

I hereby declare that I have created this work completely on my own and used no
other sources or tools than the ones listed, and that I have marked any citations
accordingly.

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht
habe.

Aachen, May 24th, 2005

Abstract

Over the last two decades, music has witnessed two major revolutions brought about
by computing: In the eighties, the emerging MIDI (Musical Instruments Digital
Interface) standard enabled computers to control synthesizers and other sound-
generating equipment. In the nineties, computers became widely available that
were fast enough to generate and play digitally sampled audio streams in real time,
leading to new applications such as versatile software synthesizers and hard disk
recording. But only recently mainstream processing power has reached levels that
make it possible to include the complex symbolic computation necessary for com-
puters to begin generating meaningful music in response to real-time musical human
input. This has enabled computers to support musicians in their live performance
on stage.

Jazz improvisation, in which musicians generate melodies instantaneously while play-
ing with others over a given song structure, is a particularly demanding type of live
performance that has always required many years of training and experience. The
goal of this thesis is to change this.

coJIVE, the Collaborative Jazz Improvisation Environment presented in this thesis,
enables a wide spectrum of people to begin to improvise to jazz tunes; this thesis
focuses on the interactive front-end of coJIVE, while a companion thesis [Klein,
2005] deals with the the musical theory back-end. The complete system provides
the players with the standard material—lead sheet and automatic accompaniment—
required for jazz improvisation, but above all, it substitutes for their missing theoret-
ical knowledge and experience, by carefully adjusting and augmenting their musical
input to create aesthetically pleasing music. To provide a satisfying experience to
novices as well as experts, coJIVE adjusts its support to the players’ individual lev-
els of expertise. The system also monitors the jazz session, suggesting to the players
when to solo and when to accompany, and adjusting their input based on these roles.

A review of related work shows that numerous prior projects have tackled four
related areas: generating improvisation using artificial intelligence, generating au-
tomated accompaniment, co-ordinating collaborative performances, and assisting
human musicians live—but none of the existing systems integrated these fields into
a task support as envisioned for coJIVE. Two usage scenarios, of a traditional and
a coJIVE -augmented jazz session, describe this task in more detail.

The remaining work was carried out following the DIA (Design-Implement-Analyze)
cycle: A first prototype provided basic improvisation support for a single keyboard
player, and was implemented using the MAX/MSP development environment; it
showed in user tests that the idea of augmented improvisation is feasible. An ad-
vanced prototype was then implemented as a Mac OS X Cocoa application with

ii

support for multiple pieces, two players, and batons as additional input device. User
testing led to developing this prototype into the final system with improvements in
the support for advanced players, soloing control and other areas.

The final system was reviewed favorably by users; nevertheless, there is still much
room for improvement, as outlined at the end of this thesis, to create better jazz
performances using the coJIVE approach.

Zusammenfassung

In den letzten zwei Jahrzehnten hat die Musik durch die Informatik zwei wesentliche
Neuerungen erfahren: In den achtziger Jahren ermöglichte es der entstehende MIDI-
Standard (Musical Instruments Digital Interface Standard) Computern, Synthesizer
und andere tonerzeugende Geräte zu steuern. In den neunziger Jahren wurden Rech-
ner weithin verfügbar, die schnell genug waren, um digital gesampelte Audioströme
in Echtzeit zu erzeugen und abzuspielen, was zu neuen Anwendungen wie flexi-
blen Software-Synthesizern und Harddiskrecording führte. Doch erst vor kurzem
hat die übliche Rechenleistung ein Niveau erreicht, das es erlaubt, auch komplexe
symbolische Berechnungen durchzuführen, die für die automatische Erzeugung von
sinnvoller Musik basierend auf Benutzereingaben in Echtzeit nötig sind. Dies er-
möglicht es Computern Musiker auch bei Live-Auftritten auf der Bühne zu unter-
stützen.

Die Jazz-Improvisation, in der Musiker Melodien aus dem Stehgreif erzeugen, wärend
sie mit anderen Musikern über die Struktur eine Liedes spielen, ist eine besonders
anspruchsvolle Form des instrumentalen Spiels. Das Ziel dieser Arbeit ist es, dies zu
ändern.

coJIVE (Collaborative Jazz Improvisation Environment), das in dieser Arbeit vorge-
stellte Softwaresystem, ermöglicht einem breiten Publikum den Einstieg in die Welt
der Jazz-Improvisation. Die vorliegende Arbeit konzentriert sich auf den interaktiven
Teil des System, während eine begleitende Arbeit [Klein, 2005] den musiktheoretis-
chen Teil beschreibt. Das vollständige System stellt für die Spieler die üblichen
Materialien bereit (Lead Sheet und automatische Begleitung), die für die Impro-
visation nötig sind, aber darüber hinaus gleicht es ihre fehlenden Kenntnisse und
Fähigkeiten durch vorsichtiges Anpassen und Anreichern ihrer Eingabe aus, um
ansprechende Musik zu erzeugen. Um sowohl für Anfänger als auch Experten eine
angenehme Erfahrung gewährleisten zu können, passt coJIVE den Grad der Unter-
stützung an die individuellen Fähigkeiten jedes Spielers an. Das System überwacht
überdies die Session, deutet den Spielern an, wann sie improvisieren und wann sie
nur begleiten sollten und passt ihre Eingabe diesen Rollen entsprechend an.

Eine Besprechung verwandter Arbeiten zeigt, dass zahlreiche frühere Projekte vier
ähnliche Bereiche untersucht haben: die Generierung von Improvisationen mittels
künstlicher Intelligenz, die Generierung automatischer Begleitung, die Koordination
von gemeinschaftlichem instrumentalem Spiel und die musikalische Unterstützung
von Musikern. Keines dieser Systeme hat diese Teilbereiche jedoch zu einer großen
Aufgabe zusammengefasst, so wie es für coJIVE vorgesehen ist. Zwei Szenarien
beschreiben eine traditionelle, sowie eine mit Hilfe von coJIVE durchgeführte Jazz-
Session um diese Aufgabe zu verdeutlichen.

iv

Der Rest der Arbeit wurde basierend auf DIA-Zyklen (Design-Implementierung-
Analyse) durchgeführt : Ein erster Prototyp, entwickelt in der Max/MSP-Ent-
wicklungsumgebung, bot grundlegende Unterstützung für die Improvisation eines
einzelnen Klavierspielers. Benutzertests bestätigten, dass das Prinzip der com-
putergestützten Improvisation sinnvoll ist. Ein verbesserter Prototyp, der Unter-
stützung für zwei Spieler, mehrere Lieder für die Improvisation und elektronische
Schlegel als zweites Instrument bot, wurde als Cocoa-Anwendung unter Mac OS X
entwickelt. Weitere Benutzertests führten zur Weiterentwicklung dieses Prototypen
zum finalen System mit Verbesserungen der Unterstützung fortgeschrittener Spieler,
Solo-Kontrolle und in anderen Bereichen.

Das finale System wurde von den Benutzern durchweg positiv beurteilt. Allerdings
besteht noch viel Raum für Verbesserungen, wie am Ende der Arbeit beschrieben
wird, um bessere Jazz Performances mit dem coJIVE -Ansatz kreieren zu können.

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

Contents vii

1 Introduction 1

1.1 Jazz Improvisation . 2

1.2 Overview . 3

2 Related Work 7

2.1 Artificial Improvisers . 7

2.1.1 JIG - Jazz Improvisation Generator 8

2.1.2 GenJam - Genetic Jammer . 8

2.1.3 ImprovisationBuilder - A Computer Participant
in Musical Improvisation . 9

2.1.4 CHIME - Multi-Phase Learning
for Jazz Improvisation and Interaction 10

2.1.5 Continuator . 11

2.2 Automatic Accompaniment . 11

2.2.1 JOINME - An Open Advise-based Approach 12

2.2.2 An Artificially Intelligent Jazz Performer 12

2.2.3 Band-in-a-Box . 13

2.3 Co-ordination of Collaborative Performances 14

2.3.1 VirJa - Virtual Jazz Session System 14

2.3.2 Improvisession - A Global Delayed Session Music 15

viii Contents

2.4 Musical Assistance for Human Players 16

2.4.1 WorldBeat - Musical Design Patterns 17

2.4.2 CiP - Coloring-in Piano . 18

2.4.3 RhyMe - A Musical Instrument
with Fixed Mapping of Note-Functions 19

2.4.4 ism - Improvisation Supporting System 20

2.4.5 Electronic Keyboards with Musical Assistance 21

2.4.5.1 One-Key Chord Triggering 21

2.4.5.2 Melody-Based Key Illumination 22

2.5 Discussion . 23

3 Usage Scenarios and Design 25

3.1 A Jazz Session Scenario . 25

3.2 The coJIVE Scenario . 26

3.3 Design Approach . 27

4 A First Prototype 31

4.1 Design . 32

4.1.1 Features . 33

4.1.1.1 Confine to Scale . 33

4.1.1.2 Prohibit Avoid Notes 34

4.1.1.3 Help Triggering Compound Structures 34

4.1.1.4 Offer Automatic Structuring 35

4.1.1.5 Restrict Expressive Parameters 36

4.1.1.6 Discarded Ideas . 37

4.1.2 User Levels . 38

4.1.2.1 Professional . 38

4.1.2.2 Expert . 38

4.1.2.3 Advanced . 39

4.1.2.4 Novice . 39

4.1.3 Further Design Decisions . 39

4.2 Implementation . 40

4.2.1 Environment . 40

4.2.1.1 Hardware . 40

Contents ix

4.2.1.2 Max/MSP . 41

4.2.2 System Clock . 41

4.2.3 Accompaniment . 43

4.2.3.1 Bass . 43

4.2.3.2 Drums . 43

4.2.4 MIDI Connections . 43

4.2.5 Visualisation . 45

4.2.5.1 Chord Symbols . 45

4.2.5.2 Feedback . 45

4.2.6 User Levels . 46

4.2.7 Features . 47

4.2.7.1 Confine to Scale . 48

4.2.7.2 Prohibit Avoid Notes 48

4.2.7.3 Help Triggering Compound Structures 48

4.3 Analysis . 48

4.3.1 User Tests . 49

4.3.1.1 Procedure . 50

4.3.1.2 Questionnaires . 50

4.3.2 Results . 52

4.3.3 Discussion . 52

5 Final System Development 55

5.1 Design . 56

5.1.1 New Requirements . 56

5.1.1.1 Collaboration . 57

5.1.1.2 New Musical Interface 58

5.1.1.3 Songs . 58

5.1.2 Supported User Profiles . 58

5.1.3 Graphical User Interface . 60

5.1.3.1 The Lead Sheet . 60

5.1.3.2 Song Controls . 61

5.1.3.3 Player Fields . 61

5.1.3.4 Configuration Controls 62

x Contents

5.1.4 Features . 64

5.1.4.1 Processing a Note 65

5.1.4.2 Processing a Gesture 66

5.1.4.3 Processing Velocity 66

5.1.5 Architectural Design . 67

5.1.5.1 System Foundation 67

5.1.5.2 Centralised Tasks . 68

5.1.5.3 MIDI Encapsulation 70

5.1.5.4 Processing Input Data 71

5.1.5.5 Data Representation 71

5.2 Implementation . 72

5.2.1 Environment . 73

5.2.1.1 The Back-end . 73

5.2.1.2 Hardware . 73

5.2.1.3 Cocoa . 73

5.2.1.4 CoreMIDI . 74

5.2.1.5 SimpleSynth . 75

5.2.2 Implementation Principles . 75

5.2.3 System Foundation . 76

5.2.4 The Lead Sheet and Data Classes 78

5.2.5 Singletons . 79

5.2.5.1 PlaybackEngine . 79

5.2.5.2 RecordingEngine . 80

5.2.5.3 BackendDummy . 81

5.2.6 The MIDI Classes . 81

5.2.7 Input Processing . 83

5.2.7.1 Note Processing . 83

5.2.7.2 Gesture Processing 85

5.2.7.3 Velocity Processing 85

5.3 Analysis . 86

5.3.1 User Tests . 86

5.3.1.1 Procedure . 86

Contents xi

5.3.1.2 Questionnaires . 87

5.3.2 Results . 88

5.3.3 Discussion . 90

5.4 Changes in the Third Cycle . 90

5.4.1 Design . 91

5.4.1.1 Performance Control 91

5.4.1.2 User Support . 92

5.4.1.3 User Interface . 93

5.4.1.4 Altering the Architecture 95

5.4.2 Implementation . 96

5.4.2.1 Environment . 96

5.4.2.2 The New and Revised Classes 97

5.4.2.3 Note and Gesture Processing 98

5.4.2.4 System Performance 100

5.4.3 Analysis . 101

5.4.3.1 User Tests . 101

5.4.3.2 Results . 103

6 Conclusion 107

6.1 Adjusted Musical Assistance . 107

6.2 Collaboration . 108

6.3 Simulating a Jazz Session . 108

7 Future Work 109

7.1 Musical Assistance . 109

7.1.1 Melody Guidance . 109

7.1.2 Rhythmic Guidance . 109

7.1.3 New Chord Voicings . 110

7.1.4 Responding to Classical Musicians 110

7.2 Collaboration and Session Arrangement 110

7.2.1 Solo Arrangement . 110

7.3 Special Assistance for Jazz Musicians 111

7.3.1 The Retry Button . 111

7.3.2 Recording Statistics . 112

xii Contents

A Max/MSP Objects 113

A.1 Basic Objects . 113

A.2 Math Objects . 114

A.3 Control and Selection Objects . 114

A.4 MIDI Objects . 115

B MIDI Basics 117

B.1 Basic Principles . 117

B.2 Message Types . 118

B.2.1 NoteOn . 118

B.2.2 NoteOff . 118

B.2.3 ProgramChange . 118

B.2.4 ControlChange . 118

B.3 Note Values . 118

C UML Diagrams 121

C.1 The Second Prototype . 122

C.2 The Final System . 125

D coJIVE in Use 133

D.1 Setting Up the System . 133

D.2 The Session . 135

References 141

Glossary 145

Index 149

1. Introduction

Watching musicians performing on stage can be a very entertaining and fascinating
experience; their ability to control one or more instruments, their knowledge of the
songs they play and the way they interact attract the audience’s admiration. Most
people should know the desire to take part in such performances and receive their
“15 minutes of fame”.

In the world of jazz, improvisation is commonly used to create surprising, yet ap-
pealing performances. Jazz musicians create such performances with what seem to
be spontaneously developed melodies coming from a seemingly endless supply of
new ideas. For untrained people interested in trying out improvisation for them-
selves, this sort of creativity seems impossible to master, thus keeping them from
even trying. This poses a central question that was the origin of this work:

• How can inexperienced people be supported in order for them to create ap-
pealing performances thus providing them with a satisfying experience?

The computers seems to be the perfect tool to represent and apply the knowledge
and experience jazz musicians use for their improvisations. Thus, it may be able
to facilitate creative performances for people with different levels of expertise by
partially taking control over the user’s input and correcting it as necessary.

