
by
Valentin Engelke

Designing a user interface for 
diploma configurations in RWTH 
Online

Bachelor’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor: 
Prof. Dr. Jan Borchers

Second examiner: 
Prof Dr. Ulrich 

Schroeder
Registration date:   05.02.2020 

Submission date:  31.03.2020





Eidesstattliche Versicherung 

 

___________________________    ___________________________ 

Name, Vorname      Matrikelnummer 

 

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/ 
Masterarbeit* mit dem Titel 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ 

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als 
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf 
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische 
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner 
Prüfungsbehörde vorgelegen. 

 

___________________________    ___________________________ 

Ort, Datum       Unterschrift 

        *Nichtzutreffendes bitte streichen 
 

 

Belehrung: 

§ 156 StGB: Falsche Versicherung an Eides Statt 

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung 
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei 
Jahren oder mit Geldstrafe bestraft. 

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt 

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so 
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein. 

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158 
Abs. 2 und 3 gelten entsprechend.  

 
 
Die vorstehende Belehrung habe ich zur Kenntnis genommen: 

 

___________________________    ___________________________ 

Ort, Datum       Unterschrift 

Engelke, Valentin 358096

Designing a user interface for diploma configurations in RWTH Online

Aachen, 31.03.2020

Aachen, 31.03.2020





v

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

1 Introduction 1

1.1 RWTHonline . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . 2

2 Related work 3

3 Background 5

3.1 University Reforms . . . . . . . . . . . . . . . 5

3.2 Modularisation . . . . . . . . . . . . . . . . . 6

3.3 Campus Management Systems . . . . . . . . 6

4 Record Table Management 9



vi Contents

4.1 SPO Management . . . . . . . . . . . . . . . . 9

4.2 Current Situation . . . . . . . . . . . . . . . . 11

4.3 Stakeholders . . . . . . . . . . . . . . . . . . . 11

5 Prototyping 13

5.1 Paper Prototypes . . . . . . . . . . . . . . . . 13

5.2 Further Prototypes . . . . . . . . . . . . . . . 15

6 Implementation 17

6.1 Requirements . . . . . . . . . . . . . . . . . . 17

6.2 Python . . . . . . . . . . . . . . . . . . . . . . 18

6.3 Web Scraping . . . . . . . . . . . . . . . . . . 19

6.4 Features . . . . . . . . . . . . . . . . . . . . . 20

7 Evaluation 25

7.1 Heuristic Evaluation . . . . . . . . . . . . . . 25

7.1.1 Advantages and Disadvantages . . . 25

7.1.2 Heuristics Used . . . . . . . . . . . . . 26

7.1.3 Usability Problems Found . . . . . . . 27

7.2 Evaluation with users . . . . . . . . . . . . . . 30

8 Summary and future work 33

8.1 Summary . . . . . . . . . . . . . . . . . . . . . 33

8.2 Future work . . . . . . . . . . . . . . . . . . . 33



Contents vii

Bibliography 35





ix

List of Figures

4.1 RWTH Online SPO-Management Node List . 10

4.2 ”configuration of report display” table . . . . 10

5.1 Paper Prototype Start Page . . . . . . . . . . . 14

5.2 Paper Prototype Edit Page . . . . . . . . . . . 14

5.3 Mockup in balsamiq . . . . . . . . . . . . . . 15

6.1 Start page . . . . . . . . . . . . . . . . . . . . 21

6.2 Search page . . . . . . . . . . . . . . . . . . . 21

6.3 Edit page . . . . . . . . . . . . . . . . . . . . . 22

6.4 Overview page . . . . . . . . . . . . . . . . . 23

7.1 Start page before . . . . . . . . . . . . . . . . 28

7.2 Start page after . . . . . . . . . . . . . . . . . 28

7.3 Edit page improvement . . . . . . . . . . . . 29





xi

List of Tables





xiii

Abstract

Due to the growing complexity involved in administrating a university, universities
rely on campus management systems, that help with processes such as application
management, course management and exam management. RWTHOnline is one
such system introduced by RWTH Aachen University in 2018.

While RWTHOnline is a useful tool for the university administration, some parts
of the system have usability problems. In this thesis, we take a look at the pro-
cess involved in changing the diploma configuration table, that determine how the
modules of a course are displayed on diplomas given out by the university. Cur-
rently the user interface does not support this process and the users have manually
design the tables without being able to preview the resulting diplomas.

