
by
Florian Busch

PERCbots:
Actuated Tangibles

on Capacitive
Touch Screens

Bachelor’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Kjell Ivar Øvergård

Registration date: 25.09.2015
Submission date: 25.01.2016

Media
Computing
Group

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen,October2015
Florian Busch

v

Contents

Abstract xi

Überblick xiii

Acknowledgements xv

Conventions xvii

1 Introduction 1

1.1 Thesis Structure 2

2 Related Work 5

2.1 How Information is Presented 5

2.2 Optical and Capacitive Sensing 6

2.2.1 Optical Systems 6

2.2.2 Capacitive Systems 11

2.3 Actuation Techniques 15

2.3.1 External Actuation 15

vi Contents

Actuation by Magnetic Fields 15

2.3.2 Internal Actuation 16

Battery-less Hovering 16

Actuation by Vibration Patterns . . . 17

Motor-Based Actuation 18

3 PERCbots 21

3.1 Overview . 21

3.2 Hardware . 22

3.2.1 First Approaches 22

3.2.2 Micro Controller 24

3.2.3 Power Supply 25

3.2.4 Motors 25

3.2.5 Physical Housing 26

3.2.6 Marker Creation 27

3.3 Software . 29

3.3.1 IDE . 29

3.3.2 Program Flow 29

3.3.3 Pathfinding 32

Distance 32

Orientation 34

Smooth Actuation 34

Contents vii

3.3.4 Protocol for Communication 35

3.4 Parameters and Conventions 37

4 Summary and Contributions 41

5 Future Work 45

5.1 Collision Avoidance 45

5.2 Dynamic Rerouting 45

5.3 Damage Prevention 46

A Source Code 49

A.1 Core Program 49

A.2 Utility Functions 55

A.3 Motor Driver 57

B Video and materials 59

Bibliography 61

Index 65

ix

List of Figures

2.1 A FTIR enabled surface 7

2.2 Optical multi-touch sensing tabletop 8

2.3 Reactable with reacTIVision 9

2.4 RobotTable connection flow chart 10

2.5 RoboTable Robot 10

2.6 Capacitive touch sensing technology 12

2.7 Explode view of a PERC tangible 14

2.8 Madgets: External actuation of a tangible . . 15

2.9 Battery-less hovering robots 17

2.10 TouchBugs . 18

3.1 Assembled PERCbot 21

3.2 First hardware design for the actuation and
markers . 23

3.3 Dagu Mini Driver Board 24

3.4 Voltage regulator 26

3.5 Creation of an electrically conductive wheel . 28

x List of Figures

3.6 Program flow in a diagram 30

3.7 Calculation of distance and orientation 33

3.8 Protocol for communication 36

5.1 Dynamic rerouting 47

5.2 Invisible borders made with light 47

xi

Abstract

In this bachelor thesis we will engineer and build a PERCbot. A PERCbot is an
actuated tangible, so an actuated haptic input device. We designed the PERCbot
from the ground up to work on capacitive multitouch surfaces of arbitrary size
and shape. By using small motors and a micro controller together with an active
tangible [Voelker et al., 2015], we gain an actuated tangible which is not only aware
of its position on the screen, but also able to make its way to an desired position on
the screen all on its own.

Since actuated tangibles are not entirely new, we will compare the different ap-
proaches and see how the proposed design can overcome limitations. Most ap-
proaches have issues raised by the underlying technology stack. We will see that
if we use a different approach on the touch sensing side we can overcome some
limitations already by using PERC tangibles.

In our design the underlying technology connects the PERCbot to a computer wire-
lessly, which is driving the screen. This wireless connection is then used to transmit
the current position and rotation to the PERCbot. If a destination update is send,
the tangible is able to calculate distance and rotation. It will then use a loop of
continuous destination updates to precisely reach the destination.

xii Abstract

xiii

Überblick

In dieser Bachelor Arbeit werden wir einen PERCbot entwickeln und konstruieren.
Ein PERCbot is ein sich selbst bewegendes Tangible, also ein haptisch greifbares
Eingabeobjekt. Der PERCbot ist von Grund auf für kapazitive Multitouch Tis-
che beliebiger Größe und From ausgelegt. Wir werden kleine Motoren und einen
Mikrokontroller in Komposition mit einem aktiven Tangible [Voelker et al., 2015]
nutzen um ein sich selbst bewegendes Tangible zu erhalten, welches nicht nur weiß
wo es sich befindet, sondern auch berechnen kann wie es zu einem gewünschten
Ziel auf dem Tisch gelangt.

Die Idee des beweglichen/motorisierten Tangibles ist nicht neu, deshalb werden
wir verschiedene Ansätze vergleichen und herrausarbeiten wie der neue Ansatz
dieser Arbeit versucht einige bekannte Probleme zu lösen. Viele bekannte Ansätze
hängen stark von der unterliegenden Technologie ab. Wenn wir einen anderen
Ansatz bei dem Eingabegerät wählen, fallen dadruch, dass wir PERC Tangibles
nutzen, direkt einige Hindernisse weg.

In unserem Ansatz verbindet sich der entworfene PERCbot kabellos mit einem
Computer, welcher in der Lage ist den an ihn ageschlossenen Multitouch Tisch
zu steuern. Wir nutzen nun die kabellose Verbindung um dem Tangible seine Posi-
tion und Ausrichtung auf dem Multitouch Tisch mitzuteilen. Wenn ein neues Ziel
an den PERCbot gesendet wird, berechnet dieses darauf hin die Distanz und den
nötigen Weg. Durch ein periodisches Senden der aktuellen Koordinaten, kann der
PERCbot dann präzise sein Ziel erreichen.

xv

Acknowledgements

I would like to thank Prof. Dr. Borchers for supervising my thesis and Prof. Dr.
Øvergård for being my second examiner.

I am very thankful for Simon Völker who helped with constructive feedback during
my work which helped me improve this thesis.

I thank my family for supporting and enabling me to write this thesis. I would like
to thank Jan Thar for helping me with the electronic design and René Linden for
assisting me with the demo.

Last but not least, I am very thankful for everyone at i10, providing help and great
ideas which helped me during the writing of this thesis. Thank you, for providing
such a pleasant environment.

xvii

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Although all the work in this thesis has been done by my-
self, I will use the first-person plural pronoun when refer-
ring to things that have been done.

Definitions of technical terms or short excursus are set off
in colored boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/tiki-download file.php?fileId=file number.file

http://hci.rwth-aachen.de/tiki-download_file.php?fileId=file_number.file

xviii Conventions

”PERCbot”, ”Robot” or ”Bot” refers to the actuated tangi-
ble, which is equipped with a PERC tangible, micro con-
troller and motors.

1

Chapter 1

Introduction

In the last ten years we have seen more and more research
in the field of Tangible User Interfaces (TUI).

TANGIBLE USER INTERFACE:
The term TUI or Tangible User Interface was first used
by Ishii and Ullmer [1997] to describe an interface which
makes use of physical objects (tangibles) to provide in-
put and haptic feedback. The physical availability sets
this interface apart upon others, since users can interact
with it directly or by exploiting the affordances a tangible
offers.

Definition:
Tangible User
Interface

Tangibles compensate the lack of multitouch interfaces be- Adding haptic
feedback, by using
tangibles

ing not able to provide haptic feedback. Interaction feels
much more natural to a user and enables the user to in-
teract without looking at the surface [Weiss et al., 2009].
Tangibles have widely been considered, sitting on top of
an multitouch surface which is doing detection by us-
ing a optical system. One of the most commonly known
early approaches go back until 2005 when Han [2005] pre-
sented the technology for optical multitouch sensing. Many
approaches followed [Kaltenbrunner and Bencina, 2007,
Schöning et al., 2008]. The low-cost and scalability of op-
tical multitouch sensing systems drove many scientist to
base their research on such systems.

2 1 Introduction

However, these system require a great amount of calibra-Shortcomings of
optical systems tion and their reliability heavily depends on the ambient

lighting. To overcome these problems newer approaches
are based on capacitive touch sensing system. They are fast
to setup and provide thoroughly precise touch detection.

To make use of this system for tangibles however, we needAdding detection of
tangibles to reconsider the patterns expressed towards the system.

With PUCs [Voelker et al., 2013] proposed a way to make
pattern detection possible on capacitive sensing systems.
With PERCs [Voelker et al., 2015] the last shortcomings of
the earlier approach were eliminated, yielding a robust and
reliable technology for tangibles on capacitive screens.

These tangibles however, are static - meaning the do not
express information in other ways than haptically. Further-
more PERC tangibles cannot be displaced on their own or
by software.

To enable this new channel of information and interaction,Introducing actuation
to tangibles we introduce PERCbots: Actuated PERC tangibles which

are able to move on their own. With PERCbots we are now
able to express feedback by moving the tangible on top of
the surface to a specific destination.

In addition to that we implemented a few extensions which
make the robot less robotic. Furthermore we cautiously
considered the hardware and software design, in a way that
it is easy to extend and get started with.

Finally we will see some further improvements whichOpen platform for
further extensions make the PERCbot avoid collision and risky situations.

1.1 Thesis Structure

This thesis is structured as follows:

• 1—”Related work” describes different approaches in
the field of actuated tangibles and gives an overview
about proposed actuation techniques.

1.1 Thesis Structure 3

• 2—”PERCbots” introduces our actuated tangible by
explaining the hardware and software in detail. Ad-
ditionally we take a look at some of the design deci-
sions we made.

• 3—”Summary and contributions” concludes and
wraps up the architecture of a PERCbot and the work
we have done on it.

• 4—”Future Work” gives an overview of future exten-
sions and improvements regarding safety and multi-
tangible setups.

5

Chapter 2

Related Work

2.1 How Information is Presented

Tangible user interfaces integrate physical real world ob- Tangibles enable for
haptic feedbackjects into the virtual, computational sphere. They should

be able to receive input by manipulation and communi-
cate changes to the user. Tangibles add the lack of haptic
feedback when digital information is presented. Ishii and
Ullmer [1997] did present the idea quite early. Tangibles can
be seen like a window to the digital world. Nevertheless,
interaction has to be as easy as expected and their functions
have to be congruent to the interactions a tangible affords.
If information gets represented by a tangible, it has to hold
this information. Either the tangible itself encapsulates the
information or the overlying system has to distinguish dif-
ferent tangibles, their meaning and bound information.

It is key to keep the different applications in mind an user Information resides
in the tangible from
the user’s point of
view

might want to use the tangible in. Even if the context
changes, the information that a tangible encapsulates has
to be accessible in a variety of areas. Ishii and Ullmer
[1997] express this variability of a tangible with their ex-
ample where marbles (tangibles) act as representations of
calls on an answering machine. When a marble, a physical
object, represent a missed call, a user could expect to call
the person by taking and putting the tangible, the marble,
on a phone. When designing how information is bound

6 2 Related Work

to an object and presented, the different applications and
affordances the objects provides have to be precisely con-
sidered.

