_Instant User Interfaces: _
Repurposing Everyday Objects as Input Devices

Christian Corsten Ignacio Avellino

Max Mollers Jan Borchers

RWTH Aachen University
52056 Aachen, Germany
{corsten, max, borchers} @cs.rwth-aachen.de, ignacio.avellino@rwth-aachen.de

S

=

e

ool o

Figure 1. A presenter forgot to bring her presentation remote. (Left) She repurposes a pen as clicker and pairs it with the keyboard shortcut for
advancing the slides by pushing both key and pen button simultaneously. (Right) The presenter advances the slides by pushing the pen — an almost

identical substitute for the presentation remote.

ABSTRACT

Dedicated input devices are frequently used for system con-
trol. We present Instant User Interfaces, an interaction para-
digm that loosens this dependency and allows operating a sys-
tem even when its dedicated controller is unavailable. We im-
plemented a reliable, marker-free object tracking system that
enables users to assign semantic meaning to different poses
or to touches in different areas. With this system, users can
repurpose everyday objects and program them in an ad-hoc
manner, using a GUI or by demonstration, as input devices.
Users tested and ranked these methods alongside a Wizard-
of-Oz speech interface. The testers did not show a clear pref-
erence as a group, but had individual preferences.

Author Keywords
Instant Uls; everyday objects; input devices; affordances

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces - Input devices and strategies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITS’13, October 6-9, 2013, St. Andrews, United Kingdom.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2271-3/13/10...$15.00.
http://dx.doi.org/10.1145/2512349.2512799

INTRODUCTION

People often use dedicated input devices, such as a TV re-
mote or light switch, to control technical systems. These
controllers generally offer physical affordances [20] and tac-
tile feedback via buttons or knobs, that support comfortable,
eyes-free use even in, e.g., badly lit environments [29]. How-
ever, in situations in which the dedicated input device is miss-
ing or out of comfortable reach, this may provide an incon-
venience, such as when a user always needs to get up from
their bed to turn off the lights because the switch is next to
the door.

If such dependency on a dedicated input device could be loos-
ened by just grabbing an everyday object in the vicinity and
repurposing it as a controller substitute, such breakdowns
could be overcome in an ad-hoc manner. Imagine a presen-
ter who forgot to bring her presentation remote. Without it,
she would be rooted to the computer to control the presenta-
tion, limiting her freedom to move about and use expressive
body language. To improvise, she grabs a pen, pushes its
button while hitting the “Next” key on the keyboard to pair
the control. From now on, she can press the pen button to
advance the slides remotely (Figure 1). Despite being an im-
provised substitute, this “clicker” provides qualities similar to
the original remote: The pen is unobtrusive and can be pushed
blindly, providing a smooth presentation experience for both
the audience and the presenter. We call such improvised and
ubiquitous controllers Instant User Interfaces.

To let users repurpose and interact with everyday objects, we
implemented a marker-free object tracking system that can
determine an object pose as well as detect touches on the ob-
ject surface, allowing users to give semantic value to their
interaction with the object.

In summary, this paper has three major contributions:
1. The Instant UI concept, its interaction design, and benefits.

2. A technical solution for creating Instant Uls capable of rec-
ognizing and tracking unaltered everyday objects.

3. A study on three end-user programming methods for In-
stant Uls (speech, demonstration, GUI) to link actions on
everyday objects to desired actions in an ad-hoc manner.

INSTANT USER INTERFACES

We define an Instant Ul as a user interface that lets a user
select a set of arbitrary physical objects within reach to in-
stantiate it as controller for a technical system. Since the
need for Instant Uls may arise spontaneously, mappings from
object to system can be established instantly, i.e., in an ad-
hoc manner, by means of end-user programming.

Instant Uls are particularly related to three fields in HCI: Ubi-
comp [26], Organic Uls [15], and Tangible Uls (TUIs) [16].
Everyday objects are graspable, cover a wide range of natural
shapes, and are — by definition — ubiquitous, such that In-
stant Uls “weave themselves into the fabric of everyday life”
[26]. In comparison to Instant Uls, TUIs are designed to pro-
vide intentional physical affordances. Although not designed
for their new use since they need to be instantly available,
Instant Uls still target at exploiting both used and unused ob-
ject affordances [20, 13] to map them to the system’s digital
or physical counterparts, such as dedicated buttons, knobs, or
sliders (Figure 2). Physical affordances allow for comfort-
able, ergonomic, and eyes-free use. For example, eyes-free
operation is beneficial in bad lighting conditions, when the
visual channel is already occupied, for subtle interaction, or
to lower cognitive and physical effort [29, 24].

The term Physical Instantiation coined by Ishii and Ullmer
[16] originally refers to leveraging virtual widgets to the tan-
gible world. Phidgets [6, 5], e.g., is a toolkit of physical wid-
gets to rapidly develop physical interfaces that link back to
virtual widgets, such as a physical button that is pushed to
open a new e-mail message window. In Instant Uls, instan-
tiation is also used to create a new physical instance from an
existing one, like the pen that substitutes the presenter remote.

Basically, any artifact could become an Instant UIL. Be it a
plain object, a UI that is not an Instant UI (so far), or even
an Instant UI that is turned into another Instant UL Likewise,
instantiation is open to different triggers. It could be: (1)
user-triggered, e.g., when the user picks up the object, (2)
time-triggered, i.e., the object is automatically turned into an
Instant UI after a certain time of (non-)use, (3) proximity-
triggered, i.e., an object becomes an Instant Ul when it it
close to another object, or (4) situation-triggered, e.g., when
PowerPoint is running, the pen is automatically turned into
a remote. In the remainder of this paper, we refer to user-
triggered instantiation.

Figure 2. Everyday objects (right), such as a juice carton, pen, or hole
puncher, provide controls with physical affordances (rotary knob, push
button, slider) as used in dedicated input devices, such as a mixer (left).