This thesis describes the development of a computer system aimed at enabling a
wide variety of people to improvise by substituting for the necessary abilities. The
system is called coJIVE — Collaborative Jazz Improvisation Environment — and
is meant to allow several users to engage in a simplified jazz session, providing each
of them with an appropriate amount of support to even out the skills they lack, at
the same time co-ordinating the course of events in the session.

Initially, the topic of jazz improvisation must be examined to obtain an overview of
the procedure itself. What exactly is the “secret” behind this sophisticated form of
instantaneous creativity? An answer to that question requires a closer look at what
happens in jazz sessions.

2 1. Introduction

1.1 Jazz Improvisation
Unlike usual musical performances, in which performers replay pre-composed melo-
dies, the art of improvisation can be described as the ability to create melodies from
the spot. Of course, this comprises more than “just” coming up with an idea that
can be turned into a melody.

To know what can be played and how, a jazz musician needs to analyze the structure
of a given song; this song is usually described on a lead sheet, a sheet of paper
that contains the necessary pieces of information: the name of the song, its tempo,
metre (e.g., 4

4 or 3
4), a notation of the main theme and its chord structure. This

structure is given in the form of a progression of chords, all textually annotated
by a chord symbol. Figure 1.1 depicts an exemplary lead sheet published by Sher
[1988]. The chord progression enables an analysis of the scales and their modes
(dorian, phrygian, lydian, etc.) underlying each chord; a thorough description of
this analysis was compiled by Klein [2005], the companion thesis of this work. Jazz
musicians usually perform this analysis while playing. With the scale suitable for
the current position in the song and the notes contained in the current chord, the
harmonic context can be derived. This context determines what notes would be
perceived to be melodic (consonant) and which notes would sound disharmonious
(dissonant), and acts as a basis for the improvising musician (improviser) to create
his solo.

For a fluid performance, the improviser cannot solely depend on spontaneous ideas;
she rather keeps in mind a collection of short phrases and melodies from prior train-
ing and performances. By adapting a sequence of those phrases to fit the current
harmonic context, a short solo can be created instantaneously requiring the genera-
tion of a melody “from scratch”. A more thorough description of the concepts and
methods used in jazz improvisation was compiled by Sabatella [1992-2000].

Similar to other musical presentations, jazz improvisations often feature a whole
band in what is usually called a session. Borchers [2001] describes this set-up as
part of his pattern language for interactive music exhibits : “Use a combination of
one or several rhythm section instruments, such as drums, bass, piano, or guitar,
plus one or several solo instruments...” [Borchers, 2001, p.84]. This configuration,
of course, requires a lot of co-ordination to assure a balanced performance, since
most of the musicians involved in a performance would like to play at least one
solo. While one player is improvising, the others need to provide an accompaniment
that serves as a rhythmic and harmonic basis for the solo. At the same time, this
accompaniment needs to leave enough room for the improvisation to be in the centre
of the performance. This concept is described by Borchers [2001] under the term
Solo & Comping : “Let players take turns in soloing, including melody instruments
as well as accompanying instruments. The remaining players step back musically,
and some of them accompany the soloist.” [Borchers, 2001, p.86]. The following
chapter will more thoroughly describe such collaborative sessions.

The abilities necessary for improvising and accompanying improvisation in jazz ses-
sions obviously take several years (sometimes decades) of rehearsing to develop.
Three main skills can be identified:

1. Precise command of the instrument: To translate an idea into a melody,
a musician needs to know how to create certain notes or chords by heart. An

1.2. Overview 3

experienced piano player, for example, can find the right keys for the notes on
a score sheet as he reads them. This kind of expertise can, of course, only be
achieved through constant practice over several years.

2. Thorough knowledge in musical theory: The kind of knowledge necessary
for the analysis mentioned in the last section even surpasses what is commonly
taught in classic musical education. Beside keys and the most common scales,
jazz musicians need to know the various modes of each scale, and while in
classical music chords are made up of three notes, the chords in jazz contain
at least four notes.

3. Experience in collaborative improvisations: Knowledge of the most ba-
sic gestures and how to accompany a fellow musician in his improvisation is
needed for a performance to sound balanced. This, of course, encompasses suit-
able behaviour towards the other musicians based on the roles of the different
participant

1.2 Overview

As even absolute novices in the field of musical performances are meant to use
coJIVE without an introduction, the system needs to provide mechanisms to bypass
the necessity for the three skills described in the last section. It is developed in two
major parts. Each part has distinctive tasks to perform, and interact to meet the
overall goals:

1. The Back-end
The part of coJIVE representing musical knowledge is concerned with the
analysis of chord progressions that is usually conducted by the jazz musicians
themselves. Based on this analysis it is supposed to decide how probable the
different notes are in the context of each chord. Furthermore, it should know
several chord voicings for each chord symbol that should be made available to
client applications. The companion work to the thesis at hand, the diploma
thesis of Jonathan Klein [2005], describes the development of the back-end.

2. The Front-end
The front-end of the system will be developed to interact with the players,
and it applies the knowledge supplied by the back-end to alter the players’
input. It should also create audible and visual information necessary for the
performance. Small groups of players will be supported to co-operate in col-
laborative sessions. The work at hand focuses on this part of coJIVE and its
development.

To attract jazz experts as well as total novices, two different MIDI devices that
represent different classes of interfaces were selected: a common MIDI keyboard
represents the class of note-based interfaces that require precise control (e.g., know-
ing what key to press). It resembles the interface of pianos that are often used in jazz
session, and thus rather addresses users familiar with playing such an instrument.
And yet, one of coJIVE ’s tasks is to help inexperienced players to create interesting
performances using the keyboard, by correcting and possibly enriching their input.

4 1. Introduction

Admittedly, system support to their keyboard input needs to use caution, as a player
can otherwise quickly lose the feeling of being in control.

A pair of infrared batons created by Don Buchla [1995] represents the class of fuzzy
interfaces for less experienced users. They resemble sticks to use on drums or xy-
lophones, and can be used to play notes accordingly: Hitting gestures in mid-air
trigger notes, changing the note to be played by moving the baton to the left for
lower notes, or right for higher notes. The batons are considered to be a fuzzy inter-
face because experienced players can only estimate which “key” they will hit. Due to
this fact, the player’s performance can be more intensely modified by the system, as
changes in the relation of gestures to notes are less likely to be noticed by the user.

The main part of this thesis consists of seven different chapters:

Chapter 2, Related Work, describes several systems that pursue similar goals as
coJIVE, pointing out similarities and major differences in the underlying approaches.

Chapter 3, Usage Scenarios and Design, presents two scenarios describing a tradi-
tional jazz session and a session using coJIVE ; they clarify the goals and tasks of
the system and describe how the system should work in general. Additionally, the
main approach taken for the design of the system is explained.

Chapters 4 and 5 focus on the prototypes created during development. They each
explain the approaches taken by the development, and are structured according
to the DIA (Design — Implementation — Analysis) cycle: each design phase, in
which ideas are collected and processed, is followed by an implementation phase that
contains the transition of the design into a working system, and the analysis phase,
in which the resulting system is tested and validated.

Chapter 6, Conclusion, is concerned with the final test results, which are summarised
and interpreted. The initial goals of this research are compared to the findings in
the analysis phases and the revision of expectations throughout the research process
is documented.

Chapter 7, Future Work, concludes this work by stating open questions and possible
future courses of action. It presents a list of enhancements and additions to the
system that should be undertaken to expand the system’s abilities without compro-
mising the basic ideas beneath this work.

Four appendices contain a description of the Max/MSP objects deployed in the first
prototype, the MIDI standard, detailed UML diagrams for the second and third
prototype, as well as a walkthrough describing the interaction with the final version
of the system. Terms from computer science and jazz theory are then explained in
a glossary. An index concludes the thesis.

1.2. Overview 5

Figure 1.1: A lead sheet describing the song“There will never be another you” [Sher,
1988].

6 1. Introduction

2. Related Work

Although using computers in public performances seems quite common today, their
creative influence inside these performances is negligibly small and often still sub-
ject to research. Usually the machines play back pre-recorded parts to accompany
human players or provide capabilities for sound generation to be controlled by hu-
man musicians. The lack of creative control over the performance is mostly due
to the fact that “computer-generated music” has a bad reputation even today. It
is commonly believed that computers allow the creation of music at the push of a
button, and that this music is of poor quality creative-wise. Accordingly, musicians
fear to lose their credibility if computers take over some of the creative parts in their
performances.

Still the possibilities computers entail have already attracted several groups of re-
searchers to develop computer-based systems that facilitate, support, or create per-
formances. This chapter will present a selection of systems devoted to provide help
for one or more human players to create and co-ordinate performances, similar to
coJIVE. A special emphasis is put on those aspects that coJIVE approaches dif-
ferently. But the first section of this chapter takes a look at systems dedicated to
create improvisations on their own using knowledge from the field of artificial intel-
ligence, as these systems have to follow similar paradigms as coJIVE. The chapter
is concluded by a discussion of the systems’ most important innovations and their
shortcomings in the context of jazz improvisation.

2.1 Artificial Improvisers
The thought of creating a computer program that is able to create improvised per-
formances, although frightening for musicians who fear to get “replaced”, is a most
interesting prospect for researchers in the field of artificial intelligence; yet, rep-
resenting the knowledge necessary within such a program and having a computer
apply this knowledge while playing on its own is a task that has only been com-
pleted partially so far. Indeed, various efforts in this field of research have produced
considerable results, some of which are presented in this section.

Since these systems are concerned with creating performances and not with the sup-
port of a human performer, stating the differences between them and coJIVE would

8 2. Related Work

not be beneficial to the work at hand. Instead, the aspects of jazz performances
these systems go into that are also interesting for this work are highlighted.

2.1.1 JIG - Jazz Improvisation Generator

Grachten [2001] presents JIG, a system generating “formulaic” improvisations based
on two models for jazz improvisation. The first model describes such performances
to be composed of so-called motifs (or formulae), short melodic patterns drawn from
the personal repertoire of the improvising musician. The second model focuses on
the spontaneous creation of note sequences that some jazz improvisers use to connect
motifs. This simplification of the process of improvisation is very interesting as it is
easy to utilise while no vital aspect is neglected.

Figure 2.1: JIG’s note generation in motif(left) and melodying phase(right)
[Grachten, 2001].

Accordingly, JIG works with two alternating note generation phases, the motif phase
and the melodying phase [sic]. The motif phase extracts short melodic patterns from
the current song’s main theme, adjusts the pitches to the scale and transforms the
motif by reversion, contraction/expansion of notes, etc.; that way new melodies are
created that somewhat relate to the original melody of the song. The melodying
phase deploys probabilistic models to generate note duration and pitch as well as the
duration of the pause to the next note. The performance is preceded by an analysis
of the chord sequence that selects the scales for the chords. These are chosen by
a simple algorithm that calculates the scale matching most of the chords in the
sequence; when a new scale must be calculated, the one with the least differences
to the previous scale is chosen. With the calculated scale a probabilistic selection
based on random values can be made by the active generative phase.

2.1.2 GenJam - Genetic Jammer

Genetic algorithms are heuristics used to solve optimisation problems by applying
techniques derived from natural evolution. Starting with a population consisting
of so-called chromosomes (representations of solutions for the problem), such al-
gorithms use mutation, inheritance, selection and recombination to generate new
generation derived from this population; a fitness function is used to evaluate and
select some of the chromosomes, from which the next generation is then created.

With GenJam, Biles [1994] presented a system that uses such a genetic algorithm
to generate jazz performances. The system uses chromosomes containing a sequence
of pairs of note value and duration as representation of a potential performance.

2.1. Artificial Improvisers 9

Figure 2.2: The genetic algorithm deployed in GenJam [Biles, 1994].

The note value is not stored as the absolute pitch (as in MIDI) but rather as the
note’s degree in the current scale. The initial population is generated; the durations
of each note in a chromosome add up to the duration of the whole song, and the
note values are determined at random. Once this population is created, the genetic
process is started using a fitness function that repeatedly evaluates the newly created
chromosomes by a set of characteristics: intervals between notes (preventing too
large intervals from occurring), long notes (only fit if the note really is harmonic,
for example, a chord note), rhythmic position of the note (at downbeat or half-bar),
pattern matching (the system looks for similar melodic patterns in a chromosome),
etc.

2.1.3 ImprovisationBuilder - A Computer Participant
in Musical Improvisation

Focusing on the structure of performances by small groups of jazz musicians, Walker
[1997] developed ImprovisationBuilder, an artificial improviser that tries to fit in
with this kind of groups. This ImprovisationBuilder draws on the conversational
character of jazz improvisation; it recognizes the roles of the various participants
and reacts accordingly by accompanying or soloing.

Figure 2.3: Structure of an Improviser component in ImprovisationBuilder [Walker,
1997].

An object-oriented approach was used to model the different sub-tasks performed by
jazz musicians as classes that are aligned in a linear chain to create a performance.
This chain is always headed by a listener analyzing the performances of the other

10 2. Related Work

participants, and recognizing if they are accompanying or improvising, based on
the range of pitches used and the amount of notes played; depending on the result,
the state of the system is altered in a finite state machine. A composer is used to
create performances deploying methods similar to JIG: short melodic patterns are
adapted to the current scale (previously determined by the system) and connected by
randomly generated sequences of notes. The creation chain in ImprovisationBuilder
is concluded by an object of the so-called timbre class that acts a sound generator.

The research on ImprovisationBuilder was supported by deploying prototypes: two
pianist composers, who also helped out in the development of the system, constantly
used the prototypes in their home studios. That way, a permanent stream of feedback
was created, which was clearly beneficial for the system, not only in terms of usability.

2.1.4 CHIME - Multi-Phase Learning
for Jazz Improvisation and Interaction

The Computer Human Interacting Musical Entity (CHIME), developed by Franklin
[2001], deploys a recurrent neural network to learn how to improvise and interact
with human players. This kind of neural network uses feedback loops to learn from
its own results. The system was trained to play three different melodies and trade
fours with human players. The process of learning was split into two phases: in the

Figure 2.4: Structure of CHIME [Franklin, 2001].

first phase, the neural network was trained with the three melodies using supervised
learning. This learning method presumes that the correct output results (i.e., the
melody) are known, to feed the errors made by the network back into it. The second
phase was conducted using reinforcement learning, in which the network’s output is
evaluated by a set of rules that rate the suitability of single notes and the results
handed back to the network. Additionally, the system was fed with the performance

2.2. Automatic Accompaniment 11

of a human player in that phase to derive ideas for its own melodies. The resulting
system is able to interactively play with other musicians, using their input to create
new melodies.

2.1.5 Continuator

The Continuator [Pachet, 2002] is a system built to create and play “continuations”
of performances by human players, i.e., it analyses the performance, and tries to find
an appropriate performance as an answer similar to jazz musicians. To achieve this,
it looks for recurring patterns in the improvisation of the preceding soloist.

Figure 2.5: Several instances of the Continuator running on one computer [Pachet,
2002].