2.2 Optical and Capacitive Sensing

2.2.1 Optical Systems

Optical sensing systems are based on a technology stackSetup of an optical
sensing system which is consists of one or more cameras, equipped with

infrared filters, one or more projectors, multiple infrared
light sources and a specially crafted surface, able to receive
the projector’s image. This surface consist of a common
transparent material (e.g. acrylic glass) and a diffuser layer
for the projected image. See figure 2.2 for an overview.

To understand the technology behind it, we will first recall
the two major techniques that have been widely used for
touch sensing in the past.

FTIR:
FTIR or Frustrated Total Internal Reflection describes the
phenomenon where light is reflected within a transpar-
ent material without ever existing it (without manipula-
tion). Derived from the physical term of Total Internal
Reflection, FTIR describes the ability of loosing the ca-
pability of total reflection at a spot where the material’s
surface is manipulated (e.g. by touch). Light will then
exit at this very spot and illuminate the object (e.g. fin-
ger). An infrared camera on the other side of the surface
is then able to see the fingers touching the surface. See
figure 2.1.

Definition:
FTIR

2.2 Optical and Capacitive Sensing 7

Figure 2.1: Images from an infrared camera, demonstrating FTIR by showing a
transparent surface with infrared light being fed in from the bottom. Touches on
the back side of the surface are visible to the camera. The fingertips get illuminated
since the reflection index of the surface is changed at this point.

DI:
DI or Diffused Illumination describes, like FTIR, a tech-
nique which can be used to provide touch or object sens-
ing for multitouch tables. For DI an array of infrared
lights illuminate (either from the front or rear) a transpar-
ent, touchable surface (e.g acrylic glass). Objects (with re-
flecting markers) or fingers will then reflect the infrared
light which is emitted. These positions, where the mark-
ers or fingers get close to the surface, can then be see by
an infrared camera. DI enables sensing objects and fin-
gers before they come in contact with the surface.

Definition:
DI

When we combine technologies like FTIR and DI and use Combining FTIR and
DIthem in a multitouch tabletop (see figure 2.2), we end up

with a setup where we will have to precisely calibrate the
light sources, software and one or more cameras and pro-
jectors. For simplicity we will now consider only one cam-
era and projector being used.

DI, when deployed beneath the surface, next to the cam-
era and projector, will enforce us to cover most parts of the
table’s construction and cables with black material to mini-
mize internal reflection. Any small change in the setup can
force a recalibration of the camera and software. Sunlight

8 2 Related Work

Figure 2.2: General setup of an optical multitouch sensing tabletop. Combining
FTIR, DI, a projector, camera with infrared filter and infrared floodlights. Image
taken from Weiß, Malte [2012]

from above the surface can also highly deteriorate the re-
sults for tracking, since sunlight covers all the ranges of
visible and invisible, including infrared, light.

To overcome some of these problems we would use in-Shortcomings of
optical systems frared filters and make heavy use of filters in software as

well. By subtracting the current camera image from a pre-
captured background still, some internal reflections can al-
ready be no longer seen by the tracking algorithm.

We can then place objects (e.g. tangibles) on the tabletop.Sensing tangibles on
optical systems When we equip them with markers (some reflective tape),

the tracking of those tangibles become possible. The emit-
ted light is reflected by the markers and bounced back to
the camera. If a tangible is moved across the surface it can
happen that the intensity of the light, which gets reflected
by the markers, varies.

Kaltenbrunner and Bencina [2007] present with their reac-
TIVision framework and the Reactable a common setup for
an optical multitouch table. A projector, camera and com-

2.2 Optical and Capacitive Sensing 9

Figure 2.3: Reactable running reacTIVision at Altman Center (NYC). Image taken
from Williams [2007]

puter form the basis. They then used infrared flood lights
(build themselves) to illuminate the marker pattern they
put beneath their tangibles. This represents the classical ap-
proach of Diffused Illumination (DI) we discussed earlier.
In combination with additional infrared filters it was then
possible to distinguish between noise, patterns and touch. reacTIVision enables

detection of visual
markers

Figure 2.3 shows a Reactable running the reacTIVision
framework, while users interact with it, creating music.
Tangibles with marker pattern get recognized and allows
the users to manipulate the created sound effects. The im-
plemented marker set was re-engineered for better recogni-
tion and stability by Kaltenbrunner and Bencina [2007].

Kaltenbrunner and Bencina [2007] specially developed Actuated tangibles
with visual markersmarker set was also used in an approach for an actuated

tangible by Krzywinski et al. [2009]. They created a robot
(see figure 2.5), which is able to move and sense orientation
by a simple radar sensing system. Small motors steered by
a micro controller can be actuated via a bluetooth connec-
tion. A simple AI (Artificial Intelligence) is able to move the
tangible to a specific position on the tabletop by trial-and-
error.

10 2 Related Work

Figure 2.4: From top to bottom: Steps before communica-
tion between the computer and robot is established.

Figure 2.5: A robot from RoboTable with markers from
Kaltenbrunner and Bencina [2007]. (a) bottom view, (b) top
view, (c) top view with a shell. Image taken from Krzywin-
ski et al. [2009]

In Addition to the optical setup Kaltenbrunner and Bencina
[2007] proposed Krzywinski et al. [2009] added FTIR to the
setup to reliably detect fingers and hands. The connection
flow charts (figure 2.4) shows the steps which are necessary
before a connection is established.

We can see in both approaches ([Kaltenbrunner and

2.2 Optical and Capacitive Sensing 11

Bencina, 2007] and [Krzywinski et al., 2009]) that optical
system heavily rely on well placed infrared lights and de-
cent ambient lighting, such that it does not interfere with
the fiducial detection. Infrared light as a

basis for detection
and tracking

A different approach can be seen with TouchBridge by
Ladha et al. [2010]. Their approach is based upon Ganser
et al. [2006] InfrActables where infrared LEDs, placed on
top of the tangible, use different light pulses to transmit
their unique id. This approach however is only applicable
for a maximum of 8 tangibles. Ladha et al. [2010] replaced
the camera by an infrared transceiver which is not only able
to receive, but also transmit data via infrared light pulses. Infrared LEDs at the

top enable for data
transmission

Due to this change, the proposed system can reliably distin-
guish between 16 different infrared markers, that are trans-
mitted via light pulses.

All proposed designs heavily rely on infrared light. They
have to be precisely calibrated which can later be forced to
be redone if the ambient lighting changes. We think that
calibrating the tabletop should be non-essential. Tangibles
should be recognized when they make contact with the sur-
face, independently of the ambient surrounding. This is
why we like to consider an approach which cannot be trou-
bled by highly changing attributes.

2.2.2 Capacitive Systems

A good starting point is given with capacitive touchscreens. Capacitive screens
are not troubled by
ambient light

Large capacitive multi-touch surface gain more and more
availability and affordability [Microsoft, 2015]. In com-
parison to optical sensing techniques, capacitive sensing
technology delivers a clearer and more precise image of
touches. Additionally the technology is instant available
when switched on.

12 2 Related Work

Figure 2.6: While touching the surface the user gets close to two of the electrode
layer lines. By evaluating the electric capacity of every line (horizontally and verti-
cally), the two lines closest to the touch point can be identified. Further processing
enables an even more precise prediction.

CAPACITIVE SENSING:
Capacitive sensing is a technology in electrical engineer-
ing, often embedded in a surface, where an objects ca-
pacitance is used to determine the distance to it. Capaci-
tive touchscreens use a grid of very thin electrically con-
ductive wires. They run in parallel across the table hor-
izontally and vertically. If an object with bigger capaci-
tance than air is near to these wires, this can be measured.
Since the surface consists of multiple lanes of wires, the
exact location of the object can be calculated. To do this
the sensing electronic measures every lane for its own by
applying really small voltages to the wire. At the same
time all the other lanes get grounded. If a drop in the ap-
plied voltage is detected, the electronic can be sure that
there is an object above or in the area of this lane. By
sequentially checking every line (horizontally and verti-
cally) the x and y coordinate can be calculated. [Schöning
et al., 2008] See figure 2.6

Definition:
Capacitive sensing

When we looked at optical sensing technologies we made
constantly use of markers, which get illuminated by in-
frared light, to track and detect a tangible. When we used
with capacitive touchscreens, those markers will not func-

2.2 Optical and Capacitive Sensing 13

tion. We will have to find a way to simulate a touch, as if it
was generated by a human finger.

PUC tangibles [Voelker et al., 2013] are a proposed design
which overcomes exactly this limitation. PUCs use a special
electrically conductive bottom layer which enables them to
be detected on unmodified capacitive screens.

By providing a conductive bridge between two wires of the Tricking the
touchscreen into
detecting a touch

touchscreen (see figure 2.6) the touchscreen sensing tech-
nology can be tricked into recognizing a touch. There are
some orientations where the PUC tangible can be lost due
to hardware limitations. If this happens the underlying
frameworks is able to quickly recover the state once the tan-
gible is recognized again.

Capacitive touchscreens use a lot of filtering to get rid of Touches get filtered,
creating new
problems

everything which is not similar to a contact with human
skin. This does not only account for the shape of the created
touch, but also for the time the touch is present. Touches,
which do not move over a longer time, will eventually be
filtered out, leaving an unresponsive spot. Only if the ca-
pacitive mass is removed, or the mass of the object grows
bigger, the spot will become active for sensing again.

When we think of tangibles, which mostly lie on top of the
surface, we run into the problem of them vanishing after
a while on capacitive screens. To overcome this limitation
Voelker et al. [2015] proposed a solution. Based upon PUCs
they added electronic into the tangible making it able to
sense if it is still on the table or not. The tangible consists of
a battery, micro controller with bluetooth, field-sensor and
a light sensor. To ensure contact to the surface a lead plate
was added (see figure 2.7).

With this design we can now overcome the problems de- PERC tangibles are
not troubled by
filtering

scribed earlier. PERC tangibles can be robustly detected
and movement is not a problem. Even if one or two of
the three touch points vanish due to hardware limitations,
a PERC tangible can stay recognized. If it recovers later,
when the touch points are visible again, the tangible detec-
tion integrates these changes and the tangible is not lost.
[Voelker et al., 2015]

14 2 Related Work

Figure 2.7: Explode view of a PERC tangible from bottom to top: Markers, cop-
per tape, acrylic frame, lightsensor (green), microcontroller and bluetooth module,
battery, acrylic frames and lead (for weight).

2.3 Actuation Techniques 15

Figure 2.8: Madgets: External actuation of a tangible via electromagnetic impulses.
Image taken from Weiss et al. [2010]

The robust tracking and detection make PERC tangibles a
perfect starting point for our actuated tangible.

2.3 Actuation Techniques

To design our actuated tangible we first consider a variety Different approaches
towards actuating a
tangible

of different approaches. There are different ways to make
a robot move or to actuate a tangible. We will compare ex-
ternal and internal actuation. External actuation refers to
the tangible being moved by some force applied from the
outside (like poking it), where internal actuation describes
force being applied from the inside of the tangible (e.g. with
motors and wheels).

