
by
Sören Busch

Nomadic
Interfaces in

UbiComp

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Klaus Wehrle

Registration date: February 15th, 2011
Submission date: August 9th, 2011

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen,August2011
Sören Busch

v

Contents

Abstract xv

Überblick xvii

Acknowledgements xix

Conventions xxi

1 Introduction 1

1.1 Research Goals 2

1.2 Nomadic Applications 2

1.2.1 Application Migration 3

1.2.2 UI Adaptation 4

1.2.3 UI Distribution 4

1.2.4 Nomadic Operations 5

1.3 Iterative User-Centered Design 6

1.4 Chapter Overview 7

2 Personal Workspaces 9

vi Contents

2.1 Multiple Devices in Users’s Environments . . 9

2.1.1 Support Multiple Device Use with
Nomadic Applications 12

2.2 Information Scraps 13

2.2.1 Supporting information scraps with
Nomadic Applications 15

2.3 Whiteboards 16

2.3.1 Combining Nomadic Applications
with Whiteboards 17

2.3.2 Core Principles of Whiteboards 18

2.4 Usage Scenarios 18

3 Related work 21

3.1 Augmented Spaces 21

3.1.1 i-Land 22

3.1.2 iRoom 24

3.1.3 The NiCE Discussion Room 25

3.1.4 ARIS 26

3.2 Software Solutions 28

3.2.1 Multibrowsing 28

3.2.2 Impromptu 30

3.2.3 CHAMELEON-RT 31

3.3 Interaction Techniques 33

3.3.1 Pick-and-Drop 34

Contents vii

3.3.2 Hyperdragging 35

4 Requirements 37

4.1 Device Classes 37

4.1.1 Desktop Computer 38

4.1.2 Large Display 38

Application support 39

Window modes 40

4.1.3 Mobile Devices 40

4.2 Nomadic Operations 41

5 Paper Prototype 43

5.1 Device Design 44

5.1.1 Board 44

Windows 44

Board Controls 46

5.1.2 Desktop 47

5.2 A small user test 49

5.2.1 Tasks 49

5.2.2 Testing Process 50

5.2.3 Findings 50

5.3 Conclusions 52

6 Software Prototype 53

viii Contents

6.1 Horizontal vs Vertical Prototyping 53

6.2 The Desktop Application 54

6.2.1 Application Support 56

Browser 56

Text Editor 56

Sketching 57

Generic NSDocument-based Appli-
cations 57

6.2.2 Window Grabbing 58

6.3 The Board Application 59

6.3.1 WhiteBoardWindow Framework . . . 60

Windows and their controls 61

Window Modes 62

6.3.2 Applications 63

Browser 63

Text Editor 64

Sketching 65

Generic NSDocument-based Appli-
cations 65

6.3.3 Annotations 66

6.3.4 Nomadic Operations 66

6.4 The Mobile Application 67

6.5 NomadicApps Framework 69

Contents ix

6.5.1 AsyncNetwork 70

AsyncServer 71

AsyncConnectionHandler 71

AsyncBroadcaster 72

ASyncLoader 73

ASyncRequest 73

6.5.2 NomadicApps 73

NAClient 74

NADevice 79

NAState 81

6.6 Another Small User Test 81

6.6.1 Tasks 82

6.6.2 Testing Process 82

6.6.3 Findings & Software Updates 82

7 Evaluation 87

7.1 Study Setup 87

7.2 Case 1: Using the board for collaborative work 88

7.3 Case 2: Using the board as a personal storage 90

7.4 Conclusions 92

8 Summary and future work 95

8.1 Summary and contributions 95

x Contents

8.2 Future work 97

8.2.1 Enhanced Support 97

8.2.2 Additional Features 98

8.2.3 Nomadic Operations 98

8.2.4 Additional User Studies 99

8.2.5 Better Form Factors 100

Bibliography 101

Index 105

xi

List of Figures

1.1 Nomadic Applications 3

1.2 DIA cycle . 6

2.1 Average Device Collection 10

2.2 Information Scraps 14

3.1 i-Land . 22

3.2 iRoom . 24

3.3 NiCE . 25

3.4 ARIS . 27

3.5 Multibrowsing 29

3.6 Impromptu . 30

3.7 CamNote . 32

3.8 Pick-and-Drop 34

3.9 Hyperdragging 35

5.1 Paper Prototype: Windows 45

5.2 Paper Prototype: Board 47

xii List of Figures

5.3 Paper Prototype: Desktop computer 48

6.1 NomadicDesktop 55

6.2 WhiteBoardWindow 60

6.3 Window modes 62

6.4 NomadicBoard Text Editor 64

6.5 NomadicBoard Sketching Application 65

6.6 Nomadic Operations panel 67

6.7 NomadicPasteboard 68

6.8 Building a new Connection 72

6.9 Send/Receive 76

6.10 Classes responsible for sending/receiving . . 78

6.11 Device Discovery 80

6.12 NomadicBoard Update 83

7.1 Board Setup 1 89

7.2 Board Setup 2 91

xiii

List of Tables

2.1 Groups of typical whiteboard tasks 16

xv

Abstract

While the different device classes needed to realize the idea of Ubiquitous Comput-
ing are readily available at this very moment, the integration of different devices is
still severely lacking and cross-device interaction is often still limited to file trans-
fers. Modern research does not provide us with an open system to transfer an
application from on device to another.
We propose the concept of “Nomadic Applications” in which an application is no
longer tied to a specific system but free to move around between devices using
interactions we call “Nomadic Operations”. These operations allow users to copy
applications to other devices, transferring their whole state with them.
In this thesis the concept of Nomadic Applications is applied to the scenario of per-
sonal workspaces. A software system consisting of applications for three different
UbiComp device classes was developed using the process of iterative user-centered
design. Common practices in today’s workspaces have been identified through lit-
erature research. The resulting idea is a software system that combines the concept
of Nomadic Applications with large displays to provide users with digital white-
boards, from and to which they can freely migrate applications.
After establishing a set of design requirements, a paper prototype was used as a
design starting point. It was evaluated in a user study and with these results a soft-
ware prototype was created. The software system consists of three applications:
“NomadicDesktop” that enhances Mac OS X applications with Nomadic Opera-
tions, “NomadicBoard” that provides an interface to use Nomadic Applications on
a large touch-display, and “NomadicPasteboard” that stores applications on a mo-
bile device. The design and implementation of this system, using the underlying
“NomadicApps Framework” will be demonstrated in this thesis.
The resulting software system was evaluated in a two-week qualitative study. The
study showed successfully, how the combination of these applications can support
different tasks, as the board was used both, as a context and reminder display and
as a tool to transition between personal and collaborative work.

xvi Abstract

xvii

Überblick

Ubiquitous Computing ist noch keine Realität, obwohl die dafür notwendigen
Geräte schon heute vorhanden sind. Ein Grund dafür ist die mangelnde Integra-
tion verschiedener Geräte und die Tatsache dass Interaktion zwischen Geräten oft
weiterhin auf Dateitransfere beschränkt ist. Auch moderne Forschung bietet keine
offenen Systeme, die Anwendungen unabhängig von ihren Geräten machen.
In unserem vorgeschlagenen Konzept von “Nomadic Applications” sind Anwen-
dungen nicht länger an bestimmte Systeme gebunden sondern können sich, mit
Hilfe von Interaktionen, die wir “Nomadic Operations” nennnen und die Nutzern
erlaubern, Anwendungen auf andere Geräte zu kopieren, frei zwischen Geräten
bewegen.
In dieser Arbeit wird das “Nomadic Applications”-Konzept in dem Szenario
persönlicher Arbeitsplätze angewendet. Ein Softwaresystem, drei Anwendungen
besteht, wurde mit Hilfe von iterativem userzentriertem Design entwickelt. Die
Identifikation häufiger Gebräuche an modernen Arbeitsplẗzen resultierte in einem
Softwaresystem dass das “NomadicApplications”-Konzept mit digitalen White-
boards kombiniert, so dass Nutzer Anwendungen frei von diesem und auf dieses
migrieren könnnen.
Nach dem Aufstellen von Designanforderungen, wurde ein Papierprototyp als
Design-Anfangspunkt erschaffen. Dieser Prototyp wurde in einer Nutzerstudie
evaluiert und mit den Resultaten konnte ein Softwareprototyp kreiert wer-
den. Dieses Softwaresystem besteht aus drei Anwendungen: “NomadicDesk-
top” erweitert übliche Mac OS X Programme mit nomadischen Möglichkeiten,
“NomadicBoard” bietet die Möglichkeit nomadische Anwendungen auf großen
berührungsempfindlichen Monitoren zu nutzen und “NomadicPasteboard” kann
als mobiles Lager für Anwendungen dienen. Design und Implementierung dieses
Systems mit dem unterliegendem “NomadicApps Framework” wird in dieser Ar-
beit beschrieben.
In einer zweiwöchigen qualitativen Studie konnte beobachtet werden, wie Be-
nutzer das System für zwei verschiedene Zwecke nutzen: Als persönliches Kon-
textdisplay und als Hilfsmittel für spontane kollaborative Arbeit. So wurde erfol-
greich gezeigt, wie das Konzept ”Nomadic Applications” auf verschiedene Art und
Weisen das Nutzererlebnis am persönlichen Arbeitsplatz aufwerten kann.

xix

Acknowledgements

First of all I want to thank Prof. Dr. Jan Borchers and the whole Media Computing
Group for giving me the opportunity to work on this great project.

Jonathan Diehl deserves my utmost gratefulness for laying all the groundwork for
this project, giving me feedback all along the way, helping me whenever I needed
it, and not strangling me, when he had to read my code.

Thanks go out to everyone, who helped me with all my evaluations, especially the
two guys that let me put a really large screen in their office.

Thank you Mario Fraikin, for letting me use and recycle parts of your project.
Thank you Coelestin Urban, for proofreading my thesis.

A very special thanks goes to my dear friend Barbara Iwaniuk, who always lent me
a shoulder, when times were not that easy, as well as all of my other friends that
make life worth living.

And lastly, thanks to my family for supporting me throughout all of university
without ever doubting me.

xxi

Conventions

Throughout this thesis we use the following conventions.

Important terms are written in emphasized typeset when they
appear in the text for the first time.

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

1

Chapter 1

Introduction

In his pivotal article Weiser [1991] created the idea of ubiq-
uitous computing to

“make using a computer as refreshing as taking
a walk in the woods.”

In his vision, he describes a world, in which computing de-
vices are so tightly woven into everyone’s life that they fade
into ambience. Awareness of actually using computing de-
vices decreases, due to them being everywhere. Accessibil-
ity and integrity of these devices reaches a level, where no-
body has to be concerned of any low-level operations any-
more.

20 Years later the reality is still far from catching up with
his ideas. While the spread of UbiComp devices increased
dramatically in the last years, using them in a way Weiser
suggested is still hard to realize due to a number of limita-
tions.

Studies by Dearman and Pierce [2008] and Oulasvirta and UbiComp devices
are available but
interaction is not

Sumari [2007] suggest that while people get increasingly
used to operate multiple devices, the drawbacks often out-
weigh the benefits. For one using multiple devices in one
task requires careful preparation to have all the resources,
where they need to be at a given time and minimize the

2 1 Introduction

need for transfer. Accessing information across devices is
also widely perceived as a problem, because keeping all
your data in sync can grow as a burden quickly.

To solve these problems, we propose a metaphor in whichNomadic
Applications are no
longer tied to a
device

interfaces are nomadic. Using a set of easily accessible
meta-operations, applications or application parts can be
freely moved between devices, carrying all the relevant
data with them and adapting to device interfaces on-the-fly.
While doing this, the application state stays intact, so the in-
teraction does not feel considerably different from moving
windows between two monitors.

1.1 Research Goals

In this thesis I will give an answer to the question, if No-
madic Applications can improve a user’s work experience
in his personal workspace.

I will present a software system that enhances existing
work practices by extending applications with nomadic ca-
pabilities and show how users can benefit from this system.
Additionally I will demonstrate how such a system that ex-
tends existing applications with nomadic functionality can
be designed and implemented.

1.2 Nomadic Applications

While the average number of computing devices a regular
person uses on a daily basis is steadily increasing (accord-
ing to Dearman and Pierce [2008], an average person had
a collection of 5.96 computing devices in 2008) integration
of different devices has not significantly evolved since the
introduction of network computing. The connection of dif-
ferent devices is still mostly limited to simple network or
USB file transfers.

1.2 Nomadic Applications 3

Figure 1.1: Nomadic Applications in action. A browser gets migrated to another
device, where it adapts to a device-appropriate form

The concept of Nomadic Applications tries to change this Nomadic
Applications bring
cross device
interaction to
application level

approach to device connectivity. It tries to move the focus
away from low-level interactions and elevates the applica-
tions themselves to the objects of cross-device interaction.

An environment in which applications are nomadic brings
us one step closer to the goal of ubiquitous computing.
One of the major handicaps in realizing UbiComp lies in
the missing integrity between different devices. Having an
open system to transfer applications, lowers that handicap
and takes away the importance, of which device you are
using at a time.

This concept consists of four different components, similar
to Balme et al. [2004]’s definition of distributed, migratable
and plastic user interfaces:

1.2.1 Application Migration

The central goal of Nomadic Applications is to enable users Applications can
move around freely,
running
independently on
each device

to migrate their applications from one device to another,
without being concerned about any low-level operations
needed. Applications that arrive on another device should
run independently of the original device, so no further con-
nectivity is required after migration.

4 1 Introduction

There are various approaches on migrating applications
between devices. Possibilities include: Using only web-
applications, which can easily be transferred, identifying
an application’s opened file and transferring it or extracting
the information directly from the application. Approaches
that do not work in this scenario as they require persis-
tent connectivity include pixel-based replication or relaying
user input.

1.2.2 UI Adaptation

Different UbiComp device classes have different require-Interfaces have to
adapt to different
device classes

ments for their interfaces. A usual desktop computer for
example provides enough screen estate to allow applica-
tions to display a wide range of control elements. Mobile
devices however, are more limited in both their display and
input capabilities and applications on them often only pro-
vide basic functionality. To preserve accessibility of appli-
cations when moving them between devices, their UIs have
to adapt to the given device classes.

This means that we have to migrate applications in wayHow to migrate
applications in a way
that opens up
opportunities for
adaptation?

that gives the receiving end the opportunity to adapt the
interface. Approaches like pixel-based replication do not
provide this opportunity. We will approach this problem
by replicating the state information of a given application.
This way a receiving device can use that information to cre-
ate an appropriate interface around it.

1.2.3 UI Distribution

Nomadic Applications also open up the realm of UI Distri-Migrate only certain
UI elements bution, that is moving only certain elements from applica-

tions to other devices to enable remote control with these
elements. An example of this would be migrating toolbars
from complex applications to other devices, so you have
them at hand elsewhere while freeing up the main screen.

While UI Distribution opens up opportunities for a wholeNot of concern here

1.2 Nomadic Applications 5

range of applications, I will focus my project on the other
two aspects and not touch upon it any further in this thesis.

1.2.4 Nomadic Operations

To make use of the possibilities of Nomadic Applications, Nomadic Operations
enable Nomadic
Applications to work

a new set of interactions has to be employed that enables
users to migrate or distribute their applications between
different devices. These are further on called Nomadic Op-
erations.

Examples of Nomadic Operations include, but are not nec-
essarily limited to:

• Moving an application from your own to a target de-
vice

• Moving a UI element from your own to a target de-
vice

• Retrieving applications or UI elements from other de-
vices

• Moving applications or UI elements between two
other devices

• Relocating input from your own to another device

Only a subset of these possible interaction will be used in
this project. I will focus on being able to move whole appli-
cations from your own to other devices.

One question that opens up at this point is, whether ap-
plications should be copied or moved, i.e. does the sender
retain the application? Providing users only with the abili-
ties to move applications seals away sample scenarios, like
providing a co-worker with a copy of a document while
continuing to work on the original yourself. Move opera-
tions also can be recreated by copying an application and
closing the original. In conclusion the opportunity to copy
an application is more flexible and for that reason it is the
operation we will use further on.

6 1 Introduction

1.3 Iterative User-Centered Design

Nielsen [1993] describes user-centered design or usability
engineering as

“a set of activities that ideally take place
throughout the lifecycle of a product happening
at the early stages before the user interface has
even been designed.”

Usability-centered design stands in contrast to the water-Design, analyze,
implement in each
iteration step

fall model, often used in software development, where a
fully working product is developed first and any analysis
and maintenance is performed afterwards. Instead user-
centered design puts emphasis on evaluating any results
that appear as early as possible. It is best described by the
DIA cycle. The cycle can start and end at any step and after
each step of designing the steps of implementing and ana-
lyzing follow. Any results from the analysis are then used
to perform a new step of designing and start the cycle all
over again.

