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ABSTRACT
Picking values from long ordered lists, such as when setting
a date or time, is a common task on smartphones. However,
the system pickers and tables used for this require significant
screen space for spinning and dragging, covering other infor-
mation or pushing it off-screen. The Force Picker reduces this
footprint by letting users increase and decrease values over a
wide range using force touch for rate-based control. However,
changing input direction this way is difficult. We propose three
techniques to address this. With our best candidate, Thumb-
Roll, the Force Picker lets untrained users achieve similar
accuracy as a standard picker, albeit less quickly. Shrinking
it to a single table row, 20% of the iOS picker height, slightly
affects completion time, but not accuracy. Intriguingly, after
70 minutes of training, users were significantly faster with
this minimized Thumb-Roll Picker compared to the standard
picker, at the same accuracy and only 6% of the gesture foot-
print. We close with application examples.
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INTRODUCTION
Smartphone users frequently need to pick a value from an
ordered list, e.g., to set the date and time of an appointment.
However, the UI for this task takes up significant screen space:
Apple’s default system “picker” occupies 3.3 cm, or 30%, of
an iPhone 8’s screen height. On a Samsung Galaxy S5 running
Android, it is 33%. This space is required not just to display
the widget (display footprint), but also for the swipe gesture to
spin the picker’s wheels (gesture footprint), as shown in Fig. 1
(left) and the video figure for this paper. Tables are similar:
with many items, such as in the iOS Settings App, they may
occupy the entire screen, and still require scrolling similar to
the picker. Slide-in keyboards take up similar space.
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Figure 1. Entering a time on a smartphone. Left: Setting the hour with a
picker requires significant screen space in height for dragging and spin-
ning the wheel. Right: Selecting the hour by applying force on the hour
digits of the underlying label fades in the Force Picker. Rolling the thumb
to the left scrolls through the hours—the harder the user presses, the
faster. Rolling the thumb to the right scrolls in the opposite direction.
Lifting the thumb off the screen sets the value, and the Force Picker dis-
appears. Compared to dragging and spinning, the Force Picker is more
compact, so that contextual information is never pushed off-screen.

When these UI elements appear, other content usually disap-
pears: The date picker in the iOS Calendar app, for example,
expands from a single row with the date to the equivalent
of five rows when activated, pushing content below it down
and often off-screen. This can make contextual information
needed to pick a value, such as the end time for a meeting,
suddenly disappear. Horizontal sliders are another alternative
for value input on smartphones that is smaller in height, but
they are not recommended for setting precise values [6].

There are alternative interaction techniques that need minimal
screen space. Of these, however, speech is socially awkward
and time-consuming, tilt sensing makes screens hard to read
at an angle and is difficult to use while walking [7, 8, 19], and
remapping existing physical controls like volume buttons leads
to inconsistent behavior across apps. Bendable interfaces [24]
require two hands for good control, and squeezable devices,
like HTC’s U11, can only sense two different states. All of
these require an extra tap to specify where on the screen the
input should go. Exploiting simple touch duration instead only
allows for changing values at a constant rate, which takes time.

A more powerful option is to use the force-sensitive touch-
screen in recent smartphones, like Apple’s iPhones since the 6s
or Huawei’s Mate S, to add force as a third dimension to every
touch input. There are two established control mechanisms to
map such input to a selected value: Positional Control (PC)
maps a particular force level directly to a particular value—the
harder the user presses, the higher the selected value. Beyond
around ten discrete values, however, this technique becomes
infeasible [13, 32]. Rate-Based Control (RC), by contrast,
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maps force to velocity: the harder the user presses, the faster
the selected value increases. This allows for efficient selection
from larger value ranges, such as dates, times, or percentages.

However, using force for RC has one major drawback: If ex-
erting force increases the currently displayed value at varying
speeds, how does the user decrease it? One solution are two
buttons, one per direction, but this means that the displayed
value can no longer serve as the input area itself, since the
user needs to pick one of the buttons. This requires adding
space for two permanent buttons next to the displayed value.
Another alternative is the wrap-around technique: if the user
scrolls past the highest value, it wraps around to the lowest
value. However, this makes correcting overshoots tedious.

Instead, our Force Picker allows for bidirectional RC with
force touch to select a value, using a technique to reverse
direction that requires no more space than the initial touch.

In summary, this paper makes the following contributions:

• the Force Picker, a force-based input technique for value
selection that outperforms a standard picker on smartphones
with trained users, at a fraction of the size;

• a quantitative study of three techniques for a Force Picker
to reverse direction in-place;

• a quantitative study examining the effect of different display
sizes for the Force Picker.

RELATED WORK
There is a variety of techniques for entering values on smart-
phones, such as speech, sensing tilt, or remapping physical
buttons, that do not use the touchscreen at all. However, as
outlined in the Introduction, they exhibit other drawbacks, and
still require the user to tap on the screen to specify which area
the input should go to. We instead propose using force input
as an alternative, and will focus on this area below.

Related work on force input for selection tasks can be clas-
sified into the two groups of control mechanisms introduced
above, Positional and Rate-Based Control. They determine
how force is used to navigate through the available options.

Positional Control (PC) maps force levels directly to se-
lectable values: applying the same force always selects the
same value. In terms of Card et al.’s seminal Design Space
of Input Devices [2], this is an “absolute” mapping. While
typical force sensors are sampled with 10 bits of resolution for
1024 possible raw sensor values [25], these raw sensor values
are usually binned, mapping a range of them to one force level.
A transfer function then maps force levels to values. This
mapping is usually natural: the higher the force, the higher the
value.

The transfer function in PC is often linear, as recommended
in [30]. This satisfies the above criteria and is often used for
menu selection. However, this approach begins to break down
beyond around ten items: Ramos et al. [20] showed that users
can control up to six menu items reliably with a force-sensitive
pen on a tablet. Mizobuchi et al. [15] found similar results for
menu control on a force-sensitive handheld device. Wilson

et al. [32] reported that users can control ten levels with their
fingers on a handheld device at 85% accuracy with continuous
visual feedback. McLachlan et al. [13] added a force sensor to
the bezel of a tablet; this enabled the hand holding the device
to control a menu of ten items with 89% accuracy. Corsten et
al. [4] added force sensors to the back of a smartphone, and
found that users could control five levels of force reliably.