2.3.1 External Actuation

Actuation by Magnetic Fields

An approach where the actuation technique has been Applying magnetic
force

16 2 Related Work

moved apart from the tangible is Madgets by Weiss et al.
[2010]. Here an array of electromagnets beneath the surface
is used to actuate a tangible on top (see figure 2.8). The tan-
gible is equipped with small magnets and white markers.
These markers can be seen by cameras sitting beneath the
surface, due to a special setup, where small fiber optics de-
liver the bounced light from these markers. This DSI sens-
ing setup has a lower resolution, due to the limited number
of fiber optics.

When we consider the scalability, portability of such sys-Size and complexity
of the setup tems we see that they scale bad [Rosenfeld et al., 2004], and

are not easily displaced Weiss et al. [2010]. Larger installa-
tions quickly grow in price. Nevertheless, we would create
a large magnetic field, which can be dangerous to health for
some users (consider people with pacemaker). In addition,
we need a lot of power [Weiss et al., 2010] to move a tan-
gible which could be actuated with way less power when
internal actuation (e.g the use of motors) is taken into ac-
count [Nowacka et al., 2013, D’Ademo et al., 2011].

External actuation is therefore not capable to be used in
combination with the tangible we want to built. It has to be
instant available in various sizes and places. Internal actu-
ation on the other hand can provide us with a more flexible
approach.

2.3.2 Internal Actuation

Battery-less Hovering

By using small piezoelectric air-blow actuators Miyaki et al.Hovering tangibles
[2011] constructed a hovering batter-less robot. It charges
contact-less through inductive charging. Using a 2D power
sheet the robot can be charged. It then uses a Plenum
Chamber System to efficiently distribute the airflow and
lift the robot. Figure 2.9 shows the general design and the
Plenum Chamber System.

Miyaki et al. [2011] show that the robot can hover for about
150 to 200 seconds, when charged for 20 seconds. This short

2.3 Actuation Techniques 17

Figure 2.9: (a) Complete PCB with microblower and charging circuits. (b) To nav-
igate in a specific direction two microblowers are required. (c) Plenum Chamber
system: improves hovering abilities in comparison to Air-bearing and Flexible Skirt
Systems (used in hovercrafts). Images taken from Miyaki et al. [2011]

window where an user can operate and interact with the
device is far too little for constant interaction. We consider
the robot to be permanently able to move and provide feed-
back to the user. The special setup with a 2D power sheet
can also cause problems when applied to the chosen capac-
itive tabletop.

We encountered that additionally applied voltages in close Issues when applied
to capacitive screensproximity to a PERC tangible can cause issues [Voelker

et al., 2015]. In addition to that, we require precise move-
ment and tracking, which is only possible by having a tan-
gible touch the surface.

Although we could think of modifying a PERC tangible
to be detected when barely touching the surface, the small
friction will nevertheless worsen the short time of possible
operation. We will therefore continue looking at other ap-
proaches for actuated tangibles for our envisioned tangible.

Actuation by Vibration Patterns

Another way of internal actuation is shown by Nowacka Actuation by
vibration patterset al. [2013] with TouchBugs, where small vibrator motors

are used to move a small tangible across an interactive sur-
face. Communication with the robot is done via Infrared
Data Association (IrDA). Steering is done by applying dif-
ferent power levels to the left or right vibration motor. A

18 2 Related Work

Figure 2.10: TouchBugs are built upon small brushes on which they move, con-
trolled by vibration patterns. Image taken from Nowacka et al. [2013]

micro controller makes use of bottom mounted light sen-
sors to read a color pattern from the interactive surface.
Nowacka et al. [2013] define different color patterns for di-
rection driven actuation.

The robot is similar to the design Miyaki et al. [2011] pro-
posed. Due to the applied actuation technique the robot
does only make very little contact with the underlying sur-
face, making it hard to apply our selected PERC design.Missing contact to

the surface

Motor-Based Actuation

D’Ademo et al. [2011] showed a motor based actuation
technique called eBug. Their robot is built of layers, each
of them highly specialized in one function only. The me-
chanical layer for example will contain all the parts that are
indispensable for moving the robot. Other layers may be
used for different functions. They are exchangeable andExchangeable layer

design thus the setup and features of the robot highly modifiable
[D’Ademo et al., 2011]. Motor based actuation leads to fast

2.3 Actuation Techniques 19

and precise movements. Due to the modular structure the
robot can accomplish many tasks and repair and setup are
fast and easy.

The eBug can communicate with a controller via bluetooth.
The controller is able to send driving directions making the
robot move. Furthermore, the controller can read the sen-
sors which can be equipped to the robot (modular layer de-
sign). With this structure it can be controlled on interactive
surfaces when the position is known. Providing similar

functionality like a
PERCbotStructure and electrical design gives a good starting point

for our tangible. The module layer design makes it easy
to evaluate new functions and maintain the robot. We will
start by recreating a similar design and attaching markers
to make the robot recognizable on a large tabletop.

21

Figure 3.1: PERCbot: (a) Front view: At the front of the robot we mounted a PERC
tangible. It connects to the voltage regulator and the micro controller. (b) Rear
view: At the bottom part of the image we see one of the three markers, the other
two are given by the conductive wheels. On top the voltage regulator connects to
the power supply, the micro controller and the PERC tangible.

Chapter 3

PERCbots

3.1 Overview

The actuated tangible, the robot will from now on be re-
ferred to as PERCbot.

22 3 PERCbots

A video of the PERCbot in action is included in the archive,
available for download (see B “Video and materials”).

A PERCbot is build from various components. The hous-Hardware design of a
PERCbot ing for the micro controller, batteries and motors was laser

cut to match the specific shape of every component. The
bottom layer creates the base for every other layer and the
motors. At the backside of the robot, we can see the mi-
cro controller and the motor controller. They are available
on top of one board, the commercially available Dagu Mini
Driver Board [Dagu, 2015a]. It is fully compatible to the Ar-
duino IDE and can control two motors, up to eight servos
and has various extension headers.

We chose this board because it offers a motor controller, mi-
cro controller and valuable headers already assembled on
one board. Furthermore it is compatible with the Arduino
IDE (3.3.1 “IDE”), which make us able to get a working im-
plementation relatively quickly and lower the barriers for
future extension. The wheels are custom created to make
use of PERC’s [Voelker et al., 2015] technological approach
for pattern detection on multitouch tabletop interfaces. See
figure 3.5 and section 3.2.6 “Marker Creation”.

For the communication between the micro controller andCommunication by
using PERC’s

bluetooth
the computer, which is connected to the tabletop, we use
PERC’s built-in bluetooth. The serial communication uses
a special protocol we explain in 3.3.4 “Protocol for Commu-
nication”. With the then obtained data, the micro controller
will calculate the coordinates and the required moves (3.3.3
“Pathfinding”).

3.2 Hardware

3.2.1 First Approaches

In our early approaches we concentrated first on the actu-Choosing the correct
motors ation part, namely the motors. We used standard DC mo-

tors, which spin fast but only provide a really small force
at the motors shaft (see figure 3.2). The problem of these

3.2 Hardware 23

Figure 3.2: First hardware design: (a) Top view of motors with PUC pattern be-
neath. In the back the micro controller is about to be placed, which then drives the
motors (b) Bottom view of markers used for detection on a capacitive surface

motors were, albeit cheap, their lack of a gearbox. Without
it we had to put really small voltages on the motor, such
that the robot does not overshoot the surface. Furthermore
the force at the motor’s shaft was too little, such that when
we equipped the robot with only one battery, it was barely
able to move. This lead us to use some different motor, that
includes a gearbox (see 3.2.4 “Motors”).

Our first approach towards a functional pattern design was Early tests on
functional,
conductive markers

closely based on the proposed design by Voelker et al.
[2015] (see figure 3.2 (b)). When the robot moved quickly
we ran into problems that some markers were not touch-
ing the surface anymore. Precise leveling of the wheel and
marker height cause us to rethink this entire approach of
pattern creation. We came up with a more advanced de-
sign towards pattern creating by integrating the markers
into the wheels, making them conductive. This forced us to
create some custom wheels for driving, we explain in 3.2.6
“Marker Creation”.

24 3 PERCbots

Figure 3.3: Dagu Mini Driver Board brings together all components we need to
control the actuated tangible and gives addition space for future expansion (Image
taken from Dagu [2015b])

3.2.2 Micro Controller

We use the Dagu Arduino Mini Driver Board [Dagu, 2015b]Features of the micro
controller we used (see figure 3.3) to do our computational pathfinding and ac-

tuation control. The board consists of mainly an ATmega8A
with 16Mhz, Dual FET ”H” Bridges which are capable of
2.5A peak current each, a serial header (for e.g. a bluetooth
module), GPIO pins and headers for up to 8 servos. The
speed of the attached DC motors can later be adjusted via
Pulse-width modulation (PWM). The board is capable to
function within the range of five to nine volt.

When we wrote the program to do the pathfinding andLimited flash might
force alternative
micro controller

navigation, we noticed how easily we could max out the
available memory of the ATmega8A, especially when do-
ing float operations. To overcome these limitations Dagu
offers a more advanced version of the Dagu Mini Driver
Board called Dagu Mini Driver MkII. It makes use of an
ATmega328, offering 32KB instead of the ATmega8A’s 8KB

3.2 Hardware 25

flash. In our case this was not necessary but for future work
worth a consideration.

The voltage regulator (see 3.2.3 “Power Supply”) provides Providing different
voltage levelsthree and five volt. The three volt rail is exclusively for the

PERC tangible electronic, the five volt rail only for the mi-
cro controller. The micro controller will then provide five
volt at the serial header. Since we are not interested in pow-
ering a module over the serial header, we only connect one
wire between the micro controllers RX (receiving pin) and
the PERC’s TX (transmission pin) (see figure 3.1 (b) green
cable).

3.2.3 Power Supply

We use one Lipo, Lithium Polymer, rechargeable battery Using Lipo
rechargeable
batteries to power
the PERCbot

which provides 7.4 volt 1. The current is fed into a voltage
regulator (see figure 3.4 for a circuit diagram) which deliv-
ers constant five volt to ensure constant and battery voltage
independent actuation speeds. The robots housing is able
to carry up to two batteries of the same type. Only one bat-
tery is connected to the voltage regulator at the same time.
This allows for fast battery changing.

3.2.4 Motors

To ensure maximum mobility and different movement ve- Chosing a motor
which enables
further extension

locities we wanted to equip the robot with motors, which
reach the desired speed when only half of the maximum
capable voltage is supplied. Therefore we chose to use the
G50 motors from SOL-EXPERT-group 2 which reach about
350 rotations per minute when supplied with five volt.