While listening to a human player performing, the system builds a prefix tree with
the incoming data, weighting subsequences of notes by the number of their occur-
rence. For this purpose, not the pure data but simplified information obtained from
reduction functions (e.g., using pitch regions instead of absolute pitches) is used.
The generation takes place by determining a note item, then using the previously
created prefix tree to find an appropriate continuation (e.g., a pitch region); this is
repeated for a note item taken from that continuation, and so on. This calculation is
executed by a hierarchical Markov model that is further augmented by using external
information: data like the last eight notes played by the human player (used for har-
monising the performance instead of relying on information on the chord structure)
or the overall velocity of the rest of the band (to adjust the Continuator’s velocity
to) is used to alter the system’s behaviour. This adjustment is made using a fitness
function that compares the computed continuation to the external information. This
“attachment” to the external input can be adjusted by the user.

2.2 Automatic Accompaniment

Accompaniment, as mentioned above, is necessary for an improvised solo to come
across to the audience as it was intended: it provides a rhythmic and a harmonic
foundation that a melody can relate to. This kind of support seems easy to be pro-
vided by computers, as recreating pre-recorded parts is a standard task for current
machines. But there are also other approaches to automatically creating accompa-
niment taken by current research.

12 2. Related Work

2.2.1 JOINME - An Open Advise-based Approach

Similar to improvising, playing an accompaniment demands knowledge and experi-
ence from musicians that is collected over years. In order for a system to use this
kind of knowledge, the information must be represented inside the system, while
at the same time being open to extensions (just like a musician keeps on learn-
ing). Therefore, the knowledge needs to be separated from the actual calculation.
JOINME, developed by Balaban and Irish [1996], is based on this idea of using not
algorithms to compute an accompaniment but so-called advices [sic].

JOINME uses a music knowledge base to analyse chord sequences and producing
the accompaniment. This knowledge base contains object-oriented representations
of notes, intervals, chords, and scales, as well as rhythmic points and rhythmic
structures; rhythmic structures are patterns of rhythmic points, which in turn are
points in time and represent notes. There are two kinds of advice that can be
used to determine the value of a rhythmic point: a Domain Advice determine the
notes possible at a rhythmic point based on the harmonic context at that time; a
Composition Advice restricts the possible notes, for example, based on the calculated
value of the previous rhythmic point and decide on note to play. The set of advices in
JOINME can easily be extended by subclassing the classes representing the desired
kind of advice.

JOINME offers a flexible approach to creating accompaniments for performances of
human players. For the goals of the work at hand, this flexibility is not necessary
as the focus lies on the human performance rather than on the provided accompa-
niment; yet, this way of artificially creating musical structures could be interesting
to be incorporated into future versions of coJIVE to make the system output more
varied.

2.2.2 An Artificially Intelligent Jazz Performer

An automaton-based approach to build a system that tries to mimic the behaviour
of a jazz bass player is presented by Ganascia et al. [1999]. The automaton used to
create the performance models a mood, short term memory, and a musical memory
inside its state, which all affect the performance. To facilitate interaction with its
environment, a simple interaction model is used: the audience as well as a drummer
and a pianist are also understood as automata, whose output serves as input for the
bass automaton. A similar approach has already been presented by Dannenberg and
Bloch [1985], focusing on the input provided by a keyboard. Roger B. Dannenberg
and Bloch [1985] has been involved in numerous projects concerned with interactive
system over the last two decades; in recent years he turned to topics like query by
humming and sound synthesis.

The artificial bass player is divided into two automata: the Executor actually triggers
notes through a MIDI connection based on their start time and duration. This data,
along with the note values, is calculated by the Improviser that uses the input
from the other automata — including a grid automaton transmitting information
on the chord structure of the current song — and fragments taken from real jazz
bass performances to decide on the notes to play. These fragments are stored in
the musical memory as so-called PACTs (potential actions) and can be combined to
create new PACTs and thus, new performances.

2.2. Automatic Accompaniment 13

Figure 2.6: The Simplified Interaction Model used for the Jazz Bass Automaton
[Ganascia et al., 1999].

The most interesting aspect of this system is the modelling of the external aspects
of a sessions, especially the audience, as automata, which is used to influence the
bass player’s performance. Yet, the approach of the system would not necessarily be
suitable for coJIVE since the variable output of the bass could distract inexperienced
users if the performance becomes too unusual.

2.2.3 Band-in-a-Box

The only commercially available system in this category is Band-in-a-Box, designed
and developed by Dr. Peter Gannon [1989], a program designer and musician for PG
Music, Inc. This program offers various features for musicians to obtain a suitable
accompaniment for their rehearsal, and can be used to record, compose, and depict
new songs and performances in scores.

Figure 2.7: The main screen of Band-in-a-Box [Gannon, 1989].

Band-in-a-Box presents the user with a grid resembling a lead sheet, in which the
chord structure can easily be altered using a Chord Builder tool. Furthermore,
several interfaces using different input metaphors are supplied: a screen depicting all
elements in a MIDI drum set (kick drum, snare drum, etc.) can be used to input and

14 2. Related Work

record drum performances. To offer a suitable display for guitar-like input, another
screen depicting the neck of a guitar can be used. If a faster approach towards
an appropriate accompaniment is necessary, a great amount of files containing data
on styles (such as swing or blues) or complete songs can be chosen from. Tools
using techniques from the field of artificial intelligence can be triggered to create
professional solos or whole songs.

Band-in-a-Box has several big advantages: it offers a wide variety of different fea-
tures, and is thus a very powerful tool when it comes to creating and supporting
performances. Because of this, the program has been able to spread among musi-
cians during recent years, especially in the jazz sector. This fact may, of course,
be due to the lead-sheet-based structuring of the program — which is very inter-
esting in the context of this work —, and its accounting for various jazz styles and
elements unique to jazz (e.g., chord symbols). Yet, the system has one major dis-
advantage: its usability. Since the lead sheet takes up a lot of the main screen,
the other functions are accessible only through elements clustered in a very small
area. Additionally, usage is often inconsistent: while the drum- and guitar-screen
use appropriate metaphors for depiction, the Chord Builder looks like a complex
configuration dialogue. In the context of coJIVE, this complex control would not be
suitable, since users should only need to focus on their performance when using the
system.

2.3 Co-ordination of Collaborative Performances

Jazz sessions with several musicians require some co-ordination. The sequence of
soloists and the length of the solos can be determined before the performance, but
it is also possible (and customary) for the jazz musicians to manage these aspects
during the performance. This procedure, of course, demands some knowledge on
how to communicate these changes while playing.

As most computers today are connected to a network, systems aimed at the co-
ordination of musical performances often use this connectivity to co-ordinate remote
musicians, each in front of his own computer. coJIVE, on the other, hand focuses
on the support and co-ordination of collocated multiple players based on their levels
of skill, and is intended to be a stand-alone system.

2.3.1 VirJa - Virtual Jazz Session System

Most computer programs dealing with performing with a human player need a lead-
ing participant to follow (or they even need to be the leader themselves). In jazz
performance, musicians often co-ordinate their collaboration by establishing eye con-
tact and using gestures while playing, without having a defined leader. With this
technique, the structure of a performance can be changed, shortened or extended
spontaneously by all of the participating musicians. To enable players to use gestures
in a remote session connected by a computer network, Goto et al. [1996] presented
VirJa, the virtual jazz session system.

VirJa provides all participants in a session with a video image of every other par-
ticipant, similar to video conferencing systems. Two basic gestures are defined to
structure a performance while playing: if the current soloist leans to one side, she

2.3. Co-ordination of Collaborative Performances 15

Figure 2.8: The structure of a trio in VirJa(left) and virtual players(right) [Goto
et al., 1996].

wants the player to her left or right to take over the soloing role; with pointing at
his head, the soloist orders the rest of the group to return to the head of the song
and replay its main theme. The system tries to recognize the gestures, transmit-
ting a signal to the other participants on recognition. This mechanism is, of course,
necessary to integrate artificial players controlled by a computer, which was done
rather successfully in VirJa. For human players to relate and react to those artifi-
cial participants, those systems are represented by characters created with computer
graphics. A special communication protocol called RMCP is used to transmit MIDI
data, gesture information, beat information, and animation information. An ex-
periment, in which a jazz pianist and computer-controlled bass and drum players
performed a jazz standard, showed that the representation of the computer players
and the lack of a need for a leader led to an interesting expressive performance due
to the interaction of the participants.

Clearly, VirJa breaks with one paradigm most computer music systems have in com-
mon: well-defined leadership. Yet, the coordination of the performance relies entirely
on the participants’ use of the predefined gestures; although the set of expected ges-
tures is fairly limited compared to live jazz sessions, the users need to know them
and how a jazz session is structured in general. For inexperienced players it could be
difficult to meet that task as they are usually occupied with playing on their own.
Even classical musicians capable of controlling the piano, for example, still have to
be briefed on the topic of jazz performances.

2.3.2 Improvisession - A Global Delayed Session Music

In a group of musicians, the performance of each participant needs to be synchro-
nized with the others; usually the players stick to the rhythm provided by the drums.
In remote sessions over computer networks this poses a problem: even as network
connections are becoming faster and more stable, transmissions sent through a net-
work still need some time to travel, experienced as latency at the receiving end. So
a general synchronisation of performances on different computers is almost impossi-
ble. Nagashima et al. [1992] developed a concept called called global delayed session

16 2. Related Work

music and created Improvisession, a system using the concept to allow remote im-
provisational music sessions over networks. A similar principle was described by
Welzl [1992].

Figure 2.9: The concept of global delayed session music in Improvisession [Na-
gashima et al., 1992].

Global delayed session music (GDSM) is based on looping over short song structures.
Every participant in the session is expected to be at a different position in this loop
at a specific moment in time. The performance of a participant is recorded over the
length of a loop and is then sent to all other participants. On receiving such a perfor-
mance, the system delays the playback of that particular performance until the end
of the loop is reached and another pass starts. The concept was developed during
the development of a series of Improvisession prototypes: Improvisession-I focused
on the broadcasting of performances; Improvisession-II integrated a first implemen-
tation of GDSM using the Max/MSP environment, also providing accompaniment;
New interfaces like touch sensors were integrated in the third prototype to cover
new ways to improvise apart from playing traditional interfaces like keyboards. A
final application prototype was built in co-operation with Yamaha; this prototype
added a visualisation of pending performances that have just been received. With
this depiction, players can see and interpret what will be played in the next loop
and may act accordingly (e.g

”
stopping their performance with a note close to the

first note in the upcoming part to establish an audible connection).

Although providing mechanisms to create improvisational performances over net-
works without the need for actual time synchronisation, GDSM and the various
Improvisession systems neglect some aspects important to the traditional approach
of such sessions: In jazz improvisation, the musicians communicate by soloing; a
soloist often uses phrases the last soloist has played and alters them to form an
“answer”. As GDSM delays solos, an answer to them is also delayed and is therefore
taken out of its temporal context.

2.4 Musical Assistance for Human Players
The abilities most people do not exhibit that are however necessary for improvisa-
tion are fully based on experience and training: controlling an instrument and the

2.4. Musical Assistance for Human Players 17

knowledge of musical theory are skills that cannot be learned overnight. Systems
that deal with human players providing musical input need to handle this problem
by carefully revoking the users’ control over the performance without depriving them
of the feeling to be in control.

2.4.1 WorldBeat - Musical Design Patterns

The Ars Electronica Center(AEC) in Linz, Austria is a modern museum demon-
strating on five floors how information technology will change various aspects of
everyday life in the years to come. The KnowledgeNet floor, the second of these five
floors, is dedicated to learning and working with computers. One of the exhibits
created for this floor is called WorldBeat developed by Borchers [1997]. It was on
permanent public display in the AEC from 1996 to 2000. The exhibit demonstrates
how computers can be used to facilitate learning in the field of music, and is there-
fore divided into different modules with certain features: directly playing different
instruments (new or classical), conducting a virtual orchestra, finding a song’s name
by humming its melody, or training one’s ability to recognize instruments from their
sounds.

Figure 2.10: A Visitor of the AEC in Linz using WorldBeat [Borchers, 1997].

The most interesting WorldBeat module for this thesis, however, is called Musical
Design Patterns. It allows users to improvise to generic blues songs without playing
“wrong” notes. The system provides a basic accompaniment (drums and bass) that
the player can adjust to his liking in tempo, groove, and the overall blues scheme
used. The user can choose among various traditional instruments, which are then
controlled like a xylophone with infrared batons that are used throughout the system
for operating and navigating the exhibit. The computer recognises hitting gestures,
and maps the horizontal position to a note within the current blues scale, thus
ensuring that the result will be in harmony with the accompaniment.

The feedback from visitors of the AEC showed that Musical Design Patterns was
the most popular module in WorldBeat; creating music without the need for prior
education or a long introduction seems to be a desirable experience for most people.
But this orientation towards the museum’s visitors resulted in restraints that are less
appropriate in the context of this work: the restriction to a generic blues song based
on one of three blues schemes (simple, enhanced, and complex) allows a pre-defined
mapping of notes to the position of the batons, which is too inflexible in case more

18 2. Related Work

specific songs should be included into the system in the future. The system also only
aims at users with no experience and knowledge in the field of music; the batons
present an interface feasible for everyone as they only provide rough control over
the notes. For experienced musicians, the input mode for the batons could be set
to include all notes. A keyboard could also be connected to the exhibit, an option
that was rarely used.

2.4.2 CiP - Coloring-in Piano

A major aspect in all kinds of music is expression; besides playing the correct se-
quence of notes, it is of grave importance to a performance to find the right dynamic,
volume, rhythm, etc. to reflect the mood of a piece. CiP, the Coloring-in Piano [Os-
hima et al., 2002a], was developed to offer pupils (and teachers unfamiliar with
a given piece) of classical music the possibility to concentrate on those aspects of
their performance. Its name seems to refer to the concept of “coloring-in” a picture
(i.e. filling out pre-defined areas with colour), since it also simplifies the task of
performing a given melody by pre-defining the sequence of notes.

Figure 2.11: The structure of Coloring-in Piano [Oshima et al., 2002a].

CiP consists of a YAMAHA Grand Piano with a pedal controller, an SGI workstation
for processing the input, and a tone generator. The piano delivers the input to the
workstation via MIDI, which itself is connected to the tone generator, again via
MIDI. Before playing a certain piece, its sequence of notes is fed into a database
connected to the CiP system. During the performance, each note the player plays
is replaced by the next note in this sequence, while the original velocities and pedal
messages are preserved; thus the player’s expressive intention remains unchanged.
The evaluations following the development of CiP compared the velocities and gaps
between notes used in a conventional performance to those in the conducted trial
performances; the test subjects performed a piece with only one finger, then again
with two fingers, and finally with all five fingers of a hand. The results showed that
the observed parameters in the trial performances drew closer to their conventional
equivalents as more fingers were used.

Although CiP frees the performer from finding the right notes and thus facilitating
expressive intentions, the system is limited to the note sequence of the given piece;

2.4. Musical Assistance for Human Players 19

therefore, any creative input by the user concerning the melody is lost. Also, the
rigid note sequence means that the player actually needs to know the exact melody
to pace it appropriately to match the harmony. This tasks is still very hard to
meet for an inexperienced musician. If a user wants to add her own ideas to the
performance, a more flexible system is needed.