Navigating larger ranges with PC requires nonlinear transfer
functions. Shi et al. [25] reached 16 controllable levels using a
fisheye transfer function with a force-sensitive mouse. Using
a similar mouse, Chechanowicz et al. [3] let users first tap on
the force sensor multiple times to jump to a coarse level and
then press to zoom in on that level at finer granularity, for up
to 64 controllable levels. However, for bidirectional control,
this technique requires a second force sensor.

In summary, although bidirectional control within the footprint
of a single finger is trivial with PC, the limited number of
reliably selectable values makes PC inappropriate for setting
values of larger ranges, such as times, dates, or percentages.

Rate-Based Control (RC) maps force to the velocity of value
change. The transfer function determines how fast values
change depending on the force applied. Here, the usual natural
mapping means that the harder the user presses, the faster
values are browsed. Maintaining a particular force results in
change at a constant speed; reducing the force applied slows
down browsing. Force RC lets users browse value ranges of
any size, but changing direction requires some separate input
action.

Shi et al. [26] used a force-sensitive mouse to rotate objects by
mapping force to angular velocity. Users tapped the sensor to
adjust by single degrees, and rotated counter-clockwise using
a second force sensor. The system was faster to use than its
PC counterpart. Wilson et al. [31] compared RC to PC for con-
trolling ten menu items on a smartphone using a single force
sensor. For RC, they used wrap-around instead of bidirectional
navigation. Using RC was faster and more accurate. Using one
force sensor per direction, Ng et al. [17] report similar results
for menu control in a car. Spelmezan et al. [28] attached force
and proximity sensors to the side of a smartphone for bidirec-
tional continuous thumb scrolling. Their revised technique
[29] used two force sensors for bidirectional scrolling and
zooming by using either the index and ring finger or thumb
and palm. While touch input was faster for small scrolling
distances, RC prevailed for longer distances. Holman et al. [9]
attached two force sensors to the side of a smartphone to use
with the fingers holding the phone while thumbing, and found
that gestures augmenting the natural thumb touch worked best.
Pelurson et al. [18] attached a force sensor to a smartphone.
Using RC to scroll large information spaces horizontally while
changing direction by swiping on the touchscreen was faster
and preferred over the default drag & flick interaction. An-
toine et al. [1] used RC on a force-sensitive iPhone to scroll a
viewport vertically down while simultaneously dragging with
the thumb. Users were faster and had fewer errors compared
to baseline edge-scrolling.



PreSense II [22] and GraspZoom [14] describe bidirectional
RC using force touch. Similar to our approach, they support
immediate change of direction with a minimal gesture foot-
print. In PreSense II, the user tilts her index finger up vertically
to navigate in the opposite direction while force-touching on a
desktop touchpad. In GraspZoom, swiping across the screen
selects the direction of scrolling and zooming with RC, while
a sensor on the back of the smartphone captures continuous
force input. Both techniques, however, were not evaluated.
Hence, it is not clear how fast and how accurate users perform
with such techniques, especially for discrete value input, and
whether such techniques let us minimize both gesture footprint
and widget display footprint on the mobile touchscreen.

BIDIRECTIONAL FORCE INPUT TECHNIQUES
Below, we present three interaction techniques we designed for
bidirectional value selection using force input that minimize
the gesture footprint. Since we want to change values across a
large range, e.g., 1–31 to set a date, all our techniques require
RC, as our review of related work has illustrated.

To let standard touch input and RC using force touch coexist
on the same widget without accidental activation, we classify
any force input below a resting threshold of 20% (based on
Apple’s guidelines) of the force sensor range as an ordinary
touch that does not start changing the displayed value. Be-
tween 20% and 80% of the sensor range, our force-to-value
mapping iterates over values at a velocity depending on a
linear transfer function, as used in [31]: The more force is
applied, the faster the selected value changes. To efficiently
cross large value distances, crossing 80% of the sensor range
activates a boosted transfer function. We focus on one-handed
interaction in portrait mode, using the thumb of the dominant
hand. Lifting the thumb off the screen was chosen to confirm
the currently selected item, removing the need for an extra tap
or an additional confirmation button.

By default, RC only supports changing values in one direction.
Our designs (Fig. 2) address this shortcoming, each with its
own benefits, within the footprint of a single force touch:

In Pulse, the user changes direction by quickly increasing
force significantly above and back below the resting threshold.
This technique has the advantage of being identical for both
directions. To correct for overshoots in either direction, the
user reduces force below the resting threshold, issues a Pulse,
and increases force again to scroll towards the desired value.

Press-Through maps force increase to value increase, and
force decrease to value decrease: To reverse direction, the user
quickly applies the maximum detectable force, starting from
below the resting threshold. While she maintains that maxi-
mum force, value change pauses, like in the resting force zone.
When she reduces the force, the value starts decreasing, revers-
ing the transfer function—the more she reduces the force, the
faster the value decreases. Re-applying more force decelerates
value decrease, up to the maximum detectable force, which
pauses value changes. Within 40% to 20% of the force sensor
spectrum, the boosted transfer function is applied. Below 20%,
resting force is reached, which pauses value change and reverts
back to the normal transfer function. To correct overshoots,
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Figure 2. Force input and corresponding selected values for our three
force techniques over time, when changing a value from 17 to 80 while
overshooting to 100 in between. Note how values begin to decrease when
the corresponding change of direction (black arrows) is detected.

the user quickly reduces force beneath the resting threshold,
and then issues the Press-Through gesture to reverse direc-
tion. The advantage of Press-Through is its natural mapping
of force increase/decrease to value increase/decrease.

In Thumb-Roll, the user gently rolls her thumb to the left to
decrease, and to the right to increase values. The applied force
sets the speed in either direction. To correct for overshoots,
she rolls her thumb to the other side. This results in a natural
decrease and therefore decelerated navigation while the thumb
is rolling through its neutral, flat position. Since the thumb has
to be rolled and maintained in that position while navigating,
Thumb-Roll represents a temporary “quasi-mode” [21] that
ensures the user is always aware of the active direction from
her thumb position. Like in Pulse, the transfer function is
identical for both directions. Thumb-Roll is similar to a rocker
switch, or two small force buttons right next to each other.
Although rolling the thumb up and down would result in a
more natural mapping for increasing and decreasing values,
left-right roll is ergonomically easier to perform and leaves a
much smaller footprint compared to rolling the thumb up and
down. Roudaut et al. [23] investigated thumb-roll gestures
as input modifiers for traditional mobile touchscreens. Their
technique MicroRolls gives users faster access to toolbars and
menus on PDAs through four straight and two circular thumb
roll gestures. However, that work did not explore force input.

