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Abstract

Programming is both an incredibly useful skill to have in any fields related to
STEM and one that is notorious for being difficult to learn. This seems to scare
off and discourage pupils and students alike. Since this problem has been well-
known since the very beginnings of widespread programming, many approaches
have been developed that try to both entice novices and make their entry into
programming as smooth as possible. The approaches that we present in this thesis
revolve around using robotics as a very palpable discipline of programming,
visual programming languages, tangible user interfaces and pair programming.
With regard to pair programming, we present a current interface design approach
called ‘behavior-centered game design’ and the concepts of ‘distinct actions’ and
‘distributed resources’ in the context of pair programming.

Based on our review of previous approaches, we present Tangible Robotics, a
tangible programming interface for Lego Mindstorms robots. It is a visual pro-
gramming language environment on a tabletop multi-touch display that utilizes
tangibles as representations of distinct types of actions that can be performed by
the robot.

To evaluate our interface, we further present the findings of a study into its in-
tuitiveness as well as possible improvements to the interface. Subsequently, we
outline a study that is able to investigate the effects of tangibles as a ‘distributed re-
source’ in the context of pair programming but that we were unfortunately unable
to perform due to the COVID-19 pandemic.
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Überblick

Programmieren zu können, ist sowohl eine in allen MINT-Disziplinen sehr
nützliche Fähigkeit als auch berüchtigt dafür, dass sie schwer zu erlernen ist. Dies
scheint sowohl Schüler als auch Studenten zu verunsichern und abzuschrecken.Da
dieses Problem schon seit Anbeginn der Programmierung bekannt ist, gibt es
auch viele Ansätze, um in Neulingen Interesse zu wecken und ihnen den Eintritt
in die Programmierung so reibungslos wie möglich zu gestalten. Die in dieser
Arbeit vorgestellten Ansätze drehen sich um Robotik als sehr greifbaren An-
wendungsbereich, visuelle Programmiersprachen, Tangible User Interfaces und
Paarprogrammierung. Hinsichtlich der Paarprogrammierung stellen wir einen
aktuellen Interfacedesign-Ansatz namens ‘behavior-centered game design’ und
die Konzepte ‘distinctive actions’ und ‘distributed resources’ im Kontext der
Paarprogrammierung vor.

Ausgehend von unserer Betrachtung vorausgegangener Ansätze, stellen wir
Tangible Robotics vor, eine Tangible-gestützte Programmierschnittstelle für
Lego Mindstorms Roboter, die eine visuelle Programmierschnittstelle auf einem
waagerechten Multi-Touch-Display ist und Tangibles als Repräsentation von
verschiedenen Arten von Roboteraktionen nutzt.

Um unser Interface zu evaluieren, stellen wir die Ergebnisse einer Studie über
seine Intuitivität sowie mögliche Verbesserungen des Interfaces vor. Anschließend
stellen wir noch eine Studie dar, die die Auswirkungen von Tangibles als ‘dis-
tributed resource’ im Zusammenhang der Paarprogrammierung hätte erörtern
sollen, die wir aber leider wegen Einschränkungen durch die Corona-Pandemie
nicht durchführen konnten.
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Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in colored boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.
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Chapter 1

Introduction

The ability to program has become more and more relevant Programming is both
a useful skill in many
fields and difficult to
learn.

today than it ever has been. It has transitioned from a skill
only possessed by expert professionals and enthusiasts to
one that proves useful in almost all STEM-related higher
education. ‘Construction Informatics’, ‘Computer Science
in Mechanical Engineering’ and ‘Geo Informatics’ are
only three examples of interdisciplinary modules1 by the
RWTH Aachen university that teach programming and
basic concepts of computer science to students in fields
outside computer science.
It is not surprising then that more and more voices call for
a stronger focus on computer science (and programming
in particular) in educational institutions at even younger
ages and more widespread than now. And even though
many schools offer computer science as an elective subject,
this offer appears to not be used as much as it could be. For
example, according to the Schulministerium NRW [2019],
only about 1.500 of over 75.000 pupils taking the Abitur in
North Rhine Westphalia in 2019 elected to take computer
science as one of their final exams. That makes it the least
popular of the main STEM fields.
This is often attributed to the difficulty that comes with
programming. And looking at the world of higher ed-
ucation where introductory programming courses see a
worldwide average failure rate of about a third (Watson

1https://online.rwth-aachen.de/RWTHonline/ee/ui/ca2/app/desktop/#/slc.cm.reg/student/modules



2 1 Introduction

and Li [2014]) appears to prove that right.
Learning to program is said to not just result in a practical
skill but also hone students’ critical thinking and problem
solving skills (Saeli et al. [2011]). And yet, the slow adop-
tion and failure rates quite clearly suggest that learning
and just as importantly teaching to program is not easy
and neither is motivating students to give it a try.
Thus, many concepts and tools have been developed to
both encourage potential programmers to try it and to
ease the earliest steps. We will showcase some of the most
common ones in the following paragraphs.

Part of the problem may be the way programming isProgramming
education often

starts with textual
languages.

traditionally taught in schools and universities. Quite
often, students’ first programming language is one of the
most popular textual ones, such as Java or Python. This
is especially the case in university introductory classes.
However, a very popular and well researched way of
easing the learning process in programming is using visual
programming languages instead.

VISUAL PROGRAMMING LANGUAGES:
Visual programming languages (VPLs) are all those lan-
guages in which programs are not created through typ-
ing key phrases and words but through a graphical in-
terface that can utilize spatial arrangement, graphical
metaphors or visual cues.
A common concept in VPLs is using blocks to represent
distinct actions.
Figure 1.1 shows an example of a VPL.

Definition:
Visual programming

languages

Rather quickly, visual programming languages have shownVisual programming
languages have key

advantages over
textual languages
that makes them
more suitable for

education.

to provide some key advantages over textual programming
languages.
VPLs have shown to

• improve user experience (Booth and Stumpf [2013])

• give an easier entry point for beginners and a
tighter development and feedback cycle (Powers et al.
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Figure 1.1: The visual programming language Scratch2 is
one of the most popular. It was developed by the MIT Me-
dia Lab

[2006]) as programs are always ready to run

• and be more engaging than textual ones in certain en-
vironments (Papert and Watt [1977]).

Early programming experience, especially with visual
languages, has shown to spark interest and motivation
to pursue programming even if knowledge transfer can
be limited due to visual languages obscuring some vital
aspects of textual languages (Franklin et al. [2016]).

When it comes to the nature of programming tasks that Robotics is a
preferred field of
application due to its
physicality.

will be tackled by novices, educational robots are a popular
target. They are used due to their close ties to real world
tasks, their feedback-driven nature and affinity towards
collaborative learning (Anwar et al. [2019]).

In formal, educational environments such as a schools’ Collaborative
learning in the form
of pair programming
is the predominant
form of programming
education.

computer science courses, it is rarely the case that stu-
dents are learning to program alone in front of a computer
or in teacher-centered lectures. Instead, the majority of
programming education follows a pair programming ap-
proach, meaning that two students team up in a practical
programming task. As such, pair programming clearly falls
into the category of collaborative learning.
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To gain insight into why pair programming is the predom-
inant form of teaching, we can look at the criteria for envi-
ronments in which collaborative learning makes the most
sense. According to a review of multiple studies by Preston
[2005], the criteria are:

• a complex or conceptual task

• problem solving is desired

• divergent thinking or creativity is desired

• mastery and retention are important

• quality of performance is expected

• higher-level reasoning strategies and critical thinking
are needed.

According to Preston’s review, all these criteria are metPair programming
leads to better
performance,

increased
understanding and

more enjoyment.

by pair programming. As a result, it appears that pair
programming leads to better resulting programs, de-
creased task completion time and increased understanding
of the coding process. Furthermore, students appear to
enjoy programming more and exam results and course
completion rates increase. All these effects are backed by
the findings of the published review of multiple studies
concerning pair programming.
However, there is also evidence that suggests that pairPair programming

can break down due
to a difference in skill
level or the nature of

the task.

programming is not always an effective method of teaching
programming. Chaparro et al. [2005] accompanied an Ob-
ject Oriented Programming postgraduate course and came
to the conclusion that differences in skill level strongly
affected participants’ collaboration, more precisely in that
the more experienced user would take the ‘pilot’ role of
programming more often. They further found that pair
programming was even detrimental for some tasks such
as debugging as participants felt it was tiring and less
enjoyable.

The Pyrus[2019] programming environment, which wePyrus offers a
game-like

programming
environment that

gives pair
programming more

structure.

will properly introduce in 2.1 “Collaborative Programming
and Behavior-Centered Game Design”, is an attempt
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at giving pair programming more structure through a
game-like development process. In it, researches identify
desirable behavior in participants and methods of promot-
ing such behavior. The methods the authors identified
for programming education were ‘distributed resources’,
the concept of distributing elements that are needed for
task completion between users, ‘enforced turn-taking’ and
programs consisting of ‘distinct actions’.
They found that users collaborated more equally and spent
more time planning.

While Pyrus had two participants sitting next to each other Tabletop multi-touch
displays lend
themselves to the
use of tangibles.

in front of separate computers using mouse and keyboard,
our work will focus on tabletop multi-touch displays
instead.
If turned on their side, large multi-touch displays afford
not just interaction with virtual elements on the screen
but also gain the functionality of a tabletop. Provided a
relatively large display, multiple users can then gather
around the tabletop and all interact with it at once.
Another advantage of a tabletop setup is that its very
nature affords placing objects on it. This makes tabletop
multi-touch displays a very popular environment for
tangible user interfaces.

TANGIBLE USER INTERFACES (TUIS):
Tangible user interfaces are interfaces that translate phys-
ical interactions with real world objects into virtual ac-
tions seamlessly. The real world objects that are used as
controls are referred to as tangibles.
Figure 1.2 shows three exemplary tangible user inter-
faces.

Definition:
Tangible user
interfaces (TUIs)

Probably the most common variety of tangibles in connec- PUCs are a form of
tangible that is used
on tabletop
multi-touch displays
and that can be
detected by the table.

tion with tabletop displays are objects that interact digitally
with the tabletop’s displayed content. In the case of multi-
touch displays, this can happen through touch input. An
example of this kind are passive untouched capacitive wid-
gets (PUCs) by Voelker et al. [2013]. PUCs are widgets with
multiple conductive pads on their underside that are con-
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Figure 1.2: Three tangible user interfaces of different design. a) The reacTable*
by Jordà [2006], a collaborative music instrument with a tabletop tangible user in-
terface. Changing an object’s position and orientation changed the instrument’s
sounda. b) SandScape by Ishii et al. [2004] uses sand as an input method as users
alter a sand model with their hands. The model is simultaneously scanned and
terrain analysis data is projected back onto itb. c) The Nintendo Wii Remote can be
seen as a commercial tangible user interface (e.g., when used by games as a golf
club)c

ahttps://www.flickr.com/photos/84466661@N00/539568298/
bhttps://commons.wikimedia.org/wiki/File:SandScape.jpg
chttps://commons.wikimedia.org/wiki/File:Wii Remote Image.jpg

nected to each other through conductive material. Their
electrical connection allows them to be picked up as touch
points by any multi-touch display using mutual capaci-
tance. As the pads are able to ground themselves, PUCs do
not require external grounding through a user or wire. If
PUCs have at least three conductive pads in a unique con-
stellation, they can be identified through the touch points
they create and their orientation can be extrapolated from
them.

While the behavior-centered game design approach byOutline of our work
and contribution Shi et al. [2019] and Pyrus, the result of applying this

mentality to programming education, offer an interesting
and valuable approach to programming, Pyrus has also
shown to be too restrictive for some users who complained
about the system being inefficient as a result.
A question that arises out of this is whether the positive
effects of Pyrus can be kept even if its restrictions are
lowered somewhat.
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In this paper, we propose a robotics programming envi-
ronment that aims to be as novice-friendly as possible.
In our approach at doing so, it is supposed to inherit
the positive effects of robotics and tangible user interfaces
while also providing a structured pair programming envi-
ronment that benefits from collaborative learning effects.
We will combine the aspects of ‘distinct actions’ and ‘dis-
tributed resources’ to achieve said structure.
In the evaluation of our environment, we are particularly
interested in user collaboration but also in how much time
they spend planning compared to testing and debugging.
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Chapter 2

Related work

In this chapter, we will present other research projects Overview
that revolve around the intersection of tangible interaction,
robotics, programming education and collaborative learn-
ing.
We will begin by investigating when collaboration in pair
programming breaks down. Additionally, we look at an
approach that aims to prevent that from happening.
Next, we will present research that indicates that program-
ming education also benefits from the use of robotics as it
is a field of programming that is very connected to the real
world. Moreover, we will also look at research into tangible
user interfaces, both in general collaborative learning envi-
ronments and in the field of robotics.
Lastly, we outline the impact of all these findings on our
own work and where it fits into the existing research.

2.1 Collaborative Programming and
Behavior-Centered Game Design

As mentioned, pair programming can sometimes break
down due to discrepancies between partners’ skill level
and the nature of the task at hand. While pairing individ-
uals with equal programming knowledge would address
some of these shortcomings, it would not address the issue
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that debugging poses. On top of that, this can only be done
in formal environments with an instructor. In informal
environments where pairs would form naturally, this is not
possible.