Since all different models of this motor type provided by
the manufacturer have the same size they can easily be

1Polymer Lithium Ion Battery 1000mAh 7.4V
2Datasheet: http://www.sol-expert-group.de/downloads/G50-100-

150-298.pdf

26 3 PERCbots

Figure 3.4: Voltage regulator: Provides five and three volt
when supplied with 7.4 volt

swapped when the task of the robot changes where the cur-
rently incorporated motors are either turning too fast or too
slow.

3.2.5 Physical Housing

Figure 3.1 shows the outer appearance of the robot PER-
Cbot’s housing is custom created to fit all components on
at least space as possible, making the robot more mobile
and agile. The vector graphics used to create the housing

3.2 Hardware 27

are included in the archive, available for download (see B
“Video and materials”).

We placed the PERC tangible electronic in front of the robot Housing design
decisionsto ensure equilibrium. At the backside of the robot we but

the micro controller and the third marker. The other two
markers are given by the wheels being fully conductive.
They are then wired to the third marker to create a triangle
of markers which can then be used to detect the PERCbot
on a capacitive screen.

When assembling the PERCbot, we firstly put the acrylic
glass layers on top of one another. Four screws are put in
place to hold all layers in place. The screws can be removed
if changes are to be made.

We used an approach similar to to the layer principle from Layers that can
easily be replacedD’Ademo et al. [2011]. Based on this approach we put

functions in a discrete place, such that they can be easily
swapped or repaired. Instead of putting exchangeable lay-
ers on top of another we put the things that accomplish one
function next to each other. By doing so we can build a
robot much smaller, since we do not waste space at a layer
just to fit the design. Consider for example an layer whose
function it is to only provide visual feedback. Equipping
one LED would provide the function. Nevertheless is has
to be as large as any other layer to be exchangeable and
provide all the headers and connector the others layers do.
This waists space, space we do not want to loose.

3.2.6 Marker Creation

Markers are simulating human interaction with a multi- Overcoming common
sensing issuestouch surface. Normally multitouch surfaces and screens

are engineered to reliably detect human fingers or hands.
Most of them try to filter out anythings apart from that. By
applying PERC’s technology [Voelker et al., 2015] we can
overcome these limitations and create a set of markers that
form a pattern that can reliably be detected by a multitouch
screen. Markers have to be conductive to each another and
towards the sensing surface.

28 3 PERCbots

Figure 3.5: Creation of an electrically conductive wheel: (a) Splicing copper wire
to obtain one thin wire with two laser cut wheels from acrylic glass. (b) Placing
the wire in the motor’s shaft and between the two acrylic layers while gluing each
to the other. (c) Applying conductive fabric all around the wheels, making contact
with the wire. (d) mounting each wheel to its motor shaft. Since both motors are
soldered to a copper wire, the two wheels are now electrically connected.

When we designed the PERCbot we had to consider whereConsidering
positions for markers to put the markers. Either way, since we wanted to use

wheels to actuate the robot we saw the risk that if the
robot moved to sudden the markers could loose contact to
the sensing surface. This would unnecessarily worsen the
tracking and detection phase. We came up with the idea of
integrating the markers into the wheels, making them con-
ductive to another. But we could not simply solder a wire
to them since their used to rotate. A sliding contact seemed
wrong by design when considering deterioration.

We came up with a design that uses the motor as if it wereMaking the wheels
act as markers the wire. First we sliced one wire from an ordinary cop-

per cable (figure 3.5 (a)) We made a part of the wheels sur-
face conductive to the wheels hub (figure 3.5 (b)). Next, we
wrapped around a conductive material [Voelker et al., 2015]
such that it covers the entire surface of the wheel (figure
3.5 (c)). The hub is then again in contact with the motor’s
shaft and therefor with the gearbox. Since a small wire con-
nects both motor’s gearboxes such that as a consequence
the wheels are electrically conductive to each another (fig-
ure 3.5 (d)).

Another wire is soldered to the third marker (see figure 3.1Establishing the
pattern (b): silver marker). Now every marker is electrically con-

ductive to each another and because of PERCbot’s equilib-
rium and weight we can ensure that all three markers are
in constant contact with the underlying surface.

3.3 Software 29

To improve the wheels’ grip we later added a thin white Further adjustments
to ensure wheels’
grip

stripe of cellular rubber at the outer area of each wheel. We
also added a thin wire across the conductive surface which
makes contact to the wheels hub even better and has no
notable effect on the wheels grip.

3.3 Software

3.3.1 IDE

To implement our path finding algorithm we used the Ar- Setting up the IDE
duino IDE in version 1.6.3. We set the board type to ”Ar-
duino NG or older” and after installing CP210x USB to
UART drivers, which are required for the Dagu Mini Driver
Board to access the USB to Serial Converter. After that point
the Dagu Mini Driver Board can be programmed like every
other Arduino board. Nevertheless AVR Studio can also be
used to develop the code which can later be pushed to the
board.

We chose to stick to the Arduino IDE since it is cross- Fast code
developmentplatform compatible and gives access to many convenient

functions. To do simple string operations one could sim-
ply use the provided String library. To parse and decode
the received input string, which follows the format of the
defined protocol (see 3.3.4 “Protocol for Communication”),
we made use of this library at first. Later when we imple-
mented in-place rotation, we turned away from the String
Library in favor of a character array. By this we used way
less of the ATmega8A’s valuable flash.

3.3.2 Program Flow

Refer to 3.6 for a visual representation. After power up,
which is switching the micro controller on (see 3.3 ”Power
Switch”) the micro controller configures each motor pin
and the serial port. After successful boot it turns a blue

30 3 PERCbots

Figure 3.6: Diagram showing the update cycle and the general program flow.

3.3 Software 31

led on. The LED comes pre-soldered with the Dagu Mini
Driver Board.

After this initial setup the controller enters the main loop Main loop is divided
into two flowswhere all calculation and controlling takes place. The fol-

lowing flow can be divided into two partial flows. One, and
we will refer to this as flow A (left tree in 3.6), which up-
dates the variables the robot’s moves depend on, the other
one, flow B (right tree in 3.6), handles the main driving and
speed controlling part.

Once a new string reaches the serial interface it gets
checked for the defined format (see 3.3.4 “Protocol for Com-
munication”). If it is valid, the micro controller will drop
into flow A.

In Flow A the micro controller continues by extracting the Flow A handles
computational
aspects

necessary values from the received string. The distance and
rotation angle to the destination get calculated and stored
for further use.

If the calculated distance is too small for the robot to reach
the desired end rotation (see sixth chunk 3.3.4 “Protocol for
Communication”) by driving, it will pause all current on-
going movements and perform a rotation in-place. This
means the robot will not move forward, but rotate at the
coordinate it currently is at. It will turn one wheel forward,
the other one backwards to reach the end rotation. After
this it will start again at the beginning of the main loop.

If, in flow A, the distance is not too small for driving, the Deciding between
in-place rotation and
destination focused
driving

robot will not perform an in-place rotation. The micro con-
troller will continue by calculate the sections for smooth
actuation (see 3.3.3 “Smooth Actuation”). If flow A was
reached while the robot was already performing a move-
ment to a destination, the current motor speeds will remain
untouched. If the robot has yet not been driving, the speeds
will be set to the starting values for smooth actuation. The
micro controller will then continue with flow B.

Flow B handles driving specific tasks like smooth actuation Flow B handles
actuation specific
tasks

and control of rotation dependent values. The first thing
the micro controller does when it executes the commands

32 3 PERCbots

for flow B, is to check currently set actuation speeds. It will
then decrease or increase the speed for each motor depend-
ing on in which section of smooth actuation the robot is
currently in.

Next it will check if the desired rotation towards the des-
tination has already be completed and increase a counter
if not. Finally the way driven by the robot gets checked.
If the destination got reached both motors will be turned
off and the micro controller will return to the beginning of
the main loop and wait for further commands via the se-
rial port. If the robot has yet not reached the destination, a
counter, expressing the way driven, will be increased.

3.3.3 Pathfinding

The micro controller is able to calculate necessary move-Code allows for rapid
destination updates ments on its own (see 3.3.2 “Program Flow”). We designed

the software to be able to receive updates regarding the cur-
rent position and the destination seamless and integrate the
newly obtained information into the driving moves. The
micro controller goes through the functions to calculate dis-
tance and orientation every time and then updates current
values accordingly.

Distance

To calculate the robots distance to the destination position
we use Pythagoras’ theorem. After parsing the data string
we receive from the PERC tangible, we end up with six val-
ues. We are interested in the current and destination posi-

tion. The current position is given by the vector ~c =
(
xc
yc

)
,

the destination position by the vector ~d =

(
xd
yd

)
(figure 3.7

(a)) Next we subtract ~c from ~d, getting ~t (figure 3.7 (b)):

~t =

(
xt
yt

)
=

(
xd
yd

)
−
(
xc
yc

)
.

3.3 Software 33

Fi
gu

re
3.

7:
St

ep
s

to
ca

lc
ul

at
e

di
st

an
ce

an
d

or
ie

nt
at

io
n:

(a
)~c

an
d
~ d

ar
e

gi
ve

n
as

cu
rr

en
ta

nd
de

st
in

at
io

n
po

si
ti

on
.(

b)
M

ov
es
~ d

in
ne

ga
ti

ve
~c

di
re

ct
io

n,
~c

in
to

th
e

po
in

to
fo

ri
gi

n.
(c

)~ t
no

w
po

in
ts

to
th

e
ne

w
co

or
di

na
te

of
~ d
.(

c-
1)
D

re
pr

es
en

ts
th

e
di

st
an

ce
to

th
e

de
st

in
at

io
n

po
in

tb
y

ap
pl

yi
ng

Py
th

ag
or

as
’t

he
or

em
.(

c-
2)
α

re
pr

es
en

ts
th

e
de

gr
ee

of
ch

an
ge

w
e

ne
ed

to
ap

pl
y

to
th

e
ro

bo
t

to
ai

m
at

th
e

de
st

in
at

io
n

if
th

e
ro

bo
t

is
cu

rr
en

tl
y

fa
ci

ng
0

de
gr

ee
.

(d
)

Th
e

di
ag

ra
m

sh
ow

s
ho

w
w

e
ta

ke
th

e
cu

rr
en

t
or

ie
nt

at
io

n
of

th
e

ro
bo

ti
nt

o
ac

co
un

t.
(s

ee
A

.2
“U

ti
lit

y
Fu

nc
ti

on
s”

fil
e
u
t
i
l
s
.
i
n
o

lin
e

28
-3

9)

34 3 PERCbots

To get the distance we apply Pythagoras’ theorem and getDistance calculation
by applying

Pythagoras’ theorem
D =

√
x2t + y2t (figure 3.7 (c-1)). D denotes the distance

(in cm) to the target. This value controls the duration the
robot moves in a specific direction. In the code we used
similar variable names. This functionality is implemented
in core.ino (A.1 “Core Program”) at line 123-133.