STUDY 1: FORCE INPUT VS. DRAGGING & SPINNING
Having defined these candidate techniques to reverse direc-
tion for the Force Picker, we wanted to understand how they
each compare to a standard picker that is controlled by drag-
ging and spinning, in terms of speed, accuracy, and gesture
footprint. 16 participants (21–31y, M = 26.19, SD = 2.71,
all right handed, five females) used a Force Picker with each
candidate technique, and a standard picker as baseline, on a
force-sensitive iPhone 6s Plus. Fig. 3 shows our application to
display instructions and capture data.



Figure 3. UI of our study prototype showing the picker and instructions. Left: Force Picker and System Picker from study 1. Right: Minimized
Thumb-Roll Force Picker, 2×magnified. The iPhone 6s Plus screen measured 414×736 pt, or 68×122 mm; the origin is located in the top left corner.

Picker Design
For our baseline condition, we designed a standard picker
similar to an iOS or Android system picker. We reserved the
same 414×216 pt (65×36 mm, 30% screen height) space for
the dragging and spinning footprint that Apple recommends
to use for the iOS 10 system picker [10]. Note that the unit
’pt’ used throughout this paper does not refer to the unit mea-
sure used in typography, but relates to Apple’s measurement
for display points on iPhone 6/7/8 Plus (1pt ≈ .16 mm). We
displayed a rectangle with slightly narrower sides around this
area, such that users could easily perceive the picker bound-
aries. Although the iOS system picker displays seven values
at a time, of which the two upper and lower values are in a ver-
tically compressed font (Fig. 4, left), we chose to display only
three values at a time, like the Android system picker does
(Fig. 4, right). This was done since we anticipated shrinking
the display space for our Force Picker in study 2 and 3 (Fig. 3,
right), which would be difficult for displaying seven values at
a time, and we wanted to be able to do a fair comparison with
our results across all studies.

Dragging the current value down with the thumb anywhere on
the picker area increased the value displayed and vice versa.
We used the standard iOS 10 accelerations for dragging and
spinning from the UIScrollView class. The target value was
shown to the left so that it would not be covered by the thumb
while dragging. The standard picker was placed at the bottom
of the screen to make sure that it was easily accessible by the
thumb (Fig. 3, center). Since liftoff happens frequently on
standard pickers, it cannot be used for confirmation; users had
to tap a ’select’ button placed within thumb reach above the
picker to confirm the selection. Despite continuous scrolling,
selection would always snap to the closest discrete value.

For our Force Picker (Fig. 3, left), we used the same visual-
ization as in the standard picker, but instead of controlling it
by dragging and spinning, users were asked to use our force
techniques to navigate to the target value shown next to the

picker. Users held the device in their right (dominant) hand,
and placed their thumb on a green 60×60 pt button. When
they applied force, the values started scrolling up resp. down.
The arrow indicated the current direction. Upon releasing the
thumb, the picker snapped to the closest value and selected it,
completing each trial.

For both our standard picker and our Force Picker, we dis-
played the higher value above, and the lower value below the
current item. Although the iOS and Android pickers display
values in reversed order, we wanted to achieve a more natural
mapping for force input: An increase (↑) in force increased
(↑) the value more quickly by scrolling more quickly.

Transfer Function and Implementation of Force Techniques
According to Apple’s API documentation [11], the iPhone
force sensor API delivers unitless force values between 0 and
400
60 ≈ 6.67 in steps of 1

60 , with force sensitivity set to the
“medium” default. Values around 1.0 should be interpreted
as an ordinary touch; higher values as intentional force input.
Although Apple does not state how these values translate to
Newtons, experiments [16] suggest a 4 N range and a linear
transfer function. In the remainder of the paper we report both
the iOS-specific 0–6.67 range and their generic relative values.

According to the design of our techniques, we used RC for
mapping force to the Force Picker scrolling speed. Forces
below 1.35, the 20% resting threshold, were ignored to let
ordinary touch input coexist and to let users rest their thumb
on the touchscreen without affecting value input. We set
Speed(x) = (24.812x− 33.496)mm

s , x ∈ [1.35;5.34), follow-
ing [31]. For forces beyond 5.34, the 80% boost threshold,
we set Speed(x) = (38.824x+ 46.588)mm

s , x ∈ [5.34;6.67),
which we determined through pilot tests. Pressing harder than
6.67 resulted in a plateau of 305 mm

s scrolling speed.

We implemented our force techniques according to our spec-
ifications above. To issue a Pulse, users had to start below
the resting threshold of 20% of the sensor range, and cross it



Figure 4. Default iOS 10 system picker (left) and Android 7 system
picker (right). The iOS picker measures 414×216 pt on a 414×736
screen (taking up 30% of the screen height) and shows up to seven val-
ues at a time, whereas the Android picker measures 620×424 px on a
720×1280 px screen (taking up 33% of the screen height) and displays
three values per picker wheel at a time.

clearly, reaching 3.34 (50% of the sensor range, determined in
pilot tests) at a rate of change of at least 10% between two digi-
tizer frames captured every 16 ms, and then drop quickly below
the resting threshold again. Detection for Press-Through was
similar, except that users had to reach the maximum measur-
able force of 6.67 without reducing force quickly afterwards.
For Thumb-Roll, we captured the location of the thumb’s touch
point at resting force. When the touch moved to the right or
left, direction was set to up or down, respectively. Since the
user’s thumb could drift during rolling, we re-calibrated its
location whenever force dropped below the resting threshold.