Instead,Behavior-centered game design identifies obsta-
cles, desirable behaviors when encountering obstacles
and methods to encourage said behavior. current research
intent on improving pair programming focuses on building
game-like programming interfaces that facilitate active
collaboration and encourage a longer planning phase
before programming in order to reduce the time spent
debugging.
Shi et al. [2019]ave developed a behavior-centered gameh
design approach for this. In this approach, game designers
identify obstacles in the learning process and the low-level
behaviors that they want to encourage in players in order
to overcome these obstacles and reach high-level learning
objectives.
In the case of collaborative programming education, Shi
et al. identified programming newcomers omitting a plan-
ning stage and therefore having a poorer understanding
of a problem as one of the obstacles. Another identified
obstacle was that novices did not collaborate in an effective
way due to a lack of structure in the pair programming
approach.
Based on this, Shi et al. aimed to encourage users to plan
more and participate equally in problem solving. The
methods they employed for this purpose were giving
participants discrete actions to choose from, a failure con-
dition to encourage planning and enforced turn-taking as
well as distributed resources in the form of programming
constructs to encourage more equal participation.
They designed the Pyrus programming interface, dis-Pyrus presents

restrictions that lead
to more planning and

more equal
collaboration but also

result in frustration.

played in figure 2.1, alongside an equivalent interface that
did not enforce these restrictions and compared them in a
user study. Even though they did find that Pyrus encour-
aged novices to plan more and participate more equally in
the problem solving, many participants also complained
that the introduced constraints were frustrating and made
Pyrus less efficient than pair programming.



2.2 Using Robotics in (Collaborative) Programming Education 11

Figure 2.1: The Pyrus interface, which displays §1) the cur-
rent player’s turn, §2) the pilot’s number of remaining ac-
tions, §3) the number of cards in the deck, §4) the prob-
lem prompt, §5) the editor, §6) available actions (i.e., write,
consume, and discard), §7) test cases, §8) buttons to run or
submit code, §9) the partner’s hand, §10) the player’s hand,
and §11) a button to end the turn. §6 and §11 are omitted
in the co-pilot’s interface, since the co-pilot cannot perform
actions.

2.2 Using Robotics in (Collaborative) Pro-
gramming Education

Another common sight in early programming education
is robotics. All around the world, robots are a popular
means of teaching the basics of programming to novices
and children and the demand for educational robots
appears to still be increasing. The international non-profit
STEM organization FIRST that focuses on hosting robotics
competitions registered 660 000 students aged 4 to 18 for
its 2019-2020 season alone[2020].
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The popularity of robotics in schools can be attributed toRobots lend
themselves well to

programming
novices due to their

feedback-driven
nature and their
recourse to real

world tasks.

educational robots having a host of benefits for school chil-
dren as reported by Anwar et al. [2019]. In a systematical
review of 147 studies on educational robots that took part
between 2000 and 2018, they found that education robots
helped students understand abstract concepts, created a
learning environment that was both feedback-driven and
of a collaborative nature and gave them the opportunity
to work on real-world problems. As a result, using edu-
cational robots lead to students demonstrating improved
knowledge. In addition, their findings indicated that
educational robots improved students’ attitude towards
science, engineering and robots.

As it is also a discipline of programming, robotics educa-Robotics also
positively affect

learning in
collaborative

settings.

tion also appears to be affected positively by applying the
concept of collaborative learning, which a study by De-
nis and Hubert [2001] showed. The study took place in a
primary school and analyzed the behavior of groups of 2
to 4 pupils who were given the task of building and pro-
gramming a robot. They observed that during the activity,
pupils always worked together and communicated about
their task. They also observed that if provided with a pre-
built robot, pupils did not collaborate less and that conflicts
about the task influenced the outcome positively.

2.3 Tangibility in a Collaborative Learn-
ing Environment

A reason why robotics education works well in collabora-
tive learning environments may be the inherent tangibility
of robotics. Groups of novices that learn about robotics are
bound to interact with not just the intangible programming
process but also the very tangible robot.
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Tangible user interfaces have been shown to enhance col- Tangible user
interfaces improve
task performance
and boost learning
effects if used in a
perceptual mapping
as well as in a more
abstract mapping.

laborative learning environments in a multitude of ways.
A study by Do-Lenh et al. [2010] had groups of participants
work on the design of a warehouse with either a tangible
interface or with pen and paper. Figure 2.2 shows par-
ticipants using both interaction methods. In the tangible
condition, a scaled down version of the warehouse is con-
structed out of plastic shelves, loading docks and the like.
Each element has a unique visual tag that is recognized by a
camera mounted above the model. Visual feedback such as
whether a forklift can fit between two shelves is projected
onto the model.
When comparing the two interaction methods, the re-
searchers found that participants using the tangible user in-
terface were able to, on average, find more solutions and a
better final solution. While they did not find significant dif-
ferences in participants’ understanding of the subject and
problem-solving ability, some of the same researchers lead
by Schneider et al. [2011] later repeated the study with a
multi-touch interface instead of the pen and paper design
process. They found that groups using the tangible user
interface outperformed the groups that used an interactive
multi-touch interface in the same performance metrics as
before. Further, they did find a significantly higher learn-
ing effect for the tangible interface compared to the multi-
touch interface.
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Figure 2.2: a, b): Participants using pen and paper to de-
sign a warehouse layout. c, d): Participants using tangible
‘shelves’ with an interactive warehouse simulation for the
same task.

MAPPING:
In the context of interfaces, mappings describe the rela-
tionship of control elements, performed actions and their
intended result.
Well-designed, natural mappings are immediately un-
derstood by users and can be achieved through

• spatial analogies: the control layout mimics the
spatial attributes of the intended action or result

• perceptual analogies: the control elements mimic
the appearance of the controlled object. Perceptual
mappings are always spatial mappings.

• biological or cultural analogies: the control layout
leverages biological or cultural norms (e.g., order
from top to bottom)

Definition:
Mapping
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Another study that is worth mentioning in this context is TUIs also work with
non-spatial, abstract
mappings.

Combinatorix, also by Schneider et al. [2012]. Based on the
findings of their previously mentioned work, they explored
whether the same effects can be observed if tangibles are
not used in a spatial or perceptual mapping but for a com-
plex concept. The developed Combinatorix system taught
students the abstract concepts of combinatorics by associat-
ing them with tangible objects. In a small, informal study,
users enjoyed using Combinatorix and found it helpful.
The success of Schneider et al. in mapping tangibles to
abstract concepts leads to the question of whether the
complex topic of programming could also be taught well
through tangible user interfaces.

2.4 Tangibility in Robotics Education

Approaches of bringing programming into the physi- Robotics education
benefits not just from
the tangibility of
robots themselves
but also from tangible
user interfaces.

cal world of learners with the help of tangible objects
have been around for decades. According to a historical
overview by McNerney [2004], the Logo programming lan-
guage of the 1970s and the robots it controlled were among
the first of these approaches. The idea of tangible objects as
blocks of a programming language first showed up in the
late 1990s.
Compared to other programming situations, robotics al-
ready affords an additional tangibility due to programmers
having a clear, physical representation of the result of their
program’s commands and their goal due to them being an-
chored in the real world. It is therefore not surprising that
a lot of interest in designing just as tangible ways of pro-
gramming robots has existed for quite some time now.

One approach to make the robot programming task more Using the robot itself
as a tangible is a
natural way of
interaction.

tangible is using the robot as part of the programming
process itself.
RoboTable2 [2011] is a tangible programming environment
of this category. Sugimoto et al. used a multi-touch table
and a robot that, if placed on the table, could be tracked.
Robot movements could be programmed directly by
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moving the robot by hand. If a robot was moved so that an
obstacle fell into its virtual ‘cone of sight’, the multi-touch
interface gave users the option to program behavior for
when the robot sees the obstacle again. An exemplary task
can be seen in figure 2.3.

When comparing RoboTable2 to an equivalent interface
that only used the multi-touch table, the researchers found
that participants found it easier to both tell the robot when
to do something and what. Moreover, users were more
satisfied with the capabilities of their programs.

While RoboTable2 looked at the effect of tangible interac-
tion on programming learning for single individuals, there
is also the question of whether tangible user interfaces
also hold up in collaborative programming environments.
The two studies described in the following paragraphs are
aiming to shed light on this question.
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Figure 2.3: The interface of RoboTable2. Users were asked
to program the robot to navigate a maze.

In a series of studies by Horn et al. [2009], researchers Tangible program
blocks are more
inviting than digital
ones and lead to
more collaboration.

compared Tern, a tangible programming interface, to a
graphical one using mouse and keyboard input in the
informal environment of a robotics exhibition. Figure 2.4
shows the programming blocks that were used by Horn et
al. for Tern. Each block represents one robot action such as
movement in a direction or playing a whistling sound.

Their findings suggest that the tangible interface was
more inviting and more suitable for child use, both two
aspects with great importance in informal environments
that require potential programming learners to engage
out of their own interest. They further found that while
Tern was not more apprehensible or engaging, groups
of visitors collaborated more actively, which suggests
that the positive effects of collaboration in programming
education might be enhanced through the use of tangible
user interfaces.
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Figure 2.4: Tangible programming blocks as used in Tern.
They are shaped like puzzle pieces and connect to each
other to form a chain.

The concept of physical blocks representing singularTangible program
blocks also improves
novices’ self-beliefs.

programming commands was also used in a study con-
ducted by Melcer and Isbister [2018]. They created Bots &
(Main)Frames, a programming game that used physical
blocks to dictate a robot’s movements as well as more
complicated blocks such as a loop or a call to a self-defined
function. While no actual robot was used, users navigated
a virtual robot avatar through a series of puzzles. It is
further noteworthy that users were limited in the num-
ber of commands they could use in their program and
additional function. Figure 2.5 shows the tangible user
interface of Bots & (Main)Frames. The main program and
the additional function are declared by placing a block on
the respective position on the table and by hooking further
programming blocks onto them.

In a 2x2 study, they compared the effects of individual
vs. collaborative work and mouse vs. tangible interface by
comparing Bots & (Main)Frames to an equivalent graphical
programming interface that was operated by mouse input.
In accordance with Horn et al., they found that using
the tangible interface resulted in users having improved
programming self-beliefs (such as debugging self-efficacy
or programming interest) and higher situational interest
and feelings of enjoyment. While they did find that
collaboration reduced users’ programming anxiety, they
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Figure 2.5: Bots & (Main)Frames used tangible program-
ming blocks for movement as well as function calls and
loops. They were chained together through hooks.

also noted that the use of a single access point in the form
of one mouse resulted in notably worse performance in
all of the above mentioned metrics. They attribute this to
a tendency of one user dominating control of the single
input device.
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Chapter 3

Implementation

Tangible Robotics, the robotics programming environment Overview over the
interfacethat we present in the following chapter, was built with

a very specific use case in mind. We aim to investigate
the effects of using tangibles as distributed resources in
a pair programming robotics learning environment. This
imposes a set of specific requirements on the system.

Firstly, the interface needs to be very easy to understand The interface needs
to be simple to usedue to it being employed in a learning environment with

users who have not interacted with it before and may have
very little or no prior programming knowledge. For this
reason, we decided to implement a visual, block-based
programming environment in which blocks mirror distinct
actions. As mentioned in 1 “Introduction”, this is common
among programming environments tailored to novices as
it engages novices more and leads to users achieving their
programming goals quicker and more frequently. These
effects were also investigated and confirmed by Price and
Barnes [2015] in a study directly comparing both methods.

Secondly, it must support both a tangible-based input in It needs to support
tangibles and
multi-touch

which the tangibles govern a set of resources in a way that
makes it unavoidable for pairs to work together and a more
traditional but directly comparable input method. As a
consequence, the programming interface was implemented
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in Swift with the MultiTouchKit framework by Linden
[2015] which supports PUCs as introduced by Voelker
et al. [2013]. It runs on a horizontal, large, multi-touch
display. Using MultiTouchKit enables the software to
uniquely identify tangibles and their positions when
placed on the display. The first attempt at linking tangibles
to a distributable resource was to link each tangible to
a specific program block and distributing the tangibles
among users. This idea was in the end dropped in favor of
another method due to MultiTouchKit and the display only
allowing for a limited number of tangibles to be reliably
detected. Instead, each tangible was assigned to one type
of block. As long as programming tasks were designed to
require blocks of multiple types and the tangibles for these
types were distributed among users, this meant that no
user could solve tasks without any input by the other user.

Thirdly, the system has to be able to translate the sequenceIt needs to create
code that is

executable by a robot
of program blocks that users specify into code that can
be conveniently executed by a robot. The robot we chose
to use was the popular Mindstorms Education EV31, a
robotics kit by the Lego company. Our software generates
C code that utilizes c4ev32’s EV3-API for robot-specific
functions.

Lastly, it was desirable that the interface still possessed
a level of functionality that allowed for more complex
programs to be created so that users were not limited in
their doing and that the interface’s value for future use was
preserved.

Based on these requirements, we implemented the system
that will be described in this chapter. Figure 3.1 shows an
example program on the interface in multi-touch mode.