In this thesis we develop and evaluate an interface for diploma configurations in
RWTHOnline. We implement the interface as a python web app using the frame-
work Flask. The resulting software is then evaluated using both heuristic evalua-
tion and two user evaluations.



xiv Abstract



xv

Überblick

Auf Grund der zunehmenden Komplexität der Verwaltung von Universitäten,
benötigen Universitäten Campus-Management-Software, die bei der Verwaltung
von Bewerbungen, Kursen oder Prüfungen helfen. RWTH Online ist eines solcher
Systeme, das von der RWTH Aachen im Jahr 2018 eingeführt wurde.

RWTHOnline ist zwar für die Universitätsverwaltung ein nützliches Tool, einige
Teile des Systems haben aber Defizite bei der Benutzerfreundlichkeit. In dieser
Bachelorarbeit werfen wir einen Blick auf den Prozess beim Ändern einer Report-
Konfigurationstabelle, die festlegen wie Module eines Kurses auf Zeugnissen, die
von der Universität ausgegeben werden, dargestellt werden. Im Moment hat
die Benutzeroberfläche keine Funktion dafür und die Nutzer müssen die Tabelle
manuell erstellen ohne die Möglichkeit zu haben, die Zeugnisse die aus den
Tabellen entstehen, vorher anschauen zu können.

In dieser Bachelorarbeit entwickeln und evaluieren wir eine Benutzeroberfläche für
die Konfiguration von Report-Konfigurationen in RWTHOnline. Wir implemen-
tieren die Benutzeroberfläche als Python Web App unter Benutzung des Frame-
works Flask. Um die Software zu evaluieren nutzen wir sowohl eine heuristische
Evaluation als auch zwei Evaluationen mit Nutzern.





xvii

Acknowledgements

First, i want to thank Simon Völker for being my supervisor.

Furthermore, i want to thank Prof. Dr. Borchers and Prof. Dr. Schroeder for exam-
ining this thesis.





1

Chapter 1

Introduction

1.1 RWTHonline

RWTHonline is the campus management software used by
RWTH Aachen University. The software is used in ”appli-
cation and admission management, student and fee man-
agement, course and classroom management as well as
exam management” 1, both by students as well as the uni-
versity administration. For each examination regulation
the system contains a tree of nodes, where each node cor-
responds to a module area, module or exam within that
examination regulation. Each of these nodes contains in-
formation such as the number of ECTS credits a student
receives. We focus on a table stored in each node that
determines how information about the node is displayed
on different types of reports, for example the transcript of
records.

Currently the person responsible for each module has to
manually design the table for each node and send it to the
university administration. There is no way to preview how
the reports resulting from the configuration of the report
display look like before changes are processed within the

1ttps://www.rwth-aachen.de/cms/root/Die-
RWTH/Einrichtungen/Verwaltung/Dezernate/Akademische-und-
studentische-Angelegenhe/ dtsuc/Abteilung-1-6-Student-Lifecycle-
Manage/?lidx=1



2 1 Introduction

administration and the next reports are printed, which can
take many months.

1.2 Goals

The goal is to build an application, that allows users to
download the course data from RWTHOnline, locally make
changes to the configuration of the report display while
previewing the reports resulting from the report configu-
ration, and finally export the changes made in an easy to
read format.

1.3 Outline

We first analyse the current situation and speak to users of
RWTHonline to discover the problems resulting from the
present system. We then design multiple iterations of pa-
per and, in later stages, software prototypes. Next we dis-
cuss the decisions we made when implementing our soft-
ware solution and the technologies used. Finally we con-
clude with a user study to test wether our solution solved
the users problems.



3

Chapter 2

Related work

There are a lot of works related to usability of software. An
early book that gives an overview of the area is ”Usability
Engineering” by Jakob Nielsen [Nielsen, 1994]. While tech-
nologies have changed since then, the book presents funda-
mental principles for the development process that are still
relevant:

• Know the User

Study how the user currently solves their tasks, inter-
view them, keep in mind their previous experiences
and individual abilities

• Create prototypes to quickly be able to evaluate inter-
faces with users

• Continually evaluate and adapt the software based on
user studies

Furthermore, the book features advice on high-level fea-
tures of user interfaces such as:

• minimizing the memory load of the user when using
the software

• be consistent across different parts and versions of the
software



4 2 Related work

• provided the user with clear and fast feedback

Finally the book also contains information on preparing
and conducting user studies.