2.4.3 RhyMe - A Musical Instrument
with Fixed Mapping of Note-Functions

In a scale, the notes contained have a harmonic function, named I to VII, I being the
scale’s root note as mentioned in its name (e.g., C in C dorian, F in F mixolydian).
Jazz musicians often remember phrases as sequences of these functions, so a phrase
can be easily fit to a scale. Aimed at Be-Bop style jazz improvisation, RhyMe focuses
on harmonic functions and changes the interface (a keyboard) according to each new
scale. The system was developed by Nishimoto et al. [1998] as part of MusiKalScope,
a system which tries to facilitate and visualise jazz performances.

Figure 2.12: The structure of RhyMe [Nishimoto et al., 1998].

A database belonging to RhyMe contains the chord sequences for several well-known
jazz pieces; if one is selected, an offline analysis calculates the scale for each chord
in the progression. This analysis is conducted with the help of a knowledge-base
developed according to the Berklee Theory (developed in the College for Music by
the same name [Jungbluth, 1981]). In a performance, the scale belonging to the
current chord is selected and the notes are mapped to the white keys of an octave
based on their functions: the root note (I) is mapped to the C-key, the II is mapped

20 2. Related Work

to the D-key, and so on; so a specific function can always be found on the same
key. To research the potentials and benefits of RhyMe, a series of experiments
was performed, which had the test subject play over the same piece both with and
without the support of RhyMe followed by an inquiry. The results clearly stated that
using RhyMe made the subjects feel that their performance was more appropriate
considering the style of music and its performance.

With the remapping of notes to the keys on the keyboard, RhyMe leaves the choice
of notes to the player, thus being open to creative input. Yet, this mapping not
only has benefits: on the one hand, all notes in a scale are handled equally, although
they do not necessarily have the same importance in a performance; some notes
in the scale can sound dissonant (so-called avoid notes), while using the current
chord notes guarantees a harmonic performance. On the other hand, the constantly
reoccurring remapping of the keys can cause confusion for experienced users as well
as novices to the instrument; pressing the same key at two different points in time
eventually leads to the sounding of two very different notes, while experienced users
rely on their knowledge of where to find a specific note if needed. Thus, a precise
control over what is played can only be achieved after training a certain song using
the system for some time.

2.4.4 ism - Improvisation Supporting System

The systems presented thus far in this section all focus on the pieces played, calcu-
lating the result of mappings in advance. As a system intended for non-improvising
players who can play an instrument, ism [Ishida et al., 2004] processes the input pro-
vided by the user instead of the structure of the piece to find the most appropriate
output.

As part of ism, a large database containing 208 melodies from standard jazz pieces
is used to evaluate the player’s choice of notes. Therefore, the probability of the
sequence of notes played before plus the current note is calculated by an N-gram
model; beside the note number, this model also takes into account the kind of note
(chord tone, etc.), the interval to the last note, and its position on a beat. If
the probability surpasses a certain threshold, which can be used as a parameter to
adjust the level of support provided by the system, the last note does not need to
be corrected. Otherwise, ism calculates the note maximising the probability when
added to the sequence of previous notes. To validate this system, a group of non-
improvising musicians was asked to perform an improvisation. This improvisation
was recorded and corrected by hand and the system. The two resulting melodies were
compared and the appropriateness of the system’s correction was calculated using the
number of corrected notes (by the system) and the number of all correction-requiring
notes (determined by hand). ism turned out to be very precise in correcting notes; it
left notes outside the current scale unchanged if those were appropriately deployed.

Using the threshold, ism can be easily adjusted for a wide variety of people. Yet, the
correction is only aimed at people who can play an instrument already, while novice
users are not supported appropriately. Mistakes like hitting two neighbouring keys
with one finger are not corrected by the system. There is also no function to enrich
the input by a novice user, for example, by mapping chords to single keys.

2.4. Musical Assistance for Human Players 21

Figure 2.13: The structure of ism [Ishida et al., 2004].

2.4.5 Electronic Keyboards with Musical Assistance

Beside being subject to research projects like the ones mentioned above, musical
assistance is a topic that has found its way into commercial products. Especially
electronic instrument can offer various features due to the rapid evolution of small
electronic circuits in the last few decades; most electronic keyboards today include
tiny computer systems that can be programmed to offer accompaniment, record
performances, etc. This part of the section examines two features aimed at training
and supporting inexperienced players: offering the possibility to trigger chords with
one finger, and the illumination of keys to visualise the course of a predetermined
melody. Both will be accompanied by a contemporary product providing the feature.

2.4.5.1 One-Key Chord Triggering

If pianists, keyboard players and organists would only play melodies with one hand,
their performance would sound thin after a while. To support such melodies and to
broaden their performance, musicians often accompany these melodies themselves
by playing suitable chord voicings with the other hand. In classical music these
voicings are usually annotated in the sheet music; in jazz improvisation, of course,
the player needs to decide himself on which voicing to use. Furthermore, he has to
know how to play the voicing, i.e., what keys to press. To abolish these needs, some
electronic keyboards, such as the Roland [2004] Juno D, offer the possibly to map
certain voicings to certain keys.

Using these voicings, even untrained players can generate broad performances with-
out knowing the underlying chords. Which chords are used depends on the context

22 2. Related Work

Figure 2.14: The Roland Juno D synthesizer [Roland, 2004].

to ensure that what is played fits the current harmonic context; the Juno D synthe-
sizer, for example, offers different chord maps that map different chords — rather
than different versions of one chord — to the keys. Naturally, these mappings limit
the choice of voicings suitable at any point of time in a performance, and they re-
quire the user to learn which chord is mapped to which key. For the work at hand,
this behaviour is rather inappropriate as it forces the user to adopt his playing to
the new functions of the keys. Still, a more context-bound version of this technique
could enable particularly novices to play more complex performances.

2.4.5.2 Melody-Based Key Illumination

Learning to play a specific song usually involves repeatedly playing the melody of
the song to memorise the sequence of notes and an appropriate expression for each
one (e.g., velocity, duration). To support this process, some electronic keyboards
supply a visual display of the notes: they illuminate the keys corresponding to the
notes in the correct sequence to inform the user what key to press next. One such is
the LK-90TV from Casio, Inc. [2004]: it offers a database with 100 songs to rehearse,
and can also use MIDI files to illuminate keys.

Figure 2.15: The Casio LK-90TV with illuminated keys.

On the one hand, this function facilitates the learning process: songs are mostly
recited by reading the notation, which itself is an ability that needs to be learned
and trained for quite some time. Accordingly, the illumination of the appropriate
keys shifts the focus from the score — an abstract representation of the song — to the
used interface, the keyboard, and the actual activities of the player, pressing keys.
On the other hand, enforcing a certain sequence of notes is not suitable in terms of
jazz improvisation: improvising rather involves developing one’s own melodic ideas

2.5. Discussion 23

than a precise re-enactment of pre-composed songs. While this technique still leaves
an extensive degree of freedom — the player can choose to use other keys than those
illuminated, in contrast to the proceeding of CiP — it offers no real aid in terms of
spontaneously creating melodies.

2.5 Discussion

The research and development of the systems presented in this chapter includes
some remarkable efforts made to create or support performances with the help of
computers; most of the systems were able to produce interesting results in the later
stages of their emergence, proving those assumptions correct that have initially led
to their development. Yet, they all specialised on certain aspects, each of them only
focusing on a few of the sub-tasks that make up a performance. For the work on
coJIVE, some of the approaches taken by these systems can be adopted to fit the
task of supporting users in jazz improvisation; but only an appropriate combina-
tion of several features can bring the system closer to allowing satisfying results for
preferably all potential users.

At first glance, the artificial improvisers seem to have a totally different perspective
and approach on the topic of jazz improvisation: They try to mimic the behaviour of
jazz musicians, while coJIVE focuses on assisting human players. Yet, the rules fol-
lowed by both approaches are quite similar as both try to implement skills necessary
for improvising. The guidelines compiled in musical theory must be followed when
creating or correcting a performance. Collaborating with other players implies an
additional set of directives to allow fluent and balanced performance. Accordingly,
the behaviour of those systems can act as examples for the mechanisms that need
to be developed to meet the goals of this work.

The systems generating an accompaniment mainly focus on the recreation of the be-
havioural patterns of a backing band; this accompaniment is a necessary element in
a jazz session. As the work at hand is more concerned with its users’ performances,
creating the accompaniment is secondary. However, the accompaniment systems
could be interesting for a future combination with a working version of coJIVE to
offer a more varied backing by the system. Therefore, an open and extendable ap-
proach as offered by JOINME could be of interest because it also aims at a complete
representation of musical knowledge.

While coJIVE focuses on allowing collocated collaborative sessions on one computer
— offering conditions similar to real jazz sessions —, the systems mainly concerned
with this sort of performance connect distributed players through computer net-
works. Clearly, this distribution of users would also be an obvious step to take for
the work at hand; VirJa already offers mechanisms to bring remote players closer
by a kind of video conferencing system, although Improvisession pointed out the
delay of a network to be a fatal problem. It handled this problem by introducing
a new paradigm for interaction in music, the global delayed session music, which
however diverges heavily from the common way of interaction in jazz session. So
to stick to this original style of interaction, coJIVE keeps with the concept of one
location. Still, similar rules of behaviour are the basis for all systems concerned with
co-operation in music. So a look at the implementation of these rules in the other
systems can be beneficial to this work.

24 2. Related Work

The systems presented in this chapter focusing on musical assistance offer the most
interesting solutions in the context of this work; they also focus on substituting
for a user’s missing knowledge and experience. Yet, not all of the solutions can be
adopted for the cause of improvising in jazz: CiP, for example, enforces the strict
re-enactment of a particular pre-recorded melody, which represents a contrast to the
activity of improvisation. RhyMe and ism have taken more appropriate approaches
by analysing the underlying song and redirecting or carefully correcting the user’s
input based on their implementation of musical knowledge. With these mechanisms,
the user’s play is steered towards more suitable choices without dictating him what
to choose. Additionally, WorldBeat has shown how this can be successfully deployed
using batons, offering a wide degree of freedom to all users. It could be adopted to fit
the users’ needs, and could also be used by two users (some users just used the batons
together, each one playing with one of them). Commercially available electronic
keyboards - like the Roland Juno D - have already pointed out ways to break the
traditional relation of one action resulting in one sound, which may be pursued
further to offer broader approaches to performing, especially for inexperienced users.

3. Usage Scenarios and Design

Initially, the scope of application for the system needed to be defined: to determine
what mechanisms and device the system would have to deploy, its tasks needed to
be clearly established first. Therefore, a set of goals that the system would have to
meet were formulated:

• Allow several users to perform in a simplified jazz session over jazz tunes, and
support them by providing computer-generated accompaniment.

• Provide each player with a suitable amount of support adapted to her skills
and needs.

• Provide a structure for the session, and ensure that this structure is preserved.

Since the course of events in a normal jazz session as well as its particularities
in contrast to other music performances yet need to be defined, this chapter will
present two scenarios. The first of these scenarios describes the activities in a real
jazz session, focusing on the aspects that coJIVE should account for. The second
scenario then describes how the use of the final system will reflect the same (or
similar) aspects.

Finally, a section describes the overall design approach taken for developing the
system based on the aspects observed in the scenarios. For that purpose, a design
principle for new musical instruments that was adopted in the design process of this
work is presented. Although coJIVE was planned to be created as a whole system
rather than a single instrument, the ideas presented in this principle can also be
applied to it, as the basic assumptions are very similar.

3.1 A Jazz Session Scenario

Jonathan, Thorsten, Marius and Philipp meet in the Jakobshof, a local pub in
Aachen, to take part in a jazz jam session. Marius has played drums for several
years, Thorsten is a long-time bass player, and both have been active in playing jazz
for many years. Jonathan has just finished his studies in jazz piano at a well known

26 3. Usage Scenarios and Design

jazz school in Essen, while Philipp is a self-educated trumpet player with more than
five years of practice.

As soon as it is their turn to perform, the four musicians agree upon a song to play.
They also decide who has the first solo, and that solos should not be longer than
two times the length of the song structure (the so-called chorus). Everyone takes
out the lead sheet of the song and places it clearly visible on a stand in front of him.
Marius counts eight beats aloud to mediate the rhythm to the rest of the group and
then starts the performance; he plays a simple swing rhythm as the chosen song is
a swing, while Thorsten contributes a walking bass playing one note on each beat.
Jonathan plays a rhythmic pattern using different voicings of the current chord noted
in the song structure on the lead sheet, and Philipp recites the song’s main melody
with his trumpet.

Once the end of the chorus is reached, Thorsten and Marius start over with their
performance, while Jonathan and Philipp commence to improvise. The first solo
belongs to Jonathan as decided in advance; he starts by playing a slight variation of
the first part of the main melody that Philipp had just played. He continues by using
different short melodic patterns that he had learnt in earlier sessions. In this solo,
Philipp only plays few notes to support Jonathan’s performance without disturbing
the soloist. After improvising for two choruses, Jonathan switches his role in the
session with Philipp. The trumpet player now improvises, picking up and slightly
changing some of the melodic patterns he heard in Jonathan’s solo. Shortly before
the end of the chorus, Philipp seems satisfied with his performance and gestures at
the others that he is finished.

Marius uses this opportunity to hold up four fingers thereby triggering a playing
mode called trading fours . Jonathan plays another solo that this time only lasts for
four bars, and then Marius performs a drum solo for the subsequent four bars. The
group repeats this alternation (with Jonathan and Philipp taking turns in improvis-
ing before Marius’ drum solos) of melodic improvisation and drum solo for the next
two choruses. During these shorter turns the players more frequently mimic or reuse
melodic material from their respective predecessor.

After that, the musicians repeat their initial behaviour; Marius and Thorsten go
back to playing a swing drum pattern or a walking bass respectively, while Philipp
again recites the song’s main melody on his trumpet. Again, Jonathan uses chord
voicings to create a harmonic base and support the melody. At the end of the chorus
the group brings the session to a termination and leaves the stage for someone else
to take over.

3.2 The coJIVE Scenario

Eric and Eugen happened to be in the Jakobshof when Marius, Thorsten, Jonathan
and Philipp performed together, which made them eager to try out jazz improvisa-
tion themselves. However, they both do not exhibit the necessary skills since they
have only little experience in performing music. So they enlist the help of coJIVE.

Before performing with the system, they have to agree upon who uses what instru-
ment. As Eric has some experience in playing the piano, he will play the keyboard
while Eugen obtains a set of infrared batons that are played in a xylophone-like

3.3. Design Approach 27

manner. They furthermore decide on a song to play, and select the appropriate file
to open from a file dialogue, which is then displayed in form of a chord progression
on the screen using a cursor to mark the current position in the song. One after the
other, they adjust settings corresponding to their skills to enable an estimation of
their abilities in the system.

Eric starts the session by pressing a start button. The system plays a bass-line,
a drum track, and the melody of the song. Eric and Eugen both carefully test
their instruments in accompanying the melody. As the end of the chord progression
approaches, the system notifies Eric that his first solo will start soon; it displays a
countdown of the beats remaining until his solo starts, and illuminates a spotlight
pointing at Eric to further indicate his new role as soloist. In his solo, Eric plays
carefully to create an initial melody. The system corrects some of the notes he
presses that it found to be inappropriate by triggering one of its neighbouring notes.
Also, it occasionally fills in additional notes with some of the notes played by Eric
to form a certain chord to be played. Both aspects are also displayed on the screen
on a virtual keyboard, so Eric can see his actions and the reaction of the system.

