
by
Van Huy Dao

Development of
a Hand Detection
on a Large-Area
Textile Capacitive
Pressure Sensor
Matrix

Bachelor’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Thomas Gries

Registration date: 09.09.2021
Submission date: 07.01.2022

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

 *Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

Dao, Van Huy 352601

Aachen, 07.01.2022

Aachen, 07.01.2022

Development of a Hand Detection on a Large-Area Textile Capacitive Pressure Sensor Matrix

v

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

1.1 Outline of the Thesis 2

2 Theoretical Background 5

2.1 Machine Learning 5

2.1.1 Convolutional Neural Networks . . . 9

2.2 Capacitive Sensing 10

3 State of the Art 13

3.1 Capacitive Sensor Matrices on Textiles 13

3.2 Machine Learning Concepts for Capacitive
Sensing . 17

vi Contents

3.3 Comparison 22

4 Methodology 25

5 Capacitive Pressure Sensor Matrix Prototype 27

5.1 Structure of the Prototype 27

5.2 Wiring to the Microcontroller 30

6 Machine Learning Models for Hand Detection 33

6.1 Data Labeling and Data Collection 33

6.1.1 Digital Low Pass Filter 37

6.2 Model Architecture 38

6.3 Training of the Models and Results 40

7 Discussion 45

7.1 Challenges . 45

7.2 Proposals for Solutions 47

7.2.1 Improvements to the Prototype 47

7.2.2 Improvements to the Hardware Used 48

8 Summary and Future Work 51

8.1 Summary and Contributions 51

8.2 Future Work 52

A Example of a Data Collection Run 53

Contents vii

B Model Results Plots 55

Bibliography 61

Index 65

ix

List of Figures

2.1 Basic Neural Network 7

2.2 Convolutional Neural Network 10

2.3 Parallel Plate Capacitor 11

3.1 Elastic Fabrics 14

3.2 One Layer Design and Two Layers Design . . 15

3.3 Fully Printed Sensor 16

3.4 Classification Accuracy for Exercises 18

3.5 Capacitivo . 20

3.6 Low-Cost Capacitive Sensing Array 22

4.1 Methodology Visualization 26

5.1 Capacitive Pressure Sensor Matrix Prototype 28

5.2 Layers of the Prototype 29

5.3 Wiring of the Prototype 32

6.1 Camera Setup and Hand Landmarks 35

x List of Figures

6.2 Digital Low Pass Filter 38

7.1 Small Prototype 48

A.1 Camera Streams for Data Collection 54

B.1 Plot of Model Results: Everywhere 56

B.2 Plot of Model Results: Middle 56

B.3 Plot of Model Results: Middle and Upper
Right . 57

B.4 Plot of Model Results: Middle, Upper Right
and Lower Right 57

B.5 Plot of Model Results: Upper Right 58

B.6 Plot of Model Results: Lower Left 58

B.7 Plot of Model Results: Upper Left 59

xi

List of Tables

3.1 Brief overview of all work presented in
Chapter 3 “State of the Art” and the require-
ments for this work. 23

6.1 Comparison of the results of all trained mod-
els. RT = real time performance, where
not working = - -, sometimes working = - ,
mostly working = + and perfectly working =
++. Acc. = Accuracy, Val. = Validation, NH =
nohand entries and H = hand entries. 43

7.1 Overview of the possible solutions presented
in Chapter 7.2 “Proposals for Solutions” and
their goals. 49

xiii

Abstract

The combination of a textile with a sensor, called smart textile, can open up new
areas of application and can be a further step towards smart homes and smart de-
vices. Sensors integrated into a textile can be used in most textile applications.

In this work, we deal with a prototype of a capacitive pressure sensor matrix and
test its performance for a first hand detection. We present the wiring of the proto-
type with a microcontroller to receive and collect the data and then process it for
training a machine learning model with convolutional neural networks. We ex-
plore the capabilities of the prototype with different models. These models were
trained with different datasets, from simple datasets with one hand location on the
prototype to more complex datasets with multiple hand locations.

Our investigation shows that the prototype is able to provide data for a hand detec-
tion for one to two hand locations on the prototype. Further possible improvements
to both the prototype and hardware components are sketched out to obtain cleaner
and more stable capacitive values in order to increase the prototype’s capabilities
for future work.

xiv Abstract

xv

Überblick

Die Kombination eines Textils mit einem Sensor, genannt Smart Textile, kann neue
Anwendungsbereiche eröffnen und ein weiterer Schritt in Richtung Smart Home
und Smart Devices sein. In ein Textil integrierte Sensoren können in den meisten
Textilanwendungen eingesetzt werden.

In der vorliegenden Arbeit befassen wir uns mit einem Prototyp einer kapazitiven
Drucksensormatrix und ihre Leistung für eine erste Handerkennung. Die Verka-
belung des Prototyps mit einem Mikrocontroller wird vorgestellt, um die Daten
zu empfangen, zu sammeln und sie dann für das Training eines maschinellen
Lernmodells mit Convolutional Neural Networks zu verarbeiten. Die Fähigkeiten
des Prototyps wird mit verschiedenen Modellen untersucht. Diese Modelle wur-
den mit verschiedenen Datensätzen trainiert, von einfachen Datensätzen mit einer
Handposition auf dem Prototyp bis hin zu komplexeren Datensätzen mit mehreren
Handpositionen.

Weitere mögliche Verbesserungen sowohl des Prototyps als auch der Hardware-
Komponenten werden aufgezeigt, um sauberere und stabilere kapazitive Werte
zu erhalten, um die Leistungsfähigkeit des Prototyps für zukünftige Arbeiten zu
erhöhen.

xvii

Acknowledgements

Firstly, I would like to thank Prof. Dr. Jan Borchers and Prof. Dr. Thomas Gries for
examining my bachelor thesis.

Also, I would like to thank my supervisors, René Schäfer and Vadim Tenner, for
their feedback, support and time.

Additionally, I would like to thank my family and friends for their support.

Lastly, I would like to thank everyone at the Digital Capability Center for their dis-
cussions and suggestions.

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English. We refer
to the first and unidentified third person in plural form.

1

Chapter 1

Introduction

Textiles are ubiquitous, and it is impossible to imagine
clothing, the seats of cars and airplanes or the interiors of
homes without them. In recent years, they also became the
subject of more intensified research, e.g. in smart home
applications. These often work with inputs gathered via
touchscreens or touchpads. The most common technolo-
gies for this are capacitive or resistive. These have the major In the realm of smart

home technologies,
smart textiles can
open up new areas
of applications.

disadvantage that they are neither flexible or deformable.
Smart textiles can be a solution to this obstacle. Smart tex-
tiles are textiles combined with sensors to provide intelli-
gent functions and can open up additional and new areas
of application. A sensor matrix integrated into a sports mat
could monitor and analyze exercises to provide feedback
to the user on how the exercises are being performed. In a
transport vehicle, a sensor matrix could detect the points of
contact between seat and person and thus regulate the seat
heating more efficiently.

In the current project at the Institut für Textiltechnik der
RWTH Aachen (ITA) we develop sensor techniques for the
recognition of pressure patterns on sensor matrices. In This work deals with

a large-area textile
capacitive pressure
sensor matrix
prototype.

this bachelor thesis, as part of this project, we deal with
a large-area textile capacitive pressure sensor matrix com-
bined with a sports mat. Many other approaches dealt
with the development of a capacitive sensor matrix on tex-
tiles (see Chapter 3 “State of the Art”), whereby these ap-
proaches usually do not exceed the size of a DINA4 sheet.

2 1 Introduction

Furthermore, many of these approaches are based on sin-
gle sensor plates. The prototype created for this work was
developed to test the functionality of a large-area capaci-
tive pressure sensor matrix (2 m x 1 m) made of conductive
aluminum strips.

To test the capabilities of the prototype for the first time, the
goal of this work is to develop an automatic hand detection.
This involves answering two main research questions:
1) How can the data gathered on the sensor matrix be pro-
cessed to use them as an input for the training of a machineThe aim is to develop

a first hand detection
using machine

learning techniques
to test the capability

of the prototype.

learning model?
2) Is the sensor matrix data suitable for training a model
that can subsequently recognize a hand in real time?
For the first part, the sensor matrix is wired to a microcon-
troller to obtain the capacitive values. A system is then de-
veloped to automatically label the data coming from the
prototype using a webcam and a depth camera. The col-
lected and labeled data is used to train a model, which is
then evaluated with test data and in real time predictions.

1.1 Outline of the Thesis

The bachelor thesis is divided into a theoretical and a prac-
tical part. At the beginning, Chapter 2 “Theoretical Back-
ground” introduces the basic concepts of machine learning
and capacitive sensing that are necessary for understand-
ing this thesis.

Chapter 3 “State of the Art” gives an insight into recent
published work dealing with capacitive sensor matrices on
textiles. We also take a look at some machine learning con-
cepts used for capacitive sensor matrices.

In Chapter 4 “Methodology”, we briefly present the
method of operations used in the different work steps for
this thesis, which are described in detail in the following
chapters.

Chapter 5 “Capacitive Pressure Sensor Matrix Prototype”
shows the construction of the capacitive pressure sensor

1.1 Outline of the Thesis 3

matrix prototype. We also present the wiring of the proto-
type with a microcontroller to measure the capacitive val-
ues of the sensor matrix.

After presenting the prototype, we describe the system for
automatically labeling the data from the sensor matrix in
Chapter 6 “Machine Learning Models for Hand Detection”.
After that, we present the architecture of the model that is
used for training. We also show the results of the training
and whether the trained models can recognize hand inputs
in real-time.

In Chapter 7 “Discussion” we discuss the results from
Chapter 6 “Machine Learning Models for Hand Detection”
and evaluate the capability of the trained models and the
prototype. We also address additional steps that can be
taken in the future to eliminate or minimize the identified
challenges and problems.

Based on the elaborations, Chapter 8 “Summary and Future
Work” summarizes the main findings and outlines steps for
the future work.

5

Chapter 2

Theoretical Background

This chapter introduces basic concepts of machine learning.
To understand how machine learning works, we first intro-
duce a basic neural network, followed by a convolutional
neural network. Secondly, the structure of a parallel plate
capacitor is explained.

2.1 Machine Learning

Machine learning (ML) uses algorithms to analyze data in
order to learn from it. The goal of learning is to find out Machine learning

algorithms can
classify data.

different classifications of the data in order to assign new
data to the appropriate label. The labels determine which
class the data belongs to. Generally three different types
of learning are distinguished: Supervised, unsupervised or
reinforced [Kang and Jameson, 2018]. Supervised learning
uses a labeled dataset to learn and then new data can be
classified based on that knowledge. Unsupervised learn- Supervised learning

is used for the
machine learning
model.

ing, on the other hand, learns from unlabeled datasets and
attempts to find classifications on its own. Lastly, reinforce-
ment learning works with a reward system that provides
feedback when an artificial intelligence agent performs an
action in a given situation. In this work, supervised learn-
ing is used, since we label the data from the prototype be-
fore training.

6 2 Theoretical Background

One method of machine learning is deep learning. Deep
learning algorithms are inspired by the architecture andArtificial neural

networks are used in
deep learning.

functions of the neural networks of the human brain. Be-
cause of these characteristics, the neural networks used in
deep learning are called artificial neural networks (ANN),
which are also referred to as models [Abrahams et al., 2016].