Design

ImplementationAnalysis

Figure 1.2: The DIA cycle. It can start and end at any point

1.4 Chapter Overview 7

All instances of design, implementation and analysis can
vary in fidelity. Design and implementation can range from
storyboards to fully working software products. Analysis
can take the form of literature research, questionnaires, con-
trolled experiments or long-term studies. After each com-
pletion of the cycle the fidelity should increase, but lacking
results might also lead to stepping back and restarting at
earlier stages.

I used the methods of user-centered design throughout my I built prototypes and
evaluated themproject. After an initial step of literature research, I de-

rived design requirements that I implemented in a paper
prototype. After testing the prototype, I used the conclu-
sions to change my designs and implement them in a soft-
ware prototype, which I tested as well. After updating the
software prototype according to the results I performed a
longer study in a real-life scenario. In the end I evaluated
that study and I will use it to give ideas and recommenda-
tions for a proceeding design step.

1.4 Chapter Overview

Chapter 1 The first chapter consists of key motivations
behind this project. It also covers the concept of Nomadic
Applications and the user-centered approach to system de-
sign.

Chapter 2 Chapter 2 presents three studies that show
common practices and problems in today’s work environ-
ments. These studies guide me in setting the goals for my
system.

Chapter 3 In the third chapter, I will present other re-
search projects that are connected to my work. It is divided
into three different research types: Augmented spaces and
their definition, software solutions that aim for similar goals
and finally interaction techniques that might get used. I will
explain relevance and distinction of these projects to my
thesis.

8 1 Introduction

Chapter 4 In chapter 4, I will define a set of design re-
quirements the system should fulfill. Decisions, on which
device classes should get support and the ways in which
they will be supported, are drawn. I will also decide on the
specific approach to implement Nomadic Operations in my
system.

Chapter 5 In chapter 5, I will present my first work, a pa-
per prototype designed with the preceding requirements in
mind. This prototype will provide a starting point for all
following steps. It also gets evaluated in a user study and
conclusions are drawn from this.

Chapter 6 In the sixth chapter, I present the software pro-
totype that I designed and implemented, following the pa-
per prototype. The implementations of the three applica-
tions that it consists of and the underlying framework all
those applications use get presented. I will also show the
results of another user study in which I evaluated my ap-
plications.

Chapter 7 A two-week study in a real-world scenario
with the created software prototype was conducted. The
process of the study and the results drawn from interviews
will be presented in chapter 7.

Chapter 8 In the final chapter, I will summarize my
project and present its contribution. I will also present steps
I would suggest for any future development of this project.

9

Chapter 2

Personal Workspaces

Before any work on a system that supports users in their
personal work, can be begun, we first need to take a look at
the way at how this work is performed. We need to iden-
tify common practices, problems that occur with them and
ways in rectifying these problems using the concept of No-
madic Applications.

In this chapter I will present three studies that address such
practices, namely usage of multiple devices, taking information
scraps and usage of whiteboards. Each of these studies shows
a number of problems people encounter in their everyday
work. I will propose ways of dealing with these problems
and derive components for a system to achieve these ways.
In the end I will give usage scenarios that shows possibilities
of employing such a system.

2.1 Multiple Devices in Users’s Environ-
ments

To have a basis on which we can create Nomadic Applica-
tions, we have to first understand how and why users make
use of multiple computing devices. Dearman and Pierce
[2008] studied this behavior with 27 participants in exten-
sive interviews. Figure 2.1 shows that people use an aver-

10 2 Personal Workspaces

Figure 2.1: An average user’s device collection, distributed by context of use. Note
that this result also includes devices like digital cameras, feature phones, etc. with
no real computing functionality.

age of 5.96 devices (4.4 if you count out cameras, feature
phones, etc.) on a regular basis.

Reported reasons for using multiple devices are manifold:

• Different devices provide different form factors, result-Form factor that a
device provides ing from their physical design and interaction modes,

that are more or less appropriate for certain tasks. A
tablet PC for example, might have a better screen for
reading and can be used in a more comfortable posi-
tion than a big laptop. On the other hand it lacks the
input capabilities to perform more complex tasks.

• The form factor also influences the portability of a de-Portability of a device
vice. While possibly limited in other ways, portable
devices allow the user to choose the setting in which
they work on them.

• The perceived completion time it takes for one task canCompletion time
vary between devices. This can be a result of differing
computing powers, but can also materialize through
different configurations between devices. For short
tasks a simple factor like startup time can also influ-
ence the user’s decision on which device he wants to
use in a given scenario.

• Some users use multiple devices to separate theirSeparation of work
and home work and private activities. This behavior can be forced,

as they are provided with a computer to use at
work, or entirely voluntarily, because this separation
is deemed desirable. This happens more often in in-
dustry work than in academics.

2.1 Multiple Devices in Users’s Environments 11

• Different devices can be supplied with different op- Software and OS
differenceserating systems and software. Users’ preferences on

which particular software to use for any given task
can vary and lead to device switching as well.

• Special purpose devices tend to support only one activ- Special and general
purpose devicesity, but suit this activity rather well, whereas general

purpose devices have a variety of roles, but no special-
ization. Users often prefer to use special purpose de-
vices for specific tasks.

• Computers tend to have a limited lifecycle and are Transitioning
between old and new
device

replaced by new ones on a regular basis. This can lead
to cases, where users can not use their new computer
with their old work for compatibility problems and
they do now have two computers that they use on a
regular basis.

Participants reported a number of problems they regularly Information
exchange seen as
biggest problem

encounter, when working with multiple devices. The most
reported one is the difficulty of exchanging information be-
tween them. Most of these exchanges are still file-based and
users employ different strategies:

• Portable media like USB sticks or external hard drives

• Emailing files to oneself

• Network shares

• External services that either act as a file server or are
specialized in storing specific types of files and grant-
ing online access to them

Most people see these only as patchwork solutions that No solution feels
idealcome with their own set of problems. Local file-based solu-

tions are often cumbersome and they need users to remem-
ber exactly what they put where. Online services on the
other hand raise concerns about privacy and do need per-
sistent connectivity to work. Automatic file synchroniza-
tion mechanisms were deemed too limited, as they are usu-
ally tied to two specific devices and do not offer anything
more than ”all-or-nothing”-synchronization.

12 2 Personal Workspaces

Another reported problem with file-based exchange wasFile-based
exchanges do not
transfer interaction
histories

the lack of interaction histories, as these are always tied
to one device. A number of users reported that they use
certain applications on on device only (sometimes even
remote-controlling them) to keep all application specific
histories and settings in one place

2.1.1 Support Multiple Device Use with Nomadic
Applications

Bringing Nomadic Applications into the equation can helpNomadic
Applications ease
information
exchange

ease users in their daily interactions with multiple devices.
As Nomadic Applications enable users to directly move
their applications between computers carrying all neces-
sary information with them, they do not need to be con-
cerned about any low-level file operations. Additionally all
operations are performed only in the required networks, so
in most cases no internet connectivity is needed and pri-
vacy should be of no concern.

Nomadic Applications also open up more opportunities ofThey also open up
opportunities for
task-splitting

assigning different roles in one task to different computers,
another thing that has been reported as troubling. With to-
day’s methods, using multiple computers for one task re-
quires a lot of setup beforehand. Exchanges during task
execution should be kept to a minimum, as the overhead
for transfer operations usually outweighs the benefits.

Being able to directly move applications between devices
reduces that overhead and should enable users to take ad-
vantage of using multiple devices in unison more easily.
The study gives an example of a user that uses two dedi-
cated computers for coding and testing purposes. In this
given case, Nomadic Applications would ease the task of
copying the application to the testing device after each step
of compiling.

2.2 Information Scraps 13

2.2 Information Scraps

Another interesting aspect about people’s work environ- Information Scraps:
Information that
doesn’t get stored in
PIM Tools designed
for it

ments, is the way in which they store their personal in-
formation. Bernstein et al. [2008] studied how people em-
ploy information scraps in their everyday life and work.
They define information scraps as pieces of information
that eludes the PIM tools designed to manage it. Examples
of this behavior would include:

• A calendar entry written on a post-it note

• Contact information send to one’s own e-mail

• A To-Do list saved as a text file on one’s computer’s
desktop

Different aspects of information scraps were studied. One Information types
often include To-Do
lists, meeting notes
and contact
information, but lots
of other types can be
found

of them was the type of information that is typically stored.
The types most commonly found were To-Do lists, con-
tact information and How-Tos. But while these types were
predominant among all participants, it also appeared that
there is a long tail of information types that only a small
subset of users (often only one of them) used to store, so in
the end it is close to impossible to generalize which types
of information need to be supported for a given user.

Another aspect that was investigated upon, was the tools, A variety of storage
systems is used,
although four of them
are predominant

that people use to store their information with. Similarly to
the information types, it was found that there was a subset
of tools (Notebooks, E-Mail, Post-It notes and text files) that
was popular among all participants. Still a lot of them used
their own - oftentimes very obscure - methods of storage.

One identified reason, why information scraps are om- People prefer to use
their own notation
and storage system

nipresent in a lot of people’s lives, is the fact that PIM tools
often enforce their kind of notation and storage upon the
user. A lot of them however like to use their own storage
systems and shorthands. While this often causes their notes
to be impossible to understand by everyone else, they can
use what they are accustomed to, which helps both in ef-
ficiency and understanding. Also, as was said before, PIM

14 2 Personal Workspaces

Figure 2.2: Some examples of information scraps. Taken from Bernstein et al. [2008]

2.2 Information Scraps 15

systems are usually not built to support the manifold types
of information, people want to store.

Another reason why people tend to forego the use of their PIM tools often take
more effort to use
then less-fitting
alternatives

PIM tools is the fact that they often find it’s more effort to
use these tools in comparison to their homemade alterna-
tives. To quote one test subject:

“If it takes three clicks to get it down, it’s easier
to e-mail.”

There is one last important reason, why people like to store User controls
visibility of
information

their notes the way they do. Using their own tools they can
ensure that the information is where they need it when it
is needed, while using other tools can often mean that they
simply forget about these things.

2.2.1 Supporting information scraps with Nomadic
Applications

As we can see, the practice of taking information scraps is Nomadic
Applications enable
direct storage of
information without
limitations of PIM
tools

often used to overcome the lack of accessibility and avail-
ability in modern PIM tools. With Nomadic Application,
users do not need to take any relevant information out of
its associated application. Instead, they can store the appli-
cation where it needs to be. This also eliminates the need
for any notations, as the relevant data is available itself at
all times.

If we take the example of users noting the URLs of web-
sites, they want to visit later on, we can directly see the
advantages: Instead of having to copy the URL manually
and taking it down manually, the user can simply move
the browser with the opened webpage to another device,
where he gets reminded of it later on.

To support this behavior as well as possible, we need to
keep two things in mind:

• People use a wide array of storage types. To be able to
transition them into using Nomadic Application, we

16 2 Personal Workspaces

have to account for different device classes on which
they might want to store their information

• People store different types of information. We need
to enable them to store as much of those as possible
with Nomadic Applications as well.

2.3 Whiteboards

Whiteboards are a common tool in all kinds of work envi-
ronments. Tang et al. [2009] studied how people use their
physical whiteboards both in single-user and collaborative
environments with a special focus on switching between
related tasks.

135 participants took part in a survey on their whiteboard
usage, of which 11 ”heavy” users gave an additional one-
hour interview in front of their most important whiteboard.

Individual Collaborative
Synchronous

• structuring

• visualizing

• large writing surface

15%

• brainstorming

• collaborative design

30%

Asynchronous

• To-Do lists

• notes

• reminders

• references

61%

• collaborative task list

• project plan

• schedule

26%

Table 2.1: Groups of typical whiteboard tasks

2.3 Whiteboards 17

Typical whiteboard tasks were grouped into four different Usage principles can
be groupedcategories (see 2.1). These were separated by either in-

dividual or collaborative usage or synchronous and asyn-
chronous usage. Additionally a percentage of whiteboards
that contain remnants of the specific type was given.

Scenarios that some of their participants presented showed Combination of
different modes
possible

cases in which the usage of the board combined sev-
eral of the categories. To give one example, one user
would use the board mostly for sketching out his ideas
(an individual synchronous activity), but keep them on
the board as a reminder of unresolved problems (making
it an asynchronous activity). Later on he uses the board
synchronously again, in that he continues to work on his
sketches.

2.3.1 Combining Nomadic Applications with
Whiteboards

We can support users even further, if we provide them with
large displays that act as digital whiteboards. These would
act as an enhancement to traditional whiteboards.

Giving users the opportunity to migrate applications to Nomadic
applications support
asynchronous
activities

these displays, broadens the options for asynchronous ac-
tivities. It would allow them to store their information in
application form, instead of only having it available visu-
ally. This would also ease the transition of information to
the board, as it takes away the need to manually copy it.

To support synchronous activities, a digital whiteboard at Appropriate
whiteboard
applications support
synchronous
activities

least needs to provide all interactions available on a tradi-
tional whiteboard. These can also be enhanced by the op-
portunities a computer can bring to a formerly pen-based
system.

Combining Nomadic Applications with these traditional
whiteboard interactions ensures that possible combinations
of whiteboard activities are still possible as well. These can
also take advantage of Nomadic Applications, as any work
performed on the board can easily be transferred to other
systems.

18 2 Personal Workspaces

2.3.2 Core Principles of Whiteboards

From questionnaire and interviews a number of core prin-Core principles of
whiteboard usage
can be identified

ciples on how people tend to use their whiteboards can be
derived, which should be kept in mind when designing a
new system:

• Whiteboards are expected to be persistent and visuallyWhiteboard as a
container available containers for information. Interpretation of

its contents are dependent on the contextual location
of the board.

• Information on whiteboards can convey meaning be-Meaning through
representation yond itself, e.g. though the use of spatial organiza-

tion. Users were shown to create meaningful applica-
tions with just having primitives available.

• If we support the use of primitives, as stated inFlexible
representations
enable appropriation

the previous point, instead of powerful applications,
users have an easier time of adapting their methods
of representing information to the new technology.

• The location of a whiteboard conveys meaning in it-Location and context
of use self. Affordances and functionality required can vary,

depending on the context of the board.

2.4 Usage Scenarios

Assuming we had a system, that allows for seamless ap-
plication transfer between different computers and digital
whiteboards, there is a number of sample scenarios that
show how such a system could be employed in a user’s
daily routine:

• The board could act as a storage for applications thatBoard as temporary
application storage should be kept ”out of sight but not out of mind” for

the time being. A user could move applications that
he needs later on to the board. Later, when he needs
it again, he can fetch it back to his computer.

2.4 Usage Scenarios 19

• A digital whiteboard could act as project planning Board as project
planning tooltool. Any part of a project that needs to be worked

on gets stored as an application. If the user decides to
do work upon a certain part, he gets the application
from the board. When he is finished he puts the result
back on. This scenario is imaginable in a collaborative
setting as well.

In this example, users can combine the opportunities
of spatial arrangement with having the application
data directly at hand. According to the principals in
2.3.2 the meaning of the applications available can be
increased beyond the data they are representing.

• A single-person task can temporarily become collabo- Board as ad-hoc
presentation toolrative, for example when a user wants to talk about a

problem he has, with his co-workers. In this case the
board can be used to have a presentation tool for your
work readily at hand, without needing any setup.

With these scenarios in mind, we can now begin to work on
creating such a system.

21

Chapter 3

Related work

First I will show Augmented Spaces, large rooms with a lot
of special hardware that try to realize the ideas of Ubiqui-
tous Computing in confined spaces. Next, I will present a
number of projects that try to realize similar ideas without
special hardware and only sophisticated Software Solutions.
In the last section, we take a look at two Interaction Tech-
niques that could be used for Nomadic Operations.

In this chapter we will see that there are a number of ap-
proaches that relate to the core principles of Nomadic Ap-
plications and Nomadic Operations. However none of
these approaches provide the opportunity of having UI mi-
gration and UI adaptation for existing applications in an
open environment.

3.1 Augmented Spaces

Augmented spaces try to realize the ideas of Ubiquitous Augmented Spaces
provide rich user
interactions but are
usually tied to a fixed
location

Computing in settings that are usually confined to a des-
ignated room. These spaces often provide a number of spe-
cialized devices, like large displays, tabletops and projec-
tors to enhance collaborative work in them. They also em-
ploy methods for users to use their personal devices in this
augmented setting.

22 3 Related work

The tight integration of devices in an augmented space, of-
ten through the use of special network infrastructures, al-
lows for accessible exchange of information, similar to the
Nomadic Applications concept. These methods however
are oftentimes limited to the space as they need the special
hardware and software setup that the rooms provides.

