributed with varying probability.

In the context of accelerometers as this thesis’ hardware base, magnitude
of movements will depend on the respective movement’s acceleration,
the precise function employed being a topic of Section 4.1.4. Which
point in time (and which spread) to assign to a movement is discussed
in the same section. One candidate is the movement’s assumed start, an-
other that of its maximal acceleration. Whatever is chosen, the intervals
defining a rhythm can be called

INTER-IMPULSE INTERVAL (III): Definition:

Inter-Impulse

Interval (III)

The time passing between two, not necessarily successive, impulses.

16 2 Setting

This definition parallels that of inter-onset intervals (IOIs), a term used
in the rhythmic analysis of music, for which sounds’ onsets are unques-
tionably the point in time to evaluate as their most ‘striking’ moment.
IOIs are going to be discussed in Section 3.2.1. To see an example of how
an alternating sequence of movements of short and long durations can
make a numerical difference between the resulting IOIs and IIIs, see Fig.
2.6.

Figure 2.6: When inter-onset intervals (IOIs) and inter-impulse intervals (IIIs)
make a difference. The top diagram shows an equidistant sequence
of equally spread-out impulses along a time axis, the bottom one a
sequence where long and short impulses take turns. As opposed to
Fig. 2.5, the horizontal extent of the ellipses depicting the impulses
does have meaning: the temporal extent over which they occur. In
each diagram, the intervals between the beginnings (IOIs, red) and
between the centres (IIIs, blue) of successive impulses are marked
by brackets ‘looking from’ the top or bottom, respectively. In the
top diagram, the values of IOIs and IIIs are identical. In the bottom
one, however, it can be seen that although the impulses’ centres are
equidistant and the IIIs thus all equal, the IOIs vary. Therefore, in
cases where the temporal extent of beats greatly varies, rhythmic
analysis can yield different results when using IOIs versus IIIs. This
should be kept in mind later on, as the same differences occur
depending on whether a movement’s beginning, centre or other
position is used as its defining moment.

An III can, in addition to this duration, also be characterized by a mag-
nitude and a spread, derived from the constituent impulses’ respective
values.

Taking the above-mentioned attributes of an impulse, a rhythm as de-
fined in Section 2.2.3 can be represented by a sequence of ‘conceptual’
impulses

• whose magnitude represents its accentuation,

• whose ‘time stamp’ has no absolute meaning, but only in relation
to that of other impulses in this sequence and

• whose spread mirrors the uncertainty with which the relative time
stamp is given.

2.2 Rhythm and Other Terms 17

In addition to this internal structure, embodied by the mere relative tem-
poral position of the rhythm’s conceptual impulses, a kind of duration
must be given that indicates after which time the sequence repeats. The
(Western) notation of music usually divides a piece into equal intervals
called measures. As this term is well known, and due to parallels yet to
be pointed out, in this thesis’ context it is to mean:

MEASURE: Definition:

MeasureOne among a rhythm’s repeating instances.

The term sought for a measure’s duration can thus be:

MEASURE LENGTH: Definition:

Measure LengthThe duration of each of a rhythm’s repeating instances.

Whether or not the pace at which a rhythm’s instances succeed each
other should be considered an integral part of rhythm may be an aca-
demic question. But a discussion in Chapter 4, Algorithmic Design, will
show that in a real-time analysis of an ongoing sequence of impulses,
it makes a difference whether the algorithm used treats their relative
spacing or their absolute intervals as ‘more basic’.

Not only because specific impulses are allowed to be defined imprecisely
in time, this also applies to rhythms: slight variations in successive
measures’ length and in the internal impulse structure should not be
taken as a reason to classify the changed version as a different one,
rather as one of many expressions of an ongoing rhythm.

2.2.4 Classical Terms and Metric Aspects

As a comparison to and to prevent ambiguity to standard terms of
music theory, it should be mentioned how some of such fit in and why
this paper concentrates on the ones introduced previously. For an in-
depth introduction into classical music theory, one may refer to Michels
[Mic05].

The time signature given for (a section of) a piece in a musical score
specifies how many notes of which kind form one measure, the tempo
indirectly indicating those specific notes’ length in time. For example,
a waltz’ signature of 3

4 indicates that each measure encompasses notes
and pauses with the combined duration of three quarter notes. These
base notes’ dominance gives rise to the term

18 2 Setting

BEAT:Definition:

Beat The dominant regular base pulse in an impulse series.8

Here, ‘base pulse’ is to stress that it usually occurs at a higher frequency
than the measure.

A tempo can be given in beats per minute (bpm): a tempo of 120 bpm
clarifies that each beat note is half a second in length. Relying purely
on the notational hint on the beat, this tempo gives the waltz example
a measure length of 1.5 seconds. But a piece with a signature of 3

4 may
be sprawling with eighth notes, making them the objective beat notes.
Similarly, its measures may have alternating structures, the de-facto
measure length thus spanning two notated measures.

More than merely being a grouping of notes to make them more legible,Metre subsumes

the hierarchy of

impulse positions

the time signature foreshadows rhythmic aspects in the sense that recur-
ring emphases are likely to occur on the same positions in each measure.
The hierarchy of potential note positions in a measure that results from
repeated subdivision of the temporal grid implied by the time signature
is called metre.9 One can thus say that the beat forms the main metric
level. See Fig. 2.7 for an example.

3
4

Figure 2.7: An example of a grid of metric levels, or metric grid. The notes
above are part of a waltz score (ignoring their pitch), the lines be-
low indicate its metric grid: the long ones delimit measures, the
medium-sized ones divide measures into three (quarter notes), the
short ones are on a sub-beat level allowing for eighth notes. The
last note is shaded because it starts a measure not shown.

A rhythm, as defined previously, can be interpreted as a choice of posi-Rhythm as choice

of positions in

metre

tions in the metre and the assignment of emphases to them. In a waltz,
for example, usually the first of the three quarter notes gets the most
emphasis, the two others get a smaller amount, both the same.10

8Some call the individual beat-level impulses beats, but for this thesis, the singular
events will always be called impulses to prevent ambiguity.

9From a cognitive viewpoint, Smith [Smi99] defines metre as “the occurrence of regular
subjective or objective accentuation”. However, with the exception of pieces with
continuous Swing-like variations of intervals, these accentuations should occur on
said temporal grid.

10See former Fig. 2.5 for a graphical representation and Section 3.2.1 for a short discus-
sion of whether one can at all say with which impulse a (physically, not notationally)
given rhythm ‘begins’.

2.2 Rhythm and Other Terms 19

As noted before, measures, the beat and their surrounding metric hi-
erarchy implied by notation would not necessarily be considered such
when applying an objective metric to the music itself. All the more, as
this thesis is not concerned with inferring underlying music’s notation
from movements, the metric levels of measures and the beat should not
be rated by their closeness to said notation, but instinctively judged by
the moving person.

In any case, defining a specific impulse series’ beat may be difficult. As
it is characterized by its frequency rather than by individual member
impulses, a beat may have gaps like those shown in Fig. 2.8.

Figure 2.8: A beat’s prevalence despite gaps in its impulse series. The picture
shows a sequence of impulses, whose dominant mutual interval is
shown using tick marks on the time axis below. Apparently, keeping
the enumeration strong–weak–weak of Fig. 2.5, the third impulse is
missing in every second measure. Still, the tick marks can safely
be said to indicate the rhythm’s beat or, better, the beat level on its
metric grid.

Analogously to the interval between a measure’s and its successor’s
beginnings (the measure length), a beat has its

BEAT INTERVAL: Definition:

Beat IntervalThe inverse of a beat’s frequency.

In the case of a beat without gaps, the interval could simply be defined
as that between successive beat impulses.

Knowing an impulse series’ measure length and beat interval, their
quotient describes a subdivision like that implied by the time signature
in a musical score. Henceforth, it is called11

METRIC QUOTIENT: Definition:

Metric quotientThe quotient of an impulse series’ measure length and its beat interval.

For example, the metric quotient of a waltz is 3, as there are three quarter
notes in each measure.

Two of the three values measure length, beat interval and metric quo-
tient suffice to describe a piece’s rhythmic structure and tempo. The

11Here, that is. Others, like Gouyon and Herrera [GH03], call this quotient simply “the
metre”.

20 2 Setting

time and tempo signatures in music notation, in contrast, appear redun-
dant from a mathematical point of view: a piece given in 3

4 at 90 bpm
can easily be converted into one in 6

4 at 180 bpm by doubling all notes’
durations, as shown in Fig. 2.9.12

= 90

43

46
= 180

Figure 2.9: The redundancy of classical music notation. Shown are two score
versions of same melody, the beginning of The Inner Light by Jay
Chattaway. Tempo and metric structure are identical, although the
time signatures differ.

Some, like Smith, talk of a special tactus level within the metric hier-
archy as the one to which foot-tapping occurs. Due to man’s physical
constraints, tapping is not necessarily possible at the beat level or even
below, but might also occur more often than once per measure. Accord-
ing to Smith [Smi99, p. 35], tapping usually occurs at the metric level
close to the 600 ms interval. In the dance context, however, this tactus
level should coincide with the beat level, anyway, as a dancer probably
already moves at the pace he would tap to.

An aspect the ‘professional version of tapping’, namely conducting,
brings up is what to consider as the beginning of a rhythmic pattern:
independent from local accentuation, a conductor needs to signal the
performers when a measure starts. In the description of Fig. 2.5, the
positioning of the window specifying one measure within the impulse
series was considered arbitrary. But it appears sensible to let a measure’s
beginning coincide with an impulse on the beat level. Reminiscent of
the downward movement of the conducting movement at a measure’s
beginning, this is called the

DOWNBEAT:Definition:

Downbeat The position on the metric grid’s beat level that starts a measure.

To get a unique representation of a rhythmic pattern, one might choose
the most accented of beat-level impulses, or in the case of ambiguity at
least one of those most accented.

12Possible objections stating that the piece’s implied counting ‘obviously’ demanded
three beats per measure, could be met by changing the time signature from 6

4 to 3
2 .

21

3 Related Work

3.1 Dance Movements as Input 21
3.1.1 Sensing Floors 22
3.1.2 Body-Mounted sensors 22
3.1.3 Spatial Tracking 24
3.1.4 Combined Approaches 25

3.2 Rhythmic Analysis of Music 25
3.2.1 Processing of Symbolic Representations 26
3.2.2 Derivation of Symbolic Representations from

Audio Recordings 33
3.2.3 Processing of Audio Recordings 35

3.3 Intended Contribution 38

There are various ways in which past research can be related to this the-
sis. A multitude of works have dealt with data gathered from a dancing
person, though not with the intent of deriving a representation of the un-
derlying rhythm. Others were concerned with rhythmic structures, but
did not use accelerometers as data source. This chapter is thus divided
into sections dealing with dance-related and with rhythm-related works.
Representatives of approaches have been chosen to give an impression
of the breadth of methodologies that have been applied and could be
useful for this thesis.

3.1 Dance Movements as Input

Among the attempts at using movement as an input device (which,
strictly speaking, even includes using a computer keyboard), this section
looks at such that use dance-like free movements as input and involves
music either as inspiration for the movements or as output somehow

22 3 Related Work

influenced by the input. While the discussion is organized by the type
of sensors used, a comparative study of hardware solutions is beyond
the scope of this thesis: the used accelerometers are externally provided
and thus not subject to improvement. A relevant aspect to look for in
the mentioned works, however, is how the data gathered is interpreted.

3.1.1 Sensing Floors

Several approaches of capturing dance movements involve an array of
sensors on the floor to be danced on. Johnstone et al.’s PodoBoard [Joh91]
consisted of aluminium tiles which, to capture movement, depend on
special shoes to complete electric circuits. Strips instead of tiles were
used by Pinkston et al. [PKM95], who got rid of the shoe requirement
by using force sensors. Paradiso et al.’s Magic Carpet [PHS+00] (begun
1997) used a grid of piezo-electric wires whose capacitance changes
with the force exerted on them, enabling a positional interpretation by
measuring voltage across rows and columns. Further information was
gained through radar sensors that capture the dancer’s upper body.
Optical sensors were used in Litefoot [GF98] by Griffith et al., either
depending on shoes’ reflection of lights in the floor or on shadows cast
among external lighting. Srinivasan et al. [SBQK05] employed pressure
sensors again, but at a density allowing readings to be taken for sub-
areas as small as a toe. Also, their set-up was modular, so it allowed the
combination of various sensor mats to a large one.

Looking at how spatial and pressure resolution as well as response times
were improved over time, allowing evolution from a floor-based percus-
sion system to combinable pressure mats of almost orthopaedic use is
not very interesting in this thesis’ context. As for the relevant processing
of the readings gathered, it turns out that none of the mentioned works
tried to extrapolate rhythm. Either they were not concerned with any
specific use of the technology in the first place (Srinivasan et al.) or
merely used an abstract mapping of positions to instruments, pitches,
etc. (Litefoot, Magic Carpet).

What is to be kept in mind, though, is the notion to concentrate on theFeet could be

good sensor

location

feet as the most expressive part of the body in many types of dances.

3.1.2 Body-Mounted sensors

Just as on the floor, various sets of sensors have been designed to
be worn or mounted on a person’s body. In the MidiDancer project
[CS89], Coniglio measured the flexion of limbs’ joints. Paradiso et al.’s

3.1 Dance Movements as Input 23

DanceShoe [PHBT00], in its latest version, produces readings of 16 differ-
ent parameters, including those of differently tilted accelerometers and
pressure sensors at various positions. Mere accelerometers like intended
for this thesis were used by Feldmeier [Fel02] for a project that focused
on creating auditory feedback from a large group of dancers’ motions
instead of just one.

The Sonic City [MJ03] project, by employing microphones, light sensors
and metal detectors, shows that there is no limit to the complexity of
parameters one may want to include.1 It also shows that the project’s
intent was not limited to capturing a person’s movements (like on a
stage), but also its environment (when strolling downtown) in order to
facilitate the creation of a fitting musical background. Other projects us-
ing a multitude of (wireless) sensors are those of Hromin et al. (CodeBlue
[HCV+03], which focuses on group interaction) and Park et al. [PCS06].
Barry et al. [BGK+04] mapped Motion to Emotion in the context of a
Japanese dance improvisation method. Continually determining mo-
tion’s intensity, direction and continuity using statistical and frequency
analyses over a time window, these were mapped to an “emotion space”
whose current coordinates would then influence visual effects on stage.

The use of accelerometers in combination with the aim of creating music
from dancing raises special interest as to how Paradiso et al. or Feld-
meier evaluated the acceleration data. Paradiso et al. gave “improvisa-
tional dancers a ‘palette’ of action-to-sound rules and relationships” of
varying nature at different stages of their project, using acceleration sen-
sors either as a kind of potentiometer (e.g., correlating a tilt angle with
an instrument’s pitch) or as a binary switch (shock movements causing
individual sounds or playing a drumroll while doing a handstand).

Feldmeier dealt with large numbers of dancers and thus had to find an Use FFT to find

important

frequencies

efficient way of evaluation: he did not send actual acceleration measure-
ments from the sensors, but let them transmit a pulse when a certain
acceleration threshold was exceeded. The numbers of these pulses re-
ceived over various time intervals, as well as these numbers’ change,
are taken as a hint on the dancers’ satisfaction with the current piece,
among other interpretations. Applying the Fast Fourier Transformation
(FFT; see Appendix A.1) to the signal of pulses, the most prominent
frequency was used to determine the played piece’s tempo.2 As the
measure structure of the piece was known, the points in time with most
activity could be analysed over some time. Finding their most probable
re-occurrence relative to the next measure, a drum could be played at
that point.

1See sensorwiki.org for a technical overview or Bongers [Bon00] for a taxonomic
analysis of sensing technologies that could be used in musical applications.

2Actually, the DJ was allowed to set the tempo slightly higher or lower than what was
measured, in order to gradually influence the group’s pace.

sensorwiki.org

24 3 Related Work

The newer multi-sensor projects were rather concerned with technical
aspects of their respective wireless standards (Bluetooth and WLAN3)
than with the question how processing could extend beyond a mere
rule-based approach. Barry et al., in turn, applied various mathematical
transformations to accelerometer data, but only to use probabilistic
models to detect the kinds of movements that could be mapped to
their emotion space. Their work did not deal with rhythm, but if one
were to attempt the detection of ‘classical’ types of rhythms, a look at the
abruptness of movements, for example, may give hints besides rhythmic
structures.

3.1.3 Spatial Tracking

Instead of measuring data where movements take place, others took the
approach of remotely tracking people’s position. Lima et al. [LMB+96]
attached ultrasound emitters on the dancer’s body and used correspond-
ing detectors to continuously derive positions. Koppel [Kop98] ap-
proached this similarly by using a camera to track the relative position
of coloured markers, as done in the film industry for the choreography
of animated actors. In Music via Motion [Ng04], Ng compares successive
video frames without such help, evaluating changes in colour compo-
sition and recognizing facial expressions: reconfiguration of costumes
may lead to changed instrumentation of music, an open mouth may
add a low-pass filter. Dobrian et al. [DB03] tried out various mappings
of body movements to music, based on similarly simple rules. Guedes
[Gue05] shows that the mere summation of brightness changes over
the whole video frame can already be a useful input for determining a
dance performance’s tempo.

The latter work is the only one of those mentioned using a mathemati-Smooth results

before output cal analysis of frequency components to gather high-level information
about the performance instead of converting it into effects. Guedes used
a bank of 150 band-pass filters to determine the brightness changes’
main frequency, as well as its harmonics. This means that for 150 fre-
quency ranges, he filtered the signal to that respective range. Comparing
the resulting signals’ amplitudes, he could see which frequencies had
contributed the most to the original signal. He gives efficiency reasons
for not employing the FFT, pointing out that only a small range of fre-
quencies was actually of interest. Basically, frequency analysis seems a
useful means also for this thesis’ aim. Another aspect to keep in mind

3WLAN is short for Wireless Local Area Network. The two standards have been designed
by the Institute of Electrical and Electronic Engineers and are formally named 802.15.1
(Bluetooth, downloadable from standards.ieee.org/getieee802/802.15.html

and 802.11 (WLAN, downloadable from standards.ieee.org/getieee802/802.

11.html).

standards.ieee.org/getieee802/802.15.html
standards.ieee.org/getieee802/802.11.html
standards.ieee.org/getieee802/802.11.html

3.2 Rhythmic Analysis of Music 25

from Guedes’ work is to have the derived tempo only ‘reluctantly’ react
to changed input, thus yielding a more constant output.

3.1.4 Combined Approaches

Kwon and Gross [KG05] combined body-mounted accelerometers with
visual tracking, aiming to build a system for motion training. Primarily
with martial arts in mind, movements could be recorded as an example
or their proximity to the optimum evaluated. For their system to learn
exemplary movements, they modelled them as probabilistic processes.

As classification of singular movements is not part of this thesis’ scope, Find out how

significant motion

looks on sample

graph

machine learning aspects have to be discarded. Kwon and Gross’ notion
of ‘motion chunks’ (i.e., that singular movements are flanked by periods
of limited activity) is especially useful when dealing with the very con-
trolled and sequential movements of martial arts. It appears prudent
for this thesis to also check arbitrary (dance) movements’ acceleration
graphs for such features.

3.2 Rhythmic Analysis of Music

As could be seen, works concerning dance movements as input greatly Symbolic vs.

recorder musicdiffer in the kinds of sensors used for capturing motion. Depending on
the means, also the kind of data available for analysis differs, ranging
from single impulses for a specific event to quasi-continuous streams of
measurement values. Similarly, music can be represented in two ways:
either as a symbolic description like a score, or as an audio recording.
Digitally, the former is usually stored according to the MIDI standard4,
containing information on when to play which instrument for how long,
at which pitch, etc. Audio recordings physically represent a series of air
pressure readings as captured by a microphone.

Keeping in mind this thesis’ aim of deriving rhythm from acceleration
sensor readings, the derivation of rhythm from microphone recordings
appears the closer-related task. Studying the means others have used for
this should thus prove most helpful. The algorithm finally employed
does include a conversion of accelerometer readings into a symbolic
representation of movements, so for the remaining task of deriving a
rhythm, the methods used for MIDI data could also be of use.

Before looking at specific approaches, it should be noted that in mu-
sic, various properties of notes influence the perceived rhythm. Fig.

4Musical Instruments Digital Interface, specifications can be ordered on www.midi.org/

about-midi/specshome.shtml.

www.midi.org/about-midi/specshome.shtml
www.midi.org/about-midi/specshome.shtml

26 3 Related Work

3.1 shows a simple example of equidistant notes of the same length,
whose grouping stems only from their pitch. A dancer may individu-
ally choose how to express this pattern in his (or her) movements, yet
the physical property of actual signal frequencies changing cannot be
expected to occur in his accelerometer readings. Likewise, changes in
instrumentation or chords’ harmonic composition (Smith [Smi99, p. 22]
lists other possible accents) have a profound effect on a listener, but
have no directly corresponding feature in motion. Consequently, algo-
rithms extracting rhythmic hints also from the dynamics of the “acoustic
carrier” (Smith) have to be examined as to how well they would work
without this possibility.

Figure 3.1: Pitch-induced rhythm. The apparent arrangement of the shown
notes in groups of three is founded merely in their pitch. An al-
gorithm trying to extract rhythmic information by looking at pitch
changes would be successful with an audio recording of this score.
If a dancer moved to this rhythm (or had it in mind), he would
perhaps move more vigorously at each triplet’s start, yet the pitch
information itself would be lost and an algorithm based on that
thus be rendered useless.

The works mentioned are neither necessarily those pioneering their
fields, nor represent the most recent refinement available. They have
been chosen to illustrate the approaches they represent and to explain
the relevant aspects in a way minimizing the number of terms not ex-
plained. For a comprehensive and concise overview, yet without expla-
nations, please refer to Collins [Col04].

3.2.1 Processing of Symbolic Representations

Probabilistic MIDI Quantization

One traditional application of rhythmic analysis is the quantization of
MIDI data. There are keyboards (meaning the piano-like musical in-
strument) that can send MIDI information on how long which key was
pressed to a computer. If this information were typeset as a score with-
out removing all the imprecision induced by the performer, it would be
barely legible. To attain the intended score, accidental pauses have to
be eliminated and notes’ durations corrected. For this, knowledge of
the played piece’s rhythmic structure is helpful: if a note only slightly
(compared with its own duration) extends over the end of a measure, it

3.2 Rhythmic Analysis of Music 27

can be assumed that it should have ended exactly on the border between
the measures. Also, measure bars can only then be inserted, guiding the
score’s reader instead of confronting him with just a sequence of notes.

Cemgil and Kappen [CK03] employed various probabilistic methods
for quantization and tempo tracking built around Bayes’ theorem. In
the given context, this describes the relationship between

• the probability that, given some performance data P, a specific
score S was attempted to be played and

• the probability that, given S, the performance P would result.

The authors assigned so-called prior probabilities for note positions
based on their binary representation’s length, thus generally consid-
ering simple scores more likely. Deviations from the positions of the
score’s notes was assumed to follow a Gaussian distribution. Adding
similar assumptions concerning the tempo and expected deviations,
several real-time algorithms were designed to continually yield what,
given the performance data, they considered the most likely hypothesis
as to which score was probably being played. Due to performance rea-
sons, also these hypotheses were ‘guessed’ using probabilistic methods
instead of doing an exhaustive analytical search.

Besides the use of probabilistic tools allowing the tracing of tempo hy- Remove noise by

determining a

probable impulse

grid

potheses throughout a piece, one noteworthy aspect of this approach is
the declaration of a priori probable note positions. Likewise, in rhythm
detection from accelerometer readings, the detection of impulses might
be helped by expecting them at typical positions within measures.

Determination of Metre using Auto-Correlation

Trying to determine a musical score’s metre, Brown [Bro93] first con-
verted the given piece into a series of low-level samples: to every 5 ms
interval of the piece’s duration, she assigned a sample value propor-
tional to the duration of the note beginning there, zero if none did.

On the resulting signal, she then applied auto-correlation, i.e., looked
for similarities between all pairs of samples of a certain distance (lag) in
time. See Appendix A.2 for a formal definition.

Brown then analysed the most prominent lag times, checking whether
the piece’s ‘official’ metric structure could be derived. The lag time with
the maximal peak was interpreted to indicate the measure length; the
distance between smaller, yet still significantly peaking lag times was
taken as the beat interval. She was successful with most of her tested
scores, though sometimes, the auto-correlation array was maximal for
only half the measure length.

28 3 Related Work

Applying her method to a performance’s MIDI recording instead of
a perfectly timed score, Brown no longer got a correct indication of
the measure length. Already having to ‘spread out’ note onsets into
neighbouring samples (± 10 ms) in order to offset some of the perfor-
mance’s imprecision, the example piece’s measure length of 3 s proved
long enough to add imprecision beyond the 10 ms corrected for.