The simplest machine learning structure for supervised
learning is the basic neural network (Figure 2.1). It consists
of an input layer, a set of hidden layers with a randomly
chosen number of neurons (nodes), and finally an output
layer. The number of neurons in the input layer dependsA basic neural

network consists of
an input layer, a set

of hidden layers and
an output layer.

on the size of the input. The number of neurons in the
output layer is identical to the number of output classes.
Each neuron of a layer is connected to the neurons of the
previous and the next layer. Each connection has a certain
weight, which is adjusted during training and represents
the strength of the connection between two neurons. The
output of the neuron is calculated using the following equa-
tion [Alom et al., 2019]:

y = φ

B +

m∑
j=1

wjxj

 (2.1)

where w is the weighting of signal j for the neuron, x is
the output of signal j, B is the bias of the neuron, and φ
is the activation function. Each neuron has a bias and it
determines whether and to what extent a neuron is acti-
vated. The activation function converts the neuron’s sig-
nal into the final output signal and transforms linear in-
puts into nonlinear outputs. Basically, the activation func-Activation function

relu and softmax

are used.
tion decides which neurons should be activated to achieve
high accuracy. There are several activation functions such
as linear, tanh, relu and softmax to name a few
[Abrahams et al., 2016]. In this work, the activation func-
tions relu and softmax are used. For values less or equal
to zero, relu returns zero. For values bigger than zero
that value is returned by relu. softmax scales the output
into probabilities and gives back a vector of probabilities
for each possible outcome.

During the training of a model, the model changes its
weights and biases to reduce the error generated. This pro-

2.1 Machine Learning 7

Figure 2.1: Structure of a basic neural network. Consists
of an input, a hidden and an output layer. The neurons
of each layer are fully connected to the previous and next
layer. Image taken from [O’Shea and Nash, 2015].

cess is called learning. The main learning method is back-
propagation, which is divided into two parts: forward pass
and backward pass. In the forward pass, the equation y
(2.1) is used. Its calculated values of the output layer neu-
rons are compared to the correct output values to determine Backpropagation

adjusts the model to
reduce the error.

the loss. The loss is a number that indicates how bad a pre-
diction was after an iteration. If the prediction is perfect, the
loss is 0, otherwise the loss is greater. The loss is calculated
using a function such as the mean square error. During the
backward pass, the weights and bias are updated based on
the calculated loss using a form of stochastic gradient de-
scent [Hecht-Nielsen, 1989].

For each training, the number of epochs can be specified.
An epoch is a single run of the entire dataset, and after each
epoch the model updates the weights and calculates the A number of epochs

and a batch size can
be defined.

loss. It is also possible to select a batch size that specifies
the number of data entries per iteration during an epoch.
For example, if the batch size is set to 100 and the dataset
contains 1000 data entries, an epoch would have 10 itera-
tions.

8 2 Theoretical Background

Besides the training dataset, it is also possible to separate a
certain amount of the training data into a validation set.
This validation set is used to validate the model during
training and provides information on how well the updat-A validation set can

be taken from the
dataset to check the

learning process.

ing of the weights was. The validation set can be used di-
rectly during training to verify that the model works with
data that the model was not trained with. If the accuracy of
the validation set is lower than the accuracy of the training
set, the model is overfitted. If it is the other way around,
the model is underfitted. Reasons for overfitting could be
that the model only learns the training data by rote. In this
case, the model works well on known data, but not on new
test data. Furthermore, the architecture might be too com-
plex. Underfitting can occur when the model has not beenA model can be

overfitted or
underfitted.

trained long enough and therefore has not yet learned all
the patterns. Possible solutions against overfitting include
adding more data to the training set, reducing the complex-
ity of the model, or using a dropout layer. In a dropout
layer, a certain number of randomly selected neurons in a
layer are ignored. Underfitting can be remedied, for exam-
ple, by increasing the complexity of the model [Pothuganti,
2018].

After training the model with the training data and validat-
ing the model during training with the validation set, the
test set is used. The test set is separated from the trainingTrained model can

be tested with a test
set and in real time.

and validation set before training and tests the final capabil-
ity of the model. Finally, after the model has been trained,
validated and tested, we can use the model to generate pre-
dictions for new datasets and data inputs in real time.

In this work, we used TensorFlow1 with Keras2 to imple-
ment the machine learning model. TensorFlow is an openTensorFlow and

Keras are used. source machine learning library, and Keras is an interface
for the TensorFlow library.

1https://www.tensorflow.org (Accessed: 23.11.21)
2https://keras.io/about (Accessed: 23.11.21)

https://www.tensorflow.org
https://keras.io/about
https://www.tensorflow.org
https://keras.io/about

2.1 Machine Learning 9

2.1.1 Convolutional Neural Networks

Besides the basic neural networks, there are several other
ANNs. One of the most well-known ANNs is the convo-
lutional neural network (CNN), which is also used in this
work. CNNs are mainly used for image and video recogni- CNNs can work with

subsections of the
data and are mainly
used for image and
video recognition.

tion and can recognize patterns in data [O’Shea and Nash,
2015]. In images, patterns can be edges, curves, shapes or
colors, for example. The main difference from a basic neu-
ral network is that a CNN works with subsections rather
than the entire data. This reduces the number of parameters
and connections in the neural network. The architecture of
a CNN includes convolutional layers, pooling layers, and
fully connected layers.

In the convolutional layer, filters can detect patterns in the
data. These filters are technically small matrices and slide
over the entire input, which is called convolving and gives
the layer its name. The values of these filters are instanti- In a CNN, the filters

(small matrices), try
to find patterns in the
data.

ated with random numbers, and the number of filters deter-
mines the number of outputs for the next layer. For exam-
ple, a filter of size 3 x 3, also called kernel size, convolves
a 3 x 3 area of the data input into a 1 x 1 output, which
is the sum of the element-wise products of the filter and
the area of the data input. The CNN learns during training
and changes the values of the filters accordingly. Thus, it
is possible that the filters for pattern recognition are auto-
matically created and improved during training. Further- In a convolution

layer, a number of
filters, the kernel size
and a stride can be
defined.

more, as the CNN becomes more complex, the filters can
recognize more complex patterns in later layers. In a con-
volution layer, one can choose a number of filters and the
kernel size. In addition, a stride can be specified, which de-
termines how much the filters overlap during convolving
over the data input. For a 7 x 7 input, a 3 x 3 filter and a
stride of 2, the filters would overlap in one column (Figure
2.2).

Furthermore, a padding parameter can be specified when
employing a CNN layer. If padding is set to same, the Padding prevents

shrinkage of the
output.

output of the layer is prevented from shrinking in dimen-
sion by adding a margin of zeros around the actual data
input. This is important if, e.g., the values in the margin

10 2 Theoretical Background

stride = 2
overlap

Figure 2.2: Visualization of a step in a convolutional layer.
A 3 x 3 filter convolves over a 7 x 7 input. Each filter con-
verts a 3 x 3 field to a 1 x 1 output. With a stride = 2, the
filters overlap in one column.

contain important values for classification. Another impor-
tant layer of a CNN is the pooling layer. Pooling is used to
reduce the number of parameters and thus the complexity
of the input for the next layers. In a pooling layer, a pool-
ing size and a stride can be selected. Known pooling tech-A pooling layer

reduces the size of
the input to reduce

its complexity.

niques are max pooling, sum pooling and average pooling. Max
pooling returns the maximum value of the selected sub-
section (pooling size), sum pooling returns the sum of the
selected subsection, and average pooling returns the aver-
age of the selected subsection. In this work max pooling is
used. The fully connected layer corresponds to the output
layer of a basic neural network.

2.2 Capacitive Sensing

Capacitors are generally one of the most commonly usedThe prototype works
on principle of

parallel plate
capacitors.

components in electrical engineering and can be used to
store electrical charge [Stiny, 2015]. The prototype of this
work operates with the principle of the parallel plate ca-
pacitor (Figure 2.3). A parallel plate capacitor consists of

2.2 Capacitive Sensing 11

conductive plates
(electrodes)

dielectric

d
A

Figure 2.3: Structure of a parallel plate capacitor. It consists
of a conductive plates on the top and bottom with a dielec-
tric between them. d is the distance between the two plates
and A is the area size of a plate.

two opposing conductive plates (electrodes) separated by
a non-conductive layer, the dielectric. The capacitance de-
pends on the size, thickness and material of each layer. The
value of the capacitance can be calculated with the follow-
ing equation [Stiny, 2015]:

C = ε0 · εr ·
A

d
(2.2)

The equation 2.2 specifies the capacitance in units of farads
(F). One farad is defined as [Stiny, 2015]:

1F =
1C

1V
=

1As

1V
=

1s

1Ω
(2.3)

In equation 2.2, A (in square meter) is the size of the area
of a plate, d (in meter) is the distance between the two The capacitive value

depends on the size
of the plates, the
distance between
them and the
permittivity of the
material used for the
dielectric.

plates, ε0 is the value of the absolute dielectric permittiv-
ity (8.854187 · 10−12 As

V m) and εr is the permittivity of the
material that is used as a dielectric. When a parallel plate
capacitor is connected to a direct current (DC) voltage, elec-
trodes flow from the negative pole of the voltage source to
one plate. On the other side, free electrodes flow from the
other plate to the positive pole of the voltage source. After
some time, both plates are electrically charged.

13

Chapter 3

State of the Art

In this chapter, we consider the state of the art of capacitive
sensor matrices on textiles. For this purpose, different ap-
proaches are presented and compared. Furthermore, some
machine learning model techniques for capacitive sensors
in general and on textiles are discussed.

3.1 Capacitive Sensor Matrices on Textiles

Capacitive sensor matrices on textiles can provide intelli-
gent functions. There are different approaches to integrate
a sensor matrix into a textile. These sensor matrices can be
printed or woven.

A capacitive sensor matrix on highly elastic fabrics was de-
veloped by Vu and Kim [2020]. Their approach includes a Vu and Kim use one

sensor layer for touch
and one for pressure.

capacitive touch sensor layer and a capacitive pressure sen-
sor layer. On the touch sensor layer (Figure 3.1), four hori-
zontal and four vertical conductive diamond-shaped strips
out of silver paste are printed on a spandex fabric1, which
works as the dielectric. The diamonds are 14 mm apart and The touch sensor

has a 4 x 4 format
with diamond-shaped
stripes.

spaced 2 mm apart. To avoid possible short circuits, a lam-
inating film made of polymer polyurethane (PET) with a
thickness of 10 µm separates the nodes. The pressure sen-

1Elastic synthetic fiber

14 3 State of the Art

Figure 3.1: Structure of the capacitive touch sensor layer
(top) and the capacitive pressure sensor layer (bottom) for
simultaneous detection of touch and pressure. Images
adapted from [Vu and Kim, 2020].

sor layer (Figure 3.1) also consists of four vertical and four
horizontal conductive strips of silver paste, but this time
in a rectilinear design. The horizontal strips are printed onThe pressure sensor

has a 4 x 4 format
with straight strips.

the top layer and the vertical strips are printed on the bot-
tom layer of a spandex fabric with a width of 12 mm and
a spacing of 5 mm between each strip. Between these two
layers is a fabric made of PET fibers as the dielectric. It was
found that the recovery time through the dielectric layer
was fast, with 6 ms. Additionally, the sensor had a high cy-The prototype can

simultaneously
sense touch and

pressure from one
and two fingers.

cle stability of more than 20000 times. The prototype had
high flexibility, was breathable, lightweight and could be
easily integrated into textiles. A real-world application test-
ing finger inputs shows that the sensor’s architecture could
detect and localize touch and pressure from a single finger
and even two fingers.

