
by
Norbert Dumont

The Impact of
Body Posture on

Touchtable Accuracy

Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Irene Mittelberg

Registration date: 09.12.2011
Submission date: 11.06.2012

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, June2012
Norbert Dumont

v

Contents

Abstract xiii

Acknowledgements xv

Conventions xvii

1 Introduction 1

1.1 State of the Art Touch Detection in Tabletops 1

1.2 Motivation . 2

1.3 Thesis Overview 4

2 Related work 5

2.1 The Generalized Perceived Input Point Model 5

2.2 Targeting Aids 8

2.2.1 Cross-Keys 8

2.2.2 Precision-Handle 9

2.2.3 Shift 10

2.3 Finger and Body Posture Use 11

vi Contents

2.3.1 Finger Input Properties 11

2.3.2 Pointing Gesture Recognition 13

2.4 Finger Orientation Detection 13

2.4.1 Computer Vision 13

2.4.2 Contact Area Shape 15

2.4.3 Fiduciary-Tagged Gloves 16

2.4.4 Hand Shape 17

2.4.5 Capacitive Sensors 18

3 Study Design and Hypotheses Formulation 19

3.1 Paper Prototype 19

3.2 Next Design 24

3.2.1 Touch Sequence Effect 24

3.2.2 Body Posture and Position on Table . 25

3.3 First Prototype 26

3.4 Pre-study on Handedness 28

3.5 Final Study . 31

4 Implementation 35

4.1 MultiScreen Agent 37

4.1.1 Main Components 38

4.1.2 Modifications 39

Single Camera With Multiple Positions 39

Contents vii

The 180◦ Adjust 43

4.2 Camera Control Agent 45

4.2.1 Hardware Selection and Assembly . . 46

4.2.2 Firmware 50

4.2.3 Software 53

4.2.4 Starting Position Issue 55

4.3 Touch Sequence Display 56

4.4 Modules Communication 58

5 Results 61

5.1 Effects on the Orientation of The Finger . . . 63

5.1.1 Predecessor Effect 63

5.1.2 Successor Effect 65

5.2 Effects on the Touch Location 66

5.2.1 Predecessor Effect 67

5.2.2 Successor Effect 68

5.3 Discussion . 69

6 Summary and Future Work 71

6.1 Summary . 71

6.2 Future Work 73

A Camera Control 75

viii Contents

B Questionnaire for User Study 79

Bibliography 81

ix

List of Figures

1.1 FTIR and DI Setup 3

2.1 Perceived Input Point 6

2.2 Clusters of Touch Locations 7

2.3 Cross-Keys . 8

2.4 Precision-Handle 9

2.5 Shift . 10

2.6 Wang et al. Widgets 12

2.7 Visual Touchpad 14

2.8 Ellipse Fitting 15

2.9 Contact Area Shape Deformation 15

2.10 Fiduciary-Tagged Gloves 16

2.11 Finger Contours 17

2.12 Capacitive Touch Tracking 18

3.1 Target Layout in Paper Prototype 20

3.2 Sequences of Targets in Paper Prototype . . . 21

x List of Figures

3.3 Touch Sequence in Paper Prototype 22

3.4 Paper Prototype: Different Sequences Give
Different Body Postures 23

3.5 Star Shaped Pattern 25

3.6 First Prototype 26

3.7 Touch Areas With Finger Orientation 28

3.8 Final Design – Buttons Layout 32

4.1 Fixed Camera Pointed at a Moving Mirror . . 37

4.2 Grid for Camera Calibration 38

4.3 Simplified Object Relationship Diagram of
the Original MultiScreen Agent 40

4.4 Simplified Object Relationship Diagram of
the Modified MultiScreen Agent 41

4.5 Parts of the Quadrants Selection and Config-
uration Screens 42

4.6 Detected Spot From the MultiScreen Agent . 44

4.7 Moving Camera Setup 45

4.8 First Working Setup for the Camera 47

4.9 Camera Control Main Components 48

4.10 Camera Control Agent 54

4.11 Starting Position Setting 56

4.12 Sequence Diagram for the Camera Control
Agent and Arduino 58

4.13 Sequence Diagram for the MultiScreen
Agent Calibration 59

List of Figures xi

4.14 Sequence Diagram 60

5.1 Buttons Layout With Id 62

5.2 Orientation of the Finger With Predecessor
or Successor Effect Only 64

5.3 Orientation of the Finger With Predecessor
Effect in Different Condition 65

5.4 Orientation of the Finger With Successor Ef-
fect in Different Condition 66

5.5 X-offset With Predecessor or Successor Effect
Only . 67

5.6 X-offset With Predecessor Effect in Different
Condition . 68

5.7 X-offset With Successor Effect in Different
Condition . 69

A.1 Camera Control Schematic 76

A.2 Camera Control Board Layout 77

B.1 Questionnaire for User Study 80

xiii

Abstract

Touch input on multitouch screens is known to be inaccurate. This is generally ex-
plained by the fat finger problem; the softness of the fingertip prevents the system
from detecting precisely the touch position, while the occlusion of the target by
the finger prevents the users from getting feedback from the target. Holz emitted
another explanation for the inaccuracy of the touch input and introduced the per-
ceived input point model. This model states that the system detects touches at an
offset from the intended target, and that this offset depends on the finger position
when touching the surface.

In this thesis, we expanded on Holz’ model and investigated the impact of touch se-
quences on the finger orientation. We formulated two hypotheses; the predecessor
touch in a sequence influences the finger orientation and the touch location on the
next button and the successor touch influences the finger orientation and the touch
location on the previous button. We named these two hypotheses the predecessor
effect and the successor effect.

A literature review revealed several techniques created to circumvent the accuracy.
It also gave some example of finger orientation or body posture use in combination
with multitouch tables. Different systems for obtaining the finger orientation are
presented and were used to decide on our own system. We refined our hypotheses
through an iterative process, during which we designed the experiment to verify
our hypotheses. The study design, as well as the system components went through
several iterations. Our system includes a high definition touch detection prototype
and a software presenting the touch sequences to enable us to test our hypotheses
and logging the touch data.

We tested our hypotheses by running a study which validated them. The predeces-
sor effect on the finger orientation and the touch location was clearly seen, while
no proof of the existence of the successor effect was seen. The predecessor effect
could help making touchscreen devices more accurate.

xv

Acknowledgements

I would like to thank my thesis advisors Prof. Dr. Jan Borchers and Prof. Dr. Irene
Mittelberg for their guidance and assistance.

Special thanks to Max Möllers, for without his invaluable guidance and com-
petent advice throughout this thesis, this work would not have been possible.

I owe Stefan Ladwig debt of gratitude for his tremendous help in explaining
me understanding statistics and making sense of the data we collected.

René Bohne and Mariana Bocoi deserve my thanks, as their knowledge and
experience in the FabLab helped me a lot when working on the hardware for this
project.

My thanks to Simon Völker for his help about the MultiScreen agent, which
made this work possible, and to Chatchavan Wacharamanotham whose opinion
and feedback were always useful.

Last, but not least, I am heartily thankful to my parents, who always be-
lieved in me and supported me throughout my studies. To them, I dedicate this
thesis.

xvii

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in British English.

1

Chapter 1

Introduction

Multitouch devices have made their way into our daily life.
Their smaller versions at least. Mobile phones, tablets, lap-
tops and desktop computers with multitouch screens are
common products. Although it is possible to buy large
multitouch devices, or even build them by hand, they are
not as common as the other ones. Over the years, different Large Multitouch

surface lack
accuracy.

technologies have appeared and evolved, enabling table-
tops to detect touches in a reliable way. However, touch
interactions on the surface lack the precision other input
techniques have. The work presented in this thesis aims at
improving the accuracy on touch tables by making use of
the body posture.

In this chapter, we will present the current state of the art in
multitouch tables, the different sensing technologies avail-
able, their limitations, the motivation of this thesis and we
will conclude with an overview of its content.

1.1 State of the Art Touch Detection in
Tabletops

There are different technologies available to build multi-
touch surfaces. The main ones are resistive, capacitive and
vision-based.

2 1 Introduction

Resistive screens are made of two conductive sheets sepa-
rated by an insulated layer. When the screen is touched by
any object, the conductive sheets come in contact and the
precise location of the touch is registered. Resistive screensHow resistive

screens work. can be multitouch, although they are predominantly sin-
gle touch. Their main application is in trackpads, mobile
phones, or monitors. This technology is not used for table
sized screens.

Capacitive screens consist of one conductor layer. When
a finger touches the surface, the magnetic field of the per-
son disturbs its electrostatic field. Capacitive screens are
multitouch and are common in mobiles phones, tablets,
and monitors. The DiamondTouch1 uses this technology toHow capacitive

screens work. sense the users’s touch on the surface. The surface is illu-
minated by a video projector attached above the surface.

Optical technologies are the preferred choice when build-
ing multitouch table, mainly because they are cheaper to
build compared to the other technologies. The two possibleTwo IR light based

multitouch tables:
using DI or FTIR.

choices are Frustrated Total Internal Reflection (FTIR) and Dif-
fuse Illumination (DI). Both use infrared light and cameras to
register touches on the surface.

FTIR diffuses IR light in the surface of the table, and when
the finger touches it, the light is reflected downward, en-With DI, objects

hovering above the
table can be

detected, with FTIR,
they need to be on

the surface.

abling the camera to see the touch. DI diffuses IR light from
below the table, and when an object is placed on the sur-
face, the light is reflected for the camera to see. The main
difference between these two techniques is the fact that DI
will see shadows of objects hovering above the table, while
FTIR will only detect objects in direct contact with the sur-
face.

1.2 Motivation

Researchers argue that touch input cannot be accurate be-The fat finger as an
explanation for
inaccuracy on
touchscreens.

cause of the fat finger problem; the finger occludes the target
and the softness of the fingertip prevents to accurately hit
small targets. The minimal target size for touch interaction

1http://www.circletwelve.com

1.2 Motivation 3

Figure 1.1: Left: FTIR setup, Right: DI setup.

has been noted as between 10.5mm [Vogel and Baudisch,
2007] and 26mm [Hall et al., 1988].

This theory was refuted by Holz’ et al. [2010]. In this pub- Holz’ Generalized
Perceived Input Point
Model as another
explanation for the
inaccuracy on
touchscreens.

lication, they argued that touch inaccuracy could be ex-
plained by a new model, the Generalized Perceived Input
Point Model. Their hypothesis was that touches were regis-
tered at an offset from the intended target, and that the off-
set depended on the finger posture. We present their stud-
ies and results in the related work chapter (section 2.1).

We were interested in expanding Holz’ work to multitouch
tables, but with changes compared to their original setup.
Holz’ results had one major limitation; they showed that
their model explained the touch inaccuracy and that it
could be corrected, but to do so, Holz’ team instructed the We adapted Holz’

experiment and
expanded the model
to multitouch tables.

participants to be as accurate as possible when hitting the
targets. We were interested to see whether the results could
be reproduced in a more lifelike situation. When we did
our study, we asked participants to hit the buttons in a ca-
sual way, without focusing on being accurate. Holz’ based
his model on the full finger posture, using the pitch, roll
and yaw, while we used only the latest in our study.

Our main hypothesis was that Holz’ model could be ex-
panded and that the whole body posture could be used to
explain the offsets. To this end, we designed an experiment Use the body posture

to expand the model.where participants had to hit targets on a surface. We de-
veloped pieces of software to detect the touches on the sur-
face, to move a camera with very high resolution, and to

4 1 Introduction

display the targets on the table. During the first months of
this work, our hypothesis evolved, and we focused on the
impact of touch sequences on the finger orientation and the
touch location on the surface. We believe that our findings
can help increase the accuracy of everyday touchscreen de-
vices.

1.3 Thesis Overview

The following chapter presents the related work we used
for this thesis. It presents in detail Holz’ study [Holz andThe next chapter

presents the related
work.

Baudisch, 2010] which stands as the foundation for our
work. Additionally, some targeting systems developed to
solve the touch inaccuracy issue are introduced, followed
by systems using finger and body posture, and finally by
techniques enabling the detection of finger orientation.

Chapter 3 describes our process when selecting our hy-
potheses and designing the study. It presents the differentHypotheses and

study refinement. iterations we went through. It begins with our paper pro-
totype, and how we used the results from the study we
ran with it to refine our hypotheses. Then we describe the
different studies we ran and how each new iteration was
based on the previous one.

Chapter 4 introduces the different software components weImplementation of
our system. developed for this project; the touch detection agent, the

moving camera agent with the hardware and firmware,
and the software presenting the stimuli during the study.

Chapter 5 details the results of our main user study, andResults of our main
study. answer the question about the predecessor effect and suc-

cessor effect on the finger orientation and the touch offset.

Chapter 6 summarize the work in this thesis, and presentsSummary and future
work. several open questions that can be researched in the future.

5

Chapter 2

Related work

The inaccuracy of the touches detected by systems using
the touch area center point has been linked to the so-called
fat finger problem [Holz and Baudisch, 2010]; ”the softness The fat finger

problem as the
cause for touch input
inaccuracy.

of the fingertip combined with the occlusion of the target
by the finger”. This prevents the targets from getting be-
low a certain size or too close from one another. It has been
noted by researchers that the minimum target size for tar-
gets was between 10.5mm [Vogel and Baudisch, 2007] and
26mm [Hall et al., 1988].

In this chapter, we will present another hypothesis for the Related work on
finger orientation and
touch accuracy.

touch input inaccuracy and present targeting aid systems
which have been implemented to circumvent this issue. We
will also present systems that have made use of finger ori-
entation or other body parts, and finally we will present
techniques to detect the finger orientation.

2.1 The Generalized Perceived Input
Point Model

Holz et al. [2010] formulated the hypothesis that the touch
inaccuracy is not caused by the fat finger problem, and devel-
oped the generalized perceived input point model. This model
is based on Vogel and Baudisch [2007] statement that users
tend to perceive the selection point of their finger as be-

6 2 Related work

ing at the top of the fingertip while the system records the
center of the touch area several millimeters below (see Fig-
ure 2.1). Holz argues that this offset is a systematic effectThe Generalized

Perceived Input Point
model as another

possible cause for
the inaccuracy of

touch input.

and can be compensated by adding a reverse offset to the
touches. The generalized perceived input point model assumes
that this offset depends not only on the location of the fin-
ger on the 2D surface, but also on the position of the finger
in space. This position is analyzed through the use of the
angle between the finger and the table; the roll, pitch and
yaw. They also assumed that each user has a different men-
tal model and thus needs a personal offset correction.

Figure 7. Callout placement: (a) default position; (b) avoiding

clipping at edges; (c and d) avoiding clipping at top.

Escalation based on hesitation and selection ambiguity
Shift cannot always know whether the user needs support in
an upcoming targeting attempt. By using dwell time, the
ultimate decision about whether or not to escalate is left to
the user. In the complete absence of additional knowledge
about target size and locations, a fixed timeout is used such
as 300ms. But if tighter integration makes target sizes and
locations available, Shift can determine dwell time based on
selection ambiguity. Mankoff et al. also discuss the problem
of target selection ambiguity. In their system, if the first
click is ambiguous, a “magnifier” is displayed and a second
click is required to resolve the ambiguity [15].

We calculate selection ambiguity by comparing the smallest
target size found under the finger with the occlusion thresh-
old size (Figure 8). When the target is small compared to
the occlusion threshold, the selection ambiguity is high. In
this case, we can set the dwell timeout to be very short and
escalate immediately. However, if the target is much larger
than the occlusion threshold, then occlusion is not a prob-
lem and escalation is not necessary. The timeout can then
be set to a longer time enabling users to take advantage of
simple, direct touch. For targets around the same size as the
occlusion threshold, the degree of selection ambiguity is
itself ambiguous (the user may or may not need escalation
depending on their confidence in their selection). In this
case, the dwell timeout occurs after a short delay just long
enough to control escalation invocation with hesitation. If
they want to escalate, they hesitate by holding down for a
moment. To avoid escalation, they lift up immediately.

Our implementation uses the difference between ST, the
smallest dimension of the smallest target under the finger,
and SF , the occlusion threshold size. ST - SF is mapped to a
dwell time using a logistic function with parameters of a=1,
m=0, n=4, and Ĳ=3 (Figure 8). This produces a smooth
curve mapping small targets to ~0ms, large to ~1200ms and
targets near the occlusion threshold to about 300ms.

Estimating Occlusion Threshold
The occlusion threshold is roughly related to the finger con-
tact area, but touch sensitive screens commonly used on
PDAs and UMPCs only report a single input point and not

the finger contact area. So we form an estimate of the oc-
clusion threshold SF over time, based on the target sizes for
which they do and do not use escalation. We begin with an
initial guess SF, then increase SF by s if the user escalates
when SF < ST and decrease SF by s if the user does not esca-
late and SF > ST. We define s = w|SF - ST|, where w is a
hand tuned weight to smooth the estimate over time. We
found that w=0.125 gave a good balance between smooth-
ness and learning rate.

(a) (b)

de
la

y
(s

)

ST - SF

ST

SF

0
0

1.2

-25 25

Figure 8. Ambiguity estimation for escalation: (a) the occlu-
sion threshold diameter SF and the smallest dimension of the

smallest target found under the finger ST ; (b) logistic function
maps the difference ST - SF to a dwell timeout.

A potential benefit of this scheme is that if the user prefers
to use their fingernail, SF will shrink so that escalation is
instant only for very small targets. For devices that can
sense if the stylus is in the device holster, our approach
allows learning independent SF values for finger and pen
input, respectively. In the absence of this sensor data, set-
ting w to a high value allows learning a new SF quickly to
respond to changes in the user’s input style.

Correcting for User’s Perceived Input Point
The single selection point computed by a resistive touch
screen is placed roughly at the mean finger contact area
[21] (Figure 9b). Benko et al. suggest that many users per-
ceive the selection point of their finger as being located
near the top of the finger tip [5] (Figure 9a). In an examina-
tion of log data from our pilot, we found that contact points
were often slightly below the intended target. Since Shift’s
escalated pointer position is displayed relative to the initial
contact point, we adapt the location to reflect the user’s
perceived contact point.

(a) user view (b) hardware view

input point

input point

Figure 9. Perceived input point: (a) users expect the input

point to be near the tip of their finger; (b) hardware places the
input at the centre of the finger contact area.

The vision-based touch screen used by Benko et al. [5] al-
lowed them to place the pointer according to the finger’s
actual contact area. Shift works with more common resis-
tive touch screens by adjusting the input position based on a
single contact point. We continuously refine an estimate of
a correction vector V mapping the hardware input point to
the user’s perceived input point. We update V by adding a
weighted vector between the corrected final lift-off point P2
and initial contact point P1: Vt+1 = Vt + w(P2 - P1), where w

CHI 2007 Proceedings • Mobile Interaction Techniques I April 28-May 3, 2007 • San Jose, CA, USA

661

Figure 2.1: The perceived input point: (a) where the user
expects the touch to be, (b) where the touch is recorded by
the system [Vogel and Baudisch, 2007].