Despite this, auto-correlation generally is a method worth trying out toDerive measure

length and beat

interval using

auto-correlation

extract rhythmic information. Assuming that imprecise performances’
timing information can be blurred to an extent that still enables the
distinction between peaks in the graph resulting from auto-correlation,
those can provide information on both beat interval and measure length,
vital properties of any rhythm.

Rule-Based Downbeat Induction

Besides tempo and metre, another property of rhythm researchers set
out to extract was the downbeat5. For music, Woodrow [Woo51, p. 1233]
notes that intensity and duration both favour a beat’s perceived position
as the first in a series.

Eck [Eck01] experimentally compared several rule-based approaches
as to how well they identified those positions on the metric grid as the
downbeat that human listeners’ intuitively tapped to. The generalized
detection algorithm assumed the metric hierarchy to be known and
could thus simply check all metric levels at all possible offsets as to
whether they were likely to be tapped to. Fig. 3.2 shows the candidate
series, or clocks, as Eck calls them.

Each clock gets assigned a score according to the rule used, the highest-
scoring clock being output as that indicating the downbeat. All rules
computed their score as a function of the number of times that the given
clock coincided with accented onsets, unaccented onsets and rests. For
example, one rule computed a negatively weighted sum of the latter
two. Another normalized the number of accented onsets by multiplying
it with the clock’s period as to not per se favour the fastest clock, which
naturally coincides with the most such onsets. This rule was also the
one that in most cases proved to be closest to human perception.

Although in this thesis’ case, metric hierarchies are not known a pri-Compare impulse

series’ collective

accentuation

ori, the idea to look at candidate series of impulses to find the most
dominant one deserves consideration.

5Some authors use the term beat induction for tempo induction. Here, the former always
includes the induction of phase information, i.e., the actual position of beats in
addition to their interval.

3.2 Rhythmic Analysis of Music 29

Figure 3.2: Candidate clocks for the downbeat. Given the metric hierarchy
shown at the bottom, human listeners’ tapping is likely to occur
according to one of the series of points in time shown above.

Analyses of Inter-Onset Intervals

A popular method of inferring metric information from symbolic se-
quences of impulses is to analyse them for frequently intervals between
them. The idea behind this is that intervals so fundamental as the beat
interval or the measure length are to be found quite often when arbitrar-
ily collecting all intervals. In the case of rhythmic analysis of music, the
onsets of sounds are most relevant, so research papers usually talk of
inter-onset intervals (IOIs). Thus, a statistical analysis of the IOIs of a
series of onsets could give an indication of that sequence’s beat interval
and measure length.

Dixon [Dix01] clustered the IOIs, calculating weights for each cluster,
which would then become the basis of a tempo hypothesis. The weight-
ing was done in a way that enabled pairs of clusters to support each
other one in case one’s average interval was approximately an integer
multiple of the other’s. The tempo hypotheses were used to create
so-called agents that tried to predict future onsets and were ranked
according to their success in doing so.

Another way of summarizing occurrences of numbers is to employ
a histogram. Seppänen [Sep01] used one for IOIs and consequently
called it IOI histogram. Jensen and Andersen [JA03] chose the term beat
probability vector, hinting on its intended interpretation.

Basically, the histogram is set up by

30 3 Related Work

• choosing a range of intervals one is interested in, e.g., from zero
up to a value comfortably exceeding the expected measure length,
• dividing that range into sub-ranges (buckets) of a ‘width’ chosen

according to the intended precision,
• initializing a counter for each of these sub-ranges,
• iterating through all pairs of onsets (or those with a magnitude

beyond some threshold) and
• for each such pair incrementing the counter of the sub-range that

the pair’s IOI belongs to.

Formally, given an n-tuple of onset times t0, . . . , tn, a maximal expected
interval rmax and a desired precision of m sub-ranges, the latter are

ri = [
rmax

i
− rmax

m
,

rmax

i
) ∀i ∈ {1, . . . , m}

and the m histogram counters reach the values

Hi = |{t′ − t ∈ ri|t, t′ ∈ T ∧ t < t′}| ∀i ∈ {1, . . . , m}.

Fig. 3.3 shows the formation of an IOI histogram under ideal condi-
tions, given a sequence of equidistant onsets. It can be seen that this
distance between neighbouring onsets stands out in the histogram as
the first and highest peak, multiples of this distance being represented
by smaller peaks. The larger multiples they represent, the smaller the
peaks become.

In the setting of a complex musical score, onsets are anything but
equidistant, but still likely to occur on exact positions of the underlying
metric grid. Fig. 3.4 shows the effect this can have on the histogram:
the peaks are no longer monotonous and the first is not the highest. In
the setting of a musical performance, not even the metric grid can be
assumed to be hit exactly, resulting in less clearly defined peaks.

In this setting, Seppänen tried to find the interval of the most detailed
level of the metric grid, what he calls the tatum period, in real-time. In
a sense, this period should be the greatest common divisor (GCD) of
all other periods, so he computes a weighted GCD of histogram values.
To find the ‘current’ tatum period, he factored in previous results as to
gain consistency: for every onset, a histogram of the past few seconds
was computed and, in a non-linear combination, combined with the
previous step’s resulting histogram. The factors were chosen so that the
old histogram receives the smaller a weight, the older it is.

Attempting to counter errors in the context of onsets imprecisely de-
tected in an audio recording, Jensen and Andersen built their IOI his-
togram by filling not only one of its counters, or buckets, per IOI, but also
neighbouring buckets to a lesser degree. Altogether, each IOI added a

3.2 Rhythmic Analysis of Music 31

5

Figure 3.3: Idealized formation of an IOI histogram. On the top, onsets are
depicted as vertical markings on an horizontal time axis. Below,
all the mutual intervals (IOIs) between these onsets are shown as
arrow bars whose ends are positioned exactly below their respective
onsets. The bars are grouped and shaded according to their length.
Counting the IOIs for each length and assigning the count to the
buckets indicated by the tick marks at the very bottom yields the
histogram: the shortest IOI occurred most often, namely six times.

Gaussian shape6 to the histogram: its width mirrored the IOI’s uncer-
tainty, derived from the temporal uncertainty of its constituent onsets.
The Gaussian’s height, i.e., the value added to the bucket representing
the most probable IOI, was derived from the constituent onsets’ magni-
tudes. The latter, in turn, stemmed from various frequency-dependent
properties of the onset in question.

Especially with Seppänen’s smoothing notion of an histogram trajectory, Try histogram of

weighted

movement IIIs

IOI histograms seem to be suited to find the interval of at least one level
of the metric hierarchy. In the accelerometer case, is appears helpful
to copy Jensen and Andersen’s idea to not merely count inter-impulse
intervals (to keep the question open which point in time to assign to
impulses), but to assign weights to them and blur an III’s contribution
to the histogram according to its uncertainty.

6A bell-like shape resembling the Gaussian probability distribution.

32 3 Related Work

5

Figure 3.4: Formation of an IOI histogram from a musical score. As in Fig. 3.3,
a sequence of onsets is shown, followed by representations of their
IOIs as well as the resulting IOI histogram.

Wavelet Transformation

Smith [Smi99] applied the (short-time) wavelet transformation to MIDI
recordings. Like the Fourier transformation, it can be used to produce a
signal’s spectrogram, a kind of spectral map that shows the signal’s local
frequency composition in small intervals. Due to its high resolution in
both time and frequency, it yields graphical representations to which
Smith then applies special image-processing methods. These extract
diagrams that, to his trained eyes, convey much information on the
underlying rhythmic structures (see Fig. 3.5 for an example).

His approach, however, is only partly suited for this thesis, as the record-Find frequency

trajectories in

spectrograms

ings are considered as a whole. The application of wavelets as such to
do a Fourier-like frequency analysis is certainly transferrable to a real-
time7 setting, but Smith’s processing of spectrograms is perhaps not.
Especially not to the accelerometer case, where sudden changes and

7In the literature, also the term causal is used for algorithms that only require informa-
tion up to a point at which to, e.g., a tempo is to be determined. Such that require
knowledge of the future as well are called non-causal.

3.2 Rhythmic Analysis of Music 33

 0

 2

 4

 6

 8

 10

 0 10 20 30 40

])z
H(dl[yc ne uqer f

time [s]

Figure 3.5: Rhythmic analysis using wavelet transformation. Smith, from
whose thesis [Smi99] the above graph is adapted, used this method
to analyse the frequencies across musical pieces. From the analysis,
he used image processing techniques to extract candidates for the
tactus (thin red lines and dots). From those, further processing led
to a final estimate of the tactus trajectory (graphed as thick blue
line).

imprecision compared to MIDI recordings would make the extraction
of subtle lines prone to noise, giving an automatically interpreting algo-
rithm a hard time yielding reliable results.

3.2.2 Derivation of Symbolic Representations from
Audio Recordings

To process a symbolic representation like onset times as described above,
they first have to be detected in the audio recording. This is usually
done by filtering the audio signal for specific properties, looking for
local maxima or otherwise distinguished features.

As mentioned before, Jensen and Andersen used frequency-dependent
properties of small blocks of the recording to assign magnitudes to on-
sets. Among those properties were absolute and relative high-frequency
content and the rate at which frequency composition was changing.
Those same properties, determined by Fourier analyses, were used to
detect onsets in the first place.

To find onsets for detecting the tatum period, Seppänen filtered the
audio signal into several frequency components. In each of these, he
looked for instances of rapid increases in volume, which he declared as
onsets of a magnitude equalling the measured volume increase. These
per-frequency-range onsets were then clustered across all ranges accord-
ing to their onset times. The resulting clustered onsets were assigned

34 3 Related Work

the onset times’ median and their sum of magnitudes as aggregated
properties.

How increases of volume could be found deserves some attention, as
one cannot simply look for local maxima in the signal’s derivative. Con-
sidering that an audio signal vibrates between positive and negative
values up to several thousand times per second, such short-lived pseudo
onsets could be found all the time. Instead, an amplitude envelope like
shown in Fig. 3.6 must be computed.

Figure 3.6: An continuous signal’s amplitude envelope. The red graph shows
a continuous signal, now interpreted as as an audio recording of
an amplitude-modulated base frequency of 500 Hz. Changes in
volume as perceived by a listener cannot be detected by looking for
steep upward slopes of this graph, as it features them 500 times a
second. Connecting the local maxima and local minima and thus
abstracting from the carrier frequency waves, one gets a shape (red)
whose height does indicate volume over time and whose slopes
could thus be taken as indicators of volume change. In a real sound
setting, though, amplitudes would usually vary far slower than
shown in this simplification. Furthermore, in signal processing one
would not connect peaks, but first rectify the signal (i.e., negating
negative values in order not to deal with positive and negative
sides) and smoothing it by convolution with a Hann window. About
convolution and the Hann windowing function, see Appendix A.1.

If A is the amplitude envelope’s array, Seppänen then searched the
envelope for positions i where the quotient Ai+1−Ai

Ai
exceeded a specified

threshold.

For accelerometer signals, approaches evaluating frequency contentDetect movements

by looking for

acceleration

change

appear not suited: in the audio case they make sense by highlighting
changes in timbre or cadence, but these have no obvious counterpart
in human movement. On the other hand, the computation of an en-
velope might be omitted due to the same lack of a carrier frequency.
The notion of extracting onsets by searching for at sudden increases in
volume could then be directly copied as a search for sudden increases
in acceleration.

3.2 Rhythmic Analysis of Music 35

3.2.3 Processing of Audio Recordings

One possibility of finding patterns in sampled audio data is not trying
to convert it into a symbolic representation in the first place, but doing
the analysis directly on the level of the individual samples as recorded
by the microphone. In essence, this is what Guedes did with his data
on the “quantity of motion” between video frames. Besides filtering
out all potentially interesting frequencies using band-pass filters and
then surveying each frequency band’s ‘energy’, there are various other
possibilities.

Comb Filters

Just as Brown transformed a musical score into a signal which she could
then auto-correlate to find prominent lag times, audio recordings them-
selves can be analysed for repeating patterns. Besides auto-correlation,
one method is to apply comb filters. Put plainly, they tell whether shifted
echoes of a signal strengthen or dampen it. Testing various shifting
intervals, that with the strongest emphasising effect can be considered
the most fundamental. A formalization is given in Appendix A.

Scheirer [Sch98] used comb-filters to find an audio recording’s tempo.
He divided the recorded signal into frequency bands to approximate
a separate analysis of the musical instruments heard on the recording.
Then he computed the derivative of each band’s amplitude envelope
(discarding negative values) and (independently, not successively) ap-
plied comb filters to it, one for every candidate tempo to be tested.

Now having filtered signals for each combination of frequency band and
comb filter, these signals’ energy (the sum of the squared sample values)
was computed. Summing energies across frequency bands according
to the comb filter used then yielded a score for all those filters. The
‘echo interval’ of the comb filter with the highest score could then be
considered the audio recording’s beat interval.

In a sense, this method goes almost all the way to deriving a symbolic
representation, but stops just before and instead applies the said comb
filter to find regularities in the signal.

As mentioned in Section 3.2.2, an accelerometer’s signal at sampling Comb filters can

test intervals for

being the beat

interval

rates as low as those used for this thesis should not require enveloping;
a comb filter could thus immediately be applied.

36 3 Related Work

Auto-Correlation

Brown created a kind of amplitude signal from her given series of
note onsets to then auto-correlate it. Cuadra et al. [CMS01] used auto-
correlation for pitch detection on raw audio signals. A combination of
two approaches would be to compute auto-correlation on the amplitude
envelope of the audio signal itself. This should be oblivious to tonal
vibrations and emphasize correlations on a rhythmic scale.

Longer-term periodicities should be ignored by setting the maximal lag
accordingly, thereby also increasing efficiency. To do this in a real-time
setting, it would be required to analyse windows of samples over the
past few seconds, thus limiting the maximal lag time, anyway. If large
deviations from one such window to the next can be excluded, local
searches around previously dominant lag times can be employed, as
done by Cuadra et al.

Gouyon and Herrera [GH03] propose a higher-level auto-correlationUse high-level

auto-correlation to

determine metric

quotient

to derive information on a piece’s metric structure. Assuming that the
beat interval is already known, they divide the recording into segments
centered around the beat and do an auto-correlation on properties of
these segments. Considering that most (Western) rhythms’ measure
level can be subdivided into two or three units of the next finer level,
the authors limit auto-correlation to only consider a lag of up to eight.
High values for lags two, four and eight are interpreted as hinting on a
division of the measure level in two, high values for lags three and six
as hinting on a division in three.

Both the low- and the high-level auto-correlation approach do not make
use of audio-specific properties and should thus be applicable to ac-
celerometer data, as well.

Fourier and Wavelet Transformations

Before concentrating on wavelets, as described in Section 3.2.1, Smith
discusses the suitability of the Fourier transformation for the derivation
of metric information from MIDI recordings. As he actually worked
with the audio representation of MIDI recordings, his efforts were
hampered by artifacts introduced by windowing and complex carrier-
frequency patterns.

In general, both kinds of analyses are certainly applicable to both audio
recordings and accelerometer data. They would provide strong hints on
the signal’s dominant frequency. In addition to auto-correlation, Cuadra
et al. also present a supplemented version of the Fourier transformation,
computing what they call the Harmonic Product Spectrum. As shown in
Fig. 3.7, downsampling the frequency-domain signal by integer values

3.2 Rhythmic Analysis of Music 37

and adding the resulting smaller arrays at the main array’s beginning
yields a clearer indication of the main frequency.

Figure 3.7: Computation of an Harmonic Product Spectrum (HPS). To com-
pute a signal’s HPS, its frequency spectrum is computed and then
downsampled by integer factors. Instead of showing the spectrum
resampled, this diagram merely shows it squeezed to make the
shorter copies recognisable as such. The original spectrum is shown
on the top, versions squeezed by the factors two, three and four are
shown below. The bar that stretches across all of them indicates
the position of the respective signal’s main frequency and shows
that its position also features bulges in the smaller copies. Adding
all copies up, this frequency would thus be emphasized even more
by the help of its multiples. Those multiples are part of the signal
because a regular series of impulses does not only feature intervals
between successive impulses, but also such with a multiple of this
interval’s length.

But, concerning the central intent of this thesis of deriving a representa- Consider

frequency analyses

complementary to

impulse analyses

tion of the underlying rhythm, raw signal analyses alone like the Fourier
or wavelet transformations can only take a complementary role. Even if
they were used to derive both measure length and beat interval, the in-
ference of the rhythm’s constituent conceptual impulses (in their relative
position and accentuation) appears hardly feasible. Results of frequency
analyses may, however, contribute to reliability and short-term stability
of any output derived using impulse-oriented methods.

38 3 Related Work

3.3 Intended Contribution

There are two main aspects in which this thesis goes beyond the relatedContribution:

application of

rhythm extraction

to accelerometer

data

works presented. The first is the application of rhythmic extraction to
motion data. Among those dealing with dance inputs, only Guedes was
interested in the extraction of ‘defensible’ rhythmic information, instead
deriving representations that seemed fit for their current (mostly artistic)
intent.

The other projects dealing with the extraction of tempo and metric infor-
mation did not deal with motion data at all. The added difficulty posed
by the accelerometer setting stems from the absence of harmonic or
other tonal hints, also from the imprecision and complexity of even pro-
fessional dancers’ movements compared with the (professional) playing
of instruments. Even bare finger tapping by a layman by far lacks the
precision that can be expected from a musical recording.

The second aspect is the transformation into a representation of rhythmContribution:

extracting whole

rhythmic patterns

itself. Most of the mentioned works concentrate on finding the tempo
or limit other output to low-level information like, in Guedes’ case, the
tempo’s harmonics. Smith’s rhythmic diagrams, in turn, do contain a
wealth of information, but do not fit de Jong’s requirements for real-time
applicability and the required post-processing.

Especially considering the aimed-at representation of rhythm as a pat-
tern of impulses, it appears fitting to also determine such a rhythm’s
structural parameters, measure length and beat interval, by a method
that deals with individual impulses. The algorithms described in Chap-
ter 4 will thus be modelled around the notion of III histograms, but
complemented by Fourier or auto-correlation analyses in order not to
rely on the impulse detection algorithm too much.

39

4 Algorithmic Design

4.1 Movement Detection 40

4.1.1 Simple Movements 40

4.1.2 Dance Movements 43

4.1.3 Criteria for Movements 46

4.1.4 Properties of Movements 47

4.1.5 Separating Directions of Acceleration 49

4.1.6 Combining Axes of Measurement 51

4.1.7 Summary . 51

4.2 Rhythmic Analysis . 53

4.2.1 Overview . 54

4.2.2 Determining the Metric Structure 56

4.2.3 Deriving the Rhythm 62

4.2.4 Summary . 67

Among the required steps listed in Section 1.2, the acquisition of data
and the derived rhythm’s graphical output arouse purely implementa-
tional questions and are thus deferred to Chapter 5, Implementation. This
one focuses on the analysis of a certain time window’s accelerometer
data with respect to rhythmic properties.

Remembering that rhythm means a “recurring series of accentuations of
and intervals between impulses”, the task at hand may be taken on by

• either looking for recurrences in general and then for common
impulse structures among these,

• or looking for impulses and trying to find recurring patterns in
their sequence.

40 4 Algorithmic Design

Keeping in mind the approaches described in Chapter 3, the former
could start by applying standard scientific methods like the Fourier or
autocorrelation transformations to find out which frequencies domi-
nate the sensor data and hopefully get an indication of the underlying
measure length. Then, however, just like the latter option starts, indi-
vidual impulses would have to be identified to additionally determine
the rhythm’s internal structure.

The next section will thus treat the important question of how relevant
impulses can be derived from the accelerometer data. Later, the actual
rhythmic analysis is dealt with, both with and without using results of
raw-data frequency analyses.

4.1 Movement Detection

Assuming that whenever the acceleration sensors produce a new read-
ing, they immediately supply this as input to the algorithm for the
detection of movements, the latter can keep a history of those sensor
samples that arrived within a certain time window in the past, or keep
track of quintessential information about them.

4.1.1 Simple Movements

To find out what information to keep, a sensible thing to do is exem-
plarily analysing the graph of the acceleration values reported in the
course of simple (e.g., up-and-down) movements of the sensor. In the
following, such observations are made on only one axis of only one of
the sensors, a ‘sample’ thus being a scalar value until further notice. To
maximize the sensor’s response, it is moved along this measured axis
as closely as possible. Once conclusions are drawn, they have to be
reconsidered to also cover arbitrary movements.

Fig. 4.1 shows the graph corresponding to a mere drop of the sensor. Its
shape of two oppositely-signed successive bulges seems to make sense:
initially at rest (zero acceleration), the sensor first accelerates and then
decelerates to finally come to rest, again. As could be expected, the time
at which the attained velocity is maximal (the zero-crossing just before
deceleration starts) is located near the middle of the movement.

A down-and-up movement is shown in Fig. 4.2: there are now three
bulges. Again, this is not surprising, considering what a single down-
ward and a single upward movement would have looked like. If they,

4.1 Movement Detection 41

-2

 0

 2

 1

ac
ce

le
ra

ti
on

 [g
]

time [s]

Figure 4.1: Acceleration graph of a sudden drop of the sensor.

as the case with the graphed movement, occur in immediate succes-
sion, the downward deceleration merges with the upward acceleration,
which, of course, have the same direction.

-2

 0

 2

 1

ac
ce

le
ra

ti
on

 [g
]

time [s]

Figure 4.2: Acceleration graph of a down-and-up movement.

A sequence of continuous up-and-down movements will thus yield the
alternation of positive and negative bulges seen in Fig. 4.3.

-2

 0

 2

 1 2 3

ac
ce

le
ra

ti
on

 [g
]

time [s]

Figure 4.3: Acceleration graph of a continuous up-and-down movement.

42 4 Algorithmic Design

Of course, the precise shape of the bulges may deviate from the sine-likeDetect bulges in

sensor graphs appearance pictured, but the alternation of bulges as such is a common
and explainable feature. They appear a useful feature to look for when
attempting to detect singular movements. It should be kept in mind,
though, that they occur in groups, so ways must be found not to count
all of them separately.

Varying Accentuation

Moving the sensors in a waltz fashion, i.e., moving in a constant inter-
val and accented according to the sequence strong–weak–weak, results
in a graph (Fig. 4.4) that indeed displays this accentuation. Fig. 4.5
also shows the accentuation, but as the sensor has been kept at rest
in-between movements, the resulting graph is not reminiscent of a sine,
but a mere succession of triple-bulge groups of the ‘down-and-up’ kind
of Fig. 4.2.

-2

 0

 2

 1 2 3 4 5

ac
ce

le
ra

ti
on

 [g
]

time [s]

Figure 4.4: Acceleration graph of a continuous waltz-like movement of one
sensor.

-2

 0

 2

 1 2 3 4 5

ac
ce

le
ra

ti
on

 [g
]

time [s]

Figure 4.5: Acceleration graph of a staccato waltz-like movement of one sensor.

Concerning the magnitude attribute of detected bulges, their maximal

4.1 Movement Detection 43

amplitude or the ‘area’ covered appear to be suitable quantities to eval-
uate.

The difference between these two waltzes shows that one cannot simply Consider only

pairs of bulgesassume an n:1-relationship between graph bulges and ‘movements with
rhythmic significance’. From the study of simple movements, it can
be seen that a singular motion is characterized by a group of two or
three bulges. The third bulge occurs in case the motion is stopped,
otherwise the graph transitions into the next motion’s group of bulges.
One apparent feature of the third bulge is that it has no successor on
the other side of the zero line. So when detecting bulges, one might
only consider pairs of them, discarding trailing ones by interpreting
their lack of a partner as a sign of being a mere aftershock of the main
movement.

4.1.2 Dance Movements

Disproportionately more complex patterns can arise when looking at
data that is not measured at a hand moving in a precisely choreographed
way, but at limbs’ movements as they occur even in a standardized
dance. Fig. 4.6 graphs the sideways acceleration of a Cha Cha dancer’s
right and left legs’ shins. The larger scale chosen shows the repetitive-
ness as well as the groups of two movements being repeated. On the
left leg, the sensor apparently had been affixed with some more slack,
resulting in the addition of a vibration to the bulges resembling the
steps.

A different dance, Samba, is to exemplify the differences between the
measurements taken from one sensor’s two axes: Fig. 4.7 shows the data
from the dancer’s left leg’s shin sideways and along the leg. The latter’s
graph features clearer bulges because Samba steps emphasize the for-
ward or backward directions. Sideways movement is less pronounced,
leaving the other graph with a quite noisy appearance.