3.1.1 i-Land

Figure 3.1: Remote Annotations in i-Land

i-Land by Streitz et al. [1999] is one of the older efforts to

3.1 Augmented Spaces 23

create an augmented space, in which you can freely move
information around.

As with most augmented spaces, i-Land is centered around Large touch-sensitive
wall and table for
public display

a large display wall. The so-called DynaWall is touch-
sensitive and provides enough space for two persons to
work simultaneously on it. It also has mechanisms that al-
low both users to share their work across the sides of the
wall.

The room has another collaborative component in the In-
teracTable, a large touch-sensitive display table. It supports
cooperation by allowing users to move and rotate objects
across the whole table.

Users that don’t work on any of the public devices can use Chairs with inbuilt
computers allow for
private work or public
sharing

the CommChairs; mobile armchairs that have slate displays
built in their armrests. Visitors can work on these displays
in private or use them to remote control the public displays
or share information on them. Another variant of the chair
has a docking facility instead of a slate display, so people
can use their own laptops on them.

i-Land uses a technique called Passage for linking digital Digital information
can be linked to
physical objects

information to physical objects, so that you can transport
them through the room. Once you place an object on a de-
vice’s bridge it gets recognized (via weight detection) and
you can link any information to it. Placing the object on
another device’s bridge enables you to retrieve your infor-
mation without any need of knowing, where it is located in
the virtual realm.

i-Land is mostly realized through a special software called Highly tied to
specialized softwareBEACH. While this enables the devices to be tightly inte-

grated with one another, it also means that it is very prob-
lematic to use out-of-the-box software with it. Without this
software people will have a hard time integrating these
concepts into their day-to-day work. This is one of the key
points I want to address by using Nomadic Applications.

24 3 Related work

Figure 3.2: The Stanford iRoom with 3 large displays and a
tabletop. Taken from Johanson et al. [2002]

3.1.2 iRoom
The iRoom provides
a workspace
specifically tailored to
cross-device
interaction

Another augmented space that supports the transition of
applications between devices is the iRoom by Johanson
et al. [2002]. It is designed to allow simple exchange of data
and control between a wide number of applications.

To allow applications to make use of iRoom’s modalities,iROS
Meta-Operating
System handles
cross device
interaction

a Meta-Operating System called iROS was created. It con-
sists of 3 parts. The Event Heap stores and forwards events
between devices. The Data Heap stores data independent
of the applications that are supposed to handle it, while
also allowing format conversion. iCrafter advertises ser-
vices through the Event Heap. Once a service is selected,
iCrafter passes the best applicable interface to the given de-
vice. The interface and service then communicate via the
Event Heap.

A big focus of iRoom lies on decoupling. DecouplingDecoupling for
flexibility and
robustness

the system from specific devices enables deployment in
larger variety of spaces. Decoupling applications from the
operating system allows for development of independent
software. And decoupling applications from one another
makes errors on one device not affect the others, meaning

3.1 Augmented Spaces 25

Figure 3.3: The wall display of NiCE. Taken from Haller et al. [2010]

the stability of the whole system increases.

As a result, the iRoom provides a highly flexible system,
that is not fixed to specific devices as tightly as other aug-
mented spaces. Still, it mainly supports employment in
fixed rooms and requires a lot of specialized software.

3.1.3 The NiCE Discussion Room

In an effort to combine the qualities of paper, whiteboards
and digital media Haller et al. [2010] created the NiCE Dis-
cussion Room.

The centerpiece of the room is the NiCE whiteboard, which A large display wall
supports both digital
and traditional pens

consists of three layers. The topmost one is of acrylic
laminate and it serves as surface on which you can draw
with traditional whiteboard markers. The second one is
an Anoto-foil and it allows for Anoto digital ink pens (see

26 3 Related work

Haller et al. [2006]) to be tracked as well as serving as a pro-
jection surface to display the tracked data. The last layer is
metallic to enable magnetic pins to stick to the wall.

The room supports participants in using their personal lap-Laptops can project
their screen onto the
wall

tops as well. Computers can be connected via VGA and the
whole screen, or just a chosen portion of it, can be projected
anywhere on the wall.

Users that prefer to use paper to take their notes can also doPaper in combination
with Anoto pens
allow for traditional
writing that can be
stored digitally

so. The writing or sketching on the paper is tracked with
Anoto pens and a digital representation gets stored in the
system. All these representations can be displayed on the
wall.

A user study conducted in the NiCE discussion roomUser study showed
positive results showed that participants were able to harness the different

interactions, which the system provides. Users were most
content with the ease of sharing different kinds of data be-
tween devices. On the other hand users found it hard to
be aware of the other participants, as the wall is very big.
Also the overlays used to organize content were deemed
too complicated to learn in such a short session

NiCE shows very well how you can integrate laptops, pa-Very elaborate
system that requires
a lot of setup

per and a whiteboard to enhance the experience of collab-
orative settings. To do this however, it needs a lot of very
specialized tools and a room that is setup to support this
system in the long-term, something you often don’t have
when you deal with personal workspaces.

3.1.4 ARIS

In contrast to the previous publications, ARIS by Biehl andARIS is a window
manager that
provides app
relocation for
augmented spaces

Bailey [2004] does not actually focus on the space itself but
instead concentrates on building an interface to support ap-
plication relocation in a given augmented space.

ARIS is a window manager that builds upon the Gaia OS
by Román et al. [2002], a middleware operating system de-
signed to support augmented spaces. Its main goal is to
provide an accessible way to move any application from

3.1 Augmented Spaces 27

Figure 3.4: An example of interaction with ARIS. An appli-
cation (red) gets relocated from a laptop to one of the wall
displays. Taken from Biehl and Bailey [2004]

any device in the room (not necessarily the one you are
working on) to any other device in the room. A secondary
goal is to also be able to relocate the input from the device
you are working on to any other device in the room.

The developers of ARIS performed a lot of studies, on how An iconic map
interface has proven
to be the most
accessible way to
relocate applications

to achieve these goals in the most accessible way. In the end
ARIS provides an iconic map that can be invoked from any
running application. This map shows a top-down overview
of the space with all its devices. Every running application
is displayed as a rectangle on its particular device. If a user
wants to move an application around, he can drag it from
one device to another one. To relocate his input, he leaves
the mouse cursor over another device, before the map win-
dow closes.

While their user test proves the iconic map interface to be The iconic map
interface is too tied to
a pre-defined setup

superior to its alternatives, it his hardly applicable for any
kind of ad-hoc solutions. For the map interface to work as
intended, the whole setup of the room has to be known be-
forehand so you can have an accurate visual representation
of it. As I try to avoid being tied to any specific environ-
ments this kind of interaction will not be employed.

Additionally ARIS is very heavily tied to the Gaia OS.
While that allows for this kind of tight integration in a fixed
environment it also takes away from the opportunity to test
it any real-life environment.

28 3 Related work

3.2 Software Solutions

Augmented spaces are not the only approach to realize en-
vironments, in which applications are no longer tied to one
device. As iRoom (3.1.2) already demonstrated, a lot of
problems with cross-device interaction can be solved just
with capable software.

Applications or extensions to existing applications haveData access is
starting to get less
device-dependent

been developed that allow for transitioning to other de-
vices, without needing a special hardware setup. In the
advent of cloud-computing, accessing your data from any
possible device is slowly becoming a given possibility.
Commercial applications like Evernote1 or Remember the
Milk2 enable users to take their notes and access them any-
where they want.

On-the-fly UI migration, on the other hand, is still not very
common. The following research projects realized things
that are very similar to the idea of Nomadic Applications

3.2.1 Multibrowsing

Johanson et al. [2001] realized a first attempt at making theMaking the browser a
nomadic application browser a nomadic application in what they called Multi-

browsing. In their system clients have the possibility of
opening links on other displays or pulling browser win-
dows from other devices onto your own display.

The system knows two kinds of clients. Targets allow web-Enhanced clients can
send webpages to
and pull them of
targets

pages to be redirected to them or be pulled off of them. En-
hanced Clients have the ability to redirect pages to Targets as
well as pulling off their frontmost displayed page.

Targets provide a service called the butler service, which
communicates with Internet Explorer via its COM/OLE
API. Each butler service provides a unique name to all en-
hanced clients. Two methods can be called from outside.

1http://www.evernote.com
2http://www.rememberthemilk.com

http://www.evernote.com
http://www.rememberthemilk.com
http://www.rememberthemilk.com

3.2 Software Solutions 29

Figure 3.5: The context menu of a multibrowsing-enhanced browser. Taken from
Johanson et al. [2001]

One to open a local browser with a given URL. The other to
get the URL of the frontmost browser window.

Enhanced clients are standard Internet Explorer applica-
tions enhanced with the MB2Go plugin. It adds two new
option to the hyperlink context menu as seen in in figure
3.5. These new options allow the client to either send a link
to a target or get the displayed webpage of a target.

Additionally their system supports multibrowse fat-links. Special links support
non-enhanced
browsers as well

These links cause their gateway-servlet to forward an event
to a specified target. Using this links, multibrowsing oper-
ations can be accessed from browsers that don’t have the
necessary plugin installed as well.

While multibrowsing supports something I want to ad- Approach heavily
tied to browsingdress in my project as well, i.e. being able to move web

content between different devices, their approach is heavily
tied to the browser (especially with the inclusion of multi-
browse fat-links), whereas I want to be flexible to support a
wider range of applications.

30 3 Related work

Figure 3.6: A Screenshot of the Impromptu Interface showing (A) the collaborator
bar, (B) the shared screen dock, (C) the control level of an application, (D) a repli-
cated window in share mode and (E) a replicated window in show mode. Taken
from Johanson et al. [2001]

3.2.2 Impromptu

Impromptu by Biehl et al. [2008] was developed as a frame-
work to support collaboration in multiple display environ-
ments with a special focus on software development work
environments.

Users of the system can make application windows avail-Users can fetch
shared windows of
collaborators

able to the group in varying control levels (view-only or
modify). Once a user decides to share a window it appears
besides his icon in everyone’s collaborator bar. Other users
can drag the window onto their desktop to work with it.

In addition to the collaborator bar, Impromptu providesShared screen to be
accessed by anyone a shared screen that can be accessed by every member

3.2 Software Solutions 31

through the shared screen dock on their desktop. Local in-
put can also be redirected to the shared screen.

Impromptu works through window replication. With this Implemented with
window replicationmodel, applications keep running on their device and the

pixels of its window get replicated on other devices. Own-
ership of an application never transfers to any other mem-
ber of the group.

A field study conducted with two software development Study showed good
use of the systemteams over the course of three weeks showed positive re-

sults. Developers used Impromptus features to solve com-
plicated problems together and found it easy to transition
between individual and collaborative work. A quantitive
analysis showed, that users preferred to use the features to
share their work to other members, but rarely used the pro-
vided support for input redirection.

While Impromptu shows well, how UI migration can en- Window replication
not suitable for
Nomadic
Applications

hance work environments, its approach to implementing
it is hardly suitable for my project. Window replication
is completely dependent on the device originally running
the application being turned on and available. An applica-
tion that is truly nomadic needs to run independently of its
original device. Replication takes away scenarios, in which
users do want to store applications as an independent copy.

3.2.3 CHAMELEON-RT

CHAMELEON-RT by Balme et al. [2004] is an architec-
ture reference model that facilitates the development of dis-
tributed, migratable and plastic (DMP) user interfaces, an
approach similar to Nomadic Applications.

They define the terms as follows: Three defining
qualities of DMP
interfaces

• UI Distribution means that an interface uses foreign
interaction resources. UI Distribution appears in
varying granularities, so for example Pick’ n Drop
(3.3.1) is distributed at the workspace level, while Im-
promptu (3.2.2) is distributed at the pixel level.

32 3 Related work

Figure 3.7: The distributed user interface of CamNote. (a) shows the interface dis-
tributed to PC and PocketPC, while (b) shows it using only a PC. Taken from Balme
et al. [2004]

• A UI that supports Migration transfers itself to dif-
ferent interaction resources. It can be total, where a
whole application moves partial, in which case only
certain parts of an application are transferred. It
is also differentiated in the dimension static and dy-
namic, depending on whether the migrations happens
between sessions or on-the-fly.

• A UI being plastic means that it preserves its usability
properties when distribution or migration happens,
similar to the term UI Adaption I coined in 1.2.

These principles are demonstrated with the software Cam-CamNote shows
application of these
principles

Note, a tool for slide presentation. CamNote’s main feature
is the ability to have its control panel switched from PC to a
PocketPC, if it is available in the cluster. Both controls pro-
vide different UIs fitted to their device (like the addition of
a video preview of the presenter on the PC), demonstrating
UI Plasticity in action.

CAMELEON-RT itself now provides a multi-layered refer-Multi-Layer model to
build DMP UIs ence model to support the development of applications that

fulfill these principles. The key-layer of CAMELEON-RT
is its DMP Middleware Layer. In it, observers in conjunction
with the situation synthesizer provide information about the

3.3 Interaction Techniques 33

current situation (e.g. platform, place and user) a system is
in. The evolution engine creates a predefined reaction to that
situation and passes it along to the configurator to execute it
and build an appropriate UI.

While CAMELEON-RT covers a lot of aspects about UI dis- Try to approach the
problem in a different
way

tribution, migration and adaptation and their definitions
should always be kept in mind, its approach differs from
our approach to Nomadic Applications in two main ways:

• Its main focus lies on the creation of new applications
that support their principles. Nomadic Applications
should support existing applications as much as pos-
sible, so users can be kept in their comfort zone in-
stead of having an additional burden to handle.

• While covering a lot of ground, it also builds up
a fairly complex model that needs a considerable
amount things to be taken into considerations, when
developing new applications. However simple meth-
ods, like appropriate state exchanges already offer
opportunities for UI migration and adaptation.

3.3 Interaction Techniques

In most of today’s computing environments user input is Cross-device
interaction is not
feasible with today’s
input methods

limited to one device. This makes sense as long as all out-
put is also connected to that one computer. Once appli-
cations become nomadic however, input has to extend to
other devices as well.

Cross-device interaction is a common problem in all re-
search on Ubiquitous Computing. It is defined as the in-
teraction that enables operations to span multiple devices.
Techniques have been developed to move objects around in
UbiComp environments and these should be applicable to
Nomadic Applications as well.

In theory, Nomadic Applications should support any num-
ber of interaction techniques to realize Nomadic Opera-
tions. Our focus lies in developing the enabling technol-

34 3 Related work

ogy and any of the presented techniques can make use that
technology.

3.3.1 Pick-and-Drop

Figure 3.8: Pick-and-Drop in action. Taken from Rekimoto
and Saitoh [1999]

Rekimoto [1997] present Pick-and-Drop as an interactionPick-and-Drop
overlays network
copies with physical
interaction

technique for moving objects between different devices.
With Pick-and-Drop cross-device interaction gets moved to
a physical layer, so users do not need to care about the un-
derlying workings of the software.

Pick-and-Drop helps users ease into the task of file copy-
ing between devices. To copy an object from one device to
another, a user has to select a given object with a pen, lift
the pen and then put it down on another device. The object
then gets copied to the target.

On the software level, Pick-and-Drop realizes its opera-Realized with unique
pen IDs that objects
get bound to

tions, by assigning a unique ID to each pen. Once a pen
”picks up” an object, the object gets linked to the ID on a
network server called Pen Manager. Then, when the pen

3.3 Interaction Techniques 35

touches another display, a network copy operation is ini-
tialized by the Pen Manager.

Pick ’n Drop has seen field use in more than one project. Proven successful in
augmented spacesNiCE (see 3.1.3) uses it for moving content over large dis-

tances, while i-Land (see 3.1.1) uses a modified version,
which they called take-and-put, that does not require any
pens. In a similar fashion, I plan on using a pen-less ver-
sion of this technique to realize exchange between devices.

3.3.2 Hyperdragging

Another interaction technique proposed by Rekimoto and
Saitoh [1999] is Hyperdragging. It provides a spatially
continuous surface, through which digital objects can be
moved.

Figure 3.9: An outline on Hyperdragging. An object gets
dragged from a laptop (a) to a tabletop (b) to a wall display
(c) and a VCR tape (d). Taken from Rekimoto and Saitoh
[1999]

In a hyperdragging-enabled environment, a laptop gets rec- Dragging objects
from your computer
to surfaces and
vice-versa

ognized, once it is put on one of the surfaces. A user can
now move any object from the laptop to the surface by
dragging it to the edge of the screen. An object on the sur-
face can further be dragged around and put onto other de-

36 3 Related work

vices that are connected to the surface. Furthermore, in-
formation can be linked to physical objects, similarly to the
Passage technique as described in 3.1.1.