In order to verify their theory, they conducted a user study
in which participants were asked to hit a crosshair repeat-
edly with five different levels of pitch. To limit the impactA user study showed

that different finger
orientations lead to
different clusters of

touch offsets.

of other factors, the participants were asked not to move
their head during the study to control for parallax and the
touch was validated using a foot-switch to avoid inadver-
tent movements during take-off. The study was repeated
for the finger roll and yaw. Figure 2.2 shows the results of
the study for the roll and pitch effect for the first six users.
The ovals contain 65% of the touches for a particular condi-
tion. One can make two observations from this chart; first,
the five ovals of a user have a different offset, and second,
the ovals distribution is different for each user.

As the findings of the user study tend to support the model,RidgePad: a
prototype using a

fingerprint scanner to
get the finger

orientation was built
to correct the offset.

they decided to build a prototype of a touch device that
could extract these four parameters (roll, pitch, yaw and
user). The RidgePad is a touch input device based on a
fingerprint scanner. The fingerprint allows the system to
differentiate between users and the portion of the finger-
print currently in contact with the surface. This enables the

2.1 The Generalized Perceived Input Point Model 7

RidgePad to infer the roll, pitch and yaw of the finger. A cali-
bration phase records different positions and assigns an off-
set to each one of them. During use, the system compares
the received fingerprint to all fingerprints in the database
to identify the user. RidgePad then selects the k fingerprints
closest to the observed one and averages their offsets. The
current touch location is computed as the center of the con-
tact area, corrected by the averaged offsets.

4. User: Cluster organization will differ across partici-
pants. Different users have different finger shapes and
we hypothesized they might also have different mental
models of how to map their large fingers to a small tar-
get.

Results
Figure 5 summarizes the complete touch location data ob-
tained from this study. Each column summarizes the
recorded locations for one participant; the top chart shows
aggregated clusters of touch locations for the different le-
vels of roll, the bottom chart shows the aggregation of the
pitch session. All ovals in Figure 5 represent confidence
ellipsoids that contain 65% of the recognized touch loca-
tions per condition. The crosshairs in each chart is the target
location. Figure 6 shows two examples in additional detail
(pitch data of Participants 3 and 4).

Pitch
We analyzed the effect of pitch using a repeated measures
one-way ANOVA. To better understand the nature of the
differences, we decomposed the differences in recognized
touch position into differences along the finger axis (y axis
in the chart) and across the finger axis (x axis in the chart).
Changing finger pitch had a significant effect on recognized
touch positions (F4,8=6.620, p=0.012) along the finger axis.
Pair-wise comparisons using Bonferroni-corrected confi-
dence intervals showed that the touch locations of all levels
of pitch were significantly different (all p<0.05). We also
found a main effect of pitch on touch location across the
finger axis (F4,8=6.972, p=0.01). However, pair-wise post-
hoc tests showed no significant differences.

Roll
A repeated measures one-way ANOVA found a significant
main effect of roll on sensed touch position along the finger
axis (F4,8=4.574, p=0.032). Bonferroni corrected pair-wise
comparisons showed a significant difference between 90°
roll and all other roll levels, as well as 45° vs. -15° and 0°
(all p<0.05). An ANOVA on touch location across the
finger axis did not find an effect (F4,8=1.444, p=0.305).

Yaw
We ran paired-samples t-tests comparing touch locations
across and along the finger axis in the two yaw conditions.
We found both to be significantly different (across:
t11=6.570, p<0.001; along: t11=9.361, p<0.001).

Participant
We ran a two-way ANOVA on finger pitch and participant
both along and across the finger axis, using participant as a
random factor. We found a significant interaction between
pitch and participant and significant main effects for both
(all p<0.001). For each participant, we ran separate one-
way ANOVAs on finger pitch to determine where the effect
was particularly evident. We found a significant main effect
on touch location along the finger axis for all participants

Figure 5: Clusters of touch locations for each of the 12 participants (columns 1-12). Crosshairs represent target locations; ovals
represent confident ellipsoids. (a) Each of the 5 ovals represents one level of roll. (b) Each of the 5 ovals represents one level of
pitch. All diagrams are to scale. Note how different patterns suggest that each participant had a different interpretation of touch.

Figure 6: Close-up of touch locations organized by pitch of

Participants 3 and 4 from Figure 5b. Even though clusters are
much further apart for Participant 4, both are equally “accu-

rate” under the generalized perceived input point model.

1cm

45°

90°

4

3 65°

25°

15°

25°

90°

15°

45°

65°

CHI 2010: Speech and Touch April 10–15, 2010, Atlanta, GA, USA

585

Figure 2.2: Clusters of touch locations for 6 participants.
The ovals represent clusters of points for a particular level
of roll (a) and pitch (b) [Holz and Baudisch, 2010].

A second user study was performed to evaluate the per-
formance of the RidgePad. Participants were asked to hit a The corrected touch

locations were closer
to the target than the
uncorrected ones.

target, a crosshair or a dot. The dot was occluded by the
participant’s finger and Holz wanted to check whether oc-
clusion problem could be a factor in his model. Per user, the
corrected touch locations were averaged and compared to
the averaged uncorrected touch locations. RidgePad caused
an average spread of 1.24mm while the uncorrected loca-
tions caused a 2.75mm spread. The spread of touch input is
2.2 times smaller when using the fingerprint touch device
compared to a traditional touch input based on the center
of the contact area.

Although these results tend to confirm the validity of the There is support for
the model, but with
limitations in the user
study.

generalized perceived input point model, some limitations of
the studies have to be taken into account. In the first study,

8 2 Related work

the ovals representing the touch locations based on an an-
gle contained only 65% of the touches. Also, people were
asked to be as accurate as possible when using the system.
It would be interesting to run a study where users could in-
teract with the system as they would in a real-life situation.
It is possible that the ovals may be bigger and not as clearly
identifiable.

2.2 Targeting Aids

The following section presents an overview of different tar-
geting aids systems specifically designed to address the tar-
get occlusion problem. Three techniques will be presentedReview of targeting

aids systems. in this section: Cross-keys, Precision-Handle and Shift. Al-
though several other systems have been designed over the
years, we believed that those are the ones which had the
most significant impact.

2.2.1 Cross-Keys

display scale. As shown in Figure 2, Cross-Lever presents
two crossed lines when the user first taps on the screen.
The intersection between these lines indicates the point to
be selected, which can be controlled by moving the two
“rubber-band” lines separately. Selection is done by
tapping within a certain range of the intersection point,
represented by a circle. Each end of the rubber-band lines
has a handle that can be dragged, making the line longer or
shorter. Making the line longer will result in higher
precision leverage to the intersecting point. By initially
putting the intersecting point in an asymmetrical position
the user is given the choice of using either a low precision
leverage but high movement efficiency handle or vice
versa. Both handles and lines are semi-transparent so as not
to occlude the background.

Our informal tests quickly revealed the problems of Cross-
Lever. Although it succeeded in allowing users to select
one-pixel targets with low error rates, it was generally time
consuming to use. Furthermore it forced the user to break
down a two-dimensional pointing task into two separate
one-dimensional tasks, both mentally and physically.
Mentally, the user needs to visualize how the cross point
moves as a result of the handle movement, physically, one
has to control one line (lever) at a time.

Figure 2. The Cross-Lever technique. The user deploys the
Cross-Lever as close as possible to the highlighted target
(left). To adjust the intersecting point to within the target
the user drags the uppermost handle upwards and left and
the lowermost handle upwards (right). The two other
handles are not used and therefore do not move. The
smaller circle surrounding the intersecting point is the
activation area of the Cross-Lever.

Discrete Step Wise Solution – Virtual Keys
The second technique, Virtual Keys, is a small step from
the existing practice of using physical cursor keys for
precision control. Instead of using physical keys, Virtual
Keys uses four graphical arrow keys and an activation key,
all positioned on a side panel, to control the position of a
crosshair cursor (Figure 3). A typical sequence would be
first deploying the crosshair by touching approximately on

the target, adjusting it using the arrow keys, then tapping
the activation key. Although faster than both Take-Off and
Cross-Lever for high precision pointing, our informal tests
also indicated deficiencies of this technique, primarily due
to the eye gaze and hand movement back and forth between
the target area and the virtual keys on the side panel. This
drawback would probably be less pronounced in a physical
keys solution, where tactile feedback may complement the
visual when operating the keys.

Figure 3. The Virtual Keys technique. Using the arrow
keys the crosshair is adjusted into the green target.

Reducing Attention and Hand Travel – Cross-Keys
Our third design attempt, Cross-Keys, combined features
from the first two. We moved the control keys in the
Virtual Keys technique from the side panel to the crosshair,
putting arrow keys at each of the four ends of the crosshair
and the activation key at the centre of the crosshair (Figure
4). This reduced the need to move visual attention and the
hand between the target area and control keys on the side
panel. The first tap deploys the crosshair with the arrow
keys, and if adjustments are needed one taps on the handles
to move the crosshair in discrete steps. Once on target, the
user taps the centre circle for activation. Depending on how
much users missed the target with the initial touch they
would either use the discrete step handle keys, or point
again to get a better starting point. As in Cross-Lever, the
graphic elements of Cross-Keys are all semi-transparent.
An obvious limitation is if targets are situated very close to
the screen edge, the handles would be pushed beyond the
screen. Special design solutions for this problem include
automatic panning, or displacement of handles. Our
informal tests showed that the Cross-Keys technique was
an improvement over Virtual Keys and overall worked
well.

Figure 4. Cross-Keys – Shown in the picture are two
targets and the Cross-Keys to be adjusted left and down to
hit the current target.

Ft. Lauderdale, Florida, USA • April 5-10, 2003 Paper: Input Interaction

Volume No. 5, Issue No. 1 107

Figure 2.3: Cross-Keys (shown) can be used to move left and
down to be placed accurately on the current target [Albins-
son and Zhai, 2003].

Cross-Keys from Albinsson et al. [2003] removes the occlu-Cross-Keys uses
handles to move a

crosshair.
sion problem completely by moving the user’s hand away
from the target. This system uses a crosshair with control
keys to move it and an activation key at the center of the
crosshair to select the target.

The first tap on the screen displays the crosshair on theCrosshair moves in
discrete steps.

2.2 Targeting Aids 9

screen. Taps on the handles of the crosshair allow it to move
in discrete steps. When the target is reached, it can be se-
lected by tapping the central circle. If the initial tap is too
far away from the target, another tap will move it to a dif-
ferent location.

The results show that this selection method had a low er-
ror rate. This is due to the discrete movement which allows Crosshair has a low

error rate, but it
increases the
selection time.

precise adjustments. On the other hand, the discrete taps
increase the selection time. Another drawback is that the
occlusion is not completely solved. The user’s hand may
hide the handles or the crosshair at times.

2.2.2 Precision-Handle

Continuous and Integrated 2D Control – 2D Lever
Cross-Keys achieves fine control with discrete key taps.

Could a more fluid, continuous technique be designed to

achieve the same goal? This led us back to the Cross-Lever

technique, whose primary drawback was the need to break

down a positioning task to two separate one-dimensional

tasks. We hence designed our fourth new technique, 2D
Lever (Figure 5, 6a-b), consisting of a handle, a pivot point,

and a tip with a crosshair to point to the target. The 2D
Lever is deployed by first touching as near the target as

possible. Moving the handle causes the tip to rotate around

the pivot with high precision, since the handle is much

farther away from the rotation point than the tip. Moving

the handle towards or away from the pivot point causes the

tip to shrink or extend proportionally. When the tip of the

2D Lever reaches the target, the user taps within the

activation circle to select the target. Our informal tests

showed that 2D Lever was faster than Cross-Lever (Figure

2), but still did not reach the performance level of Cross-
Keys.

Figure 5. The 2D Lever – the tip of the lever can be rotated
or extended about the pivot (the small black point near the
tip of the lever), with precision leverage.

Perfection by Simplification – Precision-Handle
Noting that one problem with the 2D Lever was the

inverted relation between the tip and the handle movement,

we decided to skip real-world physics metaphors and

remove the pivot point but maintain the amplified precision

effect. The result is our fifth new design—Precision-
Handle. As shown in Figure 6c-d, any movement made at

the handle is also made at the tip but on a smaller scale,

thus increasing precision. The handle will naturally stretch

or shrink as the user manipulates it. To select the current

crosshair position an activation circle around the tip was

used as in previous techniques. By considering the screen

area where the user initially taps, the layout of the handle

can be optimized to provide large movement possibilities in

all directions. If, for example, the target is on the lower left

part of the screen the initial layout would be a handle

pointing down and left, thus avoiding the problem of being

placed outside the screen. In initial tests Precision-Handle

was faster and better liked by users than 2D Lever.

Figure 6. The 2D Lever pivot point rotation (a) and
translation (b) versus the Precision-Handle simplification
(c, d).

Our iterative design exploration has produced five designs.

Two deserved more rigorous evaluation—Cross-Keys and

Precision-Handle. To measure their performance

comparatively, we also studied two performance

“anchors”—Take-Off and Zoom-Pointing, notwithstanding

their limitations previously discussed. The basic goal of the

current experiment was to evaluate the performance of

these techniques at an elemental level which would be

applicable to any task, and to provide results that may

guide and be combined with studies with more specific

context.

FORMAL EXPERIMENT
Twelve paid volunteers, eleven male and one female, with

a mean age of 28.5 years (SD = 5.55 years), participated in

the experiment. On a 1 to 5 scale, the participants’

familiarity with touch screens averaged 2.33 (SD = .65),

corresponding to “less than once per month”. All of them

used GUI computers on a daily basis. All but one of the

participants were right-handed.

The main experimental apparatus was a commercial CRT-

based 17Ǝ touch screen, Surface Acoustic Wave
Touchscreen, Model M17-SAW-S, made by Mass

Multimedia, Inc. Its active display area was 320 x 240 mm

and was set at 800 x 600 pixels resolution, with pixel size

of 0.4 x 0.4 mm. Its refresh rate was set to 85 Hz. The

screen was tilted to 40° to minimize fatigue [15].

A program was developed to present targets, provide the

precision pointing techniques, measure user performance

and log all necessary experimental data.

The experimental task was simple reciprocal target

pointing. Two square targets of width W, separated by

distance D were presented on the screen (See Figure 1 to

5). The current target, which alternates between the two,

was colored green and surrounded by a green circle.

Participants were instructed to select the green target as

quickly and, more importantly, as accurately as possible.

(a)

(b)

(c)

(d)

Pivot point

Activation
circle

Target’s
highlighting
circle

Paper: Input Interaction CHI 2003: NEW HORIZONS

108 Volume No. 5, Issue No. 1

Figure 2.4: with Precision-Handle, all movements made at
the handle are reproduced at the tip at a smaller scale,
allowing for precise manipulation [Albinsson and Zhai,
2003].

Precision-Handle is another technique introduced by Albins- Precision-Handle
removes the finger
from the target.

son et al. [2003]. As with Cross-Keys, the occlusion problem
is removed as the user’s interactions are not made on the
target. This system consists of a handle and a crosshair at
the tip to point at the target.

10 2 Related work

The handle appears on the screen when the user taps on it.Moving the finger on
the handle moves the

crosshair at the tip.
The movements made at the handle are reproduced at the
tip on a smaller scale, which increases the precision. When
using the handle, it will shrink or stretch, thus linking its
movements to the tip. The current crosshair position can be
selected by tapping in the activation circle, as in the previ-
ous system.

The error rate for this technique was also low, and the usersParticipants rated
this technique

positively.
evaluated it positively regarding its speed, accuracy and
comfort of use.

2.2.3 Shift

Figure 2.5: With Shift, ambiguous target selection is solved
by displaying a callout showing the occluded area and the
current finger selection point. Moving the finger allows the
user to move the pointer on the target and lifting it selects
the target [Vogel and Baudisch, 2007].

Shift, developed by Vogel and al. [2007], builds on the idea
of the Offset Cursor [Potter et al., 1988]. Offset Cursor creates
a pointer on the screen at a fixed distance above the finger
touch area. The finger can be dragged on the screen to moveOffset Cursor moves

the cursor above the
finger, removing

occlusion but also
preventing to aim at

targets directly.

the pointer. The target is selected when the finger is lifted
off the surface. Although this technique allows for precise
selection, it has drawbacks. The most important one be-
ing that the user cannot aim at the target directly anymore.
Instead, he has to counterbalance the offset by consciously
aiming below the target. As there is no visual representa-
tion on the screen until the finger is touching it, estimating
the offset is hard and needs more iterations.

2.3 Finger and Body Posture Use 11

Shift aims at keeping the benefits from Offset Cursor while
fixing its drawbacks. To achieve this, it does not only off-
sets the pointer, but also the part of the screen that is un-
der the finger. Figure 2.5 shows a scenario when the target Shift creates a

callout above the
finger to display the
occluded area and
the cursor.

selection is ambiguous (i.e. more than one target around
the pointer) and Shift displays the callout. When there is no
ambiguity, the target is selected and no callout is displayed.
Once the callout containing a view of the occluded area is
shown, the user can pinpoint the target by sliding his finger
on the surface. The target is selected when the user lifts his
finger.

Unlike Offset Cursor, Shift keeps the speed and simplicity of Shift solves the
occlusion problem,
but does not increase
touch input accuracy.

direct touch interaction. It makes the system easy to use in
a walk-up situation. Shift solves the occlusion problem but
does not improve the accuracy issue. When the user lifts his
finger, the pointer moves as the contact area changes and it
may become off target.

2.3 Finger and Body Posture Use

The finger orientation, the position of the arm, head and Review of systems
using finger
orientation or body
posture.

other body parts have been used to enhance the interaction
with multitouch surfaces. All of them however, focus on
creating new interaction techniques and not on improving
the accuracy of such surfaces.

2.3.1 Finger Input Properties

Wang and Ren [2009] investigated the different properties Four widgets using
the finger orientation.of a finger and designed four widgets that made use of the

touch area shape, its size and the finger orientation.

Their first widget is the Finger Combination Cursor. This Finger Combination
Cursor uses contact
area and contact
point to select
targets.

technique relies on the contact area to define an area cur-
sor as well as the contact point to define the point cursor.
While most systems use the contact point to select a target,
Wang and Ren make use of these two parameters. When a
touch is detected, the system follows this algorithm to se-

12 2 Related work

Figure 9. Widget design demo, (a) finger combination cursor, (b) finger
sector menu, (c) finger pointing stick, (d) finger cross selection.