Especially in more ‘chaotic’ dances, it becomes rather futile to attempt an
alignment of the sensor axes with the conceptual ‘main axes’ of a dance’s
movements. Fig. 4.8 shows all sensors’ data from all axes of such a dance.
The dancer’s movements affect the sensors’ axes simultaneously, which
in addition to the more ‘liberal’ style of dance itself leads to a lack of
clear series of bulges. A periodicity, especially one in line with the
underlying music’s beat, can also hardly be seen.

The question results how to proceed under these circumstances. Fre-
quency analyses may detect regularities in seemingly noisy data, but
the representation as a rhythm that this thesis aims at cannot be derived

44 4 Algorithmic Design

-2

 0

 2

 1 3 5 7 9 11 13 15 17

ac
ce

le
ra

ti
on

 [g
]

time [s]

-2

 0

 2

 1 3 5 7 9 11 13 15 17

ac
ce

le
ra

ti
on

 [g
]

time [s]

Figure 4.6: Acceleration graphs of the shins (that of the right leg is the top one)
of a dancer moving to a Cha Cha rhythm. The main movements
are not equidistant because the dancer alternated step sequences
to the left and to the right, so that for some seconds the right leg
moved first, for the next few the left, etc. The left shin’s sensor (bot-
tom graph) was apparently not fixed as tightly as that of the right,
leading to vibrations in addition to the step movements themselves.

-2

 0

 2

 1 2 3 4 5 6 7 8

ac
ce

le
ra

ti
on

 [g
]

time [s]

-2

 0

 2

 1 2 3 4 5 6 7 8

ac
ce

le
ra

ti
on

 [g
]

time [s]

Figure 4.7: Acceleration graphs of sideways (top graph) and longitudinal
(bottom graph) leg movement in a Samba dance. As typical for
the dancer’s movement, the longitudinal movement is more pro-
nounced and thus results in a graph with clearer structures.

4.1 Movement Detection 45

-2 0 2

accel. [g]

-2 0 2

accel. [g]

-2 0 2

accel. [g]

-2 0 2

accel. [g]

-2 0 2

accel. [g]

-2 0 2

accel. [g]

-2 0 2

5
6

7
8

9

accel. [g]

ti
m

e
[m

ea
su

re
s]

-2 0 2

5
6

7
8

9

accel. [g]

ti
m

e
[m

ea
su

re
s]

Fi
gu

re
4.

8:
A

cc
el

er
at

io
n

gr
ap

hs
of

al
l

lim
bs

of
a

d
an

ce
r

m
ov

in
g

to
th

e
pi

ec
e

R
hy

th
m

Is
A

D
an

ce
r

(b
y

Sn
ap

,1
99

2)
.

Fr
om

to
p

to
bo

tt
om

,t
he

gr
ap

hs
be

lo
ng

to
th

e
ri

gh
tf

or
ea

rm
,l

ef
tf

or
ea

rm
,r

ig
ht

le
g

an
d

le
ft

le
g.

T
he

bl
ue

lin
es

re
pr

es
en

tt
he

lo
ng

it
ud

in
al

ax
is

,t
he

re
d

on
es

th
e

si
d

ew
ay

s
on

e.
T

he
ti

m
e

ax
is

is
su

bd
iv

id
ed

in
to

th
e

un
d

er
ly

in
g

m
us

ic
’s

m
ea

su
re

s:
th

e
la

be
ls

in
d

ic
at

e
th

e
nu

m
be

r
of

m
ea

su
re

s
co

m
pl

et
ed

at
th

at
po

si
tio

n,
th

e
sm

al
le

r
tic

ks
its

be
at

.T
he

te
m

po
of

12
4.

3
bp

m
m

ak
es

ea
ch

m
ea

su
re

ab
ou

t3
.9

s
lo

ng
.A

tt
he

be
gi

nn
in

g
of

th
e

ni
nt

h
m

ea
su

re
(a

tl
ab

el
“8

”)
,t

he
pi

ec
e’

s
vo

ca
la

nd
ba

se
-d

ru
m

pa
rt

be
gi

ns
,r

es
ul

ti
ng

in
in

cr
ea

se
d

ac
ti

vi
ty

of
th

e
le

gs
(b

ot
to

m
gr

ap
hs

).
Pe

rh
ap

s
th

e
da

nc
er

an
ti

ci
pa

te
d

th
is

,w
hi

ch
co

ul
d

ex
pl

ai
n

th
e

ch
an

ge
in

hi
s

ar
m

s’
m

ov
em

en
tp

at
te

rn
at

th
e

en
d

of
m

ea
su

re
si

x.

46 4 Algorithmic Design

from a mere such analysis. Movements have to be detected, also in noisy
data.

Experiments with variations in the positioning of the sensors affirm
that this may be a parameter useful for optimization: in case the dance
is very ‘vivid’, the sensors may be placed where movements are low-
frequent, e.g., at the head. In how far such an optimization is possible
in an application scenario like one of those proposed by de Jong for the
Sensor Music Project, is outside the scope of this thesis. The algorithm
presented will work on a best-effort basis, trying to also in noisy data
detect the, as put above, ‘movements of rhythmic significance’.

The latter term may prove hard to define when not dealing with move-Try mastering

complexity with

heuristics

ments that result from the adherence to rules like “Cleanly move the
sensor down and up again for each perceived impulse!”. Accounting for
all differences in dances, personal styles and sensor positions appears
hardly possible. Theoretically, a movement should be called ‘important’
simply when its consideration benefits the ensuing rhythmic analysis.
Practically, certain heuristic rules will have to suffice that guess this
importance.

4.1.3 Criteria for Movements

The shown graphs seem to indicate that despite the lack of an n:1-
relationship between bulges and movements, the former are the most
prominent indicator of the latter. Assuming that at rest, the signal is at
zero, a bulge can be defined as the part of the graph between successive
zero-crossings. If that is not the case, the signal can be offset by subtract-
ing the average of a number of recent sample values. If this number is
chosen greater than the interval expected for movements to be detected,
the sample values will oscillate around zero without seriously spoiling
the signal’s frequency composition or individual bulges.

But, as could also be seen in the acceleration graphs of actual dances,
there are far too many zero-crossings and thus too many bulges for them
to all be important indicators of the intended rhythmic structure. Hence,
criteria have to be determined for such a bulge to be relevant.

Various phenomena may add noise to the sensor signal: involuntaryJudge relevance by

strength, duration

and context

twitches, interference of various limbs’ and other body parts’ move-
ments or the influence of Earth’s gravity. To distinguish important
movements from those, it seems that the bulges’ size should be consid-
ered, three prudent criteria being
• area,
• absolute amplitude and
• amplitude relative to the current level of activity.

4.1 Movement Detection 47

The “level of activity” can be the average or median of recent sensor
samples’ absolute values, the relative amplitude the quotient of absolute
amplitude divided by said activity level. Formally, given s1, . . . , sn as
the n most recent samples, a bulge of absolute magnitude m has the
following relative amplitudes:

mrel average = m · n
∑n

i=1 |si|

mrel median = m · 1
median({|s1|, . . . , |sn|})

Such criteria will make minor movements count during very static peri-
ods, but omit them in case so much is going on that any sensible demand
on a mere absolute amplitude would yield ‘important’ movements all
the time.

Determination of a bulge’s area, i.e., integration of the signal, will briefly
be discussed in the next section.

Another standard approach to feature detection is the differentiation of
the given signal, as suggested in Section 3.2.2 when discussing ways
to extract symbolic representations from audio recordings. The bulges’
peaks, for example, could be found by looking for zero crossings in the
signal’s first derivative. Their inclination, on the other hand, is maximal
where that derivative has a local maximum. As the numerous steep
inclinations in the more dynamic parts of the graphs shown in Fig. 4.8
show, differences of successive sample values carry little meaning. A
low-pass filter would have to be applied and differences considered
between values that are several samples apart.

4.1.4 Properties of Movements

In order to supply analytic algorithms with information on recent major
movements, they have to be assigned certain properties: they take place
over a certain period of and in time and have a magnitude. Remember-
ing the comments to the definition of impulse, they can alternatively be
attributed

• a point in time,

• a magnitude and

• a spread value mirroring the first attribute’s imprecision.

48 4 Algorithmic Design

Point in Time

The first question arising when ‘time-stamping’ a movement is whetherMovements’

timing is

ambiguous

to consider its beginning, its end, or some time in-between as its defining
moment. Thinking of a drummer or someone clapping his hands, the
movement’s end obviously is its climax, yet in the context of a ballroom
dance, it seems far from clear that the most climatic sounds played by
the orchestra should always coincide with the ends of swings and turns.
Then again, for the extraction of rhythmic patterns their constituent
impulses’ absolute point in time is not important, anyway, so with the
fear of imprecision caused by artefacts at bulges’ rims and in the hope
that such statistically cancel each other out in-between, some prominent
feature in a movement’s ‘interior’ should be used.

Looking at one pair of opposite bulges as deemed typical of an impor-
tant movement, the zero-crossing between the two appears like a natural
temporal anchor, yielding the required point in time. However, graphs
like that of Fig. 4.2 show that the numerically positive and negative
bulges characteristically differ, at least in the case of an up-and-down
movement performed with a hand. Instead of amalgamating the two
bulges to one movement, it may thus be preferable to record and anal-
yse positive and negative bulges separately. In that case, either the
respective bulge’s maximum or the middle between its two flanking
zero-crossings are candidate points in time. Considering a movement’s
point of maximum acceleration as more defining than its mere temporal
centre, the former should be chosen.

Magnitude

Naturally fitting the choice of the maximal amplitude’s point in timeAspects of motion

intensity would be to use that very amplitude value as the movement’s magni-
tude. Yet tests showed a movement’s intended accentuation to also be
mirrored in its duration, and the sensor data’s integral (the bulge’s area)
turned out to be suited better for rhythmic analysis. The prime benefit
seems to be that spikes in the data graph, caused by a collision of the
sensor or the moving limb it is attached to, would count less.

Remembering that a bulge’s relative amplitude (amplitude divided by
activity level) was previously named as indicative of its significance
when deciding whether or not to consider that bulge at all, it appears an-
other logical choice as embodiment of a movement’s magnitude. How-
ever, in the case of hardly moving sensors, small bulges would get
assigned a very large amplitude, as the divisor approaches zero. In
subsequent sections, a sensor’s bulges’ combined magnitude will play a
role, so in order not to require a separate count of magnitudes without
relative factors, they are left out completely, for now.

4.1 Movement Detection 49

This discussion brings up the question why, if a bulge’s area is a useful
indicator of magnitude, it should not also have an influence on the
decision whether to consider it at all. It would benefit long, but shallow,
bulges. These are often due to changes in the sensors’ orientation in
relation to Earth’s gravity field, as experience shows. They are even
‘artificially produced’ by the previously mentioned offsetting technique
that is required for the detection of bulges, so area should only be an
additional criterion.

Spread

Taking a movement’s point of maximum acceleration as its defining Record timing’s

uncertaintymoment, the previous and successive points in time where acceleration
is zero are the natural borders of that movement. The uncertainty in said
choice of ‘defining moment’ thus has to be a function of those two other
points in time, for example their difference. How exactly this function
should look like depends on how it will be used later on, but as a rule
of thumb, its result should usually remain clearly below any interval
expected to be met between movements in the analysis.

4.1.5 Separating Directions of Acceleration

In Section 4.1.1, it was noted that singular movements’ acceleration
graphs are characterized by either

• an acceleration and a deceleration bulge, or

• an acceleration, a counter-acceleration and a deceleration bulge.

The consequence was to consider pairs of them as one movement and
to discard bulges with neither counter-acceleration nor deceleration
partners.

The ensuing discussion of movements properties and which features of
bulges use as indicators for those properties, however, only considered
single bulges. On possibility to resolve this apparent mismatch would
be to simply discard all bulges of negative acceleration. But, as the
simple movements’ graphs show, there is no perfect symmetry between
‘positive’ and ‘negative’ bulges. At least when moving the sensor by
hand, acceleration and deceleration do not necessarily mirror each other.
Discussing or testing which side of the graph might generally yield
more useful data makes no sense because acceleration and deceleration
can switch signs anytime, depending on the orientation of the sensor
relative to the movement.

50 4 Algorithmic Design

One way of keeping all bulges’ information is to analyse both sides of
the graph separately, feeding the detection results to rhythmic analy-
sis as if they originated at different sensors. Rhythmic analysis could
additionally be told about these circumstances and improve its output
quality via that knowledge.

A variant of this approach would be to distinguish not by sign of the
bulge, but by the temporal order of the two bulges considered a pair.
On first sight, this would actually be more correct, thinking of cases like
the direction-wise alternating sequence of separate movements shown
in Fig. 4.9: an analysis of the positive and negative bulges on their
respective own would detect an alternation in the length of intervals
between successive bulges. Intuitively, though, the movements would
be called temporally equidistant.

-2

 0

 2

 1 2 3 4 5 6 7

ac
ce

le
ra

ti
on

 [g
]

time [s]

Figure 4.9: Accleration graph of a direction-wise alternating sequence of sep-
arate movements. Computing the intervals between the graphs
positive peaks, they turn out to be varying, as do the negative ones.
To the producer of the movement sequence, in contrast, his move-
ments followed a steady beat, merely alternating in direction.

Should, on the other hand, a bulge ‘erroneously’ occur ahead of a se-Acceleration and

deceleration are

hard to distinguish

quence of actually significant movements, it may change the perceived
ordering of successive pairs: a sequence of signs “+ – + –” would,
prepending a negative bulge, result in “– + – + (–)”, the final bulge
being discarded as it lacks a partner. Classification of bulges as repre-
senting an acceleration or a deceleration is thus risky.

Antedating the resulting algorithm’s final evaluation, ‘false positives’
in the bulge detection are admittedly more common than directionally
alternating staccato movements like those shown in Fig. 4.9 can be
expected to occur in an average dance movement. Thus, the seemingly
more naive sign-oriented approach of recording bulges is preferred.

In retrospect, this also means that relative amplitudes can be counted
separately for positive and negative bulges. Again given s1, . . . , sn as
the recent samples to consider, setting P = {si|1 ≤ i ≤ n ∧ si > 0} (for

4.1 Movement Detection 51

the positive case) yields:

mrel average = m · n
∑s∈P s

mrel median = m · 1
median(P)

.

Another possibility is the merging of both bulges to some common
properties. Then, the zero-crossing would be the prime choice as point
in time and the bulges’ magnitudes could be averaged or the difference
between positive and negative peaks used. The time difference between
those peaks then forms a natural base for the spread value, but could
also be chosen as a function of the time between the start of the first and
the end of the second bulge.

4.1.6 Combining Axes of Measurement

Instead of considering the samples measured by the sensors on a per-
axis basis, they could be combined to one signal, in which then bulge
detection could take place. Combining three dimensions’ sample val-
ues sx, sy and sz, one might derive the physically meaningful value of
absolute acceleration as

accabs =
√

s2
x + s2

y + s2
z .

In this thesis’ setting, however, only that value’s projection into the
plane spanned by the two available axes could be computed.

Considering that movements into the two measured directions may in- Treat axes

separatelydeed differ for rhythmic reasons, is seems prudent to evaluate both axes’
signals separately. A common value may improve detection stability,
primarily in the case of dances in which significant movements can be
expected to occur in any direction at any time.

4.1.7 Summary

The analysis of simple movements’ accelerometer graphs, together with
a look at likely problems when dealing with more complicated data,
makes it appear sensible to, for each sensor axis,

• detect peaks and zero-crossings to derive bulges,

• consider two successive bulges of opposite signs a significant
movement and

52 4 Algorithmic Design

• for rhythmic analysis, output the bulges’ properties in separate
‘output channels’ or, after combining them to one impulse, in a
common channel.

Abstracting, in pseudo-code, from the actual data structures managing
the information on positive and negative bulges, Alg. 1 summarizes
movement detection.

Algorithm 1 Detecting movements from a stream of acceleration mea-
surements

while there is an unread sensor sample do
if any stored bulges have become too old then

delete their information
end if
if current sample value has a different sign than the previous then

store current time as previous bulge’s end
if both signs’ most recent bulges were sufficiently large then

output them as one (or two) impulse(s)
delete all information on both bulges

end if
store the current time as start of a new bulge
if the current sample’s absolute value is ‘large’ and exceeds the
current bulge’s record then

store it as the current bulge’s new maximum amplitude
mark the current bulge as having been of sufficient size

end if
increment the current bulge’s area by the current sample value

end if
store the current sample value as the previous

end while

The mentioned impulse tuple for each detected bulge consists of three
values:
• magnitude = area × peak amplitude
• time stamp = average (starting time, peaking time)
• spread = starting time − ending time

Whether to output positive and negative bulges separately is left as
an option, also in the implementation. When outputting only one im-
pulse per pair of bulges, then the time stamp could rather be chosen
as the bulge’s connecting point in time. The spread might add both
bulges’ extent, the magnitude could have the combined area and added
amplitudes as its factors.

Less than having been reduced to pseudo-code, for the sake of clarity the
above description does not even mention some additional tasks required.
Among those is the management of samples’ ‘histories’ for offsetting

4.2 Rhythmic Analysis 53

the signal and computing the median. The length of these histories is a
parameter discussed when evaluating the algorithms’ effectiveness in
Chapter 6. Similarly undefined are, as of yet,

• the absolute or relative threshold whose exceeding defines a bulge
as “sufficiently large” and

• the time after which to consider a bulge as having become “too
old”.

More than tweaking parameters, the algorithm can be slightly altered
for reasons of efficiency: as the algorithm is to be applied to all available
sensors’ axes, it turns out to be sensible to collect the detected impulses
and only periodically output them for processing. Such aspects, though,
are left for Chapter 5, Implementation. Before, the next section discusses
how the resulting sequence of detected movements can be analysed for
rhythmic patterns.

4.2 Rhythmic Analysis

Before describing the chosen approach, a short summary of the main
ideas collected in Section 3.2 will help motivate it:

1. The context of undoubtedly significant movements may give hints
on the significance of doubtful detections. (Section 3.2.1)

2. Candidate beat intervals can be tested using a comb filter. (Section
3.2.3)

3. Using auto-correlation, a signal’s measure length and beat interval
can be extracted. (Section 3.2.1)

4. Finding equidistant series of strongly accented impulses gives a
selection of important intervals between them and candidates for
the downbeat. (Section 3.2.1)

5. Peaks in histograms of inter-impulse intervals (III) indicate promi-
nent such intervals. (Section 3.2.1)

6. Spectrograms of past data can be analysed for trajectories of main
frequencies. (Section 3.2.1)

7. Given the beat-interval, a high-level auto-correlation can yield the
metric quotient and thus the measure length. (Section 3.2.3)

8. Frequency analyses like the Fourier transformation can be used
to determine the (or validate a differently derived) beat interval.
(Section 3.2.3).

54 4 Algorithmic Design

For this thesis, the creation of III histograms (5.) has been chosen as theCentral notion: III

histograms central approach because they are based on the movement detection
that seems required, anyway, in order to yield a sequence of conceptual
impulses as final result. The indication of beat interval and measure
length that the histograms give are, by definition, to be found in the
sequence of detected movements.

For a similar reason, the detection of not only intervals between pairsFind downbeat via

accentuation of impulses, but of equidistant series (4.) appears a notion helpful for
finding the downbeat.

Frequency analyses (any of 2., 3. and 8.) should be used as a check forAdd frequency

analyses as

backup

the other methods, as they are unimpaired by potential problems in
movement detection.1

Discarding impulses not fitting the assumed metric grid (1.) appears
hard in a setting not as formalized as the keyboard performance of a
musical score. Together with the image processing of spectrograms
(6.) and a number of other ideas presented in Chapter 3, they will be
revisited when discussing possible future work in Section 7.2.

4.2.1 Overview

A first overview of the general pipeline of algorithms to be used forDetect

movements, derive

their structure

rhythmic analysis is shown in Fig. 4.10. On the one hand, movements
are detected in the sensor signal. Considering a time window of a certain
extent, they form a sequence of impulses, the intervals between which
can be analysed for hints on the signal’s metric structure, i.e., deriving
measure length and beat interval.

On the other hand, a frequency analysis like the Fourier transformationAdd results of

frequency analysis is applied to the signal. Together with the results from the analysis of
the impulse sequence’s intervals, a final determination on the metric
structure is made.

Now knowing the measure length, the sequence of impulses can beFold impulses into

representative

measure

divided into measures and all measures’ impulses superimposed. In the
diagram and henceforth, this procedure is called folding of impulses be-
cause of its reminiscence of a strip of paper being shortened by multiply
folding it onto itself.

Once this is done, the numerous impulses get clustered to those posi-Cluster impulses

to rhythm tions within the measure that, according to the assumed metric structure,
form the beat level in the metric hierarchy.

1Preliminary tests of a one-frequency-band version of Scheirer’s comb-filter approach
in Matlabshowed, however, that simple averaging of the tempi it derives from data
of the given sensor package produces too erratic results.

4.2 Rhythmic Analysis 55

Rhythm

Impulse SequenceSensor Signal

Metric Structure

Folded Impulses

Interval Analysis

Impulse
Folding

Frequency Analysis

Impulse Clustering

M
ov

em
en

t
D

et
ec

tio
n

Figure 4.10: Rhythmic analysis of sensor signals. For an explanation of the
diagram, please refer to the text. The colours used for the sensor
data (red), detected movement impulses (orange), information on
the metric structure (yellow), impulses folded into one measure
(green) and the rhythm with its conceptual impulses (blue) will be
recurring in future figures. So will the use of boxes with corners
for data and rounded ones for processes.

The above description was to give an impression of the task at hand,
but is quite imprecise. Foremost, it ignores that there are several sen-
sor signals to evaluate and from which to derive a common rhythm.
Furthermore, the movement detection algorithm described before may
yield a series of impulses for each side of the graph of each sensor’s
both axes. In the given case of four two-dimensional sensors, there are
eight axes and thus sixteen such sides. These sides or axes are called
channels from now on whenever their origin does not matter.

An important aspect regarding the tasks described above is the level
on this hierarchy that they apply to. Signal processing approaches, for

56 4 Algorithmic Design

example, make no use of movement detection and can sensibly only
be applied as far down as the axis level, but perhaps also operate on
combined signals of both axes or even several sensors.

So one main question that arises is for how long in the algorithmic
pipeline to treat (levels of) channels and sensors separately and when to
combine their data.

4.2.2 Determining the Metric Structure

Fig. 4.11 answers that question for the first part of the algorithmic
pipeline, the most involved in this respect. The diagram assumes there
to be four sensors with two axes each, labelled X and Y. As decided,
their data is fed into movement detection (MD) and (Fast-) Fourier
transformation (FFT). The former exemplarily yields impulse sequences
for both sides of the graph (the orange boxes labelled + and –), but, as
described in Section 4.1, this will just be one option looked at. The FFTs
are searched for their respective most prominent frequency, which is
then output as the beat interval (BI).

III Histogramming

Leaving the FFT-determined beat intervals aside for a moment, the next
important step is the analysis of all channels’ impulse sequences. The
aim of the analysis is to find beat intervals and measure lengths (ML).

Basically, the mutual intervals between all recently detected impulses
are computed and the ‘most important’ of those intervals determined
using a histogram. However, the histogramming technique described
in Section 3.2.1 will not suffice, as it treats all added intervals alike.

In Section 2.2, it was stated that an inter-impulse interval (III) could, be-Weaker impulse

determines III

magnitude

yond the actual time difference, be assigned a magnitude and a spread
value that mirror their constituent onsets’. But no function was given
how to compute them. Assuming that in a rhythmic sequence of im-
pulses, each measure features a prominent downbeat, the pairs of im-
pulses with large magnitudes are likely to be the ones whose mutual
interval approximates the measure length. Hence, it appears plausible
to choose a function that rewards such pairs. The minimum function
does just that: employing it, only pairs of large magnitudes yield a
large-magnitude interval. Fig. 4.12 shows this effect for the example of
an equidistant sequence of impulses.

Given two impulses I1 and I2, their III’s magnitude can now be defined
as:

mag (III(I1, I2)) = min (mag(I1), mag(I2)) .

4.2 Rhythmic Analysis 57

Beat Interval, Measure Length

Y YX YX Y
FFT

X

BI BI

FFT

+ – + – + – + – + – + – + – + –

FFT
X

Metric Quotient

BI BI
BI

, M
L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

BI
, M

L

FFT

MD MD MD MD MD MD MD MD

FFT

BI BI

FFT FFT

BI BI

FFT

H H H H H H H H H H H H H H H H

Voting

Figure 4.11: Derivation of metric information from sensor data. The diagram
shows the flow of four two-dimensional accelerometers’ data
through various analyses to finally yield a common decision on
the beat interval and measure length. The used abbreviations are:
“BI” for the beat interval, “FFT” for the Fast Fourier Transforma-
tion, “MD” for movement detection, “H” for histogramming and
“ML” for the measure length. For a detailed explanation of single
aspects, please refer to the text.