At the end of the next chorus, Eugen is notified about the fact that his solo will begin
soon (again with a countdown of the remaining beats and the illumination of another
spotlight). While Eric was improvising, Eugen’s performance occasionally grew more
muted when Eugen trigger many loud notes. With this mechanism, the system tries
to prevent Eugen from unintentionally disturbing Eric’s solo in accordance to the
behaviour an accompanying musician would exhibit in a real session to abstain from
drowning the improvisation with her own performance. With the roles now changing,
Eugen starts to play louder, and the system makes it harder for Eric to disturb
Eugen’s solo. Eugen’s performance is also displayed by the system. The system
only offers suitable notes to be triggered by the batons, rather than correcting his
input. Although he cannot specifically play certain notes, he still can determine the
general shape of the melody by moving the batons to the left or right.

In the sessions, the system switches the roles of Eric and Eugen yet a few times each
time leaving between one and three choruses for the soloist to create a melody in.
After each having played a few solos, they both decide to end the session by pressing
the stop button of the system.

3.3 Design Approach

These scenarios give an outline of what the final version of coJIVE should be able to
perform was given without limiting the choice of solutions for the different tasks. A
rough outline of the interaction with the system and its output is shown in figure 3.1.
This depiction is used throughout this work in different versions to display the stages
of the development. To find a suitable approach for the development of the system,
the research conducted for similar systems was considered in more detail.

The previous chapter has shown that by using computers, new instruments can be
created that entail new capabilities: with traditional instruments a musician has
to adapt to the instrument by rehearsing, which takes a lot of time. Computer-
based instruments, on the other hand, can be adjusted to the needs of the users.
Therefore, such systems focus on how their usage can be facilitated, rather than
requiring thorough experience for interesting sounding results.

28 3. Usage Scenarios and Design

0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 0 1

Lights

Accompaniment &

Altered Performances (R)

 F

e
e

d
b

a
c

k

L
e

a
d

 S
h

e
e

t

Accompaniment &

Altered Performances (L)

Off/On On/Off

0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 0 1

N
o
te

s
G

e
s
tu

re
s

coJIVE

Application

Lights

Speaker Speaker

Digital Note Stands

(Displays)

Figure 3.1: coJIVE ’s main interaction concept.

Nishimoto et al. [2003] describe a set of requirements that should be satisfied when
designing such new instruments:

• Low initial barrier. Easy entrance to performing with the instrument must
be assured. Novices should almost immediately be able to create satisfying
results to keep them interested in using the instrument further. In the case of
musical performances, such results would entail harmonic sounding melodies
superior to what the user could create with traditional instruments.

• Room for improvement. The instrument should hold the possibility for the
user to extend his skills in using it by rehearsing. This improvement should,
of course, be comprehensible for the user so that the prospect of continuing
training will seem beneficial.

• No limit inferior to traditional instruments. Finally, the limitations to per-
formances using the instrument should not be more restrictive than those for
conventional instruments. This can be achieved by falling back to the control
principles of those musical instruments.

They claim that the key to satisfy these requirements is customisability of the in-
strument. Therefore, a design principle for this kind of new instrument aimed at
facilitating musical expression was developed. This principle is based on two aspects
that should be taken into account when creating such instruments:

1. Reduction of unnecessary degrees of freedom. Limiting expressive parameters
(e.g., pitch, velocity) to those values the system computed as appropriate.

3.3. Design Approach 29

2. Specialising the interface for songs to be played. Customising the instrument
based on the song that is currently played.

The systems presented in the related works chapter concerned with substituting for
the user’s lack of abilities all took approaches that were based on these aspects: they
either limit the number of available choices (i.e., notes), or take over control to a
certain degree by redirecting the input.

In addition to song-based customisation, users can clearly benefit from a system’s
ability to adjust to their specific level of expertise: systems focusing on novices
may be too limiting for musicians with a classical education, while the versatility of
traditional instruments is too much for novices to cope with. So a main criterion for
evaluating the quality of a new instrument is its capability to adapt to the user’s skills
and satisfy her needs in terms of musical performance. This should, of course, not
only lead to a restriction of the player’s scope, as suggested by Nishimoto’s design
principle, but also enable a player to perform in more advanced ways beyond his
usual way of playing. One way to achieve this is to diverge from the traditional one-
to-one relation in playing instruments: triggering a note on traditional instruments
(by pressing a key, plucking a string, etc.) will always lead to the sounding of that
particular note alone. Using one-to-many relations, an instrument can offer an easy
approach to complex sound structures (e.g., chords, short melodies) resulting in more
complex performances even for novice players.

As a starting point for the development of coJIVE, the systems presented in the
chapter on related work and the research conducted during their development were
examined. The research revealed several directions to take when trying to facilitate
musical performances, presenting solutions to problems connected to these direc-
tions. For the work at hand, two steps had to be taken:

1. Finding solutions for the directions taking into account and benefiting from
the capabilities of the back-end.

2. Modifying and extending given solutions for their application in jazz improvi-
sation and inter-working among each other.

Beyond that, new directions not covered by the related systems due to different
perceptions on the topic of jazz improvisation or diverging goals had to be identified
and accounted for with special solutions.

30 3. Usage Scenarios and Design

4. A First Prototype

Based on the design principle described in the last chapter, another close look at
the related systems was taken to derive a set of mechanisms; coJIVE would need
several features to meet its task of facilitating jazz improvisation by substituting for
a player’s missing abilities and experience. Therefore, the system also needed to be
adjustable to the users’ levels of expertise.

To enable users to perform in a jazz session, the system also had to provide an
accompaniment: for the players to choose the right timing for the notes and verify
their consonance in the context of the song, generated drum- and bass-parts should
offer a rhythmic and harmonic foundation. Furthermore, a clear structure for the
session needed to be defined and assured. In normal jazz sessions, the musicians have
several modes in which a performance can be structured; the most basic of these
modes is the alternation of solos, in which they take turns in soloing. As novices
usually do not know about such structures in performances, using this mode was the
obvious choice because the emerging structures can be easily comprehended.

To attract a wide spectrum of users, two different interfaces were chosen: the MIDI
keyboard uses the input method of traditional pianos (keys) and thus offers precise
control over what is played; MIDI-wise it sends NoteOn and NoteOff messages
including a value representing the note to be played and the velocity, which indicates
how hard the key was pressed and how loud the note needs to be played. The
system’s task concerning this interface was to offer the possibility to bypass the
need for precise control (and thus training and experience). The second interface,
a set of infrared batons that recognise gestures, provides more fuzzy control; it is
deployed using a xylophone-based metaphor by recognising hitting-gestures in mid-
air and triggering corresponding notes. This procedure prevents precise control as
no targets to hit are present. Thus, a player has no real orientation for placing his
gestures besides moving the gestures left or right to lower or raise the pitch.

To allow evaluation and further enhancements of these solutions, coJIVE was created
using a development process based on exploratory prototyping: several prototypes
were built to evaluate ideas and enhanced iteratively in DIA cycles. These develop-
ment cycles are conducted repeatedly and consist of three phases (each contributing
its first letter to the name DIA): the design phase, in which the functions of a system

32 4. A First Prototype

Chord symbol Scale

B!maj7 B!maj

Galt A!mel.min

Cmin7 B!maj

Falt G!mel.min

Table 4.1: Scales for the chord progression. The analysis of the sequence of chords
delivers one scale per chord.

are specified, the implementation phase in which these functions are implemented,
and finally the analysis phase that is used to evaluate the functions and their imple-
mentation. For the work on coJIVE, the analysis was conducted using user studies
to assure a user-centred design of the system.

The first DIA cycle was merely concerned with musical assistance; the system sup-
port in this area needed to be implemented before confronting the users with the
concept of jazz sessions. Accordingly, the collaborative aspect was neglected by
the first prototype and only the keyboard was used: a second instrument was not
necessary at the time, and the keyboard, being the more precise of the two inter-
faces, implied a more thorough support by the system. To obtain results fast, it
was decided to deploy rapid prototyping by using Max/MSP [Cycling ’74, 2004], an
environment for graphical composition of applications.

4.1 Design

To allow a fast implementation, the decision was made to use static methods and
mechanisms based on sets of predetermined data. For this purpose, a generic song
with a short sequence of chords (B!maj7–Galt–Cmin7–F alt), a metre of 4

4 (meaning
that each bar in the song would consist of four quarter notes), a fixed bass-line and a
simple drum pattern were created. The scales and voicings belonging to the chords
in the sequence were calculated by hand; the resulting scales are shown in table 4.1.
The method used to derive the scales is also described by Klein [2005].

With the related systems in mind, a first set of features for musical assistance was
developed. These features were designed to be adjustable to the level of the user
playing with the system; some of them are more appropriate to people with a low
level of expertise than to those with a high level or vice versa. Consequently, a set
of user levels was defined that was meant to incorporate a wide spectrum of people.
Finally, these levels were each assigned a particular subset of the features.

Furthermore, some decisions were reached concerning the visualisation of informa-
tion for the user; the system needed to display information on the chords assuming
that experienced musicians would be able to interpret them and act accordingly. The
user should also get some feedback on his performance; a clear distinction between
the notes the user played and the notes resulting from the system’s processing of
the input should be possible, allowing the player to improve while using the system.
Figure 4.1 depicts, which parts of the initial concept were implemented in the first
prototype.

4.1. Design 33

Accompaniment &

Altered Performances (R)

 F

e
e

d
b

a
c

k

C
u

rr
e

n
t

C
h

o
rd

Accompaniment &

Altered Performances (L)

0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1

0 1 0 1 0 0 1 0 1

N
o
te

s

coJIVE

Application

Speaker Speaker

Digital Note Stand

(Display)

Figure 4.1: The interaction concept of the first prototype.

4.1.1 Features

To create effective ways to even out missing musical education and allow complex
performances in groups, the skills necessary for performing in a jazz session need to
be identified. In the introductory chapter the three main skills were already named:

1. Precise command of the instrument

2. Thorough knowledge in musical theory

3. Experience in collaborative improvisations

To account for the lack of these skills, some of the directions pointed out by the
research on related systems were followed. The given solutions in these systems
were evaluated for their use in coJIVE and adopted or replaced by more appropriate
solutions in the context of jazz improvisation in the attempt to meet Nishimoto’s
first requirement (low initial barrier) for new musical instruments. This section will
present the solutions and their emergence.

4.1.1.1 Confine to Scale

An aspect keeping most novices from playing freely is harmony. Without thorough
training it is almost impossible to know what notes fit the harmonic context at the
current position in the song. By reducing the set of all possible notes (and thus
the freedom of the player) to the subset containing the notes that are most likely to
sound harmonic, the probability for gross errors is narrowed down accordingly. Notes
outside the current scale, although not always dissonant to what the accompaniment

34 4. A First Prototype

is playing, are more likely to be perceived as being unfit. Nishimoto et al. [1998] have
already proven this to be an appropriate starting point for song-based reduction of
freedom: their RhyME system calculated the current scale, and mapped the scale
notes to the white keys of an octave on the keyboard, starting with the root note on
the C key.

Oct. C C" D D" E F F" G G" A A" B
(D!) (E!) (G!) (A!) (B!)

B!maj C C D E! E! F F G G A A B!
A!mel.min B D! D! E! E! F G G A! A! B! B
G!mel.min B D! D! E! E! F G! G! A! A A B

Table 4.2: Mapping of the notes in each of the scales depicted in table 4.1. Notes
outside of the scale are mapped to appropriate scale notes to prevent dissonant
performances.

For coJIVE, a similar method was used, while keeping notes at their original place
on the claviature where possible. A key was only re-mapped when its original note
was outside the current scale, and in that case the key was mapped to a direct
neighbour of its original note. Furthermore, the musical context of the notes was
taken into account for the re-mapping (i.e., if a scale contains C" but no C, the C
key was mapped to C"). So the user was confined to the current scale. Table 4.2
shows the mappings used in the different scales.

4.1.1.2 Prohibit Avoid Notes

Grachten [2001] describes how the artificial improviser JIG decides on what notes will
fit at a certain moment in time. Beside the outside notes, it takes a closer look at the
notes inside a scale: just as notes outside a scale do not always sound disharmonious
in the context of that scale, not all the notes in the scale necessarily sound good.
This is why these notes are usually avoided by jazz musicians; accordingly they are
called avoid notes .

Novices, of course, do not know which notes to avoid and should thus be supported
correspondingly by the system. So this feature was designed to re-map the keys
originally pointing towards avoid notes, just as the previously described feature re-
maps outside notes. In the scale progression derived from the chords used in the
prototype, only the scale B!maj did exhibit avoid notes; as the phenomenon of avoid
notes is additionally connected to the chord, that scale, which was used twice in the
chord progression (for the chords B!maj and C!min7), had different avoid notes in
both cases. The melodic minor scales used for the other two chords did not contain
any avoid notes. Table 4.3 shows an overview of the avoid notes and the re-mappings.

4.1.1.3 Help Triggering Compound Structures

Previous systems (such as CiP [Oshima et al., 2002a] or ism [Ishida et al., 2004])
tried to correct or divert the users’ input towards a more appropriate result with
traditional one-to-one relations. The number of notes coming from the system usu-
ally could not exceed the number played by the user, leaving the performance at the

4.1. Design 35

Chord Scale Avoid Note Mapped to

B!maj7 B!maj D" (E!) D
E F

Cmin7 B!maj A A" (B!)

Table 4.3: Re-mapping of avoid notes. The avoid notes are identified based on the
underlying chord and scale and are mapped to other scale notes.

abundance the user can provide. Accordingly, the result could not remotely be com-
pared to what experienced musicians are able to play, as they in general do not only
play melodies made up of single notes but use chords to provide their performances
with a certain richness.

An inexperienced performer, of course, cannot be expected to know the chords in a
song, and it is even less likely for her to play them. To enable this kind of user to
achieve a certain complexity within a performance, a mechanism for easy access to
compound sound structures such as chords needed to be provided. For that purpose
the common one-to-one relation needed to be replaced by a one-to-many relation.
Again the decision was made to re-map certain keys; every key below C5 (middle
C) was appointed a specific voicing of the current chord, which is build on the note
assigned to the key by the previous two features (with that note being the lowest
note in the voicing). That way, the re-mapping followed the order of the keys with all
notes above the key pressed, while a mapping to a voicing with the note assigned to
that key in the middle would not necessarily reflect the movement on the claviature
(e.g., the voicing for the C key sounds higher than the one mapped on the D key
because of the notes’ arrangement within the voicing). With a clear distinction as to
where this feature applied (all keys up to C5), the user was able to make a distinct
choice where and when to use it. Table 4.4 depicts the mapping of voicings of the
chords, each made up of four notes, to each scale note.