Finger Combination Cursor. We informally define “Com-
bination Cursor” as the combination of one area cursor and
one point cursor. The shape of the finger imprint is treated
as an area cursor and the center point of the contact area is a
point cursor. The area cursor is a cursor that has a larger than
normal activation area. The area cursor simply has a larger
hot spot. There is evidence that performance with area cur-
sors is better than performance with regular cursors for some
small target acquisition tasks [12].

The human finger is a natural area-cursor input device. Based
on the previous section, the shape of the finger’s contact area
can be described by an elliptical equation. The center coor-
dinate value of the contact area can be treated as the position
of the common point cursor. Figure 9a shows the combi-
nation cursor. The finger combination cursor is capable of
improving GUI performance in target selection tasks. When
the finger touches the screen, two strategies are adopted to
determine the selected target: (1) If only one target is cov-
ered by the tapped area, the target can be selected directly by
the area cursor technique; (2) If there are more than 2 targets
in the contact area, the target nearest to the center coordi-
nates is the target. At the same time, we can adopt a “Shift”
technique [25], where a callout can be used to display the
finger touch area. The finger combination cursor combines
the advantages of area cursor and point cursor.

Finger Sector Menu. Pie menu use is widespread in GUI
design. In multi-touch techniques, a pie menu is often trig-
gered by a finger touch. But some menu items are always
obstructed by the finger. We present a new sector menu tech-
nique to resolve the occlusion of the finger. Incorporation
of the newly defined finger properties improves the usabil-
ity of the pie menu and makes the operation more natural.
Figure 9b shows the finger sector menu in use. The finger
sector menu is triggered by variations in the finger contact
area. When the contact area is greater than a predetermined
threshold, a finger sector menu is triggered and displayed
following the orientation of the finger. The position of the
hand can be determined by variations in the direction of the

contact coordinate(s): when a user touches the panel with
the vertical touch gesture, the coordinates of the touch point
(x1, y1) are obtained; the user then tilts the finger down;
when the finger is in an oblique state, the second touch point
(x2, y2) is obtained; the direction from the (x1, y1) to (x2,
y2) is considered to be pointing towards the position of the
hand. In the premise of knowing the finger physical position,
the occlusion of the display menu item by the finger can be
avoided. The user can select one menu item by rocking the
finger or changing the finger’s orientation. With the support
of the finger sector menu technique, the user can pop-up the
finger sector menu and select one menu item in a natural
gesture without any additional finger movement.

Finger Pointing Stick. The pointing stick is an isometric joy-
stick used as a pointing device that is used in notepad com-
puters such as the IBM/Lenovo Thinkpad series. The finger
looks and operates like a joystick while in vertical contact
with the screen. The finger can simulate most functions of
the pointing stick naturally. From the vertical to oblique po-
sitions, the center of the touch area can be used to move the
cursor. The user can rotate the finger horizontally to fine-
tune the cursor. With a proper setup of the control display
ratio, the rocking of the finger can control the cursor move-
ment in one direction (see Figure 9c). The finger pointing
stick is also capable of controlling the pop-up menu’s selec-
tion.

Finger Cross Selection. Multi-touch screens are usually used
in out-door information displays and interactions. The size
of the screens is increasing in order to satisfy the require-
ments of special applications. The “Finger Pointing Stick”
technique is a good way to control cursor movement by sim-
ply rocking the finger. The finger cross selection technique is
an extension of the finger pointing stick. Figure 9d shows the
concept of finger cross selection. In order to select a distant
target, the orientation of two fingers can present two radial
lines. We can select the target by controlling the position
of intersection of the two lines. The Finger Cross Selection
technique is especially useful in wall-size display technol-
ogy if the position of target is out of the user’s reach.

CONCLUSION
We designed an FTIR based multi-touch device and used it
to implement a series of experiments in order to investigate
readily available human finger properties. Our results indi-
cate that the five fingers of one hand present different abili-
ties and potentials for target selection. The target selection
precision of the index finger, the middle finger and the ring
finger are better than the precision of the thumb and the lit-
tle finger. Based on the results of our experiment, the shape
of the finger contact area, the size of the contact area and
the orientation of the contact finger are effective finger prop-
erties that are useful for the design of natural multi-touch
gestures.

Future intended work on this subject mainly includes the
evaluation of newly proposed designs. Their impact in re-
ducing interference issues should be carefully evaluated, as
well as evaluating the discrete control level of these input

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1071

Figure 2.6: Widgets using the finger orientation. (a) Fin-
ger Combination Cursor, (b) Finger Sector Menu, (c) Finger
Pointing Stick, (d) Finger Cross Selection [Wang and Ren,
2009].

lect a target. If only one target is inside the contact area,
it is selected using the area cursor; if more than one tar-
get is covered by the contact area, the point cursor is used
and the target closest to it is selected. This technique allows
fast target selection with relatively low accuracy when us-
ing the area cursor, while at the same time retaining the fine
precision of the point cursor.

Finger Sector Menu comes from the observation that in mul-Finger Sector Menu
displays pie menu
around the finger.

titouch systems, pie menus are often launched by a fin-
ger touch and that some items are always occluded by the
hand. The touch area shape is used to determine the finger
orientation (more details in the following section). Once
this is known, the position of the hand can be deduced and
the items displayed on a pie menu around the hand, but
not under it. Items can be selected by rocking the finger or
rotating it. This widget solves the occluded item issue and
makes item selection more natural, as no item is ill placed
regarding the wrist position.

2.4 Finger Orientation Detection 13

Finger Pointing Stick is based on the pointing stick, the iso- Finger Pointing Stick
uses the finger as a
joystick.

metric joystick used as a pointing device one can find on
laptop mice and keyboards. The finger works like a joy-
stick; the cursor can be moved using the changes in the con-
tact area, rotating the finger fine-tune the cursor and rock-
ing the finger moves the cursor in the same direction.

Finger Cross Selection aims at making the selection of distant Finger Cross
Selection enables
selecting distant
fingers by using two
fingers.

targets easier and faster by eliminating the need for the user
to reach all the way to this target. When using two fingers
on the surface, radial lines show the orientation of the fin-
ger and the intersection of these lines is used to select the
target.

2.3.2 Pointing Gesture Recognition

Nickel and Stiefelhagen [2003] investigated body posture
in pointing task. They tested three approaches to establish Use of body postures

for pointing at objects
in space.

the pointing target. The first one was the line of sight be-
tween the head and the hand, the second was the forearm
orientation and the last one was the head orientation. The
line of sight between head and hand, as well as the forearm
orientation were determined using stereo camera, while the
head orientation was given by a magnetic sensor.

They noted that participants tended to look at pointing tar- The line between the
head and the hand is
the best estimate for
pointing directions.

gets while gesturing toward them. Comparing the three
approaches, their results show that the head-hand-line pro-
duced the most accurate estimate for pointing direction.
This proves the usefulness of using other body parts and
not only the hand in pointing tasks.

2.4 Finger Orientation Detection

2.4.1 Computer Vision

Malik et al. [2004] developed the Visual Touchpad, a stereo Using stereo
cameras to track
hands in space.

hand tracking system that provides the 3D positions of the
user’s fingertips as well as their orientation on and above

14 2 Related work

3.3.3 Hand Blob Detection
A flood-fill technique is then applied to the foreground objects,
and the two largest connected blobs above some threshold size are
assumed to be the hand blobs. Assuming that hands will not cross
over during interaction, we simply label the left-most blob as the
left hand, and the right-most blob as the right hand. In the case of
only a single blob, we consider it to be either the left or right hand
depending on a software setting that defines a user’s dominant
hand preference.

3.3.4 Fingertip Detection
The contours of each blob are then detected in a clockwise order
and potential fingertips are found by finding strong peaks along
the blob perimeters. We first use an approach similar to [18],
where the vectors from a contour point k to k+n and k-n are
computed (for some fixed n). If the angle between these vectors
is below some threshold (we currently use 30 degrees) then we
mark that contour point as a potential fingertip. To avoid
detecting valleys (such as between fingers) we verify that the
determinant of the 2x2 matrix consisting of the two vectors is
negative. Non-maximal suppression is then used to avoid
detecting strong fingertips too close to one another. Finally,
orientation is determined by computing a line from the midpoint
between contour points k+n and k-n to the fingertip point k.
Figure 4d shows the result of fingertip position and orientation
detection.

Figure 4. Hand detection in the warped image: (a) Original
image; (b) Warped image; (c) After background subtraction;

(d) Finger tip positions and orientations detected.

3.3.5 Fingertip Labeling
If a single fingertip is detected in the contour, it is always labeled
as the index finger. If two fingers are detected, the system
assumes they are the thumb and index finger, using the distance
between each fingertip along the contour to differentiate between
the two. For example, for the right hand, the distance from the
index finger to the thumb is larger in the clockwise contour
direction than the distance from the thumb to index finger. For
three, four, and five finger arrangements we use a similar contour-
distance heuristic for the labeling, with label priority in the
following order: index finger, thumb, middle finger, ring finger,
little finger.

3.3.6 Detecting Contact with the Visual Touchpad
For each camera, the hand detector gives us the (x,y) position of
fingertips in screen space, as well as the orientation angle Ĭ of the
finger. For fingertips directly on the surface of the touchpad, the
positions will be the same regardless of whether we use the pose
information from the warped image from camera 1 or the warped
image from camera 2. However, for fingertips above the

touchpad surface the positions of corresponding points will be
different since the homography only provides a planar mapping
(Figure 5). This disparity of corresponding points can thus be
used to determine the distance of feature points above the
touchpad surface [21]. To determine a binary touch state, we
define a disparity threshold below which we consider a point to be
in contact with the touchpad. For a given camera configuration, a
threshold can be easily determined by holding the finger at a
height above the touchpad which should be considered “off” the
surface. The disparity of the fingertip position can then be used
as the disparity threshold. In our experiments we have found that
holding the finger approximately 1cm above the surface works
well. The final output from our hand tracker is a set of (x,y,z,Ĭ)
values for each detected fingertip, where z is a boolean value
representing whether the finger is touching the surface. Note that
we set one of our cameras to be the reference camera, and thus the
(x,y) values for each fingertip are extracted from the hand contour
associated with that camera. Additionally, the tracker can also
provide temporal information, resulting in five parameters for
each fingertip. The advantage of using disparity instead of 3D
triangulation is that we do not need to perform camera calibration
of any sort, which makes the system extremely simple to set up.

Figure 5. Using disparity for sensing height of raised fingers:
(left) Rectified camera 1 view; (middle) Rectified camera 2
view; (right) Images overlaid together show corresponding

points for raised fingers are not in same position.

3.3.7 Postures and Gestures
Given the output of the hand tracker, it is extremely simple to
detect the four static postures depicted in Figure 6. The pointing
posture is simply the index finger held straight out in some
direction. The pinching posture involves setting the thumb and
index finger as if something is being held between them, with the
thumb and index finger pointing in relatively the same direction.
The L-posture is a variation of the pinching posture, where the
thumb and index finger are pointing in approximately orthogonal
directions. For both the pinch posture and L-posture we can
overload the recognition system with variations such as both
fingers touching the touchpad surface, both fingers not touching
the surface, or one finger on the surface and one finger off the
surface. Finally the five-finger posture is simply holding out all
fingers so that the hand detector can clearly identify all fingertips.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 6. Posture set: (a) Pointing; (b) Pinching; (c) L-
posture; (d) Five-finger posture.

292

Figure 2.7: Hand detection steps. (a) Original image, (b)
Warped Image, (c) Background subtracted image, (d) Fin-
gertips position and orientation detected [Malik and Las-
zlo, 2004].

a surface. The system is composed of two video cameras
mounted above a touchpad, a regular piece of paper.

The first step of their fingertip and orientation detection is
to map the camera image to the screen coordinates and cre-
ate a warped image of the touchpad on the screen, as can
be seen in figure 2.7a and figure 2.7b. The background is
then subtracted from the image. The high contrast betweenExtracting finger

orientation from the
camera images.

the black of the touchpad and the hands allows the sys-
tem to robustly deals with shadows and different lighting
conditions. The hands are detected using a flood-fill func-
tion. The contours of the hand are then detected, and the
fingertips are found by looking at strong peaks along the
borders. The vectors from a contour point k to k+n and k-n
are computed for a fixed n, and if the angle between those
vectors is below a certain threshold, that point is marked
as a fingertip. The orientation is determined by computing
the median line from the fingertip k and the points k+n and
k-n. Figure 2.7d shows the resulting fingertips and finger
orientation.

2.4 Finger Orientation Detection 15

2.4.2 Contact Area Shape

Figure 7. Scatter diagrams and normal distributions diagrams of the
index finger in the vertical touch (a)(c) and oblique touch gestures
(b)(d). The origin of the coordinate system (zero) in (a)(b) represents
the position of the target. The blue point is the position of each tap. The
distance value in (c)(d) is the value of Stable-Target.

gers are more accurate than the thumb and little fingers. In
the subjective investigation, 12 subjects all reported that the
little finger was difficult to use in the tasks. This is consistent
with the experimental data.

Second, the radius of circular targets needs to be greater
than 14.38 pixels (5.76 mm) and square targets need to be
at least 28.76 pixels (11.52 mm) per side to maintain direct
touch precision. According to the statistical theory, each up-
per level of 95% confidence interval value of five fingers in
Table 5 can be regarded as the effective target size of each
finger under the prerequisite that the distance data is in ac-
cord with the normal distribution. This effective target size
also indicate finger touch accuracy. In order to meet the re-
quirements of five fingers with two gestures, the minimum
optimal size of targets is determined from the value of max-
imum upper level of 95% confidence interval (little finger of
“All Data”) in Table 5. It is obvious from the data (see Ta-
ble 5) and the scatter diagrams (see Figure 7) that the value
is the optimal radius of the target. If we consider the square
target, the size must be 14.38 £ 2 (28.76 pixels, 11.52 mm)
per side to guarantee a 95% confidence level.

Finger Touch Area Shape, Size and Orientation
Shape. Figure 8 shows the shape of the finger contact area.
The shape of the contact area can be approximately repre-
sented by the equation of a rectangle or an ellipse. Three
parameters, i.e., width (minor axis), length (long axis), slant
angle, can describe one touch area of a finger. Table 6 presents
the average statistical width and length for the two touch ges-
tures. The real size of the contact area is calculated directly
from the finger imprint (see Figure 8) and is different from

Thumb Index Middle Ring Little

All
Data

AVG 6.63 5.84 6.22 6.23 7.57

SD 3.44 3.05 3.16 3.18 4.14

LLCI 0.97 0.83 1.02 0.99 0.75

ULCI 12.28 10.85 11.43 11.46 14.38

Vertical
Touch
Data

AVG 5.56 5.83 6.37 6.38 6.67

SD 2.69 3.00 3.19 3.21 3.31

LLCI 1.14 0.89 1.12 1.09 1.23

ULCI 9.99 10.76 11.62 11.66 12.11

Oblique
Touch
Data

AVG 7.68 5.85 6.08 6.07 6.99

SD 3.76 3.09 3.13 3.15 4.12

LLCI 1.49 0.76 0.92 0.89 0.21

ULCI 13.87 10.94 11.23 11.26 13.76

Table 5. The tapping data for the five fingers in three conditions: the
average values (AVG), standard deviation (SD), lower level of 95% con-
fidence interval (LLCI) and upper level of 95% confidence interval
(ULCI) (unit: pixels, scale = 0.4 mm/pixel).

the value of width £ length.

Figure 8. Shape of the contact area of the finger. The area with the
black color shows the finger imprint.

Based on the data of Table 6 regarding the physical size of
the finger, the width and length of the contact area in vertical
touch is approximately 30% - 40% of the physical width and
length of the full finger-pad (end-joint). In the oblique touch
state, the average width is approximately 90% of the physi-
cal finger tip size, while the average length is approximately
70% - 80% of the physical finger tip.

Orientation and area size. The human finger has the ability
to indicate direction in common life. In multi-touch tech-
niques, the finger has the same ability to indicate direction
on a 2D touch panel. When the finger touches the panel in
the oblique gesture, the finger’s pointing direction can be de-
fined as “finger orientation”.

The average size of the contact area in the vertical touch
state (VA), the average contact area in the oblique touch state
(OA), the proportional relation between VA and OA and the
maximum orientation rotatable range are listed in Table 7.

Table 7 presents the finger’s ability to control according to

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1068

Figure 2.8: Contact area shape fitted to an ellipse. The ma-
jor axis shows the undirected finger orientation [Wang and
Ren, 2009].

Wang et al. [2009] designed a new approach for detecting
unambiguously finger orientation using the contact area
shape of the finger on a surface. Their system relies on Using the contact

area shape for
detecting finger
orientation.

a tabletop based on Frustrated Total Internal Reflection
(FTIR). The contact area of the finger is fitted to an ellipse,
and if the ratio between the main axis and the minor axis of
this ellipse is above a certain threshold, the main axis gives
the undirected finger orientation.

Figure 2.9: Contact area shape deformation when a finger
touches a surface [Wang et al., 2009].

The disambiguation of the finger direction is done by look- The contact area
shape changes as
the finger lands on
the surface and gives
the finger orientation.

ing at the way the finger lands on the surface. As the finger
has a soft texture, it does not come in contact with the sur-

16 2 Related work

face in one step. As we can see in figure 2.9, the contact
area shape changes while the finger gets on the surface and
the center of this area moves towards the palm of the user.
By analyzing the movements of the center of the contact
area, Wang et al. are able to determine the direction of the
finger orientation. The results show that disambiguation
algorithm has a success rate of 96.7%, while the angle has
an average detection error of 2.69◦.

2.4.3 Fiduciary-Tagged Gloves

Figure 2.10: Fiduciary-Tagged Gloves (bottom view and
touching a tabletop) [Marquardt et al., 2010].

Marquardt et al. [2010] introduced the Fiduciary-Tagged
Gloves as a reliable and expressive way to collect informa-
tion regarding several parts of the hand. We are especially
interested in the ability of the system to detect the finger
orientation. Glove-based tracking is well used in domainsUsing fiduciary tags

on fingertips to get
the finger orientation.

such as virtual reality and augmented reality, while it is
not very common with tabletops. Marquardt et al. use a
Microsoft Surface table - with Diffuse Illumination - and a
glove tagged with multiple fiduciary markers. The table is
able to detect several markers at the same time and differ-
entiate between them. The finger orientation is given by
the orientation of the tag on the table. The advantages of
this system are the relative low cost of its implementation,
its ease of use and the possibility of detecting and differ-
entiating several parts of the hand. All of the above allow
for rapid prototyping, but cannot make for an end-user sys-
tem, as wearing gloves is not a natural way to interact with
tabletops.