5

Chapter 3

Background

3.1 University Reforms

In 1999 education ministers from 29 european countries
signed the Bologna declaration, in which they pledge their
support to creating a unified ”European Higher Education
Area” (EHEA). The declaration outlines the goals of the sig-
natories:

• the degress awarded by universities in the EHEA
should be comparable

• the system should be split in two cycles, Bachelor and
Master

• introduction of the credit point system ECTS

• allow for mobility of both students and university
personell

• support intra-european cooperation

The necessary changes to achieve these goals were, and are
continuing to be, implemented by each country with re-
spect to their respective laws and their current national ed-
ucation system, while still working together with the other
countries.



6 3 Background

3.2 Modularisation

A consequence of the Bologna process is the modularisa-
tion of degrees, to allow both for more transparency and
comparability, aswell as for students to be able to move
during their bachelor or master degree (e.g. Erasmus).

Implementations of the reforms vary by country, and in
Germany also by state, however we will take a closer look
at the situation in North-Rhine Westhphalia, where RWTH
Aachen is located.

The ”Studienakkreditierungsverordnung” (StudakVO)
lays out the requirements for a university degree to be
accredited in the state. According to §7 degrees have to be
split into modules by topic and in certain time limits.

The description for each module has to contain informa-
tiom about:

• the topic and goals

• form of learning (lecture, seminar etc.)

• requirements for students to participate

• applicability of the module

• requirements for ECTS credit points to be awarded

• ECTS credit points awarded and grading rules

• how often the module is offered

• amount of work

• duration

3.3 Campus Management Systems

From these conditions arises the need for universities to
have a system that can help with the processes involved in



3.3 Campus Management Systems 7

university administration, while complying with all laws
and ordinances. The systems used at RWTH Aachen prior
to the introduction of RWTHOnline were not optimal in
fulffilling the challenges posed by the Bologna process
[Grzemski and Decker, 2018]. Aditionally the change to
RWTHOnline provided an opportunity to unify all parts of
student-life-cycle management in one system, while previ-
ously the exam registration and the organisation of events
where split into multiple systems developed by different
companies.

RWTHOnline is a system originally developed by TU Graz
in Austria and adapted for use by RWTH Aachen. It was
introduced university-wide in WS2018/19. Among other
parts, it integrates application management, exam registra-
tion and management of courses of studies.





9

Chapter 4

Record Table
Management

In the following chapter we present the current functional-
ity of record table management in RWTH Online and the
problems that come with it.

4.1 SPO Management

A large part of RWTH Online is SPO (Studien- und
Prüfungsordnung, engl. Academic and Examination Reg-
ulations) Management. It contains information about each
course offered by the university. Each course is represented
as a tree of nodes, where each node can for example repre-
sent a module area, module or exam. These tree structures
can be very large, the bachelor of computer science course
tree contains more than 3000 nodes.

Each node contains a variety of information, including the
name and the amount of credit point awarded. We are
most interested in the ”configuration of report display” ta-
ble. This table, which is part of each node, determines how
the corresponding module or module area is displayed on
different types of diplomas.



10 4 Record Table Management

Figure 4.1: The list of subordinate nodes of the root node of
the bachelor of computer science course

Figure 4.2: An example of the ”configuration of report dis-
play” table

Each row represents a different type of diploma (e.g. fi-
nal diploma, certificate of academic achievement), whereas
each column represent a certain information (credit points,
grade, semester, topic etc.). Each field of the table contains
either a ”J” (standing for ”Ja”, german for yes) or an ”N”
(standing for ”Nein”, german for no). This boolean value
determines wether the information specified by the column
is displayed on document corresponding to the row of the
field.

This allows a variety of different configuration options. For
example, the university might want to display the topic of
a bachelor thesis on a final diploma, but not the topic of
every seminar the student has taken.



4.2 Current Situation 11

4.2 Current Situation

Currently, changes to the tables can only be made by certain
divisions (Divisions 1.5 and 1.6) of the university adminis-
tration. This means, that if a person in a university fac-
ulty wants changes to be made to a course belonging to the
department, they can’t make the changes themselves, but
have to first send those to the divisions responsible. This
involves manually creating the tables without having any
way preview the effects of those changes until the next time
diplomas are printed, which can be several months.