1https://education.lego.com/en-us/middle-
school/intro/mindstorms-ev3

2http://c4ev3.github.io/
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3.1 Hardware

The following section will describe the hardware that was
used to put the Tangible Robotics software into practice.
The software runs on an Apple iMac Pro, however any
device running macOS Catalina3 can conceivably be used.
The iMac is connected to an 84 inch Microsoft Surface
Hub4 over USB and HDMI in order to receive touch input
and display the user interface on the Surface Hub. The
Surface Hub is oriented horizontally.

The tangibles that are used in Tangible Robotics areWe used PUCs on a
Microsoft Surface

Hub 84”
PUCs that follow the design of Voelker et al. [2013]. This
means that they each have three conductive pads that
are connected to each other through conductive copper
foil. The copper foil also wraps around the hilt so that
the user’s body capacitance can be used to aid grounding
them when touched. Each PUC has a unique constellation
of conductive pads by which it can be identified. The
tangibles are made out of plywood, feature a square base
and a cylindrical hilt. A symbol representing the type of
blocks that is managed by the tangible as well as the type’s
name are fixed to the top of the hilt. Figure 3.2 shows the
five tangibles that were later used in the pre-study.

For our robot we chose the Lego Mindstorms EV3 forPrograms made with
the interface run on a

Lego Mindstorms
EV3 through a C API.

its adaptability with a wide array of possible sensor and
motor configurations. The configuration that we chose for
our study can be seen in figure 3.3 and consists of an ‘intel-
ligent brick’, two large motors powering two front wheels,
a small motor powering an arm at the front of the robot,
an ultrasonic sensor, a touch sensor, a light sensor and
a gyroscope. The ‘intelligent brick’ is a micro-controller
equipped with buttons, a display, a speaker, four input and
four output ports.
Furthermore, the commonness of Lego Mindstorms in the

field of educational robotics (e.g., Klassner and Anderson
[2003], Barnes [2002] and Kim and Jeon [2008]) and the

3https://www.apple.com/macos/catalina/
4https://www.microsoft.com/en-us/surface/business/surface-hub
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Figure 3.2: These five tangibles were used with Tangible
Robotics, each representing one type of program block

Figure 3.3: Lego Mindstorms robot in the configuration
used for Tangible Robotics
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EV3’s product life span of 7 years at time of writing have
led to a large number of programming tools for the robotics
kit. It can be programmed with community-developed
APIs in languages such as Python, Java, C++ or Swift and
many proprietary, graphical environments.5.
We chose c4ev3 as the programming tool for our interface,
a software package specifically for the EV3 that includes an
API in the programming language C as well as an uploader
and was developed at the TH Aschaffenburg.

3.2 MultiTouchKit

As alluded to before, MultiTouchKit (MTK for short) is
a framework that enables the detection of tangibles as
well as general touch events on multi-touch displays
such as the Microsoft Surface Hub. It extends Apple’s
SpriteKit6, which is a framework meant for 2D game
creation. As it is based around a tree-structure consisting of
two-dimensional assets such as shapes, texts and graphics,
it is well suited for our purposes. A program written with
the help of SpriteKit has multiple scenes with each scene
acting as the root node of a tree-structure. The tree can
be filled with specialized nodes such as SKSpriteNodes
which are nodes that consist of an image loaded onto
the screen. Each scene also gives the programmer the
ability to specify a variety of callback functions. With these
functions, programmers are able to implement program
logic that will be executed in between every drawn frame.

The MTK extends on this by providing touch input data
from the screen, tangible data and additional callback
functions.
It receives information about touch events in JSON format
from the multi-touch device, interprets the data and gives
access to it. This information includes the position and

5http://www.legoengineering.com/alternative-programming-
languages/

6https://developer.apple.com/spritekit/
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time of the touch event as well as its type (e.g., a tap or
part of a dragging motion). During processing, it looks
for the input pattern that would be created by a registered
tangible and keeps track of known tangibles in similar
fashion to regular touch events and provides the resulting
data to the scene.
In addition, the MTK provides convenient multi-touch
enabled graphical interface elements such as buttons,
switches or sliders.

3.3 Front End

GRAPHICAL USER INTERFACE:
In the field of computer science, a graphical user inter-
face (short GUI) is a user interface that lets humans inter-
act with a system by manipulating graphical elements.
Such elements may be but are not limited to windows,
buttons or icons.
In the case of our proposed system, the GUI provides all
interaction points that are not related to the tangibles or
robot themselves.

Definition:
Graphical User
Interface

The following section will detail the design of the user The GUI consists of
permanent elements
for general functions
and program blocks
that are dynamically
added and removed
and are each
equivalent to an
action of the robot.

interface that was written in Swift with the MultiTouchKit
and that allows users to create the programs they want the
robot to execute.
We will commence by showcasing the GUI elements that
are permanently seen on screen. We will then present the
seven program block types that were designed in the scope
of this paper. Each block type represents one distinct action
by the robot such as reading a sensor or making a decision.
While seven blocks were designed, only five are featured
in the version of the Tangible Robotics interface that was
used for evaluation due to performance and reliability
concerns with too many passive tangibles at once.
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3.3.1 Permanent GUI Elements

The main view of the Tangible Robotics interface is a
MTKScene in full screen mode. The MTKScene class is
part of the MultiTouchKit. This scene provides the phys-
ical space on which program blocks can be created and
manipulated. The methods of creation and manipulation
are dependent on whether the interface is set to run in
tangible mode or in multi-touch mode. Figure 3.1 also details
all permanent elements of the scene when in multi-touch
mode.

In multi-touch mode, new program blocks can be createdProgram blocks are
either added through

buttons or by
‘stamping’ them onto

the screen with
tangibles.

through labeled, touch-activated MTKButtons that each
correspond to one type of program block. The buttons are
located at the bottom of the screen and split into two stacks
that are each positioned roughly where one of two users
would stand. Upon being pressed, a new program block of
that type is created in the middle of the scene. Blocks can
then be moved around the screen by dragging them with a
finger.
In tangible-mode on the other hand, the role of said buttons
is given to the tangibles. When a tangible is initially placed
on a part of the scene that is not occupied by another GUI
element, a new program block is added at the tangible’s
position. As each tangible represents one type of program
block, the created block is of the type that the tangible
represents. Program blocks are moved by placing the
tangible of corresponding type on them and dragging it
over the screen.

Created program blocks can be removed again by dragging
them onto a trash symbol in the middle of the lower part of
the screen. There are two additional buttons right under-
neath the trash symbol. The first one compiles and uploads
the user-specified program to a connected robot. Feedback
on the process’ success is shown in a pop-up window
underneath the button. The second button reverts the
interface back to its initial stage, meaning that it removes
all program blocks from the screen.
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The last permanent GUI element is an object of the Every program starts
with the start block
that is permanently
on screen.

StartBlockNode class. While it shares some similarities
with other program blocks and therefore also inherits from
the same BlockNode superclass, there is only ever one on
screen, in a fixed place on the left side at middle height.
The start block is a rectangle with the word ‘start’ written
on it.
If the interface is used with all seven implemented program
block types, the start block’s only other feature is an arrow
that sticks out to the right of the block and has a large,
triangular head. The head (referred to as control flow con-
nector from here on) can be moved around the screen. The
arrow’s line will constantly connect the block to its control
flow connector. The start block serves as the entry point
of each user-specified program, its control flow connector
needs to be connected to the first block that the user wants
the robot to execute. The details of connecting blocks are
detailed in 3.3.2 “Commonalities & the Superclass”.
In the version of Tangible Robotics that was used for eval-
uation however, the start block serves a slightly different
purpose. When debating which block types to remove with
minimal loss in versatility, we noticed that many common
robotics use-cases used a single loop in which a sequence
of actions was performed. As a consequence, we removed
the loop block type and instead modified the start block to
execute the connected program blocks in a loop instead of
only once. In order to convey this behavior, we added a
round arrow symbol that was pointing at its own tail to the
start block’s control flow connector.
Additionally, the user can specify for how many seconds
the loop is supposed to run. This was done to prevent
the program from running indefinitely. The time can be
specified through an input receptor as described in detail in
3.3.2 “Commonalities & the Superclass”. It manages the
integer variable ‘seconds’.
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3.3.2 Program Blocks

As mentioned, any user-specified program consists of pro-Overview over the
program blocks gram blocks of various types. Each block is representative

of a distinct action that is defined by its type. Since all
blocks have some common requirements such as needing
a way for the user to specify an action’s parameters,
all program blocks are subclasses of one superclass that
implements shared elements and logic.
The seven program blocks presented in this study are
the input, output, wait, operator, conditional, loop and
variable block. They are realized through the sepa-
rate classes InputBlockNode, OutputBlockNode,
WaitBlockNode, OperatorBlockNode,
ConditionalBlockNode, LoopBlockNode and
VariableBlockNode which all inherit common fea-
tures from the BlockNode class. The following few
sections will go into a detailed description of the common-
alities and their implementation in the joint superclass as
well as each block’s function and unique characteristics.

Commonalities & the Superclass

The BlockNode superclass includes logic that pertainsFeatures that are
shared by all

program blocks like
parameter input

methods or control
flow management

are implemented in a
superclass

to the base block, control flow management, block mode
switching, block output & parameter management and
general code generation. All visual elements that are
inherited from the BlockNode class can be seen in figure
3.4 in the form of an input block.

The base shape of each program block is inherited from the
BlockNode superclass and consists of a square block with
triple rounded corners. The same block type graphic that is
also printed onto the respective tangible can be seen in the
middle of each program block’s base.

Any program’s control flow is established through controlBlocks connect to
each other through

control flow
connectors that

dictate the execution
order of the

implemented
program.

flow connectors, triangular sprites pointing to the right
that are connected to the middle of the right side of each
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1
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3
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Figure 3.4: An input block. Shown elements: 1) base
block including current mode name and block type sym-
bol, 2) mode selector button, 3) mode context menu (ap-
pears when 2 is pressed), 4) control flow connector, 5) out-
put connector, 6) input receptor

program block through a line.
While a control flow connector is dragged around the screen,
a gray, transparent box appears to the left of each program
block and disappears once the movement is over. The
box has about the same height and width as a control flow
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connector. If a control flow connector is dropped onto such a
box, it is positioned in the box and the connector’s parent
block remembers said other block as its successor in the
control flow order. Moving the control flow connector away
from the block resolves that link.
During movement of a block’s base, its control flow connector
either stays in position if it is connected to another block or
maintains its position relative to its base block if not.
If a block is removed from the scene, any control flow
connector that was linked to it is reset to its default position
relative to its base block.

To cut down on the number of needed tangibles, similarBlocks have modes
for different actions

of the same type.
Modes can be

changed through a
context menu on

each button.

actions were grouped together into block types and blocks
were given a ‘mode’ that determined which specific action
was executed.
A block’s mode can be changed through a button labeled
‘mode’ that is hooked to the left side of the base block’s
top side. Pressing the button reveals a new context menu
that unfolds to the right of the ‘mode’ button. It consists
of a vertical stack of buttons that are each labeled with a
respective mode. If a button also contains a small arrow
to the right, said mode has submodes that are presented if
the button is pressed. By pressing a button that has no ar-
row, the button’s mode is selected and the context menu is
hidden again. The context menu also retracts if the block is
moved.
A block’s mode is also written out above the block type
graphic.
An example showing the different modes of an input block
and the mode selection menu can be seen in figure 3.4.

In order to fine-tune an action, the user has to be able toActions can be
fine-tuned through

parameters.
specify parameters for it. A typical example is a motor’s
speed when told to start turning or the amount of time for
which the execution time should be halted by a wait block.
In Tangible Robotics, these parameters can be specified
through input receptors. These consist of a small circle that
has an outline around the top half. They are connected
to the left side of the bottom of their base block through
lines on which a label is situated that states the parameter’s
name.
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In the middle of the input receptor there is a button that is
labeled with the parameter’s current name. Pressing the
button brings up an input method that corresponds to the
parameter’s data type.
Parameters can have the following data types and corre-
sponding input methods:

• boolean, which is simply toggled between ‘true’ and
‘false’ by pressing the button.

• string, which reveals a virtual keyboard in US-layout
and input field on screen. Pressing the enter key
closes the keyboard and transfers the input field’s
content into the parameter.

• integer, which reveals a virtual number pad and input
field that behave analog to the virtual keyboard.

• operator, which reveals buttons labeled ‘==’, ‘!=’, ‘¡’,
etc. Pressing a button transfers its content into the
parameter and removes all buttons again.

• percentage, which reveals a touch-sensitive slider that
goes from 0 to 100 and a confirmation button.

• motorSpeed, which reveals a touch-sensitive slider that
goes from 0 to 50 and a confirmation button.

• colors, which reveals a set of toggles for the colors that
the light sensor can distinguish between and a con-
firm button. The parameter is the set of colors with
an active toggle.

• ports, which reveals a set of toggles for the robot’s out-
put ports and a confirm button. The parameter is the
set of ports with an active toggle.

• port, which reveals buttons for each output port. The
buttons function the same as the operator buttons.
Contrary to ports, a port’s value is only a single but-
ton instead of a collection.

• frequency, which reveals buttons for some predeter-
mined frequencies that are supported by the ‘intelli-
gent brick”s speaker. They function the same as the
operator buttons.
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While the background color of input receptors is generally
gray, some have specific colors to indicate their data type.
integer, percentage and motorSpeed receptors are green, string
receptors red and boolean receptors are blue.
If a block changes its mode, its parameters are changed
with it.