Independent Variables were TECHNIQUE (Baseline, Pulse,
Press-Through, and Thumb-Roll), RANGE (10, 30, 60, and
101 items), and DISTANCE (OneStep, 20%, 50%, 80%) in both
directions. RANGE determined the number of available picker
values, representing typical use cases: selecting a digit (0–9),
a day of the month (1–30), minutes for a timer (1–60), or a
percentage (0–100). DISTANCE denoted how many values lay
between start and target value. We chose relative DISTANCEs
to allow comparison across RANGEs. Only OneStep was ab-
solute to test single increments and decrements, representing
typical off-by-one corrections. For all force techniques, apply-
ing force navigated up by default. Fig. 5 lists all values users
had to navigate from and to in both directions. To prevent
shortcut strategies by navigating in the opposite direction, we
disabled wrap-around. Instead, DISTANCE included OneStep
and 20% as short distances. We did not include the extreme
values as targets since this would have simplified the task, as
scrolling stopped at these values, and since it would not be
feasible for pickers that support wrap-around.

We recorded 4 TECHNIQUEs × 4 RANGEs × 4 DISTANCEs ×
2 directions × 3 repetitions = 384 trials per participant. We
also screen-captured all trials to investigate potential outliers
later. TECHNIQUE and RANGE were each counterbalanced
using a Latin Square, and DISTANCE in both directions was
randomized. Once all three repetitions were done, the user
continued with the next RANGE, until all RANGEs had been
tested. As each TECHNIQUE was presented to the user, she
was allowed to explore it until she felt more familiar with it.

Dependent Variables were Time [ms], Crossings [i ∈N], and
Success [0,1]. For each trial, Time denoted the time from first
contact with the touchscreen until value selection by liftoff
(force techniques) or tapping the ‘select’ button (Baseline).
Crossings counted how often the user overshot the target value,
as in, e.g, [20], such that she had to change direction and

RANGE 10 30 60 101 10 30 60 101
OneStep 6 7 19 20 39 40 67 68 4 3 13 12 26 25 44 43
20 % 1 3 3 9 7 19 11 31 6 4 19 13 39 27 67 47
50 % 3 8 10 25 20 50 34 84 7 2 23 8 46 16 78 28
80 % 0 8 1 25 1 49 0 80 9 1 30 6 60 12 100 20D
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Figure 5. Start and target values per RANGE×DISTANCE combination.

navigate back. Success indicated whether the user selected the
correct target value (1) or not (0). While we also recorded how
far off users were from the target value in those cases, they
missed by more than one in only .05% of all trials. We also
logged touch positions every 16 ms to capture gesture starting
points and footprints. At the end, users were asked to rank the
four techniques by preference (1: most, 4: least).

Results
A total of 32 outliers were identified by applying the Tukey
Method for Extreme Outliers on Time (18–63 s). Looking
at the screen recordings for these trials revealed that users
had their thumb already placed on the touchscreen, which
activated time counting, but they were still asking questions
before actually performing the task. Hence, these trials were
not representative and we therefore excluded them from the
analysis. Since we were interested in how performance for
each TECHNIQUE was affected by RANGE and DISTANCE, we
concentrate on these results. Hence, although significant for
Time and Crossings (p <.001, each), we will not discuss main
effects for RANGE and DISTANCE, since these mix data from
all TECHNIQUEs. We log-transformed Time for repeated mea-
sures ANOVA. Since Success was dichotomous, we conducted
Cochran’s Q and McNemar tests. We analyzed the count for
Crossings with Friedman and Wilcoxon Signed Rank tests.

TECHNIQUE had a significant main effect on Time (F3,6065 =
955.73, p <.001). Tukey HSD post hoc pairwise comparisons
were all significant (p <.001, each). At 2,547 ms, users were
fastest for Baseline. The fastest force technique was Thumb-
Roll, yet 900 ms slower than Baseline, followed by Pulse and
Press-Through (Fig. 6, right).

There was also a significant TECHNIQUE×DISTANCE inter-
action effect (F9,6065 = 10.90, p <.001). Tukey HSD post hoc
pairwise comparisons revealed that, for each TECHNIQUE,
users were significantly fastest for OneStep, followed by 20%,
50%, and 80% DISTANCE (p <.001, each). This was to be
expected, as navigating farther distances takes more time. For
each DISTANCE, pairwise post hoc tests showed that users
were always fastest for Baseline (Fig. 6, left), then Thumb-
Roll, Pulse, and Press-Through (Pulse vs. Thumb-Roll with
50% and 80% DISTANCE: both p = .01, all others: p <.001).

TECHNIQUE had a significant main effect on Crossings
(χ2(3) = 121.41, p <.001). Post hoc pairwise comparisons
revealed that users made significantly more Crossings for Base-
line compared to all force techniques (p <.001, each), but the
difference was small (Fig. 7, left).

There was also a significant TECHNIQUE×RANGE interaction
effect (χ2(15) = 154.27, p <.001). Post hoc tests revealed
that users made significantly fewer Crossings with Pulse for
RANGE 10 compared to Baseline (p = .001), and they made
significantly fewer Crossings with Thumb-Roll for RANGE 30



RANGE DISTANCE
10 30 60 101 OneStep 20% 50% 80%

M 1,435 2,148 3,004 3,606 855 2,151 3,180 4,009
SD 674 1,204 1,857 2,279 604 961 1,561 1,996

M 2,685 3,764 4,691 5,561 1,863 3,899 4,967 5,964
SD 2,148 2,530 2,950 3,599 1,627 2,714 2,870 3,115

M 4,542 5,699 3,764 8,705 3,967 5,703 7,809 9,163
SD 4,635 4,391 5,863 6,213 4,665 4,812 5,414 5,876

M 1,983 2,963 4,021 4,863 1,320 2,988 4,343 5,187
SD 1,185 1,815 2,496 3,101 1,018 1,694 2,514 2,539
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Figure 6. Time (ms) for study 1. Left: M and SD for TECHNIQUE split
by RANGE and DISTANCE. Right: Mean Time for each TECHNIQUE, all
significantly different from each other. Error bars denote 95% CI.

compared to Baseline (p = .006) (Fig. 8, left). Within each
TECHNIQUE, RANGE did not affect Crossings.