2.4 Finger Orientation Detection 17

2.4.4 Hand Shape

Figure 2.11: Finger Contours determine the symmetrical
lines around each finger and use them to compute the fin-
ger orientation [Dang and André, 2011].

Dang et al. [2011] employ a multitouch table working with
Diffuse Illumination to obtain the shape of the hand as
shown in figure 2.11. The idea behind Dang’s work is that
each finger touch can be represented by two quasi symmet-
rical lines converging at the fingertip and that those lines
can be used to determine the finger orientation. The posi- The hand shape is

used to detect
fingertips and finger
orientations.

tion of the finger is obtained by removing the background
from the raw image to get the bright spots representing the
fingers. The center of each contact area determines the fin-
ger position. Lines are drawn from the center point and
the first dark point found along the line belongs to the con-
tour and is stored in a list. Once all the contour points have
been found, the points at the fingertip are excluded and the
remainder points are used to compute the two quasi sym-
metrical lines. The angles between those lines and the x-
axis are computed and averaged to determine the finger
orientation. The authors compare their method to the el-
lipse method with 180-adjust and show that the contour
method is more accurate and gives a recognition rate above
93% with an error range of 10◦.

18 2 Related work

2.4.5 Capacitive Sensors

were performed, both intended to determine targeting accu-
racy on a simulated numeric keypad. Participants were asked
to touch marked points on a keypad layout (see Figure 5).
The data from these touches was captured, and the test al-
gorithms were run on this data to obtain the estimated touch
points. The system used in the experiments gave participants
no feedback as to how either of the algorithms being tested
interpreted the touch; this ensured that an entirely fair and
blind comparison of the algorithms could be made.
The first experiment involved participants “entering” a se-
quence of digits by touching marked points on a flat surface,
firstly with their fore-finger with the device resting on the ta-
ble, and secondly with their thumb while their hand gripped
the sensor in a phone-shaped case.
The second experiment involved participants entering sequences
of four digit groups (as in PIN entry for unlocking the de-
vice, a task often done single-handedly when users are en-
gaged with other tasks), again on the flat, marked surface.
The tasks in this experiment were performed with the thumb
only, and with two different sizes of target grid. The total
size of smaller target grid was smaller than most participants
thumbs.

Hardware
For experimental testing, an SK7 sensor pack from SAMH
Engineering1 was interfaced to the SK7-ExtCS1 capacitive
sensor array (see Figure 5). This array is a capacitance-
to-ground (loading mode) touch sensor with 24 individual
sensing pads in a 6 × 4 layout. This is in contrast to the
row-column sensors on many touch controllers. This has
the advantage of having a sensitive region which extends
further from the pads at the cost of reduced XY resolution.
The sensitive region measures 52mm×34mm. Each pad is
7mm×7mm with a 2mm gap between sensors. The capaci-
tance to ground on each pad is sampled at 5kHz with 16-bit
resolution and then low pass filtered and decimated. A no-
touch and full-touch level that are measured as part of an
initial calibration are applied to the data and the resulting
signals are sent to the PC as 8-bit resolution signals at 60Hz
using a USB connection.

A plexiglass sheet of 2mm thickness was attached to the top
side of the board with clear double-sided sticky tape, to en-
sure the absence of air bubbles. On to this sheet a 3×3 grid
of target points was marked, at the junctions where four ca-
pacitive pads meet. This pad measured 22mm×22mm. A
smaller 3×3 grid of 10mm×10mm was also laid out in-
side for testing extremely small target sizes. These grids
are visible in Figure 5). The entire board was mounted a
40mm thick foam block and placed inside a plastic enclo-
sure shaped like a mobile phone. This additional material
made it possible to hold the assembly with the hands at the
rear of the experimental hardware unduly interfering with
the capacitive sensing. The surface of the board was smooth
and featureless. The targets were only marked on visually.

Filter details
The details of the particular densities and parameters of the
filter used in the experiments are given below: The sensor
1http://code.google.com/p/shake-drivers/

!!!!!! !! !!

!!!

!!! !! !!

!!!!!!!!!!!!!!!!!!!!!!!

Figure 5. Left: the hardware used in this study. The 24 capacitive prox-
imity sensors are clearly visible. Right: Experimental grid, shown to
actual scale. The larger grid is marked with large dark crosses, smaller
grid with small light stars.

space is modelled as a 60× 90 discrete grid (1 grid division
= 0.67mm). All values given below correspond to this co-
ordinate system. We used a total of S = 1000 particles, of
which 20 percent were randomly sampled at each iteration
and the remaining were re-sampled from the previous popu-
lation. The individual components were defined as follows:

p(x, y) =

J∑

j=1

1

J
Nx(µxj , 1)Ny(µyj , 1) (1)

p(w) = Uw(10, 20) (2)
p(θy) = Uθr (0, π) , p(θp) = Uθe(0, π/2), (3)

where U(a, b) is a uniform density between a and b, N (µ, σ2)
is a Gaussian (normal) density with mean µ and variance σ2

and Equation 1 describes a J component mixture where J
denotes the number of buttons whose centres are defined by
µxj and µyj . Note that elevation is restricted to be between 0
(finger flat) and π/2 (finger vertical). Also, as the users were
only using the device in the upright orientation, the angle of
rotation was restricted to be between 0 and π (the finger can-
not approach from the top of the device).
We also assume prior independence across movement mod-
els. The individual movement models were all Gaussian
densities, centred on the previous particle value with small
variances. These gave excellent performance across a wide
range of users. The precision of the Gaussian likelihood was
set at a relatively high value of 1 × 105 although varying
this made little difference to the results. In our experiments,
we use the posterior average (the mean of p(θ|c, ∆)) com-
puted after the weighting step and before the re-sampling
step as:θ̄ =

∑S
s=1 wsθs.

Experiment 1
Data was captured from 10 participants, 9 male, 1 female,
aged between 20 and 41, all members of the local Com-
puting Science Department. Subjects used their dominant
hand for all tasks: eight of the subjects were right-handed
(used their right index finger and thumb) and two (subjects
5 and 7) were left-handed (left index finger and thumb). All

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2579

Figure 2.12: Capacitive proximity sensors are used to deter-
mine the finger position and also its pitch and yaw [Rogers
et al., 2011].

Rogers et al. [2011] aim at improving the touch accuracy
by using the finger pitch and yaw in addition to the finger
position, as Holz et al. [2010] showed that varying these
parameters led to different touch location for the same tar-
get (see 2.1). An array of capacitive proximity sensors isCapacitive sensors

are used to detect
the finger pitch and

yaw.

used to feed a model which generates the finger position,
the contact area size, and the finger pitch and yaw. The
model uses a particle filter to infer the finger position based
on the data provided by the sensors. Their results confirm
the observations made by Holz et al. [2010]. The position
given by the model is more accurate than a simple interpo-
lation. They suggest that they can achieve a 95% accuracy
for buttons with a 5mm radius.

19

Chapter 3

Study Design and
Hypotheses Formulation

As stated in the introduction (see Section 1.2), the aim of For testing our
hypotheses, we
created several
studies iteratively.

this thesis is to expand on Holz’ findings [2010]. In other
words, we want to investigate if different body postures,
and not only the finger position, can create different offsets
when selecting a target on a tabletop. This section presents
the iterated study design process and the refinement of our
set of hypotheses. The study designs and hypotheses were
tested in several experiments.

3.1 Paper Prototype

We designed our paper prototype to check whether our hy-
potheses were sensible. We ran a short experiment with it to We ran a study with

a paper prototype to
test if our task and
procedure were
adapted.

see whether the task we asked the users to perform and the
procedure we followed were adequate to test our hypothe-
ses. Our main hypothesis was that different body postures
would create different touch offsets. Other research ques-
tions were investigated in this experiment:

• for a given hand position, does the distance between
the target and the body have an impact on accuracy?

20 3 Study Design and Hypotheses Formulation

Figure 3.1: Paper Prototype: target layout.

• when moving from one target to the next, will the fin-
ger stay in the same position while the arm moves or
will it move as well?

• when the next target is occluded, will participants
change their posture for the current target to see all
of the targets?

• can we compare the dominant and non-dominant
hand? Is there a mirroring effect or less accuracy
when using the non-dominant hand?

In order to verify our hypotheses, we designed an experi-
ment in which participants had to touch targets on a table in
a specific order, while being seated in front of the table. The
setup was made of a sheet of paper covering a table. TargetsTargets and lines

were drawn on a
table.

were drawn onto the sheet and were connected by several
lines (see Figure 3.1). The horizontal span of the targets
was 155cm and the vertical one was 60cm. A video camera
placed above the table filmed the participants as they did
the experiment.

For this study, participants were asked to touch particular
targets in a row using either their left of right index fin-
ger. The sequence of targets was announced by the ex-Participants had to

touch targets
following sequences.

perimenter, along with which finger they had to use. The
touches of the sequences were announced in advance by
the experimenter. The sequences used can be seen in fig-
ure 3.2. There were 21 sequences, and each of them was

3.1 Paper Prototype 21

repeated 5 times. The order of the sequences was random-
ized. Once every sequence had been used once, they would
be repeated using a different order.

Figure 3.2: Paper Prototype: sequences of targets used. The
first letter of the sequence name refers to the performing
hand.

We decided to use sequences with the belief that they Sequences were
chosen to see
particular body
postures.

would influence which joints were moved when the par-
ticipant’s hand went from one target to the next. We did
not want to explicitly ask participants to adopt specific limb
postures as it could have influenced the results.

The camera mounted above the table recorded the experi- The setup was
captured by a video
camera.

ment for all of the users. The video files for each participant
were processed and snapshots of the touches have been ex-
tracted. These pictures were then labeled with the name of
the hit target, the name of the previous target and the fol-
lowing one. For instance, the snapshot of the target LB2 in
the sequence L2 would be labeled LB2.LC2.LA2.

This study was ran with four participants (one female), all Participants were
young students.studying Computer Science. All participants were right-

22 3 Study Design and Hypotheses Formulation

Figure 3.3: Paper Prototype: participant touching targets in a row. Different joint
positions can be observed.

handed and between 22 and 25 years old. Drinks and
snacks were provided during the study and no other in-
centive was offered.

When analyzing the videos and interviewing the partici-Some targets were ill
positioned. pants after the study, it was clear that some targets were not

comfortable to reach for multiple reasons. Some of them
were too far from the body (e.g. RC0, RC3), while some
were too close to the chest or too close from one another
(e.g. LA1, LA2, LA3).

Figure 3.3 shows the different body postures adopted by aDifferent joints are
moved from one

position to the next.
participant when performing the touch sequence LC2 - LB2
- LA2. We can observe that the finger and hand orientation
do not change between LC2 and LB2 but that the movement
is made by the wrist, elbow and shoulder, while to reach
LA2 all joints are used.

When looking at the snapshots, different postures were
seen depending on the position of the target on the table.The body posture

depends on the
position of the target

on the table.

When comparing body posture for mirrored points, it
seems that the gesture is mirrored and not completely dif-
ferent. It was also mentioned during an interview that an-
nouncing the whole sequence in advance may have an in-
fluence on the accuracy. This participant said that when
touching a target, he was already thinking about the next
one.

3.1 Paper Prototype 23

Figure 3.4: different body posture for the same target in different touch sequences.

Another finding regarding the way people dealt with oc-
clusion was made. Some sequences were made in such a
way that the following target would be hidden by the par-
ticipant’s arm when he reached for the first one. Some par- People deal with

occlusions in
different ways.

ticipants reached for the first target using the most natu-
ral and direct gesture, thus occluding the next target, while
others chose not to occlude them and created an arc with
their arm to go around the targets. For this experiment,
the targets had a label next to them so that the participant
would know which one to tap on. It is possible that the
participants’ movements were influenced by them.

The most interesting result was that the body posture when Different body
postures are
observed for the
same target, when it
is part of different
sequences.

touching a particular point was different depending on the
touch sequence it was part of. For instance, when touch-
ing LB1 the elbow of the participant in figure 3.4 was at
more acute angle in the sequence LC1, LB1, LA1 than in the
sequence LA0, LB1, LC2.

These findings lead us to formulate a new set of hypothe-
ses:

• For a given position on the table, different predeces-
sor and successor points will create different postures
and offsets. In the rest of this thesis, this will be re-
ferred as the predecessor and successor effect.

• Different arm postures for the same finger and hand
posture will create different offsets

24 3 Study Design and Hypotheses Formulation

• Different angles between the gaze and the finger di-
rection will create different offsets (i.e. finger and
gaze direction crossing at different angles)

• If the target becomes hidden by their arm, partici-
pants will change their posture

• Offsets for mirrored posture are similar

• Same touch sequences made on different parts of the
table will produce different offsets.

3.2 Next Design

These hypotheses caused a number of changes in the de-
sign and implementation of the experiment. As we haveWe split the

experiment in two
parts: the sequence

effect and the
position of the target

on the table.

seen, the body posture may be influenced by the position
of the target on the table, but also by the predecessor and
successor touch (or sequence effect). These two hypotheses
cannot be tested at the same time, thus the experiment was
split in two parts. The first part of the study would focus
on the sequence effect while the second one would verify
the other hypotheses.

3.2.1 Touch Sequence Effect

In order to check the predecessor an successor effect with-
out being influenced by the position of the target on the
table, we designed an eight pointed star (see Figure 3.5).We placed the

targets on a fixed
circular layout.

Each point of the star and its center was a target in the ex-
periment. The distances between the points of the star and
the center were the same, thus eliminating an independent
variable. The distance between the outer points and the
center was 20 cm. All the points were in a 40 cm diameter
area in front of the user, which made them easily reachable
without stretching.

Three points patterns were used, all going through the cen-
ter, and on this point, the predecessor and successor effect
can be investigated. 24 patterns were selected out of the 64

3.2 Next Design 25

Figure 3.5: Position of the points and the sequences used.
Each sequence was done in both directions.

patterns possible. This set is large enough to see different We used three-points
patterns, all going
through the same
middle point.

patterns, while at the same time small enough to analyze
the results. We planned to repeat this pattern at different
places on the table to see if it had an influence on the touch
sequence effect.

3.2.2 Body Posture and Position on Table

The second part of the study was to investigate the effect
of the body posture on the touch offset without the pos-
sible interference of the predecessor and successor effect. Test the effect of the

position of the target
on the table with a
grid of evenly
distributed points.

To this end, we decided to use a grid of evenly distributed
points on the table. The points were all within arm length
without stretching. To remove any touch sequence effect,
the participant’s hand would move back to a resting posi-
tion between touches. This way, all touches would have the
same predecessor and no successor. The order of the points
would be randomized using a latin square design. All of
the points would be used the same number of times, and
sequences would be counterbalanced.

During the rest of this thesis, we focus on the successor and We focused on the
predecessor and
successor effects.

predecessor effect on the touch offset. The body posture
effect on different positions of the table remains to be in-
vestigated.

26 3 Study Design and Hypotheses Formulation

3.3 First Prototype

The first software prototype was created to test the se-
quence effect hypothesis. A multitouch table was used toAll the targets of the

sequence were
visible from the start.

record the finger position and its orientation for each par-
ticipants, and to display the targets. The patterns described
in section 3.2.1 were used. The application displayed
three crosshairs representing the points of a pattern. The
crosshair for the current target was larger than the other
ones so that the participants’ finger did not completely oc-
cluded it when selected. In addition to the bigger crosshair,
the current target had a red circle to be clearly identifiable.
The targets did not have any label next to them not to in-
fluence the users. The application displaying the stimuli
was later used to develop the Touch Sequence Agent for
the final study. Section 4.3 details the implementation of
the Touch Sequence Agent. This first prototype worked fol-
lowing the same principles.

Figure 3.6: A three-points pattern used in the first proto-
type. The red circle designates the current target.

The technology used by the multitouch table to captureUsed DI and a single
IR camera. the position and the orientation of the finger of the partici-

pants was Diffuse Illumination (DI). A single infrared cam-

3.3 First Prototype 27

era looked at the whole surface from below and the infor-
mation about the finger was extracted from these images.
The touch detection was performed using the original Mul-
tiScreen agent presented in section 4.1.

Compared to the study with the paper prototype where
participants were seated, in this one, the participants were
standing in front of the table, which is a more common po- Participants were

standing in front of
the table.

sition when using a tabletop. Participants were asked to
touch the targets one after the other. Once the touch had
been registered, the next target would become active and
display the red circle.

The patterns were displayed in a random order and each
one was repeated three times. For the central touch of each The finger orientation

and position were
recorded for the
middle touches.

pattern, the finger position and orientation were recorded
along with its predecessor and successor. This information
was exported to an external log file for analysis.

The study was conducted with five participants (one fe-
male) who did not take part in the paper prototype study. Five Participants

took part in this
study.

They were also all Computer Science students, right-
handed and between 24 and 28 years old. Drinks and
snacks were provided during the study and no other in-
centive was offered.

When we started analyzing the raw data, it became clear
that we could not extract a lot of information from it for
two reasons. With only one infrared camera looking at the The resolution of the

system was too low
to detect the finger
orientation.

whole surface, the quality of the touch input was good
enough to detect the touch in the target area, but not suf-
ficient to correctly detect the shape of the finger and its
orientation. Furthermore, all users except one used a high
pitched finger when touching the table, so only the finger-
tip was in contact. The recorded touches were very round,
and it was not possible to extract the finger orientation.

One participant used the pad of his finger to touch the
targets, thus the contact shape was a better ellipsoid and For one participant, a

clear distinction was
seen between the
touches oriented to
the left from the ones
oriented to the right.

the finger orientation could be seen (see Figure 3.7). It was
possible to see a clear distinction between the touches ori-
ented to the left from the ones oriented to the right. Al-
though, due to the low resolution of the images, the precise
location of the touch input could not be determined and we

28 3 Study Design and Hypotheses Formulation

could not infer more results.

Figure 3.7: Touch areas with finger orientation for a partic-
ipant.

From this study, we gained valuable information for the
study design. The Diffuse Illumination is a technology thatThe resolution of the

touch detection
system needed to be

improved.

can be easily set up, but the resolution of the captured im-
age needs to be increased to be useful. Also, the minimum
size of the contact area has to be increased. This will con-
strain the participants to use their finger pad, and the con-
tact shape will be more ellipsoidal and the finger orienta-
tion will be visible.

3.4 Pre-study on Handedness

Following the study with the first prototype, another studyThis study was
conducted to
compare the

behavior of
left-handed people

and right-handed
people.

was conducted to compare left-handed and right-handed
people. The aim was to see whether any major differences
could be seen in the touch imprints. The same patterns,
software and study protocol as in the previous study was
used. Compared to the previous study, the touches were
not validated as soon as the participant touched the sur-
face, but after a small delay. This delay was to ensure that

3.4 Pre-study on Handedness 29

the finger was in its final position and that the touch would
not be recorded only with a small imprint. Like in the pre-
vious study, the patterns were randomized and each one
was repeated three times.