Orientation

To calculate the orientation we start similar to when we cal-
culated the distance. Vector ~c denotes the current position,
~d the destination position. We calculate ~t like in 3.3.3 “Dis-
tance”.

We now calculate α (figure 3.7 (c-2)) via the arc tangentCalculating rotation
towards the
destination

function. It returns the principal value of the arc tangent
of yt/xt in radiant. We convert that into degree by multi-
plying it with (180/π)

The obtained value does only represent the necessary ro-
tation if the robot is currently facing 0 degree. If not, and
this case is most likely, we need to adjust α by β, the cur-
rent orientation. We will thereby obtain γ, the necessary
rotation change. Nevertheless we need to ensure that we
stick to the protocol defined 3.3.4 “Protocol for Communi-
cation”. Figure 3.7 (d) shows the different cases we have to
check when we take the current rotation β into account to
calculate the necessary rotation γ.

Smooth Actuation

We implemented something we call smooth actuation,Smooth actuation
ensures less robotic

behavior
which refers to the acceleration the robot has while making
its way to the destination position. When the micro con-
troller has calculated the distance and required rotation, it
does not simply put the motors on the maximum defined
speed, but starts accelerating slowly until it has reached the
maximum allowed velocity. When the robot comes closer
and closer to the destination it does also decrease its speed.

3.3 Software 35

Every time the robot gets a position update (3.3.4 “Proto-
col for Communication”) it divides the computed distance
into three sections. The first marking the time to full veloc-
ity, the second the time the robot drives at full speed and
the third the time the robot will decelerate. First and third
take each 20% of the total distance, leaving 80% of the way
where the robot moves at maximum defined speed (calcu-
lation see A.1 “Core Program” at line 176-181).

To reach the full velocity the robot adds a rotation specific How smooth
actuation works in
code

value (has to be less, if the robot rotates) to a counter if it
is smaller than the maximum defined speed. The counter
expressing the updated speed is then assigned to the cor-
responding motor. Each motor has its own independent
speed. The code taking care of de/acceleration lives on line
204-234 A.1 “Core Program”.

We implemented the smooth actuation techniques not only
to make the robot less robotic but also to ensure that it
does not overshoot the destination and then needs to turn
around for a new attempt.

3.3.4 Protocol for Communication

If we transmit data to the bluetooth module, the micro con- Communication with
the robot uses a
special protocol

troller expects the string it receives to be in a special format.
The string has to consist of exactly 24 characters. These will
be split up in six chunks of four characters each. The first
three chunks express the current position and orientation
(see 3.8 (a)). The last three chunks hold the destination
and the angle the robot has do be in (end rotation) when
it reached the destination.

All chunks have the same format: The first character indi- Structure of a chunk
cates if the number is negative. The following three char-
acters express the number itself. Since coordinates must
not be negative, all chunks, except for the third and sixth
(which hold degree values), have a null set as the first char-
acter. We chose this design, because is simplifies the pro-
cessing of the chunks in the micro controller and is faster as
if the controller had to distinguish between different chunk

36 3 PERCbots

Figure 3.8: Protocol for communication with the robot: (a) Input string which re-
solves into six values. (b) Corresponding physical representation. (c) Angle defini-
tion

sizes.

Coordinates are always absolute to the lower left corner ofCoordinate
convention the surface, which is at x = 0 and y = 0 (see 3.8 (c) for

a visual representation). Coordinates must be not greater
than 255, which is a limitation of the micro controller and
degree values not greater than 180, which is defined by the
protocol.

The first and second chunk mark the current x and y coor-
dinate on the surface. Chunk four and five, using the same
format, stand for the destination coordinates.

The third chunk encodes the current orientation (see 3.8 (c))Expressing degree
in degrees. Following the convention the first character ex-
presses with a ”-” that the number is negative, ”0” that the
number is positive. The number formed by the following
three characters needs to be less than 180. This encoding
rules are the same for the sixth chunk, which expresses the
orientation the robot has to be in when it completed the

3.4 Parameters and Conventions 37

driving task (end rotation). Degree values are limited to 180
because with this convention we can create much memory
efficient code.

If the string passed to the micro controller does match the
desired length of 24 characters, the micro controller will
wait until enough characters are available. This is due to
the serial transmission being slower than one main loop cy-
cle of the controller. If the micro controller would not wait
until enough characters are available, partially read strings,
buffer under and overflows would the consequence.

3.4 Parameters and Conventions

The coordinate system we chose has its point of origin set
in the lower left corner, stretching to the right with posi-
tive x, up with positive y values. Coordinates translate into
centimeter one to one. By this design and the limitations
of the micro controller we can actuate a PERCbot within a
rectangle of height and width of 255 cm.

Since we control the tangible on top of a capacitive table Limitations in screen
sizetop, this chosen micro controller and coordinate system

limits us to a table top with 141 inch screen diagonal. This
limitation is given by the micro controller and a controller
with slightly more flash would overcome this issue (see
3.2.2 “Micro Controller” for an alternative micro controller).

The degree values have to be always smaller than 180. They Degree convention
range between 0 and 180. An additional flag is set if the
value has to be interpreted as a negative number. This en-
ables us to develop more memory efficient code. Thus the
degree system of the PERCbot has been adjusted to make
use of values between negative and positive 180 degree
which can express any given angle.

We chose motors which are not fully maxed out when mov- Deployed motor
modeling the PERCbot with desired speed. By this approach we

can implement different driving speeds, depending for ex-
ample on the surface or the users’ interaction. Smooth ac-
tuation, like explained earlier was mainly implemented to

38 3 PERCbots

ensure that the PERCbot does not overshoot a destination.
Nevertheless it makes the robot act less robotic and thus
convey a more human behavior.

In the beginning we thought about different ways of howDesigning a faster
movement towards

the destination
the PERCbot could reach the destination. We mainly came
up with two ways. The PERCbot could either correct its
way when a destination update comes in by stopping both
motors, performing an in-place rotation and continue driv-
ing in the corrected direction. It could also include the up-
dated destination into its current movement. We decided
to implement the second approach since this makes the
robot reach its destination faster. This is because it does
not stop every time an update is received. We call this
technique curved driving. Test showed that this technique
does worsen the precision unrecognizable, but minimizes
the time the robot needs to reach its destination. The pre-
cision is nearly unchanged, compared to the driving with
path correction by in-place rotation, because the robot gets
constant destination upgrades.

In addition to that, the chosen method of integrating up-Less robotic behavior
by design dated coordinates into the current movement makes the

robot seam less robotic toward human interacting with it.
The video, included in the archive available for download
(see B “Video and materials”), shows the chosen method in
action. When we think of the different usage scenarios this
can develop to a huge and important feature.

Destination updates are sent by the computer attached toFinding the right
update interval the table top and connected to the PERC’s bluetooth inter-

face. We found that sending an update every 1500 ms re-
sults in precise and smooth movements of the PERCbot.
Updates more often (than every 500 ms) are to frequent
for the incorporated micro controller, since this matches the
minimum time the controller takes to calculate distance and
orientation. Since it processes the serial commands first (see
flow A 3.3.2 “Program Flow”) it will than less often reach
flow B (see 3.3.2 “Program Flow”), where the main driving
and speed controlling takes place. The robot will seem un-
responsive to commands. Updates less often (than every
1500 ms) will worsen precision such that the robot will take
way longer to reach the desired destination.

3.4 Parameters and Conventions 39

Updates are sent frequently, because the distance, the robot Why frequent
destination updates
are indispensable

moves, depends on many factors, like current battery volt-
age, size of wheels, wheel’s friction and surface’s attrition.
They sometimes vary, even with a consistent setup.

41

Chapter 4

Summary and
Contributions

Based on the provided design of a PERC tangible [Voelker
et al., 2015] we started creating our actuated tangible, a
PERCbot, from the ground up.

We started thinking about a micro controller which suits
our needs but still provides a platform which is well known
and documented. We came up with the Dagu Mini Driver Micro controller
Board [Dagu, 2015a] which not only incorporates a well
documented and widely used micro controller but also pro-
vides the necessary connectors for motors and communica-
tion right out of the box. This board provides us with two
individually controllable motor connectors, a serial header
for communication with the PERC tangible, eight servo
pins for future use and an integrated LED.

Furthermore the board is compatible with the commonly
known Arduino IDE and its framework, making develop-
ment fast and easy.

Next we considered the power supply, providing us with
five and three volt. We attached a battery and got every cir- Power supply
cuit powered. The motors were chosen to offer some exten-
sion for future development. We created a custom housing
which consist of layers each being swappable for repair or
future developments.

42 4 Summary and Contributions

This left us with the markers for the PERCbot to be created
like the markers for a PERC tangible. After some pitfalls weMarker design
decided to make the wheels act as markers, each providing
one touch point. They, and an additional third marker, form
the triangular marker pattern of the PERCbot which makes
recognition by the underlying surface possible.

After completing the hardware setup we brought our focus
to the software, controlling the robot.

First we noticed that since we are using the Arduino IDE
we get a lot of nice things for free, like the String class.
To understand the algorithms implemented for pathfind-
ing we first had to understand the program flow. We sawArduino IDE
that the program consists of a main loop in which either
new commands get processed or the tangible’s movement
is controlled.

We understood how distance and orientation calculation
are performed and how the robot tries to ensure preci-
sion regarding the accurate destination finding. After thisConventions and

Parameters the general protocol for communicating with the PERCbot
showed us how we can tell the PERCbot to move to a
chosen position, while considering some conventions and
ranges for parameters.

After this we had created a PERCbot, understood its hard-
ware and software architecture, empowering us sending
command to the PERCbot, making it actuate into the de-
sired direction.

With this work future approaches in the field of actuated
tangible can refer back to a functioning actuated tangible
which is able to find a path on its own to a desired position.
Even if we implemented this concept on top of a capacitive
touchscreen, the technology could also be ported to an op-
tical system, but then also facing all the earlier described
problems.

When we compare our approach to a design that is based
on an optical sensing system, we can say that our approach
is more robust regarding tracking and detection - especially
when in motion. Nevertheless our approach is based on

43

internal actuation, presenting us with the problem of power
supply and consumption. Right now a PERCbot provides Power consumption
around three hours of interaction time, slightly varying due
to different distances and orientations.

Nevertheless, the battery will be low at some point, a sit-
uation that would never have occurred, if external actua-
tion had been used. Yet, regarding the relatively long in-
teraction time, in comparison to other approaches [Miyaki
et al., 2011] and much more precise movement ([Weiss et al.,
2010], [Nowacka et al., 2013]), we consider internal actua-
tion still a better choice for actuating a PERCbot.