There was also a significant TECHNIQUE×DISTANCE interac-
tion effect (χ2(15) = 485.17, p <.001). Post hoc pairwise com-
parisons revealed that users made significantly fewer Cross-
ings for all force techniques compared to Baseline for all
percentual DISTANCEs (Baseline vs. Thumb-Roll with 50%
and 80% DISTANCE: p = .004, Baseline vs. Pulse with 80%
DISTANCE: p = .002, all others: p <.001). Only for One-
Step, users made significantly more Crossings with Press-
Through compared to all other techniques (p <.001, each) (Fig.
8, right). Also, these tests revealed that for Baseline, Thumb-
Roll, and Pulse, users always made significantly fewer Cross-
ings for OneStep compared to all other DISTANCEs (Baseline
vs. Thumb-Roll with 20% DISTANCE: p = .012, Baseline vs.
Pulse with 50% and 80% DISTANCE: both p = .003, all others:
p <.001).

TECHNIQUE had a significant main effect on Success (Q(3) =
61.69, p <.001). Post hoc pairwise comparisons were not sig-
nificant between Pulse and Thumb-Roll, but between all other
pairs (p <.001, each): Users performed with 100% Success for
Baseline, followed by Pulse (98.7%), Thumb-Roll (98.6%),
and Press-Through (96.6%), (Fig. 7, right). Although Pulse
and Thumb-Roll had significantly lower Success compared to
Baseline, the difference of less than 1.4% is small.

There was also a significant TECHNIQUE×RANGE interaction
effect (Q(15) = 78.40, p <.001). Post hoc pairwise com-
parisons revealed that users had always significantly higher
Success with Baseline (100%) compared to Press-Through for
each RANGE (10: 97%, p = .02; 30: 95%, p <.001; 60: 96%,
p <.001; 101: 98%, p = .021). In addition, for RANGE 30,
users had significant lower Success for Press-Through (95%)
compared to Baseline (100%), Pulse (99%), and Thumb-Roll
(98%), (p <.001, each). Also, for RANGE 60, users had sig-
nificantly higher Success for Thumb-Roll (99%) compared to
Press-Through (96%), (p = .035). Within each TECHNIQUE,
however, RANGE had no effect on Success.

There was also a significant TECHNIQUE×DISTANCE interac-
tion effect (χ2(15) = 69.16, p <.001). Post hoc pairwise com-
parisons revealed that users had always significantly higher
Success for Baseline (100%) compared to Press-Through for
each DISTANCE (OneStep: 97%, p = .004; 20% DISTANCE:
96%, p <.001; 50% DISTANCE: 96%, p <.001; 80% DIS-
TANCE: 97%, p = .007). In addition, for 20% DISTANCE,
users had significantly lower Success for Press-Through (96%)
compared to all techniques (Baseline: 100%, p <.001; Pulse:
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Figure 7. Crossings (left) and Success (right) for study 1. Users made sig-
nificantly more Crossings for Baseline, but its Success was significantly
higher than for all force techniques. Error bars denote 95% CI.

RANGE (M, SD) DISTANCE (M, SD)
10 30 60 101 OneStep 20% 50% 80%

Baseline 1.35 0.55 1.34 0.52 1.36 0.57 1.42 0.60 1.02 0.14 1.54 0.59 1.47 0.60 1.45 0.61
Pulse 1.16 0.44 1.19 0.46 1.22 0.51 1.27 0.54 1.06 0.27 1.28 0.60 1.24 0.47 1.26 0.52

Press-Through 1.34 0.82 1.27 0.70 1.29 0.68 1.30 0.68 1.30 0.72 1.27 0.63 1.32 0.78 1.31 0.75
Thumb-Roll 1.19 0.59 1.21 0.57 1.27 0.62 1.32 0.70 1.07 0.37 1.25 0.58 1.32 0.72 1.34 0.73

Figure 8. Crossings for study 1 split by RANGE and DISTANCE.

99%, p = .035; Thumb-Roll: 99%, p = .005) Also, for 50%
DISTANCE, users had significantly lower Success for Press-
Through (96%) compared to Pulse (99%), (p = .003). Still,
within each TECHNIQUE, DISTANCE had no effect on Success.

Users’ Ranking (χ2(3) = 29.25, p <.001) revealed no signif-
icant differences between Baseline (M = 1.56, SD = .90),
Thumb-Roll (M = 1.88, SD = .89), and Pulse (M = 2.06,
SD = .68) (p <.001, each). Press-Through (M = 3.63, SD =
.50), however, was significantly least preferred over Baseline
(p <.001), Pulse (p = .003), and Thumb-Roll (p <.001).

Fig. 9 visualizes the Gesture Footprint from all users for each
TECHNIQUE. For our force techniques, the green square marks
where users were asked to place their thumb. Red data points
represent first contact with the screen (Touch Began), blue
data points all other touches (Touch Moved). As can be seen,
the footprint for the force techniques is much smaller than for
Baseline. Based on all first touches, we also calculated the
effective width×height (yellow overlays in Fig. 9) capturing
96% of these data points, multiplying the SD in x and y by
4.133 [27]. These rectangles denote the space that needs
to be reserved for detecting the start of an interaction with
the Force Picker. During interaction, users may drift (blue
dots), and touch input outside the rectangles should not be
passed on to other widgets until thumb liftoff ends this modal
interaction. Note that content beneath the blue dots will be
occluded by the thumb. With the standard picker, users do
multiple liftoffs while spinning and dragging, whereas with
our force techniques, each selection requires only one liftoff.
Thumb-Roll required only 12%, Pulse and Press-Through only
5% of the effective area (width×height) required for Baseline.

Discussion
For our force techniques, users performed fastest (3.5 s) and
most accurate (99%) with Thumb-Roll. Although users’ Suc-
cess for Pulse was the same, they were a significant 700 ms
slower. For Baseline, users were 900 ms faster than for Thumb-
Roll, and achieved 100% Success. However, this was to be
anticipated, since all users were familiar with standard picker
interaction, but not with force control, and post-corrections
after liftoff are part of the interaction with standard pickers.
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Users’ slower task completion time for our force techniques
could also be explained by Crossings. Users reported that
overshoots felt easier to correct with dragging and spinning
than by applying force, and therefore navigated more care-
fully with the force techniques. For single value increase or
decrease, however, users could gently tap using our force tech-
niques, as this would cause the picker to scroll a little but then
snap to the next value. This could explain why users made
significantly fewer Crossings compared to further DISTANCEs.
For Press-Through, however, tapping for a one-step change
was not possible when decreasing values. This technique was
also problematic for users when decreasing values because
of sensor limitations: If they had applied force beyond what
the sensor could detect, as they were beginning to release, the
system could not provide continuous feedback, although this
is essential for force input [31]. Users then tried to reduce
force more quickly, which resulted in overshooting, hence an
increase in Crossings and Time needed for corrections. Fur-
thermore, users were rather confused that the force-to-value
mappings reversed depending on the direction, and did not
consider the natural mapping between force increase/decrease
and value increase/decrease a benefit. Consequently, users
ranked Press-Though lowest among all techniques.