The spread value, the uncertainty at which an interval’s length is speci-
fied, could be the maximum, the sum or the average of the constituent
impulses’ spread values. Defining one impulse’s spread as the width of
its bulge(s) in the signal graph, the averaging function turns out to be a
good choice that does not to blur the resulting histogram too much:

spread (III(I1, I2)) =
1
2

(spread(I1) + spread(I2)) .

To account for magnitudes in the histogram, it suffices to add the mag- Fill range of

buckets to mirror

uncertainty

nitude to the correct bucket instead of merely incrementing its counter,
just as done in Fig. 4.12. To consider the spread, however, neighbouring
buckets must be filled as well.2 One possibility is to practically add a

2Besides merely accounting for the fact that a movement’s climatic point in time
cannot be defined precisely, this technique makes it possible for similarly intervalled
movements (by ‘error’ of the moving person) to support each other in terms of
building peaks in the histogram.

58 4 Algorithmic Design

0.5s 1s 1.5s 2s 2.5s 3s0s

5

Figure 4.12: An III histogram mindful of intervals’ magnitudes. Similarly to
Figs. 3.3 and 3.4, a series of impulses is shown along a time axis at
the top. The coloured bars represent the intervals between those
impulses that their ends are situated below. In contrast to the pre-
vious figures, these bars differ in thickness, which has been chosen
proportional to the minimum of the magnitudes of the impulses
whose interval the bar represents. In the actual histogram at the
bottom, this leads to shift in the highest peak: had the buckets
only been filled according to the number of respective intervals,
the red interval would have had the highest count. Here, however,
the green interval comes out as the most important one. This is in
line with the intention, as indeed this interval is the apparent mea-
sure length of the impulse sequence’s rhythm. The beat interval
can still be found by simply looking for the first (in a noisy case:
significant) peak.

triangle to the histogram: the magnitude is added at the time stamp’s
bucket, the neighbouring ones get smaller values until, at a distance of
half the spread value, contributions reach zero.

To simplify the formal definition of the buckets’ values, they are in-
dexed with the range of intervals they represent, not with a serial num-
ber. Given a tuple of impulse times t1, . . . , tn with their magnitudes
m1, . . . , mn and spreads s1, . . . , sn, the histogram bucket with centre c

4.2 Rhythmic Analysis 59

has the value

Hc =
n

∑
i=1

miwi(c),

where the triangular shape is determined by the weight function

wi(c) =
{
− 1

si
|ti − c|+ 1 |ti − c| < 1

2 si

0 otherwise
.

Theoretically, a Gaussian shape could be used instead of a triangle, as
a more mathematically justified means of mirroring uncertainty. But,
considering the partial arbitrariness with which the values for time
stamp, spread and magnitude could be chosen, this would hardly add
any precision.

Having filled the histogram with triangles for all recent IIIs, the most
important intervals can be read as the position of the highest peak and
the first significant peak. As could be seen in Fig. 4.12, the former
resembles the measure length and the latter the beat interval. Channels
which yield very improbable values for these are excluded from the
remaining analyses.

Examples of how histograms fed with real accelerometer data look will
be shown in Chapter 6, Evaluation.

It turns out that dances’ or even fingers’ movements produce such
erratic data that more than just the past few IIIs should be used. In order
not to make the histogram respond too slowly to changes in rhythm,
however, old intervals should not count as much as current ones.

To achieve this, one could soften the age restrictions on impulses con-
sidered and multiply their weight by some age-dependent value that
penalises old impulses. However, Seppänens approach, described in
Section 3.2.1, has a similar effect and works without filling innumerable
IIIs into the histogram each time a new impulse arrives: he only fills a
histogram with the intervals of a small time window, but computes a
linear combination with the previous histogram, thus preserving past in-
formation. Such a histogram can be called inert because of its resistance
to change.

The factors are chosen in order to exponentially decay the old histogram
according to its age. Be H j

i the ith bucket of the jth stored histogram,
hj

i the ith bucket of the jth newly computed histogram and tj the jth
histograms’ time stamp, the next histogram to analyse and store is
computed as follows:

H j+1
i = 0.5c(tj+1−tj)H j

i + d log2 2 · hj+1
i ∀i,

60 4 Algorithmic Design

where c and d are constants that influence the rate of the old histogram’s
decay and the new one’s initial proportion. When computing this for
every new impulse, the new histogram h only needs to consider the
intervals that this new impulse is constituent of, as the others are already
represented in the stored histogram H.

The inert histogram is, on first creation, filled with zeroes. The discus-
sion of data structures is deferred to Section 5.3.

Voting on the Metric Quotient

The many beat intervals and measure lengths (shown yellowish in Fig.
4.11) can differ greatly. So, too, can these values’ quotient. To arrive at
a common metric quotient, a histogram of such quotients is created at
the beginning of all processing. Similarly to the III histogram, it is being
updated by linearly combining its old contents with a new version. Fig.
4.13 shows a simple example in which the linear combination happens
to be averaging.

2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81

old new updated

Figure 4.13: Updating an inert histogram of metric quotients. This histogram
considers metric quotients up to the value eight. The one on the
left is supposed to be the old histogram that has resulted from
previous such updates. That in the middle is new and has been
derived from III histograms’ peaks. The one on the right is a
combination of both, in this case a result of a linear combination
with both factors being 0.5.

Instead of simply counting the number of channels that consider a cer-Favour clear

rhythms tain metric quotient correct, their votes have a weight according to the
sum of all their III histogram’s buckets. As those histograms only grow
when pairs of strong and thus clear impulses are detected, their sum
is interpreted as an indication of the channel’s reliability in rhythm
matters.

Having mixed the new counts with the old histogram, the metric quo-
tient whose bucket contains the most weight is taken as this iteration’s
official figure.

4.2 Rhythmic Analysis 61

Voting on the Beat Interval

Next, a beat interval needs to be determined. Whereas among metric
quotients only a few are relevant, and they are so distinct that an inert
histogram can be set up, this is not the case with beat intervals. Here, a
single value shall be inert, being initialized to a value in a suitable range
and being applied changes in every iteration, i.e., whenever a rhythm is
to be derived.

While the updating procedure may be similar or identical to that for the
buckets of the metric quotients’ histogram, the question remains how to
derive the new beat interval, a common value representing all channels.

One possibility is to find groups of channels that can agree on a com- Homogenous

group of channels

decides

mon denominator and then choose as beat interval the most important
group’s compromise. A sensible measure of agreement between two
channels is the quotient of their beat intervals: if one is close to an in-
teger multiple of the other, then a certain relatedness can be assumed.
Given two beat intervals b1 > b2, one might demand that∣∣∣∣b1

b2
− round

(
b1

b2

)∣∣∣∣ < 0.2

for their respective channels to support each other.

For each channel i, all others can be checked for agreement. Has a
fitting channel j been found, its beat interval bj can be adapted to bi by
removing the integer quotient between the two. For example, if bi > bj,
the adapted beat interval is

bij = bj · round
(

bi

bj

)
.

In order not to let a group of incidentally agreeing noisy channels give
a verdict detrimental to the whole procedure, not the most numerous
group should be chosen, but that whose combined ‘rhythmic clarity’ is
maximal. An indication of the latter is a channel’s III histogram’s sum
of all buckets’ contents. This is because these histograms get filled the
more, the more regular their respective channels’ impulses occur and
the larger their magnitudes are.

Computing each group’s (they may not be mutually exclusive) com-
bined such histogram weight, the most significant group can be deter-
mined. Also, among the group, the different adapted beat intervals can
be weighted according to the mentioned measure when agreeing on a
common value.

Another approach is to use a frequency analysis method on the sensor
signal itself. For example, computing a channel’s Fourier transform

62 4 Algorithmic Design

allows finding the beat interval by determining the smallest significantly
peaking frequency. Doing this for all channels, the histogram weights
can, again, be used to give different emphases. An advantage of signal
analysis (auto-correlation would be a different possibility) is that it is
not prone to errors stemming from false movement detection.

Like histograms, Fourier transforms can be mixed to an inert version.
In comparison to a widening of the underlying analysis window, this is
not only more efficient, but also sensibly emphasizes more recent parts
of the signal.

Whichever way is chosen to get a current and representative value of
the beat interval it gets, as mentioned above, mixed to an inert version.
Consequently, the result of this mix, multiplied by the metric quotient
is the official measure length.

This explains the aspects of Fig. 4.11 that had not yet been covered:
the voting on the metric quotient, beat interval and measure length
(the latter two only by some channels), the respective influence of the
histogram weights and the possibility of extracting the beat interval
from the individual FFTs’ information.

One word of caution: using inert values can lead to quite wrong inter-
mediate results: switching from a long to a short beat interval, its inert
version will continually decrease and may, during that process, jump
from one metric quotient to another. However, this appears preferrable
to having erratic jumps in the output that could indeed be justified with
some singular detected movements.

4.2.3 Deriving the Rhythm

Looking back at Fig. 4.10, what is still missing to a rhythm is the folding
of impulses into a measure and their clustering into conceptual impulses,
as shown in Fig. 4.14.

Folding of Impulses

As impulses were derived for each channel, be it one or two per sensor
axis, the question arises which impulses to fold into which measure
lengths and with which offset. On the one hand, all channels’ impulses
(or, better, only those that formed the winning group in the vote on
the beat interval) could be combined into one sequence, which is then
folded into windows with a measure length’s width. On the other, they
could be folded separately and then combined.

4.2 Rhythmic Analysis 63

Rhythm

Folded Impulses

Impulse Sequence Metric Structure

Impulse Clustering

Impulse Folding

Figure 4.14: The derivation of a rhythm, given an impulse sequence and its
metric structure. Knowing the metric structure, the impulses can
be folded into a time window of a measure’s length and then clus-
tered to yield a rhythm. The actual folding can be imagined as
visualised on the top left. There, an impulse sequence (orange) is
shown alongside copies (with a dashed border), each shifted by
a measure’s length to the left. Starting at the original sequence’s
leftmost impulse, a rectangle extending vertically over the copies
encloses the onsets that get superimposed in the folding proce-
dure. As not each successive measure in the example is exactly
identical, the resulting measure with all impulses (green) shows
the impulses not perfectly aligned. However, after clustering to
the supposed positions in the metric hierarchy (yellow), a waltz
rhythm is clearly visible (blue).

Which of these orderings is better and when they make a difference at
all, depends on how the actual folding takes place. For each of the two,
a fitting folding variant will now be described.

After having folded all impulses into one sequence, there is no way of Fold all channels’

impulses

together...

accounting for channels’ different de-facto beat intervals, or counteract-

64 4 Algorithmic Design

ing phase differences.3 So what remains is to get the sequence with a
length of, for example, 3.5 measures, into one measure’s window. This
is possible by subtracting multiples of the measure lengths from the
impulses time stamps, effectively executing a modulus operation.

Considering the meanwhile familiar picture of a rhythmic pattern start-
ing with its most significant impulse, the downbeat, a re-arrangement
seems to be in order. Dividing the measure length into a number of
sub-intervals, these intervals’ respective counts of contained impulses’
magnitudes can be ranked and the whole impulse sequence shifted to
move this prominent position to the measure’s start, as shown in Fig.
4.15.

Figure 4.15: Histogram-based downbeat induction. The set of impulses on
the left has most of its magnitude centered in the middle. This is
shown by a histogram below, whose bar heights are justified by
dropping dashed perpendiculars through the impulses’ points in
time. In order to get the significant impulses to the left, all need
to be shifted. Anything moved out of the measure during this
process is moved back in on the other end.

In case the various channels are to be folded separately, the same folding...or treat them

separately and histogramming techniques can be applied. Combining the resulting
representations means to have eliminated any information on phase
differences between the channels, because each was shifted by poten-
tially very different amounts to start with its own downbeat. This may
yield a more coherent picture when combining all channels than the
first method, but losing the phase difference also means losing rhythmic
information, as shown in Fig. 4.16.

On the other hand, treating channels separately allows to make use
of knowledge over their respective de-facto beat intervals. Instead of

3Although one can imagine some form of pre-processing in the style of the other
algorithm, yet to be described.

4.2 Rhythmic Analysis 65

Figure 4.16: Loss of information by synchronization of channels. The two im-
pulse sequences shown on the top left yield different rhythms
with different folding methods. When first combining all channels,
phase differences are considered (bottom left), when separately
ordering channels’ rhythms by their downbeat’s position, this in-
formation gets lost.

blindly folding all impulses into the derived common intervals, chan-
nels’ mutual irregularities can be dampened by locally stretching im-
pulse sequences to fit the target beat interval or measure length. See Fig.
4.17 for an example.

To be able to do this, downbeat impulses must be identified before fold-
ing and thus without a histogram method. This is possible by looking
for all inter-impulse intervals that are close to the respective channel’s
measure length. Trying out all chains of these intervals, those with a
length near to the length of the complete window of observation are
sorted and that consisting of the largest-magnitude impulses taken as
the sequence of downbeats. An example sequence is shown in Fig. 4.18.

Clustering Impulses

Once all channels’ impulses have been folded one way or the other, only
their clustering to conceptual impulses is left. This could occur freely,
wherever actual clusters are found and with various clustering methods
that usually require at least one parameter that determines the closeness
within which to cluster.

Alternatively, all impulses can get clustered to the nearest position on Cluster impulses

to the beat levelthe metric grid at the beat level. This results in a number of conceptual
beats equalling the metric quotient. Fig. 4.19 shows the possible results
the two ways of clustering.

66 4 Algorithmic Design

Figure 4.17: Fitting channels to each other by stretching. The upper rows of
orange impulses pointed at by the arrow from the left are to be the
rawly detected sequences. By superimposing them, their uneven
distance shows (green, top). First stretching each channel so that
downbeats are equidistant leads to a better positioning in the com-
bined sequence (green, bottom). Non-downbeat impulses could
also have been stretched depending on their position between two
neighbouring downbeats, but have been omitted for clarity.

Figure 4.18: Finding the maximal sequence of downbeat impulses. Like in
the figures concerning III histograms, the intervals between im-
pulses are entered as double-sided arrows, but this time only
those equalling (in a non-model case: approximating) the mea-
sure length. Among those sequences of intervals extending almost
entirely through the window of observation, the one with the high-
est combined (added) magnitude is considered the one connecting
the downbeats.

4.2 Rhythmic Analysis 67

Figure 4.19: Two methods of clustering impulses. The green impulses in the
centre are shown clustered freely, where they occur, on the top. A
clustering along the metric grid is pictured at the bottom.

In case the clustering along the metric grid is chosen, an inert version
of the magnitudes on the beat level can be used to smoothen the out-
put. In the other case, a dampened version of the old clustering result
might be added to any new one, but this can create artifacts due to the
unpredictability of the free clustering.

In both cases, it needs to be taken care that clustering also takes place
across the measure’s border. For example, when clustering along the
grid in a waltz example, impulses need to be clustered at count 1 (the
measure’s beginning), count 2, count 3 (1

3 and 2
3 through the measure,

respectively) and at a conceptual count 4 (the measure’s end), whose
cluster’s combined magnitude then gets added to that of count 1. Fig.
4.20 shows a changed version of Fig. 4.19, in which this procedure is
relevant.

4.2.4 Summary

Again, a pseudo-code abstraction (Alg. 2) is to give an overview of the
general course of action suggested in this section.

More details, especially on the choices to be made, will be given in the
next chapter, in Section 5.3.

68 4 Algorithmic Design

Figure 4.20: Clustering across measure boundaries. In comparison to Fig. 4.19,
the impulse that is now indicated by the dashed green circle has
been moved to a new position (with a thick border). This results in
changes for the clustering: the free method (above) now considers
the first and last impulse close enough to be counted as one in
the resulting rhythm. The combined conceptual impulse now
appears at the very end, as that is the two contributing impulses’
average position, considering the measure as a loop (which it is
to represent). Clustering on the grid changes in so far as the first
conceptual impulse grows, while the rightmost one disappears.

4.2 Rhythmic Analysis 69

Algorithm 2 Deriving a rhythm from sensor signals and from a sequence
of movements detected in them

while there is another detected motion impulse do
update all inert III histogram with any new intervals
analyse all III histograms for a beat interval and a measure length
update inert histogram of metric quotients
vote on a common beat interval
update inert beat interval
if channels are to be synchronized then

for all channels do
fold all impulses using maximal downbeat sequences
determine the combined downbeat via histogramming
reposition the impulses accordingly
cluster to conceptual impulses

end for
else

modulus-fold all channels’ impulses into one measure
determine the combined downbeat via histogramming
reposition the impulses accordingly
cluster to conceptual impulses

end if
end while

71

5 Implementation

5.1 Overview . 71
5.1.1 Development Environments 74
5.1.2 Download . 75

5.2 Auxiliary Programs . 75
5.2.1 ProxyS4M . 75
5.2.2 ProxyFile . 77
5.2.3 RecorderS4M 79
5.2.4 BeatTapper . 80

5.3 DanSense . 82
5.3.1 Class Structure 83
5.3.2 Control Structure: DanSense 84
5.3.3 Movement Detection: SampleProcessor 86
5.3.4 Frequency Analyses: ImpulseProcessor 86
5.3.5 Rhythm Derivation: ImpulseProcessor 87
5.3.6 Helper classes 88
5.3.7 Options and Defaults 90
5.3.8 Front-End Wrapper Programs 94

5.4 Personal Orchestra . 97
5.4.1 Data Transmission 99
5.4.2 Changes to the Program 100

5.1 Overview

In Section 1.2, some less algorithmically involved sub-tasks have been
named besides the rhythm detection. This chapter deals with all of them,
although the emphasis lies on the rhythmic analyser DanSense itself.

72 5 Implementation

Fig. 5.1 shows a diagram of DanSense in relation to those other programs.ProxyS4M

receives from

Sense4Motion

On top, there is Sense4Motion as the source of all sensor data. At least
for this thesis, but future projects may use other sensors as input. For
this purpose, DanSense has been designed to receive its input via an
established application-layer protocol: Open Sound Control (OSC).1 The
thus required translation between Sense4Motion’s data format and the
OSC messages expected by DanSense is done by ProxyS4M.

DanSense4Shell / DanSense4Max

DanSense

ProxyS4M

Sense4Motion

DSSampleProcessor

DSOutput

DSDefaults

TCP

OSC

DSImpulseProcessor

ProxyFile RecorderS4M

OSC

TCPFile

Fi
le

Personal Orchestra Beat Tapper
File

UDP

Figure 5.1: Overview of DanSense and related programs. Components of Dan-
Sense appear in shades of red, auxiliary programs in yellow and 3rd-
party software in cyan. Arrows indicate data flow. For a detailed
description, please refer to the text.

Similarly, ProxyFile can read Matlab files written by Sense4Motion andRecorderS4M

writes files,

ProxyFile reads

them

send them to DanSense, getting rid of the requirement to do a ‘live’ anal-
ysis. It also reads files written by RecorderS4M, a wrapper for Sense4-

1For the specification see www.opensoundcontrol.org/spec-1_0. Of course, there is
still a DanSense-specific data format to be adhered to within the OSC context, which
will be discussed in Section 5.2.1.

www.opensoundcontrol.org/spec-1_0

5.1 Overview 73

Motion that was necessary in order to also include time stamps of music.
The benefit of those time stamps is that it later allows a synchronous
analysis of the accelerometer readings and the ‘underlying’ music. That
analysis, in turn, can take place using an adapted version of BeatTapper,
where a video recording, a sound waveform and accelerometer data can
be viewed synchronously.

The essential part of DanSense itself is a Java class of the same name: it DanSense

processes received

samples

receives sensor samples, analyses them and, along with control values,
outputs a representation of the detected rhythm. In order to make this
class a potential module for other software projects, both the setting of
parameters and the output of results works via method calls. To test
the analysis algorithms, two front-end programs have been developed,
which can also serve as examples of how to use the class DanSense:
• DanSense4Shell constitutes a command-line wrapper, allowing the

passing of parameters as command-line arguments and displaying
the output in a rudimentary textual and pseudo-graphical way on
the console.
• DanSense4Max is an external object for Max/MSP and as such is

used as one of a number of functional boxes in a processing graph.
One such graph (called patch) is supplied that enables parameter
setting through mouse controls and outputs the resulting rhythm,
as well as intermediate data, graphically.

Unless the front-end used is supplied parameters, it uses the values
defined in DSDefaults.

Employed by DanSense’s namesake class, two main other classes exist,
dividing their work just as Chapter 4 suggested: DSSampleProcessor
looks at each successive sensor sample and detects bulges in the various
sensor channels’ graphs. Found bulges are returned to DanSense, which
hands them over to DSImpulseProcessor for rhythmic analysis.

Results of this analysis are handed back to DanSense, which then sends
the output to an implementation of DSOutput that it had been given as
a parameter by DanSense4Shell or DanSense4Max: this interface specifies
output functions for different data types, as well as semantic constants
to differentiate between various outputs of the same type.

In addition to the mentioned textual output, DanSense4Shell optionally DanSense can

conduct musicsends information to a specifically adapted version of the ‘virtual con-
ducting’ software Personal Orchestra via UDP2, allowing the conducting
to take place using one of the acceleration sensors.

The detailed descriptions that now follow are sorted in the same way as
they have just been mentioned.

2User Datagram Protocol, specified in RFC 768, available on tools.ietf.org/html/

rfc768.

tools.ietf.org/html/rfc768
tools.ietf.org/html/rfc768

74 5 Implementation

5.1.1 Development Environments

Java

For cross-platform compatibility, Java3 was chosen as programming lan-Most

programming done

in Java

guage. One benefit of this was that data acquisition could take place
both on the Windows notebook supplied by Prof. de Jong’s company
MultiPro (because the driver software was only available for Windows),
and on the chair’s Macintosh computers. The same applies to process-
ing, which, due to the relatively low sample rate, does not suffer from
Java’s potential lack of efficiency.

All Java programs and classes that are part of this thesis have been
fully commented according to the JavaDoc standard. For more de-
tailed explanations than the rather conceptual descriptions given in
this chapter, please refer to the HTML documentation generated from
those comments (in Programs/JavaDoc and on the web site about to be
mentioned), as well as the additional comment lines within methods’
code.

Programming conventions adhered to include the following:

• Class variables start with an underscore ().

• (De-facto) Constants are written in uppercase letters.

• In case parameters are being changed by the called function, the
JavaDoc comments explicitly say so.

Each program’s directory contains a bash script run.sh that contains
examples of the lines required for compilation and execution.

A final note on portability to other languages (though it should not be
required): apart from Java’s garbage collection, the code relies on the
automatic initialization of arrays on the heap and lazy evaluation of
boolean conditions.

Max/MSP

To facilitate a quick visualization of intermediate data structures andMax/MSP used

for output of

results

results, the actual rhythmic analysis was prototyped in Max/MSP4. This
software suite allows a graphical modelling of algorithms using func-
tional boxes (objects) with multiple inputs and outputs and that can, in
addition to its native functions, execute one’s own Java or C objects. A
short introduction into Max/MSP is given in Appendix B.

3To be precise: Java Platform 2, Standard Edition, version 1.4.2.
4www.cycling74.com/products/maxmsp

www.cycling74.com/products/maxmsp

5.2 Auxiliary Programs 75

Objective-C

Another environment used was Objective-C in combination with the Third-party

adaptations

written in

Objective-C

Cocoa framework on the Macintosh, when adapting existing programs
for use with the acceleration sensors.

Regarding programming conventions, the extensions have been kept
similar to the existing code.

5.1.2 Download

The Java codes can be downloaded from the Media Computing Group’s
web server, at
media.informatik.rwth-aachen.de/enke.html.

BeatTapper’s and Personal Orchestra’s sources are closed and thus only
available internally.

5.2 Auxiliary Programs

5.2.1 ProxyS4M

Consisting of a single, runnable class, ProxyS4M’s job is to receive data ProxyFile

translates between

Sense4Motion and

DanSense

as provided by Sense4Motion and to re-transmit it as OSC packets suit-
able for DanSense.

At least in its 8-bit version, Sense4Motion formally sends out TCP pack-
ets of 16 samples, but does this in bunches of two, resulting in bursts of
32 samples and the unfortunate delay of at least 200 ms in-between that
was already mentioned when introducing the program in Section 2.1.2.
As a demonstration of this, as well as Sense4Motion’s deviation from
the set sampling interval, ProxyS4M outputs two figures on the console
for each received TCP packet: the average interval between samples
and the time that has elapsed since the last packet.