For blocks whose action creates an output, such as an inputBlocks can have
output data that can

be used as a
parameter for other

blocks.

block as it reads sensor data, the superclass also provides
an optional output connector. Output connectors have the
form of a circle and are connected to the right side of the
bottom of their program block. They are slightly smaller
than the input receptors and follow the same data type
color scheme although in darker shades.
Output connectors can be dragged around the screen by
touch gestures and when dropped onto an input receptor,
they connect to it, creating a data flow from one block to
another. They can only connect to blocks that are a direct
or indirect successor to them in the control flow tree to
ensure that blocks do not receive input from a block that
has not been executed yet. The effect of connecting an
output connector (of block a) to an input receptor (of block b)
is that the output of block a’s action will be used as block
b’s parameter during execution. The manually entered
value of the parameter will be overwritten.
During block movement, output connectors behave the same
way as control flow connectors.
If a block is deleted or its output connector is moved off of
an input receptor, the input receptor’s parameter is reset to its
prior, manual value. If a block changes modes, its output
connector assumes its default position relative to the block.
Since changing a block’s mode also changes its parameters,
any output connector connected to the block also resets to its
default position.

The last purpose of the superclass is to handle the genera-Blocks generate the
C code that

corresponds to their
action.

tion of the actual C code that will be run on the robot. For
this purpose, every block possesses the addCode() func-
tion that calls another addCodeBlockSpecific()
function. Each program block type overrides the
addCodeBlockSpecific() function and fills it with
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block type and mode appropriate logic for program
generation as detailed in 3.4.1 “Program Generation”.
After calling the block specific code generation function,
addCode() looks for whether the program block has a
control flow successor and if it does, it calls the successor’s
addCode() function. The code generation is kicked off by
the main scene’s Compile & Run button which in turn calls
the start block’s addCode() function.

Input Block

The input block type’s purpose is the provisioning of sensor The input block
provides sensor data
to other blocks.

data to other program blocks. The source of the data can be
determined through its mode. There is one mode for each
connected sensor except the light sensor. The light sensor
has three modes, one each for measuring color, reflected
and ambient light. Additionally, the motors connected to
the ‘intelligent brick”s output ports also include sensors
for motor speed and rotations. These are available through
their own modes.
The input block always has an output connector for the
measured sensor data and only has a parameter if it is in
one of the motor modes. In that case, the parameter is of
the port type and defines the output port from which the
data is to be sourced.

Output Block

Any data that is output by the ‘intelligent brick’ is handled The output block
outputs data to
connected motors, a
speaker, etc.

through the output block. The present modes are four mo-
tor modes and a speaker mode. Modes for display and LED
output for the ‘intelligent brick’ were removed due to the
instability they could cause in possible programs.
The four motor modes are ‘start’, ‘stop’, ‘turn for seconds’
and ‘turn for degrees’. They share the ports type ‘ports’ pa-
rameter for the addressed ports, the motorSpeed type ‘speed’
parameter for the speed that the motor should turn at and
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the boolean type ‘forward’ parameter for the turning direc-
tion. The ‘turn for seconds’ and ‘turn for degrees’ modes
also have a respective integer parameter for ‘seconds’ and
‘degrees’.

Wait Block

The wait block only has one mode and one parameter, anThe wait block halts
program execution. integer type ‘time in ms’ parameter. It pauses program ex-

ecution for the given amount of time specified by ‘time in
ms’.

Operator Block

Basic mathematical and logical operations such as multipli-The operator block
conducts

mathematical and
logical operations.

cation and conjunction can be achieved through the operator
block. It has modes for each of the four basic mathemati-
cal operations ‘division’, ‘multiplication’, ‘subtraction’ and
‘addition’ as well as for the logical operations ‘conjunction’,
‘disjunction’ and ‘negation’. In the mathematical modes, it
has two integer parameters and an output connector of inte-
ger type. The configuration is analog for the ‘conjunction’
and ‘disjunction’ modes but with boolean data types. The
‘negation’ mode only has one boolean parameter.

Conditional Block

A program is capable of making decisions with the help ofThe conditional block
can make decisions

based on a multitude
of conditions.

conditional blocks which check for whether a condition is
met or not. They differ from any other blocks in that they
have an extension to the right side of their base block as
can be seen in figure 3.5. The rectangular addition allows
for two additional control flow connectors to be connected to
the block, one with a green check mark graphic on it and
one with a red cross on it. Blocks that are connected to the
check mark control flow connector will be executed if the con-
dition is met, blocks connected to the red cross control flow
connector will be executed if the condition is not met. Blocks
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Figure 3.5: A conditional block, compare to other blocks, it
has an extension to the base block and two additional con-
trol flow connectors.

connected to the regular control flow connector are executed
after the chain of blocks that are connected to the applicable
branch of the conditional block.
The type of condition that is checked against is determined

by the block’s mode. It has a mode for direct boolean in-
put with a respective boolean input as well as a ‘compare
numbers’ mode with two integer inputs and an operator in-
put that will be used to compare the two integer numbers.
Furthermore, the conditional block has modes for the same
sensor data as the input block with additional operator and
integer parameters that enable a comparison between sen-
sor data and a value.

Loop Block

The loop block allows for the inclusion of loops in programs. The loop block allows
for program sections
to be executed
multiple times.

As such, before each iteration a loop condition is checked.
When a loop iteration is done and as long as said condition
is still met, another loop iteration starts. The loop block is
similar in design to the conditional block in that it also has



38 3 Implementation

the same extension. However, it only has one control flow
connector for the blocks that the loop should iterate over. In-
stead, the loop block also has an output connector with type
integer that provides other blocks with the number of itera-
tions that have been executed so far.
It has almost the same modes as the conditional block with
additional ‘time’ and ‘iterations’ modes. The ‘time’ mode
receives the overall execution time of the loop as an integer
parameter in seconds. The ‘iterations’ mode has three in-
teger parameters that determine the first and last value to
iterate over and the iteration step size.

Variable Block

Variable blocks supply the user with a way to store and sub-The variable block
provides variable

access.
sequently access data.
The variable’s data type, and whether a variable is stored
or accessed, is determined by the block’s mode. There are
modes for ‘reading’ and ‘writing’ integer, boolean, and string
variables.
The block has a string parameter for the variable’s name
and a parameter of the type that matches the current mode
for data entry when in one of the ‘write’ modes. When it
is in one of the ‘read’ modes, it has a string parameter for
the variable’s name and an output connector of the type that
matches the current mode that outputs the variable’s value.

3.4 Back End

The back end of Tangible Robotics handles the interpreta-The C code
generated by the

program blocks is
written to a file, cross

compiled and
uploaded to the

robot.

tion of the program block sequence that is connected to the
start block as well as its conversion into C code. Further,
the C code needs to be compiled into an ELF executable for
Linux that runs on ARM processors and uploaded to the
Lego Mindstorms robot. The code that will be generated
heavily utilizes the EV3-API provided by c4ev3. The rea-
son we chose c4ev3 for our back end was that it provided
both an API that could access close to all of the robot’s
features and a simple way of compiling and uploading
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code to the robot through console commands instead of an
IDE. Furthermore, running C code that utilizes c4ev3 can
be achieved on the EV3 robot without having to alter its
firmware or operating system as is common among other
programming languages for the EV3.

3.4.1 Program Generation

As mentioned in 3.3.2 “Commonalities & the Superclass”, Each block writes its
specific code to a
shared variable and
prompts its
successor to do the
same.

the generation of C code is mostly handled by the su-
perclass BlockNode and its subclasses. Code generation
is kicked off through an interface button and starts with
the start block. Each program block type overwrites the
superclass’s addCodeBlockSpecific() function that
generates the specific code that is unique to the block
type. This function will be called by the addCode()
before handing over code generation the program block’s
successor if it has one. The generated code is managed by
a separate CFileIO.swift file that stores the generated
C code in a string variable and provides static functions for
simple management of the code. It also provides functions
for writing the code to a file in order for it to be compiled.

As the start block is always the first block to execute its If only five tangibles
are used, the start
block will loop its
successors’ actions.

addCodeBlockSpecific() call, it adds lines to the C
code that are necessary for setup, such as setting up the
sensor ports with the correct sensors and sensor modes or
resetting the motors’ rotation count. The EV3-API provides
functions for that. If only five tangibles are used and the
user-specified program blocks are therefore enclosed in a
loop, it also adds said loop in multiple lines of code. While
the rest of the program blocks generate their lines of code
in a single pass from top to bottom without having to jump
up again, the start block has to jump up into the loop it
created in order to fill it with the code of its successor(s).
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Most program block classes’ addCodeBlockSpecific()Conditional and loop
blocks call their

respective branches
to generate their

code before handing
code generation off
to their successor.

function starts off by going through all existing block
parameters and checks whether they receive data from
an output connector or from the manual entry option. It
continues with a case distinction between block modes
and adds a few lines to the C code that usually consist of
calls to the EV3-API as many block actions map well onto
actions that the API provides a simple function for.
Since they have additional control flow connectors, the
conditional and loop block type behave differently. The
conditional block for example constructs the condition that
is meant to be checked based on the mode and using the
mode’s parameters.
Next, it adds the header of an ‘if’ or statement, with the
condition integrated into it, to the C code.
If program blocks are connected to the block’s ‘true’ or
‘false’ control flow connectors, their respective addCode()
functions will also be called to create the body of the ‘if’
and ‘else’ statement. Lastly, the ‘if’ statement is closed.

Once all successors of the start block are finished generat-
ing their C code, it is written into a .c file and a set of shell
commands is executed that relates to the compiling and up-
loading process.

3.4.2 Program Execution

The finished .c file first needs to be compiled using a crossThe finished program
is uploaded and can
be executed through
the robot’s interface.

compiler for Linux on ARM. Carlson-Minot Inc.7 provides
an adaption of CodeSourcery’s GNU/ARM toolchain for
use with macOS X. After that, the ev3duder tool that comes
with c4ev3 can be used to both upload the resulting .elf file
as well as make and upload a launcher file that enables the
program to be started from the ‘intelligent brick”s interface.
The upload can be done over USB, Bluetooth or WiFi. In
our experience, hot plugging a USB cable proved to be both
the most reliable and quickest method.

7http://www.carlson-minot.com/available-arm-gnu-linux-g-lite-
builds-for-mac-os-x
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Chapter 4

Evaluation

The interface was designed with the intention of testing Overview
the usefulness of tangibles as distributed resources in the
process of learning to program. Based on the findings
of Shi et al. [2019], it can be assumed that among other
things, distributing the programming resources among
both participants of the pair programming exercise may
lead to more time spent planning and more collaboration
between users.
Our aim is to find out to what degree these effects can also
be observed if the design element of distributed resources
is recreated in a very physical way of programming that
combines the inherently tangible field of robotics with
tangibles. Further, we are also interested in how users
interact with the distributed resource depending on the
nature of its representation.

While a study was designed around this aim, it could The originally
intended study could
not be executed due
to COVID-19.

unfortunately not be executed in the scope of this Bachelor
thesis due to governmental restrictions in light of the
COVID-19 outbreak in late 2019 and early 2020. As the
study required close interaction between two participants,
it was deemed to be too risky with regard to COVID-19’s
infectiousness. The study’s focus on physical interaction
also made it impossible for it to be adapted into an online
study, which is why we decided to also design and execute
an online pre-study.
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The pre-study focuses on evaluating the intuitiveness ofAn online pre-study
was executed

instead.
different aspects of the tangible-supported programming
interface. Its goal is to both improve the interface in general
but also to highlight issues that potential users might have
with the tangible interaction as they may be relatively
unfamiliar with tangibles. Such issues could have the
potential to skew the results of the subsequent study.

4.1 Pre-Study

The pre-study was designed to investigate the intuitivenessOverview over the
pre-study’s goals and

methods
of various elements of the interface design. As it needed
to be conducted without physical interaction between
participants and investigators, it was decided that the
study should be conducted over the internet.
For this purpose, a video was created that showcased
the interface and all its elements. The tangible-supported
variant of the interface was used for the video. Participants
then individually watched the video while in a voice call
with an investigator. Throughout the video, the partici-
pants were instructed to stop the video at predetermined
points and were then asked questions about the shown
situations. The questions focused on the participants’
intuition of how to perform a given task.
The answers to each question were recorded and se-
mantically equivalent answers were grouped together
into equivalence classes for analysis. In the subsequent
paragraphs we showcase the results of said analysis with a
focus on situations in which participants’ cognitive model
of the interface differed significantly from the actual de-
sign. We also reflect on some qualitative feedback given by
participants and draw conclusion from the collected data
with the target of improving the interface’s intuitiveness.
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4.1.1 Research Questions

In the pre-study, we were evaluating the intuitiveness of a
list of interface elements and design choices through ques-
tions tailored to those specific elements. The following
paragraph lists these elements and section 4.1.5 “Tasks” de-
tails the angle of questioning that we took to evaluate them.