As expected, the gesture footprint for all force techniques was
drastically smaller than for dragging and spinning. Naturally,
Thumb-Roll had the largest footprint among force techniques,
since rolling requires more space than stationary Pulse or
Press-Through gestures. Nevertheless, Thumb-Roll accounted
for only 12% of the effective width×height by Baseline. In
all, since Thumb-Roll achieved the best Time, Success, and
user Ranking of our force techniques at a fairly small gesture
footprint, we further pursue this technique in the rest of the
paper. If the footprint needs to be even smaller, Pulse is an
alternative to consider, but at the cost of Time.

The promising reduction in gesture footprint from Thumb-
Roll led us to investigate whether we could now effectively
save screen space by also reducing the display footprint of the
Force Picker. Therefore, we next compared user performance
for Thumb-Roll in our standard-sized Force Picker to using it
in a minimized Force Picker.

STUDY 2: MINIMIZING THE FORCE PICKER
We modified study 1, using only Thumb-Roll as technique
and adding SIZE as independent variable to represent the
414×216 standard-sized picker and a 44 pt squared mini-
mized Force Picker (7.3×7.3 mm) that fits within the height

of an iOS table row (Fig. 3). We adjusted the transfer
function for the minimized Force Picker to Speed(x) =
8.271x−11.165 mm

s ,x∈ [1.35;5.34) (normal) and Speed(x) =
12.941x+15.529 mm

s ,x ∈ [5.34;6.67) (boosted) to achieve the
same scrolling for both pickers. Based on the gesture footprint
from study 1, the thumb placement area was shifted a little
more to the right (Fig. 3, right), such that the thumb would not
occlude the picker during interaction. Levels for RANGE and
DISTANCE were identical to study 1. Again, Time, Crossings,
Success, and Gesture Footprint were recorded. We also asked
users whether they found the minimized Force Picker hard to
read (7-point Likert scale, 7 = totally agree).

Of our eight participants (24–40y, M = 31.13, SD = 6.51, all
right-handed, three females, none from study 1), four started
with the minimized Force Picker. Counterbalancing, random-
ization, and presentation order of conditions were identical to
study 1. We recorded 2 SIZEs × 4 RANGEs × 4 DISTANCEs
× 2 directions × 3 repetitions = 192 trials per user, excluding
two test trials for each SIZE. Users also had the opportunity to
briefly familiarize themselves with both pickers beforehand.

Results
Data analysis was performed similar to study 1, directly con-
trasting effects for each SIZE. We again log-transformed Time
for a repeated-measures ANOVA.

SIZE had a significant main effect on Time (F1,1514 = 9.86,
p = .002): Users needed M = 2,698 ms to complete a trial for
the standard-sized Force Picker, and M = 2,988 ms for the
minimized version (Fig. 10, left). There were no interaction
effects on Time.

There was a significant TECHNIQUE×RANGE interaction ef-
fect on Crossings (χ2(7) = 30.21, p <.001), but post hoc
tests were not significant. There was also a significant
TECHNIQUE×DISTANCE interaction effect (χ2(7) = 61.92,
p <.001). Post hoc tests showed that users made significant
fewer Crossings for OneStep (M = 1.06, SD = .67) compared
to 50% DISTANCE (M = 1.34, SD = .27) for the standard-
sized, and for the minimized Force Picker, users made sig-
nificant fewer Crossings for OneStep (M = 1.08, SD = .35)
compared to 80% DISTANCE (M = 1.50, SD = .97) (both
p <.001).

There were neither significant main effects nor interaction
effects for Success. Users correctly selected values with a
Success of 96.6% for the standard-sized and 96.1% for the
minimized Force Picker (Fig. 10, right).
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The effective width×height based on the Gesture Footprint
from first touch contact measured 43×53 pt for the standard-
sized Force Picker (Fig. 11, left), which was slightly larger
than the 43×42 pt for the minimized version (Fig. 11, right).
These results are similar to study 1.

Overall, users disagreed that the minimized Force Picker was
hard to read (M = 3.38, SD = 1.51); only one user explicitly
stated reading difficulties.

Discussion
Users were 290 ms slower with the minimized Force Picker
than with the standard-sized Force Picker. Nevertheless, for
both SIZEs, users from study 2 were 470–750 ms faster com-
pared to Thumb-Roll performance from study 1.

We wondered whether this was due to a training effect, since
users had to perform twice as many Thumb-Roll trials in study
2. Therefore, we split the Time data: Users who tested the
standard-sized Force Picker first performed trials equally fast
for both SIZEs (Fig. 10, center): 2,505 ms for the standard-
sized Force Picker and 2,497 ms for the minimized Force
Picker—which was actually as fast as dragging and spinning
in study 1. However, at 3,482 ms, users testing the minimized
Force Picker first were about 1 s slower than the other group,
but improved their performance while testing the standard-
sized Force Picker afterwards (M = 2,892 ms). It seems that
users testing the minimized Force Picker first navigated more
carefully because they were confronted with two new situa-
tions at once, Thumb-Roll force input and the small picker vi-
sualization, while those testing the standard-sized Force Picker
first encountered them one by one, increasing confidence.

Crossings and Success were similar for both SIZEs, although
Success was slightly worse (96%) than with Thumb-Roll in
study 1, possibly due to a time–accuracy trade-off.

Based on these findings, we wondered whether users could
become faster with further training, since users from both
studies so far had known neither Thumb-Roll force input nor
the minimized Force Picker visualization before. Therefore,
we conducted a third study with trained users comparing the
minimized Thumb-Roll Force Picker against a standard picker.