Hyperdragging is realized with visual markers on note-Object recognition is
necessary books. Once a notebook’s position and orientation is

known, information can correctly be migrated from it to the
surface. In general the InfoTable that is used in the system
uses two cameras for motion recognition and object recog-
nition.

Hyperdragging is a powerful technique that can be used forHyperdragging is
well suited for
Nomadic
Applications, but
needs too much
setup

Nomadic Applications. Dragging objects from one screen
to the next is a very natural interaction that should be easy
to learn for any potential user. It should especially be kept
in mind, when one would want to employ Nomadic Appli-
cations in an environment with Tabletop-displays. How-
ever, I will not be providing a continuous surface, which
makes the technique less appropriate. Hyperdragging also
needs to provide location awareness for the devices in the
system, a problem that is not trivial to solve and would
make deploying the system on an ad-hoc basis a lot more
problematic.

37

Chapter 4

Requirements

Before I can start to work on any system itself, there needs Explorative
Approach: Define
own requirements,
evaluate afterwards

to be a set of requirements that the system needs to sat-
isfy. In this project I aim to give users new opportunities
to support them in their personal work, rather than solve a
particular problem that existed beforehand. Deriving any
requirements from questionnaires or inquiries is therefore
likely to not yield any meaningful results. Instead, I will de-
fine a set of requirements derived from the results of study-
ing people’s behavior in their workspaces in 2. I will eval-
uate these requirements with a paper prototype at a later
point in time.

In this chapter I will first describe which types of UbiComp
Device Classes I aim to support with my system and in what
ways they will be integrated. I will also describe an ap-
proach to design the Nomadic Operations that are necessary
for such a system.

4.1 Device Classes

With this system I aim to support three kinds of device Build system for
three device classesclasses: Desktop computers, which in this case means any

kind of computer that people use to do their personal work
on and also includes laptops and notebooks. Large Dis-
plays that are connected to standard computers as well, but

38 4 Requirements

are bigger than the displays people use for their routine
work. Mobile Devices include all kinds of devices that one
can carry around on a regular basis, like smartphones and
tablet computers.

4.1.1 Desktop Computer

Nomadic Applications should support users in their usualDo not disturb users’
usual work
environment

workflow and not pose an additional burden that they have
to put up with. As such, I aim for users being able to op-
erate with their everyday applications in their accustomed
ways, while making them nomadic at the same time.

To achieve this, a desktop application should be limited to aLimit interaction to
small status bar icon status bar icon. From this icon the nomadic operations can

be invoked and no further functionality has to be learned
by the user.

4.1.2 Large Display

In this project I will specifically support users, by givingFocus of design
them a ”digital whiteboard” on which they can store their
applications. In turn my focus of design will lie in design-
ing a system to provide such a board, by using a large dis-
play connected to a regular computer.

The UI metaphors used in todays operating systems do notStandard desktop
computer metaphors
do not work for large
displays

suit large displays well. They rely a lot on fullscreen win-
dows and being able to switch between tasks, while a usual
whiteboard displays a lot of information side-by-side.

The first step to turn a computer with a large display intoHide Operating
System a digital whiteboard therefore should be to hide as much

of the underlying operating system as possible. Both acces-
sibility and screen estate are premium resources. Hiding
system information and controls means, there is a lot less
of possible interaction a user has to worry about and more
space to actually use.

4.1 Device Classes 39

Application support

In a similar way to the operating system, applications have
to be adapted to the new affordances a large display pro-
vides.

Support of the applications, a user is accustomed to, is as Light-weight versions
of standard
applications

important as it is for the desktop computer. A lot of func-
tionality that modern applications provide is not needed
here, however. The display mainly serves as a storage con-
tainer, while actual complex work is supposed to be done
on the desktop computer. So an excess amount of controls
again waste screen estate and take away accessibility.

If we can provide stripped down versions of important ap- Provide only
necessary
interactions

plications that only provide the most necessary functional-
ity, we can limit the cognitive overhead for users of the dis-
play, while also maximizing the effective use of the screen
estate.

While a wide array of supported applications obviously Allow strong
primitivesgives users a larger repertoire to work with (and in our

context, more things they can move away from the desk-
top), strong primitives are most important to enable users
to express themselves, as noted in 2.3.

If we can support both, text-editing and sketching directly Combination of
text-editing and
sketching enables
strong expression

on the board in an accessible way, we should have those
strong primitives at hand.

Additionally internet browsers are the tools that people Browser support
enables use of
variety of web
applications

use most across all their devices (see Dearman and Pierce
[2008]). Browser support should fill a big need for potential
users. With the ever-increasing popularity of web applica-
tions, this step gives support to a lot of applications without
the need to implement them.

Of course this does not mean that a wider range of sup- Wider support
preferable but not
mandatory at this
point

ported applications is not something to aim for. But for now
I want to focus on these three, so I can ensure they are being
integrated well in this concept of digital whiteboard.

40 4 Requirements

Window modes

As noted earlier, screen estate is one of the most importantBalance visibility of
one application and
storage of multiple
applications

resources in a system like this and to compare to a normal
whiteboard we need to support storing multiple applica-
tions side by side. 2.3.2 stated, how we can convey addi-
tional meaning on a board through arrangement. However,
we cannot forget that in order to guarantee enough visibil-
ity, applications might take a big part of the display. To find
a tradeoff between these two contrasting forces, windows
should be able to switch between two modes:

In their default mode they act just like a normal windowDefault window for
interaction in a computer system. You would use this, if you want to

interact with the application or just be sure that you can
recognize everything in it.

Miniaturized windows are considerably smaller than theMiniaturized windows
for storage default ones and hide all application controls. Additionally

they use a zoomed-out viewport, so that, while you prob-
ably will not be able to recognize every detail in the appli-
cation anymore, you still have a general overview over it.
You would use this mode, if you want to put aside an ap-
plication for later use, while still seeing that it is actually
there.

Switching between these modes should be kept as accessi-Mode switching has
to be accessible ble as possible. Miniaturized windows in particular have

no interaction on their own, so users should not be able to
do anything with them but move them around and maxi-
mize them again.

4.1.3 Mobile Devices

The third device class that will be supported are mobile de-Use mobile device as
a temporary
application storage

vices. I will not make a distinction between different types
of mobile devices here, as in this system they are only sup-
posed to act as a temporary storage of your applications.
You can use this storage, so nomadic applications are no
longer confined to the proximity of your devices. With a
mobile device you can ”carry” your applications around

4.2 Nomadic Operations 41

and use them again in all places that support nomadic ap-
plications.

Since a storage like this only needs a very limited amount Forego any real
interaction with
applications

of possible operations, I will forego having any kind of real
interaction with any application on your mobile device for
now. Interaction with nomadic applications on mobile de-
vices will be restricted to just the basic set of nomadic oper-
ations this way.

4.2 Nomadic Operations

Since Nomadic Operations are the heart of this system, the Nomadic Operations
are the cornerstone
of accessibility

accessibility of the whole system hugely depends on the ac-
cessibility of these operations. If users get overburdened by
the task of application migration, they are likely to abandon
the whole system in favor of a more traditional approach.
Therefore they have to be easily learnable and always ac-
cessible.

Another factor that has to go into the design of these oper- Unknown number of
devices in an
unknown space

ations, is the fact that I want to support ad-hoc deployment
of Nomadic Applications as much as possible. For that rea-
son we can not just assume that we have to move appli-
cations between only three devices. In a workspace like a
large office, we have to account for an unknown number of
devices that could all support Nomadic Applications.

Again there are two conflicting forces for which a trade- Balance accessibility
and unambiguityoff has to be found: On the one hand Nomadic Operations

should not require an excess amount of interaction, on the
other hand there might be ambiguities about the target of
moved applications that have to be resolved.

One solution would be to provide a list of devices to which Device list prone to
overload and
malicious intent

you can send an application. This approach bears two po-
tential problems however:

• In a scenario with a lot of supported devices, such
a list gets easily overloaded and users will have to

42 4 Requirements

spend too much time looking for their target. Even in
smaller scenarios the mapping of device names to ac-
tual devices might not always be fully clear (see Biehl
and Bailey [2006])

• This might raise privacy concerns. In an environ-
ment, where users can send their applications to ev-
ery other device, we can not guarantee that no one
uses this system with malicious intent, e.g. spamming
another user

Both of these concerns lead me to believe that using a de-
vice list to invoke Nomadic Operations is not the ideal way
to go.

Instead I opt to use a metaphor similar to Pick-and-Drop,Design interactions
similar to
Pick-and-Drop

in which you have to select both, a source application and
a target device, before an actual Nomadic Operation hap-
pens. Since I aim to use this without any special physical
objects, the meaning of the words ”pick” and ”drop” might
not be obvious to users in this context. Instead I will use
the more familiar wording of ”send” and ”receive” and see
how users react to it.

Specifically these will be the two steps, needed to perform
a migration operation:

• Pushing a ”send”-button on the source device causes
the current foreground application to get marked for
sending.

• Pushing a ”receive”-button on the target device will
spawn a copy of the application that got marked for
sending.

43

Chapter 5

Paper Prototype

Paper prototyping has been an invaluable in UI design for
a very long time. Sefelin et al. [2003] have shown that
the quality and quantity of results from a paper prototype
based study does not differ substantially from those of a
low-fidelity software prototype study.

In this context, paper prototypes are representations of a Paper prototypes can
have a number of
different shapes and
sizes

software UI that are drawn on one or more pieces of pa-
per. They might offer no interaction themselves or can be
controlled by a person to allow for state changes and thus
users interacting with them. Interaction can range from a
flipbook, where you jump to different pages, depending on
what you do, to very complex prototypes assembled with
post-its where you can move around all of its parts.

Paper prototypes are easy to create, as you do not need They hold several
advantages over
software prototypes

anything more then a pen and paper. This rapid creation
enables you to realize multiple ideas and encourages you
to throw out bad ones without any regret. The crudeness
of the prototype also encourages users to critique on your
work rather than holding back out of respect.

For my system I want to develop a simple paper prototype
to evaluate some of the requirements, I defined in 4 and get
an idea of good ways to implement some of the necessary
interactions. It will will also provide a starting point to de-
sign the look & feel of my system.

44 5 Paper Prototype

In this chapter I will first show the designs I prototyped for
the different device classes. After that I will run a small user
study to evaluate them and draw conclusions for my software
prototype.

5.1 Device Design

To start things off, I built two prototypes. A very elaborateElaborate Prototype
for board, simple one
for desktop

one for the large display (which I will call board from now
on), since it is the focus of my design and a simpler one for
the desktop, since it does not provide any more interaction
than the Nomadic Operations.

The mobile device is supposed to have no functionality be-
sides Nomadic Operations. I can evaluate these interac-
tions with the other two prototypes. So I decided to skip
on building a third prototype, to keep tests later on more
concise.

For both prototypes I chose to be minimalistic and just useMinimalistic for both
prototypes white carton and a black felt pen. As the system consists

of very few interactions at this point, I wanted to keep ev-
erything as clean as possible to not overload participants in
the user study.

5.1.1 Board

The board prototype consists of two parts: The actual boardPrototype consists of
board itself and its
windows

with a control bar for annotations and Nomadic Operations
and a set of example applications that might rest on the
board.

Windows

For each of the applications I defined in 4.1.2 I built twoOne window for each
type of application example windows: One in default and one in miniaturized

mode.

5.1 Device Design 45

Figure 5.1: 3 sample windows, from top to bottom: Browser, text editor, sketching
tool. Left column shows them in their normal state, while right column shows the
miniaturized versions without any controls

46 5 Paper Prototype

In detail the following windows resulted:

• A browser window showing a page to order concert
tickets. The default variant shows the standard back,
forward and refresh controls.

• A text editor window containing a To-Do list with two
sample items. The default variant shows a couple of
controls for text formatting.

• A sketching window with a stickfigure. The default
variant shows a toolbar with a small set of drawing
tools.

In turn, each of these sextuples existed in three differentThree variants for
testing variants to test different interactions later on:

• No controls for sending and miniaturizing

Focusing a window would automatically mark the
window for sending in this variant. Miniaturiz-
ing/maximizing the windows would be invoked by
double tapping.

• Send button, no controls for miniaturizing

A window would only be marked for sending, when
the button is pressed. Miniaturizing works as in the
previous variant.

• Send button, miniaturize button

No hidden controls, everything gets invoked with
buttons. This is the variant shown in 5.1.

All windows shared a big close button, a pin that can be
used to move the window around the screen and a handler
for resizing in the lower right corner.

Board Controls

In addition to the different windows the board has some
controls itself. All of them are found in a toolbar on the
lefthand side.

5.1 Device Design 47

Figure 5.2: A representation of the digital whiteboard. 1) Controls for annotating
in the background. 2) Controls for receiving and opening new applications. 3) The
popup that appears when the ”new application” button was pressed

The top part of this toolbar provides a group of standard Standard drawing
tools for annotatingdrawing tools, namely a pen, a text tool, an eraser, a color

picker and a pen size slider. All of these can be used to
make annotations in the background behind any running
applications.

On the very bottom of the toolbar lies the button to invoke Nomadic Operations
on the bottoma receive-operation. Above it is a button to spawn a new

application. While this is not a Nomadic Operation both
can logically be grouped since they will both create a new
window on the board.

5.1.2 Desktop

The desktop part of the prototype shows a representation Standard Mac
interface with
additional status bar
item

of a typical Mac OS X interface. The only foreground appli-
cation is a browser window showing a page to order con-

48 5 Paper Prototype

Figure 5.3: An updated version of the desktop interface. This representation shows
a browser window and a popup that offers the nomadic operations. Encircled: The
status bar item that is used to invoke nomadic operations

cert tickets, like the browser application on the board. The
major addition lies in the status bar, where Nomadic Oper-
ations are called.

As with the paper windows, I created two variants for thisTwo variants for
status bar prototype as well to test some interactions:

• Two arrows in different directions

Both operations, send and receive, have their own sta-
tus bar item, with which they are called.

• One icon with two arrows

Both operations are called with the same icon. Press-
ing it reveals a pop-up menu from which they can be
chosen

5.2 A small user test 49

5.2 A small user test

With the created prototype, I conducted a small user study.
Since I was mostly interested in finding out peoples’ reac-
tions to the given set of operations i decided to forego any
quantitative analysis and ran the test on a purely informal
basis.

5.2.1 Tasks

To keep the tests short and concise, tasks were held simple
so users would be able to solve them within 5-10 minutes.

More specifically the following tasks were given:

• You just found out that one of your favorite band is giving
a show in the near future. You have a webpage open, where
you could buy tickets, but before you do that you would like
to know, if any of your friends liked to join you. Please put
the webpage onto the board as a reminder to yourself

This task examines, how obvious the send/receive in-
teraction appears to the users. I expected them to not
recognize the key icon on the desktop representation
on their own. Unless they discovered it really quickly,
I would point them to the icon, but leave the rest of
the task up to them.

• You just realized that you still have to clean the kitchen.
Please open up the to-do list that is already on the board
and add this task, miniaturizing it again afterwards.

This task examines how natural interacting with two
window modes feels. For this task i actively switched
variants of the windows in between tests.

• You are bored and feel like drawing something. Please open
up a new sketch and draw onto it.

Now that the user should be somewhat familiar with
the prototype, I wanted to know if they recognize the
icon to invoke a new application without any point-
ers.

50 5 Paper Prototype

• Some days have passed and you do now know, which of
your friends would like to have tickets as well. As you have
your credit card information stored on your desktop com-
puter, you need to bring back the webpage, before you can
order those tickets

As the send/receive interaction from desktop to
board is different than the one from board to desktop,
this task was given. Here I examined, if the previous
interactions are enough to help the user figure out the
way back by themselves.

This small set of tasks covers all major interactions the pro-
totype provides at this point. If something was still unclear
to the participant after solving these tasks, I offered them to
play around some more, so that they can discover how the
system reacts to their input.

5.2.2 Testing Process

I ran the test with 6 different participants on an informalPurely informal
testing basis. All of them were students from the fields of Com-

puter Science, Mechanical Engineering and Geology. As
there was no data to quantitatively analyze I would base
all of my findings on the participants’ comments

During the test I would take care of all operations a realThink-Aloud test with
me manipulating the
system

computer system would provide, in particular taking care
of the availability, position and size of the windows (and
pop-up boxes). Drawing operations could be performed
with a pencil if participants wished to do so. During the
whole test participants were encouraged to think-aloud so
I can associate their thought process with the actual deci-
sions they made.