4.1.1.4 Offer Automatic Structuring

The structure of a collaborative jazz performance is usually determined before the
session, but this structure is sometimes changed spontaneously during the perfor-
mance. This is based on a thorough comprehension of rules that are used to define
this structure and how to communicate changes (e.g., with certain gestures). With-
out knowledge of these rules users are very unlikely to be responsive to each other,
especially with a system like coJIVE that focuses on providing them with an en-
tertaining and interesting experience. Walker [1997] states that “Jazz performances
are governed by a well-known structure. The computer should model this structure
and track progress through it during the performance” as a rule for his artificial im-
proviser ImprovisationBuilder. Accordingly, the feature of automatic structuring
was designed to enable the system to define and control the structure of the perfor-
mance. As the system generated an accompanying performance for the users, such
a mechanism was needed all the more.

As the Max/MSP prototype was not concerned with collaboration, the deployment
of this feature was postponed to the next prototype.

36 4. A First Prototype

Chord Scale Note Mapped voicing

B!maj7 B!maj C C–D–F–A
D D–F–A–C’
F F–A–C’–D’
G G–C’–D’–F’
A A–C’–D’–F’

A" (B!) A" (B!)–D’–F’–A’

Galt A!mel.min C" (D!) C" (D!)–F–B–D" (E!)’
D" (E!) D" (E!)–F–A" (B!) -B

F F–G" (A!)–B–D" (E!)’
G G–B–D" (E!)’–F’

G" (A!) G" (A!)–B–D" (E!)’–F’
A" (B!) A" (B!)–B–D" (E!)’–F’

B B–D" (E!)’–F’–G" (A!)’

Cmin7 B!maj C C–D" (E!)–G–A" (B!)

D D–D" (E!)–G–A" (B!)

D" (E!) D" (E!)–G–A" (B!)–D’
F F–G–A" (B!)–D" (E!)’
G G–A" (B!)–D’–D" (E!)’

A" (B!) A" (B!)–D’–D" (E!)’–G’

Falt G!mel.min C" (D!) C" (D!)–D" (E!) -F" (G!)–G
D" (E!) D" (E!)–F" (G!)–A–C" (D!)’

F F–A–C" (D!)’–D" (E!)’
F" (G!) F" (G!)–A–C" (D!)’–D" (E!)’
G" (A!) G" (A!)–A–C" (D!)’–D" (E!)’

A A–C" (D!)’–D" (E!)’–F’
B B–D" (E!)’–G" (A!)’–A’

Table 4.4: Mapping of chord voicings. The one-to-one relation of traditional in-
struments is breached by triggering four notes that make up an appropriate chord
voicing for one note triggered by the user.

4.1.1.5 Restrict Expressive Parameters

Expression in musical performances has already been the subject to some research.
Oshima et al. [2002a] shifted the focus of the user from what is played to how it is
played. A study on expressiveness in piano improvisations presented by Baraldi and
Roda [2001], in which several subjects were asked to express musical intentions (e.g.,
resolute, obscure, sweet, or simple) with one note and varying freedom of expression
(choice of the note, velocity and duration were ruled out one after another), showed
relations between the expressive intentions and expressive parameters.

In the context of collaboration this can be used to support the improviser’s intention
by carefully diminishing the other players’ input. An appropriate parameter for this
purpose is velocity, which affects the volume of the notes played. When accompa-
nying a soloist, a player should make sensitive use of this parameter, as loud notes
at the wrong time can disturb the solo and interfere with the soloist’s expressive
intention (e.g., if the improviser tries to create a soft melody).

4.1. Design 37

Figure 4.2: Bent velocity curve for accompanying players. This new mapping of
input velocity to actual velocity keeps the accompanying player from“drowning” the
solo with loud notes.

The mechanism to ensure this behaviour by systematically intervening with the
accompanying users’ playing was designed to bend the velocity curve of their instru-
ment (Figure 4.2); no velocity value was to be prohibited from being used, but the
higher values should become less likely to be reached. Although this feature was
implemented, it was not used at that stage, similarly to the automatic structuring,
because of the focus on musical support.

4.1.1.6 Discarded Ideas

Besides the features mentioned above, some other ideas came up during the devel-
opment process. As they were not applicable in the field of jazz improvisation, they
were not used for the system; the reasons for their dismissal will be discussed in this
section.

The approach to facilitate access to compound structures is not only applicable
to the harmonic dimension (multiple notes played at the same point in time, i.e.,
chords), but also to the dimension of time: in accordance with the mental model
of motif-playing presented by Grachten [2001], coJIVE could offer playing short
melodies at the push of a key to equip players with a set of standard motifs. This
idea however was neglected as it contradicted with the concept of improvisation the
system follows: as the motifs used by jazz musicians are taken from their personal
repertoire developed by listening to, analysing, and playing pre-composed melodies,
using them can clearly be perceived to be a creative contribution; a predefined
set of such motifs, however, would reduce the creative influence a player has when
triggering one of these motifs.

CIP [Oshima et al., 2002a] restricts a player to play the sequence of notes stored
in a database; in improvisation, of course, this would be far too limiting. A varia-
tion in which the player is directed towards the previous solo by making the next
note from the previous solo more probable could overcome this limitation. This
would, of course, imply dynamic, probability based re-mapping of notes, while in
the first prototype static re-mappings were used. Furthermore, the calculation of
note probabilities is a task performed by the back-end framework [Klein, 2005].

38 4. A First Prototype

Another interesting feature supplied by current composition tools is the quantisation
of recorded notes: if triggered, it moves the notes to more appropriate temporal
positions (e.g., on a bar or a beat) to straighten out inaccuracies generated by the
player while recording. A quantisation of the performance while a user plays could
furnish his performance with more accuracy. However, this feature would entail
some problems: correcting a note’s temporal position can, of course, only happen
by delaying it since otherwise the systems would need to foresee the occurrence of
the note, which is impossible. But delaying a note would resemble latency that
most media-based systems try to avoid it often irritates the user; with recognisable
latency, she cannot connect her actions to the system’s output. Accordingly, the
idea of using quantisation on notes was deemed inappropriate.

4.1.2 User Levels

With the features at hand, one question needed to be answered: which of the features
does one type of user need? The user type, of course, refers to the musical abilities
of the person using the system. For the assignment of the features, a system of
four skill levels was created roughly categorising the group of future users, thereby
meeting the second of Nishimoto’s requirements: going from the lower levels to the
upper ones would offer enough room for the users to improve. This section will
explain and discuss the system of user levels.

4.1.2.1 Professional

Musicians used to performing in jazz sessions are summarised in this category. Pro-
fessionals usually have several years of experience performing and improvising in
groups; they are able to interpret chord symbols, calculate scales and communicate
with other musicians during sessions. No real support is needed for these musicians;
any interference by the system would only limit and disturb them.

So, none of the features were applied on the professional level to enable this type
of user to play just as she is used to; this way the last of Nishimoto’s [Nishimoto
et al., 2003] requirements was satisfied: the system would have no limit beyond that
of traditional instruments.

4.1.2.2 Expert

The group of experts comprises musicians with a classic musical education who may
have had some brief contact with jazz. These musicians have a good command of
their instrument and have years of experience in performing classical pieces. Yet,
they are not really used to playing freely without a score to base the performance
on.

As classical pieces often stay in one key and potential key changes are noted on the
score sheet, experts are not accustomed to determining the scales to use themselves;
actually, scales are rarely used in these pieces. So for experts assistance in calculating
scales for the given chord structure is necessary for them to diverge from their usual
style of playing (by reading notes from the score).

Accordingly, the only feature applied on this user level is confine to scale so experts
would not have to think about the key in which to play and could focus more on the
spontaneous creation of melodies.

4.1. Design 39

4.1.2.3 Advanced

Musicians in the middle of a classical education are called advanced in the context
of this categorisation. They are still in the process of developing precise command
of their instrument and are still lacking knowledge in terms of musical theory. As
they are still rehearsing playing sheet music, improvisation is a topic they have not
yet dealt with.

Besides the need for a determination of what scales to use, this group of people should
also be assisted in terms of controlling the instrument. Their not yet accurate way of
handling the instrument should be accounted for, as well as their lack of experience
in handling complex structures. Only if these handicaps can be overcome they can
start to improvise.

Confine to scale was applied here to relieve an advanced player of the decision what
scale to use, which would be complicated by his missing knowledge in music and jazz
theory. This train of thought also led to the application of prohibit avoid notes. To
provide these players with the means to create more complex performances, which
for them is usually limited by their lack of experience, help triggering compound
structures was applied also.

4.1.2.4 Novice

Novices are people with hardly any or no experience in music besides listening to it.
They have never really played an instrument, no knowledge in the field of musical
theory and thus cannot read notes or interpret chord symbols. To free them from
the fear of failure, they have to be provided with a lot of support. And yet, this
group of players is the most likely to start playing freely, if their missing skills can
somehow be compensated, as they have no acquired way of performing music to fall
back on.

As the features at that point did not allow further differentiation (besides applying
and not applying them), this user level exhibited the same premises as the advanced
level. Therefore, it was also provided with the features confine to scale, prohibit
avoid notes and help triggering compound structures. The decision was made to
keep both user levels despite their similarity to keep a consistent classification for
the upcoming prototypes.

4.1.3 Further Design Decisions

To offer an overview to the user containing all relevant pieces of information and
conveying the principles that the system is built upon, some more decisions were
made.

The currently valid chord symbol should always be displayed: experienced musicians
can therefore decide on a scale by themselves and perform like being in a common
jazz session. Furthermore, the user’s input and the corresponding output by the
system should be visually comprehensible for the user to understand the system’s
corrections and enhancements to her performance; to achieve this comprehensibility
and to stick to the keyboard as the primary interface, both input and output were
to be displayed on virtual keyboards. In future version of the system, this could be
also implemented on the real keyboard.

40 4. A First Prototype

To clarify the differences between the four user levels and the corresponding amounts
of support, the levels should be visually separated; each level needed to be appointed
its own space on the screen containing representations of the features applied in that
level. By this visualisation, the user was supposed to get an idea of the degree of sup-
port the system was providing and its differences in comparison to the neighbouring
levels.

Finally, the accompaniment the system was supposed to provide should be a simple
but steady foundation for the session. Therefore, it was decided to use a swing
pattern for the drum track, as swing is the style most people can directly relate
to jazz. No variations should be made during playback to not disturb or irritate
inexperienced users. The bass should also use a simple walking bass pattern. This
pattern plays a note on each beat “walking” up and down the pitches. That way,
the bass would stress the beat without offering a rhythmic pattern for the players
to follow.

4.2 Implementation

With Max/MSP, rapid prototyping was enabled by avoiding the need for developing
graphical user interfaces and MIDI connections to access the devices; Max/MSP
offers a variety of objects and mechanisms for these purposes. That way, the analysis
could be conducted much earlier leaving more time for the ongoing work, which then
could be conducted based on the results.

Furthermore, some hardware was necessary for providing all the aspired features.
This section will first introduce all the hard- and software used for the realisation of
the design to point out the difficulties and possibilities implied by these aspects. Af-
ter that, the implementation of the different system elements is described to mediate
the inner workings of the prototype, which is depicted in Figure 4.3.

4.2.1 Environment

This section presents a brief overview of the environment, in which the first co-
JIVE prototype was developed and deployed. Beside the hardware used for running
and controlling the prototype, a short description of the Max/MSP environment is
provided.

4.2.1.1 Hardware

PowerMac Workstations
The Apple workstations on which the system was developed were each equipped
with two G5 PowerPC processors with 2 Ghz and 512 MB of RAM. For displaying,
23” Apple Cinema Displays with a resolution of 1900*1200 pixels were used. The
workstations furthermore offered several USB and FireWire ports, Bluetooth and
802.11g connectivity.

M-Audio Radium 49 MIDI Keyboard
This keyboard comes with 49 non-weighted keys with velocity, a pitch bend wheel,
eight rotary faders and eight sliders, the last two programmable to modulate arbi-
trary MIDI parameters. The device can be connected to a computer via a USB port
or integrated into a MIDI network via a MIDI port. Furthermore, the keyboard is
equipped with a port for a power supply unit and a compartment for batteries.

4.2. Implementation 41

Figure 4.3: The Max/MSP prototype.

4.2.1.2 Max/MSP

Max/MSP is a graphical environment especially aimed at multimedia projects; ini-
tially, it was developed for MIDI-based applications, but as computers became faster
and more reliable, it was extended to incorporate features for processing digital au-
dio stream and images. The environment offers fast access to MIDI-devices and
graphical user interfaces without the need to actually write your own code, thereby
supporting creative layouts.

A patch field metaphor based on connectable objects is used to create applications:
one can choose from a large set of such objects, each created for a specific purpose;
these objects have input and output ports (called inlets and outlets) which can be
connected with each other via patch chords. That way, a signal (e.g., a MIDI
message) can be routed and processed in numerous ways. Besides these functional
objects there are message objects, which can contain several sorts of messages (text,
numbers, etc.) to be triggered, for example, on specific events or conditions.

Groups of connected objects are assembled in patches, which can be further struc-
tured by using sub-patches with individual input and output ports; the sub-patches
themselves can contain further sub-patches, allowing the creation of complex hier-
archies. The implementation section in this chapter will offer more insights into this
method of building applications.

4.2.2 System Clock

For a common timeline to base playback and performance on, a system clock gener-
ating time signals was needed. This was implemented using a metro object provided

42 4. A First Prototype

by Max/MSP; a metronome generates clock ticks in a specific frequency (defined by
the time of delay between two ticks in milliseconds), which can than be counted and
thereby interpreted to be specific points in time.

The resolution of time was set to a 16th note, meaning the metronome would generate
16 ticks per bar. With a tempo of 100 beats per minute (bpm), the corresponding
delay time to be used as the parameter for the metronome object is 150 milliseconds,
calculated as follows:

100 =
60000 msecs per minute

4 ∗ x msecs per beat
⇒ x = 150

As a beat occurs on each quarter note, 60,000 milliseconds (one minute) is divided
by the delay time of a quarter note (four times the delay time of a 16th note) to
receive the beats per minute. With a fixed value for the bpm, the equation can be
transformed to display the result for the delay time of a 16th note (x).

Figure 4.4: Metronome object acting as System Clock.

As the metronome ticks 16 times per bar, a counter object is used to indicate the
beginning of a new bar. It counts every 16th note, which represents the start of a
new bar, each time triggering the sending of a message propagating a chord change;
this message contains the number of the new chord (which is kept between 0 and 3
with the help of a modulo object to assure a loop over the four predefined chords,
each lasting a bar) and is sent using a send object (abbreviation: “s”) and can then
be received throughout the system by using receive objects (abbreviation: “r”).

The metronome (and thus the clock) is started and stopped by button objects; if
clicked, these objects send out a bang, a generic signal that can be used to trigger
events (e.g., start a metronome object) or the sending of a message (like the message
’stop’ used to stop the ticking of the metronome). The stop button is also connected
to a certain input of the counter, which if banged resets its count to 0.

4.2. Implementation 43

Furthermore, on each chord change an AllNotesOff message is sent to avoid disso-
nance in the performance: as some of the features use re-mapping of keys, a key that
is held down during a chord change may be re-mapped to another note. If this key
is released, a NoteOff message for the new note mapped to that key is sent. The old
note that had initially been triggered by that key however still sounds on, even if
it does not belong to the new scale. The AllNotesOff message on changing a chord
bypasses this effect.