Motivation and Benefits
Instant Uls provide several benefits. Here are some examples:

Improvisation. When a missing controller is needed ur-
gently, the user can improvise by picking a nearby object as
a substitute, such as a pen to advance presentation slides in-
stead of using a remote control.

Convenience. Objects can serve as convenient mobile con-
trollers for stationary input devices. A stapler on the desk,
e.g., can be pushed to control the light instead of having to
get up and reach for the light switch next to the door.

Usability. When a controller is too complicated to use (bad
ergonomics, false affordances, or too many controls), Instant
Uls can improve usability by outsourcing selected functions
to objects with better ergonomics and simpler affordances,
like a simplified TV remote with reduced functionality (chan-
nel +/- and volume control) but bigger buttons. Modal input
could be substituted with space-multiplexed controls, which
are faster to acquire and more comfortable [4].

Duplication. Instant Uls also allow us to create physical
copies of existing controllers, such as additional joysticks for
a multiplayer game console when friends drop by.

RELATED WORK

First, we will contrast Instant Uls to alternative approaches.
Then, we will present related work on interaction with every-
day objects and appropriate tracking technologies.

Instant Uls vs. Other Approaches

Smartphones with their dynamic touchscreen Uls already
substitute various dedicated input devices. Samsung, e.g.,
provides an app [22] that allows users to control their TV
via their smartphone. Since users generally have their smart-
phone with them, the substitute controller is in direct reach.
However, due to their flat screen, smartphones lack physical
affordances and tactile feedback. Even though the user knows
the spatial UI layout of an app, incoming notifications may be
touched accidentally and confound the input.

Speech interfaces also lack physical affordances and tactile
feedback. Moreover, when quick closed-loop feedback is re-
quired, e.g., when dimming the lights, adjustments by speech
may be tedious and slow. Background noise can interfere
with speech recognition, and using spoken commands may
not always be appropriate: During a presentation, speech
commands not only feel awkward for the presenter, but may
also annoy the audience.

Gesturing in mid-air is not always appropriate either. In a
presentation, the audience would take notice of the presenter
waving her arms in the air each time a new slide is about to
show up, disrupting the presentation flow and annoying the
audience. The presenter would need to avoid gestures that
could trigger a command, increasing her cognitive load.

Interaction with Everyday Objects and Surfaces
Becoming independent of a dedicated physical controller can
be achieved in two different ways: (1) by eliminating the
physical controller entirely or (2) by letting the user repur-
pose some object as a physical controller substitute.

On-body interaction [10], such as Skinput [11] and Imaginary
Phone [8] are a hybrid between (1) and (2). Users can touch
their skin, e.g., the lower arm, to repurpose it as a touch de-
vice. Similarly, in WorldKit [28] users draw with their hands
on any surface in the vicinity to define it as interactive touch
area. Yet, these research projects do not build on affordances
and lack the tactile feedback of physical knobs and buttons.
Skinput and Imaginary Phone are independent of the user’s
visual attention, but require her to recall the spatial layout of
the invisible interface from memory during interaction and
thus may increase cognitive load. The same argument holds
for other mid-air gesturing systems [7].

Opportunistic Controls (OCs) [13], Smarter Objects [14], and
iCon [3] address option (2). For example, OCs exploit unused
affordances of physical items in a mechanic’s work space,
such as grooves in a wiring harness or screws. Unlike Instant
Uls, however, OCs use AR markers for tracking when a ges-
ture intersects with an OC’s physical geometry. Furthermore,
they do not exploit depth information and only consider spa-
tially fixed parts. Smarter Objects let users re-program phys-
ical controls from electronic devices, such as the tuner knob
of a radio, to different functions, and iCon allows the user to
use everyday objects to control background tasks of desktop
applications, like a bottle that is turned to adjust the speaker
volume. Only Smarter Objects and iCon provide end-user
programming for linking the target interface with the physical
object. While iCon focuses on desktop use, Smarter Objects
let the user program the object with a tablet computer. How-
ever, both solutions build upon a visual UI as the only method
for end-user programming, and iCon shifts the user’s locus of
attention away from the objects while programming.

Object Tracking and Manipulation

As we want to track everyday objects and detect interaction
with them, we need to have a system that can be used for any
shape of object and then interpret the data to find touches.
Such a system should: (i) allow objects to be recognized
quickly, (ii) allow recognition without altering the objects by,

e.g., adding markers, which would require the user to con-
stantly pay attention to not occlude the markers, and (iii) tol-
erate partial occlusion by the user’s hand.

iCon [3] and DisplayObjects [1] require the user to augment
objects with visual markers and thus cannot be used. Wear Ur
World [19] and OmniTouch [9] require hardware mounted on
the user’s body. Despite mobile use of these systems, interac-
tion with objects might not be natural due to the fact that the
user is constrained by the hardware worn.

Since we do not want to modify the object, we need to sense
the touches remotely. Here, we will focus on vision-based
systems as they provide superior spatial resolution compared
with other, e.g., ultra-sound-based systems. The simplest so-
lution to scene understanding is to interpret the depth data as a
point cloud. This is similar to how KinectFusion [17] works.
It can reconstruct a 3D scene and segment it into connected
point clouds. This way it can mimic physical behavior and
have real objects interact with virtual objects, however, this
solution is limited to object-agnostic interaction metaphors
because it does not recognize objects. Even a simple shirt
with interactive buttons is not possible. For such object-
specific interpretations of user input, we need to recognize
objects and thus turn the point cloud representation into an
object representation.

Another alternative for tracking are template matching meth-
ods using 2D images such as [18], which require the system
to be trained with different object poses in order to recognize
its current pose in a scene. While these methods allow for
characterizing changes in the object position and rotation, the
movement granularity that the system is able to track would
depend on the used image training set, and is usually low.