44 4 Summary and Contributions

45

Chapter 5

Future Work

5.1 Collision Avoidance

We can think of many extension to the here presented sys-
tem for future work. One could equip the PERCbot at the
top with a ring of infrared LEDs and receivers. Making
them really dense to each another enables the PERCbot, if
there are multiple on a surface, to detect each other. This
can make the robot be aware of other robots and prevent
colliding. Since we use a ring of infrared LEDs and re-
ceivers we can offer the robot a 360 degree view to the scene
and other robots. Sensing other

PERCbots

When we think of collision avoidance, which is something
we think has to be done in the physical world, the robot
could also be enabled to sense obstacles of any kind. If we
equip robots with infrared rings we could now tell if the
obstacle is static or another robot. We can then tell the con-
nected computer via bluetooth about this obstacle.

5.2 Dynamic Rerouting

Whenever a robot is predictably about to pass the position Avoiding known
obstaclesof the obstacle which was discovered earlier, the computer

46 5 Future Work

sending the commands to the PERC tangible can dynami-
cally reroute the PERCbot to not collide with the obstacle.
Such an obstacle would then consist of a position, size and
lease time. The obstacle will get removed again if the lease
time is up. The does not impair the path finding, because
the obstacle, which’s lease time is up, will be rediscovered
by a PERCbot if it still there.

To enable the device, which is communicating the desti-
nation updates to the robots, being able to dynamically
reroute robots, we would implement a spline object ex-
pressing the expected path the robot is about to take to
arrive at the desired destination. This spline can then be
computationally modified to prevent known objects on top
of the surface. This spline object has to consist of as less
points a possible, because the robot is able to make its way
to a way point on its own. To many points would restrict
the robots ability to chose the best appropriated way and
thereby avoid collisions with other PERCbots.Leaving the

PERCbot still doing
pathfinding on its

own
If an obstacle is known and predictably sitting in the PER-
Cbot’s way (see figure 5.1 (a): red path), a new way around
the obstacle is calculated by the computer (sending the des-
tination updates) (see figure 5.1 blue way points). The clos-
est way point will be send as the new destination to the
robot. Once it reaches the destination, the next way point
will be send. This will guide the PERCbot around the ob-
stacle predictably creating the green path (b) of figure 5.1.Rerouting with

guidance
The next time the computer is about to send a destination
update it can check beforehand if the predicted path (see
figure 5.1 (a): red path) is interfering with known obstacles.
It will then reroute the PERCbot to ensure it reaches the
desired destination.

5.3 Damage Prevention

To avoid the robot from leaving the surface (and maybeSetup
dropping from high altitude) we could equip the PERCbot
with a light sensor on top, which is able to receive light
from 360 degree around the robot. We then put one laser

5.3 Damage Prevention 47

Figure 5.1: Dynamic rerouting if an obstacle has been discovered by a PERCbot
and communicated to the computer sending the destination updates. Red (a): The
expected path the PERCbot will follow, hitting the obstacle in the meantime will
cause alerting the computer. Blue: calculated way points which are sent to the robot
when approaching. Green (b): Resulting rerouted path, avoiding the obstacle.

Figure 5.2: Invisible borders made with light

48 5 Future Work

emitting diode (e.g. a common hand held laser pointer) at
one edge of the surface pointing at some other edge. By
placing small mirrors at the remaining three edges of the
surface, the laser beam will be reflected such that it sur-
rounds the surface (see figure 5.2 for a visual representa-
tion).

If the light sensor on top of the PERCbot exposed to a high
amount (pre-calibrated) of light (see figure 5.2 PERCbot
crossing the laser beam), it instantly turns of the motors and
backs up.Stop when the laser

beam hits the robot
This approach, where we use an invisible border of light
not only prevents the robot from damage but also benefits
the freedom of interaction with the robot in comparison to
ordinary physical boundaries.

Future work could also include working with a micro con-
troller which offers more flash than the currently used one.
This step will nevertheless be inevitable if one decides to
implement the earlier described extensions.

49

Appendix A

Source Code

A.1 Core Program

core.ino
1 //
2 /// Hardware s p e c i f i c values go here ///
3 //
4 # def ine LEFT MOTOR DIR PIN 8
5 # def ine LEFT MOTOR PWM PIN 10
6 # def ine RIGHT MOTOR DIR PIN 7
7 # def ine RIGHT MOTOR PWM PIN 9
8 # def ine maxSpeed 55 // (0−255)
9 // Define when to s t a r t dr iving and when to

10 // r o t a t e i n p l a c e (in cm)
11 # def ine minDistanceToStartDriving 10
12 // Controls how much the robot r o t a t e s f o r
13 // a given angle (smal ler value −> smal ler r o t a t i o n)
14 # def ine r o t a t i o n I n c r D i v i d e r 16
15 // Controls the minimum r o t a t i o n angle a t
16 // which to s t a r t i n p l a c e r o t a t i o n
17 # def ine minAngleToStartInPlaceRotat ion 8
18 // Controls the o f f s e t the robot r o t a t e s
19 // when r o t a t i n g i n p l a c e (s i z e of wheels ,
20 // grip , e t c .) (more i s more)
21 byte hardwareSpecif icRotMult = 2 ;
22 // Controls the time while updating a l l values
23 // in the loop (more waitt ime −> longer moves)
24 # def ine waitInEveryLoop 15
25 //
26

27

28 # def ine FWD HIGH

50 A Source Code

29 # def ine REV LOW
30

31 # def ine INVROTATION 0
32 # def ine DRIVING 1
33 # def ine TURNING 2
34 # def ine FLIPFLOP 3
35 // We got max of 8 b i t here (so max 7 items !)
36

37 # def ine i s (b i t) bitRead (boolValues , b i t)
38 # def ine s e t (b i t) b i t S e t (boolValues , b i t)
39 # def ine unset (b i t) b i t C l e a r (boolValues , b i t)
40

41 //In /Appl ica t ions/Arduino . app/Contents/Java/
hardware/arduino/avr/cores/arduino/Arduino . h : 1 0 3

42 //e . g . # def ine bitRead (value , b i t) (((value) >> (b i t)
) & 0x01)

43

44 unsigned char speedStep ;
45 unsigned i n t speedUpUntil ;
46 unsigned i n t slowDownFrom ;
47

48 byte boolValues ;
49

50 // rotat ionToPerform w i l l be between 0 and 180
51 // i t uses invRotat ion to determine i f e . g . 130 or

−130
52 byte rota t ionDriven ;
53 byte t o t a l R o t a t i o n ;
54

55 unsigned char le f tCurrentSpeed ;
56 unsigned char rightCurrentSpeed ;
57

58 byte cPosX , cPosY ;
59 byte dPosX , dPosY ;
60 i n t cRot , dRot ;
61 unsigned i n t t o t a l D i s t a n c e ;
62 unsigned i n t distanceDriven ;
63

64 /////////////
65 /// SETUP ///
66 /////////////
67 void setup () {
68 conf igur ePor t s () ;
69 S e r i a l . begin (9 6 0 0) ; // opens s e r i a l port , s e t s

data r a t e to 9600 bps
70

71 // Signa l boot complete
72 d i g i t a l W r i t e (13 , HIGH) ;
73 }
74

75 ////////////
76 /// LOOP ///
77 ////////////

A.1 Core Program 51

78 void loop () {
79

80 // Do we have new s e r i a l commands?
81 /// NEVER SEND MORE THAN 24 chars ! − I t w i l l wrap

the b u f f e r ///
82 /// and then mess up the P o s i t i o n s − No Bug

///
83 /// Watch CR/Newline not appearing ! they count .

///
84 // We can optimize here −> 4 chars f o r every i s not

nesse .
85 d i g i t a l W r i t e (13 , LOW) ;
86 i f (S e r i a l . a v a i l a b l e () > 0) {
87 // Read u n t i l we have enough data
88 byte maxWait = 0 ;
89 while (S e r i a l . a v a i l a b l e () < 24 && maxWait < 100)

{
90 delay (5) ;
91 maxWait++;
92 }
93 char data [2 5] ; // One more f o r n u l l terminator
94 S e r i a l . readBytes (data , 24) ;
95

96 // Emtpy the buffer , we only wanted the f i r s t 24
chars

97 while (S e r i a l . a v a i l a b l e ()) {
98 S e r i a l . read () ;
99 }

100 data [2 4] = 0 ; // Adding n u l l terminator a t the
end

101 f o r (byte i = 0 ; i <= 5 ; i ++) {
102 char subbuff [5] ;
103 memcpy(subbuff , &data [i ∗ 4] , 4) ;
104 subbuff [4] = 0 ;
105 switch (i) {
106 case 0 : cPosX = a t o i (subbuff) ;
107 break ;
108 case 1 : cPosY = a t o i (subbuff) ; ;
109 break ;
110 case 2 : cRot = a t o i (subbuff) ; ;
111 break ;
112 case 3 : dPosX = a t o i (subbuff) ; ;
113 break ;
114 case 4 : dPosY = a t o i (subbuff) ; ;
115 break ;
116 case 5 : dRot = a t o i (subbuff) ; ;
117 break ;
118 d e f a u l t : break ;
119 }
120 }
121 f r e e (data) ;
122

123 /////////////////

52 A Source Code

124 /// Distance ///
125 ////////////////
126 // c a l c u l a t e the d i s t a n c e from current to

d e s t i n a t i o n
127

128 unsigned i n t xSq = (unsigned i n t) sq (dPosX −
cPosX) ;

129 unsigned i n t ySq = (unsigned i n t) sq (dPosY −
cPosY) ;

130

131 t o t a l D i s t a n c e = (unsigned i n t) s q r t ((double) xSq
+ (double) ySq) ;

132 t o t a l D i s t a n c e = t o t a l D i s t a n c e ∗ 2 ;
133 distanceDriven = 0 ;
134

135 //////////////////////
136 /// Rotat ion/angle ///
137 //////////////////////
138 // c a l c u l a t e the o f f s e t in degrees from current

r a t a t i o n (cRot) to the d e s t i n a t i o n point
139 // clockwise i s +
140 i n t angle = ca lcRot (cRot , cPosX , cPosY , dPosX ,

dPosY) ;
141 // match i n t o smal ler v a r i a b l e
142 // angle w i l l be always <= 180
143 t o t a l R o t a t i o n = abs (angle) ;
144 ro ta t ionDriven = 0 ;
145 (angle < 0) ? s e t (INVROTATION) : unset (

INVROTATION) ;
146

147 /// Checking d i s t a n c e threshold f o r r o t a t i o n in
place ///

148 i f (t o t a l D i s t a n c e < minDistanceToStartDriving) {
149 // So the d i s t a n c e we would drive i s to small
150 // We w i l l r o t a t e in place , s e t t i n g

t o t a l D i s t a n c e to 0
151 t o t a l D i s t a n c e = 0 ;
152

153 // This i s the l a s t c a l l before we drop back
in the driving loop

154 // (which w i l l be doing nothing because we s e t
t o t a l D i s t a n c e to 0)

155 // This snippet i s taken from the u t i l s f i l e
where the t o t a l R o t a t i o n

156 // i s c a l c u l a t e d
157 i f (dRot <= 0) {
158 i f (dRot − cRot < −180)
159 dRot = 360 − cRot − dRot ;
160 e l s e
161 dRot −= cRot ;
162 } e l s e {
163 //degVector > 0
164 i f (dRot − cRot > 180)