STUDY 3: TRAINED USER PERFORMANCE
We recruited four participants (29–35y, M = 32.50, SD = 2.65,
all right-handed, one female, none from previous studies) to
complete ten training sessions at home over five days to master
Thumb-Roll for the minimized Force Picker. We modified
study 2 to capture DISTANCEs from 10–90% (in 10% steps)
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Figure 11. Gesture Footprint for study 2. Left: Footprint for the
standard-sized Thumb-Roll Force Picker. Right: Footprint for mini-
mized Thumb-Roll Force Picker. The yellow overlays denote 96% of
all first touch contact points and were similar for both pickers.

as well as OneStep, again for both directions. We picked
the same RANGE sizes. Users performed 4 RANGEs × 10
DISTANCEs × 2 directions× 10 sessions = 800 trials. On
average, the training took 1:10 h. Afterwards, users did a final
session at our lab, using the tasks from studies 1 and 2, but
testing the Baseline standard picker from study 1 against the
minimized Thumb-Roll Force Picker from study 2.

Results
Fig. 12 shows how users’ Time decreased over the ten training
sessions, while Success remained at about 98%. For the analy-
sis, we will focus on the results from the final test, again by
directly contrasting effects for each TECHNIQUE. Time was
again log-transformed for repeated-measures ANOVA.

TECHNIQUE had a significant main effect on Time (F1,751 =
143.20, p <.001): Users needed M = 2,300 ms to complete
a trial for Baseline, but only M = 1,796 ms for Thumb-Roll
(Fig. 13, left).

TECHNIQUE also had a significant main effect on Cross-
ings (Z = 3062.50, p <.001). As seen in study 1, users
made significantly fewer Crossings using Thumb-Roll (M
= 1.16) than with Baseline (M = 1.35), but the difference was
small (Fig. 13, center). There was also a significant TECH-
NIQUE×RANGE interaction effect (χ2(7) = 35.27, p <.001),
but post hoc tests were not significant. There was also a sig-
nificant TECHNIQUE×DISTANCE interaction effect (χ2(7) =
107.98, p <.001). Post hoc tests revealed that within TECH-
NIQUE, users made significantly fewer Crossings for OneStep
(each TECHNIQUE: M = 1.01, SD = 1.02) compared to all
other DISTANCEs (Baseline: M = 1.44–1.50, SD = .54–.63,
Thumb-Roll: M = 1.19–1.24, SD = .40–.43), (p <.001, each).

There were neither significant main effects nor interaction
effects for Success: Although Baseline had again 100% Suc-
cess, this was not significantly different from the 99% for
Thumb-Roll (four errors were made in total).

Fig. 14 shows Gesture Footprint and effective width×height
based on first touch contacts for both TECHNIQUEs. The
minimized Thumb-Roll Force Picker takes up only 40×25 pt,
6% of the 131×134 pt dragging and spinning requires. While
the low number of users leads to lower variance, Fig. 14 shows
a very consistent gesture footprint among these trained users.
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Discussion
The results indeed show that, with some training, users can
become faster with the minimized Thumb-Roll Force Picker
than with the standard picker. Task completion time for drag-
ging and spinning the standard picker was the same as in study
1, but it was now outperformed by our minimized Thumb-
Roll Force Picker, for which users were 500 ms faster. All
users reported that they developed a “pumping” strategy to get
faster: Instead of applying a strong force over a long time, they
pressed hard, then released a bit, and then pressed harder again,
to navigate far distances. While not significant, the differences
in Time between both TECHNIQUEs increased with RANGE,
from 177 ms for RANGE 10 to 240 ms for RANGE 101, and
with DISTANCE, from 0 ms for OneStep to 240 ms for 80%
DISTANCE. Hence, Thumb-Roll paid off especially when nav-
igating larger RANGEs or DISTANCEs, apparently due to the
speed boost that applying strong force triggered. Success was
not significantly different between both TECHNIQUEs (χ2(1)
= 2.25), and was again similar to study 1.

In summary, our studies show that Thumb-Roll was the
most promising technique for a force-based picker on force-
sensitive smartphones, while requiring only a fraction of the
gesture footprint (6%) and display footprint (20% of the
height) of a standard picker as used on these systems to-
day. Taking all touch points from thumb-rolling into account,
trained users will cover an area of 10.2×5.3 mm, such that the
Force Picker should be placed farther than this to avoid occlu-
sion by the thumb. After 1:10 h of training, users were able
to select values faster with the minimized Thumb-Roll Force
Picker than with the standard picker without significant loss of
accuracy (Success rates of 99% for the minimized Thumb-Roll
Force Picker vs. 100% for the standard picker).

Below, we present some application examples that could bene-
fit from using the minimized Thumb-Roll Force Picker instead
of the system picker.

APPLICATION EXAMPLES
Space-Efficient In-Row Value Selection
As illustrated in Fig. 1 and the video figure, our Force Picker
can be used to pick values without moving context information
off-screen like standard pickers: To add a new calendar entry,
for example, the user needs to specify a date, start time, and
duration. With standard pickers, the user taps on, e.g., the start
time, and the associated picker slides in, moving contextual
information like the end time or invitees down and often off-
screen to make space for the picker widget.

Using our Force Picker, however, we can keep all that infor-
mation in place. When the user places her thumb on the hour
digits of the start time, the Force Picker appears in the white

.0

.25

.5

.75

1.0

1.25

1.5

Baseline Minimized
Thumb-Roll Picker

1.161.35

90%

92%

94%

96%

98%

100%

Baseline Minimized
Thumb-Roll Picker

98.96%100%

Crossings (Count) Success (%)

0

500

1,000

1,500

2,000

2,500

Baseline Minimized
Thumb-Roll Picker

1,796
2,300

Time (ms)

SD =
1,528

SD =
1,148 SD = .54 SD = .37
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space next to the label in the same row. It shows the hour
currently selected, with the next values above and below it.
It needs no more vertical space than the value label it is con-
trolling, so nothing else on the screen moves around, which
keeps important contextual information on screen and makes
the interaction more serene. Using Thumb-Roll, the user now
adjusts the hour through the picker, starting at the value the
label displayed. Lifting the thumb fades out the Force Picker
again, and updates the label to show the selected value. Min-
utes or dates can be selected similarly. Any mobile apps that
work with times and dates, whether for searching flights and
hotels, retrieving credit card statements, using public transport,
or planning a drive, can benefit in a similar way.