3D Puppetry [12] is a technical solution comparable to ours;
the main differences lie in the object recognition phase. They
use SIFT features which means that their objects cannot be
smaller than a certain size (roughly 7 cm x 8§ cm x 8 cm) and
this process is susceptible to light condition changes. Our ap-
proach, which relies on geometric descriptors based on the
3D features of objects, is only limited by the resolution of
the used sensor, does not limit the size of the recognized ob-
jects that strictly, and is unaffected by light conditions. Ad-
ditionally, we provide an extensive qualitative analysis of the
tracking and touch detection capabilities of our approach.

We now present our tracking approach. It only needs an ini-
tial model of the object to be tracked, which can be generated
once before the system is initiated by a laser scan, providing
the system with its shape and solid color for reliable tracking.
Alternatively, digital 3D models could be provided by man-
ufacturers, since they use them for fabrication anyway [25].
Our tracking approach also allows us to define different touch
areas on the object that can be mapped to different events.

RECOGNITION, TRACKING, AND TOUCH DETECTION

First of all, we need to define the context of our system: us-
ing a single camera. This increases applicability of the system
due to its very simple setup. However, this means we will not
be able to determine the orientation of objects that appear ro-
tation invariant from the current viewpoint, e.g., if the handle

of a mug is hidden behind the mug itself, we cannot accu-
rately determine its rotation. Similarly, touches can only be
recognized when they are in front and not behind the object
w.r.t. the observing camera (see limitations).

In order to recognize an object, i.e., find it in a scene, we
need to first have a digital representation of it. A base option
is to store the object as a 3D mesh or a point cloud. This
can be created digitally—most physical objects that surround
us start out as a CAD model—it can come from laser scans
of an actual object, or we can use a depth-camera to create
the model [18]. We chose to laser scan our artifacts as this
gives the highest accuracy without relying on available CAD
models.

Before going into details, we first sketch the overall algorithm
(Figure 3): (1.) Raw data is acquired from the depth camera.
(2.) We create a point cloud from the depth data by unpro-
jecting the pixel-based information into 3D space. (3.) We
(optionally) remove the background plane to reduce the num-
ber of points to process by allowing the user to click three
on-screen points during system setup that compose the back-
ground plane. (4.) We use our object recognition algorithm
to get an initial pose estimation. (5.) The object is tracked
from one frame to the next and its position and orientation
are updated. (6.) If a finger is in front of the object, we detect
touches by depth-thresholding.

We now go through each step to explain the concept of the
algorithm. Step 1 consists of receiving color and depth data
from the Kinect, and in step 2 we generate a point cloud of
those raw images. In step 3, the user selects three points on
the background. This defines a plane and we can remove
points in the vicinity to the plane. This allows us to remove a
lot of the points if, e.g., the object is standing on a table, al-
lowing faster completion of step 4, the initial pose estimation.
Thus, step 3 is only done once as part of the setup.

Initial Pose Estimation

In this step, we match our object with the depth data we re-
ceive from our camera. Yet, every object is only partially visi-
ble for a single camera. Additionally, objects will be occluded

1. Data Acquisition 2. Data Pre-processing

3. Plane Segmentation 4. Initial Pose Estimation

~N_ 7

5. Object Tracking 6. Surface Touch Detection

Figure 3. Tracking and touch detection algorithm. (4.) is done only once.

by themselves or by the user interacting with them. This
means that one needs to find an object recognition method
that is robust against occlusions. For example, global fea-
tures are likely to be occluded so we selected local features.
Additionally, (our) depth cameras provide rather noisy im-
ages. One could, e.g., average succeeding images over time,
as KinectFusion [17] does, but this might result in lag, as in-
formation from previous images is taken into account when
calculating the current state. Instead, we use curvatures be-
tween medium-distant point pairs as a local feature descriptor.

For the object recognition part, we use a slightly modified
version of the work from [21], an object recognition algo-
rithm that is tailored to noisy single-view scan data, similar
to our problem domain. This initial pose estimation is quite
robust, yet it needs several seconds to find the object in the
point cloud on our machine (MacPro, 2.26 GHz, 6GB RAM).
As this is too slow for real-time tracking of the object, we will
employ another algorithm for tracking the object in step 5.

Object Tracking

After having found an object, it is very unlikely for the ob-
ject to disappear or to be moved very far from one frame to
the next, given high frame rate cameras and realistic object
movement. This gives us two advantages: (i) we can limit
the search volume for the object in the next frame by creat-
ing a bounding box around the last known position, and (ii)
instead of running the full object recognition every frame, we
just track the object using Iterative Closest Point (ICP) [2].
ICP is an algorithm that maps two point clouds (a model and
a template) to each other while minimizing point distances
in each step until a convergence criterion (here distance) is
reached (Figure 4.5). It then returns the mapping that moves
and rotates the template onto the model.

Before applying ICP and updating our pose estimation, we
need to prepare our data to be usable for ICP (Figure 4): (1)
We start with knowledge of where the object was in the last
frame, i.e., a rotation and translation that maps our stored
model into the 3D world coordinates of the camera system.
For the first frame we use the object recognition mentioned
in the last section. (2) The object moves. (3) We now get
new input from the camera, transform it into a point cloud,
and create a bounding box around the previous location and
assume that the object didn’t move too far from it. (4a) We
remove the background plane, use color filtering to remove
hands that might occlude the object based on the solid color
of the object, and crop the points outside of the bounding box.
We now have one of the two point clouds for the ICP: the
model. (4b) As we know where the object was in the last
frame, we can place our model in the 3D space and take the
points that face towards the camera. This point cloud is our
expected input: the template. Without object movement (and
noise in the data) the template would be exactly the same as
the model. We only use the front-facing points for the tem-
plate because the model is also only seen from one side and
the ICP will not give good results if we require it to map the
object front side to a full object. (5) We now apply ICP, which
returns a mapping from the template to the model. (6) We can
now store this information and update our pose estimation.

