
 

 

A Framework for using the iPhone as a Wireless Input 
Device for Interactive Systems 

 

Jonathan Diehl 
Media Computing Group 

RWTH Aachen University 
diehl(at)cs.rwth-aachen.de 

 

Jan-Peter Krämer 
Media Computing Group 

RWTH Aachen University 
jpk(at)cs.rwth-aachen.de 

Jan Borchers 
Media Computing Group 

RWTH Aachen University 
borchers(at)cs.rwth-aachen.de 

 

ABSTRACT 
We have developed a framework to allow quick prototyp-
ing of the input channels provided by the iPhone, namely 
multi-touch and accelerometer data, for interactive systems. 
The framework consists of two parts: a native iPhone ap-
plication captures and forwards events to the client applica-
tion, which is built utilizing our framework. We hope to 
encourage further research into the use of innovative input 
methods by taking some of the implementation effort away 
from the researcher. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. – Input Devices. 
General terms: Design 
Keywords: Input device, iPhone, Multi-Touch, Acceler-
ometer 

INTRODUCTION 
Much research effort goes into exploring new input devices 
and finding appropriate use patterns for them. However, the 
cost of creating input devices, which offer these new capa-
bilities, and coupling them with interactive systems to test 
them, is often very high.  
The iPhone offers two innovative input channels, acceler-
ometer data and multi-touch capabilities, conveniently 
bundled into a mobile device. Many researchers are cur-
rently working on these channels, Johnny Lee’s work with 
the Wiimote and Jeff Han’s work on multi-touch probably 
being the most prominent projects. 
To allow widespread use of these metaphors, we have cre-
ated a framework supporting easy integration of these input 
channels into interactive systems. As a next step we want to 
supplement our framework with the capability to render a 
custom user interface on the iPhone for controlling the in-
teractive system. We hope to achieve this before the publi-
cation of this poster. 

RELATED WORK 
There are many solutions for bringing physical interfaces 

closer to the computer. [3] introduced Phicons (physical 
icons) to allow tangible interaction with the computer. [2] 
presented the more general toolkit of physical user interface 
elements called Phidgets (physical widgets). The Calder 
Toolkit [4] allows quick prototyping of hardware input 
devices based on microcontrollers. All these toolkits allow 
researchers to integrate a range of low- and high-level sen-
sors and actuators into their designs. Our framework can be 
seen as a supplement, which brings multi-touch and de-
tailed accelerometer data to the researchers hands. 
The iStuff Toolkit [1], on the other hand, supports re-
searchers in integrating these hardware prototypes into an 
interactive environment. For the iPhone the integration into 
the iStuff environment is possible without a proxy by mak-
ing the device connect directly to the service. 
There are several solutions to control a desktop computer 
remotely using the iPhone. These solutions however suffer 
from high latency due to high network traffic and do not 
support multi-touch or accelerometer events. 
Johnny Lee has explored the use of Wiimotes as input de-
vices for desktop computers. They support a 3D acceler-
ometer similar to the iPhone and infrared tracking capabili-
ties. There are several frameworks available for using the 
Wiimote with custom software. Nevertheless, we believe 
the iPhone’s different form factor and its multi-touch capa-
bilities offer a valuable alternative to the Wiimote. 

APPROACH 
Our work consists of two separate pieces of software, one 
running on the iPhone as a native application, and the other 
running on the desktop computer. 
The iPhone server software captures input events and ac-
celerometer data and prepares it to be sent over its wireless 
network interface to a desktop client. 
A client registers with the iPhone application via IP or 
Bonjour, which allows effortless coupling inside a local 
area network. Afterwards, the client receives all events that 
are captured on the iPhone and provides them to the re-
searcher. 
Using such a lightweight method, allows very short event 
response times. Quick response times are especially impor-
tant for input devices, as otherwise the interaction itself 
would suffer and test results would be biased. 

 
  
Copyright is held by the author/owner(s). 
UIST’08, October 19-22, 2008, Monterey, California, USA 
ACM 978-59593-975-3/08/10. 
  