The article by Ferri et al. [2017] also deals with a diamond-
shaped capacitive sensor matrix on a textile. Two designs
were created. Both use screen-printed conductive silver
paste strips in a 9 x 6 design. The diamond-shaped stripsFerri et al. developed

two versions of a
diamond-shaped

sensor matrix.

are spaced 8.3/8 mm apart and have a gap of 0.5/0.4 mm
(first design/second design). A ground ring is used around
the sensor matrix to reduce electromagnetic interference. In
the first design, the horizontal and vertical strips are di-
rectly on one layer (Figure 3.2 left). Because of this design,
two additional layers are needed to prevent short circuits

3.1 Capacitive Sensor Matrices on Textiles 15

Figure 3.2: One Layers Design (left) and Two Layers Design (right). Left: a) Con-
ductive layer for connection tracks, b) Dielectric with via-holes, c) Vertical and hor-
izontal strips layer, d) Whole sensor (OLD). Right: a) Layer of vertical strips, b)
Dielectric, c) Layer of horizontal strips, d) Whole sensor (TLD). Images taken from
[Ferri et al., 2017].

between the strips. The first additional layer is a conduc-
tive layer for the connection between the strips and the sec-
ond additional layer is a dielectric layer with via-holes of In the first design, all

the strips are on one
layer. The second
design uses two
layers.

1.6 mm diameter. All three layers together result in the One
Layer Design (OLD). The second design is the Two Layers De-
sign (TLD) (Figure 3.2 right), where one layer contains the
vertical strips and the other layer contains the horizontal
strips. A dielectric layer is used between these two lay-
ers. Both designs were connected to a capacitive touch con-
troller (MTCH61022). The capacitive touch controller has a
graphical user interface (GUI) that can directly check ges-
tures such as single click, double click and click and hold. Both designs were

capable of
recognizing gestures.

Both designs were able to detect all possible gestures, even
when the textile is bent. They found that a dielectric thin-
ner than 10 µm led to insulation problems. Also, the TLD
had a higher capacitance than the OLD, but this observation
did not affect the correct functionality of the two sensor de-
signs.

Narakathu et al. [2012] created a fully printed flexible ca-
pacitive pressure sensor using screen and gravure printing
(Figure 3.3 a) and b)). All components of the sensor are

2https://ww1.microchip.com/downloads/en/DeviceDoc/
40001750A.pdf (Accessed: 23.11.2021)

https://ww1.microchip.com/downloads/en/DeviceDoc/40001750A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/40001750A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/40001750A.pdf

16 3 State of the Art

Figure 3.3: a) Schematic design of the sensor, b) Fully printed sensor without PET,
c) Percentage change of the capacitance while increasing the force on the sensor.
PDMS = Polydimethylsiloxane. Images adapted from [Narakathu et al., 2012].

printed on a flexible PET substrate. First, four strips are
printed on the PET substrate using gravure printing, fol-
lowed by a 4 cm x 4 cm silicone layer as the dielectric usingNarakathu et al. has

produced a fully
printed sensor in a

rectilinear 4 x 4
design.

screen printing. Then on a second layer, again four strips
are printed at a 90-degree angle to the first strips, creating
a 4 x 4 sensor matrix. The strips themselves have a size of
4 cm x 0.5 cm with 0.5 cm spacing between each. A pas-
sive layer of silicone completes the sensor. The entire sen-
sor has a thickness of about 200 µm. After fabrication, the
fabricated sensor was tested in a force gauge. The sensor
was connected to a device for measuring capacitance using
wires glued to the strips with silver conductive paste. Dif-
ferent pressure levels were applied to the sensor using the
force gauge. The capacitance at different pressure levels isThe sensor had

different capacities at
different pressure
values and good

durability.

shown in Figure 3.3 c). The sensor was capable of measur-
ing pressure from 800 kPa up to 18 MPa3. The durability
of the sensor was also tested. The capacitance of the sen-
sor was 26 pF without any pressure. After applying vari-
ous pressures to the sensor for 5 minutes, the capacitance
always returned to the value of 26 pF at rest.

3Pa = Pascal. Unit for pressure measurment

3.2 Machine Learning Concepts for Capacitive Sensing 17

3.2 Machine Learning Concepts for Ca-
pacitive Sensing

Machine learning algorithms can classify data from capac-
itive sensors. Various machine learning concepts can be
used for this purpose. With the learned classifications, a
smart textile can enable interactive applications.

The approach taken by Goertz [2020] was to implement a
classification for different types of exercises on a capaci-
tive sensing sports mat. The goal was to enable monitor- Goertz wanted to

monitor the exercises
on a capacitive
sports mat made of
12 sensor plates.

ing of the patient’s exercises and to use this information
for analysis. The data can be analyzed by a physical thera-
pist to improve the patient’s execution of the exercises. The
sports mat is equipped with three arrays of four capaci-
tive sensor plates with a size of 5 cm x 28 cm per sensor
plate. The sensor plates are connected to a capacitance-to-
digital converter (FDC22144) via shielded copper wires of
equal length. Multiplexers (TS5A33595) are used to con-
nect all capacitance-to-digital converters to the microcon-
troller (Adafruit Feather M4 Express6). Various techniques
are used to avoid and reduce interference, e.g. from other Conductive shielded

wires and active
shielding protect
against interference.

wires, the sensor plates or noise from outside. A conduc-
tive sheath covers the wires and a second conductive plate
directly under the sensor plates, which is charged with the
same voltage as the sensor plates, serves as an active shield
against interference. Due to unforeseen circumstances, it
was not possible to collect data from the capacitive sensing
gym mat described above. For this reason, Goertz [2020]
used an existing dataset from the University of California
Irvine [Wijekoon et al., 2019] to train the machine learning
models. The data were collected from 30 subjects perform- An existing dataset

was used.ing seven different physical therapy exercises (Figure 3.4)
and contained data from a capacitive sensor, a depth cam-
era and two accelerometers. Two different models were
trained using the capacitive sensor data and the depth cam-

4https://www.ti.com/document-viewer/FDC2214/
datasheet (Accessed: 23.11.2021)

5https://www.ti.com/document-viewer/TS5A3359/
datasheet (Accessed: 23.11.2021)

6https://cdn-learn.adafruit.com/downloads/pdf/
adafruit-feather-m4-express-atsamd51.pdf (Accessed:
23.11.2021)

https://www.ti.com/document-viewer/FDC2214/datasheet
https://www.ti.com/document-viewer/TS5A3359/datasheet
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-feather-m4-express-atsamd51.pdf
https://www.ti.com/document-viewer/FDC2214/datasheet
https://www.ti.com/document-viewer/FDC2214/datasheet
https://www.ti.com/document-viewer/TS5A3359/datasheet
https://www.ti.com/document-viewer/TS5A3359/datasheet
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-feather-m4-express-atsamd51.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-feather-m4-express-atsamd51.pdf

18 3 State of the Art

Figure 3.4: Classification accuracy per exercise with the CNN model trained with
data from an existing dataset. 1 corresponds to 100 %. Image adapted from [Goertz,
2020].

era data from the existing dataset. Before training, the
dataset was split into 80 % training data and 20 % test
data. The first model was trained with a CNN. The trained
model achieved an overall accuracy of 89.2 %. Figure 3.4One model was

trained with CNN and
one with LSTM. The

CNN had a better
accuracy.

shows the accuracy for each exercise. The classification ac-
curacy ranged from 83.3 % to 100 %. The second model
used an Long Short Term Memory (LSTM)7. The results of
the LSTM model were very poor, with an accuracy of 42.5
%, compared to the CNN model. Changes to the model
architecture did not improve the results. The work shows
that capacitive sensors are capable of providing useful data
for differentiating between different exercises with a CNN
model.

In another poject called Capacitivo, an interactive fabric us-
ing capactive sensors was invented by Wu et al. [2020] (Fig-
ure 3.5 top)). The goal was to be able to distinguish between
20 different non-metallic objects used in everyday life (Fig-Capacitivo is an

interactive fabric that
can distinguish

between 20 objects.

ure 3.5 bottom). The objects on the interactive fabric can
be determined by material and shape, since each material
has its own permittivity and therefore affects the measured
capacitance differently. Capacitivo has a size of 15.6 cm x
15.6 cm and is made out of conductive fabrics in a 12 x 12
arrangement. The conductive fabrics were cut out in a di-

7A type of neural network

3.2 Machine Learning Concepts for Capacitive Sensing 19

amond shape and then glued to a cotton substrate with an
iron. The diamonds of the rows are connected with a con- It has a size of 15.6

cm x 15.6 cm in a
diamond-shaped 12
x 12 arrangement.

ductive line and the columns are connected from the back
with sewn conductive threads. On the back of the sen-
sor a grounded shielding layer of conductive knit is used
to prevent short-circuiting of the column electrodes. Back-
ground noise is removed by a filter formed from the aver-
age of the last five sensor data. While developing the pro-
totype, Wu et al. tested different diamond sizes and spac-
ing between them and found that a diamond diameter of
7 mm and spacing of 4 mm gave the best signal-to-noise
ratio for the prototype. Two capacitive sensing techniques Two

resonance-based
capacitive sensing
techniques are used.

are used: mutual capacitive sensing between the border-
ing electrodes of a row and column and self-capacitance
between the electrodes and the ground layer. The collected
dataset consisted of two 12 x 12 arrays, one for each tech-
nique. A resonance-based approach is used to measure
the capacitance. For this purpose, a resonant circuit8 is in-
tegrated into a custom sensor board, which also contains
a microcontroller and eight 4:1 multiplexers (FSUSB749).
This has the advantage that the sensors are less sensitive to
electromagnetic interference. A random forest10 was used Capacitivo can

distinguish between
20 objects with an
accuracy of 94 %.

for the machine learning model. For each object, 50 sam-
ples were collected and for the test dataset, 10 participants
were invited. After training, Capacitivo achieved an over-
all accuracy of 94 % for the test data. Of the 20 objects, 18
objects achieved an accuracy greater than 90 %. The model
was able to distinguish between similar round objects, but
had problems with objects such as credit cards and books
(85 % accuracy), due to the low permittivity of these objects.
After the main study, Wu et al. conducted two more small It could also

distinguish between
six liquids with 96.67
% accuracy after
removing one liquid.

studies. The first experiment was for liquid detection, us-
ing six different liquids (cold water, hot water, cola, cider,
milk and beer) and an empty glass. To reduce complexity,
it was decided to train the model with a fixed position on
the sensor. The dataset for training and testing contained
20 samples for each type of liquid. 90.71 % of the data was
correctly detected after testing, with beer having the lowest

8Electric circuit consisting of an inductor an a capacitor
9https://www.mouser.com/datasheet/2/149/

FSUSB74-83766.pdf (Accessed: 23.11.2021)
10Machine learning technique used to solve regression and classifica-

tion problems

https://www.mouser.com/datasheet/2/149/FSUSB74-83766.pdf
https://www.mouser.com/datasheet/2/149/FSUSB74-83766.pdf
https://www.mouser.com/datasheet/2/149/FSUSB74-83766.pdf

20 3 State of the Art

Figure 3.5: Top: The interactive fabric Capacitivo made of conductive fabrics. Bot-
tom: 20 different non-metallic everyday objects were used to test the interactive
fabric. Images adapted from [Wu et al., 2020].

accuracy (65 %). After removing the beer, the overall ac-
curacy increased to 96.67 %. For the second small study, aCapacitivo was also

tested in a bag
format and achieved

70 % accuracy.

bag was created. The model was trained with eight objects.
After testing, the bag achieved an overall accuracy of 70 %.
Compared to the first design, the accuracy was 25 % lower.
According to Wu et al., this could be due to the fact that
complete contact with the object was not guaranteed in the
bag. The interactive fabric can be used in many real-world
applications. For example, the interactive fabric can be in-It can be used as an

interactive tablecloth. tegrated into a tablecloth and notifies the user if something
important is left on the tabletop when leaving the house.