4.2.3 Accompaniment

The accompaniment was implemented in sub-patches: both bass and drum patterns
were encapsulated in their own patches, which are fed with the clock ticks and the
stop signal through their input ports, to separate the accompaniment from the rest
of the system’s functions. The creation and triggering of MIDI notes is described in
the next section.

4.2.3.1 Bass

The pattern used to create the walking bass was derived from the previously deter-
mined scales to emulate the behaviour of a jazz bass player: each chord change is
accompanied by playing the root note of the new chord; from there the bass walks
up or down the range of pitches, eventually changing its direction to draw near the
next chord’s root note before the next chord change occurs.

As the walking bass only plays on quarter notes, a counter object is used to count
every 4th tick. The derived count of quarter notes, representing the position in the
four bars, is kept between 0 and 15 by a modulo object (as four bars are made up of
16 quarter notes in the 4

4 metre). A select object then triggers a message containing
the note value according to the quarter note count. If a stop signal is received, the
counter is set back to 0.

4.2.3.2 Drums

The drum patch was created to emulate a drummer playing a swing pattern: only
open and closed hi-hat, as well as a rim shot sound were used avoiding the dominant
sounds of a snare or kick drum.

Again, a counter object was applied to count the quarter notes, whose count was
held between 0 and 3 by a modulo object to achieve a short loop. A select object
interpreted the quarter notes count and fired messages accordingly: on the first
quarter note (0), an open hi-hat (note value 46) is triggered; on the third quarter
note, a closed hi-hat (note value 44) and a rim shot (31) are triggered. To achieve
a swing effect, 75 milliseconds after the fourth quarter notes (which equals the time
of an eighth note at 100 beats per minute) another closed hi-hat is played; a delay
object is used to achieve this. Similar to the bass patch, the stop signal is used to
reset the counter

4.2.4 MIDI Connections

As already mentioned above, Max/MSP was created for the use with MIDI-based
interfaces and devices; it offers several objects to receive, create and send MIDI

44 4. A First Prototype

Figure 4.5: The bass patch.

messages. These objects usually need parameters to specify a port (given by a
character) and channel (a number between 1 and 16) to send to or receive from.

notein objects receive NoteOn and NoteOff messages and then send the note value,
velocity and channel on which the signal was received through their three output
ports. The prototype deploys a notein object to receive the user’s input through a
specified port. Its counterpart in Max/MSP is accordingly called noteout: these ob-
jects send NoteOn an NoteOff messages on a specified port and channel. They have
three input ports for note value, velocity and channel. The first coJIVE prototype
deploys several of these objects: the notes produced based on the player’s input, as
well as the bass and drum notes are all sent through separate noteouts.

If the duration of a note needs to be set to a fixed value or no NoteOff message
can be expected, a makenote object can be used: it has input ports for note value,
velocity and duration; the last two values can also be set as static parameters in
the object. If a makenote object receives a note value, it will send note value and
velocity through its output ports followed by the note value and a velocity value of
0 after the given duration to assure the previously triggered note is turned off again.
A makenote object is used in the drum patch to delimit the duration of the closed
hi-hat.

4.2. Implementation 45

Figure 4.6: The drum patch.

4.2.5 Visualisation

To visualise information on song and performance as well as segmentation of func-
tionality in the system mostly simple means were used: special objects could be
used, as well as the deployment of sub-patches (for bass and drum) and purpose-
based arrangement of elements in the main patch. The user levels, for example, were
represented by differently coloured fields to achieve an obvious separation; their im-
plementation is discussed further in the next section.

4.2.5.1 Chord Symbols

To offer the user insights into the song’s structure, the current chord needed to be
displayed. For this purpose, simple textual representations of the chord symbols
were deployed, which could easily be changed when a chord change occurred.

A select object was fed with the chord change value mentioned in section 4.2.2. In
accordance to the new chord’s number, a message object containing ’set’ and the new
chord symbol was triggered; with this message, the contents of a further message
object can be set to the new chord symbol. This last message object was enlarged
so it could be used as a display for chords. Figure 4.7 shows this arrangement.

4.2.5.2 Feedback

The feedback visualisation was chosen to offer consistent look and feel along with
the instrument: the player’s input as well as the output derived from the input by
revision through the system, were displayed using keyboard objects; these objects
resemble keyboards and can highlight the keys. Output and input ports for note

46 4. A First Prototype

Figure 4.7: Visualising the chord sequence.

Figure 4.8: Visualising player input(upper) and the system’s response(lower).

value and velocity allow displaying of notes as well as triggering notes by clicking
keys on the object.

Figure 4.8 shows feedback for both input and output of a C"(D!) note: the note is
processed by the confine to scale (re-mapping to C) and help triggering compound
structures features (extension of a single note to a chord voicing). With this kind
of feedback, the user was supposed to comprehend the system’s mode of operation
and reconstruct possible corrections.

4.2.6 User Levels

Selection of user levels was enabled by messages containing the numbers of the
levels. These numbers were then fed to two gate objects, which would open one
of four output ports for the messages fed to another input on the gate; one of the
gates received the note value, the other one received the velocity. With these gates,
a selective routing of the input data to the selected user level.

As the coloured fields only were used to visually separate the user levels; the function
of the user levels in the prototype were to assemble and connect the sub-patches
containing the corresponding features. The professional level was not equipped with

4.2. Implementation 47

Figure 4.9: Assembly of features for the different user levels.

any of the features, so here the input data was only handed over to the keyboard
visualising the output and the noteout object triggering the MIDI notes, without
doing any processing. Expert users should be provided with the confine to scale
feature; this feature only processes the note value, so this value had to routed through
the sub-patch of confine to scale while the velocity could be directly handed to
feedback and output. Figure 4.9 depicts these two user levels in the prototype.

?? shows the implementation for the advanced and novice levels; as mentioned ear-
lier, the combination of features is the same in both levels due to the features’ static
nature. Here too, the velocity was never processed. The note value however was first
routed through the sub-patch containing the functionality of the prohibit avoid note
feature, followed by a routing through an if-then-else object, which decided whether
the note was lower than C5. This distinction was primarily necessary for the help
triggering compound structures feature but was done even before the confine to scale
feature to make sure every note below C5 (which could in some cases be changed
to C5 by confine to scale) was routed through help triggering compound structures.
So for these notes, confine to scale and help triggering compound structures were
connected in series, while all other notes were only routed through confine to scale.

4.2.7 Features

To enable reuse of the implementation of each feature in several user levels, their
functionality was encapsulated in sub-patches. These sub-patches were equipped
with an input and output port to allow flexible combination of the features. As the
features all worked depending on the current chord, they all had a receiver object
to receive the chord change signal. The chord change number (increased by 1) was
used to open gate objects that routed the note value to the area in the sub-patch
representing the context of the current chord. Beforehand, this note value was
separated from its octave (resulting in a value between 0 (C) and 11 (B)) to achieve
a consistent behaviour in all octaves, using a modulo object; the resulting notes were
of course brought to the correct octave before leaving the sub-patch (with a division
and multiplication object to calculate the octave and an addition object to reconnect
note and octave).

48 4. A First Prototype

4.2.7.1 Confine to Scale

For every scale, a select object was used to interpret the incoming note value. Which
of these select objects obtained the note value for further processing was decided by
the gate mentioned above. For every possible note value the corresponding select
object triggered a message containing the note value derived from the mappings
depicted in table 4.2.

Figure 4.10: Implementation of Confine to scale

4.2.7.2 Prohibit Avoid Notes

Similar to confine to scale, this feature used select objects to trigger re-mappings of
note value if necessary. As all other notes were of no concern to this feature, they
were just passed on making use of the select objects’ last output port, which would
hand out the received signal if none of the given values matched.

4.2.7.3 Help Triggering Compound Structures

The select objects in this feature were not used to trigger only single note values but
messages with lists of note values, each list representing a chord voicing. These lists
of values then had to be turned into single note values that could be triggered one
after another; to achieve this, unpack objects were deployed. So, the voicings could
then be treated like a series of single notes.

4.3 Analysis
With this working prototype at hand, an analysis of how effective the features and
their combinations were in terms of assisting human players in improvising over jazz
tunes could be performed. Furthermore, the allocation of features to the user levels
as well as the 4 level classification of users in the system needed to be checked for
appropriateness. So, a user study including a series of user tests was conducted. The
results to be received from these tests were meant to lead the further development
of the system.

4.3. Analysis 49

Figure 4.11: Implementation of Prohibit avoid notes

Figure 4.12: Implementation of Help triggering compound structures

4.3.1 User Tests

The user study was conducted with eight test subjects. This rather small number
of users was chosen to obtain a rough overview of the system’s effectiveness; as the
prototype itself only made a rough estimation of the users’ skills and the provided
support, a more thorough investigation was postponed until the system would reach
a more complex state.

Four of those subjects were novices with hardly any or no experience in music theory
and performing; the other four subjects were musicians of different levels, one having
experience in improvising on the piano in jazz sessions. All of the subjects were
familiar with using computers, which did not effect the results as the Max/MSP-
based prototype offered no standard user interface and the subjects did not have to
handle the configuration on their own.

50 4. A First Prototype

The evaluation of the tests was performed with the help of questionnaires that were
handed to the subjects after the tests. They were deployed to collect the opinions
and experiences of the users concerning the prototype as well as their personal
experiences in music to estimate their level of expertise.

4.3.1.1 Procedure

Every test subject was asked to perform with the system in all user levels; only the
advanced level was omitted due to its similarity to the novice level. They started with
the professional level, followed by the expert level and finally performed in the novice
level. This succession was chosen to let them experience the increasing of support,
starting with no support resembling the handling of a traditional instrument. Before
playing in a level, the users were informed about how the system would behave using
the different features; that way they knew what to expect and how to use some of
the features (e.g., the chord triggering of help triggering compound structures).

The duration of their performance in each level could be determined by the subjects
themselves; this was based on the assumption that the duration of a performance
would relate to the amount of pleasure a subject experienced while performing. It
was expected for each subject to enjoy the level that best approximates his personal
level of expertise the most; this level was supposed to offer the most appropriate
combination of support and necessary freedom for the subject. To allow a comparison
of the values, the duration was noted for each level.

The subjects were not instructed or limited in terms of what to play on the keyboard:
they received no score or any other form of notation of melodies, chords, etc. That
way, the subjects were supposed to play freely and thus improvise without any
disturbances.

4.3.1.2 Questionnaires

The questionnaires were handed to the subjects right after their performances not
to loose any of the subjects’ opinions and experiences. They contained questions
separated in three sections, questions on the musical knowledge and experience of
the subject, questions on the course of the test and finally questions on the overall
impression.

The first section was included to estimate the subjects’ musical skills; this was
necessary to allow a thorough interpretation of her statements on the prototype: a
novice was expected to have different opinions on the systems in comparison to an
experienced musician. The following questions were given in this section:

1. Do you play the piano/keyboard/organ?
This was supposed to measure the subjects’ familiarity with the interface;
the duration of how long one of these has been played by the subject and of
potential breaks in playing the instruments were also asked for to narrow down
the estimation.

2. Can you read scores?
This was one aspect used to approximate the subjects’ knowledge in musical
theory. It was supported by the question if a score cannot only be read but
also played at the same time by the subject.

4.3. Analysis 51

3. Can you read chord symbols?
Two chord symbols were given and the subjects’ knowledge of those was ques-
tioned for further insight into this aspect. Their knowledge would, of course,
indicate a more thorough knowledge as they are mostly used in jazz while they
are evaded in classical music.

4. Do you know what scales are?
For a further investigation of this part of musical knowledge, the subjects were
asked if they know the set-up of minor and major scales.

The task of the second section was to acquire an overview of the subjects’ reaction
to the course of the test. For each user level, they where asked to estimate the
duration of their performance and to rate their enjoyment. This was supposed to
show if a connection between the experienced pleasure and the perceived duration
of the performance existed; the duration were later on compared to the durations
noted in the test. It was expected that the difference between perceived and real
duration would grow with increasing enjoyment. Further questions relating to the
user level the subject enjoyed most were posed:

1. Did the system support you sufficiently?
It was expected mainly for novices to answer this question negatively as expe-
rienced musicians would only perceive more support to be limiting in terms of
creative freedom. In general, this question was meant o show if the allocation
of features to the user levels was suitable.

2. Do you think your performance was harmonic and suitable?
If the system’s goal to allow interesting harmonic performances for a wide
spectrum of people was already achieved in the first prototype, this question
was supposed to be answered positively; a negative answer would indicate the
need for more thorough support.

3. Do you think you had control over your performance?
The system would only ensure a satisfying experience if the user could take
over a certain degree of creative control; this question was deployed to show if
the system was too limiting in that context.

The final section of the questionnaire was concerned with the subjects’ overall im-
pression of the system and contained the following questions:

1. Would you like to further on use the system?
As the system was supposed to offer satisfying experiences, this question was
used as indicator of how good the system could meet the task.

2. Would you use the system together with others?
To allow an assessment of whether the features in the system (and thus its
overall behaviour) were suitable for deployment in collaborative sessions, this
question was included in the questionnaire.

3. Personal remarks on the test or the system
This point was added (although not being a question) to acquire anything not
covered by the other question and any further thoughts or ideas the subjects
would have while using the system

52 4. A First Prototype

There was no time-limit imposed on completing this questionnaire to not put pres-
sure on the subjects. Otherwise, some aspects may have been forgotten or inten-
tionally left out.

4.3.2 Results

In the test most subjects behaved as expected: the rather inexperienced subjects
played carefully to see how the system would react, while the musicians exhibited
a more selective behaviour in their performances. Additionally, some aspects so far
not considered during research were discovered in the performance of subjects not
familiar with the keyboard as a musical interface: they not only were imprecise in
their selection of what keys to play but also in playing the; sometimes, they would
press two neighbouring keys with one finger or slip from one key to another.

Beyond these insights, the observation of the subjects in the tests already indicated
that they were enjoying themselves with the system: especially the novices seemed
to act very careful at first but apparently grew more confident with increasing level
of support. The results taken from the questionnaires backed this impression: all
but two subjects rated the enjoyment they experienced with the system to be in-
creasing along with the level of support by the system. None of the subjects had
the impression to be insufficiently supported.

In terms of evaluating their own performance, the subjects made more diverse state-
ments: half of the subjects had the feeling to have control over what they had
performed, the other half did not; interestingly, this other half did not entirely con-
sist of experienced musicians in contrast as to what was expected. Three subjects
thought that their performance was harmonic, three subjects did not and another
two subjects noted to only sometimes have performed something suitable.

Furthermore, a set of interesting remarks and statements were given on the ques-
tionnaires. One subject stated that for a personal analysis of the chord progression,
an overview showing most or all of the chord symbols would be necessary. The
display of feedback on the performance (subsubsection 4.2.5.2) was mentioned by
several subjects to be very helpful; one of these subjects additionally stated to have
been able to correct some mistake with the help of the depicted correction. Some
of the experienced subjects indicated their discontent with the allocation of aiding
features in the different user level: the request for a level including a chord triggering
feature (help triggering compound structures) but without the correction of single
notes (confine to scale and prohibit avoid notes) was made. Finally, the one subject
with experience in jazz performances thought of the single note correction to be too
restricting.