Then, those changes have to manually entered back into the
system by the university administration. All in all, this pro-
cess is very inefficient and creates a lot of work for everyone
involved.

4.3 Stakeholders

Multiple parties currently hold stakes in the process:

• Members of university faculties

need to decide on the record table configurations for
nodes of courses belonging to their area

• Division 1.6 (Student Life Cycle Management) of the
university administration

The department is responsible for developing and
supporting software including RWTHOnline

• Modeling Team of Division 1.5 (Examination and
Statutory Law) of the university administration

The team is responsible for modeling the examination
regulations, and therefore also the contact if faculties
want to changes the record configuration tables.





13

Chapter 5

Prototyping

To design the interface of the applicaton we went through
multiple iterative stages of prototyping.

5.1 Paper Prototypes

We started of by creating storyboard-like paper prototypes
of the different parts of our user interface. Paper prototypes
are useful in early stages of prototyping, since they allow
for quick evaluation of high-level design choices.

We evaluated these protoypes with a user who is experi-
enced with the topic and knows the process currently in-
volved in changing the diploma configurations. The user
was happy with the general direction of our design ap-
proach and we made some changes based on the user feed-
back.

The resulting design from those prototypes is very similar
to the interface we actually ended up implementing in the
software.



14 5 Prototyping

Figure 5.1: Prototype of the start page

Figure 5.2: Prototype of the edit page



5.2 Further Prototypes 15

Figure 5.3: Mockup in balsamiq

5.2 Further Prototypes

Furthermore, in later stages of prototyping, we also created
a higher fidelity mockup using the design tool balsamiq.





17

Chapter 6

Implementation

This chapter provides an overview on the design of and the
technologies used in the implementation of our user inter-
face for diploma configurations.

The source code can be found on Github1

6.1 Requirements

Our prospective users are using a variety of different plat-
forms. For example, Windows is used in university admin-
istration, while the Media Computing Group almost exclu-
sively uses macOS. We therefore want our software to be
available across different platforms.

Because our user base consists of a small number of people
who are already familiar with the domain of the applica-
tion, we don’t need to explain the basic concepts of diploma
configurations and the different types of diplomas in detail
but just provide an easy to use interface that the users can
quickly learn.

Our program has to allow the user to access the course data
and existing diploma configuration tables from RWTHOn-

1https://github.com/VEngelke/rwthonline-diplomaconfig

https://github.com/VEngelke/rwthonline-diplomaconfig


18 6 Implementation

line, edit them locally, preview the resulting diplomas, and
finally export the changes made in a practical format.

6.2 Python

We decided to use Python to develop the application.
Python allows us to run the same program on Linux, Win-
dows and MacOS devices. Additionally familiarity with
the language was a factor

We used the web framework Flask for the front end of ourFlask
application. This allowed us flexibility to deploy our ap-
plication either as a desktop app with the server running
on the same machine as the client as well as host the ap-
plication on a server, to allow our users to access it with
their web browsers. Also, using a html based interface al-
lows for easy cross-platform usage. We decided to focus
on the desktop app approach, but only small changes are
required to make the software usable when hosted on a re-
mote server.

We also considered other options for developing the user
interface. A popular alternative to Flask in the realm
of python web frameworks is Django. While there are
many similarities between the two, the philosophies behind
them diverge. Flask considers itself to be a so called ”mi-
croframework”, meaning that the aim is to have a small
core of the framework that can be extended easily by the
user to achieve the functionality the user needs. In con-
trast, Django by default already has many features like a
database or a admin panel. For our purposes, we decided
that we did not need most of the features that Django pos-
sesses and therefore went with Flask.

Another option would be to go with a classic GUI toolkit
like Tkinter or PyQt. However we saw multiple advantages
in going for a web based approach compared to the GUI
way:

• Ability to host the program on a server, no installation



6.3 Web Scraping 19

on the users side required

• more easy to use cross-platform

• many GUI frameworks look quite dated

• ability to have a similar design to RWTHOnline

6.3 Web Scraping

There is no public API to access information from
RWTHOnline. We therefore have to manually scrape all the
course data we need.