  
 



 

 

TECHNICAL OVERVIEW 
To set up the iPhone, it is sufficient to install the server 
application on the phone. Building a specialized version of 
the server becomes interesting when a custom user inter-
face is desired. We discuss this in the Outlook section. 
The desktop application is implemented by setting up an 
instance of the ITTouchClient class, provided by our 
framework. This instance manages the connection to the 
iPhone and receives its events, which are forwarded to a 
delegate, which can be any controller that implements the 
ITTouchClientDelegate protocol. The delegate paradigm 
allows developers to use arbitrary controllers to react to 
system events, with very little need for configuration. It is 
the preferred method for event handling in the Mac OS X 
operating system. 
Delegate methods are triggered on connecting and discon-
necting an iPhone to the server, on updating the acceler-
ometer data, and for each touch event. These events are 
wrapped in ITEvent objects, containing ITTouch objects 
for each individual touch. An ITTouch object corresponds 
to the UITouch class from the iPhone OS, containing a 
timestamp, tap count, the actual and previous position, and 
a phase (began, moving, stationary, ended, or canceled). 
The canceled-phase is most likely triggered by a disruption 
of the interaction, for instance due to an incoming call. 
Accelerometer data is encapsulated in ITAcceleration ob-
jects, which have three parameters (x, y, z) to represent the 
three axes. Accelerometer data is updated with 30Hz, 
which should be sufficient for almost any purpose. The 
refresh rate is limited by the hardware capabilities of the 
iPhone. 
Bonjour service discovery is realized using the Bonjour 
library, available for any operating service. We provide an 
ITTouchBrowser class, which informs its delegate of newly 
found touch servers, running on an iPhone. Connecting to 
the server is then done via IP, leaving the Bonjour service 
optional but recommended. 
The network communication is handled via TCP sockets 
and abstracted by the framework. To ensure high perform-
ance, we have implemented our own simple network proto-
col, which encodes events as ASCII strings. The protocol is 
kept flexible to support other information in the future, like 
custom events or user interface changes. 

OUTLOOK 
We hope that researchers will take our framework and de-
sign new interaction techniques for interactive systems and 
effectively explore the new design space the iPhone pro-
vides. Possible applications could be: new input techniques 
for the desktop computer, interacting with large public dis-
plays, computer-supported collaborative work, or remote 
control. 
While we believe many useful applications can already be 
created using this framework, there are still some clear 
limitations, we want to eliminate before the publication of 
this poster. 

First, the iPhone should be capable of rendering a custom 
user interface, which can create and send custom events to 
the desktop system. For instance, the multi-touch area 
could be segmented into multiple areas, which create indi-
vidual events when touched. Further, the user interface 
should be extendible by standard user interface widgets, 
like sliders. 
Besides visualizing input capabilities, we want to add sup-
port for feedback to the user. This feedback could be auto-
matic, e.g. by visualizing touch events by briefly lighting 
up the area on the screen, or triggered by the interactive 
system. These changes could be direct, such that the inter-
active systems send the information to be displayed, or 
indirect using a state machine. The iPhone brings a high-
resolution display, a speaker, and a vibration unit to allow 
feedback. 
On a different note, it would be interesting to allow com-
munication of multiple iPhones with multiple desktop sys-
tems. For instance, one iPhone could be used to control 
many large public displays at once, where the events are 
mapped differently for each screen. Similarly, many 
iPhones could be mapped to one desktop system to allow 
multi-player capabilities and collaborative work. 
Consequently, the suggested coupling mechanism of using 
Bonjour on the desktop client side, might not be feasible 
for situations of multiple, loose clients. Here, more flexible 
coupling techniques must be employed, like scanning a 
barcode or location-tracking techniques. 

REFERENCES 
1. Ballagas, R., Ringel, M., Stone, M., and Borchers, J.. 

iStuff: a physical user interface toolkit for ubiquitous 
computing environments. In CHI '03: Proceedings of the 
SIGCHI conference on Human factors in computing 
systems, 2003, 537--544. 

2. Lee, J. C., Hudson, S. E., Summet, J. W., and Dietz, P. 
H.. Moveable interactive projected displays using pro-
jector based tracking. In UIST '05: Proceedings of the 
18th annual ACM symposium on User interface soft-
ware and technology, 2005, 63--72. 

3. Greenberg, S. and Fitchett, C.. Phidgets: easy develop-
ment of physical interfaces through physical widgets. In 
UIST '01: Proceedings of the 14th annual ACM sympo-
sium on User interface software and technology, 2001, 
209--218. 

4. Ishii, H. and Ullmer, B.. Tangible bits: towards seam-
less interfaces between people, bits and atoms. In CHI 
'97: Proceedings of the SIGCHI conference on Human 
factors in computing systems, 1997, 234--241. 

5. Lee, J. C., Avrahami, D., Hudson, S. E., Forlizzi, J., 
Dietz, P. H., and Leigh, D.. The calder toolkit: wired 
and wireless components for rapidly prototyping inter-
active devices. In DIS '04: Proceedings of the 5th con-
ference on Designing interactive systems, 2004, 167--
175. 

 