The next work presented does not deal with a textile, butFahr Jr investigated
different machine

learning models for
gesture recognition

on a sensor array.

nevertheless capacitive sensors are used. Fahr Jr [2020] re-
viewed several machine learning models for gesture recog-
nition on a low-cost capacitive sensor array. The capacitive
sensor board consists of 64 capacitive sensors (Figure 3.6),

3.2 Machine Learning Concepts for Capacitive Sensing 21

which is connected to a microcontroller (MSP43011). Differ-
ent model architectures and learning strategies were tested
using TensorFlow. To train the machine learning models,
data from different gestures were collected. Two datasets
were created, one containing simple gestures such as finger
swipes from left to right, up to down, or in the opposite
direction in each case. The second dataset contains more One dataset contains

simple gestures, the
other more complex
gestures.

complex gestures such as taps, rubs, diagonal swipes, cir-
cles and two-finger V-shapes. The simple gesture dataset
contains 400 gesture data and the more complex gesture
dataset contains 1200 gesture data. For training, the dataset
were divided into frames, with each frame representing the
data for one gesture. All frames without a gesture were re-
moved. Thus, the dataset finally contains only data with
recorded gestures. The datasets were divided into training, Three different

models with different
parameters were
tested.

validation, and testing datasets. Different model architec-
tures were implemented, such as a basic neural network,
a LSTM, and a 2D convolutional LSTM12. During training,
parameters like the number of hidden layers, the number
of nodes per hidden layer, the kernel size, and the batch
size were changed to compare the loss and the accuracy
of the test data. At the beginning each model was tested Each model was

tested with the
simple gestures and
all models achieved
a 100 % test
accuracy.

with the simple gesture dataset to validate the function of
the models. The model trained with the basic neural net-
work and the 2D convolutional LSTM used the activation
function relu and the LSTM model used the activation
function hyperbolic tangent13. The 2D convolutional
LSTM used a kernel size of 4 x 4. All models achieved a 100
% test accuracy and a test loss between 0.001 and 0.008. Af-
ter training with the simple gesture, the three models were
trained with the more complex gestures. It was found that
the 2D convolutional LSTM model had the highest test ac-
curacy of 99.33 %. Changing the kernel size did not have For the more

complex gestures,
the 2D convolutional
LSTM model
achieved the highest
accuracy of 99.33 %.

much effect. A 4 x 4 kernel had an accuracy of 99.67 % com-
pared to 3 x 3 and 2 x 2 kernels with an accuracy of 99.33
%. For the number of nodes in the hidden layers, 25, 50, 75
and 100 nodes were tested. Again, these changes had min-
imal impact on accuracy. The basic neural network model
had the best accuracy with 75 nodes and the LSTM model

11https://www.ti.com/lit/ds/symlink/msp430g2553.pdf
(Accessed: 23.11.21)

12LSTM using convolutional layers
13Maps the input into a output in a range from -1 to 1

https://www.ti.com/lit/ds/symlink/msp430g2553.pdf
https://www.ti.com/lit/ds/symlink/msp430g2553.pdf

22 3 State of the Art

Figure 3.6: Low-cost capacitive sensor pad. 64 capacitive
sensors arranged in a 8 x 8 array. Image taken from [Wu
et al., 2020].

with 50 to 100 nodes. The 2D convolutional LSTM model
achieved the best accuracy with 75 to 100 nodes. Also,
five different activation functions were tested: linear,
hyperbolic tangent, sigmoid14 and relu. Chang-CNN and LSTM can

reliable classify
between different

gestures.

ing the activation function also had little effect on the train-
ing accuracy and the test accuracy. The investigation shows
that machine learning can be used for reliable classification
between different gestures. The final test accuracy and final
test loss results also show that CNN and LSTM were effec-
tive neural networks. The functionality was not tested for
real-time gesture recognition.

3.3 Comparison

Most of the capacitive sensors presented in Chapter 3 “State
of the Art” have a small size. With the prototype of this
thesis, we want to find out the capabilities of a larger sen-
sor matrix. In addition, most work focuses more on the
fabrication, durability and capacitive behavior of the pro-
totype itself. We want to focus more on working with the
data coming from the prototype and how it can be used

14Converts the input to an output between 0 and 1

3.3 Comparison 23

for machine learning and real-time classification. Table 3.1
provides a brief overview of all the work presented.

Literature Strips Design Size Used ML?
Real-Time
Classification?

Vu and Kim [2020]
- Straight shape
- Diamond shape

Approx.
10 cm2 No No

Ferri et al. [2017] - Diamond shape
Approx.
8 cm2 No

Yes, with
MTCH6102
GUI utility

Narakathu et al. [2012] - Straight shape
Approx.
4 cm2 No No

Goertz [2020] - Single plates
12 plates,
each
5 cm x 28 cm

Yes No

Wu et al. [2020] - Diamond shape 15.6 cm2 Yes Yes

Fahr Jr [2020]
- No Textil
- Sensor Board

10.16 cm2 Yes No

Thesis
requirements

- Straight shape 2 m x 1 m Yes Yes

Table 3.1: Brief overview of all work presented in Chapter 3 “State of the Art” and
the requirements for this work.

25

Chapter 4

Methodology

In this chapter we briefly present the work steps of the
bachelor thesis. A detailed description of each step follows
after this chapter.

In the first step of this thesis, we connect the prototype
to a microcontroller to realize the capacitive pressure sen-
sor matrix and to send its values to the computer. Subse-
quently, the data from the prototype needs to be prepared The prototype data is

prepared and
processed to train
some models.

and processed in order to use the obtained data for training
a machine learning model. To prepare and process the data,
we use a system with two cameras to automatically label
the data with hand or nohand accordingly. After these steps,
we start collecting and labeling the data to create datasets
for training a model.

Once a model is trained, it is tested with a test dataset that is A model is tested
with a test set and in
real time.

split from the entire collected dataset before training. Then
the model is tested in real time to see if it is able to detect a
hand on the sensor matrix.

We start with a simple dataset (only one hand location) and
expand the dataset with another location after the real time Start with a simple

dataset and then
increase the
complexity.

recognition worked with the previously simpler trained
model. With each extended dataset we test the functions of
the prototype. After each extension of the dataset, again a
new model is trained with it, tested with the test dataset,
subsequently the performance is checked in real time.

26 4 Methodology

Wiring Prototype to
Microcontroller

Prepare and Process
Data for ML

Collecting and
Labeling Data Train Model

Test Model with Test
Dataset

Test Model in Real
TimeEvaluation

Figure 4.1: Methodology visualization of each step of the process in this thesis.

27

Chapter 5

Capacitive Pressure
Sensor Matrix Prototype

In this chapter, the prototype and its connection to the mi-
crocontroller are presented. Chapter 5.1 “Structure of the
Prototype” describes the structure of every single layer of
the prototype. The prototype is connected to a microcon-
troller to build up the capacitive pressure sensor matrix.
The hardware used, the wiring and the measurement of a
capacitive value are shown in Chapter 5.2 “Wiring to the
Microcontroller”.

5.1 Structure of the Prototype

The prototype for the capacitive pressure sensor matrix is
made of three layers of polyvinyl chloride (PVC) with a size
of 2 m x 1 m (Figure 5.1). The first two layers are thin PVC
foils and the third layer on top is a 4 mm thick sports mat. The prototype

consists of three
layers with a size of 2
m x 1 m. Aluminum
strips are used.

Self-adhesive aluminum strips are used to realize the ca-
pacitive sensor matrix. These strips have a width of 1 cm
and a distance of about 2 mm between each strip. Since
there was no printer available at the time that could print
the strips at this large size, self-adhesive aluminum strips
are used for this prototype. In the first version of the pro-
totype, 60 horizontal self-adhesive aluminum strips were

28 5 Capacitive Pressure Sensor Matrix Prototype

2 m

1 m

40 cm

40 cm

Figure 5.1: Prototype for the capacitive pressure sensor matrix made of three layers
of PVC with horizontal and vertical aluminum strips. The prototype has a size of 2
m x 1 m. The blue marked area (40 cm x 40 cm) in the upper left corner shows the
area that is used and wired to the microcontroller.

glued to the first PVC foil layer. The second layer also was
a PVC foil and functioned as the dielectric for the capaci-
tive sensor matrix. On the third layer, 200 aluminum stripsIn the first version,

aluminum strips were
on the first and third

layer.

were glued vertically on the bottom side of the sports mat
(Figure 5.2 a)-d)). These strips were cut out by hand from
aluminum foil, which was glued on double-sided adhesive
tape. On this layer, the strips had a width of 5 mm and a
distance of about 5 mm between them. During develop-
ment, we noticed that some strips on the top sports matThe first version did

not work properly,
due to damaged

strips.

layer were damaged and therefore not fully conductive. To
solve this problem, a new layer was made for the vertical
strips using the second PVC foil layer. Due to time con-
straints and because only a small part of the prototype is
needed, 32 self-adhesive aluminum strips are glued verti-
cally on it. These strips have the same dimensions as those
of the first layer. Consequently, the second version of theIn the second

version, the strips
are on the first and

second PVC foil
layer.

prototype is almost identical to the first version, except that
the vertical strips moved from the third layer to the second
layer and the number of vertical strips is reduced from 200
to 32. This also means that the sports mat (third layer) in
the second version is without any strips (Figure 5.2 e)-g)).
The final matrix contains 60 horizontal and 32 vertical lines.

5.1 Structure of the Prototype 29

a) b) c) d)

e) f) g)

Figure 5.2: Each layer of the first (a)-d)) and second version (e)-g)). a) First layer:
Thin PVC foil with 60 horizontal aluminum strips, b) Second layer: Thin PVC foil,
works as the dielectric, c) Third layer: Sports mats with 200 vertical aluminum
strips on the back, d) Top view of the first version (sports mat), e) First layer: Thin
PVC foil with 60 horizontal aluminum strips, f) Second layer: Thin PVC foil with 32
vertical aluminum strips, g) Third layer: Sports mat with blue markings indicating
the working area.

The first layer with the horizontal strips and the second
layer with the vertical strips on it forms the capacitive pres- A capacitive value

can be read at each
intersection of a
horizontal and
vertical strip.

sure sensor matrix. These enable the measurement of the
capacitive value at each intersection of the horizontal and
vertical strips. Thus, the prototype has three acting layers:
The first PVC foil layer with horizontal electrodes, the sec-
ond PVC foil layer with vertical electrodes and the PVC foil
of the second layer used as the dielectric.

Since we I want to implement a hand detection on this pro-
totype, only a comparably small part of the whole proto-
type is needed. Therefore, only 32 strips from the first and
32 strips from the second layer are used for this work. This

30 5 Capacitive Pressure Sensor Matrix Prototype

32 x 32 array provides 1024 capacitive values from an areaIn this work, only an
area of around 40 cm

x 40 cm is used.
with a size of around 40 cm x 40 cm. The sensor matrix area
is marked with the blue corners in the top left in Figure 5.1.

5.2 Wiring to the Microcontroller

An Arduino Due1 microcontroller is used to realize the ca-
pacitive pressure sensor matrix and to transmit the capaci-From the prototype,

32 strips of each
layer are wired to an

Arduino Due.

tive values to a computer. The microcontroller has 12 ana-
log input pins and 54 digital pins. As mentioned in Chapter
5.1 “Structure of the Prototype”, we use 32 horizontal and
32 vertical aluminum strips of the prototype. A capacitive
value can be read between a digital and an analog pin. The
32 horizontal aluminum strips are wired to the digital pinsWe use the digital

and analog pins and
increased the

number of analog
pins with

multiplexers.