A.1 Core Program 53

165 dRot = −360 + (dRot − cRot) ;
166 e l s e
167 dRot −= cRot ;
168 }
169 // We misuse dRot here , but t h a t i s okey ,

s i n c e i f we use i t
170 // again i t w i l l have gotten an update

already
171 i f (abs (dRot) >=

minAngleToStartInPlaceRotat ion) {
172 r o t a t e I n P l a c e (dRot , hardwareSpecif icRotMult

) ;
173 }
174

175 } e l s e {
176 // We get here , we need to drive some way
177 /// Calc the 3 speedUp/maxSpeed/slowDown areas

r e s p e c t i v e to d i s t a n c e ///
178 // [a :20% | b:80% | c : c==a] % of

d i s t a n c e
179 speedUpUntil = t o t a l D i s t a n c e ∗ 0 . 2 ;
180 // Only works f o r a==c
181 slowDownFrom = t o t a l D i s t a n c e − speedUpUntil ;
182

183 /// Checking i f dr iving and then using current
speed ins tead s t a r t i n g a t 1 ///

184 speedStep = 1 ;
185

186 i f (i s (INVROTATION)) {
187 (i s (DRIVING)) ? goLeft (r ightCurrentSpeed) :

goLeft (1) ;
188 } e l s e {
189 (i s (DRIVING)) ? goRight (le f tCurrentSpeed) :

goRight (1) ;
190 }
191

192 s e t (TURNING) ;
193 s e t (DRIVING) ;
194

195 } // e l s e t o t a l D i s t a n c e <
minDistanceToStartDriving

196

197 } // i f s e r i a l . a v a i l a b l e ()
198

199 d i g i t a l W r i t e (13 , HIGH) ;
200 // There was an t a r g e t update some time ago
201 // We are going fwd s t r a i g h t or s t i l l in a curve
202

203

204 //////////////////////////////
205 /// Speed c o n t r o l ////
206 //////////////////////////////
207 // Check where we are

54 A Source Code

208 i f (dis tanceDriven <= speedUpUntil) {
209 // S e r i a l . p r i n t l n (”# | −|−”) ;
210 // We are s t a r t i n g and speeding up
211 // We are here : [######|−−−−−−|−−−−−−]
212 i f (le f tCurrentSpeed + speedStep < maxSpeed &&

lef tCurrentSpeed > 0) {
213 l e f tCurrentSpeed += speedStep ;
214 }
215 i f (r ightCurrentSpeed + speedStep < maxSpeed &&

rightCurrentSpeed > 0) {
216 r ightCurrentSpeed += speedStep ;
217 }
218 } e l s e i f (dis tanceDriven >= slowDownFrom) {
219 // S e r i a l . p r i n t l n (”−|−|#”) ;
220 // We are reaching the t a r g e t , slow down slowly
221 // We are here : [−−−−−−|−−−−−−|######]
222 i f (le f tCurrentSpeed − speedStep >= 0) {
223 l e f tCurrentSpeed −= speedStep ;
224 }
225 i f (r ightCurrentSpeed − speedStep >= 0) {
226 r ightCurrentSpeed −= speedStep ;
227 }
228 } e l s e {
229 // S e r i a l . p r i n t l n (”−|# | −”) ;
230 // We should be going s t r a i g h t with max speed

defined
231 // We are here : [−−−−−−|######|−−−−−−]
232 i f (le f tCurrentSpeed > 0) se tLef tSpeed (

maxSpeed) ;
233 i f (r ightCurrentSpeed > 0) setRightSpeed (

maxSpeed) ;
234 }
235

236

237 // Make the c a l c u l a t e d speeds l i v e
238 setGlobalSpeed (lef tCurrentSpeed ,

r ightCurrentSpeed) ;
239 //
240 /// Check i f go s t r a i g h t or in a curve ///
241 //
242 i f (ro ta t ionDriven >= t o t a l R o t a t i o n) {
243 i f (i s (TURNING)) {
244 // We get here , we are now in the c o r r e c t

d i r e c t i o n , l e t s go fwd
245 // +1 i s important , because we w i l l auto−brake

i f speed i s == 0
246 i f (le f tCurrentSpeed == 0) {
247 se tLef tSpeed (1) ;
248 }
249 i f (r ightCurrentSpeed == 0) {
250 setRightSpeed (1) ;
251 }
252

A.2 Utility Functions 55

253 goFwd(lef tCurrentSpeed , r ightCurrentSpeed) ;
254 unset (TURNING) ;
255 }
256 } e l s e {
257 // S t i l l need r o t a t i o n to look at the t a r g e t
258 // Only one , l e f t XOR r i g h t can be != 0 s i n c e we

’ re r o t a t i n g
259 char i n c r = (maxSpeed /2 + lef tCurrentSpeed +

rightCurrentSpeed) / r o t a t i o n I n c r D i v i d e r ;
260 (ro ta t ionDriven + i n c r >= t o t a l R o t a t i o n) ?

rota t ionDriven = t o t a l R o t a t i o n : ro ta t ionDriven
+= i n c r ;

261 }
262

263

264 /////////////////////////////////
265 /// Did we reach the t a r g e t ? ///
266 /////////////////////////////////
267 i f (dis tanceDriven >= t o t a l D i s t a n c e) {
268 // We reached the t a r g e t , stop and check

r o t a t i o n
269 doBrake () ;
270 // F i n a l l y we need to s e t our dr iving f i n i s h e d

f l a g
271 unset (DRIVING) ;
272

273 } e l s e {
274 // Update the way we already drove
275 i f (i s (TURNING)) {
276 // I f we are r o t a t i n g we only take every

second loop and add
277 // to the distanceDriven , because we are

going way slower fwd
278 i f (i s (FLIPFLOP)) {
279 distanceDriven ++;
280 unset (FLIPFLOP) ;
281 } e l s e {
282 s e t (FLIPFLOP) ;
283 }
284 } e l s e {
285 distanceDriven ++;
286 }
287

288 }
289 delay (waitInEveryLoop) ;
290

291 }

A.2 Utility Functions

56 A Source Code

utils.ino
1 void conf igurePor t s ()
2 {
3 pinMode (LEFT MOTOR DIR PIN , OUTPUT) ;
4 pinMode (LEFT MOTOR PWM PIN, OUTPUT) ;
5 pinMode (RIGHT MOTOR DIR PIN , OUTPUT) ;
6 pinMode (RIGHT MOTOR PWM PIN, OUTPUT) ;
7 pinMode (13 , OUTPUT) ;
8 d i g i t a l W r i t e (LEFT MOTOR DIR PIN , FWD) ;
9 d i g i t a l W r i t e (RIGHT MOTOR DIR PIN , FWD) ;

10 }
11

12

13 i n t radiantToDegree (f l o a t radians)
14 {
15 re turn radians ∗ (180 / PI) ;
16 }
17

18 ///////////////////////////////
19 /// re turns −180 <= x <= 180
20 ///////////////////////////////
21 i n t ca lcRot (i n t cRot , i n t ax , i n t ay , i n t bx , i n t by

)
22 {
23 i n t x = bx−ax ;
24 i n t y = by−ay ;
25

26 // ∗ (180 / PI) w i l l get us from radians to degrees
27 i n t degVector = vectorAngle (x , y) ∗ (180 / PI) ;
28 i f (degVector <= 0) {
29 i f (degVector − cRot < −180)
30 degVector = 360 − cRot − degVector ;
31 e l s e
32 degVector −= cRot ;
33 } e l s e {
34 //degVector > 0
35 i f (degVector − cRot > 180)
36 degVector = −360 + (degVector − cRot) ;
37 e l s e
38 degVector −= cRot ;
39 }
40 re turn degVector ;
41 }
42

43 f l o a t vectorAngle (i n t x , i n t y)
44 {
45 re turn atan2f (x , y) ;
46 }

A.3 Motor Driver 57

A.3 Motor Driver

low motor.ino
1 void setGlobalSpeed (byte leftPwmSpeed , byte

rightPwmSpeed)
2 {
3 se tLef tSpeed (leftPwmSpeed) ;
4 setRightSpeed (rightPwmSpeed) ;
5 }
6

7 void setLef tSpeed (byte leftPwmSpeed)
8 {
9 analogWrite (LEFT MOTOR PWM PIN, leftPwmSpeed) ;

10 l e f tCurrentSpeed = leftPwmSpeed ;
11 }
12

13 void setRightSpeed (byte rightPwmSpeed)
14 {
15 analogWrite (RIGHT MOTOR PWM PIN, rightPwmSpeed) ;
16 r ightCurrentSpeed = rightPwmSpeed ;
17 }
18

19 void doBrake ()
20 {
21 se tLef tSpeed (0) ;
22 setRightSpeed (0) ;
23 }
24

25 void goFwd(byte leftPwmSpeed , byte rightPwmSpeed)
26 {
27 d i g i t a l W r i t e (LEFT MOTOR DIR PIN , FWD) ;
28 d i g i t a l W r i t e (RIGHT MOTOR DIR PIN , FWD) ;
29 setGlobalSpeed (leftPwmSpeed , rightPwmSpeed) ;
30 }
31

32 void goLeft (byte pwmSpeed)
33 {
34 d i g i t a l W r i t e (LEFT MOTOR DIR PIN , FWD) ;
35 setGlobalSpeed (0 , pwmSpeed) ;
36 }
37

38 void goRight (byte pwmSpeed)
39 {
40 d i g i t a l W r i t e (RIGHT MOTOR DIR PIN , FWD) ;
41 setGlobalSpeed (pwmSpeed , 0) ;
42 }
43

44 void r o t a t e I n P l a c e (i n t r o t a t i o n O f f s e t , byte
hardwareSpecif icRotMult) {

45 i f (r o t a t i o n O f f s e t < 0) {
46 d i g i t a l W r i t e (LEFT MOTOR DIR PIN , REV) ;
47 d i g i t a l W r i t e (RIGHT MOTOR DIR PIN , FWD) ;

58 A Source Code

48 } e l s e {
49 d i g i t a l W r i t e (LEFT MOTOR DIR PIN , FWD) ;
50 d i g i t a l W r i t e (RIGHT MOTOR DIR PIN , REV) ;
51 }
52

53 setRightSpeed (maxSpeed) ;
54 se tLef tSpeed (maxSpeed) ;
55

56 // B a s i c a l l y ” wait ” f o r some time , needs f i n e
adjustment

57 delay (abs (r o t a t i o n O f f s e t) ∗
hardwareSpecif icRotMult) ;

58 doBrake () ;
59

60 d i g i t a l W r i t e (LEFT MOTOR DIR PIN , FWD) ;
61 d i g i t a l W r i t e (RIGHT MOTOR DIR PIN , FWD) ;
62 }

59

Appendix B

Video and materials

File: PERCbot-thesis.zipa

ahttp://hci.rwth-aachen.de/tiki-download file.php?fileId=1793

http://hci.rwth-aachen.de/tiki-download_file.php?fileId=1793

61

Bibliography

Dagu. Arduino Mini Driver Board.
http://www.dawnrobotics.co.uk/
dagu-arduino-mini-driver-board/, 2015a.
[Online; accessed 18-Sept-2015].