5.2.3 Findings

Despite the simplicity of the prototype and the briefness of
the test, some veritable conclusions could already be drawn
regarding the user interactions of the system:

5.2 A small user test 51

• All but one of the participants took some time for the The two-step
interaction of
sending/receiving is
not obvious but
easily learnable

first task. Once they pushed the send button they
expected an immediate reaction on the other device,
namely a new window appearing and I needed to tell
them, that another interaction is necessary. While this
seemed to pose a problem, in the last task all but one
of them (see next point) showed that they made the
mental connection of how the interaction works and
solved it without any pointers

• The one user that tried the variant without any send- A button for sending
is absolutely
necessary for this
kind of interaction

button had even more problems in the first task. Since
there was no counterpart to the receive-button, its
functionality was largely unclear, as well as the fact
that there was even anything to receive on that de-
vice. In the end I had to point directly to the button
for him to solve it. Even then the last task still posed
problems, since there was no indication of which ap-
plication would be received.

As this idea proved to be very unsuccessful at this
point, I decided to scrap it altogether and not test it
any further

• On the desktop prototype with two separate icons, Arrow direction is not
a good indicator for
sending or receiving

participants commented that the direction of the ar-
rows does not convey the actual kind of operation to
be executed to them and they would just push a ran-
dom one. The variant with only one icon did omit this
problem. There was only one button to press and all
options were labeled afterwards, so this proved to be
a lot clearer.

The board prototype did not have this problem, since
the send-button is attached to a particular application
while the receive-button is global. This lead users
to quickly make the necessary mental connection de-
spite the arrow directions not being telling for them.

• During the second task, all users that were posed with Double tapping to
change mode seems
to be natural enough

the window variant that had no buttons for miniatur-
izing/maximizing would double tap a miniaturized
window as their first or second interaction without
having been given any pointers.

Later on, when they were to miniaturize it again they
immediately chose to go for the double tap again,

52 5 Paper Prototype

since it already yielded success.

From this I conclude that I can omit any extra buttons
for this operation.

• When asked to create a picture and draw on it, twoHaving the same
controls in the
annotation bar and
the sketching window
is confusing

users would (correctly) push the ”+”-button to create
a new sketch. To actually draw on it they selected the
pen from the annotation-bar.

Another user would simply push the pen and expect
a new sketch to appear immediately.

It is probably wiser to rethink these two applications
again and maybe combine them, so there are not two
toolbars that essentially do the same thing at first
glance.

5.3 Conclusions

The major conclusion I draw from this prototype testing isKeep send/receive
interaction but make
it more obvious

that the two-step send/receive interaction, while probably
not optimal, at least seems to be accessible enough. How-
ever, while doing this I have to focus on making it as obvi-
ous as possible, so other users do not experience the same
confusion as some of the participants.

Cutting down on possible interactions helped the partici-Minimalistic
approach seems to
work. Maybe cut
down even more

pants understand the existing ones for themselves. I will
try to reduce the number of unnecessary control elements
even more.

53

Chapter 6

Software Prototype

In the preceding two chapters I defined a set of design re-
quirements, designed a first prototype based upon them
and evaluated the prototype in a controlled test.

In this chapter, I will now present my final software proto-
type I designed and implemented, based on the previous
work.

I will first give reasons, why I chose to develop a vertical pro-
totype. Next I will present the three applications, developed
for the different device classes: The desktop application No-
madicDesktop, the board application NomadicBoard and the
mobile application NomadicPasteboard. I will also explain
the underlying NomadicApps Framework that all three appli-
cations use at detail. Lastly, I will present another user test
I performed to check if any general usability problems still
persisted.

6.1 Horizontal vs Vertical Prototyping

In his book Usability Engineering Nielsen [1993] defined two Limit either features
or functionalitydimensions of prototyping:

• Horizontal prototypes offer all features a finished prod-

54 6 Software Prototype

uct is supposed to have, but are limited in their func-
tionality. In software prototyping this usually resorts
to UI mockups , in which all kinds of possible interac-
tions can be performed but none of these interactions
will cause any real actions.

Horizontal prototypes can be used to evaluate an in-
terface as a whole in a controlled environment and
evaluate the interactions an interface provides.

• Vertical prototypes are limited in their features, but ev-
erything they put on display is fully functional. This
usually results in a fully working software that might
miss key features to be perceived as a full product.

Vertical prototypes can be used for in-depth testing of
a system in a realistic environment

The system I propose in this thesis is not one that any givenVertical prototype
allows for evaluation
of users’ adoption

user will immediately put to use, but rather one that disap-
pears in the background and will be used when it is needed,
similar to a traditional whiteboard. For this reason I want
to focus my evaluation on users’ adoption of the system.

While a horizontal prototype would allow me to evaluate
the interactions in my system even further, the amount of
possible interactions is very low to begin with and I believe
another usability study will not yield considerably more re-
sults, then the paper prototype test i already carried out.

A vertical prototype will allow me to evaluate it in a place
where it actually matters: A user’s personal workspaces.
It is also still possible to do a controlled test with a verti-
cal prototype, to see if any major interaction problems still
persist. Therefore I chose to implement three fully working
prototypes that realize the design requirements I put up be-
forehand.

6.2 The Desktop Application

The desktop application called ”NomadicDesktop” is de-Implemented with
Mac OS X and
Cocoa

signed for computers that run Mac OS X version 10.6 or

6.2 The Desktop Application 55

Figure 6.1: The NomadicDesktop status bar application
and its pop-up menu

higher. It is implemented using Apple’s Cocoa1 framework
and Objective-C as its programming language.

The design of only showing one status bar icon that pro- Design similar to the
paper prototypevides the Nomadic Operations was kept. As can be seen

in figure 6.1 a new option to send applications to devices
directly, without needing a second interaction step, was
added for testing purposes. The device list only shows
boards, which are at least semi-public, to minimize privacy
concerns.

NomadicDesktop is a very simple application, with most of Application Delegate
provides most of the
applications
functionality

its functionality being implemented in its application dele-
gate, a class that Cocoa makes available in every other part
of an application. The application delegate will send and
receive application states using the NomadicApps Frame-
work, which I will explain in great detail in 6.5.

Sending an application state works by using Cocoa’s Retrieve foreground
application and send
state

NSWorkspace class to detect the foreground application.
If it is a supported application NomadicDesktop will ex-
tract its state (as described in 6.2.1) and then send it. If not
it will show an error.

When an application state is received, its type gets exam- Launch application
with received stateined and the appropriate application gets launched (if nec-

essary) and called with the state.

1http://developer.apple.com/technologies/mac/cocoa.html

http://developer.apple.com/technologies/mac/cocoa.html

56 6 Software Prototype

6.2.1 Application Support

As discussed in 4.1.2 I aim to natively support a browser,App support mostly
relies on AppleScript a text editor and a drawing application in my prototype.

Since there needs to be a way to extract the current state
from the application or insert one in, I chose to use ap-
plications that have appropriate AppleScript support, with
the exception of the sketching application, where I imple-
mented extraction myself. Using AppleScript I have a con-
venient and reliable way of communicating with running
applications. If possible, I used Script Bridge to implement
the communication. While it offers the same functionality
as AppleScript, it facilitates better readable code.

Browser

For browser support it is mostly sufficient to simply useUse URLs as
application state the URL of the currently open site as a suitable application

state. While this does not ensure, all of a browser’s state
information gets transferred (cookies, post data or entries
in website forms will not transfer), most websites choose to
encode all important information in the address.

Both Apple Safari2 and Google Chrome3 provide Apple-Safari and Chrome
get support. Firefox
does not

Script functions to get the URL of their current foreground
website. Firefox provides this support only in outdated
versions. This supports two of the three most important
browser on Mac OS, one of which is pre-installed on any
system, so it should suffice.

Since Cocoa’s NSWorkspace provides a function to launchLaunch websites with
Cocoa a URL with the browser that is set to system default, there

is no need to use AppleScript for received URL states.

Text Editor

For text editing, I chose to just store the plain text informa-Stick to plain text

2http://www.apple.com/safari/
3http://www.google.com/chrome

http://www.apple.com/safari/
http://www.google.com/chrome

6.2 The Desktop Application 57

tion as an application state. As stated in 5.3 I want to cut
down on unnecessary features. For tasks like taking notes
or writing To-Do lists there is no need for rich-text format-
ting.

Apple’s TextEdit4 provides AppleScript support to get the TextEdit as the
application of choicetext of the current foreground document as well as opening

a new document and inserting text in it. Like Safari it is
also pre-installed on any Mac, which makes it the editor of
choice here.

Sketching

Sketching support works differently. The application sup- Use Sketch It!
ported here is Sketch It! by Fraikin [2011]. As it is built with
Nomadic Applications support in mind it already provides
all necessary state information.

However the original Sketch It! uses its own controllers Remove nomadic
functionality from the
application

and UI elements for Nomadic Operations, while I intend to
have this operations invoked only by the NomadicDesktop
status bar icon. Therefore I used a modified version that
has no own nomadic functionality.

Instead NomadicDesktop and Sketch It! now communicate Communicate via
ThoMo Networkingvia ThoMo Networking5 . Both applications connect with

a unique identifier. NomadicDesktop can now request a
sketch with a network call, in which case Sketch It! sends
the state information of the currently opened sketch back.
Similarly NomadicDesktop can send a received sketch state
to Sketch It!

Generic NSDocument-based Applications

Using AppleScript we can also extract the state of any ap- AppleScript supports
extraction of generic
documents as well

plication that uses Apple’s document based storing system
(e.g. iWork, OmniOutliner), the only caveat being that the
document has to be saved to hard drive in its current state.

4http://www.apple.com/de/macosx/apps/all.html#textedit
5http://hci.rwth-aachen.de/thomonet

http://www.apple.com/de/macosx/apps/all.html#textedit
http://hci.rwth-aachen.de/thomonet

58 6 Software Prototype

When trying to send a state of any application that is notSend and receive
documents as files natively supported, NomadicDesktop will try to make an

AppleScript call that delivers the file path of the currently
opened document. If it yields any result, it will do one of
two things:

• In case the document is stored in a bundle, this bun-
dle will be compressed in a tar archive which then
gets encoded as an NSData object and stored in the
state.

• A single file gets encoded as an NSData object di-
rectly and stored in the state

In any case the application name, document name, docu-
ment type, data type and a screenshot of the application
window get stored alongside the document in the state.

When a document state gets received, NomadicDesktopUse Metadata to
open documents
again

can use the given information to unpack the document (if
necessary), store it in a temporary folder and launch the ap-
propriate application with that document.

This ensures support of a whole range of applications with-
out actively building any methods to communicate with
them.

6.2.2 Window Grabbing

As mentioned, before any state that gets send out, a screen-Send screenshot so
there is something to
display in any given
case

shot of the current application window gets stored in it.
This ensures that any receiving device will have a represen-
tation of that state it can display, even if it does not provide
any own functionality to open the document in that state.

The CGWindow API that was introduced in Mac OS 10.4CGWindow provides
screenshots of all
system windows

provides the functionality to grab a shot of any system win-
dow. Two steps are necessary two perform the task.

• The number of the current foreground window has
to be identified. NSWorkspace provides the process

6.3 The Board Application 59

serial number of the current foreground application
while CGWindowListCopyWindowInfo provides a
list of all system windows. All that needs to be done
is finding the window with the right serial number
from that list.

• CGWindowListCreateImage needs to be called us-
ing that window ID and the option to just grab a sin-
gle window

The resulting image representation of the current fore-
ground window can be encoded as an NSData object and
gets stored in the state alongside all other information.

6.3 The Board Application

The board application called NomadicBoard is designed for Designed for Macs
with SMARTBoardcomputers, connected to a large display, that run Mac OS

10.6 or higher as well and also implemented using Cocoa
and Objective-C. The interaction design is focused on dis-
plays that utilize a single-touch overlay by SMART Tech-
nologies6 called SMARTBoard.

I follow the design principles I used to create the paper pro- Simplistic
applications like in
the paper prototype

totype and provide stripped down versions of regular ap-
plications, which are in turn rendered in windows, espe-
cially designed for use on a board with touch input.

Since the operating system should be hidden as much as Run in kiosk mode
possible, NomadicBoard runs in kiosk mode. It uses Car-
bon’s SetSystemUIMode method to hide Mac OS’ dock
and menu bar from the user.

There are three parts to the application:

• The WhiteBoardWindow framework that is responsi-
ble for the special windows, used in the software.

• The Document and Controller classes, which handle
and display the different types of applications.

6http://www.smarttech.com/

http://www.smarttech.com/
http://www.smarttech.com/

60 6 Software Prototype

• The Application Delegate that takes care of sending
and receiving state data.

6.3.1 WhiteBoardWindow Framework

Figure 6.2: A sample WhiteBoardWindow. Top left: The
close button, top right: The send button, bottom right: The
resize handler

The WhiteBoardWindow (from now on called WBW)Provide board
appropriate windows Framework provides a new class of windows that essen-

tially take care of two tasks:

• Serve window controls that are more appropri-
ate both for Nomadic Applications and for touch-
sensitive boards than the ones of the default Mac OS
X windows.

• Take care of the switching between the two window
modes.

Design wise I went for a more crude look, which conveysDesign windows
similar to notes.
Account for board
affordances

the note-like use of applications in this software well. It
also reminds potential users that this software is just a pro-
totype. All controls and text are displayed larger than in a

6.3 The Board Application 61

usual OS window, as a whiteboard is not necessarily des-
tined to be as close in proximity as a computer screen. This
guarantees visibility even when situated further apart from
the board.

The Framework consists of 3 classes:

• WhiteBoardWindow a subclass of NSWindow that
takes care of displaying the content, window move-
ment operations and window mode switches.

• WhiteBoardTitleBarView a subclass of NSView
that takes care of displaying the titlebar with its but-
tons and the title.

• ResizeHandlerView a subclass of NSView that
takes care of displaying the resize handler and all its
operations.

Additionally WhiteBoardWindow includes the protocol
WhiteBoardWindowDelegate, which is needed for
mode switches.

Windows and their controls

WhiteBoardWindow uses NSBorderlessWindowMask Borderless windows
need usual
functionality
reimplimented

which delivers a window without any own controls or ti-
tlebar. While this allows me to use my own titlebar with its
controls, it also means that all other functionality of usual
windows, like moving them around and resizing them has
to be reimplemented again.

Window movement is implemented by performing a hit-
box test on the titlebar, when a mouse button is pressed. If
it is hit, movement gets started and all further dragging of
the mouse will lead the window to reposition itself.

Resizing is implemented in ResizeHandlerView. It dis-
plays an oversized version of the usual Mac OS X window
resize handlers. When it receives a MouseDown event it

62 6 Software Prototype

Figure 6.3: Comparison between a browser window in default and miniaturized
mode

starts a resize operation and mouse drags will lead the view
to resize its window accordingly.

The window solves correctly displaying both the titlebar
and its content by enlarging itself by the size of the titlebar,
as its setContentView method gets called. Both the title-
bar view and the actual content will be added as subviews
to the window’s contentView property.

As decided after the paper prototype evaluation in 5.3, we
can strip down the window controls to just the close and
send functionality, both of which will find their place in the
titlebar. Both of them are buttons. The close button is con-
nected to the window’s performClose action, while the
send button is connected to the application delegate’s send
action.

Window Modes

Once WhiteBoardWindow detects a double-click on the ti-Double-click scales
window down tlebar it calls the toggleMinimize action. In this action

the window gets minimized to a fixed size of 300x225 pixels
and the titlebar hides its controls. Additionally a CoreAni-

6.3 The Board Application 63

mation(CA) transformation on the windows contentView
is performed. This transformation scales the contents of the
window down by half their size.

As a side effect of this transformation, mouse input on the Block all events on
miniaturized windowswindow’s view does not get redirected to the appropriate

targets anymore. This does not pose a problem, however, as
there should be no interactions with miniaturized windows
in the first place. As a result, all events except for mouse-
clicks and mouse-drags get blocked from them. Dragging
moves a miniaturized window around, no matter where
the initial mouse-press was performed. Double-clicking
scales the window back to full size, resets the CA trans-
formation and brings back all window controls, effectively
putting the window back in default mode.

Whenever toggleMinimize gets called, it also informs Delegates take care
of their controlsthe WhiteBoardWindowDelegate of the new window

mode. The delegate can now hide the controls of the win-
dow’s content or perform any other operations if necessary.

6.3.2 Applications

As with the desktop software, the board software natively Natively support
browser, text editor
and sketching

supports a browser, a text editor and a sketching applica-
tion. Support for other NSDocument-based applications
will be provided as well but not as tightly integrated.