The interface aspects that questioning touched on were:

• the symbols and names representing each block type
that are printed onto each tangible

• the creation of a control flow between program blocks

• generic block elements such as a block’s input recep-
tors

• handling of unexpected behavior

• block-specific elements such as the three control flow
connectors of the conditional block type

4.1.2 Setup

The pre-study’s setup consisted of the participant sitting in
front of a desktop or laptop computer and joining a voice
call with an investigator through the video conferencing
tools Skype or Zoom. The video used 2160p footage and
was rendered in 1080p and 30 frames per second to cut
down file size.

As the pre-study was conducted online, the setup unfortu-
nately differed slightly between study runs as participants
had different computer setups at home. We tried to
circumvent potential connection issues by providing the
1080p video in download form rather than as a stream.
Additionally, we prompted participants to view the video
on a large screen if available and to check their audio levels
before starting the video.
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The conference tools’ respective built-in recording function
was used to record the entire study run.

4.1.3 Participants

Overall, 13 people took part in the pre-study. They wereCollecting
demographics of

participants
aged 19 to 57 (M = 23, SD = 12.3), 9 male and 4 female.
6 Participants were studying or working in the field of
computer science, an additional 4 had an engineering or
mathematics background.

On a Likert scale of 1 to 5, with 1 ‘highly disagree’ and 5Measuring
participants’ prior

programming
knowledge

being ‘highly agree’, participants answered the question
whether they possessed extensive programming knowl-
edge in a range from 1 to 5 (M = 4, SD = 1.4). 5 participants
answered with a 1 or 2. When asked to specify their
programming experience, answers ranged from never
having programmed before over introductory courses to
experience in multiple programming language types.

On the same Likert scale, when asked if they possessedMeasuring
participants’ prior

robotics knowledge
extensive robotics knowledge, participants gave answers
ranging from 1 to 3 (M = 2, SD = 0.8). 10 participants
answered with a 1 or 2. When asked to specify their
robotics experience, answers ranged from none to having
programmed Mindstorms robots in a university course.
The responses to both Likert scale statements are shown in
figure 4.1.

4.1.4 Procedure

Each study run began by the investigator informing theIntroducing
participants to the

study
participant about the premise of the study and its connec-
tion to the full study. More specifically, the investigator
told participants what role the interface would play in the
full study and inform them of the purpose of the pre-study.
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Figure 4.1: Participants’ answers to being asked whether
they agreed that they possessed extensive programming &
robotics knowledge on a Likert scale of 1 to 5 with 1 being
’highly disagree’ and 5 being ”highly agree’

Following that, participants were asked to sign a consent Consent form and
demographic
information

form (see A “Pre-study Documents”) that included infor-
mation on the study such as the procedure, its risks and
how the collected data would be handled.
In order to be able to contextualize the pre-study’s findings,
participants were asked to provide some demographic
information concerning gender, age, occupation and prior
experience in programming and robotics (see A “Pre-study
Documents” for the used form). Prior knowledge was
determined through participants ranking the statements
“Before this study, I possessed extensive programming
knowledge” (S1) and “Before this study, I possessed exten-
sive robotics knowledge” (S2) on a Likert scale from 1 to
5 with 1 representing ‘highly disagree’ and 5 representing
‘highly agree’.

During the main section of the study run, participants Participants watch a
video detailing the
interface and answer
questions.

would watch the video and pause playback when the
video prompted them to do so. During each pause, the
investigator read out the questions relating to the shown
situation and the participant gave their answer to them.
If participants’ answers were unclear, the investigator
asked them to further elaborate on them. Participants were
allowed to repeat parts of the video if something seemed
unclear to them.
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Once all study runs were completed, the resulting audioAll answers to each
question were

recorded, coded and
analyzed.

material was examined and for each question, all possi-
ble answers were collected and coded. Each resulting code
represented one group of semantically equivalent answers.
Questions 12 and 13 were split into subquestions that each
related to one specific design element.
Afterwards, the appropriate codes for each question in each
study run were determined. If participants gave answers
that included elements of multiple codes, this was also
noted and the distinction was made between participants
giving multiple codes in one train of thought, participants
taking pauses to think of alternative answers and partici-
pants withdrawing earlier answers in favor of another.

4.1.5 Tasks

As mentioned in 4.1.1, the questions that participantsList of investigated
elements and why
they were chosen.

answered were split into five categories. These categories,
why we chose to investigate them and in which way will
be listed in the following paragraph. The full script to the
video can be found in A “Pre-study Documents”.

• The symbols and names representing each block
type that are printed onto each tangible
It is important that users have a clear association of
actions they want the robot to take and by which
block these actions are represented.
One question regarding the block types was about
asking the user to intuitively pick a tangible they
would assume an action to be associated with.
Further questions were asking the user to speculate
on what actions they would suspect in a given block
type.

• The creation of a control flow on the canvas
The control flow of a program, meaning the order
in which its statements are executed is key to a
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program’s function. As such, it should be clear to
even new users how to create such a control flow.
To evaluate the interface’s method of control flow
creation, we asked the participants how they would
intuitively manipulate the interface to create an
arbitrary control flow. Furthermore, after they were
shown how to create such a control flow, they were
also asked how they would intuitively edit an exist-
ing control flow, specifically on how to add a block in
between two other ones.

• Generic block elements such as a block’s input
receptors
Most program blocks provided by the interface
use similar or the same design elements for related
functionality. An example for this are the parameters
for each block’s action that are always represented
by circles hanging off the bottom of the block that
include a button that initiates manual data entry.
Due to elements like these being used repeatedly in
the interface, users will interact with them on a regu-
lar basis, highlighting the need for these elements to
be intuitive.
Participants were asked how they would try to
change an action’s parameter as well as a block’s
mode. Additionally, they were asked to speculate
on which modes a particular block may have and
what effect connecting a block’s output connector to
another block’s input receptor may have.

• Handling of unexpected behavior
Since the early stages of familiarizing oneself with an
unknown interface are often of a trial-and-error kind,
users are likely to run into behavior that they did not
expect. To avoid such situations in the future, it is
critical for the user to understand how they occurred
in the first place.
During early interactions of outsiders with proto-
types of the interface, it became clear that two such
situations that occurred frequently were that users
tried to move blocks with the wrong tangible and that
users tried to connect a block’s output connector to
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blocks that were not descendants of said block. The
fact that they did not connect usually only became
apparent when one of the blocks was moved and the
output connector did not move the way it would if
connected.
In order to investigate whether participants would be
able to understand why these unexpected behaviors
occurred, we simulated both these situations in the
video and asked participants to explain their cause.

• Block-specific elements such as the three control
flow connectors of the conditional block type
Lastly, the start and the conditional block have el-
ements that are unique to them. As users have
to inevitably interact with the start block and the
conditional block is essential for any branching pro-
gram, their additional elements should be easy to
understand and use.
To see if this is the case, participants were asked to
explain the conditional block’s necessity for its three
control flow connectors and the start block’s design,
especially in regard to the symbol on its control flow
connector and its ‘seconds’ parameter.

4.1.6 Results

In total, 13 participants each answered 16 questions,Key figures
making for a total of 208 answers. The answers could be
categorized into 59 equivalence classes in total with 2 to 7
classes per question (M = 3, SD = 1.4).
The following paragraphs will detail the results of the
coding process, present some statistical data about the
impact of prior knowledge.
When asked after the study, the majority of participants ex-
pressed that they overall found the interface to be intuitive
once it and the situations in each question were explained
to them. However, many questions were answered in
multiple, very differing ways, which is why the last section
will go into conclusions that can be drawn from the coding
of individual questions.
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Coded Answers

Once all answers for a particular question were examined, Coding process
the codes representing the equivalence classes were created
and each answer was assigned one or more codes. For each
question, the code that represented the actual behavior
of the interface was designated as QxC1 with x standing
for the question’s ID, any further answers were assigned
ascending codes QxC2, QxC3 and so forth. In two cases,
participants were unable to give any prediction as to how
to manipulate the interface or what an element represents.
In these cases, their answers were given the code QxCN for
‘no answer’.
All codes can be taken from figure 4.2. The ‘Q ID’ column
indicates the ID of each question as shown in the video
script (see A “Pre-study Documents”).

Figure 4.3 shows the coding of the participants’ answers. Coding results
It also shows how many answers included QxC1 for each
question, which is the code that was always assigned to
answers that described the actual interface’s behavior.
Quite clearly, the results for each question differ signifi-
cantly (range: 1-13, M = 8.5, SD = 3.2 ). While it is to be
expected that participants will give very varied answers if
asked to predict the behavior of an interface, these results
clearly show that some design elements are more intu-
itively understood than others. Section 4.1.6 “Implications
of Individual Questions” looks at individual questions
with unusual coding patterns and draws conclusions from
the coded answers to these questions.
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Figure 4.3: Coding of the participants’ answers; + indicated same train of
thought; , indicates pausing to think between codes; - indicates revision of
an answer

Impact of Prior Knowledge

Since the full study will focus on learning effects in the
field of programming, it is of interest how novices in
the field of programming and robotics fared in compari-
son to more experienced participants. For this, we look
at the relationship between prior knowledge and an in-
dividual’s number of answers that included the code QxC1.

As can be seen in figure 4.4, participants with more Prior programming
knowledge lead to
more success in
predicting the
interface’s behavior.

previous programming knowledge generally gave more
answers that included code QxC1. The Pearson correlation
coefficient is 0.68, indicating that these two factors are
moderately, positively correlated. It is however notewor-
thy that participants who answered ‘1’ on the Likert scale
concerning prior programming knowledge on average
achieved a higher score than those who answered ‘2’ or ‘3’.
Whether this is attributable to outliers could be ascertained
by a study run with a larger sample size.

When looking at the relationship between prior robotics Prior robotics
knowledge lead to
more success in
predicting the
interface’s behavior.

knowledge and occurrences as shown in figure 4.5, there
also appears to be a correlation between prior knowledge
and occurrences of code QxC1, although it seems slightly
less pronounced (Pearson correlation coefficient is 0.62).



52 4 Evaluation

Figure 4.4: Number of answers that included code QxC1 by
self-reported programming knowledge according to S1

Figure 4.5: Number of answers that included code QxC1 by
self-reported robotics knowledge according to S2
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Implications of Individual Questions

Question 1 asked participants to pick which tangible they Participants were
unclear on the
meaning of ‘input’
and ‘output’.

would expect to use to make the robot move. As the robot’s
movements are motor-based and the motors are connected
to the intelligent brick’s output ports, the expected answer
was the output tangible. Only 4 participants actually
answered this way while 6 chose the input tangible instead.
It is noteworthy that while some participants did give
answers pertaining to multiple codes, no answer included
both the output and input tangible. Upon being asked
about the rationale behind their choice, the participants
answering ‘input’ all stated that they suspected that they
needed to give the motors input.
This confusion was likely caused by the terms input and
output being dependent on one’s viewpoint. In this context,
the motor’s input is the intelligent brick’s output.
Another question that also highlights participants’ con-
fusion between the input and output types was question
8. In it, participants speculated on which modes an input
block may have. At this point in the video, participants
had already received the information that the input type
of blocks read sensor information and that an output block
had modes concerning the robot’s motors and speaker. Yet
still, five participants expected the input block to have the
same modes as an output block. 4 of these 5 participants
also scored their robotics knowledge as ‘1’ on the Likert
scale. A way of solving this issue may be to redesign the
symbols for these two types in a less abstract way that also
indicates that the intelligent brick’s perspective is being
taken. This could be achieved by replacing the rounded
square symbolizing a port with a simplified image of the
intelligent brick.

When asked what behavior the participants expected to be The wait type can be
misinterpreted as
stopping the motors.

represented by the wait tangible in question 2, about half
of the participants correctly assumed it would interrupt
the current program’s execution. However, almost as
many expected it to stop the robot for a given time as
well. Since an already running motor is not affected by
the executed program until it is addressed by an output
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blockoutput block again, motors do not halt while the
program execution is halted. As the video shown to
participants did not go into the concrete semantics of
each program block, participants were not expected to
know this. It does show however, that the distinction
between halting the program execution and the robot does
not come naturally to users who are new to robotics and
even those that estimated their robotics knowledge at a
higher level (Pearson correlation coefficient of 0,21 for the
relationship between participants’ self-reported robotics
knowledge and whether their answer included code Q2C1
or not).During the interface introduction in the full study,
investigators should pay special attention to explaining
this behavior.

Another question with notable results is question 4, inSome participants
found it more intuitive
to create control flow

by ordering blocks.

which participants were asked how they would instinc-
tively try to create a control flow among blocks. In the
interface, this is achieved by dragging the control flow
connector from one block to an area to the left of another
program block that is highlighted during any flow connec-
tor’s movement. 5 participants said that they would drag
the control flow connector while the remaining 8 stated that
they would try to move the blocks themselves and order
them from left to right by desired execution order. While
this is currently not supported by the programming inter-
face, it may be a worthwhile addition as this method of
control flow creation can work alongside the existing one.
The same goes for the method of dropping a program block
into an existing control flow that is described by code Q5C4.

A similar situation is revealed by question 6, which hadTo change parameter
values, participants

would press
elements other than

the button that
contains the value.

participants speculate on how to manually enter a value
into a program block’s parameter receptor. Only 5 partic-
ipants intuitively would have tried to press the display of
the current value which is embedded into a button that
brings up an input method depending on the parameter’s
type. In contrast, 9 participants (including one that later
revised their answer) intuitively would have pressed the
receptor that encloses the button or the label that describes
the parameter. One participant who stated that they would
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press the label mentioned that the label’s shadow made
it look like a button that could be pushed in. Designing
a flatter label graphic may fix this. Alternatively, either
or both the receptor and button could be made to also
bring up the correct input method provided that no output
connector is connected to the input receptor.