Dagu. Arduino Mini Driver Board Datasheet.
https://drive.google.com/file/d/0B_
_O096vyVYqczRjX1k5LTRkcjA/edit, 2015b. [On-
line; accessed 22-Sept-2015].

Nicholas D’Ademo, Wen Lik Dennis Lui, Wai Ho Li, Y. Ah-
met Sekercioglu, and Tom Drummond. eBug - An Open
Robotics Platform for Teaching and Research. Robotics
and Automation (ACRA), 2011 Australasian Conference on,
pages 1–9, 2011.

Christoph Ganser, Adrian Steinemann, and Andreas Kunz.
InfrActables: Multi-user tracking system for interactive
surfaces. Proceedings - IEEE Virtual Reality, 2006:36, 2006.
ISSN 1087-8270. doi: 10.1109/VR.2006.86.

Jefferson Y. Han. Low-cost multi-touch sensing through
frustrated total internal reflection. Proceedings of the 18th
annual ACM symposium on User interface software and tech-
nology - UIST ’05, pages 115–118, 2005. ISSN 00030147.
doi: 10.1145/1095034.1095054. URL http://portal.
acm.org/citation.cfm?doid=1095034.1095054.

H. Ishii and B. Ullmer. Tangible bits: towards seamless in-
terfaces between people, bits and atoms. Proceedings of the
SIGCHI conference on Human factors in computing systems,
(March):241, 1997. ISSN 1473558X. doi: http://doi.acm.
org/10.1145/604045.604048. URL http://portal.
acm.org/citation.cfm?id=258549.258715.

http://www.dawnrobotics.co.uk/dagu-arduino-mini-driver-board/
http://www.dawnrobotics.co.uk/dagu-arduino-mini-driver-board/
https://drive.google.com/file/d/0B__O096vyVYqczRjX1k5LTRkcjA/edit
https://drive.google.com/file/d/0B__O096vyVYqczRjX1k5LTRkcjA/edit
http://portal.acm.org/citation.cfm?doid=1095034.1095054
http://portal.acm.org/citation.cfm?doid=1095034.1095054
http://portal.acm.org/citation.cfm?id=258549.258715
http://portal.acm.org/citation.cfm?id=258549.258715

62 Bibliography

Martin Kaltenbrunner and Ross Bencina. reacTIVision : A
Computer-Vision Framework for Table- Based Tangible
Interaction. Group, pages 15–17, 2007. doi: 10.1145/
1226969.1226983.

Aleksander Krzywinski, H Mi, Weiqin Chen, and M Sug-
imoto. RoboTable: a tabletop framework for tangible
interaction with robots in a mixed reality. Proceedings
of the . . . , pages 107–114, 2009. doi: 10.1145/1690388.
1690407. URL http://dl.acm.org/citation.cfm?
id=1690407.

C. Ladha, Karim Ladha, Jonathan Hook, Daniel Jack-
son, Gavin Wood, and Patrick Olivier. TouchBridge:
augmenting active tangibles for camera-based multi-
touch surfaces. ACM International Conference on Inter-
active Tabletops and Surfaces, pages 271–272, 2010. doi:
10.1145/1936652.1936711. URL http://portal.acm.
org/citation.cfm?id=1936652.1936711.

Microsoft. Microsoft Surface Hub. https://www.
microsoft.com/microsoft-surface-hub/, 2015.
[Online; accessed 08-Sept-2015].

Takashi Miyaki, Yong Ding, Behnam Banitalebi, and
Michael Beigl. Things that Hover: interaction with tiny
battery-less robots on desktop. Proceedings of the 2011 an-
nual conference extended abstracts on Human factors in com-
puting systems - CHI EA ’11, pages 531–540, 2011. doi:
10.1145/1979742.1979624. URL http://portal.acm.
org/citation.cfm?doid=1979742.1979624.

D Nowacka, K Ladha, N Hammerla, D Jackson, C Ladha,
E Rukzio, and P Olivier. Touchbugs: actuated tangibles
on multi-touch tables. Proceedings of CHI 2013, pages 759–
762, 2013. doi: 10.1145/2470654.2470761. URL http:
//dl.acm.org/citation.cfm?id=2470761.

Dan Rosenfeld, Michael Zawadzki, Jeremi Sudol, and Ken
Perlin. Physical Objects as Bidirectional User Interface
Elements. IEEE Computer Graphics and Applications, 24(1):
44–49, 2004. ISSN 02721716. doi: 10.1109/MCG.2004.
1255808.

Johannes Schöning, Peter Brandl, Florian Daiber, Flo-
rian Echtler, Otmar Hilliges, Jonathan Hook, Markus

http://dl.acm.org/citation.cfm?id=1690407
http://dl.acm.org/citation.cfm?id=1690407
http://portal.acm.org/citation.cfm?id=1936652.1936711
http://portal.acm.org/citation.cfm?id=1936652.1936711
https://www.microsoft.com/microsoft-surface-hub/
https://www.microsoft.com/microsoft-surface-hub/
http://portal.acm.org/citation.cfm?doid=1979742.1979624
http://portal.acm.org/citation.cfm?doid=1979742.1979624
http://dl.acm.org/citation.cfm?id=2470761
http://dl.acm.org/citation.cfm?id=2470761

Bibliography 63

Löchtefeld, Nima Motamedi, Laurence Muller, Patrick
Olivier, Tim Roth, and Ulrich Von Zadow. Multi-Touch
Surfaces : A Technical Guide Technical Report TUM-
I0833 Categories and Subject Descriptors. Most, page 19,
2008.

Simon Voelker, Kosuke Nakajima, Christian Thoresen,
Yuichi Itoh, Kjell Ivar Ø vergård, and Jan Borchers. PUCs.
In Proceedings of the adjunct publication of the 26th an-
nual ACM symposium on User interface software and tech-
nology - UIST ’13 Adjunct, pages 1–2, New York, New
York, USA, 2013. ACM Press. ISBN 9781450324069. doi:
10.1145/2508468.2514926. URL http://dl.acm.org/
citation.cfm?doid=2508468.2514926.

Simon Voelker, Christian Cherek, Jan Thar, Thorsten
Karrer, Christian Thoresen, Kjell Ivar Øvergård, and
Jan Borchers. Percs: Persistently trackable tangi-
bles on capacitive multi-touch displays. In Proceed-
ings of the 28th Annual ACM Symposium on User Inter-
face Software and Technology (to appear), UIST ’15, New
York, NY, USA, November 2015. ACM. doi: 10.
1145/2807442.2807466. URL http://dx.doi.org/
10.1145/2807442.2807466.

Malte Weiss, Julie Wagner, Yvonne Jansen, Roger Jennings,
Ramsin Khoshabeh, James D. Hollan, and Jan Borchers.
Slap widgets: Bridging the gap between virtual and
physical controls on tabletops. In CHI ’09: Proceedings
of the 27th international conference on Human factors in com-
puting systems, pages 481–490, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-246-7. doi: http://dx.doi.org/
10.1145/1518701.1518779.

Malte Weiss, Florian Schwarz, Simon Jakubowski, and
Jan Borchers. Madgets: Actuating Widgets on Inter-
active Tabletops. Proceedings of the 23nd annual ACM
symposium on User interface software and technology -
UIST ’10, pages 293–302, 2010. doi: 10.1145/1866029.
1866075. URL http://portal.acm.org/citation.
cfm?doid=1866029.1866075.

Weiß, Malte. Bringing Haptic General-Purpose Controls to
Interactive Tabletops. August 2012.

http://dl.acm.org/citation.cfm?doid=2508468.2514926
http://dl.acm.org/citation.cfm?doid=2508468.2514926
http://dx.doi.org/10.1145/2807442.2807466
http://dx.doi.org/10.1145/2807442.2807466
http://portal.acm.org/citation.cfm?doid=1866029.1866075
http://portal.acm.org/citation.cfm?doid=1866029.1866075

64 Bibliography

Daniel Williams. Reactable. https://upload.
wikimedia.org/wikipedia/commons/e/e3/
Reactable_Multitouch.jpg, 2007. [Online; ac-
cessed 28-Sept-2015].

https://upload.wikimedia.org/wikipedia/commons/e/e3/Reactable_Multitouch.jpg
https://upload.wikimedia.org/wikipedia/commons/e/e3/Reactable_Multitouch.jpg
https://upload.wikimedia.org/wikipedia/commons/e/e3/Reactable_Multitouch.jpg

65

Index

Actuation Techniques . 15–19

Battery-less Hovering. .16–17

Capacitive Sensing . 6
Capacitive Systems . 11–15
Collision Avoidance . 45
Contributions . 41–43
Conventions (Software) . 37–39
core.ino . 49–55

Damage Prevention . 46
Distance . 32–34
Dynamic Rerouting . 45–46

External Actuation. .15–16

First Approaches . 22–23
Future Work . 45–48

Hardware . 22–29

IDE . 29
Information . 5–6
Internal Actuation . 16–19

low motor.ino . 57–58

Magnetic Fields. .15–16
Marker Creation . 27–29
Micro Controller . 23–25
Motor-Based Actuation . 18–19
Motors . 25–26

Optical Sensing . 6
Optical Systems . 6–11, 15
Orientation . 34
Overview . 21–22

Parameters (Software) . 37–39

66 Index

Pathfinding . 32
PERCbots . 21–39
Physical Housing . 26–27
Power Supply . 25
Program Flow . 29–32
Protocol for Communication . 35–37

Related Work . 5–19

Smooth Actuation . 34–35
Software .29–37
Source Code . 49–58
Summary . 41–43

utils.ino . 55–56

Vibration Patterns . 17–18
Video . 59

Typeset October 5, 2015

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Thesis Structure

	Related Work
	How Information is Presented
	Optical and Capacitive Sensing
	Optical Systems
	Capacitive Systems

	Actuation Techniques
	External Actuation
	Actuation by Magnetic Fields

	Internal Actuation
	Battery-less Hovering
	Actuation by Vibration Patterns
	Motor-Based Actuation

	PERCbots
	Overview
	Hardware
	First Approaches
	Micro Controller
	Power Supply
	Motors
	Physical Housing
	Marker Creation

	Software
	IDE
	Program Flow
	Pathfinding
	Distance
	Orientation
	Smooth Actuation

	Protocol for Communication

	Parameters and Conventions

	Summary and Contributions
	Future Work
	Collision Avoidance
	Dynamic Rerouting
	Damage Prevention

	Source Code
	Core Program
	Utility Functions
	Motor Driver

	Video and materials
	Bibliography
	Index