The natively supported types do not get their own applica- No own applications,
everything integrated
with NSDocuments

tions, but are integrated into the NomadicBoard software.
They use NSDocument-based storing and each of them has
their own NSWindowController subclass to display the
documents. They use the same application states as No-
madicDesktop.

Browser

The BrowserDocument and its WebController provide Stripped down
browser using
WebView

a WhiteBoard window that displays a WebView alongside
the usual browser controls: Back, forward, refresh and URL

64 6 Software Prototype

bar. WebView is a native Cocoa subclass of NSView that
uses WebKit to render HTML. It receives input from the con-
trols and displays websites accordingly. On load of a web-
site it calls the controller which in turn updates the window
title and the URL bar. For a sample browser window see
figure 6.2.

Text Editor

Figure 6.4: A sample Text Editor window in No-
madicBoard.

The TextDocument and its TextController provide aText View in a
Whiteboard window WhiteBoard window with an NSTextView element to dis-

play text in an oversized font. The controller provides no
more functionality then getting and setting the text of the
Text View.

6.3 The Board Application 65

Figure 6.5: A sample Sketching window in NomadicBoard.

Sketching

The sketching part of NomadicBoard is based on Sketch Based on Sketch It!
as wellIt! by Fraikin [2011] as well. More specifically it

uses Sketch It!’s model classes to store the data and its
SketchCanvasView for display purposes.

SketchDocument and SketchController provide a
WhiteBoard window with a SketchCanvasView to dis-
play sketches or draw on them via touch input. Four of
Sketch It!’s drawing tools are available through a toolbar:
A brush width slider, a color well, a text mode toggle and
an eraser toggle. The miniaturized version of a sketching
window hides the control bar.

Generic NSDocument-based Applications

The board software supports generic applications that store Support documents
without special
features

data with Apple’s document system in the same way as the

66 6 Software Prototype

desktop software (see 6.2.1). This means that any of these
applications will appear in regular Mac OS X windows,
having none of the special features of our WhiteBoardWin-
dows.

This of course takes away a lot of the advantages that
natively-supported applications have and should be seen
as preliminary support only. While the tight integration in
the system is missing, users can still use software not na-
tively supported.

6.3.3 Annotations

The feature of annotating anywhere in the background
posed two problems:

• As mentioned in 5.2.3, users got confused with the
mixture of being able to draw in the sketching appli-
cation and drawing on the background.

• Initial test runs of the software showed that win-
dows (especially browser ones) in default mode take
away rather large parts of the screen, effectively hid-
ing most of the background

This meant that annotations did not make a lot of sense inSkip on annotations,
as they do not work
well

this system, when they are confined to the background. As
users could always fall back to annotating with the sketch-
ing application, I decided to intentionally drop this feature.

6.3.4 Nomadic Operations

As there is no need for a graphics toolbar anymore, a smallOffer Nomadic
Operations in a
panel, send to be
called from window

panel in a corner of the screen that offers the receive oper-
ation and a ”new application”-function suffices. The send
operation is invoked through the send button of each win-
dow.

6.4 The Mobile Application 67

Figure 6.6: The Nomadic Operations panel in No-
madicBoard

All Nomadic Operations are implemented in the applica- Operations
implemented in app
delegate

tion delegate. To determine a state to send, the delegate
checks, if NomadicBoard itself is the current foreground
application. If yes, it checks for the type of document of
the foreground window and extracts the state from the ap-
propriate document-class. If not, it fetches the currently
opened file from the current foreground application in the
same way NomadicDesktop does (see 6.2.1).

On receiving a state it checks for its type. If it is a generic
document file, the appropriate application is launched
to open the file. If it is one of the natively types, the
NSDocumentsController creates a new document of
that type and a window controller for that document. Af-
terwards the document gets its properties set, to display the
state.

6.4 The Mobile Application

The mobile application called NomadicPasteboard is de-
signed for mobile devices running Apple’s iOS, with focus
on the iPad. It is implemented using Apple’s Cocoa Touch7

framework and Objective-C as its programming language.

As discussed in 4.1.3 it is designed as a short-term storage Temporary storage
for statesfor application states to enable users to carry their applica-

7http://developer.apple.com/technologies/ios/cocoa-touch.html

http://developer.apple.com/technologies/ios/cocoa-touch.html

68 6 Software Prototype

Figure 6.7: A screenshot of NomadicPasteboard with a text document open

tions around with them. Its functionality is limited to the
following four actions:

• Send and receive states using Nomadic Operation.

• Open up previously received states to take a look at
them and send them.

• Open received websites in Safari

• Edit received text document

6.5 NomadicApps Framework 69

It uses CoreData to store all received states. They are listed Combine CoreData
and
SplitViewController
to store and display
state information

using a UITableView in a SplitViewController.
Whenever a state is selected from the table, the split view’s
DetailViewController loads an appropriate view as a
subview and displays the state data in it:

• A UIWebView is used to display websites. Choos-
ing a website from the list also enables the ”Open”-
button, which will open the website in Safari.

• A UIWebView is used to display text documents.
The documents are further editable and will be saved
upon sending or choosing another item from the list.

• Sketches or generic documents are represented
through the screenshot that was taken of them. A
UIImageView will display the screenshot.

As with the other two applications, the application dele- Store and retrieve
states with CoreDatagate is responsible for sending and receiving states. Upon

receiving a state, it gets stored, using CoreData. The state’s
type and - if available - URL, text and screenshot will be
stored in their respective field. All data that is not neces-
sary to represent the state will be encoded as an NSData
object and stored in the data field.

In return, if a state needs to be send, the data gets decoded
again and stored in the state’s associated fields, before the
state is sent out.

6.5 NomadicApps Framework

The NomadicApps Framework is the heart of all three ap-
plications, as it provides the functionality for all Nomadic
Operations. It was developed in conjunction with my tutor
Jonathan Diehl.

NomadicApps Framework consists of two components:

70 6 Software Prototype

• AsyncNetwork a library that provides access to com-
monly needed network functionality, using asyn-
chronous connections

• NomadicApps a library, that uses AsyncNetwork to re-
alize Nomadic Operations and provide an accessible
interface for applications to use them

While I use the framework to implement a specific set of
Nomadic Operations, it is not limited to these specifications
and can easily be extended to be used with different opera-
tions in different applications.

6.5.1 AsyncNetwork

AsyncNetwork is a networking framework that provides
easy access to commonly needed functionality like broad-
casting messages over a network and transmitting data be-
tween two devices.

AsyncNetwork uses CocoaAsyncSocket8 a network libraryUse
CocoaAsyncSocket
for asynchronous
connections

that offers wrapper classes for both TCP and UDP sock-
ets. It provides asynchronous, non-blocking operations and
supports delegate methods to inform applications that im-
plement it about completions and errors.

AsyncNetwork is built to support interaction between de-
vices that are not previously known, by handling all nego-
tiations with broadcasts. When negotiations are concluded
a direct connection can be built between its AsyncServer
and AsyncLoader classes to transmit data.

The framework consists of four connection classes:

• AsyncServer is responsible for creating sockets for
incoming connections and providing an interface for
all TCP methods.

• AsyncConnectionHandler stores all established
connections for AsyncServer to access them.

8http://code.google.com/p/cocoaasyncsocket/

http://code.google.com/p/cocoaasyncsocket/

6.5 NomadicApps Framework 71

• AsyncLoader retrieves data that is know to be sent
by an AsyncServer.

• AsyncBroadcaster is used for all sending and re-
ceiving of broadcasts.

In detail, the classes work like this:

AsyncServer

AsyncServer provides a general interface for accessing AsyncServer
provides access to
direct TCP
connections

direct TCP connections.

It provides one AsyncSocket in the form of
listenSocket that listens for new incoming con-
nections. As a new socket connection gets cre-
ated, listenSocket calls its delegate method
onSocket:didAcceptNewSocket:. AsyncServer for-
wards the new socket to its AsyncConnectionHandler,
which takes care of the connection from now on.

AsyncServer acts as the AsyncConnectionHandler’s
delegate and caller for all send and receive operation, pro-
viding the interface for any application that builds upon it.

AsyncConnectionHandler

AsyncConnectionHandler handles all estab- AsyncConnectionHandler
stores and handles
established TCP
connections

lished direct TCP socket connections. It receives
new AsyncSockets from the AsyncServer upon
their creation. These sockets are stored and the
AsyncConnectionHandler will act as their delegate
from this point on, receiving all incoming data.

If any data is received, AsyncConnectionHandler asso-
ciates it with the stored connectionId and passes it back
to AsyncServer. Furthermore it provides methods for the
server, to send data over the connected sockets.

72 6 Software Prototype

Figure 6.8: An example of how a new connection gets established. Interaction starts
with AsyncLoader trying to connect

AsyncBroadcaster

The AsyncBroadcaster is responsible for sending andAsyncBroadcaster
sends and receives
broadcasts over UPD
sockets

receiving broadcasts through the network. To do this it uses
two AsyncUDPSockets.

The broadcastSocket sends NSData objects as UDP
packets to the whole subnet on a given port. The
listenSocket receives incoming NSData on that port
and redirects it to the broadcaster’s delegate.

AsyncBroadcaster offers the method broadcast
and the protocol AsyncBroadcasterDelegate for the
broadcasterDidReceiveObject delegate method.

6.5 NomadicApps Framework 73

ASyncLoader

AsyncLoader retrieves data that is known to get sent over AsyncLoader
retrieves data that an
AsyncServer sends

a direct connection. In this case the sender on the other end
will be an AsyncServer.

AsyncLoader will be instantiated at runtime with an
AsyncRequest containing a message and the target host’s
IP address. It will create an AsyncSocket to directly con-
nect to the target host. Upon connection it will send the
request’s message over the socket and wait for any incom-
ing data.

Large data does not necessarily get sent at once, but gets
split up in chunks. Because of this AsyncLoader first re-
ceives the length of the incoming data and then the data it-
self. This ensures all chunking of data to work correctly and
only finishing a read operation, when everything was really
received. Upon completion it returns itself to the caller with
a pointer to the stored response.

ASyncRequest

AsyncRequest is a wrapper class to store the informa-
tion AsyncLoader needs to initiate a request, namely be-
ing target host, network port and request message. It is
designed to work similar to the system NSURLRequest in
Cocoa uses.

6.5.2 NomadicApps

AsyncNetwork provides a wrapper for commonly needed NomadicApps uses
AsyncNetwork to
realize Nomadic
Operations

network functions. NomadicApps now uses that wrapper
to implement Nomadic Operations as I specified them and
provide a simple interface for any application to use them.

AsyncNetwork has one main class NAClient that provides
methods and a protocol to be implemented in a given appli-
cation that should be extended with Nomadic Operations.

74 6 Software Prototype

The two other classes - NAState and NADevice - are mod-
els to store the needed information.

NAClient

NAClient is the central class to the NomadicApps frame-NAClient handles
sending and
receiving of states as
well as device
discovery

work. It provides wrapper methods to use AsyncNet-
work’s functionality to send and receive states between de-
vices and broadcast control messages that initiate the send-
ing and retrieving of states. It is also responsible for discov-
ering other Nomadic Application-enabled devices on the
network and storing their information.

In all of my applications, the application delegate uses an
NAClient object, and poses as the NAClientDelegate
itself. This way the application delegate takes care of all
interaction with the NomadicApps framework.

NAClient offers a number of options to the application us-
ing it, namely being:

• sending, boolean, used to initiate send operations.

• accepting, boolean, used to initiate accept opera-
tions.

• autoAccept, boolean, determines whether the client
will accept direct send operations and advertise itself
as a publicly available device.

• prefetchState, boolean, determines whether the
client will fetch a state to send upon initiation of a
send operation or when the operation actually gets
executed.

Additionally it offers the following public methods:

• setSendingOnce initiates a single send operation.

• setAcceptOnce initiates a single accept operation.

6.5 NomadicApps Framework 75

• sendToDevice initiates a direct send operation to a
known device

• refreshClients empties the list of known clients
and initiates a new discovery.

All NAClients use 50001 as the port for both network con- Only one NAClient
per devicenections and broadcasts. Unfortunately this means that

only one application using NAClient can run per device at
a time, as all network traffic on that port will always be
routed to the first started instance of NAClient.

Sending and Receiving States Sending and accepting
states is initiated through “SEND” and ”ACCEPT” com-
mand messages, broadcasted through the network via a
client’s ASyncBroadcaster.

An NAClient that changes its accepting flag to YES Send operations
initiated through
broadcast of control
messages

sends out a broadcast with ”ACCEPT” as its message. Sim-
ilarly an NAClient that changes its sending flag to YES
sends out a ”SEND: ANY” message, with the ”ANY”-
component announcing that the send command is not di-
rected at a specific device. This can cause two different sce-
narios to occur:

• A client that is set to receiving, gets a ”SEND: ANY”
message. It sends a ”GET STATE” request using
AsyncLoader directly to the client that broadcasted
the send message.

• A client that is set to sending, gets an ”ACCEPT” mes-
sage. It rebroadcasts ”SEND: ANY”, causing the first
case to occur

Next , the client that receives a ”GET STATE” message uses AsyncLoader
retrieves state from
AsyncServer

its ASyncServer to directly send back a state encoded
as NSData to the requesting client. The AsyncLoader
that requested the state returns the state to the accepting
NAClient, which finally delivers it to its delegate.

Determining the state to be sent works in two different Clients can prefetch
statesways, depending on the prefetchState flag of the client:

76 6 Software Prototype

Figure 6.9: An example of sending and receiving. Bob’s board and iPad are both
set to receiving, when Bob’s desktop broadcasts that it wants to send a state.

6.5 NomadicApps Framework 77

• Clients that are prefetching, retrieve a state from their
delegate, when their sending flag changes from NO
to YES

• Clients that are not prefetching, retrieve a state from
their delegate, when they receive a ”GET STATE”
message

In case sending or accepting was invoked by a
setSendingOnce or setAcceptOnce command, the
respective flag of a client gets set to NO immediately, after
communication ended.

Directly Sending to Public Clients Clients are marked States can be send
directly to public
clients

public, by setting their autoAccept flag to YES.

A client that has the information of another public client
can send it to it directly, by broadcasting a ”SEND: HOST”,
where HOST is the public client’s IP address.

When an auto accepting client receives a ”SEND: HOST”
message, with HOST being its own IP address, it will re-
quest a state from the broadcasting device regardless of its
accepting flag.

The following steps to request a state stay the same as in
6.5.2.

Device Discovery To be able to keep a list of devices that Discovery needed for
direct connectionsthey can directly send to, clients need to first discover other

devices that are on the network.

A client initiates a discovery by broadcasting a ”DIS- Initiated with
”DISCOVER” and
”OFFER” broadcasts

COVER” message upon first joining the network. This mes-
sage gets accompanied by all necessary device information.
Clients that receive the message, in turn broadcast an ”OF-
FER” message with their own device information. This way
a client that initiates discovery will get offers by all devices
already in the network.

78 6 Software Prototype

Fi
gu

re
6.

10
:A

si
m

pl
ifi

ed
ex

am
in

at
io

n
of

se
nd

in
g/

re
ce

iv
in

g
on

cl
as

s-
le

ve
l.

N
om

ad
ic

D
es

kt
op

an
d

N
om

ad
ic

Bo
ar

d
ha

ve
bo

th
ex

ch
an

ge
d

br
oa

dc
as

tm
es

sa
ge

s
to

st
ar

ts
en

di
ng

a
st

at
e

fr
om

th
e

de
sk

to
p

to
th

e
bo

ar
d

an
d

a
ne

w
so

ck
et

co
nn

ec
ti

on
ha

s
be

en
es

ta
bl

is
he

d.
T

he
ca

lls
st

ar
tw

it
h

N
A

C
lie

nt
ca

lli
ng

lo
ad

R
eq

ue
st

fr
om

A
Sy

nc
Lo

ad
er

6.5 NomadicApps Framework 79

This allows clients to track all devices in the network. How- Only devices marked
as public get trackedever the system distinguishes between private and public

devices. For that reason all ”DISCOVER” and ”OFFER”
messages also have a flag that marks the given device as
private or public. Upon receiving one of the two messages,
a client will store any device’s information in his clients
array of NADevice objects, but only if it is flagged as pub-
lic. Information of devices that are private or already in
the array is discarded. Furthermore the client’s delegate
will have his client:didFindDevice method called, so
he can use the device information. Applications that use
the framework have no way of accessing the information
of private devices.

Devices that leave the network are supposed to broad- Disconnection is
problematic. Periodic
refresh necessary

cast a ”REFUSE” message. However, due to the asyn-
chronous nature of these network operations there is no
way of ensuring the message gets broadcasted correctly
upon program termination. As clients can not rely on any
information about disconnects, their list of devices have
to be refreshed periodically to keep them free of devices
no longer in the network. This is implemented by using
an NSTimer that periodically calls the refreshClients
method, which removes all available clients and initiates a
new discovery.