Pose estimation—

of model = o Ll
Inputdata j;

1. Initial or previous frame
pose estimation overlaid in input data

2. Real object moves

o,
3 =

Bounding box
of last pose
estimation =

4a. Plane removal and cropping
around bounding box

@3

4b. Point cloud of front facing
side of model computation

0001

Transformation

Template Model

5.1CP 6. Updated pose estimation

Figure 4. Steps for updating the pose estimation from frame to frame.

Now we know where the object is and how it is oriented. This
enables us to check if and where fingers are touching the ob-
ject.

Touch Input and Touch Occlusion

As mentioned, we use color filtering to differentiate between
objects and the hand. As color values in the standard RGB
model vary a lot under different lighting conditions even for
the same object, we use Hue, Saturation, and Value (HSV)
instead. This makes the thresholding more robust to different
ambient lighting and especially self-shadowing of objects.

Before going into detail, we explain the challenges in cal-
culating touch locations in real time. A finger touching the
object means that the object model touches or intersects the
finger point cloud. Even if we had a full model of the finger
(which we do not) we would need to check both point clouds
for per-point “intersections” to find the touch area. Unfortu-
nately, this would require significant computation.

Another problem is that the finger occludes the object. Al-
though our object recognition gives us the pose of the object,
allowing us to restore which points of the model are occluded
by the finger, we do not know whether the finger is touch-
ing the object or whether it is just in front of it. Yet, if we
assume a static finger thickness, we can check for the touch
by comparing depth of the front-side of the finger plus finger
thickness to the depth value of the object’s front side. To be
more specific, we need to check this for every point of the
finger with the point lying “behind” it. Calculating the point
behind another, however, would require us to cast a ray (par-
allel to the camera axis) through that point and intersect it

with every triangle of the model, which would also require a
lot of computation.

Our approach simplifies the 3D calculations to 2D image
comparisons and is very fast as it exploits the capabilities of
modern graphics cards: instead of casting rays, we render the
object as it would be seen from the perspective of the camera.
Theoretically, this is also quite an expensive computation, but
modern GPUs are highly optimized for this task so that they
can deliver this within 5ms, making it a very feasible ap-
proach. We also project the points of the finger into a 2D im-
age with the same viewport as the other image. This means
that we can now compare pixel by pixel whether the finger is
in front of the object. As we store the depth data of the model
and finger as well, we can thus use depth thresholding for our
touch detection.

This allows us to identify touches on moving objects, elimi-
nating the need to know the distance from the sensor to the
touched object a priori as required by Wilson et al. [27],
where a “snapshot” of the depth image is taken when the
touch surface is empty. Our approach is similar to Omni-
Touch [9] where the depth of the fingertip is compared to the
depth of the object behind it in order to identify touches.

The touch detection process is now explained in Figure 5: (1)
We start with the point cloud data and the current object pose
estimation. (2) We segment the finger points by color filter-
ing. (3) We now treat the data as 2D image as seen from
the camera to ease computation and hit detection in the next
steps. (4) We compute the contour by calculating the convex
hull of the finger points. (5) We take the point farthest away
from the center of the hull as the fingertip. (6) We render the
model and project the fingerprints from the same viewport.
(7) We compare points in the vicinity (3 pixels) of the finger-
tip with the model image and perform depth thresholding to
decide whether there is a touch or a hover.

1. Tracking 2. Finger points segmentation

— S —

3. Finger points

2D projection 4. Contour computation 5. Fingertip detection

'

6. Model points
2D projection

6. Touch point computation
on model

Figure 5. Steps for detecting touches on arbitrary objects.

We now know whether we hit the object. In order to know
where we hit the object, we initially define different touch
regions on the model by marking the respective areas in the
model or point cloud with a specific ID. Currently, we store
this in the color value that is not used otherwise. This ID can
then be checked in the last step of Figure 5 and will tell us
which touch zone we hit.

Evaluation of Tracking

Our system has two main parts, the tracking of the object and
the detection of touches on it, and we will evaluate them sep-
arately. The tracking will be measured in a controlled envi-
ronment without user interaction to only capture system and
not user or task performance. Additionally, we will show re-
sults from a real application scenario to see how reliable the
system is when the user is frequently occluding parts of the
object. We will also show how well touches are recognized.

The evaluation was done on a MacPro with 2.26 GHz, 6GB
RAM and an Nvidia GTX 580 graphics card. Depth data is
generated from a first-generation Microsoft Kinect that re-
turns VGA resolution RGB and depth data. The latter are
11 bit and have a base accuracy of about 2 mm at 50 cm depth
and get worse farther away.

Controlled Environment

The system was able to track objects with 7-10 frames per
second, i.e., it takes 100-140 ms to process the incoming
frame and update the pose of the object. The touch detection
that follows afterwards does not increase the performance to
any measurable degree. The tracking performance varies de-
pending on (a) the number of points of the model and (b)
the number of points of the template. We already do a sub-
sampling, i.e., only take every 16th point, after calculating the
front-facing points of the model, but did not do this for the
point cloud from the Kinect camera to not lose accuracy. For
the above results, the sub-sampled model consisted of about
600 points, and the points extracted from the Kinect image
were about 3500. This also means that objects closer to the
object camera generate larger point clouds than objects far-
ther away, leading to differences in performance. In the fu-
ture, we will take a look at ways to adapt to those factors and
get a more flexible trade-off of processing time vs. accuracy.

To evaluate system accuracy of the system, compared it to a
baseline VICON motion tracking system with sub-millimeter
accuracy. We looked at position and orientation error. For
a more controlled environment, we put the objects on a Lego
toy train with a circular track layout. We used one object with
few features (a mug) and one with many features (a toy duck).
We put them on the toy train in varying starting rotations and
let them do several circles in both directions.