Parameterized Shortcuts
Apple’s recent smartphones let users apply a “force touch”
on certain icons to display a list of context-specific shortcuts.
However, since Apple only distinguishes two force levels in
its UI, choosing from that list then requires either dragging or
a secondary tap. The list also covers any underlying content
that may have been useful for context, and the length of the
list is limited by the size of the screen to avoid scrolling. An
example is setting a countdown timer via force-touching the
timer icon in the iOS Control Center: the user can only pick a
timer for one, five, 20, or 60 minutes from the list that appears.

Using the Force Picker instead, force-touching on the count-
down timer icon can fade in the Force Picker above the thumb,
letting the user pick a value between 1 and 60 minutes di-
rectly by using force and the Thumb-Roll technique. Once
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she reaches the desired countdown time, she lifts her thumb
off the screen to start the timer (see video figure). Similarly,
our Force Picker can be used in home control apps, e.g., to
quickly set the volume of a stereo between 0 and 100%.

Self-Paced Browsing in Immersive Applications
Immersive applications like photo browsers or video editing
apps should use the screen real estate for content, and reduce
the footprint of widgets and other “debris” to a minimum.
Therefore, browsing through a set of photos usually requires
swiping left or right on the screen repeatedly. However, this
still occludes the content and can be tedious and slow.

Using the minimized Thumb-Roll Force Picker instead, the
user can browse photos at her desired pace to find the picture
she is looking for, while occluding only the smallest possible
area (a touch point) of the picture. Similarly, the technique
can be used to flip through pages in an ebook or PDF. Indeed,
this may remind the user of “thumbing” through pages in
a physical book, because both the rolling thumb movement
and the application of measured force are somewhat similar.
Trimming a video clip can be simplified in the same way:
When placing the thumb in the lower left corner of the screen,
the Force Picker lets the user find the frame to set the first cut
mark using Thumb-Roll. She selects it by lifting her thumb
off the screen. The same gesture in the lower right corner of
the screen defines the end frame of the video clip.

While these examples assume displaying the currently selected
photo, page, or frame in real time, the Force Picker can also
display their numbers above the user’s thumb.

LIMITATIONS AND FUTURE WORK
In our studies, we only tested input for ordered values, and
using only the picker as the form of visualization. However,
we expect similar results for related visualizations, such as
tables, and also for picking alphabetically ordered strings,
like selecting a country name from a drop-down list when
entering a shipping address on a website, as long as the user
can approximately anticipate how far she has to navigate from
the current value to the target value.

Unlike most standard pickers, our picker visualizations or-
dered values bottom-up. We used this reversed order to achieve
a more natural mapping for force input. Somewhat surpris-
ingly, this turned out not to be an issue, although all partici-
pants were familiar with standard pickers. Six users launched
discussion after the study, and when asking them whether they
noticed the reversed mapping, they all denied.

We only displayed three values at a time, like the Android
system picker, to allow us to minimize the picker for studies 2
and 3, which would not have worked with the seven items the
iOS 10 system picker shows. The physical size of our standard
picker, and the spinning gestures, were using the iOS system
defaults. Interestingly, Apple also seems to have noticed that
their system picker required a significant amount of screen
space, since for iOS 11, its height has been reduced to 126 pt
(20.89 mm). This matches the effective height that we derived
from studies 1 and 3 for our standard picker. Hence, the iOS 11
picker can only show five items at a time for each picker wheel,
with the highest and the lowest value vertically compressed.

For our standard picker, users had to tap on a ‘select’ button
to confirm value input, but existing pickers also require the
user to tap somewhere outside the picker to confirm the value
and close them. Tapping accounted for 275 ms (SD = 40 ms)
of the trial completion time. Note, however, that our force
techniques also included trial selection time. According to [5],
confirming force input by lifting the thumb requires 240 ms.

The iPhone touch sensor only reports the center of each touch
point, not the entire ellipsis. Actual footprints are therefore
slightly larger, depending on thumb size.

Using Thumb-Roll directly at the edge of the smartphone
screen will not work when the thumb moves beyond the dig-
itizer sensing area. Therefore, the input area for the Thumb-
Roll gesture should be placed accordingly.

In future work, we would like to reevaluate Press-Through
with a stronger force sensor that the user cannot drive into
saturation. This way, we could provide immediate feedback
when reducing force from any attainable force level. Finally,
we would also like to examine whether our results also scale
to elderly people: Force input is more difficult for this group
to control [12], and the minimized Thumb-Roll Picker might
turn out to be too small to read.

CONCLUSION
In this paper, we presented a way to reduce the screen real
estate for picking values from long, ordered ranges on smart-
phones. While existing controls, like pickers or tables, require
a significant amount of gesture footprint for dragging and spin-
ning, we exploited the force sensors on modern smartphones
to reduce the gesture footprint to the size of the thumb. We
conducted three experiments to find a force-based technique
that allows for bidirectional control of such a picker, while still
fitting inside a standard table row. Our first experiment iden-
tified Thumb-Roll, a technique that changes direction upon
gently rolling the thumb to the left or right before applying
force, as the fastest and most accurate technique to control
a standard-sized picker by force input. Although users were
slower, accuracy was almost identical, and Thumb-Roll re-
duced the gesture footprint by 88%. We then showed that this
allows the Force Picker to be shrunk down to a minimum size,
without affecting accuracy, although it slightly slowed down
untrained subjects. Our final study showed that trained partici-
pants can actually be significantly faster using the minimized
Thumb-Roll Force Picker than with a standard spin & drag
picker, without significant loss of accuracy. With Thumb-Roll,
these users needed only 6% of the gesture space required for
dragging and spinning, and the minimized Force Picker takes
up only 20% of the height of the iOS 10 system picker. We
provided application examples for value input on smartphones
that benefit from the much smaller footprint and in-place touch
interaction of the minimized Thumb-Roll Force Picker. We
hope that our findings inspire other researchers and practi-
tioners to further improve our key daily interactions with our
smartphones through their force-sensing capabilities.
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