Command Usage

When started, ProxyS4M can be given a number of parameters that each
have their default values:

media.informatik.rwth-aachen.de/enke.html

76 5 Implementation

code possible values default value
bits per sample b 8 or 16 8
Sense4Motion host i any IP address localhost
Sense4Motion port p any port number 7000
DanSense host o any IP address localhost
DanSense port q any port number 57110 5

The codes given must directly precede the given parameter, a valid
command thus being:
java -classpath ".:.." ProxyS4M b8 i70006

All this information is also given by the program itself when specifying
no arguments.

Receiving from Sense4Motion

Apart from the parameter evaluation, the code’s central part reads TCP
and sends OSC packets.

The format of the packets sent by Sense4Motion depends on its ver-
sion, determined by the number of bits per sample. As Sense4Motion
versions correspond to versions of the used sensors (at least the two
variants coming up during the course of this thesis), a number of other
conclusions are also drawn about the data:

bits/sample max. channels samples/message max. sampl. interval
8 8 16 6 ms
16 10 120

channels = 12 2 ms

Besides this, also the arrangement of values within one packet varies.
The following lines each show how the integer value of sample number
s and channel number c can be derived from packet, given the number
of sensor channels as numChannels:

8 bit: packet[s*numChannels+c]&0xff

16 bit: packet[s*2*numChannels+2*c]&0xff)-254)*256
+ packet[s*2*numChannels+2*c+1]&0xff

The bit-wise AND stems from the fact that Java considers all types
signed, by default. This way, the resulting integer ranges are 0..255 and
0..1023, respectively.

5This is a standard port for OSC packets.
6Java’s classpath must, also for compilation, be set to include the parent directory,

because that contains the JavaOSC library. This also applies to the other command-
line programs.

5.2 Auxiliary Programs 77

Sending to DanSense

These read values first have to be normalized, as DanSense expects them
to be floating-point values in the range [−1, +1]. Then, using the library
JavaOSC7, for each received packet from Sense4Motion, an OSC message
is created consisting of four elements:

1. an Integer object, the number of samples contained in this message,
2. another Integer, the number of channels per sample,
3. a Float object, the sampling interval and
4. an array of Float objects: the received TCP packet’s sample val-

ues, grouped by sample, within those groups ordered by channel
number.

Formally, the value of sample number s in channel number c can be
found at the latter array’s position s*numChannels+c. Precisely this
extraction is done when DanSense receives the messages.

5.2.2 ProxyFile

Just as ProxyS4M, ProxyFile consists of only one runnable class and With ProxyFile,

DanSense analyses

recordings

sends OSC packets to DanSense, as described above. The difference
is that it does not listen for TCP packets, but reads data from a text
file in the specific format written by Sense4Motion or RecorderS4M. As
described in Section 2.1.2, Sense4Motion can record sensor readings to
files in the Matlab format, making them readable by mere parsing for
numbers.

Command Usage

Said input file is among the parameters that ProxyFile accepts:

code possible values default value
bits per sample b 8 or 16 8
name of input file f any IP address localhost
sampling period m any number ms 6 8

DanSense host o any IP address localhost
DanSense port q any port number 57110

Like with ProxyS4M, there may be no spaces between codes and param-
eters. A valid command for processing a file named recording.m would
be:
java -classpath ".:.." ProxyFile b8 frecording.m

7www.illposed.com/software/javaosc.html
86 ms in the 8-bit case, 2 ms for 16 bit.

www.illposed.com/software/javaosc.html

78 5 Implementation

Information on the required arguments is given in case the user fails to
supply them.

Reading Files

When reading an input file, the first step is the determination of the
number of lines, which, subtracting the known header lines, is indicative
of the number of samples stored. The number of channels is determined
by the number of bits per sample: as many channels are expected as is
possible with the respective version of Sense4Motion.

Knowing these figures, a buffer is then created that can store all of
the input file’s sample values. To show their format, the following are
drastically shortened examples of Sense4Motion’s and RecorderS4M’s
variants of Matlab output:

Output of Sense4Motion

Following an initial line about the sampling interval, Sense4Motion
writes the sensor samples (here: eight) and a time stamp relative to an
unspecified time scale:
Ts = 6e-3;

Macq = [170, 172, 172, 207, 211, 212, 164, 167, 528461957;

171, 172, 172, 207, 211, 212, 164, 167, 528461963;

171, 172, 172, 207, 211, 212, 164, 167, 528461969]

Output of RecorderS4M

Besides the additional comment line at the beginning and the slightly
different ending, RecorderS4M’s output differs in the numbers it out-
puts after the sample values (for an explanation, see Section 5.2.3):
% Columns: s1x s1y s2x s2y s3x s3y s4x s4y delay sensorTimestamp[ms]

musicTimestamp[µs] systemTimestampDelta[ms]

Ts = 6e-3;

Macq = [190, 208, 203, 223, 109, 166, 128, 169, 109, 82113526, 838639, 94;

189, 209, 204, 222, 109, 166, 131, 172, 109, 82113526, 838639, 94;

188, 210, 204, 222, 109, 166, 134, 177, 109, 82113526, 838639, 94;

];

Both programs start their lines with the actual sample values, so pars-
ing can take place identically for them9 and quite easily, using Java’s
StreamTokenizer.

9For future versions of Sense4Motion, this cannot be guaranteed.

5.2 Auxiliary Programs 79

Sending to DanSense

The sending of OSC packets is not quite the same as before in the case
of ProxyS4M: there are now no incoming packets according to which
the outgoing messages could be clocked and sized. As DanSense has
to cope with bursts of data, anyway, it could theoretically be sent the
whole file’s data in one message.

Larger values than about 30 samples per message, however, tend to
crash the OSC transmission library used. But, considering that there is
practically no delay between those messages, this parameter has practi-
cally no detrimental influence on the fact that a file gets sent to DanSense
in manifold the time it takes to record it.

5.2.3 RecorderS4M

As mentioned before, the time stamps included by Sense4Motion for Sense4Motion

saves

time-synchronized

recordings

each sensor sample are relative to an unspecified absolute time scale.
For analysis purposes, it seems helpful to be able to assign each sample
a point in the local time frame of a musical piece playing in the back-
ground. This way, a graphing of the sensor recording can be annotated
with properties of the music recording, like the subdivision of the time
axis in measures as done in Fig. 4.8.

RecorderS4M, created to this purpose, expects to receive 8-bit data from
Sense4Motion, plays an audio recording of the user’s choice and saves
the sensor data along with the time index at which the audio was play-
ing at the moment of the respective sensor sample’s reception. Fig. 5.2
shows the main dialogue and describes the required settings.

There are only two classes, RecorderS4M for the dialogue box and the
thread RecorderS4MThread to do the actual work without making the
dialogue box unresponsive.

Among Java’s libraries, the program uses Swing for its user interface
and Sound for loading the audio file. Due to the latter’s limitations, only
a few audio formats are supported. As those include the popular WAV
format, compatibility is not an issue. The file size limit (experienced to
be around 2 MB) was a disadvantage. But comparisons to underlying
musical rhythm were not essential for this thesis, as discussed in Section
2.2, so perfecting RecorderS4M for daily use was not required.

Should this change in future extensions of this project, not only the audio
solution would have to be improved (using Java’s QuickTime libraries,
for example), but also the data reception be made independent from
specific sensor solutions.

80 5 Implementation

Figure 5.2: The main dialogue of RecorderS4M. The buttons on the left allow,
as their labels say, the definition of audio input and data output
files as well as their respective access control. In the text box on the
left, the IP number of the Sense4Motion server can be entered, by
default it is assumed to run on the same machine as RecorderS4M.
Also by default, output files are named after the audio input. When
receiving data, the text box on the right outputs the packet and sam-
ple number, the values received, the sampling interval, the delay
between packets, Sense4Motion’s time stamp and the chosen audio
file’s current time index. In this example instance, sample 15 of
packet 148 bears a time stamp of about one hour, three minutes and
forty seconds, and the music has been playing for about 19 s. One
value mentioned in Section 5.2.2, “systemTimestampDelta”, is not
displayed: it merely shows the time difference between successive
packets. Note that RecorderS4M’s time stamps are identical over
one packet, while Sense4Motion’s are not, because in transmission,
Sense4Motion only provides one per packet. Still, RecorderS4M
could be changed to interpolate successive packets’ time stamps.

5.2.4 BeatTapper

To record the exact time indices of an audio recording’s downbeat, Beat-BeatTapper

visualizes sensor

data

Tapper was developed at the Media Computing Group. While playing
a QuickTime video, it accepts clicks on a button or hits on the space
key as commands to remember the instant at which that user event
occurred, as a time stamp indicating the current playing position of the
video. Each such recorded position is indicated as a thin line on the
audio signal’s graph, which is scrollingly displayed in parallel to the
video. When the video is paused, the lines can be repositioned using
the mouse. Together with the possibility to set the audio graph’s zoom
level, downbeats can be quite accurately positioned. Their positions can
then be saved to a file and later be used for, e.g., beat synchronization in
Personal Orchestra like described in Section 5.4.

For this thesis, BeatTapper has been adapted to also display sensor
data in parallel: a Matlab file, as saved by RecorderS4M from an 8-bit
recording, can be read and is then being displayed next to the video’s

5.2 Auxiliary Programs 81

audio track. A screenshot is shown in Fig. 5.3.

Figure 5.3: A screenshot of BeatTapper. At the top, a video of a dance perfor-
mance can be displayed. (The picture is skewed to fit the already
large program window.) At the very bottom, there are playing con-
trols, as well as a light grey button to enter downbeats. The black
area in the bottom half shows the sensor data in grey and the audio
data in blue. The screenshot omits a vertical line that would nor-
mally show the current position in those data graphs. At the bottom
right, the user can enter an offset value in seconds in case the video
and sensor recordings did not start at the same time. Note that the
sensor graphs’ premature end is due to problems the screenshot
program had with the way BeatTapper draws the screen.

This way, bulge features can be analysed while watching the video,
potentially giving hints on how certain movements could be detected in
the sensor signal.

82 5 Implementation

Changes to the Program

Apart from the visual appearance of the user interface, most source code
files of BeatTapper have been altered to include the display of sensor
data:

• CBTController contains the methods called by menu commands,
thus methods for opening and closing sensor data files have been
added.

• CBTWaveView is responsible for drawing the graphs and has thus
been changed throughout, supplementing the drawing of sensor
data in addition to the sound file.

• CBTMotionContainer is a wholly new class, modelled after CBT-
MovieContainer, that does the actual parsing and loading of the
sensor data.

The respective sections are marked and should be comprehensible to
someone who knows his way around in BeatTapper.

5.3 DanSense

Besides indicating DanSense’s relationship with the other programs
treated in this chapter, Fig. 5.1 already gave a glimpse of its internal
structure:

• DanSense4Shell and DanSense4Max are front-end wrappers that
create an instance of DanSense. Using their input or the default
parameters in DSDefaults, they start the processing, providing an
implementation of interface DSOutput for any values DanSense
may want to output.

• DSSampleProcessor and DSImpulseProcessor do what their names
claim, the former being called by DanSense for each sample, the
latter roughly for each detected bulge in the accelerometer graphs.

After an overview of the class structure, the central classes and then
auxiliary ones will be discussed in more detail (Sections 5.3.2 to 5.3.6).
An overview of the algorithmic and parameter-related decisions taken,
and how those can be altered, is given in Section 5.3.7. Finally, Section
5.3.8 presents the mentioned wrapper programs and shows examples
of their representation of DanSense’s output.

5.3 DanSense 83

5.3.1 Class Structure

Besides the three classes with algorithmic control structure (DanSense,
DSSampleProcessor and DSImpulseProcessor), there are a number of gen-
eral-purpose classes, as well as auxiliary ones specifically for use with
DanSense. Their formal relationships in terms of relative numbers of
instances are shown in Fig. 5.4 as a rudimentary UML diagram.

DSSampleProcessor DSImpulseProcessor

DanSense

DSImpulse

DSInterval

HistogramDSImpulseHistory

DSOutput

SampleWindow
5
1

n
1

0..1
1

0..1
1

1

0..p

n

0..m

1

1

1
2

Utils

Figure 5.4: DanSense’s class structure. As in Fig. 5.1, shades of red mark classes
inherently associated with it. Those coloured magenta could also
be used in other applications, and contain no reference to DanSense.
DSOutput has a dashed frame to signal that it is an interface. With
the exception of the static class Utils, which is used in various places,
the other boxes are connected by lines that indicate numerical in-
stantiation relationships. The black rhombus marks the object that
owns the reference. For example, DSInterval and DSImpulse are the
only classes to reference each other.

DanSense contains at most one reference each to objects of type DSSam-
pleProcessor and DSImpulseProcessor. This is due to the fact that they
only constitute ‘out-sourced’ code of the main class. Theoretically, they
could be instantiated directly upon DanSense’s own instantiation, but in
order to allow later changes of parameters, it is possible to destroy and
recreate them.

As repeatedly mentioned, DSSampleProcessor is called for each sample
received by DanSense. To do offsetting, averaging, to prepare sample
windows for frequency analyses, etc., it creates several instances of

84 5 Implementation

SampleWindow, which basically is a circular buffer.

Once DanSense got reports of sufficiently many bulge (i.e., impulse) de-
tections, DSImpulseProcessor is called to do rhythmic analysis. The thus
needed track of past such impulses is kept in one instance of DSImpulse-
History per channel, the III histograms derived from those lists are each
contained in one Histogram object. DSImpulseHistory itself manages a mu-
tually linked structure of objects of types DSInterval and DSImpulse, each
III referencing its constituent impulses and each impulse referencing the
intervals it is constituent of.

5.3.2 Control Structure: DanSense

Initialization

Being the central class, DanSense’s two main tasks are the reception ofDanSense receives

data and controls

processing

data and the control of its processing. As a concession to Max/MSP,
both are not immediately started once an instance is created, because
this would then happen right after the loading of the respective Max/
MSP patch. Instead, the method start needs to be called, allowing the
user to change parameters from their defaults before anything happens.

start gets those parameters that need to be known in advance as argu-
ments, others can be supplied during processing. All will be discussed
summarily, later. Besides registering parameters, start creates an in-
stance of OSCPortIn, part of the previously mentioned JavaOSC library.
It is told to listen for data on the address
/DanSense data

In OSC nomenclature, this is a name for the stream of messages to
expect. This name must thus also be, and is, assigned to their messages
by ProxyS4M and ProxyFile.

Also, an object must be specified whose class implements the interface
OSCListener and thus the callback method acceptMessage to receive the
data. As such object, the DanSense instance refers to itself. Its acceptMes-
sage expects messages of the form described in Section 5.2.1.

On receiving the first message, the method initialize is called, where in-
stances of SampleProcessor and ImpulseProcessor are created and handed
the parameters they require to, for example, allocate memory. As there
is at most one instance of each, these classes’ names are, for simplicity,
from now on used synonymously with their unique instances.

Also, an instance of Timer is created and, via an instance of the helperProcessing is

independent from

reception rate

class DanSenseTimerTask, scheduled to run the method processSample as
often as specified by the OSC message’s sampling frequency value. In

5.3 DanSense 85

a way, not immediately using incoming samples has the function of a
buffer that not only smoothes variations in reception frequency10, but
also makes it possible to get files sent in chunks from ProxyFile.

Now, the data samples (floating point values in the range [−1, +1]) in
the first message’s main array, but also all subsequent ones, get passed
to SampleProcessor’s method addSample, which adds them to the object’s
Vector of samples.

Processing

Whenever the timer runs processSample, SampleProcessor’s main method SampleProcessor

detects,

ImpulseProcessor

analyses impulses

of the same name is called. If it returns impulses (as a Vector of instances
of DSImpulse), they are handed to ImpulseProcessor’s method update-
ImpulseHistories. If nothing was returned, processing stops.

But even if impulses were returned, processing usally stops here: a
static counter is started for DanSense.processSample to wait some more
iterations (i.e., scheduled calls to itself). This is done, because after de-
tection of a movement in one channel, it is likely that others will follow,
soon. Waiting for a handful of samples makes the ensuing processing
worthwhile.11

Once the counter has reached its target value (default values will be
listed separately), the actual rhythmic analysis is started by calling Sam-
pleProcessor.freqAnalysis and ImpulseProcessor.deriveRhythm. Their re-
sults are then sent to the send method of the object implementing DSOut-
put that was given as one of the parameters to start. Besides actual
results, raw and intermediate data is output for illustrating purposes,
an example being the signal graph in Fig. 5.5 (see Section 5.3.8). For this,
various simple output methods of the processing classes are called, as
well.

Termination

DanSense also has a stop method, which closes the OSC receiver, cancels
the timer and destroys the instances of SampleProcessor and ImpulsePro-
cessor. After each call to stop, start can be used again.

10In case the flow of samples cannot keep up with the rate they are processed, then the
last received sample is used again until a new one is available.

11In a setting with sensor samples that arrive far less than 200 ms after their creation,
this may have to be changed to allow for a more real-time approach. Anyway, the
processing only takes about 5 ms per iteration, despite the comparably inefficient
FFT computation in Java.

86 5 Implementation

5.3.3 Movement Detection: SampleProcessor

Each call to SampleProcessor’s method processSample, a sample is taken
from the object’s Vector of samples. If no sample is available, this is
interpreted as a temporal interruption of sample flow, and the previous
sample is used again.

For this sample’s processing, a loop through all channels is started, of
whose number the object was informed at its creation. The sample, due
to the loop now a scalar value, is offset, low-pass filtered and registered
for later frequency analysis using several instances of SampleWindow.

Then, any previously stored starting times of bulges are reset in case
they have become too old. Then, the sign of the sample is determined
and its absolute value used to find the arithmetic average and median
of the respectively signed recent sample values.

Beginning the actual search for impulses, the current sample value isRecord impulses

at zero-crossings compared with the previous to detect zero-crossings. If such has hap-
pened, the maximal amplitude and area of the most recent bulges of
both signs are checked for sufficient magnitude. If they suffice, then
either one instance of DSImpulse averaging those bulges’ properties gets
entered in a Vector, or separate ones. After that, the information on
bulges is reset. Even if the magnitudes do not suffice, the new bulge
started by the zero-crossing is registered by storing the current time
stamp as its beginning.

Independently from whether the zero-line was crossed, the current (or
new) bulge’s maximal amplitude gets registered (together with the cur-
rent time stamp) in case it is significant. Also, the bulge’s area gets
updated and the current sample value stored as the previous to facili-
tate the zero-crossing check next time processSample is called.

Finally, an array of all channels’ Vectors of DSImpulse instances gets
returned.

5.3.4 Frequency Analyses: ImpulseProcessor

Once DanSense.processSample decides it is time to let ImpulseProcessor
process the accumulated impulses, first a rhythmic analysis of the sensor
signal takes place. As mentioned before, SampleProcessor.processSample
register every incoming sample for this analysis. For the FFT or auto-
correlation, a window of a certain number of past samples is required.
This window is supplied, optionally as a down-sampled variant to,
for example, not let the FFT deal with frequencies without rhythmic
relevance.

5.3 DanSense 87

The actual work on this copy is done by freqAnalysis. For each channel, Extract beat

intervals by

analysis of

windowed signal

it creates a Hann-windowed copy of its windowed data and feeds it
to FFT and auto-correlation algorithms. The beat intervals extracted
by detecting the first significant peaks of the resulting arrays are then
returned to the calling DanSense.processSample.

Choosing n to represent the number of the first significant peak’s bucket,
s as the sampling interval in ms, d as the size of the window (in samples)
used for downsampling and w the size of the window used for the
respective analysis method, the formulae for the beat intervals b are as
follows:

bAC = s · d · n

bFFT =
s · d · w

n

5.3.5 Rhythm Derivation: ImpulseProcessor

On ImpulseProcessor’s instantiation, it creates as many instances of DSIm-
pulseHistory as there are channels.12 These instances are later handed
their respective channel’s impulses by ImpulseProcessor.updateImpulse-
Histories, which in turn got them from DanSense.processSample.

When the latter calls ImpulseProcessor.deriveRhythm, all instances of Update

histograms with

each impulse

DSImpulseHistory are made to update their instances of Histogram ac-
cording to the impulses received since the last such update. Returned
are those histograms’ first significant and maximal peaks, as well as the
sum of all their buckets, i.e., their weight. The first two are interpreted
as beat interval and measure length, respectively.

The metric quotient derived from them is used to create a Histogram Update metric

quotient with

histogram analysis

instance of metric quotients, weighting the channels’ contributions ac-
cording to their histograms’ weights. This histogram gets mixed into an
inert one, whose highest-peaking bucket then determines this process-
ing iteration’s official metric quotient.

Next, the channels’ metric properties are then used to derive the largest Derive beat

interval by votinggroup of channels that can agree on a beat interval, just as described in
Section 4.2.2. Likewise, the update of the inert beat interval requires no
structural explanation beyond the algorithmic description on the one
hand and the documented code on the other.

Depending on a parameter choosing among the options described in
Section 4.2.3, either all instances of DSImpulseHistory are asked to put
their impulses in one instance of Vector, or this is done separately. Apart
from the fact that the downbeat gets detected with yet more instances of

12This number of channels can be double that used in SampleProcessor, in case impulses
are returned separately for the positive and negative sides of the acceleration graph.

88 5 Implementation

Histogram, there are, again, no implementation-related specifics worth
mentioning about this, or the subsequent clustering of impulses.

5.3.6 Helper classes

To sum of the description of DanSense’s classes, descriptions of encap-
sulating and other helper classes follow:

DSImpulseHistory

Each instance of DSImpulseHistory keeps track of one channel’s impulse
history and III histogram. The former consists of a Vector of DSInter-
val instances, which are changed up by calls to the methods add and
trim by ImpulseProcessor.updateImpulseHistories. The method add adds
an impulse, whose intervals are then computed, trim discards too old
impulses along with their respective intervals.

The histogram is kept current through calls to DSInterval.updateHistogram
by ImpulseProcessor.deriveHistory. It is only changed if add has been
called since the last update. Even if not, however, its weight is returned
as a value decreased according to the histogram’s age.

For the two variants of impulse folding, there are two respective meth-
ods: getFoldedImpulses gets passed a Vector and adds all its known DSIm-
pulse instances to it, having applied the measure length’s modulus to
their time stamps. getFoldedImpulsesSeparately uses the method of look-
ing for a sequence of downbeat impulses and folding the sequence at
their positions, before adding the result to the passed Vector instance.

DSImpulse

More than being a mere container of impulses’ magnitude, time stamp
and spread, an instance of DSImpulse also manages references to the
intervals it is constituent of. Apart from adding and removing such
references, it offers the method removeIIIReferences as a precursor to its
own destruction: its call serves to get all the impulses with which it
shares intervals to remove their own references to those.

DSInterval

DSInterval does no more than constructing its own instance from two
of DSImpulse and answering questions for its properties or those con-
stituent impulses.

5.3 DanSense 89

SampleWindow

An instance of SampleWindow is created by simply giving a length. For
each call to replaceValue, the passed value is written to position specified
by a positional counter, that counter incremented and the previously
saved old value returned.

The current contents of the window are returned by getLinearized. The
method circularFilter returns the result from computing a linear combi-
nation of the current window contents (starting where the positional
counter points) whose coefficients are read from an array passed as
parameter. The latter is used by SampleProcessor to smoothen data sam-
ples.

Histogram

Like a normal histogram, Histogram offers the possibility to define its
dimensions, add (floating-point) values to buckets and read them. add
also adds triangles of data, as required by the III histogramming in
DSImpulseHistory. For use with downbeat detection after impulse fold-
ing, addModulo adds triangles in a way that they spill over from one end
of the histogram to the other.

mix can mix in another histogram to treat its own instance as an inert
one. For those cases, getWeight also gets the histogram’s current weight,
decayed according to the time passed since its last update.

Utils

General-purpose functions that do not require their own class are com-
bined in Utils. It contains findMax to find maxima in arrays of type
float and findFirstMax to find the first maximum above a specific thresh-
old. Both allow the setting of an offset where to start searching (e.g., to
avoid the 0 Hz bucket in the FFT’s result) and the size of a window, the
sum over which is used to determine a maximal position instead of the
contents of just one bucket.

Besides minor helper functions, also the FFT implementation itself (c2c-
FFT) is found in Utils.

90 5 Implementation

5.3.7 Options and Defaults

The above descriptions of DanSense’s classes have specifically not in-
cluded every single method, let alone a line-by-line description of the
code. As already mentioned, JavaDoc-style comments have been in the
source and an HTML documentation generated from that.

Missing, however, is a comprehensive listing of all the decisions within
the bounds of last chapter’s algorithmic descriptions that, in the imple-
mentation, have been taken in one of the following forms:

A. fixed by the algorithmic source code,

B. fixed in the static constants’ class DSDefault,

C. left open for run-time deviation from what is set in DSDefault (as
parameter to DanSense.start, or

D. left open for processing-time deviation from what is set in DS-
Default (having its own setter method in DanSense).

In the following overview of such decisions and parameters, each is
prepended a letter corresponding to one of the above degrees of final-
ization. This should also be a helpful list for future work that is rather
interested in improving DanSense than extending it.