Position error in a space of up to 122 cm of depth is reported
in Table 1. As we can see, the biggest error is in the depth
dimension, partly due to the Kinect’s own limited depth reso-
Iution (around 4 mm error in this space). Errors in the width
and height dimension are comparatively small. Altogether,
this makes the system very usable for the envisioned use case.

The rotation error is measured as the norm of the difference
of rotation quaternions. The norm is in the range [0, /2],

where 0 equals identity and v/2 equals a rotation in the exact
opposite direction. We use the norm of quaternions as they
are a good representation to compare.

Rotation tracking works as expected: as soon as an asym-
metric feature is occluded, the system cannot track the rota-
tion correctly and can only exclude states where that feature
would be visible. Fortunately, in most cases the system is able
to catch up as soon as the feature is visible again, i.e., we see
the handle again and the system reports the correct orienta-
tion. Multiple cameras would solve this issue. However, as
long as the handle is visible, we see an average of 0.0634 with
standard deviation of 0.0201. This average norm is similar to
a rotation of 7.23° along a single axis.

Mug Duck
Width: 16.27 +12.51 15.22 £+ 13.57
Depth: 24.04 +15.65 28.73 £17.70
Height: 4.32 +3.06 411 +£3.8

Table 1. Tracking error of the position in mm (M + SD). Even the
depth error is considerably small.

Limitations of the System

If the system loses track of an object due to full occlusion or
very fast movement, it can only recover if the object is moved
back into the region of its last position. Instead, we would
then start the full recognition process over again to find it.

As of now, the recognition algorithm compares against a
database of multiple objects, yet the tracking part is imple-
mented for one object at a time. As the current code does
not exploit parallelization, tracking of a maximum of objects
similar to the number of CPU cores in the systems should be
possible with similar performance. Similarly, GPU optimiza-
tions could be considered.

The system is based on a database of models with a static
point cloud or mesh. It would be interesting to see how we
could support deformable shapes. The question how to de-
fine and store the “deformability” of an object is a challenge
by itself. It could lead to insight on how to recognize those
shapes as the standard features used to recognize objects are
based on a fixed shape: we, e.g., use point-pair relations such
as distance and curvature in the neighborhood.

USER STUDY: INTERACTING WITH INSTANT Uls

After evaluating the system performance in a controlled set-
ting, we now move on to real tasks and observe how users
experience the new interaction metaphor of Instant Uls: We
evaluate three different ways of end-user programming for
everyday objects, i.e., using speech, by demonstration, and
with a GUI, and observed system performance w.r.t. track-
ing failures and touch detection accuracy in these applications
scenarios.

Scenarios
Scenario A represents our introductory example: Navigating
presentation slides using a clickable pen. Scenario B asked

the user to operate a dimmable light source using a mug. We
chose these (A, B) as they represent two different applications
fields for Instant Uls (improvisation, convenience) and deal
with two different types of control for input (discrete, contin-
uous).

End-User Programming Techniques

In the first step, users had to establish mappings from object
(A: pen, B: mug) to the set of needed actions from the target
interface (A: next/previous slide, B: brighten/dim light).

Speech. Using speech, a user simply told the system how
to establish mappings from object to target interface. She
was not limited in using specific commands/vocabulary. She
could have said, e.g.: “When I push the pen button once, go
to the next slide.”. Based on the user’s commands, the exper-
imenter established the mappings manually (Wizard-of-Oz).

Demonstration. The user established a mapping by perform-
ing a gesture on the object while simultaneously controlling
the target interface with an existing physical controller. Push-
ing the pen button while pressing the right arrow-key on the
computer keyboard, e.g., paired those two events and trig-
gered the action mapped to the keyboard shortcut (next slide)
each time when the pen button was pushed again. Hence,
slides were advanced by pen click, since this was mapped to
the keyboard shortcut that triggered the next slide.

Graphical User Interface. A dedicated GUI (Figure 6) en-
abled the user to establish mappings between object and tar-
get interface by pointing with the object at it. The left side of
the GUI lists physical components of the object that has an
affordance (e.g., the pen button), the right side lists the action
needed for the tasks from the target interface (e.g., next slide).
Moving the object in mid-air in front of the GUI display con-
trolled a virtual cursor, and hovering over a GUI element for
at least two seconds selected it. Mappings were established
by selecting one element from the left and one from the right
side. A line indicated the pairing. Old mappings were over-
written. Using the object as a pointing device has the benefit
that the user does not need to tell the system which object she
wants to program since the system will identify the object in
use.

We have chosen these methods to represent diversity: speech
and GUI are a virtual-to-physical and -virtual, whereas
demonstration is a physical-to-physical mapping technique.
Additionally, speech is probably the most natural, demonstra-
tion the most practical, and the GUI the most typical approach
[3, 14] for everyday object programming.

Participants, Procedure, and Setup

We recruited 12 participants (4 females), aged 19-28 (M =
24.33, SD = 2.50) to participate in our study. A session lasted
45 minutes. First, the user was introduced to our system and
the Instant UI concept including the three end-user program-
ming methods. Next, the user made herself familiar with the
first scenario presented by performing the demanded tasks
(Table 2) using the dedicated physical controller (A: computer
keyboard, B: rotary knob). Subsequently, for each end-user
programming condition, the user was asked to program the

Figure 6. GUI for programming the pen as a remote. Pointing with
the object at the GUI controls a red cursor with which the user selects
a pen gesture visualized on the left side of the GUI (push, push-and-
hold) and maps it to an action from the target interface (right side: next
slide, previous slide). Established mappings are characterized by a line.
Programming is finished by selecting the “start” button at the bottom.

object (A: pen, B: mug). For the pen, the user could choose
from a push and a push-and-hold gesture and map those to
the commands “next slide” and “previous slide”. We started
measuring a push as soon as the user started to touch the pen
button. The system recognized a push when the user touched
the top of the pen for 400 ms to 1200 ms, and a push-and-
hold when this happened for 1200 ms to 1700 ms. Push-and-
hold events were recognized consecutively, and their associ-
ated action fired every 500 ms if the user kept touching the
top of the pen. For the mug, the user could choose between
the handle facing the user and it facing away from the user
and map these positions to “light is at maximum brightness”
and “light is turned off”. After each programming phase, the
user was asked to perform the tasks (Table 2) only by using
the programmed object. Having performed all three condi-
tions, the scenario was concluded with a questionnaire. The
remaining scenario was tested accordingly. Both the order
of the scenarios and end-user programming conditions were
randomized. Figure 7 shows a complete setup of the system
and the study. To ease implementation, the dimmable light
was emulated on a screen. For the physical knob, we used a
USB-wired Shuttle Xpress Jog Knob from Contour Design.