Question 11 is both the question with the least amount In cases of
predictable user
error, the interface
needs to be more
informative.

of participants answering in accordance with code QxC1
and the question with the most identified codes which
warrants further investigation into participants’ answers.
The video first showed how someone tried to connect
the output connector of a block a to an input receptor
of another block b that was not a direct descendant of a.
Due to said connection not existing, the output connector
did not snap into place and connect with block b’s input
receptor. Later, when block b was moved, unlike how a
connected output connector was shown to behave, the
output connector of block a did not move with the input
receptor of block b. Participants were asked to explain this
behavior.
Only one participant was able to identify the issue with
other participants having very varied answers. The most
commonly mentioned suspicion was that the connec-
tion did not form due to incompatible data types. It is
noteworthy that this answer was only given by partic-
ipants with self-reported programming knowledge of 4
or above, indicating that this theory likely draws from
prior programming experience. Other somewhat common
answers conjectured that the blocks themselves were not
compatible with each other or that this was a bug.
This and the fact that the amount of answers that included
more than one code was higher than for any other question,
suggests that users should be provided further feedback
when trying to establish a data connection between blocks
that do not have a control flow connection. This could be
achieved by drawing the user’s attention to the current
program’s control flow, for example by letting block a’s
control flow connector wiggle up and down a few times.
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When confronted with the conditional type of blocks inThe purpose of a
condtional block’s

regular control flow
connector is unclear.

question 12 and asked to explain its design, participants
were generally successful in guessing the function of the
two control flow connectors that relate to the true and false ark
of the conditional. However, only 4 participants identified
the control flow connector situated at the top of the block
as the connector that dictates further program execution
after the respective conditional set of actions has finished
execution. There was only a weak correlation between
giving answers including code Q12 3C1 and self-reported
programming knowledge (Pearson correlation coefficient
of 0.24), indicating that even the more experienced partici-
pants struggled with this interface element. When asked
for feedback, 2 participants reported that they would have
found the conditional block more intuitive if said control
flow connector was protruding more to the right than the
two other connectors.

Finally, participants were asked to speculate on the natureThe start block’s
‘seconds’ parameter

is misleadingly
named.

of the start block. It forms the entry point of every program,
has a control flow connector with an image of an arrow form-
ing a loop on it and an integer parameter that is labeled
‘seconds’. Participants were generally able to identify
the control flow connector’s function successfully with only
4 participants either overlooking or misinterpreting the
arrow symbol as a button that would restart a running
program.
The ‘seconds’ parameter determines the overall runtime
of a program before it gets terminated. When asked
about how the parameter is to be understood, however,
8 participants answered that it was a delay before the
program’s execution. Only 2 participants’ answers hinted
at code Q12 2C1. This suggests that the parameter’s label
‘seconds’ may be too ambiguous, which is supported by
one participant suggesting to rename it to ‘timeout’.
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4.1.7 Discussion

The pre-study’s goal was to identify interface elements that Summary of the
pre-study’s
conclusions

were unintuitive to users that were completely unfamiliar
with the interface. This was done in preparation for the
full study. While participants in the full study will get an
introduction to the programming interface beforehand,
these findings will help make the interface more easily
understandable and therefore minimize the risk of partici-
pants being distracted by complications with the interface.

During the pre-study, we found that some graphical
elements of the interface such as labels, parameter names
or symbols caused confusion among participants and
may benefit from design changes. We also found possible
shortcuts in control flow manipulation that could enable a
more intuitive interaction.

Even though we consider the pre-study to be a success due Limitations of the
pre-study.to the many design cues derived from its data, we did run

into limitations during its execution. A higher number of
participants for example would improve the confidence in
our findings. This is especially true with regard to un-
represented groups, such as participants with very high
robotics knowledge (no participant reported their knowl-
edge as higher than 3 on the Likert scale) or robotics knowl-
edge that they rated higher than their programming knowl-
edge.
Furthermore, evaluating a touch interface remotely with-
out participants having the possibility to manipulate it, lim-
ited us to the point of only being able to evaluate how par-
ticipants would initially interact with the interface. Any
further interaction once participants had followed their first
instinct could not be investigated. It would have been espe-
cially insightful if we would have been able to see how par-
ticipants would react if their initial reactions did not lead
them to their desired outcome.
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4.2 Study Protocol For Full Study

As mentioned, the programming interface was designedOverview over the
full study in order to investigate the effects of using tangibles as a

distributed resource in the context of a pair programming
learning environment. For this, the tangible-enabled inter-
face has to be compared to a multi-touch only interface,
which is the conventional input method in the context of
large multi-touch tabletop displays.
For the study, a second interface was designed that differs
in not using the tangibles. It recreates their block creation
functionality with on-screen buttons that create a new block
in the middle of the screen and their tangible-specific block
movement functionality with simple finger-dragging.

The differences that we want to quantify include how
much time both subjects spend actively engaging with the
interface compared to taking a supportive role for their
partner. Furthermore, we will measure time spent in the
conventional stages of solving a programming problem:
‘problem understanding’, ‘planning’, ‘implementation’
and ‘testing and debugging’. Lastly, we plan to quantify
the user experience and subjective advantages of one
system over the other as perceived by the users and
participant interaction with the distributed resources.

Unfortunately, the user study’s execution was canceled
in the light of the COVID-19 virus outbreak in late 2019
and governmental restrictions taking effect in early 2020.
Nevertheless, the study’s hypotheses and methodology
are described in detail in the following section for future
reference in hopes that the study can be executed at a later
date.
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4.2.1 Hypotheses

In the distributed-resources scenario, we will aim to dis-
prove the following null-hypotheses:

H1 The difference in how much time each user spends
actively engaging the interface will not decrease.

H2 Users will not spend more time in the ‘planning’ stage
of programming.

H3 Users will not spend less time in the ‘testing and de-
bugging’ stage of programming.

H4 There will not be a quantifiable difference in reported
user experience and resulting improvement of self-
efficacy.

H5 There will not be a perceivable difference in how
users interact with distributed resources.

4.2.2 Methodology

Independent & Dependent Variables

Independent:

I1: The method of placing and moving a program block.

The first method will be using on-screen buttons for You either use
on-screen buttons or
tangibles to add
blocks to the canvas.
Each tangible or
button represents
one block type

placing a new program block and finger-dragging
on a block for its movement. The buttons will be
divided in two groups. Each group will be on screen
in front of one user with the users standing next to
each other. The first group (placed at the bottom of
the screen to the left) will include the ‘Output’ and
‘Wait’ buttons, the second group (to the right) the
‘Input’, ‘Operator’ and ‘Conditional’ buttons. This
distribution was chosen so that for a possible solution
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for each task, roughly the same number of blocks
from each group would be required. Additionally,
blocks from the right group would be required at the
beginning of the program and vice versa.

The second method will be using passive tangibles
that each correspond to one type of program block.
New blocks will be created by placing the tangible
on a free space on the table. Existing blocks will be
moved by placing the tangible that corresponds to the
block’s type onto the block and dragging it. The tan-
gibles will be divided into the same groups that the
buttons were divided into. The first group will be
placed in front of the left user and the second group
in front of the right user.

Dependent:We will measure
engagement time for

each partner and
time spent in

programming stages. D1: The amount of time that each partner spends actively
engaging the interface.

It is considered an active engagement if the user di-
rectly manipulates interface elements (using the ta-
ble’s touch input or a tangible to place, move or re-
move a program block, using touch input to modify a
block’s mode or using touch input to modify a block’s
input or output variables) or indirectly interacts with
the interface (pointing, discussing interface elements
or possible solutions). Time will be measured in sec-
onds

D2: The amount of time spent in each programming
stage.

The stages are ‘problem understanding’, ‘planning’,
‘implementation’ and ‘testing and debugging’. Time
will be measured in seconds.
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Tasks

The users will be provided with an assembled Lego Mind- Participants will
program the robot
with actions of five
types.

storms EV3 robot that is equipped with three motors, a
sonar sensor, a touch sensor, a gyroscope sensor and a light
sensor. The programming interface will provide them with
five program block types either through five on-screen but-
tons or five tangibles. The provided blocks will be:

• an ‘input’ type, capable of reading the robot’s sensors
and passing their value along to other blocks

• an ‘output’ type, capable of addressing the robot’s
output methods such as its motors or speaker

• a ‘wait’ type, allowing the robot to wait for a given
time

• an ‘operator’ type, providing basic mathematical and
logical operations and outputting the result to other
blocks

• a ‘conditional’ type, allowing the robot to make deci-
sions based on values passed along from other blocks
and sensor inputs.

While additional variable and loop blocks were imple-
mented in software, it was decided to not include them
in the study due to concerns about the MultiTouchKit’s
lowered tangible detection reliability and performance
if used with more than five passive tangibles at once as
well as concerns about overburdening users who may be
completely new to programming.
Since this limitation decreases the range of writable pro-
grams, the tasks were chosen to be easily performable
without these additional blocks.
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They will use the developed programming interfaces toThe tasks that will be
performed perform two tasks:

T1: Program the robot to move forward. Every second,
it should make a sound based on its distance to an
object in front of it. The closer the object is, the higher
the pitch should be.

T2: Program the robot to drive on the table without
falling off.

For each task, they will have 20 minutes.

Participants

The participants of the study will be students with no to
little prior experience with robotics, the Lego EV3 in partic-
ular and the programming interfaces provided by Lego.

Experimental Design

The study will follow a between-subjects design. Half of
the user pairs will perform T1 without tangibles and T2
with tangibles. The other half will be using multi-touch
only for T1 and the tangibles for T2. It will be decided at
random which pair will perform which task with tangibles.
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Experiment Setup

The programming interface will be displayed on an
84-inch Microsoft Surface Hub at its native resolution
of 3840x2160. The Surface Hub is oriented horizontally
and supports up to 100 touches at once. Its touch inputs
are transmitted to a virtual machine running Microsoft
Windows 10 on an Apple iMac Pro via USB. The iMac also
runs the software that provides the programming interface.

The setup is located in a corner of a shared research space.
The users will be standing next to each other on one of the
long sides of the display. Figure 4.6 shows two users using
the interface in multi-touch mode as they would during
the study.

The tangibles consist of a square baseplate and a round,
centered handle on top, both made of plywood. On the
underside, each tangible has three soft, conductive pads
which are connected to each other with copper foil that is
stuck to the underside of the baseplate. On each tangible,
the positions of the pads form a relation unique to the
tangible. This relation is used to identify the tangible based
on the touch inputs that the pads are creating.

The robot is connected to the iMac via USB in order to ex-
port the created program onto it and then unplugged in or-
der to run the program without the physical limitation of a
USB tether.
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Figure 4.6: Two users at the study space in front of a Mi-
crosoft Surface Hub using Tangible Robotics in multi-touch
mode.

Experiment Procedure

Before the experiment can begin, participants will be
asked to fill out an informed consent form (see B “Study
Documents”). The experiment will commence with theIntroducing

participants to the
study and the

interface

instructor guiding the users to their designated places
and a short introduction to the robot by the instructor. In
this introduction, the instructor will explain the robot’s
sensor and motor configuration (i.e., port connections and
attached sensors).

Afterwards, the programming interface will be explained.
The following points will be included in the explanation:

• Each block has a connector that connects to another
program block when dragged into an area to the left
of it. The second block’s action will be executed after
the first block’s action.

• Some blocks have an output connector that can pass
the output of the block’s action along to another
block.

• Each block can have input receptors that allow setting
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parameters for the block’s action. Each input receptor
has a manual input method corresponding to its in-
put type (integer number, color, etc.) and can accept
another block’s output if the latter’s output connector
is dragged onto the input receptor.

• Some blocks have different modes that determine
their action and come with their own set of inputs and
potentially an output.

• These is a ‘start’ block that marks the start of the pro-
gram and will loop the user-definable part of the pro-
gram. The block has a connector to mark the start of
the user-defined part as well as an input receptor that
determines how many seconds the program will loop
for.

• The block types as mentioned under 4.2.2 “Tasks”.

Depending on which input method will be used for task
T1, the introduction will proceed with an example program
in order to demonstrate how to add a new program block,
how to move or delete an existing one as well as how to
plug the USB cable into the robot and start the generated
program on the robot.

Once any further questions are answered, the instructor Participants work on
task T1 first, then
switch input methods
and work on T2.

will read out task T1 to the users and allow them to start
working on it.
After the first task is completed or the specified time is up,
the input method will be changed and quickly explained
and the second task T2 will be read out.
Participants will be given a data sheet (see B “Study Doc-
uments”) with the most important technical information
about the sensors and outputs.
During the users’ work on the tasks, the instructor will be
available for questions regarding the robot’s sensor and
motor configuration, the data types of input receptors and
output connectors and the description of program block
modes. Questions concerning the behavior generated by
possible block sequences will not be answered.
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To conclude the study run, the users will answer a ques-Questionnaire and
demographical

information
tionnaire (see B “Study Documents”) about their experi-
ence with both systems. For each system, they will rate the
following statements on a Likert scale from 1 to 5 with 1
representing “highly disagree” and 5 representing “highly
agree”:

• The interface was easy to understand.