(D22 - D53) and the 32 vertical aluminum strips are wired
to the analog pins of the microcontroller. Since the micro-
controller only has 12 analog inputs, two 16:1 multiplexers
(CD74HC40672) are used to increase the number of analog
inputs. The multiplexer can switch through its 16 channels
and pass each incoming measured value to the microcon-
troller’s analog pins (A0 -A1).

At the beginning, we used the capacitive touch sensor
MPR1213, but found that this sensor does not allow for par-
allel plate capacitors and is thus unsuitable for implement-
ing the desired sensor matrix.

The wires are attached to the aluminum strips with plasticThe capacitance can
be read from the

intersections of two
strips.

paper clips. The complete wiring is shown in Figure 5.3.
With this wiring, it is possible to measure the capacitance at
the intersections of the horizontal and vertical strips using
the stray capacitance of the microcontroller.

1https://docs.arduino.cc/hardware/due (Accessed:
24.11.21)

2https://www.ti.com/lit/ds/symlink/cd74hc4067.pdf
(Accessed: 24.11.21)

3https://www.sparkfun.com/datasheets/Components/
MPR121.pdf (Accessed: 26.11.21)

https://docs.arduino.cc/hardware/due
https://www.ti.com/lit/ds/symlink/cd74hc4067.pdf
https://www.sparkfun.com/datasheets/Components/MPR121.pdf
https://docs.arduino.cc/hardware/due
https://www.ti.com/lit/ds/symlink/cd74hc4067.pdf
https://www.sparkfun.com/datasheets/Components/MPR121.pdf
https://www.sparkfun.com/datasheets/Components/MPR121.pdf

5.2 Wiring to the Microcontroller 31

For these measurements, we use an Arduino library called
CapacitorLite4. CapacitorLite allows us to measure capaci-
tive values in the range from 0.2 pF up to 655 pF. At the be-
ginning of the measurement, both strips are discharged and
the digital pins are at 0 V. After the digital pins are raised to A 5 V signal is sent

across the digital
pins and the final
signal can be read
off the analog pins.

5 V, the signal flows through the horizontal strips, and the
voltage on the vertical strips connected to the analog pins
reach its final value, which can be read off. For example, if
5 V is sent through digital pin 22 and the received voltage is
read at pin C0 of the first multiplexer, this value would be
the measured capacitive value of the cell in the upper left
corner of the sensor matrix. The output is converted to a
digital value and is used to calculate the capacitance. The
output is an absolute capacitive value in pF ∗ 100.

The capacitance C is measured with the following equation
5.1:

C =
Vanalog output · stray capacitance

Vdigital input − Vanalog output
(5.1)

where Vdigital input is 5 V and Vanalog output varies from 0 V to
5 V depending on what is measured at the analog pins. The
stray capacitance depends on the microcontroller used.

4https://github.com/codewrite/arduino-capacitor (Ac-
cessed: 26.11.21)

https://github.com/codewrite/arduino-capacitor
https://github.com/codewrite/arduino-capacitor

32 5 Capacitive Pressure Sensor Matrix Prototype

IO
R

EF

R
ES

ET

3.
3V

5V G
N

D
G

N
D

Vi
n

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

D
C

 in

U
SB

U
SB

AT
M

EL
AT

SA
M

3X
8E

SC
L1

SD
A

1

A
R

EF

G
N

D 13 12 11 10 9 8 7 6 5 4 3 2
TX

01
→

1

R
X0

←
0

TX
3

14

R
X3

 1
5

TX
2

16

R
X2

 1
7

TX
1

18

R
X1

 1
9

SD
A

 2
0

SC
L

21

A
8

A
9

A
10

A
11

D
A

C
2

D
A

C
1

C
A

N
R

X

C
A

N
TX G

N
D

52
50

48
46

44
42

40
38

36
34

32
30

28
26

24
22

5V

G
N

D
53

51
49

47
45

43
41

39
37

35
33

31
29

27
25

23
5V

ANALOG IN

D
IG

IT
A

L

COMMUNICATION

PWM

ARDUINO DUE

3

w
ire

d
to

 h
or

iz
on

ta
l s

tri
ps

,
e.

g.
 d

ig
ita

l 2
4

to
 s

tri
p

3

1 2 31 32

G
N

D
VC

C
EN

S0
S1

S2
S3

SI
G

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
D

74
H

C
40

67

G
N

D
VC

C
EN

S0
S1

S2
S3

SI
G

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
D

74
H

C
40

67

1
31

2
32

Fi
gu

re
5.

3:
W

ir
in

g
of

th
e

pr
ot

ot
yp

e
w

it
h

th
e

A
rd

ui
no

D
ue

.T
he

ho
ri

zo
nt

al
st

ri
ps

ar
e

w
ir

ed
to

di
gi

ta
lp

in
s

22
-5

3.
Th

e
ve

rt
ic

al
st

ri
ps

ar
e

w
ir

ed
to

tw
o

m
ul

ti
pl

ex
er

s
(C

D
74

H
C

40
67

)
w

hi
ch

pa
ss

th
e

re
ad

va
lu

e
to

an
al

og
pi

ns
A

0
an

d
A

1.
A

ca
pa

ci
ta

nc
e

ca
n

be
re

ad
at

ea
ch

in
te

rs
ec

ti
on

of
a

ho
ri

zo
nt

al
an

d
a

ve
rt

ic
al

st
ri

p.
A

5
V

si
gn

al
is

se
nt

ac
ro

ss
th

e
di

gi
ta

lp
in

s
an

d
th

e
fin

al
si

gn
al

ca
n

be
re

ad
at

th
e

an
al

og
pi

ns
.

33

Chapter 6

Machine Learning
Models for Hand
Detection

In this chapter, we focus on the machine learning tech-
niques employed. An automatic labeling system using two
cameras is described in Chapter 6.1 “Data Labeling and
Data Collection”. With their help, labeled datasets for the
training of a model can be created. The architecture used
for training the model is shown in Chapter 6.2 “Model Ar-
chitecture”. At last, in Chapter 6.3 “Training of the Models
and Results”, we show the datasets used for training the
models and their results. We also review the performance
of the models for real time hand detection.

6.1 Data Labeling and Data Collection

The Arduino Due prepares the capacitive values into an ar- The Arduino Due
sends the data from
the prototype to the
computer.

ray representing the sensor matrix to send them to a com-
puter. The data is in a 32 x 32 array format, where each
cell represents the capacitance of one intersection. Before
using the Arduino Due, a Arduino Mega 25601 was used,

1https://docs.arduino.cc/hardware/mega-2560 (Ac-
cessed: 03.12.2021)

https://docs.arduino.cc/hardware/mega-2560
https://docs.arduino.cc/hardware/mega-2560

34 6 Machine Learning Models for Hand Detection

which was able to send about four data entries per second
to the computer. After changing the microcontroller to the
Arduino Due, the data stream could be improved to about
eight data entries per second.

As mentioned in Chapter 2.1 “Machine Learning”, the ma-
chine learning model are trained using supervised learn-
ing. This implies that the data needs to be labeled to cre-
ate a usable dataset for training. The labeling process takes
into account whether the hand is on the sensor matrix. IfTo label the data for

supervised learning,
an automatic labeling

system with two
cameras was

developed to collect
large datasets.

a hand is on the sensor matrix surface, the data is labeled
with hand, everything else is labeled with nohand. To la-
bel the data, we developed an automatic labeling system
with a webcam and a depth camera (Figure 6.1). The sys-
tem was designed to capture large datasets without having
the need to manually press any button to set a label for the
data. Another reason is that the used cables are very sen-
sitive to movements and other objects nearby, which cause
interference with the capacitive values. Therefore, we also
want to use the system to minimize the movements of an-
other hand around the prototype to reduce this source of
interference.

The task of the webcam is to determine the x and y co-
ordinates of a hand. These coordinates are used to verifyThe webcam is used

with MediaPipe
Hands to determine
if the hand is in the
area of the sensor

matrix.

whether a hand is within the area of the sensor matrix. A
machine learning solution called MediaPipe Hands2, devel-
oped by Zhang et al. [2020], is used for this task. MediaPipe
Hands is able to recognize human hands and displays the
hand skeleton on the video image, which consists of 21 co-
ordinates. Compared to other current approaches, this so-
lution requires only a simple webcam and no additional
special hardware or powerful desktop environment. TheThere are 21

landmarks given for
the hand.

solution is a combination of two machine learning models:
The BlazePalm Detector3 and the hand landmark model.
First, the BlazePalm Detector localizes the palm with a
bounding box around it. Then, the hand landmark model
runs on the bounding box area and provides the landmarks
of the hand. The topology of the 21 landmarks is the same

2https://google.github.io/mediapipe/solutions/
hands (Accessed: 10.12.2021)

3https://github.com/vidursatija/BlazePalm (Accessed:
24.11.2021)

https://google.github.io/mediapipe/solutions/hands
https://github.com/vidursatija/BlazePalm
https://google.github.io/mediapipe/solutions/hands
https://google.github.io/mediapipe/solutions/hands
https://github.com/vidursatija/BlazePalm

6.1 Data Labeling and Data Collection 35

Figure 6.1: Cameras placed above the prototype for the automatic labeling system.
A webcam and depth camera is used (left). A hand recognized by the MediaPipe
Hands solution. A hand skeleton contains 21 landmarks, where each landmark is
a tuple out of the x and y coordinate (right).

as in the work of Simon et al. [2017]. Since the hand land-
mark model only has to work with the bounding box of
the palm detector model, the need for data augmentation
is very small. In addition, the palm detection model only The solution also

returns which hand it
is.

needs to run on the first frame or when it can no longer
locate a hand. The model outputs not only the landmarks
of the hand, but also the probability of the presence of the
hand and which hand it is (right or left). The MediaPipe
Hands solution achieved a mean square error rate of 13.4%.
Our initial goal was to develop a hand detection that could
distinguish between nohand, righthand and lefthand, The resolution of the

prototype is too low
to use three different
labels. Therefore two
labels are used.

but we found that the resolution of the sensor matrix is not
high enough to distinguish between data from a right and
left hand. Therefore, we decided to use only the two labels
nohand and hand for this version of the prototype. To la-
bel the data, we use the webcam for automatic labeling as
follows:

1. Start the video stream of the webcam.

2. Set the area of the sensor matrix by selecting four cor-
ners of the polygon.

3. Check if the 21 hand landmarks are in the set area.

36 6 Machine Learning Models for Hand Detection

If it is determined in step 3 that all 21 hand landmarks are
in the specified area of step 2, the data is a possible candi-The depth

information was still
missing.

date for the label hand. At this point, we only had the two-
dimensional information about the hand. The next step was
to determine whether the hand is on the surface of the sen-
sor matrix.