Objects and gestures for the scenarios (Table 2) were based on
the results of a preliminary study in which participants were
asked to grab an everyday object out of 63 ones available that
they considered a suitable controller substitute for A resp. B.

Results and Discussion

Users rated their preference for the three end-user program-
ming methods on a 9-point Likert scale (1 = definitely not
preferred, 9 = definitely preferred, Figure 8). For the pre-
sentation scenario, the data shows that participants rated pro-
gramming using the GUI best (M = 5.25), followed by pro-
gramming by demonstration (M = 4.92) and using speech (M
= 4.83). However, there was no significant effect of the map-
ping method on the preference rating (X%, Ne12 = 0.30, p =

Scenario
Object

Gestures on
the object

Actions on
the target

Precondition

A: Presentation
Clickable Pen

push,
push-and-hold

next slide,
previous slide

The presentation has been

B: Light
Mug

turn clockwise,
turn counter-clockwise

dimming,
brightening

The brightness is at

started. maximum.
Tasks 1. Go to the next slide 1. Dim it to ca. medium.
(three times) 2. Dim it to ca. minimum
2. Go to the previous slide. (keeping it on).
3. Jump two slides forward. 3. Brighten it to ca. medium.
4. Jump three slides 4. Brighten it to maximum.
backward. 5. Turn it off

Table 2. Tasks for the users to execute per scenario after programming.

b |

Figure 7. Setup of the system for the light scenario (left to right): Kinect,
display, mug, rotary knob. The user is programming the mug by demon-
stration: mug and rotary knob used to control the light (on screen) are
rotated at the same time. From now on, mug rotation dims the light.

.859). Taking a closer look at the individual ratings shows
that participants had diverse preferences (Figure 9, left). In-
terestingly, although many users rated the GUI or the speech
interface strongly negatively (data points are far away from
these corners), ratings for demonstration were less extreme.

In the light scenario, speech was rated the best interface (M
= 5.83) closely followed by programming by demonstration
(M = 5.67). The GUI, however, was rated worse (M = 3.50).
Again, there was no significant effect of the mapping method
to the preference rating (3 y_,o = 3.87, p = .144). Con-
cerning the individual rankings, participants had diverse pref-
erences, but collectively agreed on rating against the GUI ap-
proach (Figure 9, right).

Programming the pen in all three conditions was considered
a simple approach: “It was simple — no complications.”. Pro-
gramming the mug, however, was considered more difficult
for demonstration and the GUI. Some participants found it
difficult to perform synchronous rotation with both hands.
They had to rotate the mug on a traverse plane, while rotating
the rotary knob on a frontal plane. This setup was chosen for
the study since a light dimmer is mounted onto a wall (frontal
plane), whereas a mug resides on a table (transversal plane).
In fact, synchronously performing tasks on different planes of

o
AT

- T

1

Demo Speech GUI Demo Speech GUI
A: Presentation B: Light

Preference
[6)]
]

Figure 8. Box plot showing aggregated results for the users’ preference
on end-user programming methods. Black lines connect the means of
each condition. (Left) Results for the presentation scenario showed no
clear preference for a method. (Right) Programming by using the GUI
was rated worse than the other methods for the light scenario because
pointing with the mug was tedious because of its weight (430 g).

.-0% 0%

100%

< 100% 50% 0% & o 100% 50% 0% <&

Figure 9. Users’ preference on end-user programming methods.
Ternary plots are used to visualize data points of three variables in pla-
nar space. Each data point represents the percentages of preference for
each method and adds up to 100%. The closer a data point is to a corner,
the more the corresponding method is preferred over others. (Left) Re-
sults for the presentation scenario show no clear preference overall since
data points are accumulated towards the center. (Right) Users rated
against the GUI method. Filled circles indicate two data points.

continuous motion is suboptimal [23]. Synchronized pushes
(pen and keyboard), however, did not cause any difficulties
for the users. Hence, programming by demonstration for con-
tinuous control was more difficult than for discrete control.
Pointing with the mug was considered too tedious because of
its weight (430 g for the mug vs. 6 g for the pen): “The mug
became heavy after a while”.

Touch Accuracy

For evaluating touch recognition accuracy, we recorded 511
touches during the tasks that involved clicking the top of
the pen by manually annotating the video recordings of the
studies. A first analysis of the collected data shows that in
66.91% of the time pushes on the pen button were success-
fully recognized (182 out of 272) and in 55.65% of all times
the push-and-hold gesture was recognized successfully (133
out of 239) (Figure 10). The apparent low recognition rate
of the touch detection comes from the time threshold used
to discern between noise, push, and push-and-hold gestures.
Eight users reported having problems with the system differ-
entiating between push-and-hold and a push event, and as can
be seen from the data collected, although the recognition rate
seems low, false recognitions happened most of the time be-
cause either a push-and-hold event was mistaken for a push
event (26.78%) or it was considered noise (13.39%)—since it

Count
— 0.0
50.0

100.0
l 150.0
200.0

Push
and
hold

Push

Canceled

System Recognized

No Touch

No Touch Push Push-and-hold

User Performed

Figure 10. Touch recognition heat map for conditions with the click-
able pen. The amount of touches performed by the users are shown in
segments according to how the system recognized them. 332 correctly
filtered out noise data points are not considered for the coloring of the
heat map although this total is shown.

was not long enough to be a push event. Likewise for push
events, most of the time they were not recognized success-
fully because they were either too short (22.79%) or consid-
ered to be push-and-hold events (4.05%).