• Using the interface was frustrating.

• I was able to easily translate my intentions into ac-
tions.

• My understanding of programming has improved.

• Working in a pair made me more confident in our pro-
gram.

Furthermore, the questionnaire will have a field for com-
ments.
We will also collect demographic information through a
form (see B “Study Documents”):

• Age

• Gender

• Course of studies

• Prior programming knowledge (“Before this study,
I possessed extensive programming knowledge” on
the same Likert scale as above and a free field for a
short description)

• Prior robotics knowledge (“Before this study, I pos-
sessed extensive robotics knowledge” on the same
Likert scale as above and a free field for a short de-
scription)
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Data Analysis Methods

Each user session at the table will be recorded both in
video and audio form. The camera will be positioned
in a way that allows for both users’ hands to be seen at
most times, especially during interactions with the dis-
play. The instructor will note whether a task is fulfilled in
case the camera does not record the robot during execution.

The recordings will then be transcribed, and a coding
scheme will be applied to each line of dialog. The cod-
ing scheme’s codebook will consist of the four stages of
programming as mentioned in 1.1. and each line will be
assigned one or no code. The transcript’s time stamps will
then be used to identify the time spent in each program-
ming stage.

Furthermore, a second coding scheme that identifies user
interactions will be applied. Its codebook will consist of
‘no active interaction’, ‘active interaction by user 1’, ‘active
interaction by user 2’ and ‘active interaction by both users’.
Again, the time spent in each state will be determined
through time stamps.

For each answer to the questionnaire, the mean value
and standard deviation will be calculated to allow for
comparison between both interfaces.

Lastly, field notes and the video recordings will be used to
analyze participants’ interactions with the distributed re-
source. Special attention will be given to whether partici-
pants only use the resources that were implied to be ‘theirs’,
whether they will use each others’ resources or whether
they will ask their partner to use them.
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Chapter 5

Summary and future
work

The following chapter will conclude this thesis. We com-
mence by summarizing our work and contributions and
end by giving a prospect on how our work can be extended
in the future.

5.1 Summary and contributions

We began our work by studying existing methods of ‘Distinct actions’,
‘distributed
resources’ and
‘enforced turn-taking’
help structure pair
programming better.

easing the barrier of entry into programming. The tools
that we identified as being common in the field and in
research were visual programming languages, robotics
as a field of application, tangible user interfaces and pair
programming. Pyrus[2019] showed that pair program-
ming can benefit from the constraints of ‘distinct actions’,
‘distributed resources’ and ‘enforced turn-taking’ even
though these restrictions may also cause frustration.

We then set out to design and implement our own pro-
gramming interface designed for novices based on these
findings. Our interface presented a visual programming
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language on a large tabletop multi-touch display where
each element was mapped to a discrete action by a robot.

In our study design, we proposed to distribute the re-The proposed study
investigates the

effects of applying
‘distinct actions’ and

‘distributed
resources’ through

tangibles.

sources needed for successful task completion among
both users. In the study, we would choose the types of
program block and therefore the types of actions that
the robot can perform as our distributed resource. We
would implemented this setup through two separate
testing conditions. In the first condition, we would use
tangibles as physical manifestations of each block type.
For the second condition, we would instead use on-screen
buttons for each type. The intent of the study would be to
explore whether the design aid of ‘distributed resources’
can benefit from an implementation using tangibles.
Further, while the resources would be distributed in both
scenarios, we did not plan on enforcing strict ‘possession’.
Instead, we would hope to observe if there are differences
in how users interact with a distributed resource if it is a
real world object instead of a virtual, on-screen one.

Due to COVID-19, we were unable to perform said studyThe performed
pre-study helped us

uncover some
shortcomings in our

design.

and performed a pre-study instead. The goal of the
pre-study was to evaluate our proposed interface’s intu-
itiveness. We found several instances where participants’
intuitive assessment of a situation or interpretation of a
design element did not coincide with reality and drew
conclusions from each of these occurrences as to how the
interface could be further improved.

5.2 Future work

While the current situation prevented our planned studyPerforming the study
from being executed, this could obviously be done in the
future once collaborative in-person user studies can be
executed again without serious safety concerns.
When looking purely at the proposed interface, the resultsReplace PUCs with

active tangibles of the pre-study and the resulting, concrete solutions to the
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interface’s issues could be applied.
Further, the interface could benefit from replacing the
passive PUCs with a variant of tangible that is less restric-
tive when it comes to the number of tangibles that can
be tracked. That way, all seven designed program blocks
could be used.
An example for such tangibles are PERCs (Voelker et al.
[2015]), which are active derivatives of PERCs that use
a field and a light sensor for tracking whether they are
placed onto a screen and transmit said data to the appli-
cation. Based on when a PERC is reporting its placement
and when the screen detects touch points, it can identify
tangibles uniquely. Using this technique of identification
is more reliable than using the touch points’ relationship
to each other and therefore allows for more tangibles to be
used.
Additionally, some blocks could be extended through more
modes. The input block, for example, could be made to
support old Mindstorms NXT 2.0 sensors or the sensor
port could be specified as a parameter to support multiple
sensors of the same type.

Provided that our proposed tangible-supported interface Transfer
game-design
restrictions to other
TUIs

shows to have advantages over traditional multi-touch, es-
pecially with respect to the effect of using tangibles as dis-
tributed resources, it could be worthwhile to also investi-
gate how well the concepts of ‘distinct actions’ and ‘dis-
tributed resources’ translate onto other tangible user inter-
faces. In this regard, it would also be interesting to look
into an approach to tangible programming where the tan-
gible object and therefore distributed resource would be the
program blocks and not the block types.
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Appendix A

Pre-study Documents

On the following pages, you will find the video script, con-
sent form and demographics form utilized in the pre-study.



Video Script 
 
Voice over in blue 
 
 
Setup:  
Screen showing a small, finished program 
 
Introduction: 

- This is a programming interface that will be used by two users 
- It will be used to program a robot 
Show robot 
- The robot has ways to both output and input information 
- The output methods that will be important to us will be…  

Closeup speaker grill 
sound output through a small speaker… 
Closeup motor 
… and motors… 
Closeup output ports 
That are connected to the robot’s brain through cables 

Closeup of front of robot, showcase each sensor quickly with finger, colored paper, hand 
- Furthermore, the robot can read information about its surroundings through sensors 

such as a touch sensor, a light sensor or a proximity sensor 
- You will piece together your program out of predetermined blocks 
- Each block of your program represents one action for the robot 
 

Fade to crop of interface in its initial state, i.e. no tangibles or blocks visible 
Tangibles 

- You add blocks by using the tangibles as stamps on the screen 
Show ‘Wait’ tangible to camera, place on table and take away 

- There are five tangibles, each represents its own category of program blocks 
- The five tangibles are… 

 
Cut to blank background (not table) 
Place each tangible into frame upon introduction 

- The input tangible 
- The output tangible 
- The wait tangible 
- The conditional tangible 
- The operator tangible 

 
*Pause* 
Questions: 
Q1: Given these symbols, which category would you pick if you wanted to let the robot 
move forward? 
Q2: What would you expect a ‘Wait’ block to do?  



Q3: What would you expect a ‘Conditional’ block to do? 
*Continue* 
 
Fade to shot of table, show to camera and place each tangible on screen from left bottom to 
right bottom in half circle when talked about 
Blocks: 

- The input block reads sensor information 
- The output block gives control the robot’s outputs, meaning its motors and speaker 
- The wait block lets the robot idle for a given time 
- The operator block provides basic mathematical operations 
- The conditional block allows the robot to make decisions based on e.g. previous data 

or sensor input 
 
*Pause* 
To create a working program, it is not just important which actions are performed but also 
that the robot knows in which order to perform them. 
Questions: 
Q4: Looking at the current screen, how would you create such an order? 
*Continue* 
 
Connect the program blocks in a row except ‘wait’ block in the middle 
Each block has an arrow that points to its successor which is the block that will be executed 
after the first block. 
 
*Pause* 
Questions: 
Q5: If you wanted to insert the unconnected ‘wait’ block in the middle between the ‘output’ 
and ‘operator’, how would you do that? 
*Continue* 
 
Fade to closeup of output block 
Depending on the block type, there are many parameters to fine tune the action. This 
output block for example starts one or more motors. As you can see, you can specify which 
motors should turn, the speed they turn at and whether they turn forwards or backwards. 
 
*Pause* 
Questions: 
Q6: How would you try to change the speed of the motor? 
As already said, the output block gives you control over both the motors and the speaker. 
Right now, this block only starts motors.  
Q7: Do you have an idea on how to access the speaker? 
*Continue* 
 
Press ‘Mode’, press ‘Play sound’ 
Fade to closeup of input block & output block 
Drag data connector to ‘Output’ block 



Some blocks on the other hand provide other actions with data, for example the input 
block. It provides sensor data in form of another connector that can be connected to one of 
its successors’ parameters. 
 
 
*Pause* 
Questions: 
Q8: What modes would you expect the input block to have? 
Q9: Can you speculate on what effect connecting the two circles of the ‘Input’ and ‘Output’ 
block has? 
*Continue* 
 
Move ‘Output’ block with the tangible 
Blocks can be moved by placing the tangible that corresponds to their type onto them and 
dragging it. 
Move ‘Output’ block onto trash, connections of ‘Input’ block are reset 
Moving a block onto the trash symbol deletes that block from the screen. 
 
Move ‘Input’ data connector onto ‘Wait’ block (does not connect) 
Try moving ‘Wait’ block with ‘Output’ tangible (does not work) 
Switch to ‘Wait’ tangible, move ‘Wait’ block (data connector stays in place) 

 
*Pause* 
Questions: 
Q10: The first time I tried to move it, it didn’t work. Do you have an idea why? 
Q11: The second time, the data connector from the other block didn’t move with it, why 
could that be? 
*Continue* 
 
Fade to ‘Condition’ block without anything around it, change mode to proximity 
Let’s take a closer look at the ‘Condition’ category of blocks. As mentioned, it gives the 
robot the ability to make decisions based for example on sensor input. 
*Pause* 
Questions: 
It differs from the other blocks in that it has three arrow connectors.  
Q12: Can you tell me why it needs them? 
*Continue* 
 
Fade to closeup of ‘Start’ block 
Lastly, there is the ‘Start’ block. 
*Pause* 
Questions: 
Q13: Based on what you see, can you tell me how the block operates? 
*Continue* 
 
Fin 



 

 

Informed Consent Form 

Evaluating the performance of a robotics programming interface that uses tangibles on a multi-touch table. 
 
PRINCIPAL INVESTIGATOR Till Bußmann, Media Computing Group, RWTH Aachen University, Email: 

till.bussmann@rwth-aachen.de 

Purpose of the study: The goal of this study is to evaluate the intuitiveness of a robotics programming 

interface that uses tangibles on a multi-touch table. The results will help improve said interface. 

Procedure: Participation in this study will involve the participant watching a video that explains the interface. 

The video includes markings at which the participant will stop the video and answer questions about a situation 
depicted in the video. During the whole participation, voice will be recorded for the purpose of later analysis. 

Risks/Discomfort: Even though the study is expected to last no longer than half an hour, you may become 
fatigued during the course of your participation in the study. Feel free to take as many breaks as necessary 
during the study. There are no risk associated with the participation in the study. Should completion of the task 
become distressing to you, it will be terminated immediately. 

Benefits: The results of this study will be useful to improve the programming interface that will later be used 
in another study in which it will be compared to a traditional multi-touch interface.  

Alternatives to Participation: Participation in this study is voluntary. You are free to withdraw or discontinue 
the participation. 

Cost and Compensation: Participation in this study will involve no cost to you. 

Confidentiality: All information collected during the study period will be kept strictly confidential. You will be 

identified through identification numbers. No publications or reports from this project will include identifying 
information on any participant. If you agree to join this study, please sign your name below. 

Audio recordings: You will be audio recorded during the study. The recordings will not be made public and 
only be used for study analysis. You are free to withdraw or discontinue the participation at any time, if you 
don’t want to be recorded. 
 
O I have read and understood the information on this form. 
O I have had the information on this form explained to me. 
 

     

Participant’s Name  Participant’s Signature  Date 

     

  Principal Investigator  Date 

 
 
If you have any questions regarding this study, please contact Till Bußmann. E-mail: till.bussmann@rwth-
aachen.de 



Demographic information 
 
 
Age:     _______ 
 
Gender:    ______________ 
 
Course of studies/ field of work: _______________________________ 
 
Please rate the following statements about yourself on a scale from 1 to 5, where 1 means 
“highly disagree” and 5 means “highly agree”: 
 

Statement Highly 
disagree 

   Highly 
agree 

1 2 3 4 5 

Before this study, I possessed extensive 
programming knowledge 

     

Before this study, I possessed extensive 
robotics knowledge 

     

 
 
Please specify any prior programming knowledge: 

 

 
 
Please specify any prior robotics knowledge: 
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Appendix B

Study Documents

On the following pages, you will find the consent form, de-
mographics form, questionnaire and data sheet designed
for the full study.