For this purpose, we have to check the depth data of the
video image. To obtain the depth data, a depth camera is
used in addition to the webcam. We chose the Terabee 3D
Cam4, a 3D Time-of-Flight (ToF) camera that can transmit
the depth information in form of an 80 x 60 array to the
computer. A ToF camera sends an infrared light to the sur-The TeraBee 3D

depth camera is
used to obtain the
depth information

and determine if the
hand is on the
sensor matrix.

face/object, measures the time it takes for the light to travel
from the camera to the surface/object and back, and con-
verts the measured time into a distance [Li et al., 2014]. The
distance is given in millimeters. Since the depth camera
only provides the depth of each pixel, it was not possible to
use this camera for the MediaPipe Hands solution as well.
The depth camera does not have a actual color image and
the resolution of 80 x 60 pixels is too low for MediaPipe
Hands to detect a hand. To determine if the hand is on
the sensor matrix surface, we use the depth camera as de-
scribed in the following steps:

1. Start the video stream of the depth camera.

2. Set the area of the sensor matrix by drawing a rectan-
gle with the upper left and lower right corners.

3. Save the depth image of the idle state (no hand in the
area of the sensor matrix).

The selection of the area in step two reduces the number of
depth pixels that are important for the calculation. After se-In the specified area,

the average of all
changes in depth

pixels is calculated.

lecting the two corners, the coordinates of the corners have
to be converted to the corresponding array entries of the 80
x 60 array coming from the depth camera. For each depth
data image, the average of the sum of the changes of each
pixel within the selected area is calculated. If the average

4https://terabee.b-cdn.net/wp-content/uploads/
2019/03/Terabee_3Dcam80x60_specsheet-2.pdf (Accessed:
11.12.2021)

https://terabee.b-cdn.net/wp-content/uploads/2019/03/Terabee_3Dcam80x60_specsheet-2.pdf
https://terabee.b-cdn.net/wp-content/uploads/2019/03/Terabee_3Dcam80x60_specsheet-2.pdf
https://terabee.b-cdn.net/wp-content/uploads/2019/03/Terabee_3Dcam80x60_specsheet-2.pdf
https://terabee.b-cdn.net/wp-content/uploads/2019/03/Terabee_3Dcam80x60_specsheet-2.pdf

6.1 Data Labeling and Data Collection 37

is between 17 mm and 30 mm, the data is labeled as hand. If the average is
within the defined
range, the label
hand is used.

Some testing showed that the range chosen for the average
was best for distinguishing between a hand hovering above
and a hand on the prototype. These parameters can be ad-
justed for later data collection, such as when a dataset is
collected for a larger hand.

The use of the two cameras makes it possible to distinguish
between a hand on a surface and a hand hovering about 5
mm above the surface. A data is labeled as hand only if Only one whole hand

on the sensor matrix
area is labeled as
hand.

the webcam indicated that all 21 hand landmarks are in the
selected area and if the average value calculated with the
depth camera is in the specified range. Anything else, such
as a hovering hand, no whole hand in the area, or no hand,
is labeled as nohand.

To process the data for training the machine learning
model, we use JSON [Pezoa et al., 2016] to store the labeled
data in a dataset. Before the dataset is used for training, JSON is used to

store the data in a
dataset.

the first 30 data entries must be deleted, because the con-
nection to the sensor matrix takes a short time to be estab-
lished. Each data entry consists of the 32 x 32 array of the
sensor matrix and the corresponding label. For example, a
data entry is structured as follows:

{"sensormatrix": 32 x 32 array, "label":
"hand"}

An example run for labeling and data collection is shown
in the Appendix A “Example of a Data Collection Run”.

6.1.1 Digital Low Pass Filter

Observations during development shows that the noise of
the capacitive values of the prototype was very strong. To
contain this noise, a digital low pass filter is used. This fil- Since the capacitive

values were very
noisy, a digital low
pass filter is used.

ter is able to attenuate higher frequencies and allows low
frequencies to pass through unchanged [Kaiser and Reed,
1977]. A comparison of an unfiltered and filtered capaci-
tive value is shown in Figure 6.2. A capacitive value from
the center of the sensor matrix was used as an example for

38 6 Machine Learning Models for Hand Detection

Figure 6.2: Plot of a capacitive value from the center of the sensor matrix in the
idle state. The blue graph shows the unfiltered capacitive value and the red graph
shows the filtered capacitive value using a digital low pass filter.

the plot. During the plot, the sensor matrix was in the idle
state, meaning that no hand was on or near the prototype.
It can be seen that without the digital low pass filter, the
signal was very noisy and fluctuated between 0 pF and 60The filter can reduce

some of the noise of
the capacitive values.

pF (Figure 6.2 blue graph). After applying the digital low
pass filter, the noise of the signal was reduced to a range of
about 10 pF to 30 pF (Figure 6.2 red graph). The use of the
filter allows cleaner capacitive values to be provided for the
machine learning model.

6.2 Model Architecture

A convolutional neural network is used for training the
models, as mentioned in Chapter 2.1.1 “Convolutional
Neural Networks”. We chose a CNN because the data weCNN are used for the

model. receive from the prototype is in a 32 x 32 format, which can
be considered as a 32 x 32 pixel image. As mentioned ear-
lier, CNNs are mainly used for image recognition and are
therefore suitable for this use case.

The model consists of a convolutional, a dropout and a max
pooling layer. Then the same three layers are added to theThe model contains

eight layers. model, followed by a flattening layer and a dense layer.
The model architecture and the parameters of each layer

6.2 Model Architecture 39

are shown here:

model = Sequential([
Conv2D(filters=32, kernel_size=(3, 3),

activation=’relu’, padding=’same’,
input_shape=(32, 32, 1)),

Dropout(0.2),
MaxPool2D(pool_size=(2, 2), strides=2),

Conv2D(filters=64, kernel_size=(3, 3),
activation=’relu’, padding=’same’),

Dropout(0.2),
MaxPool2D(pool_size=(2, 2), strides=2),

Flatten(),
Dense(units=2, activation=’softmax’)])

In the first convolutional layer, the input shape is defined.
The first two parameters are the shape of the input (32 x 32) The input shape is

defined with 32 x 32
and one color
channel.

and the third parameter is for the number of color channels.
Since our data consists of capacitive values and therefore
have no color channels, this parameter is set to 1, which is
also the standard setting for grayscale images.

The chosen kernel size of 3 x 3 is generally a very com-
mon kernel size [Camgözlü and Kutlu, 2020]. The filter
size of 32 and 64 were selected arbitrarily. Relu activation
is used in both convolutional layers, and zero padding is
enabled. A dropout layer is added after each convolutional The CNN contains

convolutional,
dropout, and max
pooling layers,
followed by a
flattening and dense
layer.

layer, which ignores randomly selected 20 % of the neurons.
Each dropout layer is followed by a max pooling layer to
reduce the size of the data for the next layer. The flatten-
ing layer converts the data into a one-dimensional input
for the dense layer, which is the output layer. This output
layer has one neuron for each class, nohand and hand. In
the output layer, the activation function softmax is used to
determine the probability distribution for the two outputs.
Each model is trained for 100 epochs with a batch size of 32.
Before training, 20 % of the dataset is split into a validation
dataset.

40 6 Machine Learning Models for Hand Detection

6.3 Training of the Models and Results

Several models were trained with different datasets. All
collected datasets contains data labeled as hand or nohand.
Before training, all datasets were split into 80 % training
data and 20 % test data. The model were trained with the
architecture presented in Chapter 6.2 “Model Architecture”Some models were

trained with different
hand locations and

then tested.

and the generated training dataset. Then the trained mod-
els were tested firstly with the test data and finally in real
time. All data was collected using the author’s right hand.
Each data collection and expansion took about 10 minutes,
with half of the time used to collect data from the idle state
without any hand input. The other half of the time was
spent collecting data of a hand input.

Initially, we collected a dataset that included data from
hand inputs that occurred over the entire area of the con-
nected sensor matrix. The model achieved a training andWe switched from a

complex dataset to a
simpler one.

validation accuracy of 100 %. The trained model was able
to correctly predict the entire test dataset, but was unable
to detect a hand on the sensor matrix in real time. For this
reason, we started with a simpler dataset and increased its
complexity step by step.

For the simple dataset, the hand was always placed in the
middle of the sensor matrix during data collection. We de-
cided to train the first model with this simple dataset to
check the first functionality of the model and the prototype.
The dataset contains 2600 entries (1938 nohand, 662 hand).
Of these, 2079 entries were used for training and 521 en-
tries were used for testing. The training dataset consists ofThe simple dataset

contains data from a
hand placed in the

middle of the sensor
matrix.

1549 nohand entries and 530 hand entries. The test dataset
consists of 389 nohand entries and 132 hand entries. After
training, the model achieved a training accuracy of 99.72
% and a validation accuracy of 99.44 %. The training loss
(0.0072) and validation loss (0.0188) were also very low. The
model was able to correctly predict all test data except for
one incorrect prediction where a data labeled with hand
was predicted as nohand (99.80 % accuracy). In real time,
the model was able to correctly classify hand inputs in the
middle of the sensor matrix most of the time. It rarely got
stuck in the hand state after the pressure of the hand on the

6.3 Training of the Models and Results 41

prototype was removed. Since we tested the prototype in
real time without the camera setup, the data could not be la- Test accuracy was

99.80 % and real
time prediction
worked most of the
time.

beled during real time prediction. Therefore, it is not possi-
ble to provide a real statistical number for the real time pre-
diction performance. Instead, a 4-level evaluation is used to
evaluate the real time performance (not working, sometimes
working, mostly working, perfectly working).

The second model was trained with data from two hand lo-
cations. To do this, we added data from hand inputs in the
upper right corner to the dataset of the first model (mid-
dle). A total of 804 nohand entries and 664 hand entries
were added. Finally, the second dataset includes a total of
5068 entries. After splitting this dataset into 80 % train-
ing and 20 % test data, we had 2992 nohand entries and We added data from

the upper right hand
location. The test
accuracy was 99.51
% and the real time
prediction performed
slightly worse.

1061 hand entries for training. The test dataset contains
750 nohand entries and 265 hand entries. After using this
dataset for training, the model achieved a high training ac-
curacy of 99.79 % and a high validation accuracy of 99.65
%. Both, the training loss of 0.0048 and the validation loss
of 0.0053 were close to zero. The trained model correctly
predicted 260 of 265 hand entries and 750 of 750 nohand
entries (99.51 % accuracy). We also tested this model in real
time and found that it could recognize both hand inputs,
but slightly worse than the first model (middle). When it
could not recognize the hand inputs, the real time predic-
tion got stuck in the hand state and could not distinguish
between the two labels.

For the next model, we added another hand location to the
second dataset (middle and upper right corner). This time,
the data came from hand inputs in the lower right corner.
Since the second dataset already contains 3742 nohand en- Data of a third hand

location was added
(lower right corner).
The test accuracy
was 99.21 %, but the
model did not work in
real time.

tries, we added only 629 hand entries from the lower right
corner to the dataset (5696 entries in total). The training
dataset contains 2992 nohand entries and 1563 hand en-
tries. The test dataset contains 750 nohand entries and 391
hand entries. The test results of the trained model were
only slightly worse than the models before it, with an ac-
curacy of 99.21 % (382/391 hand, 750/750 nohand). Using
this model for real time predictions did not lead to mean-
ingful results. The model predicted a hand the whole time
and did not react to any input on the sensor matrix. At this

42 6 Machine Learning Models for Hand Detection

point, we stopped adding more locations to the data set be-
cause we want to concentrate on enhancing the real time
performance.

In another experiment, we split the second dataset (middle
and upper right) into two datasets for one hand location
each and trained a single model for the position in the up-
per right corner. As before, the dataset was divided intoThe second dataset

was split into two.
Model for upper right

hand location
performed well in

real time.

train and test data. This model achieved high accuracy dur-
ing training (99.98 %) and validation (100 %). The loss on
training (0.001) and validation (0.0001) was also low. The
test dataset was also predicted 100 % correctly. During real
time prediction, the model for the upper right corner was
also able to correctly detect a hand most of the time. But
as mentioned above, after combining the two datasets, the
model with two hand locations was not able to reliably de-
tect different hand locations on the prototype.

