
Interactive System Architecture for Layered Applications
Jonathan Diehl Thorsten Karrer Jan Borchers

RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

{diehl, karrer, borchers}@cs.rwth-aachen.de

RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

{diehl, karrer, borchers}@cs.rwth-aachen.de

RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

{diehl, karrer, borchers}@cs.rwth-aachen.de

AUTHORS
Jonathan Diehl is a 4th year PhD candidate of the HCI
program at RWTH Aachen University. Jonathan’s main
research interest is in information-centric applications on
mobile and ubiquitous systems. Throughout his work, he has
identified many challenges caused by current system
architectures, which led to his interest in rethinking the way
software is developed today.
Thorsten Karrer is a 4th year PhD candidate of the same
program. His work is focussed around interaction with time
based media and navigating digital documents. His work on
bringing rich interaction techniques for video navigation to
the mobile led to his interest in nomadic and adaptive UIs.
Jan Borchers is a full professor and head of the Media
Computing Group at RWTH Aachen University. His interests
lie in post-desktop user interfaces and bridging the gap
between the digital and the physical world. He supervises
Jonathan’s and Thorsten’s PhD theses.

TRAVEL REQUIREMENTS
If the submission is accepted, one of the authors will require
(at least partial) funding for travel and accommodation to be
able to attend the workshop. Giving Jonathan and Thorsten
the chance to participate in the workshop would be much
appreciated even if no additional funding is available.

INTRODUCTION
Today, users have access to a multitude of interactive
systems, such as desktop computers, cell phones, and
interactive whiteboards. However, all these systems are
designed to be used mostly independently and are severely
limited in their cross-system capabilities: applications are
encapsulated by the system they run on and cannot easily
transfer or extend their user interface (UI) or information
space (IS) to other systems.

The challenge, here, is an architectural one: applications are
designed with a fixed deployment system in mind, and there
is no support by the system architecture to go beyond the
boundaries of that system: (1) UIs cannot easily be adapted to
the available interaction modalities, and (2) ISs cannot easily
expand beyond system boundaries.

Adaptive User Interfaces
Users should be able to use the most appropriate interaction
modalities available, at any given time, to operate their
applications. Which input and output modality is appropriate
can change during the interaction with the application and
switching between them should be seamless for the user.
Christine usually works on her desktop computer at home,
but sometimes her kids can be so noisy, she has to retreat
with her laptop to the backyard. She does not mind the
transition because the UIs of her desktop applications
automatically migrate to her laptop, and she can immediately
focus on what she had been doing before. Sometimes, she
grabs her new tablet computer instead, because she likes the
simplicity of its multitouch interface. Typing is not that great,
but the simplified UI really helps her find the functions she
needs fast.

This seamless adaption of the user interface has been
envisioned, especially in the area of ubiquitous computing, a
long time ago, and the technology to realize it has been
around almost equally long. Nevertheless, no commercial
systems available today come close to fulfilling this vision.
The main architectural challenges are that applications cannot
easily define multiple UIs adapted to the available interaction
modalities, and that applications cannot easily transfer or
extend their UIs to other systems.
A notable exception are web applications that can be
designed to support multiple interaction modalities. Many
web sites provide adapted UIs for desktop and mobile clients.
However, web applications are not always appropriate,
because they require connectivity and are severely limited in
their support of specialized modalities.

1

Comprehensive Information Spaces
Users should be able to access and manipulate all of their
information independent of the system they operate.
Paul is talking to his business partner on the office phone
about the latest development of their project, while taking
notes on his desktop computer. After lunch, he meets Sandy in
the kitchen and goes over his notes with her on his mobile
phone. Together, they develop a new concept on the kitchen
whiteboard. Later, at the project meeting, he discusses the
new concept with the team while showing and annotating the
sketch on the large interactive screen in the meeting room.

The technology to provide this comprehensive integration of
information among all systems exists today, but is not
available in such a seamless manner.

The architectural challenge is that the interactive system does
not provide any support for accessing information or making
information accessible on multiple systems, such that the IS
can neatly span across these systems.

Many applications, especially on the mobile phone, have
built-in synchronization of their IS with other systems or rely
on remote servers to host the IS. However, these solutions are
not consistent and often lead to fragmentation problems,
because the user’s information is spread across multiple ISs
that are not compatible with each other.

CURRENT AND PROPOSED SOFTWARE ARCHITECTURE
Comparing the scenarios described above with current
practices of how users interact with their information across
applications and their applications across devices, we believe
that current system architectures hinder the evolution of
desirable ‘device ecologies’.
Instead of developing a single application with multiple
interfaces for different interaction modalities, much effort is
put into re-inventing applications for each device. However,
this approach does not allow seamless migration of the user’s
workflow between devices at runtime, or dynamic extension
of an application’s UI across multiple modalities. E.g., typing
a text message on your cell phone with your laptop’s
keyboard cannot be easily realized with today’s architecture.

Similarly, current practices to realize a comprehensive IS
across applications and devices is limited by either tedious
synchronization procedures or by manual information transfer
from the various devices or remote servers. File-based
information storage in the cloud is becoming a widely
available option, but whether and how to the access them

should be in the hands of the user through the interactive
system, not in the hands of the application developer.
The widely accepted Model-View-Controller paradigm, splits
the application structure into the UI (view), IS (model), and
everything else (controller). This split has shown to be very
effective in improving code re-usability and clarity, but it has
failed to truly separate the UI or the IS from the application.
We plan to extend this separation into a layered application
architecture, where layers are completely separated through
well-defined, yet flexible interfaces.

Layered Application Architecture
We propose to develop an interactive software architecture,
where applications are split into the following layers:
1. The Interface Layer defines how the interface is laid

out and which UI elements are used.
2. The Interaction Layer defines how the user interacts

with the application through its UI.
3. The Application Layer defines the functional

capabilities of the application and the application logic.
4. The Information Layer defines the user information

model and information logic, such as data consistency
and manipulation operations.

These layers communicate through a set of flexible interface
languages, so each layer can be dynamically exchanged or
moved to another system at runtime. Consequently, layers can
be developed on any platform in any language, as long as
they support the communication standards defined by the
architecture. This way, an application running on a Microsoft
Windows PC could migrate its interface to an Apple iPad.

Several aspects of this approach have been explored in the
past, and we plan to use the published results to develop the
proposed interactive system architecture and extend existing
toolkits with the functionality to create and communicate
between the four layers. We will then create a proof-of-
concept prototype to demonstrate the flexibility of the new
interactive system architecture.

EXPECTATIONS FOR THE WORKSHOP
At the workshop, we hope to explore challenges of
developing the proposed interactive system architecture (how
to define the layer abstraction and communication standards)
and to discuss its implications on software development.

ACKNOWLEDGMENTS
We thank Chatchavan Wacharamanotham for the valuable
discussions and last-minute sketches. This work was partially
funded by the B-IT Foundation and the UMIC Excellence
Cluster at RWTH Aachen University.

2