Each node, corresponding to a module or mod-
ule area, has a unique identifier named ”pStp-
KnotenNr”. Requests to the URL ”https://qs-
online.rwth-aachen.de/RWTHonline/pl/ui/
$ctx;lang=de/wbSPO.cbSPOContent?pStpKnotenNr=3197”
return the information belonging to the node with the ID
3197, in this case the root node of the bachelor of computer
science course. The response is a XML File containing a
mixture of HTML and Javascript.

Due to the complex structure of the XML response we de-
cided against parsing XML and instead opted for using
regex to extract the information we needed. For each node
we were interested in:

• the name of the node

• the amount of credits the module the node belongs to
awards

• the record table configuration of the node

• the validity dates (start and expiry date) of the node

• the identification number of the node (differs from the
ID used to request the node)

• the IDs of all child nodes



20 6 Implementation

We then recursively fetch the information on all child nodes
until we have the complete tree of nodes belonging to the
course. In some cases the number of child nodes a node
has, means that not all child nodes are displayed at once,
requiring more requests to get all.

Since courses can contain many nodes, for example the
computer science bachelor contains around 3000, and the
response to each request is quite big, generally between
30kB and 150kB, we need to locally cache a course, before
our users can edit the record table configurations and see
a preview of documents. Since we are only interested in a
small amount of information from each node, the file size
of the saved courses are tiny compared to the total size of
the responses to our requests.

6.4 Features

Start Page

The start page features a list of courses, that the user has
dowlnloaded previously and a search bar to filter those.
Each course is represented by a ”card”, that features infor-
mation about the course such as the name and the date it
was downloaded, as well as a button for opening the course
for editing and deleting a saved course. Additionally there
is a ”download” button that the user can press to start the
process of downloading another course.

Download courses

To download a course from RWTH Online the user first has
to log in. After successfully logging in, the user is redi-
rected to a page where they can search through the avail-
able courses. The user can click on each result to start
downloading a course.

Since the download can take quite a long time (up toCelery



6.4 Features 21

Figure 6.1: Start page

Figure 6.2: The user can enter a search term in the text field
and gets a list of all courses matching the search as a result

around 15 minutes for large courses), it is necessary to do
the download in a separate process to the flask server. To
achieve this we use Celery, a asynchronous task queue li-
brary for python. When starting the flask server, we also
start a Celery worker in the background that monitors the
task queue and spawns the processes that actually perform
the download. This means, that during the download du-
ration, the main flask thread is free to respond to other re-
quests.



22 6 Implementation

Figure 6.3: Edit page

Edit page

The edit page is the most important part of the interface. It
consists of three main elements.

On the top left, there is a tree view containing each node of
the course the user has opened. Each node can be expanded
to view the subordinate nodes by clicking on the ”plus”-
sign next to the name. The user can select a node by clicking
on it.

On the bottom left, the diploma configuration table of the
selected node is displayed. The user can change the config-
uration by clicking on the checkboxes in the table.

On the right half of the interface a preview shows the user
what the diploma resulting from the current configuration
of the tables looks like. The preview automatically scrolls to
the corresponding row when a user selects a different node.
The toolbar contains a dropdown where the document to be
previewed can be selected, but the selection also automat-
ically changes to the corresponding document type when
the user clicks on a checkbox in the diploma configuration
table.



6.4 Features 23

Figure 6.4: Overview page

The toolbar also contains two buttons for copying and past- Copy/Paste
ing record tables, since analysis of the courses has shown
that they contain many identical tables. To use this func-
tionality, the user selects the node, whose table they want
to copy, press the copy button, then select the node they
want to copy to and finally press the paste button.

When the user has finished their edits, they can press the Overview
finish button to get an overview of the changes they made.
This overview page can then easily be saved as a pdf using
the browsers inbuilt tool.

We considered adding the option to export the changes in
some kind of standardised machine-readable format, how-
ever no matter what, the changes would in the end still
have to be added into the system by humans, so we did
not see an advantage by adding this feature at the present
point in time.





25

Chapter 7

Evaluation

We used two methods to evaluate our software and dis-
cover any remaining usability problems. We decided on
first conducting a heuristic evaluation before

7.1 Heuristic Evaluation

A heuristic evaluation consists of one or multiple experts
looking at a user interface and judging it by usability
heuristics ([Nielsen, 1994]). These heuristics include gen-
eral heuristics (i.e. the ten basic heuristic listed below), but
can also include heuristics specific to the demain of the sys-
tem ([Nielsen, 1995]).