We used a different multitouch table which was based on
Frustrated Total Internal Reflection (FTIR) and had two in- Used FTIR and two

IR cameras.frared cameras positioned under the surface to capture the
touch inputs. The switch from DI to FTIR was made to re-
move the background noise from the camera image caused
by the hovering hand and to get sharper touch area.

The task the participants had to perform was the same as
in the previous study. In addition, to familiarize them Same task as in the

previous study, with
the addition of a
wack-a-mole game.

with the system, a ”wack-a-mole” like game was imple-
mented; targets appeared randomly on the table and the
participants had to hit them before they disappeared. Users
played with it until they were confident in using the sys-
tem.

It was stressed to the participants that neither speed nor ac-
curacy was a factor in the experiment and that they should
use the system as they would any touchscreen application. We instructed the

participants to use
the pad of their
finger.

Participants were asked to use the pad of their finger when
touching the surface. This was to increase the size of the
imprint and the chances of getting a good ellipsoid from
which to infer the finger orientation. As we were looking
for touch sequence effects, participants were asked to keep
their finger on the surface until the touch was registered
and then moved directly to the next target without going
through a rest position.

The study was conducted with 14 participants (4 females),
out of which 4 were left-handed (all male). The participants’ 14 participants took

part in this study.handedness was determined using the Edinburgh Hand-
edness Inventory [Oldfield, 1971]. All participants were
studying Computer Science and between 21 and 28 years
old. Drinks and snacks were provided during the study
and no other incentive was offered.

Several observations were made during and after the study.
For most users, the delay to register touches was confus-
ing. They expected the touch to be registered instantly, as it
would be on any other touchscreen device. Because of this

30 3 Study Design and Hypotheses Formulation

behavior, participants would touch a target and move their
finger towards the next one before realizing that the touch
had not been registered and move back to tap it again.
When this happened for the middle touch, the sequenceThe touch

registration delay
was too long and

confusing.

was not as planned; the movement between the predeces-
sor and the middle touch was not direct anymore and an
extra variable was introduced. Also, after the paper proto-
type study, we decided to remove the labels of the targets,
as they may influence the participants. The drawback was
that they did not know which one of the two targets would
be the next, and the successor was not clear in their mind.

Although the participants were asked to use the pad of
their finger, the touch imprints were not bigger. Addition-
ally, the ellipses were very round; for each user the round-
ness – the ratio of the minor axis divided by the main axis –The touch imprints

were round, we could
not detect the finger

orientation.

ranged between 0.83 and 0.93. For a particular user, the av-
erage roundness was 0.88 with values ranging from .57 to 1,
while the averaged main axis of the imprint was 27 pixels
and ranging between 8 and 40. Because of the roundness
and size of the imprints, for a given predecessor and suc-
cessor, the angle of the finger was very different from one
trial to the next, and it was not possible to see any consis-
tency in the raw data.

We tried to clean the data by removing the outliers points
and see whether the remainder would make sense. The cri-We removed outliers,

but then we did not
have enough data

left.

teria to exclude points were the roundness and the size of
the imprints. The orientation cannot be reliably estimated if
the touch was either too round of too small. After that step,
as we had only three repetitions for each pattern, there was
not enough data left to work with.

Following this, changes were made for the final study
design; the number of repetitions for each pattern was in-We changed the

study design to
obtain better data.

creased to five, so even if bad data had to be removed, anal-
ysis would still be possible. The touch registering delay
was removed and replaced by a minimum size for the im-
print, to make the use of the system more fluid and provide
better data. Labels were reintroduced, but instead of be-
ing next to the targets, they were directly on them, not to
change the focus of the participants.

3.5 Final Study 31

3.5 Final Study

For the final study, we worked with the Department of
Work and Cognitive Psychology on the design of the exper-
iment. We decided to change the targets from a crosshair We replaced

crosshairs by
numbered round
buttons.

to a round button so that the shape would not influence
the participants, and to make our system look more like a
real application. A number was added to each button to
remove any confusion in the sequence. The current button
was shown in green, while the others were grayed to stress
that they were inactive.

We thought about the fact that participants do not have the
same height, and looked into the benefits of making them
stand on sized boxed so that the angle of their finger when
touching the surface would be the same. We ruled this idea We measured the

participants height,
arm length and
reach, as they could
have an effect.

out, because as the length of the arm is related to a person’s
height, asking smaller people to stand on a stool would
force them to lean on the table. However, to see whether
the results would be influenced by the physiognomy of
the users, we decided to measure the participants’ height,
arm length and how far they could reach on the table with
a straight arm and a straight back. Participants were in-
structed to stand in front of the table and without leaning,
to push a small piece of wood until their arm was straight.

As in the previous studies, the buttons were displayed in a
circular layout (see Figure 3.8). The buttons were slightly Buttons were on a

circular layout and
were all comfortably
reachable.

smaller than a fingerprint (15 mm diameter) and the cir-
cle had a diameter of 40 cm. The distances between the
points were chosen so that the middle one would be in
the usual work area, which is the most easily and comfort-
ably place reached on a table, within forearm reach. The
northernmost point should be reachable with a minimal
amount of stretching or leaning. During the test, buttons
were touched in sequences of two or three. Instead of using
an eight-pointed star and a subset of patterns, we reduced
the number of points to six and decided to test all possible
combinations.

Each sequence of touches was repeated five times, and each
of them was made under four conditions. These conditions
were introduced to differentiate the successor and prede-

32 3 Study Design and Hypotheses Formulation

Figure 3.8: [Left] Layout of the buttons. Sequences were made of two or three
of them, one to three of them were visible at the same time. [Right] One of the
sequences used.

cessor effect.

1 the first, middle and last buttons are displayed simul-
taneously, thus the finger orientation and the touch
location on the middle button is influenced by both
its predecessor and successor.We used different

conditions to
differentiate the

predecessor from the
successor effect.

2 the first and middle buttons are displayed at the be-
ginning, the third one appears after the middle one
has been touched. The finger orientation and the
touch location on the middle button is influenced by
its predecessor only.

3 the middle and the last buttons are shown at the same
time, there is no predecessor for the middle button,
thus only a successor effect should be observed on the
finger orientation and touch location on that button.

4 the middle button is shown, the last one is displayed
after the middle one has been touched. Neither pre-
decessor nor successor effect should be seen on the
middle button.

3.5 Final Study 33

Participants were told that neither speed nor accuracy was
a factor and that they should interact with the system as
they would with any other touchscreen device. In order to No speed or

accuracy
measurements, we
asked the
participants to use
the system casually.

have a common starting position for the sequences, partici-
pants were asked to hover above the table with their hand.
This behavior is close to real life usage and the initial pos-
ture of the arm should be comparable for all trials. Before
each sequences, an auditory stimulus was played to pre-
pare the subject. To avoid rhythm-like response, the wait-
ing time between sequences was randomized and ranged
between one and three seconds. A limitation was imposed
to the participants as we asked them to use the pad of their
finger when touching the surface and not only their finger-
tip.

Before the test, a calibration phase was done. Participants
were asked to tap the middle button ten times. This way,
we could see the average spread of touches for each users. Each condition was

repeated 5 times,
and the order of the
conditions was
randomized.

Following this, the sequences were displayed. For the first
four participants, each condition was done once, then they
were repeated four more times. The order of the condi-
tions was determined using a balanced Latin Square. Sub-
sequently, upon advice from the psychology chair, all the
trials for a particular condition were made in a row, and a
small break was introduced after each condition. Within
each iteration of a condition, the order of the sequences
were determined using a balanced Latin Square.

The number of sequences in each condition is not the same,
as depending on the condition, sequences of two or three
buttons were used. In the first two conditions, there was The number of trials

in each condition
was not balanced.

36 possible combinations, while in the last two, only 6 com-
binations. The only way to balance the number of trials in
all conditions would have been to repeat all sequences six
times in condition one and two, and to repeat them 36 times
in condition three and four. In the current design, with five
repetitions for each sequence, participants have to tap 420
sequences ([36 + 36 + 6 + 6] x 5). Balancing the number of
trials would have brought this number up to 864 sequences
(36 x 6 x 4). By doing this, the duration of the experiment
would have been much over an hour, while it was already
40 minutes.

The study was conducted with 14 participants (2 females),

34 3 Study Design and Hypotheses Formulation

all right-handed. The participants’ handedness was deter-14 participants took
part in this study. mined using the Edinburgh Handedness Inventory [Old-

field, 1971]. Eleven participants were studying Computer
Science, one Biology, one Electrical Engineering and one
Mathematics. They were between 20 and 31 years old.
Drinks and snacks were provided during the study and a
raffle for a 20 euros voucher at Amazon was made.

In the following chapters, we will present the software andNext chapter
presents the

implementation.
hardware implementation that were done to realize this
study. We will then discuss the results we obtained after
running said study and analyzing the data.

35

Chapter 4

Implementation

In order to test the hypothesis that the predecessor and suc-
cessor touches influence the orientation of the finger on the Needed reliable

method to detect the
finger orientation.

surface and that different touch offsets can be seen, a fast
and reliable method was required to capture the finger po-
sition and its orientation on the table.

The touch position can be easily obtained on a multitouch
table using FTIR or D.I technology. However, the tables
with those technologies at our disposal were not accurate
enough to extract the finger orientation as well. The in-
put resolution of these tables was between 18 and 20 ppi.
Several options were considered to get that information.
Optical tracking, like the Vicon1 system, offers one of the Optical tracking

systems are not
accurate enough or
have the
inconvenient of
requiring markers.

most accurate methods to track limbs real-time in space.
There are multiple disadvantages in using such a system.
The Vicon system uses Infrared cameras to track markers
on users. The markers are not inconspicuous and can influ-
ence the way people move. Furthermore, a recent study
showed that users tended to aim at targets using visual
features located on top of their finger [Holz and Baudisch,
2011]. One or several markers on the participants’ fingertip
could impact their mental model and the findings would
be biased. Lastly, the IR light emitted by the camera could
overflow the multitouch table and interfere with the touch
tracking. A Kinect would solve the marker issue, but its in-
frared laser projector could still hinder the multitouch table

1http://www.vicon.com

36 4 Implementation

system. Also, the Kinect is not accurate enough to be used
as a primary source for the finger orientation.

Fiduciary gloves, such as the ones presented by Marquardt
[2010] were considered, as a tag on the finger pad couldTagged gloves are

too conspicuous. be easily seen by the multitouch table and the orientation
of the finger could be inferred from it. This option was
quickly discarded, as the influence on the participants’ state
of mind would have been ever greater than with markers.

The solution chosen was to use the multitouch table, with
FTIR or DI, but with an increased accuracy. As we haveWe decided to use a

IR based table, but
with a greater

accuracy.

learned from the pre-study, touch imprints made by the
finger pad produce an ellipse. If this ellipse is big and
clear enough, the finger orientation can be extracted from it.
Originally, the multitouch table we used had two Infrared
cameras with large scope below it to look at the whole sur-
face.

As we had seven targets on a circle of 40cm diameter, one
camera would not provide the required level of accuracy.
Using one camera with a narrow focus per target would en-
able the cameras to provide us with high resolution images.Get high accuracy by

using one camera
per target.

However, the amount of data to be transferred from the
cameras to the computer to be analyzed in real-time to find
touches and the finger orientations would have been too
much. The workload could have been divided if the touch
recognition algorithm did not use the input from the seven
cameras, but only the one looking at the current button or
the two or three cameras involved in a sequence.

As seven cameras would have been hard to manage, we de-Use only one
camera, looking at

different position on
the table using a

mirror.

cided to use only one camera with a narrow focus to look
at the targets in turn. Our first idea was that the camera
would be attached below the table and by pointing it at a
rotating mirror (see Figure 4.1), we could have high reso-
lution images of different parts of the table.

The fixed camera and the moving mirror were discardedUse one moving
camera looking

directly at the table.
on account that the distance between the camera, the mir-
ror and the table would be too great and the resolution not
high enough. Building on this idea, we decided to use one
moving camera below the table, pointed directly at the sur-
face. Using a narrow focus scope, the camera could see a 10

4.1 MultiScreen Agent 37

Figure 4.1: A fixed camera below the table would be pointed at a moving mirror. By
rotating the mirror, different parts of the table could be seen with high resolution.

x 10 cm square on the table. For each target on the surface,
there was a different camera position. The resolution of this
camera was of 160ppi, eight times more accurate than the
original systems we used with our first prototype and the
handedness study.

In the following sections, we will present the MultiScreen The next sections
present our
applications.

agent used to capture the touches on the surface, including
their position and orientation, the Camera Control Agent
used to move the camera to the predetermined positions,
the Touch Sequence Display used to present the stimuli. Fi-
nally, we will show how these three components commu-
nicate with one another.

4.1 MultiScreen Agent

The touch detection software used in this thesis is based
on the existing MultiScreen Agent, which we have modi-
fied to fit our needs. The MultiScreen Agent is a frame-
work developed in Objective-C at our chair by Malte Weiss
and Simon Voelker. It was created for the BendDesk system
[2010] and is now used in all our multitouch surface related
projects. The MultiScreen Agent is a touch detection system Our touch detection

system is based on
the MultiScreen
Agent.

which can work with any number of cameras and video
projectors. The touch detection can be performed using ei-
ther FTIR, DI or both. The agent enables us to calibrate the
screens used to display the interface on the surface and the
cameras used to detect the touches. When the agent is run-
ning, touch events are distributed through the NSNotifica-

38 4 Implementation

tionCenter to other applications. The display application
needs two frameworks, the MultiScreenRenderer and the
MultiTouchServer. The former enables us to draw on the
surface using OpenGL, while the latter processes the noti-
fications sent by the MultiScreen agent when touches are
performed.

We will present the main components of the agent, how itWe will present the
MultiScreen Agent. is configured and used, and which modifications we have

implemented to fit our requirements.

4.1.1 Main Components

Figure 4.2: Grid used for the camera calibration. The user
must touch the red dot. Depending on whether it is seen
by a camera or not, the mapping for each camera can be
computed.

The MultiScreen Agent is composed of four main objects; a
list of screens, a list of cameras, and for each camera, a spotFour main objects.
detection object and a mapping object.

The list of screens contains the projectors used to display
our application. Each one can be calibrated so that the dis-The screens and

cameras can be
calibrated.

play could fit on curved surfaces if needed. The cameras
are infrared ones below the table used to capture touches
on the surface. Each one has its own parameters, such as
video mode, frame rate, brightness, etc.

4.1 MultiScreen Agent 39

Each camera has a Spot Detection object, which contains
a set of values defining a touch like the brightness of the There is one Spot

Detection object per
camera defining
touches.

pixels or the size of the spots. It can also contain a back-
ground image. This image is taken when no touches occur
on the table, and at runtime, the brightness value of each
pixel from the background image is subtracted from the in-
coming image. This step helps in removing artifacts and
noise from the input images.

The cameras have their own mapping, which convert the The touches
coordinates are
mapped to the
coordinates of the
table.

coordinates of the touches from the camera to global coor-
dinates on the display.

Before runtime, the cameras must be calibrated with the
surface. A grid of points is displayed on the surface, and The cameras must

be calibrated to
realize the mapping.

by touching the active position, the mapping for each cam-
era can be realized. After this step, each camera is linked to
a part of the surface.

At runtime, all cameras are used at the same time. For each
camera, the image is processed by the Spot Detection Al- The Spot Detection

algorithm processes
the images and
broadcast touch
notifications.

gorithm. Pixels within range of the brightness levels are
grouped into regions, and if these regions are within the
spot size levels, a Principal Component Analysis (PCA) is
performed to generate the ellipse fitting of the spot. The
spots’ coordinates are then mapped to the display and
touch notifications are broadcasted.

4.1.2 Modifications

Single Camera With Multiple Positions

The main modification to make on the MultiScreen agent
was to replace the multiple physical cameras used by one We needed to

replace the multiple
physical cameras by
one with multiple
positions.

camera with multiple positions. In the original architecture,
each camera object used is tied to a physical one, and each
camera object has its own parameters, spot detection object
and mapping. A partial and simplified object relationship
diagram illustrates the architecture (see Figure 4.3).

The first attempt to have multiple camera objects while us-

40 4 Implementation

 mapping;
 ...

Discrete2dMapping

- spotsForFrame:(unsigned char *)frame;
…

 backgroundFrame;
 minSpotSize;
 maxSpotSize;
 ...

SpotDetection
- start();
- stop();
- lockFrame();
...

 physical camera;
 list of parameters;
 ...

FWCamera

1

1

1

1

Figure 4.3: Simplified object relationship diagram of the original MultiScreen
Agent. Each camera object references a physical one and has its own mapping
and spot detection object.

ing one physical camera was made with this architecture.We could not create
multiple camera

objects with a pointer
to the same physical

camera.

We wanted to create several camera objects, all with their
own spot detection and mapping objects. This attempt was
unsuccessful for a simple reason. Each camera object had
a pointer towards the physical camera. When the pointer
was created, the API used to interface with the firewire
camera would give control of the physical camera to the
first object, and the other ones could not access it.

The solution was to change the architecture. The camera
object would still be linked to the physical camera, but
it would be a unique object, hence removing all pointerWe changed the

architecture and
added a quadrant

object between the
camera and the Spot

Detection objects.

related issues with the hardware. With only one camera
object however, the spot detection and mappings objects
could not be directly linked to it anymore. A quadrant
object was created to fill in the gap between them. Quad-
rants would represent the different positions of the physi-
cal camera. In the new architecture, the unique camera ob-
ject would have multiple quadrants, and each one of them
would have its own spot detection and mapping objects, as
can be seen in figure 4.4.

In the implementation, the relationship between the cam-
era, spot detection and mapping objects is not based on ob-

4.1 MultiScreen Agent 41

 mapping;
 ...

Discrete2dMapping

- spotsForFrame:(unsigned char *)frame;
…

 backgroundFrame;
 minSpotSize;
 maxSpotSize;
 ...

SpotDetection

- start();
- stop();
- lockFrame();
...

 physical camera;
 list of parameters;
 ...

FWCamera

11

1

1

- movetoPosition();
- reset();
...

 id;
 isSelected;
 isInPosition;
 ...

Quadrant

1..*

1

Figure 4.4: Simplified object relationship diagram of the modified MultiScreen
Agent. Each camera object references a physical one and a quadrant. Each quad-
rant has its own mapping and spot detection object.

ject composition. The main object, MultiScreenCalibration, The objects were
linked together using
indexes, not through
object composition.

contained a list of camera objects, one of spot detection ob-
jects and another one of mapping objects. As the objects
were independent from one another, their indexes in the
lists were used to link them together.