Options for the Control Structure

C How many iterations to wait until detected samples are processed?
This is set to five, with respect to limiting additional delays. As
already mentioned, it is computationally very conservative, any-
way, to wait between processing iterations.
Constant: CHANNEL SYNCHRO WAIT [iterations, > 0]

Options for Movement Detection

C How large to choose the window over which the offset for sample values
is computed?
At a sampling frequency of 160 Hz, offsetting over 200 samples
seemed a good compromise between eliminating gravitational
influence and capturing long movements.
Constant: OFFSET WINDOW SIZE [samples]

C How large to choose the window over which the current activity level is
computed?
For lack of a reason to do it otherwise, the offsetting’s constant is
used.

5.3 DanSense 91

A Should the current activity level be determined using arithmetic averag-
ing or using the median?
Currently, the arithmetic averaging is taken, because apart from
the median’s lesser value, no advantage concerning detection qual-
ity could be seen. The median’s code is still contained, but lines
making it effective are commented out.

C How large to demand bulges’ amplitudes to be for them to count as
impulses?
By default they have to reach 80% of the current activity level and
at least have an amplitude of 10% the maximum acceleration. For
noisy signals, the former should be increased well above 100%.
Constants: MIN AMPLITUDE FACTOR, MIN BULGE AMPLITUDE

C What age difference to accept between the starts of bulges for them to
form a pair?
Single movements of a length exceeding more than the one second
appears unlikely, especially considering the lengh of the offset
window. The default has thus been set to 1000 ms.
Constant: MAX MOVEMENT DURATION [ms]

C Should one impulse per significant bulge be output?
By default, one impulse represents both bulges, so the constant
is set to false. This also makes the number of channels treated in
ImpulseProcessor the same as for SampleProcessor.
Constant: SEPARATE SIGNS [true or false]

A Which properties of a bulge to use how for its impulse’s?
In the case of one impulse per bulge, the product of area and
maximal amplitude is taken as the magnitude and the average
between its starting and peaking time as time stamp. The bulge’s
width serves as spread value. In the case of one impulse per pair
of bulges, their combined areas and combined amplitudes are
multiplied to get the magnitude, the common zero crossing is
used as time stamp and half their combined width as spread.

Options for Frequency Analyses

B By what factor and how to downsample sensor values for frequency
analysis?
The sixth line in Pascal’s triangle is chosen as smoothing FIR13

filter (coefficients 1, 5, 10, 10, 5, 1), so the factor is six.
Constant (for the filter): SMOOTH [array of floating-point values]

13Finite Impulse Response filters are such whose output is influenced only on a finite
range by individual impulses. The given smoothing filter is one, because for each
target sample, only the neighbouring six of its corresponding source position are
combined: the given coefficients are those for their linear combination and subse-
quent division by the sum of coefficients.

92 5 Implementation

C How large to choose the window over which the frequency analyses are
computed?
The focus being on the FFT, a downsampling factor of six makes a
window size of 256 extend over a comfortably sufficient interval
of 9.6 s. Due to the chosen FFT algorithm, this must be a power of
two.
Constant: ANALYSIS WINDOW SIZE [samples]

A Which windowing function to use for frequency analysis?
For this, the Hann function (see Appendix A.1) is chosen.

C How to decay the inert frequency analyses?
A variant of Seppänen’s decay formula has been used (cf. Section
4.2.2), whose parameter c is, for several inert contexts, represented
by various constants that will be discussed in Chapter 6 for their
effect. That for frequency analyses is set to 1.14

Constant: FREQ ANALYSES INERTIA

A How to combine the frequency analyses’ (FFT and auto-correlation) beat
intervals to a common value?
Currently, the auto-correlation results are discarded.

Options for Rhythm Derivation

A How to combine two impulses’ properties to an interval’s?
The magnitude is the minimum of the impulses’, the length is set
to their distance in time, and the spread is their spreads’ average.

C What age to allow for impulses to remain in the window of observation,
i.e., how large to choose that window?
A suitable value depends very much on the style of movement.
In the current implementation, though, this parameter should be
chosen identical to the following.
Constant: MAX IMPULSE AGE [ms]

C How large to choose the histograms’ width?
This value should be well below that of the allowed impulse age,
as it is intended to capture recurring features within that period.
By default, it is set to 2 s.
Constant: HISTOGRAM WIDTH [ms]

B How large to choose the width of the histograms’ individual buckets?
The bucket width defaults to 20 ms, limiting deviations from the
actual value (within the precision bounds of the method as such)
to 10 ms.
Constant: HISTOGRAM BUCKET WIDTH [ms]

14Actually, parameters c and d in the formula are preset to some useful dimension,
leaving the factor to be tuned in the one- or two-digit range.

5.3 DanSense 93

C How large to choose the decay factor for the inert histograms of IIIs and
those of metric quotients?
Like in the case of frequency analyses, these are used in Seppänen’s
decay formula. They are set to 1 and 10, respectively.
Constants: MQ HISTOGRAM INERTIA, III HISTOGRAM INERTIA

A How large to choose the shifting window over which histograms’ peaks
are determined?
Five buckets are used. This is more than sufficient when expecting
the histograms’ other parameters to be roughly set in a way that
using single buckets would already be possible.

A What amplitude to demand from histogram peaks to be considered signif-
icant?
The first peak, used for the determination of the beat interval, must
be at least double the average bucket value. As it is computed over
a window, that window’s buckets’ sum must be higher by a factor
of the window’s size in buckets.

A When to discard channels’ metric properties as not trustworthy?
When beat intervals or measure lengths less than 10 ms or above
2 s result, the respective channels are not considered in the remain-
der of the current processing iteration. This also applies when the
histogram’s weight is below 10, but sensible values for that param-
eter are very much dependent on the absolute size of the values
added to the histogram, which, in turn, is primarily determined
by the way impulses’ magnitudes are computed.

B How many metric quotients to consider in their inert histogram?
Considering that metric quotients above 12 involve very unusual
factors (like the mixing of rhythms with metric quotients of 3 and
5), the constant has been set to that value.
Constant: MAX METRIC QUOTIENT [ms]

A What deviations to allow from exact integer multiplicity between chan-
nels’ beat intervals in order to let them support each other in a vote?
They are discarded when the longer beat interval is more than 1.2
times as long as the shorter one.

A How to combine beat intervals determined by histogramming and by
frequency analyses to a common value?
Currently, the FFT value is preferred if it is in proper bounds, i.e.,
between 10 ms and 2 s.

D Should impulses be folded separately for each channel?
In order not to lose rhythmic information by being oblivious to
phase differences (cf. Fig. 4.16), this question is answered nega-
tively (set to false). In case bulges are detected separately for both
signs of a sensor signal, the inherent phase difference between the
two makes it advisable to activate this synchronization. Constant:
SYNCHRONIZE CHANNELS [true or false]

94 5 Implementation

A How large a deviation to allow from the observation window’s length
when selecting candidates for downbeat impulse sequences?
Allowed are chains that exceed the supposedly maximal length
by half a measure and do not fall short of it by more than 1.5
measures. This guarantees that sequences of, for example, only
two large impulses cannot alone influence the measure length by
which their channel is folded.

As anounced before, those values most decisive for the processing of
different kinds of movements will be revisited in Chapter 6, Evaluation.

5.3.8 Front-End Wrapper Programs

Instead of calling DanSense from one’s own program, a way to try the
algorithm are the two supplied wrappers: one for the command-line
shell, one for Max/MSP.

DanSense4Shell

That for the shell is a runnable program called DanSense4Shell. Its mainDanSense4Shell

calls DanSense

from the

command line

method evaluates any arguments, creates an instance of DanSense, sets
that instance’s parameter for the synchronization of channels and calls
its start method with the remaining parameters.

It also hands it a reference to a new instance of its internal class Console-
Output, which implements DSOutput and thus offers a range of over-
loaded functions named send for DanSense to call for output. To seman-
tically distinguish outputs with the same data type, DSOutput defines a
number of constants that are passed to the send functions by DanSense.

It also sends the values Personal Orchestra requires to conduct music
using the acceleration sensors (see Section 5.4). This sending was, ar-
bitrarily, chosen to take place whenever the common beat interval is
received from DanSense.

Command Usage

As for the other command-line programs, the parameter codes given
must directly precede the respective parameter:
java -classpath ".:.." DanSense4Shell c127.0.0.1 w1

The following summarizes the parameters that can be given to DanSense-
4Shell, as well as their default values. Most of the latter are given as
constants defined in DSDefaults and discussed in the previous section.

5.3 DanSense 95

code unit default value
OSC server port p port no. OSC SERVER PORT

PO host c IP no. (none, no PO output)
PO sending port d port no. 1233
PO receiving port e port no. 1234
offset window size o samples OFFSET WINDOW SIZE

freq.-analysis window size a samples (2n) ANALYSIS WINDOW SIZE

fold channels separately? y 0 or 1 SYNCHRONIZE CHANNELS

one impulse per bulge? s 0 or 1 SEPARATE SIGNS

max. movement duration v ms MAX MOVEMENT DURATION

histogram width h ms HISTOGRAM WIDTH

impulse processing freq. w iterations CHANNEL SYNCHRO WAIT

maximal impulse age m ms MAX IMPULSE AGE

minimal magnitude factor f (float) MIN AMPLITUDE FACTOR

III histogram inertia i (float) III HISTOGRAM INERTIA

metric-quot. histogr. inertia q (float) MQ HISTOGRAM INERTIA

frequency analysis inertia r (float) FREQ ANALYSES INERTIA

All this information is also given by the program itself when specifying
no arguments.

Output

The send methods output some figures that are rather interesting for
debugging than to use it. The actual output of the rhythm takes place
textually:

830 850 0 0 0 0 0 0 [measure lengths]

430 430 0 0 0 0 0 0 [beat intervals]

2 2 0 0 0 0 0 0 [metric quotients]

AutoCorr beat interval (first ch.): 468

FFT beat interval (first ch.): 418

12 105 137 340 365 378 435 498 515 520 525 809 820 831 [times]

7 8 7 14 29 19 15 54 43 39 38 8 8 8 [mag.]

O |

common measure length: 860

common beat interval: 430

The first three labelled rows of numbers show the respective value for
all channels, in this case eight. Channels whose values were discarded
by the algorithm are represented by zeroes.

Additionally, the beat intervals determined for the first channel by auto-
correlation and FFT are output. The metric quotient appears to be two,
which fits the fact that this is also the one derived by the two significant
channels.

The next lines give the times and magnitudes of the folded impulses
before clustering to a rhythm. As an interpretative example, one can

96 5 Implementation

see that the impulses with large magnitude are centered at a position
around about 500 ms into the measure. This would, for the clustered
rhythm, then be moved to the beginning of the measure.

This rhythm, with a metric quotient of two, is then displayed by the line
with the characters “#” and “O”. They indicate the conceptual impulses,
the second impulse being weaker than the first. Even lower levels of
magnitude would be indicated by “o”, “.” and “ ” (the space character).
“|” shows the position of the measure’s end.

The last lines show the measure length and beat interval detected, thus
explaining the scale used in the pseudo-graphical line just above.

With the exception of the magnitudes of the rhythm’s conceptual im-
pulses, which needs to be stored until their time stamps are known,
too, all received values are output immediately. Also required to be
stored are the measure length (to be used for the rhythm display) and
the sensor tilt transmitted to Personal Orchestra.

DanSense4Max

DanSense4Max is an external object for use in Max/MSP15 As such, itDanSense4Max

graphically

outputs results

extends MaxObject from Max/MSP’s Java library.

To get input, it declares inlets to whose markers values can then be fed
in a patch. Max/MSP instantiates DanSense4Max on loading a patch con-
taining it. Besides the various numerical inputs to change parameters,
messages start and stop can be sent to the object, calling the respective
functions of DanSense.

In contrast to DanSense4Shell, which could not do this due to its static
nature as a runnable problem, DanSense4Max implements DSOutput
without a helper class. Its send functions immediately hand over data
to Max/MSP’s outlet function, so outputs occur at those outlets that
correspond to the values of the constants in DSOutput that define the
various kinds of output.

While the outlets as such are also defined automatically from the defi-
nitions in DSOutput, inlets have to be changed in DanSense4Max’s code.
This is because their listing in a general DanSense class would not be of
use to other implementations.16

15Those unfamiliar with Max/MSP should have a look at Appendix B first.
16The use of constants to semantically distinguish outputs could also be replaced by

defining a separate function for each kind of output. However, the use of one send
function per data type (integer, float, array of integer, array of float) very well fits
Max/MSP’s equally structured range of outlet functions.

5.4 Personal Orchestra 97

With the exception of the one controlling whether impulses get folded
separately per channel, all parameters are stored internally in order to
be able to supply them to start next time it is called. They, as well as
an example use of the outputs can be seen in Fig. 5.5, which shows the
Max/MSP patch supplied with DanSense.

For reasons of clarity, not all objects and connectors are shown, espe-
cially not the separate patches RhythmGraph and OnsetGraph. These
are referenced in the boxes with the prepended command p and are
responsible for displaying a graphical representation of the rhythm (in
the window “rhythm”) and one of the folded, but not yet clustered
impulses (in the window “impulses”). Whereas the latter are shown
without any borders, the rhythm appears with two vertical lines that
indicate the measure boundaries.17

The parameters shown use the names of the respective variables in
DanSense or, capitalized and with interspersed underscores, occur as
their constants’ names in DSDefaults. With the exception of the one
explained in the text of Fig. 5.5, those constants can all be looked up in
Section 5.3.8.

Throughout the development of DanSense, this Max/MSP patch’s graph-
ical output served as the benchmark. The displayed example is that of a
simple movement of two sensors on a circular path, alternating between
two diameters. The intended pattern “strong–weak” is indeed detected,
but at least in the seconds before the screenshot was taken, one strong
impulse did not coincide with the others.

Chapter 6 will give more examples of the patch’s output.

5.4 Personal Orchestra

Personal Orchestra (PO) is a software developed at the Media Comput-
ing Group, allowing the conducting of recorded orchestral performances
using an optically tracked baton. The influence a user has over the play-
back of the recording can be summarized in three points:

• The audio and video tempo adapts to the frequency of the baton
movements, without changing the audio’s pitch.

• A series of positions in the recording identified as the downbeat
using BeatTapper is made to coincide with the bottom positions
of the conducting gesture.

17The colours used for the impulses chosen along a rainbow scale. If all were coloured
identically, overlapping circles would be hard to see.

98 5 Implementation

Figure 5.5: A Max/MSP patch for DanSense. Shown are the patch with the DanSense4Max object,
its parameters and outputs, but also two separate output windows on top. The param-
eter outputSensor chooses the sensor for some outputs that are not given to all due to
space constraints: the raw data on the top right, the frequency analyses’ graphs at the
bottom and the III histograms in the middle, alongside their extracted beat intervals
(“BI”), measure lengths (“ML”) and metric quotients (“MQ”). In case there is only one
histogram per sensor axes, those of a neighbouring sensor are shown as well. File-based
communication is indicated by dashed lines, objects are dashed when static, i.e., when
not instantiated. For more information on parameters and the patch’s structure, please
refer to the main text.

5.4 Personal Orchestra 99

• The direction the baton is held into while conducting emphasises
the instrument group in the respective part of the orchestra, as-
suming a calibrated position of detector and screen.

To demonstrate the theoretical use of acceleration sensors as input de- PO has been

adapted to accept

accelerometer

input

vices for conducting, a recent version of PO has been adapted to receive
information from DanSense. Assuming that one sensor is used for the
conducting, the current beat interval is used to determine the playback’s
tempo. One axis’ tilt is interpreted as an indication of which part of the
orchestra to emphasise. In order to avoid abrupt tilt readings due to the
permanent oscillation of the sensor, an average over a certain number
of past samples is used.18

While the common beat interval of all sensors is that also sent to PO,
only one sensor’s axis can sensibly be used to derive the tilt value. For
this, the sensor with the most regular movement (determined by the
III histogram weighing most, cf. Section 4.2.2) is determined and its
‘second’ axis taken. In the case of the used sensors, this makes sense as
their form intuitively suggests to use the other one for producing the
beat interval readings.

As the delay of 200 ms incurred by the used version of Sense4Motion
does not allow the sensor movement’s phase to be used as real-time
input for beat synchronization, that functionality has been left out in
favour of an interpolation of guessed downbeat positions. Experience
shows that, once the system has adapted to a change in tempo, the
user instinctively gets his movement in sync with the music’s downbeat
positions, thus giving the illusion of real-time behaviour. The temporary
changes in movement frequency necessary for this synchronization have
no noticeable effect on the music’s tempo, as they get blurred in the
processing algorithms’ window of observation.

5.4.1 Data Transmission

The sending of tempo and tilt information is initiated by DanSense and
performed by DanSense4Shell via UDP datagrams. The information is
sent each time a rhythmic analysis is performed, but the UDP socket is
only opened once, when DanSense4Shell starts.

The data is sent as a simple concatenation of two four-byte IEEE float val-
ues. The used Java class ByteArrayOutputStream converts the floats to to
big-endian byte representation independently of the machine DanSense
is run on. This fits the big-endian architecture of Macintosh computers

18This is responsible for one of the required instances of SampleWindow in SamplePro-
cessor.

100 5 Implementation

(on which the used Objective-C is dependent), which is why on the
receiving end, no further conversion beyond a mere cast is necessary.

5.4.2 Changes to the Program

As part of the adaptation, the class POCP ServerDanSense has been cre-
ated and those named StateMachine and UserInput have been changed.
Their relationship is sketched in Fig. 5.6 and described below.

DanSense4Shell

Personal Orchestra

DanSense

UDP

UserInput

StateMachine[...]

POCP_ServerDanSense

[...]
[...]

Figure 5.6: The DanSense adaptation of Personal Orchestra. As before, the
subboxes represent classes, red indicating DanSense, blue software
created by others (in this case at the Media Computing Group) and
yellow auxiliary code, here the adaptation of Personal Orchestra to
use accelerometer data as input.

POCP ServerDanSense is a changed version of the existing POCP Server.
It contains methods to accept a UDP connection and receive data.

An instance of POCP ServerDanSense is created by StateMachine, which
hands the former a pointer to its own instance, thus enabling POCP Ser-
verDanSense to call methods of StateMachine. The latter, in its changed
version, contains state variables on the current tempo, sensor tilt, current
beat (in PO terms this means the downbeat phase, i.e., the position

5.4 Personal Orchestra 101

relative to the bounds of the current measure) as well as the time of
those values’ most recent setting. Apart from a setter method, it also
features such to get the set values.

In the case of the tempo, the average value between the previous and the
newly received one is used to provide a smoother input for the audio
stretching system.19 Also, the mentioned interpolation of downbeat
positions takes place here.

The values are read by the instance of UserInput, the class containing the
methods used by the playback system and user interface for deriving
conducting information. In two of its methods, code has been changed
so that now, the values sent by DanSense are used to determine tempo,
instrument emphasis and their respective control displays.

Only minor are the changes made to allow tempi in excess of four times
the standard. One obvious reason for this is the increased fun involved
in getting the orchestra to play at 600 bpm. A more serious one is that
very low readings of the beat interval set such a high tempo that many
interpolated downbeats quickly accumulate. Even if this is only in effect
for a short while, normally-paced downbeats will later be added to
the ‘pile’, forcing PO to spend a long time catching up with all those
individual downbeats that have meanwhile accumulated. In order not
to have the tempo set to a low maximal tempo for the rest of the piece,
short-lived and seemingly unreasonable tempi should be allowed.

Such changes have been applied to STF AudioTimePitch, STF Audio-
TimeStretch and STF Synchronize by setting respective factors to 10 or
0.1. As other changes to the code, they can be found by searching for
upper-case “DANSENSE” comments.

19The tilt, as mentioned, is already sent by DanSense as an interpolated value.

103

6 Evaluation

6.1 Test of Intended Features 103

6.2 Suitable Parameters 108

6.3 Tests with Dance Movements 109

6.4 Conclusions . 112

On the one hand, the screenshot of Max/MSP’s graphical output already
showed the used algorithms to give a clear indication of a rhythm when
fed with simply structured movements’ data. On the other, empirically
justified skepticism concerning the complex nature of dance movements
was voiced in Section 4.1.2. Such a mixed message is going to be this
chapter’s.

First, a few tests that come to mind are constructed and evaluated. Later,
the appropriate setting of parameters for their most effective analysis
in a dance context is discussed, and results of DanSense’s application
to recordings of such movements are described. While this chapter
concludes with a final assessment of this thesis’ success, a treatment
of possible changes beyond those of mere parameters are deferred to
Section 7.2, Future Work.

6.1 Test of Intended Features

The theoretical soundness of a good portion of the proposed ideas is + Simple patterns

are detected

correctly

proven by the fact that moving the sensors in a well-defined way yields
a result mirroring the intent. Supplying a continuous repetition of the
sequence strong–weak–weak along one axis, Max/MSP displays

104 6 Evaluation

• a roughly correct measure length1 and
• three equidistant circles, the largest at the beginning, the others at

relative positions 1
3 and 2

3 of that interval.

Figs. 6.1 to 6.4 are to illustrate the above claim with the described and
other manually induced rhythms. They each show a screenshot of about
five seconds’ sensor data on top and corresponding histograms below.
Their extracted values (beat interval, measure length and metric quo-
tient) appear on the right and the resulting rhythm at the bottom. Except
for a longer setting for allowed impulse ages (5 s), standard parameters
have been used. The diagrams’ sensor graph extends over about 5 s, the
histograms over 2 s and the full width of the output window (except in
the first example, where it is smaller) represents about 1.6 s.

Figure 6.1: Circular sensor movements I. Shown are a circular strong–weak
movement (left) and a strong–weak–weak version (right) with two
acceleration sensors. The resulting rhythms were first obtained after
four and six seconds, respectively. On the right, one can see that the
bulges appear to have a decreasing magnitude. This is either due
to human imperfection by failing to produce movements of equal
strength or equal distance, or to the fact that bulges might be paired
up by the algorithm in a way that combines the latter strong bulge
(negative) with his weaker successor on the positive side.

Taking care to keep the movement uniform, it is also possible to effect a– Downbeat is not

always output at

measure’s

beginning

size ordering on the beat-level positions (strong–medium–weak–weakest).
Attempts at this, however, show the same fault that could also be seen in
the diagrams of Fig. 6.3: although histogramming is used to determine

1The precision of the only “roughly correct” measure length could be improved by
making the buckets of the III histogram smaller, extending the analysis window
(for the FFT), decreasing the downsampling factor or using auto-correlation. But,
with respect to the resulting rhythm, imprecise readings of beat intervals or measure
lengths appeared not to be the source of problems, especially considering that the
finally used value is computed as a weighted average.

6.1 Test of Intended Features 105

Figure 6.2: Circular sensor movements II. Again, circular movements of two
sensors are shown, this time a strong–3×weak version (left) and a
strong–4×weak one (right). The resulting rhythm was first obtained
after nine or 14 seconds, respectively. A reduction of the III his-
tograms’ intertia to 7, that of the metric quotient’s histogram to 0.1
and that of frequency analyses (here: FFT) to 0.9 let the latter delay
shrink to 5 s. Again, magnitudes are uneven in both cases. The in-
creased strength of the last one on the right may, again, be due to a
mixing with the strongest movement. However, the second would
then seem to get some share of that magnitude, as well, so there
must be other factors. Those are, in both cases, human in nature:
either there is an inclination to move stronger at near the intended
strong impulse, or imprecision in the impulses’ spacing leads to a
clustering that mixes old downbeat impulses into others.

Figure 6.3: Circular sensor movements III. The movements shown are both
intended to be of metric quotient four: the left one of the kind
strong–strong–pause–pause, the right one of strong–strong–weak–weak.
Nevertheless, the derived metric quotients are different. Apparently,
creating the pauses at the right distance did not succeed completely,
also the aftershocks contributed to form a third beat.

106 6 Evaluation

Figure 6.4: Circular sensor movements IV. Here, a sequence of five equally
strong movements was intended, but the latter two should only
have half the others’ duration, like three quarter notes being fol-
lowed by two eights. DanSense infers a metric quotient of four,
which can be called correct in the sense that the counting would
probably not occur in the interval of “eigth notes”.

the position (in the measure of folded impulses) that should become the
measure’s beginning, the conceptual impulse on count 1 is not always
the largest. Apparently, the dynamics of clustering are not completely
done justice by the histogramming technique.