NADevice

The NADevice class is responsible for representing the in- NADevice stores and
represents device
information

formation of a known device of the network. Specifically it
stores the following information for a device:

• deviceName: Mac OS’ designated computer name of
the device

• userName: The full name of the user currently
logged in on the device. Not available on devices run-
ning iOS.

• operatingSystemName: The name of the operating
system running on the device

80 6 Software Prototype

Figure 6.11: An example of device discovery. Bob’s desktop joins the network
and initiates the discovery. Note that all returned ”OFFER” messages are actually
broadcasts and will be received by any device in the network.

6.6 Another Small User Test 81

• host: The IP-address of the device

NADevice en- and decodes this information from identifier
strings that are used in NAClient’s broadcast messages.

Additionally it offers the class method currentDevice to Provide current
system’s infoinstantiate an object with the information for the device, the

client is currently running on.

NAState

NAState objects are used to store the application states
that are to be sent and received through the network.

As AsyncNetwork uses NSData representations for all NAState ensures
coding-compliancy of
state information

objects that it send through the network, NSCoding-
compliance has to be ensured for all state information
that is to be exchanged. NSCoding is Cocoa’s na-
tive way to provide object serialization. NAState ful-
fills this task by acting as a coding-compliant wrap-
per for an NSDictionary. It provides the methods
setValue:forKey: and valueForKey: to store any
coding-compliant objects in it.

6.6 Another Small User Test

I used the nearly finished prototype to perform another Informal test with
small group to check
for usability problems

small user test. The aim of this test was to see if there are
still any general problems with any of the interactions and
to possibly fix them.

Again, the test was performed on a purely informal ba-
sis with no quantitive analysis and all findings taken from
comments of the participants. 5 students of the fields com-
puter science, physics and biology participated in the test.

82 6 Software Prototype

6.6.1 Tasks

As the tasks in 5.2.1 have proven successful in allowing meSame tasks as in
previous test to evaluate the interactions, I used the same set of tasks

again.

The tests starts with a Safari window open on the desktop
computer, showing a page to order concert tickets and a
miniaturized text window with a sample To-Do list open
on the board.

6.6.2 Testing Process

As the software was fully functional but not completely sta-Think-aloud test with
full interaction for the
users

ble during testing, there was no need for me to interact
during this test, except when something unexpected hap-
pened.

Again, users were encouraged to voice their thoughts dur-
ing task execution, to allow me to get into their thought pro-
cess. If they got stuck on a task I would give them pointers
in the right direction without solving it directly.

6.6.3 Findings & Software Updates

This test gave some valuable feedback about the interac-Findings could be
solved in an updated
prototype

tions with the software prototype. Some other problems
showed themselves during testing phase, but not in actual
user tests. After the test I tried to update the prototype with
solutions to these problems, which I will also present here:

• All users immediately solved the first task, by choos-Send to: Specific
device is the
preferred interaction

ing to directly send the window to the board. This
interaction seems to work well and does not need to
be changed.

• In the last task, where participants needed to useSend/Receive is still
unclear the two-step send/receive interaction, confusion sur-

faced upon some of the participants. ”Send” still sug-

6.6 Another Small User Test 83

Figure 6.12: Screenshot of an updated version of NomadicBoard. Notable changes:
1) All Nomadic Operations have been renamed to ”Copy/Paste” and the associ-
ated window button was changed. 2) The window that is marked to be sent gets
highlighted in green. 3) A window shows its sender in the title. 4) The Nomadic
Operations panel has received a global copy-button and the layout changed.

gests a direct operation and users expected their ap-
plication to appear on the desktop immediately, when
they pushed the button.

Solution: ”Copy/Paste” is a known metaphor that
needs users to perform two steps as well. Addition-
ally in this system, the network resembles a clipboard,
in which applications get copied and then pasted
from. Renaming all instances of ”Send” (but not
”Send to:”) to ”Copy” and all instances of ”Receive”
to ”Paste” should present users with a more appro-
priate metaphor and clear up confusion. The ”Send”-
button on WhiteBoard windows gets replaced with
an icon resembling a usual ”Copy”-icon.

• After explaining to users that there were two steps Feedback between
the steps is missingneeded to complete the operation, some of them

noted a lack of feedback on the board that a win-
dow was actually marked for sending. This was less

84 6 Software Prototype

of a concern on the desktop, as users preferred to
use ”Send to:”, which directly gave feedback with the
window appearing on the other screen.

Solution: The window that is about to be sent should
be highlighted in a clear way:

Enhance WhiteBoardWindow with the ability to
highlight windows in a different color and unhigh-
light it again. When a copy operation is initiated,
the application delegate saves the foreground win-
dow and calls its higlightWindow method. Upon
completion unhighlightWindow is called upon the
saved window.

• While it did not pose a problem during the test, aApplications should
show their sender common request of participants was that an applica-

tion that came from another computer should show
its sender, especially on boards, which are publicly
available.

Solution: The information about the sender of a state
is known, it just needs to be displayed.

Enhance WhiteBoardWindowTitlebar with a
sender property and cause it to put ”From: sender”
in front of the window title, whenever the property is
set.

Enhance the didAcceptState method of
NAClientDelegates to have fromDevice as
a parameter, forwarding the appropriate NADevice
to it. Set the window’s title bar’s sender to the
NADevice’s username, if available, or device name
otherwise.

• The opportunity to push the receive-button setting anReceiving before
sending causes
confusion

application into receive mode until a state gets sent,
posed two problems:

– Users expected the interaction to be one-way
only with choosing the source first and the tar-
get next.

– More importantly it causes a big technical prob-
lem: All devices share one network ”clipboard”.
So a user actually putting a device into receive
mode, would cause another user in another
place, who wants to initiate a send operation,

6.6 Another Small User Test 85

to send his application somewhere it is not sup-
posed to go

Solution: Make the interaction one-way only: Send
first and then receive.

This needs clients to not stay in receive mode, when
a receive button is pushed. Use an NSTimer, so that
an NAClient’s accepting property gets reset after
two seconds of not receiving anything.

• As generic applications do not use The board needs a
global ”Copy”-buttonWhiteBoardWindows and such have no ”Copy”-

button, there is no way of getting them off the board
again.

Solution: Add a ”Copy”-button to the Nomadic Op-
erations panel. The underlying send method of the
application delegate checks for the foreground win-
dow at runtime, so there is no need to change it.

87

Chapter 7

Evaluation

To evaluate the Nomadic Applications system, I conducted
a qualitative user study. As the system needs special hard-
ware I had to limit it to two users, both of them research
assistants in computer science.

I tried to evaluate Nomadic Applications in a real-world Two-week real-world
scenario studyscenario, as my focus of investigation was the adoption of

the system. This resulted in a two-week study, in which the
users were free to use the system in any way they wanted
to, with digital whiteboards placed in their offices.

7.1 Study Setup

Two participants were provided with an NEC LCD4000 dis-
play connected to a computer running NomadicBoard. No-
madicDesktop was installed to their primary work comput-
ers.

I opened the study with a 20 minute introduction, demon- No tasks or
restrictions after
system introduction

strating the capabilities of the system. I did not impose any
tasks or restrictions upon them on how they should make
use of the system and left them to work with it as they saw
fit for two weeks.

After that period I conducted individual interviews with

88 7 Evaluation

them to gather their experiences with the system as well as
points of criticism and ideas for improvement.

I will now present the results of those interviews case-by-
case.

7.2 Case 1: Using the board for collabora-
tive work

The first participant was supplied with a SMARTBoard-
enhanced display. The display was mounted to a mobile
rack and connected to a MacBook that was exclusively used
for this task. The rack was put to the wall behind his desk,
so people could gather around it but he had no direct view
from his seat. He did not have an iPad and so could not use
the mobile application.

He reported that he mainly used the system when he hadNomadicBoard as an
enhanced
whiteboard to
support transition
between personal
and collaborative
work

to transition from his personal to collaborative work, e.g.
discussing a project plan with an assistant. For these kinds
of tasks he would usually use his traditional whiteboard to
sketch drafts, a practice that does have its disadvantages:

“You see, this board is full and in the past I used
to take photos of it, as did [my student assis-
tant].”

He noted that NomadicBoard would circumvent this issue
by allowing him to just collect the needed sketches after-
wards and have them in editable form. It would also en-
able him to perform any preparation work on his personal
computer and transfer it to the board, when the time comes.

This resulted in sketching being the primary application of
the system. The UI of the sketching tool of NomadicBoard
was perceived as not being entirely appropriate, with some
of the tools not being immediately recognizable. It also dif-
fers too much from the desktop UI of Sketch It! Drawing
itself worked well, using the pens of the SMARTBoard sys-
tem.

7.2 Case 1: Using the board for collaborative work 89

Figure 7.1: The board setup of the first study participant

The WhiteBoard window UI was received well and the WhiteBoard windows
appropriatelack of controls was not seen as a negative. Other peo-

ple that tried using the board software immediately under-
stood window mode switching. Nomadic Operations on
the other hand did need explanations before using them.
Having to use the laptop keyboard - situated half a meter
below the screen - for text input was criticized for being
impractical.

90 7 Evaluation

He expressed interest in using the mobile aspect of the sys-Mobile application
potentially very
interesting

tem, as he already uses his phone to have his synced notes
available with him and would like to extend that function-
ality to other applications:

“I like to use flowcharts created in OmniGraffle1

to explain things to people. These are the things
where I can imagine [using the system]. At the
moment I have to print them out and carry them
around.”

In closing he states that he would like to include a system
like this in his regular work, but sees the form factor of the
hardware as a hindrance. If it could be reduced to the size
of a traditional whiteboard he would definitely consider
putting one in his office.

7.3 Case 2: Using the board as a personal
storage

The second participant preferred to put his display on a
spare table beside his desk. He chose to not use a SMART-
Board and opt for a mouse instead. As an owner of an iPad
he got the NomadicPasteboard software as well.

He mostly used the board to store his personal data. HeBoard was used as
context and reminder
display

would put applications on the board that he needed to stay
in sight but out of focus. This way he could look at them,
when needed and get them back to his computer to con-
tinue working with them.

The main applications he used were the browser and Om-
niOutliner2 . In a typical setting the board would contain
an OmniOutliner window for his current project plan and
several browser windows in miniaturized mode with web-
sites open that he plans on reading later on. This did lead to

1http://www.omnigroup.com/products/omnigraffle/
2http://www.omnigroup.com/products/omnioutliner/

http://www.omnigroup.com/products/omnigraffle/
http://www.omnigroup.com/products/omnioutliner/
http://www.omnigroup.com/products/omnioutliner/

7.3 Case 2: Using the board as a personal storage 91

Figure 7.2: The board setup of the second study participant

some problems, as the relatively low resolution of the dis-
play did not allow him to show as many applications as he
wanted in a readable way.

He missed the option to fetch any applications from his
board back directly similar to the ”Send to” command. As
a workaround, VNC was used to control the board without
needing to get up.

The boards WhiteBoard windows were not perceived as an Not satisfied with
WhiteBoard windowsadvantage to Mac OS’ default windows (partly because of

not having to use a touchscreen). The different window
modes were put to use, but miniaturized browser windows
distorted the content too much and as a result were deemed
problematic in a lot of cases.

92 7 Evaluation

Despite using the system for personal purposes only, heCollaborative
potential regarded
high

sees the system’s strengths mainly in collaborative settings,
especially when combined with mobile features:

“If I would go to a meeting and didn’t want to
take my notebook, I could put my notes for that
meeting on my iPad and in the meeting I could
put them on one of their shared displays”

7.4 Conclusions

Despite being run on such a small scale, this study pre-
sented very interesting results:

The main design requirement for NomadicDesktop was, toNomadicDesktop
fulfilled design
requirements

extend a user’s desktop applications with nomadic capa-
bilities while not getting in his way. While the way No-
madic Operations were implemented in the system might
not have been ideal, they can easily replaced in the soft-
ware. Apart from that, the study showed no problems with
this part of the software prototype, so we can consider the
requirements fulfilled.

While NomadicBoard proved to have its problems in bothNomadicBoard has
room for
improvement, but
proves to be flexible

usability and display capabilities, the study showed that
you can still successfully employ it in your work routine
at this stage. The different ways of using it demonstrated
well that the software prototype is very flexible, even with
its limited features.

In the case of using the board as a collaborative tool, en-Nomadic features of
the board ease the
transition between
individual and
collaborative work

hancing traditional whiteboard capabilities with simple
data exchange manifested as the key feature. With its
sketching application, NomadicBoard provided the strong
primitives of a traditional whiteboard. At the same time,
Nomadic Operations enable the user to access their work
before and after the collaborative setting, rendering tradi-
tional workarounds like photographing unnecessary.

7.4 Conclusions 93

The key features for using the board as a context-display Interface of
NomadicBoard
increases
possibilities in a
context-display
setting

were the nomadic enhancements of existing applications
and the different options for window arrangement. Being
able to migrate existing applications to the board ensures
that users do not have to take any detours to make use of
it. Displaying those applications on the board in stripped
down versions with the option to miniaturize them, enables
users to have more things, they can store in this context
and provides them with more opportunities to use spatial
arrangement for their organization.

NomadicPasteboard the mobile application has not seen a NomadicPasteboard
underused but good
potential

lot of use in the study. To be able to draw more use out of it,
a wider spread of Nomadic Applications would have been
necessary, as there is not much point in carrying around an
application if you do not have a target. Still, both partici-
pants expressed great interest in having Nomadic Applica-
tions be available in a mobile setting and see this possibility
of applications leaving the boundaries of one’s office as one
of the biggest potential strengths of the system.

The Nomadic Operations were received with mixed feel- Nomadic Operations
sufficient, but not
ideal

ings. While the ease of directly sending an application to
the board was appreciated, an easy way to access the other
direction was missed. While the two-step interaction of
copying and sending did not pose any particular problems,
apart from cases, where different users used it at the same
time, the general consensus was that one-step interactions
would be preferable for all kinds of operations.

Unfortunately some other potential use cases of the system Unused capabilities
leftcould not be examined in this study. Both participants only

have one computer to regularly work with, so there was
no reason for them to use the system for something like
dividing one task across multiple devices.

Overall the concept of Nomadic Applications has success-
fully been tested in a real-life personal workspace scenario.
The software prototype did show its limits and problems,
but the findings indicate that personal workspaces can ben-
efit from Nomadic Applications. Even with its limited
support capabilities the software prototype was flexible
enough to be put to use in two completely different ways.

95

Chapter 8

Summary and future
work

8.1 Summary and contributions

In this thesis I presented the design and development of the
three applications NomadicDesktop, NomadicBoard and
NomadicPasteboard. They build upon the Nomadic Appli-
cations concept, in which applications can be freely moved
between different devices, and combine it with the concept
of digital whiteboards. The final implementation is a fully
functional software prototype for different UbiComp de-
vice classes that can be employed in different ways.

I started my research by showing three different studies Common practices
and problems in
personal workspaces
were identified

that dealt with different practices that are common in per-
sonal workspaces. Those practices were the usage of mul-
tiple devices, taking information scraps and using white-
boards in synchronous and asynchronous activities. In con-
clusion I presented ideas on how Nomadic Applications
can be used to create a system that supports all of these
practices.

Next, I established an initial set of design requirements my Design requirements
have been
established

system should meet. These requirements included the three
classes of devices the system should support and the ways
they should be supported. They also defined an approach

96 8 Summary and future work

to Nomadic Operations.

I created a paper prototype to fulfill these requirements.The paper prototype
showed an initial
design. Interactions
were evaluated

The prototype consisted of an interface for a desktop com-
puter and a board that both support Nomadic Applications.
I used the prototype as a starting point for my design, as
well as evaluating it in a controlled study. With this pro-
totype I could already find a number of problems with the
interactions and start finding solutions to solve them.

The initial design of the paper prototype was used to buildThree applications
built upon the
NomadicApps
Framework provide
nomadic capabilities
for different device
classes

a fully functional software prototype. This prototype con-
sisted of three applications: NomadicDesktop extends ex-
isting applications with nomadic functionality via a status
bar icon. NomadicBoard provides minimalistic versions of
supported applications and displays them in board appro-
priate windows that can be used in two display modes.
NomadicPasteboard acts as a mobile storage for applica-
tion states. All of these applications use the NomadicApps
Framework to realize their NomadicOperations. The soft-
ware prototype was evaluated in another controlled study
and more usability problems were eliminated.