With the addition of the quadrant object and the replace-
ment of the camera list by a single camera object, the code
was inspected and every instance where the camera list was We modified the

MultiScreen agent
code to fit the new
architecture.

used was modified to fit the new architecture. Although
the code was altered in numerous places, the modifications
related to three activities; the setup and calibration, the
run-time, and the communication with the Camera Control
agent.

In the setup phase, the code for cameras selection needed to
be updated, so instead of displaying a list of available cam-
eras, it listed the quadrants. After modification, it was pos-
sible to configure each quadrant, in the same way the cam-

42 4 Implementation

Figure 4.5: Parts of the quadrants selection and configuration screens. The camera
settings are common for all quadrants while Spot Detection parameters are specific
to each quadrant.

eras were in the original agent. The camera settings were
common to all quadrants, while the spot detection param-
eters were specific for each of them (see Figure 4.5). TheThe calibration had

to be modified to use
the new quadrants

objects.

next stage in the setup phase was the calibration step. In
the original agent, this step computed a mapping between
the screen coordinates and the camera image coordinates
for each camera; a grid of points was projected on the sur-
face, and each one of them was touched in turn. Depend-
ing on whether the touch was seen by one of the cameras,
a calibration grid was created for each camera at the same
time. In our version of the agent, the grid for each quadrant
needed to be done separately, as the camera had be moved
to a different position. When the calibration grids were cre-
ated for all of the quadrant, the mappings were then com-
puted. At the end of the setup phase, every quadrant had
its own spot detection object with its specific settings, and
its own mapping.

In our user study, all of the quadrant were configured forDuring our study, the
calibration was

modified for each
participant.

each users. As each person has different finger shape and
size, the parameters for the spots detection were tweaked
to personally fit each and every participants.

The next part of the agent that needed to be changed

4.1 MultiScreen Agent 43

was the run function. In the original design, when the
MultiScreen agent was running, in the tracking function,
all the cameras were capturing at the same time. Spots At runtime, only one

quadrant was active
and the correct
mapping had to be
used.

were searched for in each frame, mapped to screen co-
ordinates and if the same spot was seen by multiple
cameras, they were merged before touches events were
generated by the notification center. In our version of
the agent, only one quadrant could be active at a time.
The tracking function needed to know which quadrant
to use and which mapping to apply. To this end, quad-
rant objects had two boolean attributes, isSelected and
isInPosition. The tracking function would select the
quadrant for which the isSelected attribute was true,
and when the isInPosition attribute was also true, the
spot detection was done for this quadrant, using its specific
parameters and mapping.

The last challenge to overcome in adapting the Multi-
Screen agent for quadrants was to find a way to update
the quadrant objects at runtime. The agent already had The tracking was

paused when the
camera was moving.

an NSNotificationCenter implemented. We decided
to use this method to control the tracking function. When
the camera needed to be moved to a new position, the
isSelected and isInPosition of all quadrants would
be reset to false, while the isSelected of the new quad-
rant would be set to true. When the camera was in posi-
tion, the isInPosition attribute would be updated and
the tracking would resume. Details about the communi-
cation between the MultiScreen agent, the Camera Control
agent and the Touch Sequence display will be discussed in
section 4.4.

The 180◦ Adjust

In the original agent, the spot detection algorithm gave the
center of a touch, along with the main and minor axis of The finger orientation

could be skewed by
180◦.

the fitting ellipse. In order to detect the finger orientation,
this algorithm was not sufficient. The orientation could be
wrongly skewed by 180◦, as the main axis for the ellipse
could be oriented in the wrong direction. The algorithm
needed a few extra steps to ensure that the main axis was
oriented in the correct way and that it could be used to de-

44 4 Implementation

termine the finger orientation.

The original algorithm performed a Principal Component
Analysis (PCA) on the images once the spots were detected.The orientation was

computed using
PCA.

The PCA was used to compute the mean position of the
pixels in the spot and the eigenvectors of the covariance
matrix. With those, the oriented bounding box was calcu-
lated. Once those steps were done by the PCA, the main
and minor axis of the ellipse were computed.

Figure 4.6: Spot as seen by the camera. The oriented bound-
ing box, main and minor axis for the touch can be seen,
along with the two boxes above and below the touch used
for the 180◦ adjust.

As we stated above, the direction of the main axis we ob-
tained could be wrong. In order to make sure that it wasUsing DI, the

hovering finger can
be seen.

correctly oriented, we decided to use Diffuse Illumination
and to look at the shadow of the finger on the table. As
we can see in figure 4.6, the part of the finger touching the
surface is the brightest and will be used by the spot detec-
tion algorithm. We can also see the shadow of the finger
hovering above the table.

We used the oriented bounding box computed by the PCAThe shadow of the
finger was used to

identify its direction.
and created a box above and below the first one. The in-
tensity of the pixels in said boxes were summed up, then

4.2 Camera Control Agent 45

Figure 4.7: Camera attached to two stepper motors and controlled by an Arduino
microcontroller. The communication with the computer is done through USB.

compared. The one with the highest value would be where
the finger was, while the other one would be in front of the
finger. If the main axis is oriented towards the upper box,
then its direction is correct. Otherwise, the orientation of
the main axis is reversed.

4.2 Camera Control Agent

Once the MultiScreen agent was ready to work with one
camera and multiple positions, we needed a system to
move the camera from one position to the next. As we We needed a fast

and accurate system
to move the camera.

stated at the beginning of this chapter, for each target on the
surface, we needed a different camera position. This way,
the camera was looking at a 10 x 10 cm square with the tar-
get in its center. The camera needed to move fast enough so
that in the final study, when sequences were displayed, the
camera could move between targets faster than the partici-
pant’s finger. The second requirement was that the camera
needed to move to the different positions as accurately as
possible. As the calibration for each quadrant was done
for particular camera position, if the camera was not ex-

46 4 Implementation

actly pointed the same way, the touch information from the
MultiScreen agent would be wrong; the position would be
displaced and the angle would also be affected. The last re-
quirement was that a two-way communication was needed
between the moving camera and the computer.

In the remainder of this section, we will present the hard-we will present the
hardware, firmware

and software.
ware chosen to build the moving camera system, the
firmware controlling it and the software enabling the com-
munication between the applications on the computer and
the hardware.

4.2.1 Hardware Selection and Assembly

In order to fulfill our requirements, we decided to use step-
per motors to move the camera. This kind of motors moveStepper motors were

moved precisely and
they held in position.

in discrete steps, and thus, they can be used to move the
camera precisely to chosen positions. Another advantage of
these motors resides in the fact that they use electromagnets
to hold their shaft in place. As long as they are powered on,
they will stay in the same position; the load weighting on
the shaft will not make them turn. We chose motors with
enough torque (3.17 kg-cm) to hold another motor and a
camera.

The stepper motors each required a driver carrier, which
was connected between the motor and the microcontroller.The revolution of the

motor was made in
1600 steps.

The microcontroller we chose (Pololu A4988) also provides
microstepping for the motors. In normal use, our stepper
motors would do a revolution in 200 steps. With these
drivers, the revolution was made in 1600 microsteps, which
allowed for even more precise positioning of the camera.

As we can see in the sketch shown in figure 4.8, with the
camera attached to the first motor, and this motor being it-The camera could be

pointed at any part of
the table.

self attached to the second one, the camera could be moved
along two axis. Once placed under the multitouch table,
the camera could be pointed at any part of the table.

The main drawback with stepper motors is that when theThe initial positions
of the motors were

the zero position.
power is cut off, they will not retain their positions. The
weight attached to their shafts will not be held back any

4.2 Camera Control Agent 47

Motor1

Motor2

Camera

Hall Sensor
Magnet

Figure 4.8: In this early working setup, the camera is at-
tached to a first motor, which is itself attached to a second
one.

more and they will turn. Also, there is no zero position on
the motors. When they are powered on, their initial posi-
tion is the starting position. From there, they turn the num-
ber of steps they were asked to.

In our application, to reach one of the predetermined cam-
era positions, each motor had to turn a certain number of We needed a fixed

starting position.steps in a particular direction. The starting position had
to be fixed for the camera to be positioned correctly. Oth-
erwise each time the power would be switched off and
on again, the starting position would be different, and the
camera positions reached for each quadrant would not al-
ways be the same.

The solution we applied to have a fixed starting position We wanted to use a
single hall sensor to
reset the starting
position.

and to avoid recalibrating the MultiScreen agent every time
the power was switched off was to add a hall sensor to the
setup. Hall sensors are transducers that change their out-

48 4 Implementation

MicroController Stepper Motor
1

Driver Carrier
2

Driver Carrier
1

Hall Sensor

Computer

Stepper Motor
2

USB

Figure 4.9: Simplified communication between the Camera Control main compo-
nents. The detailed schematic and board layout an be found in Appendix A.

put voltage depending on the magnetic field they sense. In
our design, we used a binary hall sensor; when a magnet
was close to the sensor, its output would be turned on, and
when the magnet was moved out of range of the sensor,
the output would be off. In our first hardware setup, we
planned to use this single hall sensor to move the camera
and the two motors to a starting position.

The microcontroller used to control the motors and receive
the output from the hall sensor was the Arduino Uno,
which was chosen for several reasons. Arduino is an open-Arduino was the best

choice for the
microcontroller.

source prototyping platform, which allows for fast and easy
development. The stepper motors and the hall sensor could
be connected to it without the need of extra libraries, and
the Arduino board offers communication with applications
running on computers using USB connection. The micro-
controller can be easily programmed through the Arduino
IDE in C. Also, the amount of tutorials and examples avail-
able hasten the development phase of the firmware.

Once the parts were selected, work started on the printed
circuit board (PCB) on which all the electronic componentsWe needed our own

PCB. would be attached. Figure 4.9 shows a basic communica-
tion between the main components of the board. The PCB

4.2 Camera Control Agent 49

was designed using the Eagle software2. We used this soft-
ware for its ease of use, its power, the availability of a free-
ware version and the amount of tutorial available.

The first step in designing the PCB was to create the
schematic. This document holds all of the electronic com- We created the

schematics for the
PCB.

ponents needed, as well as the electrical parts such as resis-
tors and power supplies. When all components were added
to the schematic, we wired them together. The datasheets
for the electronics were invaluable for connecting them to
the microcontroller.

The next step in creating the PCB was arranging the com-
ponents and wiring them to the physical layout. In Ea- We made the

physical layout.gle, when the schematic is complete, which means when
all components have been added and the wiring is correct,
the components can be imported onto the PCB layout. They
can be then moved around to form the wanted disposition.
In our case, we placed the components in such a way that
they would fit on a board, which could be directly plugged
in the Arduino microcontroller. The final step was to cre-
ate the conductive pathways, or routes, between the com-
ponents on the PCB. Eagle has a very powerful tool, the
auto-router, which as its name says, can create the routes
automatically and save the user a lot of time.

When the PCB files were ready, we used the milling ma- The PCB was milled
at the FabLab.chine at our FabLab3 to produce the board. We operated

the milling machine following the instructions contained in
the tutorial4 written at our chair. We finished the board by
soldering all the components onto it.

At the same time, we built holders for the motors and the
camera, so that they could be attached to one another, as
we can see in figure 4.8. We designed these holders using
CorelDraw and we cut the parts in acrylic using the laser
cutter at our FabLab. In the final version, the holder at-
tached to the first motor and the structure of the table (see
Figure 4.7) was designed and build by Hendrik Kolven-
bach from the FabLab. We went through several iterations

2available here: http://www.cadsoftusa.com/
3http://hci.rwth-aachen.de/fablab
4http://hci.rwth-aachen.de/fablab/fablab mill tutorial en

50 4 Implementation

of our holders as during the test of the first prototype, we
realized that the camera we used was too heavy and we re-Several holders were

produced at the
FabLab.

placed it by a lighter one. Also, the components attached to
the motors’ shafts were sliding, while the shafts themselves
stayed in position. Components were attached to the shafts
of the motors with a mounting hub, which were held in
position with a screw. This screw however, did not have
enough friction on the round shaft to hold. We needed to
flatten the shafts so that the screw would have more grip.

During the testing of the first prototype made with the PCB
and all the hardware, it became clear that one hall sensorWe designed and

built a new PCB with
two hall sensors.

would not be enough to set a starting position. At an ear-
lier stage, we thought that a magnet could be attached to
the camera and that the sensor could use it to fix a default
position for the camera. This proved impracticable and we
decided to add a second hall sensor. This way, each sensor
would be attached to a motor and its starting position could
be set independently. The schematic and board layout were
altered and a second iteration of the PCB was created using
the method described above.

4.2.2 Firmware

The microcontroller had to be programmed in order to con-
trol the stepper motors, read the data from the hall sen-
sor and communicate with the computer. Before the im-Tutorials were used

to learn how to use
Arduino.

plementation of the firmware could take place, we had to
get familiar with the Arduino development environment
and learn how to program the microcontroller and inter-
face components. We used the tutorials available on the
Arduino website5 to this end.

The first part of the firmware we decided to work on was
how to control the stepper motors. In theory, rotating a mo-
tor to a new position is very straightforward; the only in-
formation required is the number of steps the motor needs
to turn, and in which direction. In practice, the actions
required are more complex. The motors were each con-
trolled by a driver carrier, and it was with these compo-

5http://www.arduino.cc

4.2 Camera Control Agent 51

nents that the Arduino interacted. The drivers had five
pins connected to the microcontroller (enable, reset,
sleep, step and direction). In the setup function of The pins had to be

set up on the
microcontroller
before runtime.

the firmware, these pins had to be configured as input or
output pins, which told the microcontroller if he should re-
ceive data from these pins or if he should send data to them.
The drivers’ pins were all set as output, as they are used
to move the motors and do not send any feedback. Dur-
ing this setup phase, the reset and sleep pins had to be
turned off, while the enable pin had to be turned on. This
step ensures that the drivers were ready to receive instruc-
tions (enable) and that they would not power the motors
down after they reached their position (sleep).

We then wrote the piece of code to actually rotate the mo-
tors. The rotation is done through the use of two of the The motors are

rotated using two
pins: direction and
step.

pins, direction and step. The direction is selected by
setting the pin to high or low. The rotation process is done
by alternating the value of the step pin and waiting a few
microseconds between each instruction. This cycle had to
be repeated until the number of steps had been reached.

funtion rotate(boolean dir, int steps){
//rotate a specific number of microsteps

setDirection(dir);
for(int i=0; i < steps; i++){

stepMotor(HIGH);
wait();
stepMotor(LOW);
wait();

}
}

When we first compiled and ran our code, the motors
would not move, although no error was generated. After The pins had to be

initialized for our
code to run.

days of investigating, we realized that we configured the
pins, but did not initialized them. This essential step was
not clearly documented in the tutorials we used, and as this
was our first endeavour in Arduino, we did not find the er-
ror straight away.

Once the motors were controlled by the Arduino and could

52 4 Implementation

be rotated as we wanted, the next step was to implement
a method to communicate with the computer, so that weThe microcontroller

exchanged data with
the computer through

a serial connection.

could send new coordinates to the motors. At this point,
we were focused on developing read and write functions
for the firmware, and we were not working yet on the soft-
ware on the computer. This is why we used the Serial Ex-
ample XCode project from Gable Ghearing6 on our Mac,
while we developed the firmware. Ghearing’s code was
able to connect to the Arduino and to send and receive data
through a serial port, USB in our case.

During the design phase, we decided that the coordinates
for each camera position would not be saved on the micro-The Arduino received

a direction and a
number of steps to
rotate the motors.

controller, but on the agent running on the computer. The
Arduino would only receive a direction and a number of
steps to move each motor. We decided that the instructions
for both motors would be sent as one string, in a predefined
format; the regular expression for the string is:

X(+|-)[0-9][0-9][0-9][0-9]
Y(+|-)[0-9][0-9][0-9][0-9]

The letters represent the motors, the ”+” and ”-” symbolsA regular expression
was used for sending

instructions to the
microcontroller.

the direction, the numbers are the number of steps to per-
form from the origin. For instance, to move the motors to
the position (+90;-30), the following string should be sent
to the microcontroller: ”X+0090Y-0030”.

When the agent sent such a string, the Arduino would re-
ceive one character at a time and store them in a buffer.Characters received

were stored in a
buffer then the string

was parsed.

Once the buffer contained 12 characters, the string was
parsed, the direction and the number of steps for each mo-
tor were extracted and the rotate function was called.
The previous positions for the motors were stored, so they
could rotate to the new ones without going to the starting
position first.

The last functionality we implemented in the firmware wasThe starting position
could be reset using

the hall sensors.
the possibility to move the motors to a zero position using
the hall sensors. When this function was called, each mo-
tor would rotate until the magnet attached to the shaft was

6http://www.ghearing.com/Arduino%20Serial%20Example.zip

4.2 Camera Control Agent 53

seen by the hall sensor. At which point the current posi-
tion was saved as the starting position. Before this func-
tion could be called, the motors needed to be positioned so
that when they rotated, the sensor would meet the mag-
net without having to perform a full revolution. This extra
step was needed as when the hardware was fixed under the
multitouch table, it was not possible for the motors to do a
complete revolution anymore.

4.2.3 Software

After the work on the firmware was complete, we imple- An application on the
computer was written
to communicate with
the microcontroller.

mented the agent that would run on the computer and in-
teract with the firmware. This agent needed to connect to
the microcontroller, set the starting position and the cam-
era coordinates, and get feedback from the microcontroller.
The agent would also store the list of camera positions and
the associated motors’ coordinates.

During the firmware implementation, we used the Serial
Example open source application from Gable Ghearing on Our application used

some already
available functions.

the computer to test our code on the microcontroller. We
used parts of this application in our agent, as it is a ref-
erence for the Arduino website. We reused the function
opening the serial connection, the one sending a string and
the one creating a separate thread listening to data coming
from the Arduino. In addition to this code, we wrote new
functions and created a new user interface to fit our needs.

The agent could not call directly the functions on the
Arduino. The only way for them to communicate was by The communication

was done through a
serial connection.

exchanging messages through the serial connection. As we
explained above, the agent sent a formatted string to move
the camera to specific positions. The agent could also sent
a special version of this string. When it was received by the
microcontroller, the string would not be used as new coor-
dinates, but instead the function setting the starting posi-
tion would be called.