Detection-wise, problems occur once rhythms with a metric quotientHigh metric

quotients are

problematic

of above five are tested: the first and third histograms shown in Fig.
6.5 have their maximum at their first bulge, so only the other two vote
for six as the metric quotient. At sensors one and three, the difference
in magnitude between the intended downbeat impulses and one mea-
sure’s remaining five seems to be too small to let the pairs of downbeat
impulses outweigh the sheer number of pairs that are only one beat
interval apart.

One might instead try to create a complex rhythm by combining two– Common metric

quotient prevents

detection of

combined rhythms

sensors’ information. The pattern given in Fig. 4.16 may serve as a
simple example: with each one of two sensors, an equidistant sequence
of impulses is created, but with a phase difference putting one sensor’s
impulse exactly between to of the other. If one sensor is moved more
vigorously than the other, a strong–weak pattern should emerge, the
figure conveys. It turns out that this only works in case there is some
channel supporting the hypothesis that the metric quotient is two, or
if that belief is still existent by the metric quotient’s inertness. In a
‘clean’ environment, however, moving the sensors precisely as described
will make all channels report a metric quotient of one. This makes it
impossible for them to agree on strong–weak, even if their impulses are

6.1 Test of Intended Features 107

Figure 6.5: III histograms of a movement with metric quotient six. Two of the
four sensors slightly favour the determination of one as the metric
quotient, because their first bulges are, although by only a tiny
amount, their respective largest.

folded together and thus keep their phase information. Fig. 6.6 shows
DanSense’s analyses of attempts at employing a phase difference.

Figure 6.6: Attempts at creating rhythms through phase differences. The left
diagram shows the data of one sensor that is alternately moved
along its two axes, at different strengths. Although two channels
read a metric quotient of three, that of two prevails and yields the
intended rhythm. As the vote on the metric quotients came from the
channels themselves, the movement along the axes was, apparently,
not exclusive, but also influenced the other, leading to strong–weak
rhythms on both channels and thus also in the combination. In
the right-hand diagram, however, alternation takes place between
sensors (this can’t be seen, as always only one sensor’s data graph
is output). The moved axes’ channels each report a metric quotient
of one, and as these feature the histograms with the highest weight,
this value is used for the combined rhythm, which therefore only
consists of a single conceptual impulse. (Note: Histograms are
not scaled up in order to give a proper comparison to the other
diagrams.)

108 6 Evaluation

Anyway, the use of histograms’ weight as a factor in decisions proves+ Histograms’

weight properly

indicates relevance

useful, as is already shown when one person moves one sensor regularly
and another moves a different one chaotically: the regular rhythm is
clearly detected.

A doubt raised in Section 2.1.1 was that the sensors’ limited accelerationClipping appears

to have little effect range and the fact that they appear not to be centered at 0 g might lead
to excessive clipping and thus hamper the detection of movements.
Deliberately turning a sensor in Earth’s gravitation so that even at rest,
the signal’s graph is near the maximally possible amplitude, constitutes
a worst-case scenario, in this respect. But, even then, the acceleration
toward the hardly measurable direction suffices to produce bulges in
the graph that register as movements. It should be kept in mind, though,
that in case positive and negative bulges are treated separately, those
representing the ‘disadvantaged’ side will hardly show differences in
magnitude.

Stability could be another criterion for judging the algorithm’s quality,+ Parameters

allow precise

adaptation to

known demands

but with the three parameters influencing the inertia of III histograms,
frequency analyses and the histogram deciding on the metric quotient,
stability as such is easy to achieve.

The main challenge is to calibrate the aforementioned parameters to fit
the expected performance: a rhythm expected to be constant throughout
the analysis period will allow for the conservative addition of new
values, while in other cases, the output metric quotient should rather
not remain constant at one value for half a minute if all channels have
consistently voted for another throughout that period.

6.2 Suitable Parameters

Precisely this trade-off is a major problem with dance movements. While
the useful ranges of the parameters described in the previous chapter
were quite large, they have to be calibrated more carefully in the case of
dance performances appear. Sensible settings (whose de-facto effective-
ness will be discussed in the next section) appear to be the following:

• Set the maximal duration allowed for a single movement (MAX

MOVEMENT DURATION) according to the expected abruptness. In
a disco dance, 500 ms should be more than enough.

• Set the maximal impulse age (MAX IMPULSE AGE) to at least three
times the expected pattern length, probably the underlying mu-
sic’s measure length. This should minimize problems like those
shown in Fig. 6.5 and allow a search for sequences of downbeat
impulses: in the example of a piece at 120 bpm, a measure extends

6.3 Tests with Dance Movements 109

over 2 s, so in a time frame of 7 s, at least three downbeat impulses
should be found.
• Set the inertia for the III histograms (III HISTOGRAM INERTIA) to a

(double-digit) value that makes peaks persist for a few measures,
allowing the respective channel’s vote on the metric quotient to
remain constant in the face of a temporary lack of supportive
intervals.
• Similarly, set the inertia for the frequency analyses (FREQ ANALYS-

IS INERTIA) to one that makes it just robust enough. In the current
form of the chosen algorithm, the FFT is the prime determinant
of the beat interval, thus this factor should perhaps be chosen
highest in unstable circumstances.2 The histogram’s metric long-
term influence, in contrast, is once more secured by the...
• inertia of the histogram that keeps track of past ‘sentiments’ on

the metric quotient (MQ HISTOGRAM INERTIA). One is tempted to
set this very high, but once there is a change of metric quotient in
the piece, the emerging discrepancy may take long to correct.

It turns out that a mismatch of the inertial parameters can lead to effects
like a consistent metric quotient, but a varying beat interval. But then
again, the parameters that lead to this effect might otherwise produce
good results on the signal in question.

6.3 Tests with Dance Movements

Among the about thirty recordings made with different dancers, none
had a stable reading with parameters that just about proved sufficiently
stable to show a consistent reading when moving a sensor by hand.
Even adherence to all the above rules did not yield a convincing reading
using the dance recordings.

One could argue that reading a metric quotient of two for more than
half the duration of a performance along Rhythm Is A Dancer (cf. the
signal graphs in Fig. 4.8) is not bad considering the underlying music’s
metric quotient of four. But this should rather be called a step in the
right direction, as deriving that two is a factor of the metric quotient is
surely easier than deriving the correct one.

Figs. 6.7 and 6.8 uses the mentioned example to show the volatility of
DanSense’s output.3

2Its default value has nevertheless been chosen comparably low to yield an acceptable
adaptability to intended tempo changes when DanSense is used in connection with
Personal Orchestra.

3This section’s parameters were, besides default values, a minimum magnitude fac-
tor of two and inertial factors for III histograms (ten), metric quotients (0.7) and

110 6 Evaluation

Figure 6.7: Rhythm output for Rhythm Is A Dancer. The left diagram shows a
proper detection of the danced metric quotient, at least the under-
lying music’s, which is four. The measure length, however, should
be 1.9 s, but is less than half that figure. The diagram on the right
shows the situation about one second later, as can be seen from the
shifted sensor graph. The beat interval has doubled, approaching
its correct value.

Figure 6.8: Faulty rhythm output for Rhythm Is A Dancer. In addition to the
previous diagram’s doubled beat interval, now the metric quotient
has increased to a wrong value, five.

The main problem appears to be the movement detection, considering
the comparably high quality of the results when moving the sensor in
a controlled fashion. But also in the case of, for example, the Cha Cha
moves performed by a professional dancer and shown in Fig. 4.6, the
algorithm requires a quite high value of histogram inertia for the metric

frequency analyses (1.3).

6.3 Tests with Dance Movements 111

quotient (around two) to stick to its most prominent output of a metric
quotient of two. A look at the data excerpt of the mentioned figure, this
should rather be a four. Trying this strong–strong–pause–pause by hand
shows that such a sequence can theoretically be detected. Apparently,
little phase differences between the channels prevent the correct metric
quotient from ‘locking in’. Fig. 6.9 shows one of the better moments of
the analysis.

Figure 6.9: Rhythm output for a Cha Cha dance. Despite not capturing the
intricacies of the rhythm as could be seen in 4.6, a correct metric
quotient is used for the output.

Had the results of the algorithm’s application to dance recordings be
more promising, the originally envisaged benchmark, could have played
a role in this evaluation. That was letting the dancer judge in how far
the output matches his (or her) intuitive idea of the rhythmic pattern he
produced. But, as long as DanSense only produces acceptable results
for movement of the sensors by hand, such a study appears baseless.

In any way, the taken sensor recordings can, just like the programs’
source codes, be downloaded from:
media.informatik.rwth-aachen.de/enke.html.

There, it is also indicated at which body positions the various sensors
were located during the recordings. A hint on the best location for the
sensors could not be derived due to the wide variety of styles tried, rang-
ing from standard dance steps (Rumba) over popular choreographed
dances (Macarena by Los del Rio, 1993) to music not associated with any
specific movements (Moondance by Nightwish, 1998).

media.informatik.rwth-aachen.de/enke.html

112 6 Evaluation

6.4 Conclusions

Considering the lack of precision the task description bore due to the
lack of a specific target application, a conclusion as to how far the aim
was reached can only be equally vague. The following statements can
be made:

• The movement detection works well with simple movements like
when waving with one’s hand, but has difficulties discerning im-
portant from unimportant acceleration onsets when applied to
complex dance movements.

• Given rather regular sequences of impulses as input, the chosen
algorithms successfully infer metric properties.

• The frequency analysis using the Fourier transformation helps to
stabilize the common beat interval derived from several sensor
channels’ inter-impulse-interval histograms.

The main problem the evaluation showed is that the erratic movement
extraction from complex movements can only with considerable limita-
tions regarding responsiveness and flexibility of the system be converted
into a clean and steady output. Lester [Les86, p. 77] writes about mu-
sical rhythm: “Once a metric hierarchy has been established, we, as
listeners, will maintain that organization as long as minimal evidence
is present.” In DanSense as well, the various inert data structures (III
histogram, histogram of metric quotients, beat interval and magnitudes
of the rhythm’s conceptual impulses), lead to a quite conservative be-
haviour when registering information that contradicts the stored values.

Before suggestions of how this can be changed are subject of the next
chapter, some concluding ‘should-haves’ are in order:

• The question of how to derive rhythmic structures may be aca-
demically more interesting, but in retrospect, a better movement
detection appears more important. It is unclear, though, how
much room for improvement there is.

• Instead of applying algorithmic changes to the chosen histogram
approach, the focus might better have been on doing a compara-
tive study of simple versions of various methods.

• Had the topics “movement detection” and “rhythmic analysis”
been declared two separate and ranked aims, their separate de-
velopment and testing could have benefited both by clarifying
modules’ individual deficiencies.

What cannot be seen from this thesis at all are the different development
stages the algorithms and implementations lived through. DanSense
started as a Max/MSP patch, changed into a number of external Max/

6.4 Conclusions 113

MSP objects, then found its way encapsulated as a single Java object be-
fore being split again so as to make the mentioned modularity possible.
Although these are no conclusions regarding academic content, there
are some lessons to be learnt regarding the planning of projects and the
deliberation of when to rather write code and when to rather rely on
rapid prototyping tools.

The resulting code, at least, should be quite legible and thus make
it possible for a continuation of the project not to rely on the ideas,
diagrams and pseudo-codes described in this printed (or PDF) version.

115

7 Summary & Future Work

7.1 Summary . 115

7.2 Future Work . 116

7.2.1 Alterations to Algorithmic Decisions 116

7.2.2 Extensions to Algorithms 117

7.2.3 Completely Different Approaches 119

7.2.4 Concept Changes 119

7.2.5 Extensions to the Original Aim 120

7.1 Summary

Recalling the aim of this thesis, an algorithm should be developed and
implemented that derives a rhythmic representation from accelerometer
data using a specifically supplied prototype of a sensor package. The
kind of movements to analyse was not specified, nor was the term
‘rhythm’ or its desired representation formally defined. (Chapter 1)

Contemplation of what might be suitable led to the notion of rhythm
as a set of conceptual impulses, characterized by their mutual intervals
and relative magnitude. Defining measure length and beat interval
as the determinants of rhythm’s recurrence and internal structure, it
was suggested that conceptual impulses appear on positions specified
relative to the bounds of one rhythmic pattern. (Chapter 2)

Previous work studied for inspirational input included such employing
movements for musical purposes, as well as such analysing music for
rhythmic aspects. Whereas none of the former had done a survey of
how to detect movements in sensor data, the latter research provided

116 7 Summary & Future Work

several ideas for rhythmic analysis, like interval histograms and types
of frequency analyses. (Chapter 3)

Adapting the ideas to this thesis’ setting, a pipeline of algorithms was
developed to detect movements from the sensors’ signals and derive a
rhythm from them, specifically determining measure length and beat in-
terval, but also the downbeat as the most prominent conceptual impulse.
(Chapter 4)

These algorithms were implemented in Java, as a library called Dan-
Sense, together with example front-ends and some helper applications
that turned out helpful during the parallel development and evaluation
of the algorithms. Also, as a proof of concept, conducting software was
changed to process input from the given accelerometers. (Chapter 5)

Comparing the implementation’s detection results for various parame-
ter settings, the usefulness of the developed algorithms and implemen-
tations was compared with the original aim and found to be on the right
track, but not yet suitable for use in an end-user application. (Chapter
6)

The following, final section will now discuss possible ways to improving
DanSense.

7.2 Future Work

The ways that this thesis could lead to further activities can be classified
in five categories:
• alterations of minor algorithmic decisions taken,
• extensions to the described algorithms,
• complementary use of wholly different approaches,
• changes to fundamental concepts and
• extensions of the aim originally set.

7.2.1 Alterations to Algorithmic Decisions

Apart from changing the constants that determine parameters like win-
dow sizes, the decay of histograms or the minimal magnitude for move-
ment detection, various choices in algorithmic design have been taken
that require actual code changes to alter. Among possible questions to
be asked are:
• How to prepare the signal for proper analysis?

The low-pass filtering could be extended considerably, e.g., remov-
ing all frequencies below those one wants to detect.

7.2 Future Work 117

• How to derive impulses’ properties from their respective bulges’?
For example, peak times instead of attack times could be used as
time stamp. In the case of clipped sensor graphs, the middle of the
clipped area could be considered the peak and a higher magnitude
extrapolated.

• What to consider a significant movement?
Is it possible to specifically detect unintentional aftershocks by
some other way than counting bulges alternately on both sides?
Perhaps the relation to the last detected bulge’s size can play a
role. Also, the current level of activity could be determined by the
frequency of detected bulges instead of the average sample value.

• How to define intervals’ properties using their constituent impulses’?
Some function may be better suited to yield a common magnitude
than the minimum function.

• How to combine metric structures derived using Fourier transformation
with those yielded by the histogram approach?
There may be some ingenious way of discarding chaotic channels’
input, but in any case a comparison of all channels’ votes with
previous values appears more promising than using a potentially
wildly varying Fourier reading.

• How to fold impulse sequences?
Reliance on the downbeat alone may no longer appear to be a
good idea if one considers that the similarity of whole measures
could be compared. If some kind of auto-correlation were to be
applied, downbeat sequences might get some confidence rating,
or be derived where this previously was impossible.

• How to find the correct downbeat position and cluster beginning with
the downbeat?
The derivation of the downbeat and the maximal downbeat se-
quence might be improved by executing them in combination.
Currently, the downbeat is determined via histogramming, a tech-
nique whose problems have been described in Section 6.1. It might
instead be found by the sequence detection, that is anyway being
done. An alternative for the clustering along the metric grid would
be an iterative version, i.e., clustering at an increasing coarseness.
This would, in a way, do histogramming and clustering at the
same time.

7.2.2 Extensions to Algorithms

The following ideas represent considerable deviations from the current
algorithm:

118 7 Summary & Future Work

• The question of how intensively to filter the signal might not be
answered at all, letting the algorithm run on various versions
of the signal at different levels of smoothness, then choosing the
most promising information on a per-sensor basis. Different signal
versions might be differently suitable for movement detection and
frequency analyses.

• Movement detection could take place across sensors, or at least
across all of one sensors’ axes. This could take place by either cal-
culating the sum of squares, or using a combined rule-base scheme
that uses one axis’ information to improve detection quality on
the other, like mutual support of bulges.

• The detection of the metric quotient might make use of the knowl-
edge of the beat interval, which, in the case of the FFT, is derived
independently, anyway. As mentioned in Section 6.2, beat inter-
val and metric quotient sometimes start to mismatch abruptly. In
a combined approach, the algorithm might conclude that a sud-
den doubling of the beat interval should either not occur, or be
matched by a doubling of the metric quotient. This would also
counter problems with III histograms’ readings for the measure
length, as shown in Fig. 6.5.

• Determining the beat interval using III histograms’ peaks could
be changed to some form of Seppänen’s greatest common divisor,
as described in 3.2.1.

• Should the III histograms’ new vote on a metric quotient contratict
the latter’s inert histogram, the III histograms could be searched
for evidence of the inert information. This way, unreasonably long
persistence of outdated metric quotients could be prevented, but
still the case avoided that little histogram changes have a decisive
impact.

• Instead of folding a whole sequence of impulses into one measure,
they could be searched for multiple such sequences. In certain
cases, this may give hints to an ongoing tempo change.

• The algorithm could be told which sensor is attached where and
change parameters or even methods according to the kind of data
that can be expected from there. This could even be extended by
specifying sensor positions in combination with kinds of dances.

• Rather than the current alternatives of either first folding all chan-
nels’ impulse sequences and then combining them, or folding their
combined sequence, the latter could be changed to detect phase
differences between limbs. Currently, the folding is oblivious to
whether the impulses came from eight sensors or from a single
one.

7.2 Future Work 119

7.2.3 Completely Different Approaches

Other possible changes rather involve a change of than in the algorithm.
Methods listed in Section 3 could be checked again for their applicabil-
ity.

• Smith’s [Smi99] Wavelet spectrograms, may, in combination with
adapted image processing, also be applicable in a real-time context
and fare better in the face of noise than expected.

• Similarly to Cemgil’s and Kappen’s work [CK03], setting up an
grid of expected bulge positions, or a probability map of such,
might clear up some noise in the movement detection.

• Gouyon’s and Herrera’s high-level auto-correlation [GH03] may
help finding from one metric level to the next. Considering that
DanSense currently only considers one metric subdivision, the
beat level, this is almost an entry for the next group. Also, implau-
sible impulses could be dismissed and equidistant groups of them
supported if their cardinality equals the metric quotient.

• Consistent phase differences between limbs may even give hints
on the underlying rhythm, rather than making its detection diffi-
cult.

7.2.4 Concept Changes

Apart from the already mentioned increase of metric hierarchies, other
fundamental changes could include:

• Deriving rhythms for separate channels and later combine them
either by addition or by building some kind of product, depending
on their phase difference.

• Not demanding a rhythm’s conceptual impulses to occur on the
metric grid, but impartially look for arbitrary clusters and repre-
sent each using one conceptual impulse.

• Deriving several rhythms whenever a single one seems not to fit
well to channels otherwise appearing to not be dominated by noise.
If a leg is moving with a different metric quotient or measure
length than an arm, they would currently agree on one of them,
if they are multiples of each other, or consistently sabotage each
other’s detection.

120 7 Summary & Future Work

7.2.5 Extensions to the Original Aim

As already mentioned in the introduction, the rhythmic detection around
which this thesis is centered was intended as an intermediate step to de-
rive music from rhythm. Another one was the classification of rhythms
according to a database of more or less famous named rhythms and their
features. As noted by Smith [Smi99, p. 86], such databases already exist,
but using automatic clustering and similar machine learning techniques,
they could also be automatically generated by supplying an initial set
of pieces from which to learn.

Other applications can be sought once Sense4Motion’s delay of 200 ms
is substantially reduced: real-time applications would become possible,
like supplying phase information to Personal Orchestra in order to have
direct control over the downbeat.

Furthermore, instead of relying on accelerometers, the input data could
be replaced by any other input transformable into a series of impulses.
Theoretically, any of the sensors mentioned in Section 3.1 could be used,
provided the data reception and sample processing parts of DanSense
are adapted. In this context, it would also help if the sending side (or
the respective proxy program) sent some semantic information on their
structure: for example, the used acceleration sensors could specify their
axes as such, instead of merely providing a number of signals that might
or might not be related to each other.

121

A Methods of Frequency
Analysis

A.1 Fourier Transformation and the
Frequency Domain

Any real-valued, continuous and periodic function can, as stated by the
French mathematician Joseph Fourier, be represented as a constant term
plus a linear combination of simple sine and cosine waves of various
periodicities. Given such a function, knowing the factors of this linear
combination means knowing about the relative prominence of frequen-
cies in the given function. Instead of, for each frequency, specifying the
sine’s and the cosine’s coefficients, the same information can also be
given as a single sine’s (or cosine’s) magnitude and a phase.

In the example of accelerometer signals, one would hope to find the
beat interval and measure length of the rhythm underlying the move-
ment among the, magnitude-wise, most prominent frequencies. Such
signals differ from the mentioned conditions in two ways: they are not
continuous and not periodic.

Periodicity is conceptually assumed and only a finite part of the signal
considered. In order to prevent frequency content from unintentionally
emerging due to a certain misfit of the signal’s end and its beginning,
various windowing functions are used that dampen these ends, making
the transition smooth. In DanSense, the Hann function (see Fig. A.1) is
used.

Discretely sampled and thus non-continuous signals can be analysed
for frequency content as well, using the Discrete Fourier Transformation

122 A Methods of Frequency Analysis

 0

 1

 1

fa
ct

or

time [s]

Figure A.1: The Hann windowing function. In this plot, the horizontal axis
extends over the interval [0, 1], but when applied to a specific sig-
nal window, it needs to be stretched to cover all samples, e.g.,
from 1 to n. The function, the plotted equation being y(x) =
1
2 (1− cos(2πx)), is named after Julius von Hann, an Austrian me-
teorologist.

(DFT)1. While the name correctly suggests the existence of a continuous
variant of this transformation, it is not relevant for this thesis and thus
not further treated.

Given a finite signal with real-valued samples x0, . . . , xn−1, the DFT
yields the sine and cosine coefficients as the real and imaginary parts of
complex numbers2 X0, . . . , Xn−1 by the following formula:

Xk =
n−1

∑
t=0

xte−2πik t
n , ∀k = 0, . . . , n− 1.

The desired information about frequencies’ prominence in a signal can
be obtained by applying the DFT to it and then computing the absolute
value of each Xk.

Which frequency components are represented by Xk depends on the
sampling frequency. Be that f , then X0 represents 0 Hz and X0.5(n−1)

represents 1
2 f , the frequences in-between being equidistantly distributed

among those Xk with 0 < k < 1
2 (n− 1). The remaining half of X mirrors

the first.

There is an inverse to the DFT, the iDFT:

xt =
1
n

n−1

∑
k=0

Xke2πik k
n , ∀t = 0, . . . , n− 1.

1DFT is often used as an abbreviation for Discrete Fourier Transform, but according to
the Oxford English Dictionary, a “transform” is not a transformation, but the result
of its application.

2Generally, the input signal can be complex itself, but this case is not relevant in the
given context.

A.1 Fourier Transformation and the Frequency Domain 123

Its existence makes it possible to convert a signal into its frequency
representation using the DFT, changing that (in the frequency domain)
and finally converting the result back using the iDFT. One application
for this is the dampening of certain frequencies by multiplying the
frequency-representation coefficients by which they are represented
with small factors.

A.1.1 Fast Fourier Transformation

The Fast Fourier Transformation (FFT) is a quick method of computing the
DFT for signals of a length (or period) that is, in the best case, a power
of two.3 The central idea is to divide the DFT sum into two:

Xk =
n−1

∑
t=0

xte−2πik t
n

=
n
2−1

∑
t=0

x2te−2πik 2t
n +

n
2−1

∑
t=0

x2t+1e−2πik 2t+1
n .

Those two sums, again, each compute a signal’s DFT: of the even and
odd positions in the original signal, respectively. So the procedure can
be applied again and again, as long as the resulting halves are of even
length. As opposed to the plain-DFT complexity of roughly O(n2), the
FFT is computed in O(n log n).

A.1.2 Convolution

In Section 3.2.2 the term convolution was mentioned in connection with
the smoothing of a rectified signal using the Hann windowing function.
The convoluted signal f ∗ g of two signals f and g is defined as

(f ∗ g)t =
∞

∑
k=−∞

fkgt−k.

Here, the index t specifies the (time) position within the signal. The sum
can actually be computed within finite bounds in case one of the signals
is non-zero over a finite interval.

Be f now a discrete realization of the Hann windowing function, re-
centered to peak at f0 = 1 and being ft = 0 for all t /∈ [−5, 5]. Then,
for each sample gt of the signal g, the samples gt−5, . . . , gt+5 would be
multiplied in pairs by f−5, . . . , f5 and summed to yield (f ∗ g)t. Due

3To be precise, this is the simplest among a whole range of FFT algorithms.