From post analysis of video data, it can be observed how users
did not respect the defined times for push and push-and-hold
gestures, although they were instructed on how the system
worked. This leads to misinterpretation between noise, push,
and push-and-hold gestures (Figure 10). This is why we also
report aggregated touch data ignoring the threshold for such
gestures. If we consider both types of gesture (push and push-
and-hold) to be simply a performed touch, and consider the
detected type of gesture (push, push-and-hold or canceled for
being too short) also simply as a detected touch, touch accu-
racy is as high as 80%, with 4.43% of the touches not recog-
nized by the system and 16.23% of the time noise mistaken
for a touch.

LIMITATIONS, FUTURE VISION, AND CHALLENGES

Our system exemplifies how Instant Uls can be implemented
technically. Yet, relying on visual input limits the interaction
to the field of view of the sensor(s) (a touch cannot be rec-
ognized on the back of an object), rotation detection is lim-
ited when using objects that appear rotation invariant from
the perspective of the sensor, and touch recognition accuracy
on moving targets is highly affected by noise introduced by
the sensor. Also, the time needed for initial pose recognition
and the requirement of setting up a tracking system limits its
ad-hoc quality. In the near future, however, many spaces may
be equipped with ambient tracking technology including di-
rected projectors and speakers as envisioned in [30] to detect
object interaction and provide visual and audible feedback,
e.g., to give feedback on programmed mappings.

Besides such “intelligent” rooms, residing objects also need
to become “smart”. Sterling [25] envisions each object —
be it a bottle or a light switch — to have a digital descrip-
tor that contains meta data such as a 3D model of the object,
available physical controls, an API descriptor of accessible
functions (e.g., light on/off), etc. This vision is not unlikely,
as such data is already available for the production of an ob-
ject. Manufacturers could then add this data by simply putting
RFID stickers to the objects.

Besides technical challenges, interaction design also poses
questions to be solved, in particular how to solve the ambi-
guity of repurposed use and regular object use. A stapler,
e.g., is intended to staple paper, but pushing its lever could
also turn the lights on/off. To resolve this ambiguity, the user
could convey her intention to the system by executing a spe-
cific gesture prior to the appropriated use. Taking a closer
look at the exact gesture (sequence) might also work: To use
the stapler as a button, a gentle touch with one finger could
suffice to lower the lever. Actual stapling requires more force,
e.g., pressing the lever using the entire palm.

Similarly, end-user programming poses further challenges.
How can the user enter programming mode? Again, an ex-
plicit gesture could enter the mode, or the system detects that
the user manipulates the object in a way that does not match
the typical use of the object. Programming by demonstration
needs further investigation as regards accuracy of program-
ming. Users may perform slower and less accurate gestures
than desired. For example, when rotating the mug while turn-
ing the light knob, the user may want to have a 1:1 mapping
concerning the position of both knobs, but she may invol-
untary create an offset. System-corrected mappings are one
solution to explore. Moreover, we will extend our evaluation
on end-user programming such that the user always demon-
strates an action before defining its result using demonstra-
tion, speech, or the GUI. This way, speech and GUI do not
rely on the existence of a known set of actions that can be
applied to an object.

SUMMARY AND CONCLUSION

We presented Instant User Interfaces, a new interaction
metaphor that frees users from dedicated input devices, while
maintaining the benefits of physical affordances and tactile
feedback. In case a device is missing or out of reach, the user
can improvise by grabbing an everyday object in the vicin-
ity and repurpose its physical controls, such as the button
of a pen, for input. To explore this idea, we implemented a
marker-free object tracking system, with approx. 30mm posi-
tion and 7°orientation error, that senses touches on the object
with more than 80% accuracy. Furthermore, the system al-
lows to assign actions to changes in the tracked object pose
and to touches on its surface. In a study, twelve users tested
two Instant Uls: they navigated slides by clicking a pen and
dimmed the lights by rotating a mug. To make those objects
interactive, the users tested three different methods: By using
a Wizard-of-Oz speech interface, a GUI, or manual demon-
stration, the users linked the physical actions for the everyday
object (e.g., pushing the pen button) to the desired actions of
the interface to be controlled (e.g., advance the slide). As a
group, the users did not show a clear preference towards any
method, but each of them had distinct individual preferences.

From the perspective of interaction design, most users agreed
that everyday objects could be used as substitutes for dedi-
cated input devices. Today, however, ambient tracking tech-
nology is not prevalent in the world. Our system, despite lim-
itations in tracking speed, has provided first insights into In-
stant Uls. As tracking technology improves, it may become

ubiquitous and thus make Instant Uls an enticing solution to
free users from dedicated input devices.

ACKNOWLEDGMENTS

We thank Marty Pye and Kashyap Todi for their support. This
work was funded in part by the German B-IT Foundation and
the German National Science Foundation (DFG).

REFERENCES

1.

10.

11.

12.

13.

Akaoka, E., Ginn, T., and Vertegaal, R. DisplayObjects:
Prototyping Functional Physical Interfaces on 3D
Styrofoam, Paper, or Cardboard Models. In Proc. TEI
’10, 49-56.

. Besl, P. J., and McKay, N. D. Method for Registration of

3-D Shapes. In Proc. TPAMI ’92, 586-606.

. Cheng, K.-Y., Liang, R.-H., Chen, B.-Y., Laing, R.-H.,

and Kuo, S.-Y. iCon: Utilizing Everyday Objects as
Additional, Auxiliary and Instant Tabletop Controllers.
In Proc. CHI ’10, 1155-1164.