 

 

Informed Consent Form 

Evaluating the performance of tangibles as a distributed resource in an educational robotics environment 
 
PRINCIPAL INVESTIGATOR Till Bußmann, Media Computing Group, RWTH Aachen University, Email: 

till.bussmann@rwth-aachen.de 

Purpose of the study: The goal of this study is to find out how tangibles as a distributed resource can influence 

the learning process in novice robotics programming. Participants will create programs using two different 
interfaces and run them on a robot.  

Procedure: Participation in this study will involve two tasks that will be performed after each other. Two 
participants will work on both tasks together. After the first task, the participants will be given a form that 
gathers demographic information. The participation will be closed by a closing questionnaire, which includes 
questions about both interaction methods. During the whole participation, voice and video will be recorded for 
the purpose of later analysis. 

Risks/Discomfort: Even though the study is expected to last no longer than one hour, you may become 

fatigued during the course of your participation in the study. Feel free to take as many breaks as necessary 
during the study. There are no risks associated with the participation in the study. Should completion of the 
task become distressing to you, it will be terminated immediately. 

Benefits: The results of this study will be useful to further the understanding of distributed tangibles’ influence 

on robotics learning.  

Alternatives to Participation: Participation in this study is voluntary. You are free to withdraw or discontinue 

the participation. 

Cost and Compensation: Participation in this study will involve no cost to you. There will be snacks and 

drinks for you during and after the participation. 

Confidentiality: All information collected during the study period will be kept strictly confidential. You will be 

identified through identification numbers. No publications or reports from this project will include identifying 
information on any participant. If you agree to join this study, please sign your name below. 

Video recordings: You will be video recorded (image and sound) during the study. The recordings will not be 
made public and only be used for study analysis. You are free to withdraw or discontinue the participation at 
any time, if you don’t want to be recorded. 
 

O (Optional): I agree to a publication of a short video clip or a still photography in the written thesis, thesis 
presentation (usually made public on the lab’s website), scientific paper or article. 
 
O I have read and understood the information on this form. 
O I have had the information on this form explained to me. 
 

     

Participant’s Name  Participant’s Signature  Date 

     

  Principal Investigator  Date 

 
 
If you have any questions regarding this study, please contact Till Bußmann. E-mail: till.bussmann@rwth-
aachen.de 



Demographic information 
 
 
Age:     _______ 
 
Gender:    ______________ 
 
Course of studies/ field of work: _______________________________ 
 
Please rate the following statements about yourself on a scale from 1 to 5, where 1 means 
“highly disagree” and 5 means “highly agree”: 
 

Statement Highly 
disagree 

   Highly 
agree 

1 2 3 4 5 

Before this study, I possessed extensive 
programming knowledge 

     

Before this study, I possessed extensive 
robotics knowledge 

     

 
 
Please specify any prior programming knowledge: 

 

 
 
Please specify any prior robotics knowledge: 

 

 
  



Questionnaire 
 
 

Tangibles: 
 
Please rate the following statements about yourself on a scale from 1 to 5 in regard to using 
the tangible interaction method: 

Statement Highly 
disagree 

   Highly 
agree 

1 2 3 4 5 
The interface was easy to understand.      

Using the interface was frustrating.      

I was able to easily translate my intentions into 
actions. 

     

My understanding of programming has 
improved. 

     

Working in a pair made me more confident in 
our program. 

     

 
 

Multi-Touch: 
 
Please rate the following statements about yourself on a scale from 1 to 5 in regard to using 
the multi-touch only interaction method: 
 

Statement Highly 
disagree 

   Highly 
agree 

1 2 3 4 5 

The interface was easy to understand.      

Using the interface was frustrating.      
I was able to easily translate my intentions into 
actions. 

     

My understanding of programming has 
improved. 

     

Working in a pair made me more confident in 
our program. 

     

 
Comments: 

 

 



Tangible Robotics – Data Sheet 
 

 

Outputs: 

 

 

Inputs:   

 

Sound: 
frequency:  range: ~ [40,4000] (Hz) 
 
C2:      65 Hz 
CS2:      69 Hz 
… 
B2:    123 Hz 
… 
B7:  3951 Hz 

Motors: 
speed:  range: [0,50] 
 
ports: 
A:  small motor, shovel 
B: big motor, left wheel 
C: big motor, right wheel 
D: / 

Light: 
reflected:  
- shines light, measures how much is reflected 

into sensor 
- range: [0,100] 
ambient: 
- measures how much light hits sensor 
- range: [0,100] 
color: 
- measures color of object in front of it 
- range: [0,7] 
 transparent  - 0 
 black   - 1 

blue  - 2 
green  - 3 
yellow  - 4 
red  - 5 
white  - 6 
brown  - 7 

Gyro: 
degrees: 
- measured since start of program 
- positive values for clockwise 

rotation 
- negative values for anti-clockwise 

rotation 

Motors: 
degrees:  
- measured since start of program 
speed:   
- see outputs  

Proximity: 
- measures distance to object in front 

of sensor 
- range: [0,2550] (mm) 

Button: 
- 1 or ‘true’ - pushed 
- 0 or ‘false’ - not pushed 
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Sergi Jordà. The reactable. In International Conference on
Computer Graphics and Interactive Techniques, ACM SIG-
GRAPH, Boston, USA, 02/08/2006 2006. Proceedings of

https://www.doi.org/10.1016/S0747-5632(01)00018-8
https://www.doi.org/10.1016/S0747-5632(01)00018-8
https://doi.org10.1007/978-3-642-16020-2_6
https://doi.org10.1007/978-3-642-16020-2_6
https://doi.org/10.1145/2839509.2844569
https://doi.org/10.1145/2839509.2844569
https://doi.org/10.1145/1518701.1518851
https://doi.org/10.1145/1518701.1518851
https://www.firstinspires.org/about/at-a-glance
https://www.firstinspires.org/about/at-a-glance
https://www.doi.org/10.1023/B:BTTJ.0000047607.16164.16
https://www.doi.org/10.1023/B:BTTJ.0000047607.16164.16


Bibliography 87

the International Conference on Computer Graphics and
Interactive Techniques, ACM SIGGRAPH 2006, ACM,
Proceedings of the International Conference on Com-
puter Graphics and Interactive Techniques, ACM SIG-
GRAPH 2006, ACM. ISBN 1-59593-364-6.

Seung Han Kim and Jae Wook Jeon. Introduction for fresh-
men to embedded systems using lego mindstorms. IEEE
transactions on education, 52(1):99–108, 2008. URL https:
//www.doi.org/10.1109/TE.2008.919809.

Frank Klassner and Scott D Anderson. Lego mindstorms:
Not just for k-12 anymore. IEEE robotics & automation
magazine, 10(2):12–18, 2003. URL https://www.doi.
org/10.1109/MRA.2003.1213611.

Rene Linden. Multitouchkit: A software framework for
touch input and tangibles on tabletops and. Master’s the-
sis, RWTH Aachen University, Aachen, September 2015.

Timothy S McNerney. From turtles to tangible pro-
gramming bricks: explorations in physical language
design. Personal and Ubiquitous Computing, 8(5):326–
337, 2004. URL https://www.doi.org/10.1007/
s00779-004-0295-6.

Edward F. Melcer and Katherine Isbister. Bots &
(main)frames: Exploring the impact of tangible blocks
and collaborative play in an educational programming
game. In Proceedings of the 2018 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’18, page 1–14,
New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356206. URL https://doi.
org/10.1145/3173574.3173840.

Seymour A Papert and Daniel H Watt. Assessment and
documentation of a children’s computer laboratory. AI
Memos (1959 - 2004), 1977. URL http://hdl.handle.
net/1721.1/6286.

Kris Powers, Paul Gross, Steve Cooper, Myles McNally,
Kenneth J. Goldman, Viera Proulx, and Martin Carlisle.
Tools for teaching introductory programming: What
works? In Proceedings of the 37th SIGCSE technical sym-
posium on Computer science education, volume 38, page
560–561, New York, NY, USA, March 2006. Association

https://www.doi.org/10.1109/TE.2008.919809
https://www.doi.org/10.1109/TE.2008.919809
https://www.doi.org/10.1109/MRA.2003.1213611
https://www.doi.org/10.1109/MRA.2003.1213611
https://www.doi.org/10.1007/s00779-004-0295-6
https://www.doi.org/10.1007/s00779-004-0295-6
https://doi.org/10.1145/3173574.3173840
https://doi.org/10.1145/3173574.3173840
http://hdl.handle.net/1721.1/6286
http://hdl.handle.net/1721.1/6286


88 Bibliography

for Computing Machinery. URL https://doi.org/
10.1145/1124706.1121514.

David Preston. Pair programming as a model of collab-
orative learning: A review of the research. J. Com-
put. Sci. Coll., 20(4):39–45, April 2005. ISSN 1937-
4771. URL https://dl.acm.org/doi/10.5555/
1047846.1047852.

Thomas W. Price and Tiffany Barnes. Comparing textual
and block interfaces in a novice programming environ-
ment. In Proceedings of the Eleventh Annual International
Conference on International Computing Education Research,
ICER ’15, page 91–99, New York, NY, USA, 2015. Associ-
ation for Computing Machinery. ISBN 9781450336307.
doi: 10.1145/2787622.2787712. URL https://doi.
org/10.1145/2787622.2787712.

Mara Saeli, Jacob Perrenet, Wim MG Jochems, and
Bert Zwaneveld. Teaching programming in sec-
ondary school: A pedagogical content knowledge
perspective. Informatics in education, 10(1):73–
88, 2011. ISSN 1648-5831. URL https://www.
persistent-identifier.nl/urn:nbn:nl:ui:
25-0841b2fb-3fec-47a7-9301-73eb70685f25.

B. Schneider, P. Jermann, G. Zufferey, and P. Dillenbourg.
Benefits of a tangible interface for collaborative learning
and interaction. IEEE Transactions on Learning Technolo-
gies, 4(3):222–232, 2011. URL https://www.doi.org/
10.1109/TLT.2010.36.

Bertrand Schneider, Paulo Blikstein, and Wendy Mackay.
Combinatorix: A tangible user interface that supports
collaborative learning of probabilities. In Proceedings of
the 2012 ACM International Conference on Interactive Table-
tops and Surfaces, ITS ’12, page 129–132, New York, NY,
USA, 2012. Association for Computing Machinery. ISBN
9781450312097. URL https://doi.org/10.1145/
2396636.2396656.

Schulministerium NRW. Zentralabitur an gym-
nasien und gesamtschulen, 2019. URL https:
//www.standardsicherung.schulministerium.
nrw.de/cms/upload/abitur-gost/berichte/

https://doi.org/10.1145/1124706.1121514
https://doi.org/10.1145/1124706.1121514
https://dl.acm.org/doi/10.5555/1047846.1047852
https://dl.acm.org/doi/10.5555/1047846.1047852
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/2787622.2787712
https://www.persistent-identifier.nl/urn:nbn:nl:ui:25-0841b2fb-3fec-47a7-9301-73eb70685f25
https://www.persistent-identifier.nl/urn:nbn:nl:ui:25-0841b2fb-3fec-47a7-9301-73eb70685f25
https://www.persistent-identifier.nl/urn:nbn:nl:ui:25-0841b2fb-3fec-47a7-9301-73eb70685f25
https://www.doi.org/10.1109/TLT.2010.36
https://www.doi.org/10.1109/TLT.2010.36
https://doi.org/10.1145/2396636.2396656
https://doi.org/10.1145/2396636.2396656
https://www.standardsicherung.schulministerium.nrw.de/cms/upload/abitur-gost/berichte/Zentralabitur-Gymnasiale-Oberstufe-2019.pdf
https://www.standardsicherung.schulministerium.nrw.de/cms/upload/abitur-gost/berichte/Zentralabitur-Gymnasiale-Oberstufe-2019.pdf
https://www.standardsicherung.schulministerium.nrw.de/cms/upload/abitur-gost/berichte/Zentralabitur-Gymnasiale-Oberstufe-2019.pdf
https://www.standardsicherung.schulministerium.nrw.de/cms/upload/abitur-gost/berichte/Zentralabitur-Gymnasiale-Oberstufe-2019.pdf
https://www.standardsicherung.schulministerium.nrw.de/cms/upload/abitur-gost/berichte/Zentralabitur-Gymnasiale-Oberstufe-2019.pdf


Bibliography 89

Zentralabitur-Gymnasiale-Oberstufe-2019.
pdf.

Joshua Shi, Armaan Shah, Garrett Hedman, and Eleanor
O’Rourke. Pyrus: Designing a collaborative program-
ming game to promote problem solving behaviors. In
Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, page 1–12, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN
9781450359702. doi: 10.1145/3290605.3300886. URL
https://doi.org/10.1145/3290605.3300886.

Masanori Sugimoto, Tomoki Fujita, Haipeng Mi, and Alek-
sander Krzywinski. Robotable2: A novel programming
environment using physical robots on a tabletop plat-
form. In Proceedings of the 8th International Conference
on Advances in Computer Entertainment Technology, ACE
’11, New York, NY, USA, 2011. Association for Com-
puting Machinery. ISBN 9781450308274. URL https:
//doi.org/10.1145/2071423.2071436.

Simon Voelker, Kosuke Nakajima, Christian Thoresen,
Yuichi Itoh, Kjell Ivar Øvergård, and Jan Borchers.
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