7.1.1 Advantages and Disadvantages

Heuristic evaluations don’t require user participation, Heuristic evaluation
is an easy method
for evaluating a user
interface

which makes them an attractive option in the early stages of
development. They only require one expert that is familiar
with design heuristics and how to apply them.

However an experiment presented in [Nielsen and Molich, Use multiple experts
to find more usability
problems

1990] shows, that experts, when evaluating a user interface,
find a varying number of usability problems, but experts,



26 7 Evaluation

that overall perform worse, could also discover problems
that some better experts did not. Therefore, the authors
conclude, that to get better results from heuristic evalua-
tions, multiple experts should independently conduct the
evaluation after which the individual results should be con-
solidated. While, for each of the 4 user interfaces evaluated
in the experiment, individual experts on average found
only found between 20% and 51% of usability problems, on
average aggregating the results of 5 evaluators resulted in
a much increased proportion of found problems, between
55% and 90%.

7.1.2 Heuristics Used

We use the ten basic heuristics presented in [Nielsen, 1994].

• Simple and Natural Dialogue

User interfaces should only be as complex as abso-
lutely necessary. The gestalt rules should be followed
and the user task should be mapped to the interface
in a natural way.

• Speak the Users’ Language

The terminology used in the user interface should
match the user’s language. Don’t use technical terms
the user is not familiar with.

• Minimize User Memory Load

The user should not be required to remember a lot of
information to use the system.

• Consistency

The interface should be consistent, both within differ-
ent parts of the application (e.g. the same information
should be presented in the same way and the same
position across different parts of the application), as
well as across time (the same action should always
produce the same results).

• Feedback



7.1 Heuristic Evaluation 27

The system should always give clear feedback on
what it is doing and what the effects of a users action
were. This feedback has to be fast enough (ideally less
than 0.1 seconds) for the system to feel responsive.

• Clearly Marked Exits

Users should be able to cancel actions and be able to
get from any state to a previous state (e.g. back button
or undo button).

• Shortcuts

The system should include shortcuts that make it eas-
ier and faster to use

• Good Error Messages

Error messages should be easily understandable for
the user without having to use a manual. They should
help the user in solving the problem.

• Prevent Errors

The user interface should support the user in avoid-
ing errors (e.g. in a command-line interface provide
the user with a list of possible commands).

• Help and Documentation

While the goal should be for the user to be able to use
the interface without consulting a manual, the infor-
mation the user requires should be accessible quickly
if the necessity arises.

7.1.3 Usability Problems Found

1. Layout of Course Overview Screen

The text field for searching through already downloaded
courses is placed right next to the ”Download” button that
starts the process of downloading a new course.

Due to the gestalt law of proximity the user might think,
that the two interface elements are related to each other and
therefore, for example, they have to enter the name of the



28 7 Evaluation

Figure 7.1: Start page before

course they want to download into the text field. The place-
holder text also does not help to clarify the function of the
text box.

Figure 7.2: Start page after

We therefore moved the text field closer to the list of down-
loaded courses that it interacts with. We also added a
border between the area of the ”Download” button and
the area below to emphasize the separation. Finally,
we changed the placeholder text to make clear, that the
text field is used to search through already downloaded
courses.



7.1 Heuristic Evaluation 29

Figure 7.3: The full document type now shows on hover

2. Full Names of Document Types on Edit Page

The report configuration table on the edit page only fea-
tures the abbreviations of document types as labels (e.g.
”ABS” instead of ”Abschlusszeugnis”). While these ab-
breviations are also used in RWTHOnline, the full names
should also be available to the user (heuristic ”Speak the
Users’ Language”).

We added the ability for the user to hover over the abbrevi-
ation to see the full name.

3. Back button from overview screen

There is no ”back” button from the overview screen after
the user has made the changes they wanted. If they use the
browser button to go back they lose all the changes they
have made to the report table configurations. This is not
in compliance with the heuristic of always providing users
with clearly marked exits.

We added a ”back” button to the overview screen which
takes the user back to the edit page with all the changes
they have made retained, so they can continue editing.

In addition to that, we added a button that takes the user
back to the course overview screen.



30 7 Evaluation

7.2 Evaluation with users

Finally, we conducted user evaluations with two different
users.

In both cases, the users were tasked with downloading a
course from RWTH Online, making specific changes to the
diploma configurations and reviewing the changes made
on the overview page.