So far, we have only collected data from the right side of the
wired sensor matrix. Therefore, in additional experiments,
we collected data from hand inputs on the left side. We col-
lected data from hand inputs in the lower left corner (1817
entries) and in the upper left corner (1946 entries). TheseThe left side of the

sensor matrix area
was also tested. The

trained models for
this area did not work

in real time.

were used to train two individual models for each hand lo-
cation. Similar to the previously trained models, both mod-
els achieved a very high training (100 % accuracy) and val-
idation accuracy (100 % accuracy) and low training (both
0.0001) and validation losses (upper left: 0.0001, lower left:
0.00002). They also predicted their test dataset with 100 %
accuracy, but in real time, neither model was able to detect
a hand. Both models predicted all data as a hand all the
time and did not react to any interaction on the prototype.

A summary of all trained models and their results is pro-
vided in the Table 6.1. In Appendix B “Model Results
Plots”, graphs visualize the accuracy and loss of each
model during training. TensorBoard5 was used to display
the graphs, which is a visualization toolkit for TensorFlow.

5https://www.tensorflow.org/tensorboard (Accessed:
18.12.2021)

https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard

6.3 Training of the Models and Results 43

Hand Locations Dataset Accuracy Loss Test Results RT

Everywhere

Training:
1152 NH, 1157 H
Test:
289 NH, 288 H
Total: 2886

Training:
100 %
Val.:
100 %

Training:
0.00003
Val.:
0.000003

289/289 NH
288/288 H
100 % Acc.

- -

Middle

Training:
1549 NH, 530 NH
Test:
389 NH, 132 H
Total: 2600

Training:
99.72 %
Val.:
99.44 %

Training:
0.0072
Val.:
0.0188

389/389 NH
130/131 H
99.8 % Acc.

+

Middle,
Upper Right

Training:
2992 NH, 1061 H
Test:
750 NH, 265 H
Total: 5068

Training:
99.79 %
Val.:
99.65 %

Training:
0.0048
Val.:
0.0053

260/265 NH
750/750 H
99.51 % Acc.

-

Middle,
Upper Right,
Lower Right

Training:
2992 NH, 1563 H
Test:
750 NH, 391 H
Total: 5696

Training:
99.78 %
Val.:
99.23 %

Training:
0.0074
Val.:
0.0227

750/750 NH
382/391 H
99.21 % Acc.

- -

Upper Right

Training:
1443 NH, 515 H
Test:
361 NH, 149 H
Total: 2468

Training:
99.98 %
Val.:
100 %

Training:
0.001
Val.:
0.0001

361/361 NH
149/149 H
100 % Acc.

+

Lower Left

Training:
1016 NH, 437 H
Test:
254 NH, 110 H
Total: 1817

Training:
100 %
Val.:
100 %

Training:
0.00001
Val.:
0.0002

254/254 NH
110/110 H
100 % Acc.

- -

Upper Left

Train:
1135 NH, 421 H
Test:
284 NH, 106 H
Total: 1946

Train:
100 %
Val.:
100 %

Train:
0.00001
Val.:
0.0001

284/284 NH
106/106 H
100 % Acc.

- -

Table 6.1: Comparison of the results of all trained models. RT = real time perfor-
mance, where not working = - -, sometimes working = - , mostly working = + and
perfectly working = ++. Acc. = Accuracy, Val. = Validation, NH = nohand entries
and H = hand entries.

45

Chapter 7

Discussion

7.1 Challenges

The strip architecture of the prototype results in the capac-
itive signals not being equal across the entire sensor ma-
trix due to the length of the strips and the difference in
length between the horizontal and vertical strips. Training Models for more than

two hand locations
do not work and
always predict a
hand.

and testing of the models show that the prototype can pro-
vide data for a hand detection at one to two locations in
real time. For more complex datasets (more than two hand
locations), the respective models are no longer able to re-
spond to any interactions on the sensor matrix area. In this
case, the model always predicts the data coming from the
prototype as a hand.

One of the main reasons for this is that capacitive sensors
are generally very sensitive to all kinds of noises steming
from the environment. Because of this noise, the models Capacitors have

noisy signals.
Because of this
noise, it was not
possible to get the
same values for the
idle state every time.

trained with datasets containing more than two hand loca-
tions are not able to distinguish between data from a hand
and nohand. The noise is also the reason that the train-
ing and testing accuracy of the models in our case did not
match the performance in real time. During the training
and testing of the models, the prototype was placed in an
open-plan office. In this environment, the sensor matrix
was heavily disturbed by people coming and going and by
electrical devices being turned on and off. For example,

46 7 Discussion

one model worked in real time shortly after training, but
stopped working a few hours later. In this setting it was
not possible to have the same environmental conditions all
the time, and therefore there was not always the same idle
state of the capacities.

We tried to minimize noise with a digital low pass filter as
mentioned in Chapter 6.1.1 “Digital Low Pass Filter”. The
digital low pass filter allowed us to train models for one to
two hand locations that worked in real time. Without thisWith the filter, we are

able to reduce the
noise a bit.

filter, the models for one and two hand locations did not
even work in real time. Generally, we could filter out some
of the noise. But it seems that for more than two different
hand locations, we reached the natural limit of what can be
filtered out with the digital low pass filter.

One possible reason for the poor real time prediction could
be the material of the prototype itself. We noticed that
sometimes the layers did not return to its initial state afterThe prototype does

not return to the
initial state, due to its

material.

removing a hand from the prototype. In this case, the layers
got stuck together. This problem made it difficult to collect
clean data for the model. The material of the aluminum
strips was also not ideal, as they were very thin and kinks
easily forms in the strips leading to increased interference.

During the training and testing of the models, it was also
noticed that models trained with data from a hand on theUsed cables are not

shielded against
interferences.

left side did not work. This is probably due to the fact that
half of the cables are attached to the left side of the proto-
type and every time the sensor matrix is pressed, the cables
are also touched or moved, causing too many interfering
signals.

At the beginning of the work, our goal was to developResolution of the
sensor matrix is not

high enough to differ
between left and

right hand.

a hand detection that could distinguish between left and
right hand. However, it turned out that the data of the right
and left hand on the prototype do not differ enough to dis-
tinguish between them. This implies that the resolution of
the sensor matrix is not high enough for this requirement.

We also examined the microcontroller and found that theInterferences in the
microcontroller. pins are not 100 % isolated from each other and that there

are circuits between the strips within a layer itself. This lead

7.2 Proposals for Solutions 47

to interference signals not only in the prototype, but also in
the microcontroller.

7.2 Proposals for Solutions

The problems and challenges described above in Chapter
7.1 “Challenges” could be solved or minimized, for exam-
ple, by improvements to the prototype and the hardware
used. Some possible solutions are presented below.

7.2.1 Improvements to the Prototype

The prototype can be improved for the next production. The used materials
could be upgraded in
such a way that the
prototype returns
more easily to its
original state after
pressure was
applied.

The material currently used for the layers could be replaced
with a material that completely returns to its original state
after pressure was applied to the prototype. A foam layer
could also be used to provide a fast recovery rate for the
prototype. Furthermore, a laminating layer could be ap-
plied to the layers themselves to isolate the strips from each
other. Another addition could be a grounding shield as in
the prototype of Ferri et al.

In addition, the architecture and arrangement of the strips
can be improved. The strips could be printed instead of
glued aluminum strips. Then the strips would not de-
form as easily under pressure and no small kinks would
be created. The design of the strips could be changed to a The strip architecture

can be improved and
the resolution of the
sensor matrix can be
increased.

diamond-shaped design like in Vu and Kim’s work. This
could result in more stable capacitive signals for better lo-
calization of pressure. Another possible way for improve-
ment is to aim for higher resolution, e.g. by reducing the
width of the strips while increasing the number of strips
in each layer. With a higher resolution more complex data
and thus better results should be possible, e.g. to distin-
guish better between left and right hands.

A further step could also be to divide the sensor matrix into
smaller rectangular areas (Figure 7.1). During the develop-
ment of the wiring, the implementation was tested with a

48 7 Discussion

Approx. 10 cm

1.8 cm

4
m

m Approx. 10 cm

Figure 7.1: Small 4 x 4 sensor matrix (approx. 10 cm x 10
cm) made of printed square-shaped strips. Each square had
a diameter of 1.8 cm and a distance of 4 mm between each
strip.

smaller sensor matrix, since the larger prototype used was
not ready at that time. The smaller sensor matrix had a
strip arrangement of 4 x 4 on both sides and a size of about
10 cm x 10 cm. The strips were printed in a square de-
sign, with each square having a diameter of 1.8 cm and aThe sensor matrix

could be divided into
small subsections.

spacing of 4 mm between each strip. This small prototype
was able to provide stable capacitive values with very low
noise. A possible place of future research could be to test
up to which matrix size the sensors can actually provide
stable values. This could work as input for a modular sys-
tem in which these small sensor matrices build up to one
combined larger one.

7.2.2 Improvements to the Hardware Used

Besides the prototype, the hardware around the sensor ma-The microcontroller
can be changed for
better isolation and
faster data stream.

trix could be an object of improvement. The Arduino Due
could be replaced with a better microcontroller or a custom
microcontroller that has only the components needed and
better isolated pins to avoid interference within the micro-
controller. This change could also improve the speed of the

7.2 Proposals for Solutions 49

data stream for collecting the data and testing of the model.
As mentioned in Chapter 6.1 “Data Labeling and Data Col-
lection”, we have already switched from the Arduino Mega Shielded cables

could be used to
reduce interference.

to an Arduino Due to increase the speed of the data stream,
but this can still be improved. Also, shielded cables could
be used to minimize interference in the cables themselves.

In this work, we have realized the capacitive pressure sen-
sor matrix with a technique that works with direct current. We could change

from direct current to
alternating current.

In the future, it could be changed to a technique that uses
alternating current. The use of alternating current (e.g. a si-
nus signal) could lead to more stable and cleaner capacitive
signals.

If more stable capacitive values are obtained, it could be
considered to work with the rates of change of the values Relative values could

be use.(relative values) instead of the absolute capacitive values.
This could lead to more unique data for training a model.

Table 7.1 provides a brief overview of the proposed solu-
tions presented in this chapter for the challenges/problems
discussed in Chapter 7.1 “Challenges”.

Possible Solutions Goals
Changing the material of the
layers of the prototype

Complete return to the initial state
after exposure to pressure

Use of a foam layer Faster recovery time
Laminating layer on top of the strips Isolates the strips from each other
Use of a grounding shield Minimizes interference of the enviroment
Use printed strips Avoid deformations of the strips, such as kinks
Use diamond-shaped strips Better localization of pressure
Higher resolution of the sensor matrix More complex data collection
Divide large sensor matrix in subsections More stable capacitive values and less interference
Changing the microcontroller Better isolated pins and faster data stream
Using shielded cables Minimize interference in the cables
Using alternating current based technique
for capacitive sensing

More stable capacitive signals

Using relative values More unique data for training a model

Table 7.1: Overview of the possible solutions presented in Chapter 7.2 “Proposals
for Solutions” and their goals.

51

Chapter 8

Summary and Future
Work

8.1 Summary and Contributions

In this bachelor thesis, we first wired the prototype to a
microcontroller to send the capacitive values of the sensor The prototype was

wired to the
microcontroller. An
automatic labeling
system was
developed. Several
models were trained
and tested.

matrix to a computer. Then we developed a labeling sys-
tem with two cameras to automatically label the data with
the correct label. This labeling system can also be used for
other pressure sensors that have been developed as part of
the project of the ITA or will be developed in the future.
After collecting and labeling the data, we constructed a ma-
chine learning model architecture using convolutional neu-
ral networks. Using this architecture, we trained several
models with different datasets and evaluated them with a
test set and in real time.