The agent needed to received feedback from the Arduino
to confirm that the instructions had been carried out suc-
cessfully and that the program could continue. In order to

54 4 Implementation

achieve this, we modified the firmware to send these feed-The Arduino sent
feedback to the

agent when actions
were completed.

back messages to the agent. The firmware was sending
three different messages; serial connection opened, motors
in position, and starting position set. We used numerical
codes to represent these messages for two reasons; they are
shorter than their alphabetical counterparts, so they can be
sent through the serial connection faster, and codes are eas-
ier to handle on the agent’s side.

Figure 4.10: User interface for the Camera Control Agent.
The connection to the microcontroller can be opened from
that screen, the camera can be moved by selecting a quad-
rant or entering coordinates.

Despite the short length of these messages, they were not
sent as one packet on the USB, but as several. We wrote aMessages were sent

in several packets
and were

concatenated once
received.

function on the agent that concatenated the bits of messages
received from the Arduino. We also framed our messages
with special characters, so the function would know when
the message was complete. The agent was then able to re-
ceive feedback from the microcontroller, to differentiate the
messages and act upon them.

The user interface we created was made as simple as pos-

4.2 Camera Control Agent 55

sible (see Figure 4.10). The serial connection with the mi-
crocontroller could be opened with a click on a button, and The interface was

kept simple.the camera could be moved either by selecting one of the
quadrants or by typing new coordinates. The starting po-
sition was reset by entering ”+9999” in both coordinates’
fields. As this agent was meant to run in the background
when the Touch Sequence application was running, there
was no output window for the feedback from the Arduino.
These messages were logged and would appear in the con-
sole.

4.2.4 Starting Position Issue

After the moving camera was installed beneath the multi-
touch table and testing began, we noticed that when set- The hall sensors

were not sensitive
enough to set the
starting position
precisely.

ting the starting position, the motors did not always stop at
the same position. This resulted in an inconsistent start-
ing position. After investigating the firmware, it turned
out that the code was working properly, and that the is-
sue was hardware related; the hall sensors we used to po-
sition the motors were not sensitive enough. The distance
from which they would sense the magnets was not always
the same, and it explains why the motors were not always
stopping at the same spot.

As the hall sensors were not reliable enough, we designed
another method to set the starting position, using the cam- We designed another

method to accurately
set the starting
position.

era and the display on the table. We projected a crosshair on
the table, and we aligned a piece of paper on it. The camera
view was shown on the surface with a square drawn on it.
Using the Camera Control Agent, we could move the cam-
era to align the marker with the square. When the paper
was within the square, we could reset the starting position
by sending the (-9999;-9999) coordinates to the microcon-
troller. With this method, we were able to set a consistent
and reliable starting position throughout the user study.

56 4 Implementation

Figure 4.11: Left: view from the table with the calibration crosshair and marker.
Right: camera image with frame to fit the marker.

4.3 Touch Sequence Display

The Touch Sequence Display was the application used to
run the final study presented in section 3.5. It presentedThe Touch Sequence

Display presented
the stimuli to the

participants.

the stimuli to the participants, received touch events from
the MultiScreen agent and recorded data about these touch
events.

The stimuli used in the final study were six buttons dis-
played on a ring, with an additional button in the middle.The visualisation

depended on the
condition.

These buttons were presented in sequences of two or three,
they could be all visible from the start or were appearing
one after the other, depending on the condition. The ap-
plication contained a list of button objects with their co-
ordinates on the surface and the quadrant they appeared
in. The application also had sequences objects, which con-
tained a condition id and pointers to button objects.

At each run, the application created a new unique list ofThe conditions and
sequences were

ordered using
balanced Latin

Squares.

sequences and conditions. The order of the conditions
and the sequences inside were chosen using balanced Latin
Squares to counterbalance the possible effect of the condi-
tions’ order. The last positions used in the Latin Squares
were saved in a file, so for each user, a different order was
used.

4.3 Touch Sequence Display 57

The sequences of a condition were shown one after the During the study, a
break was made
after each condition.

other, with the program looping them. After each condi-
tion, the program paused, allowing the participant to take
a short break. Resuming the application was done by the
experimenter hitting a key on the keyboard.

When a sequence was displayed, the active button was
green while the others were grayed. Beneath the active one When a touch was

registered on a
button, the camera
moved to the next
one, which became
active.

was a hidden rectangle, acting as an activation area. When
the Touch Sequence Display received a notification from
the MultiScreen agent that a touch had been registered, it
checked whether the center of this touch was within the ac-
tivation area. If so, the touch was validated, the next button
would be activated and would receive the activation area.
The application would also send a request to the Camera
Control Agent to move the camera to the required quad-
rant. We will detail the communication between the differ-
ent programs in section 4.4.

We decided to have an activation area twice as large as the
button for several reasons; the test we performed to vali-
date a touch was to check that the center of the touch was
inside the activation area. If only half of the fingerprint was The activation area

was twice as big as
the button.

in the activation area, the center could be out of it, and then
the touch would not be validated. Also, we did not want
participants to try to be as precise as possible, which they
would have done, if they felt that touches were not being
registered. Finally, even if the touch was not recorded, the
participant would still move to the next target, before com-
ing back to the first one. In that situation, the touch se-
quence would not be admissible and the data for the pre-
decessor effect would be corrupted.

While we were testing the Touch Sequence Display in con-
junction with the MultiScreen agent and the Camera Con- The communication

between the different
agents would
sometimes randomly
fail.

trol agent, we discovered that sometimes the Touch Se-
quence Display would not receive touch events from the
MultiScreen agent any longer, although the latter was still
running and no errors were generated. As we could not
find the source of this issue, we designed a workaround.

If touches were not received by the Touch Sequence Dis- The application could
be restarted at the
last sequence used.

play, we could export the data generated up to this point
to a file, terminate the program, and restart it at the exact

58 4 Implementation

same point we stopped, with the same order for the condi-
tions and sequences.

4.4 Modules Communication

Arduino CCA

openSerialConnection()

connectionOpened

setStartPosition()

startPositionSet

1 - Setup Arduino - Camera Control Agent (CCA)

Figure 4.12: Sequence diagram detailing the messages ex-
changed to initiate the camera position. Messages are ex-
changed through the serial connection.

In designing the architecture for the software we would de-
velop, we decided to use three independent applications in-
stead of having all functionalities in a single program. TheOur system was

made of three
independant
applications.

MultiScreen agent was developed by our chair as a stand
alone application, not as a piece of code that should be in-
cluded in bigger project. We decided that the functions we
wrote to control the camera movements should be in an in-
dependent program as their actions are very specific to the
motors’ control, but at the same time, they could be used by
any other application that needed to drive motors. Hence,
the Camera Control Agent and the Touch Sequence Display
being separate programs.

The architecture was made of four objects; the Multi-
Screen agent, the Camera Control agent, the Touch Se-The three

applications and the
Arduino needed to

exchange
information with one

another.

quence Display and the Arduino microcontroller. These
objects needed to communicate with one another. As we
stated earlier, the Arduino and the Camera Control Agent
exchanged messages through a dedicated serial connection.
The three applications were running on the same computer,

4.4 Modules Communication 59

Arduino CCA

moveToCoordinates(x,y)

motorsInPosition

2 - MultiScreen Agent (MSA) Configuration

MSA

moveCameraToQuadrant(qd)

Figure 4.13: Sequence diagram detailing the messages exchanged when configur-
ing the quadrants during the setup phase.

and were written in Objective-C. This allowed us to use no-
tifications between the different objects of our applications.

Notifications are part of the Foundation framework, which Notifications are
convenient to
exchange data
between applications
on the same
computer.

is a base layer for Objective-C classes. Notifications are ob-
jects containing information about an event. They can be
posted to Notification Centers, which broadcast them to all
registered objects. Any object can register for any notifica-
tion, which makes notifications a very practical system to
exchange information between applications.

Each application had a notification center and broadcasted Each application had
a notification center.particular events. The applications registered to the notifi-

cation centers from which they required information.

During the setup phase of the MultiScreen agent, the cam-
era needed to be moved to each quadrant to configure the A notification was

sent from the
MultiScreen Agent
the Camera Control
Agent to to move the
camera.

Spot Detection and do the mapping. The MultiScreen agent
used its notification center to broadcast a request to move
the camera to a new position. The new quadrant was in-
cluded in the broadcast. The Camera Control agent was
an observer of that notification. When it was broadcasted,
it was notified and instructed the microcontroller to move
the camera to the new coordinates. The message flow can
be seen in figure 4.13.

When the experiment was conducted, the MultiScreen
agent, the Touch Sequence Display and the Camera Control
agent needed to exchange information with one another.
The message flow during runtime can be seen in figure

60 4 Implementation

MSAArduino CCA

moveToCoordinates(x,y)

motorsInPosition

3 - Touch Sequence Display (TSD) Runtime

TSD

moveCameraToQuadrant(qd)

touchDetected(touches)

processTouch()

moveCameraToQuadrant(qd)

cameraInQuadrant(qd)

pause
Touch
Recognition()

resume
Touch
Recognition()

Figure 4.14: Camera control board layout.

4.14. When the participant touched the surface, the Mul-
tiScreen agent notified the Touch Sequence Display, whichWehn a touch was

registered, all the
components of the
system interacted.

checked the touch and recorded its information. It then no-
tified the Camera Control and the MultiScreen agents that
the camera needed to be moved. The Camera Control agent
worked as described above. The MultiScreen agent used
this notification to pause the touch recognition process until
the camera was in position. The touch recognition process
was resumed using the new quadrant object.

The Touch Sequence Display did not receive any notifica-
tion about the state of the camera or the state of the touch
recognition process. This was not necessary for two rea-The Touch Sequence

Display did not
receive feedback

from the other
applications.

sons; first of all, when the camera was moving and the
touch recognition was suspended, it was transparent for
the display application, as the only difference was that it
did not receive any touch events. The whole process of
changing quadrants and moving the camera was done in
a fraction of a second, which meant that the camera was
in position and the MultiScreen agent was capturing before
the participant would reach the button.

61

Chapter 5

Results

We had two hypotheses; the predecessor touch had an im- Two hypotheses:
predecessor and
successor effect on
the finger orientation
and touch offset.

pact on the finger orientation on the next touch and on its
position. In the same way, we enunciated that the successor
touch influenced the finger orientation and position on the
previous touch. In order to validate our hypotheses, we ran
the study described in section 3.5. This chapter presents the
results of this experiment.

In our study, we had four different conditions; two experi- User study with four
conditions.mental ones and two control ones:

1 Control1 (with both effects): the first, middle and last
buttons are displayed simultaneously, thus the mid-
dle button is influenced by both the predecessor and
successor touches.

2 Control2 (with no effect): the middle button is shown,
the last one is displayed after the middle one has
been touched. Neither predecessor nor successor ef-
fect should be seen.

3 Experimental1 (with the predecessor effect only): the first
and middle buttons are displayed at the beginning,
the third one appears after the middle one has been
touched. The touch on the middle button should
presents evidence of the predecessor effect.

4 Experimental2 (with the successor effect only): the mid-
dle and the last buttons are shown at the same time,

62 5 Results

there is no predecessor for the middle button, thus
only a successor effect should be observed on the
touch on the middle button.

Six buttons were displayed on a ring, with an extra buttonThe buttons were
numbered and on a

ring.
in the center of the layout (see Figure 5.1). The buttons
were numbered, and we will refer to these numbers when
discussing particular buttons.

1

2

3

4

5

6

0

Figure 5.1: Button layout during the experiment, with their
associated id.

Once the participants finished the experiment, we askedParticipants had
experience on small

touchscreen devices.
them to fill a short questionnaire (see Appendix B.1). The
results from this questionnaire show that our participants
had experience using computers (average of 4.15 out of 5)
and using touch screens as big as a phone (average of 4.15
out of 5) or a monitor (3.46 out of 5). On the other hand,
they had little to none experience with bigger touch dis-
play like tables (average of 1.77 out of 5) or wall (average of
1.23 out of 5).

When asked about the difficulty to understand the task orParticipants found
the task easy to

understand and to
perform.

to accomplish it, participants were satisfied. The under-
standability was rated 5 out of 5, while the easiness got a
score of 4.69 out of 5. They reported no problem when us-
ing the system, but 3 participants felt that the system was
responding too slowly to their touches.

During the experiment, for each touch on a button, weWe recorded
information about

each touch.
recorded the finger orientation, the touch location, the con-

5.1 Effects on the Orientation of The Finger 63

dition we were in, and the predecessor and successor touch.
We used this data to run several repeated measures one-
way ANOVA to analyze the successor and predecessor ef-
fects.

The study was conducted with 14 participants (2 females),
all right-handed. The participants’ handedness was deter- 14 participants took

part in this study.mined using the Edinburgh Handedness Inventory [Old-
field, 1971]. Eleven participants were studying Computer
Science, one Biology, one Electrical Engineering and one
Mathematics. They were between 20 and 31 years old.
Drinks and snacks were provided during the study and a
raffle for a 20 euros voucher at Amazon was made.

In the next section of this chapter, we will present the re- We will look at the
effects on the finger
orientation then on
the touch offset.

sults of the predecessor effect and successor effect on the
finger orientation on touch 0 (the middle button), then in
the following section, we will look at these effects on the
touch location, on touch 0.

5.1 Effects on the Orientation of The Fin-
ger

5.1.1 Predecessor Effect

We ran a repeated measures one-way ANOVA using the The predecessor
touch had a
significant effect on
the finger orientation.

data from the Experimental1 condition, where only the pre-
decessor effect should be seen. Having a different predeces-
sor touch had a significant effect on the finger orientation
(F5,60 = 22.367, p < 0.001). Pair-wise comparisons using
Bonferroni-corrected confidence interval showed that the
finger orientations were significantly most different when
the previous touch was either 1 or 2 on one hand, or be-
tween 3 and 6 on the other hand (all p < 0.043).

As we can see in figure 5.1, we can group touches 1 and After grouping
buttons, the
predecessor effect
was stronger.

2 in a region, and the other ones in another region. An-
other one-way ANOVA was performed after we aggre-
gated the data in these two regions. We found a signif-
icant main effect of the region on the finger orientation

64 5 Results

Figure 5.2: Orientation of the finger depending on the predecessor or successor
touch only.

(F1,12 = 50.048, p < 0.001).

We then compared the data from the Experimental1 con-The predecessor
touch had a

significant effect on
the orientation even

in the Control1
condition.

dition (predecessor only) to the Control1 condition (predeces-
sor and successor). In Control1, sequences had three but-
tons, with a predecessor, the middle button and a suc-
cessor. In order to compare the data to Experimental1,
where only two buttons were used (a predecessor and the
middle button), in Control1, we aggregated all the trials
per predecessor touch, thus removing the successor. A
repeated measures one-way ANOVA found a significant
main effect of the predecessor touch on the finger orienta-
tion (F5,60 = 26.680, p < 0.001).

Comparing the Experimental1 condition with the Control2There was an
interaction between

the Experimental1
and the Control2

conditions.

condition (no predecessor, nor successor), a repeated measures
one-way ANOVA showed a main effect of the predecessor
touch (F5,60 = 14.307, p < 0.001). This effect was significant
because it was already significant in the Experimental1 con-
dition alone. A clear interaction between the two condi-
tions was seen (F5,60 = 11.339, p < 0.001).

There was no interaction between the Experimental1 con-There was no main
effect in the Control2

condition.
dition and the Control1 condition and no main effect of
the condition (both p > 0.317). Comparing the Experimen-

5.1 Effects on the Orientation of The Finger 65

-25

-20

-15

-10

-5

0

1 2 3 4 5 6

A
ng

le
 in

 D
eg

re
e

Predecessor Touch

Predecessor Only

Predecessor with
Successor

No Effect

Figure 5.3: Orientation of the finger depending on the pre-
decessor touch. Each line represents a different condition.

tal1 condition with the Control2 condition, a repeated mea-
sures one-way ANOVA showed that the condition with-
out predecessor nor successor did not have any main effect
(F1,12 = 0.190, p = 0.671).

5.1.2 Successor Effect

Using the data from the Experimental2 condition, we re- After filtering the
data, there was a
small underlying
effect of the
successor touch on
the finger orientation
in Experimental2.

moved the outliers and ran a repeated measures one-way
ANOVA. The outliers were defined as being more than two
standard deviations away from the mean. From this, we
found that the successor touch had only a small underlying
effect on the finger orientation (F5,35 = 1.658, p = 0.171).

We then compared the Experimental2 condition with the There was a main
effect of the
successor touch on
the finger orientation
when comparing
Experimental 2 with
Control 1.

Control1 condition. As for the predecessor effect, we ag-
gregated trials from Control1, but per successor this time.
A repeated measures one-way ANOVA found a significant
main effect of the successor touch on the finger orientation
(F5,60 = 6.287, p < 0.001).

A one-way ANOVA, without removing the outliers from
the Experimental2 condition, showed no significant main
effect of the successor touch (F5,60 = 1.567, p = 0.183).

66 5 Results

-25

-20

-15

-10

-5

0

1 2 3 4 5 6

A
ng

le
 in

 D
eg

re
e

Successor Touch

Successor Only

Successor with
Predecessor

No Effect

Figure 5.4: Orientation of the finger depending on the suc-
cessor touch. Each line represents a different condition.

Bonferroni-corrected pair-wise comparisons yielded no in-Without filtering the
data, there was no

main effect on
Experimental2.

formation. There was no interaction between the Experi-
mental2 and the Control1 conditions, nor any main effect of
the condition (both (p > 0.585).

Comparing the Experimental2 condition with the Control2There was no main
effect when
comparing

Experimental2 with
Control2.

condition, a repeated measures one-way ANOVA found no
main effect for the successor touch, for the condition, nor
any interaction between the two conditions (all p > 0.126).

5.2 Effects on the Touch Location

We investigated the predecessor and successor effect on theWe split the touch
offset in an x-offset

and a y-offset.
touch location in the same as we did for the finger orienta-
tion. In order to analyze these effects on the touch location,
we decided to look separately at the offset on the x-axis, and
on the y-axis. This way, we looked for a predecessor effect
and a successor effect on the x-offset and on the y-offset.

5.2 Effects on the Touch Location 67

Figure 5.5: X-offset depending on the predecessor or successor touch only.

5.2.1 Predecessor Effect

A repeated measures one-way ANOVA found a signifi-
cant main effect of the predecessor touch on the x-offset There was a main

effect of the
predecessor touch
on both offsets.

(F5,60 = 12.082, p < 0.001) in the Experimental1 condition.
We also found a significant main effect of the predecessor
touch on the y-axis (F5,60 = 6.830, p < 0.001).

We then compared the data from the Experimental1 condi- There was a main
effect on both offsets
even in Control1.

tion with the Control1 condition. As for the finger orien-
tation, we aggregated all the trials per predecessor touch,
thus removing the successor. A repeated measures one-
way ANOVA found a significant main effect of the prede-
cessor touch on the x-offset (F5,60 = 13.793, p < 0.001), and
on the y-offset (F5,60 = 7.372, p < 0.001).