124 A Methods of Frequency Analysis

to the hill-like nature of the Hann function, the resulting value is an
average of f around ft. Doing this for every t, a smoothed version of f
as a whole results.

Convolving two signals is, with the exception of a constant factor, equiv-
alent to applying the iDFT to the component-wise product of their in-
dividual DFT transforms. Using the FFT, the computational effort for
convolution can thus be considerably reduced from O(n2) to O(n log n).

A.1.3 Comb Filters

In the processing of discrete signals, a filter is a function transforming
one signal to another. A comb filter can be imagined as adding echoes of
a signal to itself. Generally, such a filter’s output signal y1, . . . , yn results
from the input signal x1, . . . , xn as follows:

yi = axi + bxi−t + cyi−t,

where a, b and c are parameters and t is, put simply, the echo interval.

Fig. A.2 shows a graphical example and thus motivates the filter’s name.
Mathematically, the application of a comb filter is a convolution of
the signal with the spiky comb signal. Like any other convolution, its
application can be sped up by making use of temporary conversion into
the time domain using the FFT.

A.2 Auto-Correlation

Formally, for a signal with samples s1, . . . , sn, the auto-correlation func-
tion A is defined as

Aj(s) = ∑
i=1,..., n

2

(si · si+j)

for all values j = 1, . . . , n
2 . In the resulting array A, all positions j

represent a time lag of j · T, T being the sampling interval. If the array’s
value at a position is high, it means that the signal is similar to itself
when shifted by j · T. For example, for a signal sampled at T = 5 ms of
a piece with a rhythm that repeats every second, the value at j = 200
should stand out.

If the signal is considered infinite (i.e., at its end to loop back to its
beginning) then one can check even larger lag candidates j = 0, . . . , n− 1
using

Aj(s) = ∑
i=0,...,n−1

(si · s(i+j) mod n).

A.2 Auto-Correlation 125

Figure A.2: Application of a comb filter. In the top row, two comb filters’ repre-
sentations are displayed: one with an interval of eight, one with an
interval of four samples. Below, the given signal is shown, copied
and shifted for each of the (exemplarily, four) spikes. Assuming
the signals repeat infinitely often, the framed section is representa-
tive for the filter’s application. At its bottom, the summed signal
of the framed components is given, showing that, judging by the
summed signal’s energy (meaning the sum of its values’ squares),
the interval of eight samples is more prominent than that of four.

If the signal is not really infinite, a windowing function might have to
be applied beforehand in order not to have artifacts from the differences
between the signal’s start and end, as discussed at the beginning of this
chapter.

The measure of self-similarity is relative across the auto-correlation
function’s values. As samples are multiplied, a constantly zero-valued
signal, for example, yields an auto-correlation of zero for all lags.

127

B Introduction to Max/MSP

Max/MSP can be described as a rapid prototyping environment for the
processing of
• symbolic (i.e., MIDI) music,
• audio signals via its package MSP and
• video signals via its package Jitter.

In the environment’s main user interface, data sources, processing el-
ements and output interfaces, all called objects, are graphically repre-
sented by boxes. Each object can have multiple connectors called inlets
and outlets, through which it can be connected to others. An example
graph of objects and their connections, called a patch, can be seen in Fig.
B.1. It is created by choosing objects from a palette or entering their
name in empty boxes.

Besides those objects natively available, new ones can be added as newly
programmed externals, using Java or C. Because of this, the above list
of Max/MSP’s fields of application is actually obsolete, because with
the right objects, it could do anything. Of course, the rapid-prototyping
aspect is lost once changes are primarily applied by changing and re-
compiling code instead of drawing connections between boxes with a
mouse. Meanwhile, though, numerous third-party suppliers offer ex-
ternals with functionality that is not natively supported by Max/MSP,
making the feature as such an advantage even without ever intending
to program a single line of code.

Also, the environment is fast enough to make patches useful beyond
the design phase. By its possibility to define inlets and outlets for whole
patches, they can be used like any other object in other patches. This
modularity makes the design of highly complex processing graphs pos-
sible without getting lost in visual chaos.

Besides the mentioned extensibility through external objects, data can,
for example, be input using manual controls on the patch, by reading

128 B Introduction to Max/MSP

Figure B.1: Example of a Max/MSP patch. This patch displays a sequence of
random numbers as well as a moving average graphically. The
small check box in the top left sends out a the number one when
being activated and zero on deactivation. The metro object is also
activated and deactivated by receiving these numbers. In its ac-
tive state, it sends out Max/MSP’s standard signal, a bang, every
100 ms as specified by its parameter. Each time this signal is sent,
it reaches random and causes it to send out a random number from
zero to just below that given as parameter, in this case in the range
to 99. This number is first sent out to the right, to be graphed along-
side old values by the unlabelled multislider object. On the left, it
reaches the bucket object, which remembers as many numbers as
its parameter says, here four. On reception of a new value, it sends
out the stored values (oldest on the right and first), forgets the old-
est and remembers the received one as the newest. Thus, in each
step, four successive random numbers reach the expr object, which
stores them and, on receiving a value in its leftmost inlet, evaluates
the mathematical expression given as parameter and sends out its
result. The expression’s variables resemble the inlets, from left to
right, and “i” indicates integer inputs. The computed value (the
numbers’ average) is graphed by another multislider for visual
comparison.

files or from system devices like a microphone or video camera. Output
can occur to number boxes, dynamic graphs, geometrical arrangements,
as sound, or also to files. Processing objects natively available include
such for mathematical functions, list manipulation, control structures,
MIDI note generation, audio filtering and image processing.

129

Glossary

auto-correlation The notion of comparing a signal with lagged ver-
sions of itself.

beat The dominant regular base pulse in an impulse se-
ries.

beat interval The inverse of a beat’s frequency.
bpm Beats per minute, a measure for a musical piece’s

tempo that usually equals the number of quarter
notes played in one minute.

comb filter A signal filter that, put plainly, adds echoes of the
signal to itself.

downbeat The position on the metric grid’s beat level that starts
a measure.

FFT Fast Fourier Transformation; a method of converting
a discretely sampled signal into its frequency repre-
sentation.

III Inter-impulse interval; the time passing between two,
not necessarily successive, impulses.

impulse An accented event in time.
measure One among a rhythm’s repeating instances.
measure length The duration of each of a rhythm’s repeating in-

stances.
metric quotient The quotient of a rhythm’s measure length and its

beat interval.
MIDI Musical Instruments Digital Interface; a standard-

ized protocol defining the representation of notes
and other musical events for digital transmission, as
well as the physical interface over which this takes
place.

rhythm A repeating series of accentuations of and intervals
between impulses.

131

Bibliography

[Aba96] Frank R. Abate (ed.), The Oxford Dictionary and Thesaurus, Oxford University
Press, USA, 1996.

[BGK+04] Michael Barry, Jürg Gutknecht, Irena Kulka, Paul Lukowicz and Thomas
Stricker, Multimedial Enhancement of a Butoh Dance Performance, 2nd Interna-
tional Conference on Advances in Mobile Multimedia, Bali, 2004.
csn.umit.at/publications/MOMM04.pdf

[Bon00] Bert Bongers, Physical Interfaces in the Electronic Arts, in Trends in Gestural Control
of Music, IRCAM, Paris, 2000.
www.mat.ucsb.edu/594O/PhysicalInteractionBongers.pdf

[Bro93] Judith C. Brown, Determination of the Meter of Musical Scores by Autocorrelation,
Journal of the Acoustical Society of America 94 (1993), no. 4, 1953–1957.
www.wellesley.edu/Physics/brown/pubs/meterACv94P1953-P1957.pdf

[CK03] Ali Taylan Cemgil and Bert Kappen, Monte Carlo Methods for Tempo Tracking
and Rhythm Quantization, Journal of Artificial Intelligence Research 18 (2003),
45–81.
www.cs.cmu.edu/afs/cs/project/jair/pub/volume18/cemgil03a.pdf

[Cla85] E. F. Clarke, Structure and Expression in Rhythmic Performance, ch. 9, pp. 209–237,
Academic Press, London, 1985.

[CMS01] Patricio de la Cuadra, Aaron Master and Craig Sapp, Efficient Pitch Detection
Techniques for Interactive Music, International Computer Music Conference, La
Habana, 2001.
ccrma.stanford.edu/~pdelac/research/MyPublishedPapers/icmc_2001-pitch_

best.pdf

[Col04] Nick Collins, Beat Induction and Rhythm Analysis for Live Audio Processing, 1st-
year Ph.D. report, 2004.
www.cus.cam.ac.uk/~nc272/papers/pdfs/report1.pdf

csn.umit.at/publications/MOMM04.pdf
www.mat.ucsb.edu/594O/PhysicalInteractionBongers.pdf
www.wellesley.edu/Physics/brown/pubs/meterACv94P1953-P1957.pdf
www.cs.cmu.edu/afs/cs/project/jair/pub/volume18/cemgil03a.pdf
ccrma.stanford.edu/~pdelac/research/MyPublishedPapers/icmc_2001-pitch_best.pdf
ccrma.stanford.edu/~pdelac/research/MyPublishedPapers/icmc_2001-pitch_best.pdf
www.cus.cam.ac.uk/~nc272/papers/pdfs/report1.pdf

132 Bibliography

[CS89] Mark Coniglio and Dawn Stoppielo, MidiDancer, 1989.
www.troikaranch.org/mididancer.html

[DB03] Christopher Dobrian and Frédéric Bevilacqua, Gestural Control of Music Using
the Vicon 8 Motion Capture System, Conference on New Interfaces for Musical
Expression, Montréal, 2003.
music.arts.uci.edu/dobrian/motioncapture/NIME03DobrianBevilacqua.pdf

[DH86] W. J. Dowling and D. L. Harwood, Music Cognition, Academic Press, Orlando,
1986.

[Dix01] Simon Dixon, Automatic Extraction of Tempo and Beat from Expressive Perfor-
mances, Journal of New Music Research 30 (2001), no. 1, 39–58.
www.ofai.at/~simon.dixon/pub/2001/jnmr.pdf

[dJ04] Leo de Jong, Sensor Music Project, 2004.
www.multipro.demon.nl/html/sensor_music_project.html

[Eck01] Douglas Eck, A Positive-Evidence Model for Rhythmical Beat Induction, Journal of
New Music Research 30 (2001), no. 2, 187–200.
www.iro.umontreal.ca/~eckdoug/papers/2001_jnmr.pdf

[Fel02] Mark Feldmeier, Large Group Musical Interaction using Disposable Wireless Motion
Sensors, Master’s thesis, Massachusetts Institute of Technology, 2002.
www.media.mit.edu/resenv/pubs/theses/Feldmeier-SM.pdf

[GF98] Niall Griffith and Mikael Fernström, Litefoot – A Floor Space for Recording Dance
and Controlling Media, International Computer Music Conference, San Fran-
cisco, 1998.
www.idc.ul.ie/data/publications/4_litefoot.pdf

[GH03] Fabien Gouyon and Perfecto Herrera, Determination of the Meter of Musical
Audio Signals, 114th Convention of the Audio Engineering Society, Audio
Engineering Society, 2003.
www.iua.upf.es/mtg/publications/AES114-GouyonEtAl.pdf

[Gue05] Carlos Guedes, Mapping Movement to Musical Rhythm: A Study in Interactive
Dance, Ph.D. thesis, New York University, 2005.
homepage.mac.com/WebObjects/FileSharing.woa/wa/MappingMovement.

pdf.pdf-zip.zip?a=downloadFile&user=carlosguedes&path=.Public/

MappingMovement.pdf

[HCV+03] Dennis Hromin, Michael Chladil, Natalie Vanatta, David Naumann, Susanne
Wetzel, Farooq Anjum and Ravi Jain, CodeBlue: A Bluetooth Interactive Dance
Club System, IEEE Globecom, San Francisco, 2003.
www.cs.stevens.edu/~swetzel/publications/codeblue.pdf

[JA03] Kristoffer Jensen and Tue Haste Andersen, Real-Time Beat Estimation using Fea-
ture Extraction, Computer Music Modeling and Retrieval Symposium, Mont-
pellier, 2003.

www.troikaranch.org/mididancer.html
music.arts.uci.edu/dobrian/motioncapture/NIME03DobrianBevilacqua.pdf
www.ofai.at/~simon.dixon/pub/2001/jnmr.pdf
www.multipro.demon.nl/html/sensor_music_project.html
www.iro.umontreal.ca/~eckdoug/papers/2001_jnmr.pdf
www.media.mit.edu/resenv/pubs/theses/Feldmeier-SM.pdf
www.idc.ul.ie/data/publications/4_litefoot.pdf
www.iua.upf.es/mtg/publications/AES114-GouyonEtAl.pdf
homepage.mac.com/WebObjects/FileSharing.woa/wa/MappingMovement.pdf.pdf-zip.zip?a=downloadFile&user=carlosguedes&path=.Public/MappingMovement.pdf
homepage.mac.com/WebObjects/FileSharing.woa/wa/MappingMovement.pdf.pdf-zip.zip?a=downloadFile&user=carlosguedes&path=.Public/MappingMovement.pdf
homepage.mac.com/WebObjects/FileSharing.woa/wa/MappingMovement.pdf.pdf-zip.zip?a=downloadFile&user=carlosguedes&path=.Public/MappingMovement.pdf
www.cs.stevens.edu/~swetzel/publications/codeblue.pdf

Bibliography 133

haste.dk/tue/articles/cmmr03-beat.pdf

[Joh91] Eric Johnstone, A MIDI Foot Controller – The PodoBoard, International Computer
Music Conference, San Francisco, 1991, pp. 123–126.

[KG05] Doo Young Kwon and Markus Gross, Combining Body Sensors and Visual Sen-
sors for Motion Tracking, International Conference on Advances in Computer
Entertainment Technology, Valencia, ETH Zürich, 2005.
graphics.ethz.ch/~dkwon/downloads/publications/ace05/kwo05_ace.pdf

[Kop98] Naomi Koppel, Translating Dance into Music: Developing an Abstract Representa-
tion of the Human Form, 1998.
zoo.cs.yale.edu/classes/cs490/98-99a/koppel.naomi.naomi

[Les86] Joel Lester, The Rhythms of Tonal Music, Southern Illinois University Press,
Carbondale, 1986.

[LKD+06] Eric Lee, Henning Kiel, Saskia Dedenbach, Ingo Grüll, Thorsten Karrer, Marius
Wolf and Jan Borchers, isymphony: An Adaptive Interactive Orchestral Conducting
System for Digital Audio and Video Streams, Conference on Human Factors in
Computing Systems, Montréal, 2006.
media.informatik.rwth-aachen.de/materials/publications/lee2006b.pdf

[LMB+96] Geraldo Lima, Marcelo Maes, Márlio Bonfim, Marcus Lamar and Marcelo
Wanderley, Dance-Music Interface based on Ultrasound Sensors and Computers,
3rd Brazilian Symposium of Computation and Music, Recife, 1996.
recherche.ircam.fr/equipes/analyse-synthese/wanderle/Gestes/Externe/

sbcm96.pdf

[Mic05] Ulrich Michels, dtv-Atlas Musik, 2nd ed., Deutscher Taschenbuch-Verlag, 2005.

[MJ03] Ramia Mazé and Margot Jacobs, Sonic City: Prototyping a Wearable Experience,
Proceedings of the 7th IEEE International Symposium on Wearable Computing,
2003.
www.tii.se/reform/results/publications_2003/2003_iswc.pdf

[Ng04] Kia C. Ng, Music via Motion, Proceedings of the IEEE 92 (2004), no. 4, 645–655.
www.media.aau.dk/people/sts/mapping/kiang.pdf

[Par94] Richard Parncutt, A Perceptual Model of Pulse Salience and Metrical Accent in
Musical Rhythm, Music Perception 11 (1994), 453.

[PCS06] Chulsung Park, Pai H. Chou and Yicun Sun, A Wearable Wireless Sensor Platform
for Interactive Art Performances, IEEE Conference on Pervasive Computing and
Communications, Pisa, University of Californie, Irvine, 2006.
www.ece.uci.edu/~chou/eco-percom06.pdf

[PHBT00] Joseph Paradiso, Kai-Yuh Hsiao, Ari Benbasat and Zoe Teegarden, Design and
Implementation of Expressive Footwear, IBM Systems Journal 39 (2000), no. 3/4.
researchweb.watson.ibm.com/journal/sj/393/part1/paradiso.pdf

haste.dk/tue/articles/cmmr03-beat.pdf
graphics.ethz.ch/~dkwon/downloads/publications/ace05/kwo05_ace.pdf
zoo.cs.yale.edu/classes/cs490/98-99a/koppel.naomi.naomi
media.informatik.rwth-aachen.de/materials/publications/lee2006b.pdf
recherche.ircam.fr/equipes/analyse-synthese/wanderle/Gestes/Externe/sbcm96.pdf
recherche.ircam.fr/equipes/analyse-synthese/wanderle/Gestes/Externe/sbcm96.pdf
www.tii.se/reform/results/publications_2003/2003_iswc.pdf
www.media.aau.dk/people/sts/mapping/kiang.pdf
www.ece.uci.edu/~chou/eco-percom06.pdf
researchweb.watson.ibm.com/journal/sj/393/part1/paradiso.pdf

134 Bibliography

[PHS+00] Joseph Paradiso, Kai-Yuh Hsiao, Joshua Strickon, Joshua Lifton and Ari Adler,
Sensor Systems for Interactive Surfaces, IBM Systems Journal 39 (2000), no. 3/4,
892–914.
researchweb.watson.ibm.com/journal/sj/393/part3/paradiso.pdf

[PKM95] Russell Pinkston, Jim Kerkhoff and Mark McQuilken, A Touch-Sensitive Dance
Floor / MIDI Controller, International Computer Music Conference, San Fran-
cisco, 1995, pp. 224–224.

[SBQK05] Prashant Srinivasan, David Birchfield, Gang Qian and Assegid Kidané, A
Pressure-Sensing Floor for Interactive Media Applications, International Confer-
ence on Advances in Computer Entertainment Technology, Valencia, Arizona
State University, 2005.
ame2.asu.edu/projects/floor/papers/srinivasan_ace122.pdf

[Sch98] Eric D. Scheirer, Tempo and Beat Analysis of Acoustic Musical Signals, Journal of
the Acoustical Society of America 103 (1998), no. 1, 588–601.
web.media.mit.edu/~eds/beat.pdf

[Sep01] Jarno Seppänen, Computational Models of Musical Meter Recognition, Master’s
thesis, Tampere University of Technology, 2001.
www.cs.tut.fi/sgn/arg/music/jams/waspaa2001.pdf

[Smi99] Leigh M. Smith, A Multiresolution Time–Frequency Analysis and Interpretation of
Musical Rhythm, Ph.D. thesis, University of Western Australia, 1999.
www.leighsmith.com/Research/Papers/MultiresRhythm.pdf

[Woo51] Herbert Woodrow, Time Perception, ch. 32, pp. 1224–1236, Wiley and Sons, New
York, 1951.

researchweb.watson.ibm.com/journal/sj/393/part3/paradiso.pdf
ame2.asu.edu/projects/floor/papers/srinivasan_ace122.pdf
web.media.mit.edu/~eds/beat.pdf
www.cs.tut.fi/sgn/arg/music/jams/waspaa2001.pdf
www.leighsmith.com/Research/Papers/MultiresRhythm.pdf

135

Index

acceleration
graphs, 4, 40, 117
measuring, 7

accelerometers, 2, 3, 9
altervatives to, 120
axes, 51
effect of clipping, 108
specifications of used sensors, 9

amplitude envelope, 34
audio, 127, 128

recordings, 3
auto-correlation, 27, 36, 124

high-level, 36, 119

beat, 18
beat interval, 19, 54, 56, 59–62, 118
beat level, 65
Beat Tapper, 4, 73, 80

conclusions, 112

dance, 1
Cha Cha, 44
classification, 2, 120
popular, 45
Samba, 43
tests of DanSense, 109
use as input, 21

DanSense, 3, 71, 82
application to dance, 109
class structure, 83
evaluation, 103

format of OSC messages, 77
frequency analysis in, 86
front-ends, 94
helper classes, 88
movement detection in, 86
parameters, 90, 108
rhythmic analysis in, 87

DanSense4Max, 73, 96
DanSense4Shell, 73, 94

output, 95
usage, 94

defaults
of DanSense’s parameters, 90

downbeat, 20, 56, 66, 117, 120
induction, 28
maximal sequence, 65

evaluation, 103

FFT, see Fourier transformation
filters, 24, 33, 35, 116, 118, 124, 128

comb, 35
Fourier transformation, 23, 36, 56, 117,

118, 122
frequency analysis, 23, 32, 35, 37, 61, 117–

119, 121
in DanSense, 86

front-ends
for DanSense, 94

future work, 116

Hann window, 121

136 Index

Harmonic Product Spectrum, 36
histograms, 29

of inter-impulse intervals, 56
of inter-onset intervals, 54
of metric quotients, 60
trajectory, 31, 59

ideas
for future work, 116

III, see inter-impulse interval
impulses, 14, 117

clustering, 65, 119
folding, 62, 117, 118
of acceleration, 3
output, 52

inter-impulse intervals, 15, 117
difference to inter-onset intervals, 16
histograms, 54, 56
properties, 16

inter-onset intervals, 16
analysis, 29
clustering, 29
histograms, 29

IOI, see inter-onset interval

Java, 74
JavaDoc, 74

Matlab, 11
Max/MSP, 74
measure length, 17, 57, 59, 60, 62, 118
measures, 17

folding impulses into, 64
stretching, 66

metre, 18
ambiguity of term, 12

metric hierarchy, 18, 65
beat level, 18

metric quotient, 19, 36, 60, 118
derivation, 60

MIDI, see Musical Instruments Digital In-
terface

movement detection, 118
algorithm, 52
criteria, 46
in DanSense, 86
separating directions, 49

using accelerometers, 34, 40
movements

accentuation, 42
dance, 43
properties, 47

music, 1, 127
device to turn dance into, 1
redundancy of notation, 20
symbolic representation, 25

conversion into, 33
Musical Instruments Digital Interface, 25,

26, 32, 36, 127, 128
quantization of data, 26

Nyquist’s theorem, 9

Objective-C, 75
onset

of acceleration, 3
Open Sound Control, 3, 72

DanSense’s message format, 77
OSC, see Open Sound Control

parameters
of DanSense, 90

Personal Orchestra, 3, 73, 97
data transmission, 99

ProxyFile, 72, 77
usage, 77

ProxyS4M, 72, 75
usage, 75

RecorderS4M, 79
format of written files, 78

RecordS4M, 72
rhythm, 1, 14

ambiguity of term, 12
extraction, 4
induction by pitch, 25
intended, 13
musical vs. non-musical, 13
perception, 13
properties, 15
relation to harmonics, 2
Western definition, 14

rhythmic analysis, 53, 67, 119
for different limbs, 119

Index 137

in DanSense, 87
of accelerometer data, 38
of audio recordings, 35

Sense4Motion, 11, 72, 75
consequences of delay, 99
format of sent data, 76
format of written files, 78

Sensor Music Project, 2
summary, 115
synchronization of channels, 65

tactus, 20, 33
tapping, 1, 20, 29, 38
tatum, 30
tempo, 17

UDP, see User Datagram Protocol
Universal Serial Bus, 8, 11
USB, see Universal Serial Bus
User Datagram Protocol, 73, 99

waltz
metric quotient, 19

wavelet transformation, 32, 119

[This version incorporates error corrections and was compiled on September 15, 2007.]

Neben den im vorangehenden Text genannten Hilfsmitteln fanden selbstverständlich
Hard- und Anwendungssoftware sowie Recherchen Anwendung, sonst keine. Zitate
und sonstige Entnahmen fremder Quellen sind als solche kenntlich gemacht; mit ihrer
Ausnahme habe ich die vorliegende Diplomarbeit selbständig verfasst.

Aachen, am 31. August 2006

(Urs Enke)

	Abstract (bilingual)
	Acknowledgements
	Conventions
	Introduction
	Background
	Tasks
	Structure

	Setting
	Technical Environment
	Rhythm and Other Terms

	Related Work
	Dance Movements as Input
	Rhythmic Analysis of Music
	Intended Contribution

	Algorithmic Design
	Movement Detection
	Rhythmic Analysis

	Implementation
	Overview
	Auxiliary Programs
	DanSense
	Personal Orchestra

	Evaluation
	Test of Intended Features
	Suitable Parameters
	Tests with Dance Movements
	Conclusions

	Summary & Future Work
	Summary
	Future Work

	Methods of Frequency Analysis
	Fourier Transformation and the Frequency Domain
	Auto-Correlation

	Introduction to Max/MSP
	Glossary
	Bibliography
	Index