The software prototype was evaluated in a two-week userThe evaluation
showed different
ways in which the
system can be used

study in which two participants were supplied with a
board and could use the software in any way they wanted
to. The proceeding interviews showed, how both used
vastly different approaches to enhance their regular work
with the software. One of them used it to enable him to
better transition between personal and collaborative work.
The other adopted it as a personal storage space for appli-
cations that he needed to keep in context or be reminded of.
These case studies demonstrated the high potential of such
a system.

The Contribution of this work is the confirmation that theMy research
contribution is the
demonstration of
flexibility Nomadic
Applications provide
for personal
workspaces

Nomadic Applications concept provides a way to support
users in their personal workspace. Users adopted to the
system and proved its flexibility by using it successfully in
completely different ways. The implementation of the sys-
tem mostly fulfilled the design requirements and with its
underlying framework can provide a basis on which sim-
ilarly systems can easily be implemented. From these re-
sults I conclude that the research goals posed in 1.1 were

8.2 Future work 97

successfully achieved:

While limited in its applications, I showed the design and
implementation of a system that enhances existing appli-
cations with nomadic functionalities. Placing the system
in a work environment showed us different ways of users
enhancing their workplace with Nomadic Applications, as
well as points of improvement that can be fulfilled with fu-
ture designs.

8.2 Future work

8.2.1 Enhanced Support

Support for both devices and applications was very limited
in the prototype. To achieve a wider spread of Nomadic
Applications, we need offer more options of what can be
used in the system.

Application support in the prototype was accomplished by Find better ways to
extract state
information from
applications

communication via AppleScript or - in the case of Sketch It!
- my own implementation. This method is both limited in
the number of applications that can be supported and the
information that can be extracted. Better ways of extracting
the state information from given applications need to be
found to broaden the scope of Nomadic Applications.

Similarly support for systems that don’t run Mac OS X or Support more
devices by using
more generic
protocols

iOS respectively can widen the acceptance of Nomadic Ap-
plications. This should be less of an issue, as the communi-
cation between devices uses generic TCP and UDP sockets,
which should be available in any given operating system.
Encoding the information however needs to move away
from the NSCoding protocol to allow for interoperability
to happen. As a solution the NomadicApps Framework
should replace NSCoding with a more generic approach
to object serialization like XML or JSON1 .

1http://www.json.org/

http://www.json.org/

98 8 Summary and future work

8.2.2 Additional Features

As mentioned before, the state information extracted fromIncrease state
information that is
being transferred

applications was very limited. It normally only included a
file, a URL or a text string. However there is more to an ap-
plication state then just the opened content. Interaction his-
tories for example provide important information and are
one of the features generally missed in todays’ ways of in-
formation exchange between devices (see 2.1). If we can ex-
tract more information from running applications, we can
also extend the state information that is being transferred
and provide a better feeling of migrating a whole applica-
tion, instead of moving files around between devices.

Having windows that can switch between regular andAllow more flexible
options for
arrangement on the
board

miniaturized modes on the board provided a way for users
to arrange a larger amount of applications on the board. It
still only allowed for a limited number of applications to be
stored side-by-side in a readable way and the fixed size of
miniaturized windows limited the flexibility in arranging
them. Additionally the implementation I used caused win-
dows to have their content distorted in miniaturized mode,
especially in conjunction with the browser application. We
need to find better and more flexible ways to arrange a
large number of windows on a board. A fully zoomable
UI would be one possible approach to this problem.

Being able to not only store application states on a mobileIncrease interaction
on mobile devices device but interact with them as well, would vastly increase

the possible usage scenarios for mobile devices in the sys-
tem. It would enable users to not only carry their applica-
tions around but perform work on them, e.g. while being
on the road. To achieve this, we need to find suitable mo-
bile applications and ways to integrate them in our system
as well.

8.2.3 Nomadic Operations

The way Nomadic Operations were implemented in the
system, proved to be far from ideal. The main problems
that occurred:

8.2 Future work 99

• The copy/paste interaction uses one metaphorical Network clipboard
too ambiguousclipboard per network. With only a very limited num-

ber of participants, situations in which states arrive
at a wrong device, due to synchronous invocation of
Nomadic Operations, already happened. The scope
of this problem only increases, if more people use No-
madic Applications.

• Migrating applications to non-public devices needs Too much physical
interactionmore physical interaction than users would like to

have. There should be easier ways to fetch applica-
tions back from the board.

An obvious solution would be, to extend the ”Send to:”- Short term solution:
Extended device list
and confirmation

device list to all available devices, needing confirmation on
any private device when a state is incoming. This solution
however would still not enable direct fetching of applica-
tions. It can also lead to a crowded device list very quickly.

More research has to be done in this field to find an opti-
mal way to implement Nomadic Operations that is flexible
enough, does not have any problems with ambiguity and
does not burden the user with any technical problems.

Techniques like the iconic map interface of ARIS (see 3.1.4)
or Hyperdragging (see 3.3.2) could help with these issues,
if we can find ways of implementing them in our system.

Another extension to Nomadic Operations that would ben- Input redirection
would improve
accessibility

efit the system is input redirection. When used in a per-
sonal setting it would also decrease the physical interaction
needed to use all capabilities of the board.

8.2.4 Additional User Studies

While showing interesting results, the user study was per- Larger scale studies
can show other
usage scenarios

formed on a very small scale. It is my belief that a study
with more participants in a longer period of time, would
not only refine those results, but also show other ways in
which the system can be successfully used.

100 8 Summary and future work

My research was mainly focussed on supporting users inResearch the
application of the
concept in
collaborative settings

their personal workspaces. However Nomadic Applica-
tions should be able to enhance the experience of purely
collaborative settings as well, as was already successfully
demonstrated by Fraikin [2011]. Performing studies in
meeting scenarios might lead to more interesting results.

There is another approach to test the software on a largerForego boards, focus
on wide application scale without needing as much specialized hardware. Dis-

tributing only NomadicDesktop and NomadicPasteboard
in a large work environment can show us, if a wider pene-
tration of Nomadic Applications can lead to a wider adop-
tion.

8.2.5 Better Form Factors

The hardware used in my prototype was seen as tooVirtual whiteboards
should not take more
space than traditional
ones

impractical to be permanently adopted in a personal
workspace. If we want to establish a system like this as
a real enhancement to traditional whiteboards, we need
hardware with less space consumption and better display
capabilities.

Multi-touch displays are becoming more prevalent everyMulti-touch support
enhances
collaborative
scenarios

day. The addition of multi-touch capabilities to the board
software would vastly improve its possibilities, especially
in collaborative settings.

101

Bibliography

Lionel Balme, Alexandre Demeure, Nicolas Barralon,
Joëlle Coutaz, and Gaëlle Calvary. CAMELEON-
RT: A Software Architecture Reference Model for
Distributed, Migratable, and Plastic User Interfaces.
In Ambient Intelligence, pages 291–302, 2004. doi:
10.1007/978-3-540-30473-9\ 28. URL http://www.
springerlink.com/content/p27tmcvqw24r2ljj.

Michael Bernstein, Max Van Kleek, David Karger, and
M. C. Schraefel. Information scraps. ACM Trans-
actions on Information Systems, 26(4):1–46, Septem-
ber 2008. ISSN 10468188. doi: 10.1145/1402256.
1402263. URL http://portal.acm.org/citation.
cfm?doid=1402256.1402263.

Jacob T Biehl and Brian P Bailey. ARIS: an interface for
application relocation in an interactive space. In Pro-
ceedings of Graphics Interface 2004, GI ’04, pages 107–
116, School of Computer Science, University of Water-
loo, Waterloo, Ontario, Canada, 2004. Canadian Human-
Computer Communications Society. ISBN 1-56881-227-
2. URL http://portal.acm.org/citation.cfm?
id=1006058.1006072.

Jacob T. Biehl and Brian P. Bailey. Improving interfaces for
managing applications in multiple-device environments.
Proceedings of the working conference on Advanced visual in-
terfaces - AVI ’06, page 35, 2006. doi: 10.1145/1133265.
1133273. URL http://portal.acm.org/citation.
cfm?doid=1133265.1133273.

Jacob T Biehl, William T Baker, Brian P Bailey, Desney S Tan,
Kori M Inkpen, and Mary Czerwinski. Impromptu: a
new interaction framework for supporting collaboration

http://www.springerlink.com/content/p27tmcvqw24r2ljj
http://www.springerlink.com/content/p27tmcvqw24r2ljj
http://portal.acm.org/citation.cfm?doid=1402256.1402263
http://portal.acm.org/citation.cfm?doid=1402256.1402263
http://portal.acm.org/citation.cfm?id=1006058.1006072
http://portal.acm.org/citation.cfm?id=1006058.1006072
http://portal.acm.org/citation.cfm?doid=1133265.1133273
http://portal.acm.org/citation.cfm?doid=1133265.1133273

102 Bibliography

in multiple display environments and its field evaluation
for co-located software development. In Proceeding of the
twenty-sixth annual SIGCHI conference on Human factors in
computing systems, CHI ’08, pages 939–948, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-011-1. doi: http:
//doi.acm.org/10.1145/1357054.1357200. URL http:
//doi.acm.org/10.1145/1357054.1357200.

David Dearman and Jeffrey S Pierce. It’s on my other com-
puter!: computing with multiple devices. Writing, pages
767–776, 2008.

Mario Fraikin. Collaborating with Tangible Windows - Idea
Generation and Information Exchange in Small Groups.
Diploma thesis, RWTH Aachen University, May 2011.

Michael Haller, Peter Brandl, Daniel Leithinger, Jakob Leit-
ner, Thomas Seifried, and Mark Billinghurst. Shared
Design Space: Sketching ideas using digital pens
and a large augmented tabletop setup. Advances
in Artificial Reality and Tele-Existence, pages 185–
196, 2006. URL http://www.springerlink.com/
index/2W34W2TR74218V39.pdf.

Michael Haller, Jakob Leitner, Thomas Seifried, and JR Wal-
lace. The NICE discussion room: integrating paper
and digital media to support co-located group meet-
ings. In CHI, 2010. URL http://portal.acm.org/
citation.cfm?id=1753418.

Brad Johanson, Shankar Ponnekanti, Caesar Sengupta,
and Armando Fox. Multibrowsing: Moving web
content across multiple displays. In Ubicomp 2001:
Ubiquitous Computing, pages 346–353. Springer, 2001.
URL http://www.springerlink.com/index/
arg6ytayarbrdvyh.pdf.

Brad Johanson, Armando Fox, and Terry Winograd. The
Interactive Workspaces Project: Experiences with Perva-
sive Computing Magazine Special Issue on Systems. In
Pervasive, 2002.

Jakob Nielsen. Usability Engineering. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993. ISBN
0125184050.

http://doi.acm.org/10.1145/1357054.1357200
http://doi.acm.org/10.1145/1357054.1357200
http://www.springerlink.com/index/2W34W2TR74218V39.pdf
http://www.springerlink.com/index/2W34W2TR74218V39.pdf
http://portal.acm.org/citation.cfm?id=1753418
http://portal.acm.org/citation.cfm?id=1753418
http://www.springerlink.com/index/arg6ytayarbrdvyh.pdf
http://www.springerlink.com/index/arg6ytayarbrdvyh.pdf

Bibliography 103

Antti Oulasvirta and Lauri Sumari. Mobile kits and lap-
top trays: managing multiple devices in mobile in-
formation work. In Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, CHI ’07,
pages 1127–1136, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-593-9. doi: http://doi.acm.org/10.
1145/1240624.1240795. URL http://doi.acm.org/
10.1145/1240624.1240795.

Jun Rekimoto. Pick-and-drop: a direct manipulation tech-
nique for multiple computer environments. In UIST,
page 39. ACM, 1997. ISBN 0897918819. URL http:
//portal.acm.org/citation.cfm?id=263505.

Jun Rekimoto and Masanori Saitoh. Augmented surfaces:
a spatially continuous work space for hybrid comput-
ing environments. In Proceedings of the SIGCHI confer-
ence on Human factors in computing systems: the CHI is the
limit, CHI ’99, pages 378–385, New York, NY, USA, 1999.
ACM. ISBN 0-201-48559-1. doi: http://doi.acm.org/10.
1145/302979.303113. URL http://doi.acm.org/10.
1145/302979.303113.

Manuel Román, Christopher Hess, Renato Cerqueira,
Anand Ranganathan, Roy H Campbell, and Klara
Nahrstedt. Gaia : A Middleware Platform for Active
Spaces. ACM SIGMOBILE Mobile Computing and Commu-
nications Review, 6(4):65–67, 2002.

Reinhard Sefelin, Manfred Tscheligi, and Verena Giller. Pa-
per Prototyping - What is it good for ? A Comparison
of Paper- and Computer-based Low-fidelity Prototyping.
New Horizons, pages 778–779, 2003.

Norbert A Streitz, Jiirg Geibler, Torsten Holmer, Shin
Konomi, Christian Miiller-tomfelde, Wolfgang Reischl,
Petra Rexroth, Peter Seitz, and Ralf Steinmetz. i-LAND:
an interactive landscape for creativity and innovation. In
CHI, number May, 1999.

Anthony Tang, Joel Lanir, Saul Greenberg, and Sidney Fels.
Supporting Transitions in Work : Informing Large Dis-
play Application Design by Understanding Whiteboard
Use. In GROUP, 2009.

http://doi.acm.org/10.1145/1240624.1240795
http://doi.acm.org/10.1145/1240624.1240795
http://portal.acm.org/citation.cfm?id=263505
http://portal.acm.org/citation.cfm?id=263505
http://doi.acm.org/10.1145/302979.303113
http://doi.acm.org/10.1145/302979.303113

104 Bibliography

Mark Weiser. The Computer for the 21st Century. Sci-
entific American, 1991. URL http://www.ubiq.com/
hypertext/weiser/SciAmDraft3.html.

http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

105

Index

application support, 39, 56, 63
AsyncNetwork, 70
AsyncSocket, 70

board, 38

desktop computer, 38
device classes, 37
DIA Cycle, 7

evaluation, 87

future work, 97–100

horizontal prototyping, 53

information scraps, 13
iPad, 67

large display, 38

NAClient, 74
Nomadic Applications, 2
Nomadic Operations, 5, 66
NomadicApps Framework, 69
NomadicBoard, 59
NomadicDesktop, 54
NomadicPasteBoard, 67

paper prototyping, 43
Pick-and-Drop, 34

software prototyping, 53

user test, 49, 81
user-centered design, 7

vertical prototyping, 53

whiteboards, 16
WhiteBoardWindow, 60
window modes, 40, 62

Typeset August 7, 2011

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Research Goals
	Nomadic Applications
	Application Migration
	UI Adaptation
	UI Distribution
	Nomadic Operations

	Iterative User-Centered Design
	Chapter Overview

	Personal Workspaces
	Multiple Devices in Users's Environments
	Support Multiple Device Use with Nomadic Applications

	Information Scraps
	Supporting information scraps with Nomadic Applications

	Whiteboards
	Combining Nomadic Applications with Whiteboards
	Core Principles of Whiteboards

	Usage Scenarios

	Related work
	Augmented Spaces
	i-Land
	iRoom
	The NiCE Discussion Room
	ARIS

	Software Solutions
	Multibrowsing
	Impromptu
	CHAMELEON-RT

	Interaction Techniques
	Pick-and-Drop
	Hyperdragging

	Requirements
	Device Classes
	Desktop Computer
	Large Display
	Application support
	Window modes

	Mobile Devices

	Nomadic Operations

	Paper Prototype
	Device Design
	Board
	Windows
	Board Controls

	Desktop

	A small user test
	Tasks
	Testing Process
	Findings

	Conclusions

	Software Prototype
	Horizontal vs Vertical Prototyping
	The Desktop Application
	Application Support
	Browser
	Text Editor
	Sketching
	Generic NSDocument-based Applications

	Window Grabbing

	The Board Application
	WhiteBoardWindow Framework
	Windows and their controls
	Window Modes

	Applications
	Browser
	Text Editor
	Sketching
	Generic NSDocument-based Applications

	Annotations
	Nomadic Operations

	The Mobile Application
	NomadicApps Framework
	AsyncNetwork
	AsyncServer
	AsyncConnectionHandler
	AsyncBroadcaster
	ASyncLoader
	ASyncRequest

	NomadicApps
	NAClient
	NADevice
	NAState

	Another Small User Test
	Tasks
	Testing Process
	Findings & Software Updates

	Evaluation
	Study Setup
	Case 1: Using the board for collaborative work
	Case 2: Using the board as a personal storage
	Conclusions

	Summary and future work
	Summary and contributions
	Future work
	Enhanced Support
	Additional Features
	Nomadic Operations
	Additional User Studies
	Better Form Factors

	Bibliography
	Index