First user evaluation

The first user study was conducted before the changes we
had decided to make after the heuristic evaluation were
implemented. The user was not familiar with the domain
of university administration and RWTHOnline specifically,
but very experienced with using web interfaces in general.

We first gave the user a small introduction to the back-
ground of the system and their task but did not explain the
interface to them. After that we just observed the user.

To download the course, the user first tried to enter the
name of the course in the filter text field on the start
page and then press the ”download” button. This clearly
showed us, that this issue we discovered using the heuristic
evaluation was not purely of theoretical nature but needed
to be fixed .

The user nevertheless then managed to successfully navi-
gate the user interface and download the course.

The user completed the other tasks without any issues.

In the interview after the user study, the user critisised, that
the changes they made were gone after going back from the
overview screen. This was an issue we also already dis-
covered in the heuristic evaluation and fixed after the user
evaluations.



7.2 Evaluation with users 31

Second user evaluation

The second user study was conducted with a user who
has used RWTHOnline a lot and has experience with the
diploma configuration feature specifically. The aim of this
evaluation was to see whether our result matched their ex-
pectation and needs.

The user had the same task as in the first evaluation.

The user completed the task without any problems and was
happy with the application we developed.





33

Chapter 8

Summary and future
work

In this final chapter we give a summary of the thesis and an
outlook on what future work could be done.

8.1 Summary

In this thesis, we started out by taking a look at RWTHOn-
line and particularly the diploma configuration feature in
SPO-management. We analysed the problems in the cur-
rent process involved in changing it and set out to develop
a user interface that would support users in this process.
Subsequently we went through multiple stages of proto-
typing before implementing our final design using python
and flask. Finally we evaluated our end product using mul-
tiple evaluation methods. We concluded that our interface
matched the users expectations and helped them in their
task of changing diploma configurations.



34 8 Summary and future work

8.2 Future work

We would like to evaluate the current version with more
users. We only tested it with one user that was part of
the target audience. Due to scheduling issues we were not
able to evaluate it with people that are in the department
responsible for developing RWTHOnline (Department 1.6)
and get their feedback on our ideas.

Currently our system is configured to be run directly on a
users computer. Hosting it on a central server would make
it more easily accessible to our intended users. This how-
ever requires some additional features, most importantly a
user account feature that ensures that users can only view
courses they have permission for in RWTHOnline.

The user interface we developed, or a system similar to it
could be directly integrated into RWTHOnline. This would
provide an opportunity to develop a protocol to directly
transmit the changes a user made to the report table config-
ures, without them having to be manually be entered back
into the system.

Additionally, more features than just the record table con-
figuration could be integrated into the tool. In RWTHOn-
line each node contains a lot more information than just this
table, and a more general version of this tool that also al-
lows quick access to those informations might be useful for
some users.



35

Bibliography

Sarah Grzemski and Bernd Decker. Challenges of the
change of decentralized support structures in combina-
tion with digitization processes in the student life cy-
cle. rwthonline the new campus management system
of rwth aachen university. In Proceedings of the 2018
ACM SIGUCCS Annual Conference, SIGUCCS ’18, page
91–97, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450355827. doi: 10.1145/
3235715.3235719. URL https://doi.org/10.1145/
3235715.3235719.

Jakob Nielsen. Usability engineering. Morgan Kaufmann,
1994.

Jakob Nielsen. How to conduct a heuristic evaluation.
Nielsen Norman Group, 1:1–8, 1995.

Jakob Nielsen and Rolf Molich. Heuristic evaluation of user
interfaces. In Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, pages 249–256, 1990.

https://doi.org/10.1145/3235715.3235719
https://doi.org/10.1145/3235715.3235719




Typeset March 31, 2020


	Abstract
	Überblick
	Acknowledgements
	Introduction
	RWTHonline
	Goals
	Outline

	Related work
	Background
	University Reforms
	Modularisation
	Campus Management Systems

	Record Table Management
	SPO Management
	Current Situation
	Stakeholders

	Prototyping
	Paper Prototypes
	Further Prototypes

	Implementation
	Requirements
	Python
	Web Scraping
	Features

	Evaluation
	Heuristic Evaluation
	Advantages and Disadvantages
	Heuristics Used
	Usability Problems Found

	Evaluation with users

	Summary and future work
	Summary
	Future work

	Bibliography