Comparing Experimental1 with Control2, a main effect A main effect on the
x-offset was
observed in Control2.

of the predecessor touch was observed on the x-offset
(F5,60 = 4.631, p < 0.001. This effect was significant be-
cause it was already significant in the Experimental2 condi-
tion alone. An interaction between the two conditions was
seen on the x-offset (F5,60 = 3.376, p < 0.009), and on the y-
offset (F5,60 = 5.201, p < 0.001).

An ANOVA on the y-offset found no significant main effect
of the predecessor touch (F5,60 = 1.491, p = 0.206). There

68 5 Results

8

9

10

11

12

13

14

15

1 2 3 4 5 6

X-
O
ff

se
t

in
 P

ix
el

s

Predecessor Touch

Predecessor Only

Predecessor with
Successor

No Effect

Figure 5.6: X-offset depending on the predecessor touch.
Each line represents a different condition.

was no interaction between the Experimental1 and Control1There was no main
effect in Control2. conditions, neither on the x-offset, nor on the y-offset (both

p > 0.317). A comparison of Experimental1 with Control2
showed that Control2 had no main effect on the x-offset or
y-offset (bothp > 0.238).

5.2.2 Successor Effect

We compared the Experimental2 condition with the Con-There was a
significant effect on

the x-offset when
comparing

Experimental2 with
Control1.

trol1 condition; as for the predecessor effect, we aggre-
gated trials from the first condition, but per successor this
time. A repeated measures one-way ANOVA found a sig-
nificant main effect of the successor touch on the x-offset
(F5,60 = 4.660, p < 0.001).

An ANOVA on the y-offset found no significant effectThere was no main
effect on the y-offset. (F5,60 = 1.357, p = 0.253), and no interaction between the

two conditions, either on the x-offset or on the y-offset (both
p > 0.151).

Comparing the Experimental2 condition with the Control2Comparing
Experimental2 with
Control2, there was

no main effect on any
offset.

condition, a repeated measures one-way ANOVA found no
main effect for the successor touch on the x-offset or on the
y-offset (both (p > 0.217), nor any interaction between the

5.3 Discussion 69

8

9

10

11

12

13

14

1 2 3 4 5 6

X-
O
ff

se
t

in
 P

ix
el

s

Successor Touch

Predecessor Only

Predecessor with
Successor

No Effect

Figure 5.7: X-offset depending on the successor touch. Each
line represents a different condition.

two conditions, either for the x-offset or the y-offset (both
p = 0.477).

We ran a one-way ANOVA using the data from the Exper-
imental2 condition; no significant main effect of the succes- There was no main

effect on any offset in
Experimental2.

sor touch was found, either on the x-offset or on the y-offset
(both (p > 0.344). Bonferroni-corrected pair-wise compar-
isons yielded no information, neither for the x-offset, nor
for the y-offset.

5.3 Discussion

Results showed that the finger orientation was influenced
by the predecessor touch. This effect could be seen in the
Experimental1 condition only, but also when we compared There is a

predecessor effect
on the finger
orientation.

it against the other conditions. In Control1, the predecessor
effect was still visible, although it could have been dimin-
ished by the successor effect or the longer touch sequence.
In Control2, the finger orientation was constant. This tend
to show that it was not influenced by anything, which con-
cur with our hypothesis. When compared to Experimental1,
the main effect of the predecessor touch that we observed,
combined to the clear interaction between the two condi-

70 5 Results

tions, showed a strong influence of the predecessor touch
on the finger orientation.

Regarding our second hypothesis, results showed that
there was no successor effect on the finger orientation. NoThere is no

successor effect on
the finger orientation.

main effect of the successor touch was seen, except when
Experimental2 was compared to Control1. Although there
was no interaction between the two conditions. This effect
can be disregarded, as the values for the finger orientation
ranged within a 3◦ interval only.

The touch location was impacted by the predecessor touch,
and this was more obvious for the x-offset. For this one, aThe x-offset is

influenced by the
predecessor effect.

main effect was observed in all the conditions. Also, there
was no interaction between the Experimental1 Control1; the
predecessor effect on the x-offset could be seen even in the
longer touch sequence. The interaction between Experimen-
tal1 and Control1 was another indication of the predecessor
effect on the x-offset.

The predecessor effect on the y-offset was also observed in
Experimental2 and Control1. The comparison between Exper-The predecessor

effect on the y-offset
is weaker than on the

x-offset..

imental2 and Experimental1 yielded less clear results. The
hypothesis that the touch location was influenced by the
predecessor touch was also validated, although it would
seem that the power of the predecessor touch is bigger on
the x-offset than on the y-offset.

As for the finger orientation, results showed that there wasThere is no
successor effect on

the touch offset.
no successor effect on the touch location, either on the x-
offset or on the y-offset.

71

Chapter 6

Summary and Future
Work

This work produced two contributions, a minor techni- We built a high
definition touch
detection system and
proved the existence
of the predecessor
effect.

cal one and a major scientific one. The technical contri-
bution is a system combining hardware and software that
allows a multitouch table to have a camera resolution of
160ppi and to capture highly accurate touches positions
and shapes. The scientific contribution expanded on Holz’
work [2010]. The study we conducted showed significant
results for the predecessor effect on the finger orientation
and the touch location, but no proof of the successor effect
has been found. The predecessor effect can be used to in-
crease the accuracy of any touchscreen device.

In this chapter, we will summarize our thesis and intro-
duce the areas that will be investigated as part of our future
work.

6.1 Summary

Multitouch tables are slowly coming into our lives. Re- Multitouch tables
suffer from a lack of
input accuracy.

searchers have been exploring the field for decades and
commercial versions of these tables have been on the mar-
ket for some years now. The accuracy on touch screens has
been an issue from the very beginning and is still a signifi-

72 6 Summary and Future Work

cant one. The most common explanation for the inaccuracy
is the fat finger problem, although a review of the existing
work on the subject showed that Holz et al. presented the
perceived input point model as an alternative explanation.

They state in their model that touches on a screen are not
reported at the actual touch location but at an offset from
the intended target. The study they conducted showed thatHolz stated that the

touch location
depends on the

finger orientation in
space.

the offset depends on the finger location on the screen but
also on the finger position in space. This offset can then be
compensated to correct the touch location. They created a
prototype based on a fingerprint scanner, which used the
fingerprints to identify the user and the finger position in
space. The study they ran with this prototype confirmed
their findings. Other researchers worked on addressing the
occlusion problem. Instead of trying to make touch screens
more accurate, they designed targeting aid systems to work
around these limitations. With these systems, it was pos-
sible to select very small targets, either by decoupling the
user’s touch and the target, or by using callouts to show
the occluded part of the screen beneath the finger.

Research has been done on the use of body posture and fin-
ger position in particular. Several systems make use of theSystems use finger

orientation, but not to
increase input

accuracy.

finger orientation, not in order to increase the touch accu-
racy, but to provide more functionalities and new interac-
tion techniques. Body posture has been used for a long time
in the field of augmented or virtual reality. Body posture
has also been used to implement a pointing gesture based
on the arm orientation, the line of sight between the head
and the finger and the head orientation.

The literature offers several ways of detecting the orienta-
tion of a finger. The whole shape of the hand can be usedSeveral techniques

exists to detect the
finger orientation.

in computer vision to detect the fingertips and deduce the
orientation or the changes in the contact shape area allows
to detect the orientation by tracking the movements of the
center of the touch. Additional hardware can be used, like
gloves with tags on the fingertips or an array of capacitive
proximity, which can detect the hovering finger and its ori-
entation.

Our set of hypotheses was refined, at the same time as ourOur hypotheses
focused on the touch

sequence effect.
study design matured throughout the different iterations.

6.2 Future Work 73

We focused on touch sequences and how they could influ-
ence the position of the finger and the touch location on the
table.

We implemented a touch detection agent based on the Mul- We built a high
definition touch
detection system.

tiScreen Agent from our chair, which worked with one
moving camera and had a very high resolution of 160ppi.
We built the hardware and wrote the code to control it. For
our study, we also designed and implemented the applica-
tion showing the stimuli to the participants and recording
the data.

We tested our hypotheses in a user study. Participants used
our system to touch buttons arranged in touch sequences, We proved the

existence of the
predecessor effect.

while we recorded the orientation of their finger and the
touch location. The analysis of the data proved that the
predecessor effect hypothesis was correct and showed sig-
nificant effects for both the finger orientation and the touch
location. The successor effect hypothesis was not proven to
be true.

6.2 Future Work

The final user study yielded interesting results and con-
firmed one of our hypotheses. The results also opened the
door for several new directions in the future work.

During the course of our study, in order to have touches
that were big enough and with a good ellipsoid shape, we The study could be

run again without
instructing the
participants to use
their fingerpad.

instructed the participants to use the pad of their finger.
This is not the most natural way people interact with touch
screens. Usually, they try to have the smallest contact area
possible, using their fingertip, precisely because of the inac-
curacy of this input method. We believe our study should
be run once more, without this limitation. This, however,
means that the touch detection system must be rethought;
the actual software and hardware cannot detect the finger
orientation with only the fingertip touching the surface.
Optical tracking could be used, but the marker and accu-
racy issues still need to be solved (see Chapter 4).

74 6 Summary and Future Work

In our study, we narrow our hypotheses on the predecessorThe impact of the
finger pitch and roll
on the predecessor

effect could be
investigated.

and successor effect by looking only at the yaw angle of the
finger with the surface. It would be interesting to add the
pitch and roll as well to the equation. The question would
be to see whether the added parameters would help cor-
recting the offset even more, or if the yaw is sufficient for
this task.

The results of our study showed clear evidence of the pre-A deeper study could
be made to assess

the successor effect.
decessor effect, while the presence of the successor effect
was not seen. The study could be adapted to balance evenly
the number of trials in each condition, and it study should
be continued with a larger number of participants, and the
data analyzed between subjects. The presence or absence
of the successor effect could then be clearly solved. If the
successor effect is proved to exist, we could then compare
its power to the predecessor effect.

Now that the predecessor effect has been identified, weWe could built a
prototype using the

predecessor effect to
correct touch offsets.

could design a model that would calculate offsets for a par-
ticular user, based on the predecessor and finger orienta-
tion. A program could implement that model, and a study
could be run to measure the effects of that model on the
touch accuracy on tabletops. This model could also be im-
plemented in any touchscreen device to improve its accu-
racy.

Finally, in section 3.2.2 we designed a second part to ourResearch the impact
of body posture on
accuracy accross a

table.

experiment, in which the body posture effect on accuracy
when using tabletops could be investigated without hav-
ing any interference from the predecessor effect or succes-
sor effect. This research would complement our work on
the predecessor and successor effect.

75

Appendix A

Camera Control

76 A Camera Control

�
�
��
�
��
�
�
�
��
�
��
�
��
	
��

��
�

�
�
�
�
�
��
��
�
�
��
�
��
��
�
�
��
�
�
��
��
��
�
�
��
�
�
�
�
�
�
��
���
�
�
�
��
�!

�"
�
��
��
�
�

�
��
�
�
�
�
�
�
�
��
��
�#
�
�$

�
��
%�
�
��
&
��
��
��

�
'�
�
�
&
�(
�
&
�
�
��
��
)�
*

+
�

���

����

����

���

���

���

�
,
-
.

�
,
-
.

�
,
%
.

�
,
%
.

�
�

�
,
$
/
�

�

	
	

�
,
$
/
�

�

0
,
$
/
�

0

1
1

2
2

3
,
$
/
�

3

�
�
,
$
/
�

�
�

��
,
$
/
�

��

�
�

�
�

�
�

�
�

�
,
�

�
,
�

�
,
	

�
,
	

�
,
�

�
,
�

�
,
�

�
,
�

�
,
�

�
,
�

�
,
�

�
,
�

4
5!

4
5!

6
!
�
�

6
!
�
�

6
!
�
�

6
!
�
�

�
4

�
4

�
4
�

�
4
�

-
7
�
7
%

-
7
�
7
%

6
!
�
�

6
!
�
�

�
-
7
8

�
-
7
8

���	�

9
$
�

012 ���	�

9
$
�

012

-�

-�

���	�

9
$
�

012 ���	�

9
$
	

012

-�

-�

-0

�
�

�

���:
�
;
;
�

-1

���:
�
;
;
�

6
!
�

6
!
�

6
!
�

6
!
�

6!�
6
!
�

6
!
�

6
!
�

�
<
�
�
�
�
�
<

�
5-

�
5-

�
%
7
$

�
%
7
$

4

4

4

�
;
7
7
$

�
;
7
7
$

-
7
�
7
%
�

-
7
�
7
%
�

�
�
�

�
�
�

�
�
�

7
!
�
<
;
7
�

7
!
�
<
;
7
�

7
!
�
<
;
7
�

7
!
�
<
;
7
�

-
7
�
7
%
�

-
7
�
7
%
�

�
5-
�

�
5-
�

�
%
7
$
�

�
%
7
$
�

�
<
,
�
�

�
�
,
�
�

�
�
,
�
�

�
<
,
�
�

�
;
7
7
$
�

�
;
7
7
$
�

�
�
�
,
�
�

�
�
�
,
�
�

�
�
�
,
�
�

Fi
gu

re
A

.1
:C

am
er

a
co

nt
ro

ls
ch

em
at

ic

77

���������������������	�
���������������������
�������������
�������
����������
 ��!����������
����������"�
#�����$����%�������&�!��

���

����

����

���

'�

'�

'�

'�

(��)* �

'+

',

���

���

Figure A.2: Camera control board layout

79

Appendix B

Questionnaire for User
Study

80 B Questionnaire for User Study

Questionnaire

Sex M / F

Age ____

Height ____

Arm’s length ____

Arm’s reach ____

Profession / Field of study ___________________________

Handedness _______________

I am a computer expert! !
! ! ! strongly disagree! 1! 2! 3! 4! 5 strongly agree

I have lots of experience with touchscreen devices
handheld size (i.e
phone)

strongly disagree ! 1! 2! 3! 4! 5 strongly agree

monitor size (i.e
screen in train
stations)

strongly disagree ! 1! 2! 3! 4! 5 strongly agree

table size strongly disagree ! 1! 2! 3! 4! 5 strongly agree

wall size strongly disagree ! 1! 2! 3! 4! 5 strongly agree

The task was easy to understand
! ! ! ! strongly disagree ! 1! 2! 3! 4! 5 strongly agree

The task was easy to accomplish
! ! ! ! strongly disagree ! 1! 2! 3! 4! 5 strongly agree

Did you find any issue when using the system ?

Figure B.1: Questionnaire for User Study

81

Bibliography

Pär-Anders Albinsson and Shumin Zhai. High precision
touch screen interaction. CHI ’03, pages 105–112, 2003.

Chi Tai Dang and Elisabeth André. Usage and recognition
of finger orientation for multi-touch tabletop interaction.
INTERACT ’11, pages 409–426, 2011.

Anthony D Hall, James B Cunningham, Richard P Roache,
and Julie W Cox. Factors affecting performance using
touch-entry systems: Tactual recognition fields and sys-
tem accuracy. Journal of Applied Psychology, 73(4):711–720,
1988.

Christian Holz and Patrick Baudisch. The generalized per-
ceived input point model and how to double touch accu-
racy by extracting fingerprints. CHI ’10, pages 581–590,
2010.

Christian Holz and Patrick Baudisch. Understanding
touch. CHI ’11, pages 2501–2510, 2011.

Shahzad Malik and Joe Laszlo. Visual touchpad: a two-
handed gestural input device. ICMI ’04, pages 289–296,
2004.

Nicolai Marquardt, Johannes Kiemer, and Saul Greenberg.
What caused that touch?: expressive interaction with a
surface through fiduciary-tagged gloves. ITS ’10, pages
139–142, 2010.

Kai Nickel and Rainer Stiefelhagen. Pointing gesture recog-
nition based on 3d-tracking of face, hands and head ori-
entation. ICMI ’03, pages 140–146, 2003.

82 Bibliography

R.C. Oldfield. The assessment and analysis of handedness:
The edinburgh inventory. Neuropsychologia, 9(1):97 – 113,
1971.

R. L. Potter, L. J. Weldon, and B. Shneiderman. Improving
the accuracy of touch screens: an experimental evalua-
tion of three strategies. CHI ’88, pages 27–32, 1988.

Simon Rogers, John Williamson, Craig Stewart, and Roder-
ick Murray-Smith. Anglepose: robust, precise capacitive
touch tracking via 3d orientation estimation. CHI ’11,
pages 2575–2584, 2011.

Daniel Vogel and Patrick Baudisch. Shift: a technique for
operating pen-based interfaces using touch. CHI ’07,
pages 657–666, 2007.

Feng Wang and Xiangshi Ren. Empirical evaluation for fin-
ger input properties in multi-touch interaction. CHI ’09,
pages 1063–1072, 2009.

Feng Wang, Xiang Cao, Xiangshi Ren, and Pourang Irani.
Detecting and leveraging finger orientation for interac-
tion with direct-touch surfaces. UIST ’09, pages 23–32,
2009.

Malte Weiss, Simon Voelker, Christine Sutter, and Jan
Borchers. Benddesk: dragging across the curve. ITS ’10,
pages 1–10, 2010.

Typeset June 4, 2012

	Abstract
	Acknowledgements
	Conventions
	Introduction
	State of the Art Touch Detection in Tabletops
	Motivation
	Thesis Overview

	Related work
	The Generalized Perceived Input Point Model
	Targeting Aids
	Cross-Keys
	Precision-Handle
	Shift

	Finger and Body Posture Use
	Finger Input Properties
	Pointing Gesture Recognition

	Finger Orientation Detection
	Computer Vision
	Contact Area Shape
	Fiduciary-Tagged Gloves
	Hand Shape
	Capacitive Sensors

	Study Design and Hypotheses Formulation
	Paper Prototype
	Next Design
	Touch Sequence Effect
	Body Posture and Position on Table

	First Prototype
	Pre-study on Handedness
	Final Study

	Implementation
	MultiScreen Agent
	Main Components
	Modifications
	Single Camera With Multiple Positions
	The 180 Adjust

	Camera Control Agent
	Hardware Selection and Assembly
	Firmware
	Software
	Starting Position Issue

	Touch Sequence Display
	Modules Communication

	Results
	Effects on the Orientation of The Finger
	Predecessor Effect
	Successor Effect

	Effects on the Touch Location
	Predecessor Effect
	Successor Effect

	Discussion

	Summary and Future Work
	Summary
	Future Work

	Camera Control
	Questionnaire for User Study
	Bibliography