Our investigation with the current prototype show that it
can provide data for a hand detection of one to two hand We achieved a hand

detection for one and
two locations on the
sensor matrix.
Interference must be
reduced.

locations on the sensor matrix. For more locations, the
trained model could not work correctly because it was un-
able to distinguish between all the data due to noise. The
tests also show that for real time prediction to work, the
interference must be kept as low as possible. We identify
inferferences as the main obstacle that must be overcome.

52 8 Summary and Future Work

Thus, in our use case, the test accuracy did not reflect the
performance in real time.

8.2 Future Work

For future work, we plan to improve the prototype and its
surrounding hardware to minimize noise. We can use the
proposed solutions from Chapter 7.2 “Proposals for Solu-
tions” to obtain more cleaner capacitive values. Then we
can collect data again to train a model and to test the ca-
pabilities of the new prototype afterwards. These enhance-
ments could allow for increased complexity of the model.
The complexity of the model could be increased by a higher
number of labels. For example, we could try to distinguish
between a right and a left hand or even between the orien-
tation of the hand. However, further investigations could
also reveal the limitations of our prototype.

53

Appendix A

Example of a Data
Collection Run

To start the data stream from the prototype to collect and
label the data, do the following steps:

1. Start the program.

2. The RGB camera stream starts to run (Figure A.1 top
left).

3. Select the four corners of the sensor matrix area. Start
with the upper left corner and then select the next cor-
ners clockwise. These four corners form a polygon.

4. Press P on the keyboard to draw the polygon and Q
to set the drawn polygon as the sensor matrix area
(Figure A.1 top center).

5. The depth camera stream starts to run (Figure A.1
bottom left).

6. Select the upper left and lower right corners of the
sensor matrix area to set the area for the depth camera
(Figure A.1 bottom center).

54 A Example of a Data Collection Run

Figure A.1: Top left: Start of RGB camera stream. Top center: Drawn sensor matrix
area to determine if hand is in the area. Top right: Recognition of a hand with
21 hand landmarks. Bottom left: Start of depth camera stream. Bottom center:
Drawn sensor matrix area to determine if hand is on the sensor matrix. Bottom
right: Floating hand above the sensor matrix, seen through the depth camera.

Now the data collection is running. If a hand is on the sen-
sor matrix and is completely in the defined area from step 3,
the corresponding data is labeled as hand, everything else
is labeled as nohand. The data collection can be stopped
with ESC or CTRL+C. Afterwards, all data of the sensor ma-
trix (32 x 32 array) and the associated labels are stored in
a JSON file. After that, the JSON file can be used as the
dataset for training a machine learning model.

55

Appendix B

Model Results Plots

This chapter shows the graphs of the metrics of each trained
model shown in 6.3 “Training of the Models and Results”.
In each figure, the top graph shows the training accuracy
(orange line) and validation accuracy (blue line). The bot-
tom graph in each figure shows the training loss (orange
line) and the validation loss (blue line). All graphs were
created using TensorBoard and smoothed at a rate of 0.6.

56 B Model Results Plots

Figure B.1: Plot of model results trained on a dataset containing data from a hand
placed everywhere on the sensor matrix. Final training acc.: 100 %, final val. acc.:
100 %, final training loss: 0.00003, final val. loss: 0.00003

Figure B.2: Plot of model results trained on a dataset containing data from a hand
placed in the middle on the sensor matrix. Final training acc.: 99.72 %, final val.
acc.: 99.44 %, final training loss: 0.0072, final val. loss: 0.0188

57

Figure B.3: Plot of model results trained on a dataset containing data from a hand
placed in the middle and upper right on the sensor matrix. Final training acc.: 99.79
%, final val. acc.: 99.65 %, final training loss: 0.0048, final val. loss: 0.0053

Figure B.4: Plot of model results trained on a dataset containing data from a hand
placed in the middle, upper right and lower right on the sensor matrix. Final train-
ing acc.: 99.78 %, final val. acc.: 99.23 %, final training loss: 0.0074, final val. loss:
0.0227

58 B Model Results Plots

Figure B.5: Plot of model results trained on a dataset containing data from a hand
placed in the upper right on the sensor matrix. Final training acc.: 99.98 %, final
val. acc.: 100 %, final training loss: 0.001, final val. loss: 0.0001

Figure B.6: Plot of model results trained on a dataset containing data from a hand
placed in the lower left on the sensor matrix. Final training acc.: 100 %, final val.
acc.: 100 %, final training loss: 0.00001, final val. loss: 0.0002

59

Figure B.7: Plot of model results trained on a dataset containing data from a hand
placed in the upper left on the sensor matrix. Final training acc.: 100 %, final val.
acc.: 100 %, final training loss: 0.00001, final val. loss: 0.0001

61

Bibliography

Sam Abrahams, Erik Erwitt, Ariel Scarpinelli, and Danijar
Hafner. Tensorflow for machine intelligence: A hands-on
introduction to learning algorithms. 2016.

Md Zahangir Alom, Tarek M Taha, Chris Yakopcic, Stefan
Westberg, Paheding Sidike, Mst Shamima Nasrin, Mah-
mudul Hasan, Brian C Van Essen, Abdul AS Awwal, and
Vijayan K Asari. A state-of-the-art survey on deep learn-
ing theory and architectures. Electronics, 8(3):292, 2019.

Yunus Camgözlü and Yakup Kutlu. Analysis of filter size
effect in deep learning, 2020.

Michael Fahr Jr. Investigating machine learning techniques
for gesture recognition with low-cost capacitive sensing
arrays. 2020.

Josue Ferri, Jose Vicente Lidón-Roger, Jorge Moreno,
Gabriel Martinez, and Eduardo Garcia-Breijo. A wear-
able textile 2d touchpad sensor based on screen-printing
technology. Materials, 10(12):1450, 2017.

Adam Goertz. A capacitive sensing gym mat for exercise
classification & tracking. 2020.

Hecht-Nielsen. Theory of the backpropagation neural net-
work. In International 1989 Joint Conference on Neural Net-
works, pages 593–605 vol.1, 1989. doi: 10.1109/IJCNN.
1989.118638.

JF Kaiser and WA Reed. Data smoothing using low-pass
digital filters. Review of Scientific Instruments, 48(11):1447–
1457, 1977.

62 Bibliography

Myeongsu Kang and Noel Jordan Jameson. Machine learn-
ing: Fundamentals. Prognostics and Health Management of
Electronics: Fundamentals, Machine Learning, and the Inter-
net of Things, pages 85–109, 2018.

Larry Li et al. Time-of-flight camera–an introduction. Tech-
nical white paper, (SLOA190B), 2014.

BB Narakathu, A Eshkeiti, ASG Reddy, M Rebros, E Re-
brosova, MK Joyce, BJ Bazuin, and MZ Atashbar. A novel
fully printed and flexible capacitive pressure sensor. In
SENSORS, 2012 IEEE, pages 1–4. IEEE, 2012.

Keiron O’Shea and Ryan Nash. An introduction to convo-
lutional neural networks. arXiv preprint arXiv:1511.08458,
2015.

Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martı́n
Ugarte, and Domagoj Vrgoč. Foundations of json
schema. In Proceedings of the 25th International Conference
on World Wide Web, pages 263–273, 2016.

Swathi Pothuganti. Review on over-fitting and under-
fitting problems in machine learning and solutions. Inter-
national Journal of Advanced Research in Electrical Electron-
ics and Instrumentation Engineering, 7:3692–3695, 09 2018.
doi: 10.15662/IJAREEIE.2018.0709015.

Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser
Sheikh. Hand keypoint detection in single images using
multiview bootstrapping. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, pages
1145–1153, 2017.

Leonhard Stiny. Passive elektronische Bauelemente. Springer,
2015.

Chi Cuong Vu and Jooyong Kim. Simultaneous sensing of
touch and pressure by using highly elastic e-fabrics. Ap-
plied Sciences, 10(3):989, 2020.

Anjana Wijekoon, Nirmalie Wiratunga, and Kay Cooper.
Mex: Multi-modal exercises dataset for human activity
recognition. arXiv preprint arXiv:1908.08992, 2019.

Te-Yen Wu, Lu Tan, Yuji Zhang, Teddy Seyed, and Xing-
Dong Yang. Capacitivo: Contact-based object recognition

Bibliography 63

on interactive fabrics using capacitive sensing. In Proceed-
ings of the 33rd Annual ACM Symposium on User Interface
Software and Technology, pages 649–661, 2020.

Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, An-
drei Tkachenka, George Sung, Chuo-Ling Chang, and
Matthias Grundmann. Mediapipe hands: On-device
real-time hand tracking. arXiv preprint arXiv:2006.10214,
2020.

65

Index

activation function, 6, 21, 39
ANN, see artificial neural networks
artificial neural networks, 6

backpropagation, 7
- backward pass, 7
- forward pass, 7

basic neural network, 6–8, 21
bias, 6

Capacitivo, 18–20
CapacitorLite, 31
CNN, see convolutional neural network
convolutional neural network, 9–10, 18, 38

DC, see direct current
digital low pass filter, 37–38, 46
direct current, 11, 49
dropout layer, 8, 39

epochs, 7, 39

filters, 9
future work, 52

graphical user interface, 15
GUI, see graphical user interface

JSON, 37, 54

Keras, 8
kernel size, 9, 21, 39

labeling system, 33–37
labels, 5, 35

- hand, 34, 37
- nohand, 34, 37

Long Short Term Memory, 18
LSTM, see Long Short Term Memory

66 Index

machine learning, 5–8, 17, 33
main research questions, 2
max pooling, 10
MediaPipe Hands, 34
ML, see machine learning
model architecture, 38–39
model results, 40–42

- everywhere, 40
- lower left, 42
- middle, 40–41
- middle, upper right, 41
- middle, upper right, lower right, 41–42
- upper left, 42
- upper right, 42

model results plots, 55–59

OLD, see One Layer Design
One Layer Design, 15
overfitting, 8

padding, 9, 39
parallel plate capacitor, 10–11
PET, see polymer polyurethane
polymer polyurethane, 13
polyvinyl chloride, 27
prototype, 27–30
PVC, see polyvinyl chloride

relu, 6

smart textiles, 1
softmax, 6
stride, 9
supervised learning, 5

TensorBoard, 42, 55
TensorFlow, 8
Terabee 3D Cam, 36
test set, 8
Time-of-Flight, 36
TLD, see Two Layers Design
ToF, see Time-of-Flight
training dataset, 8
Two Layers Design, 15

underfitting, 8

validation set, 8

wiring, 30–31
- Arduino Due, 30
- multiplexers, 30

Typeset January 6, 2022

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Outline of the Thesis

	Theoretical Background
	Machine Learning
	Convolutional Neural Networks

	Capacitive Sensing

	State of the Art
	Capacitive Sensor Matrices on Textiles
	Machine Learning Concepts for Capacitive Sensing
	Comparison

	Methodology
	Capacitive Pressure Sensor Matrix Prototype
	Structure of the Prototype
	Wiring to the Microcontroller

	Machine Learning Models for Hand Detection
	Data Labeling and Data Collection
	Digital Low Pass Filter

	Model Architecture
	Training of the Models and Results

	Discussion
	Challenges
	Proposals for Solutions
	Improvements to the Prototype
	Improvements to the Hardware Used

	Summary and Future Work
	Summary and Contributions
	Future Work

	Example of a Data Collection Run
	Model Results Plots
	Bibliography
	Index