. Fitzmaurice, G. W., and Buxton, W. An Empirical

Evaluation of Graspable User Interfaces: Towards
Specialized, Space-Multiplexed Input. In Proc. CHI ’97,
43-50.

. Greenberg, S., and Boyle, M. Customizable Physical

Interfaces for Interacting with Conventional
Applications. In Proc. UIST 02, 31-40.

. Greenberg, S., and Fitchett, C. Phidgets: Easy

Development of Physical Interfaces Through Physical
Widgets. In Proc. UIST "01, 209-218.

. Gustafson, S., Bierwirth, D., and Baudisch, P. Imaginary

Interfaces: Spatial Interaction with Empty Hands and
without Visual Feedback. In Proc. UIST ’10, 927-930.

. Gustafson, S., Holz, C., and Baudisch, P. Imaginary

Phone: Learning Imaginary Interfaces by Transferring
Spatial Memory from a Familiar Device. In Proc. UIST
11, 283-292.

. Harrison, C., Benko, H., and Wilson, A. D. OmniTouch:

Wearable Multitouch Interaction Everywhere. In Proc.
UIST ’11, 441-450.

Harrison, C., Ramamurthy, S., and Hudson, S. E.
On-Body Interaction: Armed and Dangerous. In Proc.
TEI ’12, 69-76.

Harrison, C., Tan, D., and Morris, D. Skinput:
Appropriating the Body as an Input Surface. In Proc.
CHI ’10, 453-462.

Held, R., Gupta, A., Curless, B., and Agrawala, M. 3D
Puppetry: A Kinect-Based Interface For 3D Animation.
In Proc. UIST ’12, 423-434.

Henderson, S. J., and Feiner, S. Opportunistic Controls:
Leveraging Natural Affordances as Tangible User
Interfaces for Augmented Reality. In Proc. VRST ’08,
211-218.

14.

15.

16.

17.

18.

19.

20.

21.

22.

24.

25.
26.

217.

28.

29.

30.

Heun, V., Kasahara, S., and Maes, P. Smarter Objects:
Using AR Technology to Program Physical Objects and
Their Interactions. In CHI EA ’13, 961-966.

Holman, D., and Vertegaal, R. Organic User Interfaces.
Communications of the ACM 51, 6 (June 2008), 48-55.

Ishii, H., and Ullmer, B. Tangible Bits: Towards
Seamless Interfaces between People, Bits, and Atoms. In
Proc. CHI ’97,234-241.

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D.,
Newcombe, R., Kohli, P., Shotton, J., Hodges, S.,
Freeman, D., Davison, A., and Fitzgibbon, A.
KinectFusion: Real-Time 3D Reconstruction and
Interaction Using a Moving Depth Camera. In Proc.
UIST 11, 559-568.

Liu, K., Kaleas, D., and Ruuspakka, R. Prototyping
Interaction with Everyday Artifacts: Training and
Recognizing 3D Objects via Kinects. In Proc. TEI ’12,
241-244.

Mistry, P., and Maes, P. WUW - Wear Ur World - A
Wearable Gestural Interface. In CHI EA ’09, 4111-4116.

Norman, D. A. The Design of Everyday Things. Basic
Books (AZ), 2002.

Papazov, C., and Burschka, D. An Efficient RANSAC
for 3D Object Recognition in Noisy and Occluded
Scenes. In Proc. ACCV ’10, 135-148.

Samsung Electronics. Samsung SmartView.
http://www.samsung.com/au/tv/my—-hub/apps—store/
smart-view.html. [Online; accessed 12-Aug-2013].

. Serrien, D. J., Bogaerts, H., Suy, E., and Swinnen, S. P.

The Identification of Coordination Constraints Across
Planes of Motion. Experimental Brain Research 128,
1-2 (Sept. 1999), 250-255.

Shahrokni, A., Jenaro, J., Gustafsson, T., Vinnberg, A.,
Sands;jo, J., and Fjeld, M. One-Dimensional Force
Feedback Slider: Going from an Analogue to a Digital
Platform. In Proc. NordiCHI ’06, 453-456.

Sterling, B. Shaping Things. MIT Press (MA), 2005.

Weiser, M. The Computer for the 21st Century.
Pervasive Computing, IEEE 1, 1 (2002), 19-25.

Wilson, A. Using a Depth Camera as a Touch Sensor. In
Proc. TABLETOP ’10, 69-72.

Xiao, R., Harrison, C., and Hudson, S. E. WorldKit:
Rapid and Easy Creation of Ad-Hoc Interactive
Applications on Everyday Surfaces. In Proc. CHI 13,
879-888.

Yi, B., Cao, X., Fjeld, M., and Zhao, S. Exploring User
Motivations for Eyes-Free Interaction on Mobile
Devices. In Proc. CHI 12, 2789-2792.

Zerroug, A., Cassinelli, A., and Ishikawa, M. Invoked
Computing: Spatial Audio and Video AR Invoked
Through Miming. In Proc. VRIC 11, 31-32.

http://www.samsung.com/au/tv/my-hub/apps-store/smart-view.html
http://www.samsung.com/au/tv/my-hub/apps-store/smart-view.html

	Introduction
	Instant User Interfaces
	Motivation and Benefits

	Related Work
	Instant UIs vs. Other Approaches
	Interaction with Everyday Objects and Surfaces
	Object Tracking and Manipulation

	Recognition, Tracking, and Touch Detection
	Initial Pose Estimation
	Object Tracking
	Touch Input and Touch Occlusion
	Evaluation of Tracking
	Controlled Environment

	Limitations of the System

	User Study: Interacting with Instant UIs
	Scenarios
	End-User Programming Techniques
	Participants, Procedure, and Setup
	Results and Discussion
	Touch Accuracy

	Limitations, Future Vision, and Challenges
	Summary and Conclusion
	Acknowledgments
	REFERENCES