4.3.3 Discussion

A lot of the aspects of this first prototype did prove to be quite beneficial in terms
of the goals of the system: the supporting features seemed to augment the users’
personal satisfaction over their performances; visualising input and output provided
information for the users that some of them could you to alter their play.

Despite the successful application of these aspects, the tests discovered several points
that needed further development:

4.3. Analysis 53

• The information about the song structure (i.e., chord symbol) displayed by the
prototype was not sufficient. To enable experienced musicians to perform their
own analysis of the song (thereby enabling jazz musicians to follow their usual
procedure), several or all of the chord symbols making up a song structure
need to be displayed.

• The prototype only accounted to some extended for the user not knowing what
to play but not how. It should be taken into consideration that a large group
of people is not familiar with using a keyboard to play sounds (i.e., if they
know how to play no or other instruments) and thus do not exhibit the correct
behaviour for this interface.

• In general, the system should be more flexible in terms of being adjusted to
the users’ skills and needs. On the hand a categorisation with four user levels
seems to be unfit to thoroughly cover the sighted spectrum of users. The aiding
features, on the other hand, were themselves too inflexible: confine to scale,
for example, only made a distinction between scale and outside notes, leaving
all scale notes to be equally important. A more detailed distinction could help
to achieve a more flexible version of this feature.

54 4. A First Prototype

5. Final System Development

The findings of the analysis phase after implementing the first prototype have shown
that some of the presumptions applied in the design were correct. Yet, they also
uncovered an inappropriate behaviour of the system, which was based on two aspects:
on the one hand, the system of user levels used was far to rough to accommodate for
all important differences between the user groups. On the other hand, the features
used so far were far too inflexible to offer the desired adjustability. In the upcoming
DIA cycle, this behaviour needed to be corrected.

Therefore, the decision was made to develop a new user level scheme, which was
supposed to be multidimensional in contrast to the last classification: the user should
rather be able to set several parameters describing his level of expertise than just
choosing from on of four predefined levels. That way, a more detailed, and thus
hopefully a more precise estimation of the users’ skills should be achievable. To
identify proper candidates for these parameters, a look back on the skills to be
substituted for by the system was taken. They seemed to be the right choice to
derive the level of support from since the system was meant to account for their
lack.

As the features had proven to not being adjustable enough, the static mappings
implemented in the Max/MSP-based prototype now seemed inappropriate for further
deployment. Furthermore, the equal handling of notes to be valid or invalid in
the context of a chord was too inflexible itself, and did not reflect their harmonic
ranking (as not all scale note sound equally well, and all outside notes not all sound
bad). As the back-end framework [Klein, 2005] was implemented to analyse a chord
progression and thereby determine probabilities for all notes, the supporting features
needed to be altered to benefit from that flexible evaluation of notes.

Further need for enhancements was identified in terms of displaying the song struc-
ture: showing only the current chord had proven to be insufficient for musicians with
the ability to conduct their own analysis of the structure. So the lead sheet as a
whole should be displayed by the upcoming prototype to offer sufficient information.
With this depiction, the system would also adopt the common display format for
song structures, and thus take on a shape more recognisable to experienced musi-
cians. In addition, this would allow the integration of a time scale in accordance

56 5. Final System Development

with the chord progression. Of course, this would lead to a redesign of the user
interface to include time scale and lead sheet.

Besides these upcoming advancements, the new prototype would face a couple of new
requirements: while the aspect of collaboration was neglected in the last DIA cycle
to pay attention to the aspect of musical assistance, this cycle was meant to include
concepts to allow and facilitate collaborative sessions: a clear structure needed to
be defined and enforced by the system without restricting users too much and too
obviously. With the prospect of two or more players using the system at the same
time, the deployment of the second interface was necessary: the Buchla Lightning
II System was introduced into the new prototype. This interface, of course, brought
its own requirements and possibilities to be incorporated and taken care of. Finally,
the decision was made to enable the system to perform multiple songs taken from
the repertoire of jazz standards commonly used by jazz musicians. With this supply
of songs, the system was supposed to allow a more varied number of performances,
and thus be more attractive to the users.

5.1 Design

Looking at a more flexible evaluation of notes, and a necessary integration of the
back-end framework, which itself was written in C++, Max/MSP seemed inappropri-
ate for the further development of the system. Instead, Cocoa, Apple’s environment
for application development under Mac OS X, was chosen for the new prototype to
be build in. This change, of course, involved a shift in the development paradigm:
the signal flow metaphor used in Max/MSP was now replaced by object-orientation
used in Cocoa, resulting in an architectural rather than patch-based construction of
the system.

Additionally, the user interface needed to be redesigned to fit a window-based ap-
plication, which offered some new possibilities like hiding rarely used functions, a
dynamically resizable user interface, etc. Yet, some of the ideas used to create the
appearance of the first prototype in Max/MSP needed to be transferred to the Co-
coa interface. More relevance was put on simple and consistent design of the user
interface.

Furthermore, the new requirements had to be integrated in the user interface and
the system’s architecture. Since they are partially vital for the main goals of the
system (i.e., the collaboration), they could not just be added to the feature and
functions used so far. The system needed to be fully redesigned to account for their
integration. Figure 5.1 shows the interaction and output of the new prototype.

5.1.1 New Requirements

The new requirements that were added in the second DIA cycle all came with new
problems but also new possibilities: to incorporate solutions satisfying these re-
quirements, some of the concepts used in the last prototype needed to be adjusted
or extended. Yet, new ways on how to meet the initial goals of the system could be
discovered, and turned into suitable solutions.

5.1. Design 57

Accompaniment &

Altered Performances (R)

 F

e
e

d
b

a
c

k

L
e

a
d

 S
h

e
e

t

Accompaniment &

Altered Performances (L)

0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1

0 1 0 1 0 0 1 0 1

N
o
te

s
G

e
s
tu

re
s

coJIVE

Application

Speaker Speaker

Digital Note Stand

(Display)

Figure 5.1: The interaction concept of the second prototype.

5.1.1.1 Collaboration

The system’s goal to allow collaborative performances was neglected so far in favour
of a more thorough treatment of the topic of musical assistance. In the new prototype
however, collaboration of several users should be made possible by a fairly simple
mode of interaction. Otherwise, novice users needed to be thoroughly instructed,
which would contradict the goals of the systems. Therefore, the system needed to
communicate the mode to the users.

This mode was found in one of the most common ways of collaboration in jazz
sessions: alternating solos. A group of jazz musicians normally starts a song by
playing its main melody then taking turns playing solos. In these solos, the soloing
musician improvises for a predetermined amount of time (in bars) or until she signals
to be finished. In the system, this performance structure needed to be enforced as
most of the users could not be trusted to know this concept of collaboration. So, the
common duration of a solo was specified to be eight bars ensuring that each player
would be able to play several solos, and to check if a solo change could be correctly
executed by all potential users.

In terms of assuring the performance structure implied by these solos, two mecha-
nisms were deployed: on the one hand, the graphical user interface was designed to
constantly display information on which user was currently soloing. On the other
hand, the restrict expressive parameter feature was re-implemented with a more flex-
ible behaviour. With this feature, the users accompanying the soloist were detained
from playing too loud (and probably disturb the solo). A more thorough discussion
of this feature will be presented in subsection 5.1.4.

58 5. Final System Development

5.1.1.2 New Musical Interface

The Batons added a new controlling paradigm to the system, that allowed the users
to control an instrument with xylophone-like hitting gestures. These infrared sticks
do not need any targets to hit, so the system calculated “virtual” targets that were
not displayed. So any estimation a user could make as to what notes he played could
only be rough. The virtual targets’ positions were calculated to be arranged along
the x axis of the batons’ input area to represent the playable notes. Their width
was calculated by using the probabilities of the notes they represented to reflect the
importance of each note in the context of a chord. For these different widths to take
effect, the range of notes accessible, and thus the number of possible targets had to
be limited, which would result in a trade-off: if too many targets needed to be fit on
the x axis, the targets’ widths would be too small; yet, a very small range would be
too limiting in terms of expressivity. A range of two octaves (C4 to B5) was chosen
to account for both these aspects. Subsection 5.1.4 describes the calculation process
in more detail.

5.1.1.3 Songs

The generic song in the first prototype was sufficient for a test of the deployed
features. Yet, the simple song structure did not offer much diversity. For a more
varied experience, the new prototype was enabled to load songs instead of having
one standard song. That way the repertoire of songs the system could use would be
easily extendable. A set of songs taken from common jazz standards was included
to test the system’s handling of different songs:

• All the things you are (by Jerome Kern & Oscar Hammerstein II)

• Fly me to the moon (by Bart Howard)

• Giant steps (by John Coltrain)

• Solar (by Miles Davis)

• Stella by starlight (by Victor Young)

• Straight no chaser (by Thelonious Monk)

• There will never be another you (by Warren & Gordon)

Theses songs were noted in the song format described in subsubsection 5.2.1.1. When
a user chooses one of the files, the system hands over its name and path to the back-
end for an analysis, and to retrieve information on the song.

5.1.2 Supported User Profiles

As the classification of users used in the last prototype had proven to be to narrow,
the question arose how to change it to account for the most important differences
between different user groups. Extending the classification to consist of more groups,
thereby narrowing down the description a user has to fit if she belongs to one of
these groups, would surely account for some of these differences. Yet, this one
dimensional evaluation of the users’ skills would be very unlikely to cover all the

5.1. Design 59

aspects that interact to form a person’s musical abilities. Accordingly, a multi-
dimensional classification needed to be developed and deployed to achieve a more
detailed description of the users’ abilities, and thus achieve a more appropriate
adjustment of the systems’ support.

First of all, the dimensions for this new classification had to be defined. These
could then be turned into parameters for the new prototype. As the abilities to be
assisted or substituted by the system had already been defined, and the features to
be adjusted were orientated towards those aspects, they were the logic choice to use
for the new dimensions. The next step to take was to define a range of values for each
aspect under consideration of two factors: on the one hand, the range should cover
the whole scale of values an aspect had to over. On the other hand, the range should
consist of an appropriate number of discrete points so that a user could conduct a
fast of the system. The following system was derived:

• Command of the instrument (instrument skill)
Important for performing with an instrument is the ability to handle it prop-
erly: how to invoke a certain note or how to supply the note with a specific
expression (e.g., with a certain velocity or duration) is not only a matter of
knowledge but also of thorough training. To estimate this aspect, three differ-
ent levels were given in this dimension of the system:

1. No experience with playing the instrument

2. Occasional use of the instrument

3. Fluent playing of the instrument

• Knowledge of music theory (theory skill)
The knowledge in musical theory also has a great impact on the ability of a
person to perform musically. In the context of this work, it was necessary
to make a clear distinction between the theory taught in a classic musical
education, and the theory used by jazz musicians that is more thorough and
includes the classical theory. As the jazz theory can be used to conduct the
analysis of chord progressions (implemented by the back-end), its knowledge
would imply a more in-depth education of the user. So here again three levels
were provided for assign a user to:

1. Hardly any or no knowledge of music theory

2. Obtained a classical musical education or parts of it

3. Knowledge in jazz theory with the ability to read chord symbols

• Experiences in group performances (collaborative skill)
This aspect was used as another dimension to enable a prediction of the users’
behaviour in a collaborative setting: it was expected that the more experi-
ence a user a user has in playing in groups, the more responsive she would be
towards fellow users collaborating in a session. In addition to regular group
performances, in which mostly pre-composed songs are played that have been
rehearsed several times before, jazz performances needed to be accentuated
in this category as they involve unique experiences associated with the com-
munication of changes in a performance’s structure (e.g., a solo change). To

60 5. Final System Development

incorporate the most important differences, this dimension was provided with
the following four values.

1. No experience in group performances

2. Occasional performances with other musicians

3. Regular performances with other musicians

4. Experiences in jazz sessions

The categorisation of the individual dimensions was loosely based on the overall
categorisation used in the last prototype (novice – advanced – expert) to offer similar
levels in the different contexts. By deploying the different aspects in this new user
level scheme, a bigger amount of cases could be covered: for example, self-educated
keyboard players, who have no theoretical background could now adjust the system
to fit his user level.

5.1.3 Graphical User Interface

The user interface for the new prototype was supposed to offer simple access to the
functions of the system. Therefore, it was designed following some of Apple’s Hu-
man Interface Design Principles [Apple Computer Inc., 1996]: different metaphors
were deployed to offer representations of information and functionality that most
users should be familiar with. The most important functions were placed clearly
visible on the interface in order for users to find their way very fast. Less important
functions were hidden, and control elements used to access them were clearly placed
on the interface. As the system would react to the user’s input, feedback was a very
necessary tool to inform the player about events. Different modes that would allow
access to several functions with one control element were avoided as far as possible
to offer a consistent way to control the system. To make the system accessible to a
wide variety of people, an English and a German version of the user interface were
created. Other language can be easily added thanks to Cocoa’s mechanisms for
localisation. This section will present an overview over the most important design
decisions made while designing the graphical user interface for the new prototype.

5.1.3.1 The Lead Sheet

A central element in the new user interface was the lead sheet: as a metaphor
for the paper-based lead sheet that jazz musicians use as a starting point for their
performance, it was placed in the centre of the main window occupying most of its
space (as it depicts the most information), and all control elements were orientate
towards it. No notes needed to be displayed but a visual indication of time had a
to be added. Accordingly, the chord progression is displayed in a time scale that
uses bars and beats as units. The bars’ numbers are noted underneath the scale.
The current chord symbol and its duration are highlighted by an orange rectangle
laid underneath the time scale. The time itself is represented by a red cursor that
moved over the scale as the playback is performed to indicate the current point of
time in respect to the song’s structure. Chord symbols are noted on the lead sheet
in accordance with their notation in the song file; a dotted line is deployed for each
chord symbol to mark the point on which the change to that chord occurs.

5.1. Design 61

Figure 5.2: The prototype’s main window with lead sheet and controls.

5.1.3.2 Song Controls

The control elements for controlling the playback were designed using the tape ma-
chine metaphor, commonly used in applications concerned with the replay of media
streams. Beside the buttons implied by that metaphor — play and stop —, a clock
display (depicting the current time as bar : beat : tick), a tempo display with buttons
for increasing or decreasing the tempo, and a display with information on the song
(name, default tempo and meter) were deployed to arrange all necessary information
on the interface. All these elements were arranged above the lead sheet, grouped in
a rectangular area.

5.1.3.3 Player Fields

Each player is provided with an own area on the user interface to allow the displaying
of player-adverted information: feedback on performance, information on the player’s
current role in the session (playing solo or accompanying), and offering access to the
settings for the player (MIDI and user level). Initially, the players’ fields are situated
in a drawer attached the bottom of the main window.

To offer feedback similar to the last prototype, a virtual keyboard made of 88 buttons
is placed inside the player’s field. This was designed to assure that the input interface
of the keyboard is consistent with its graphical representation in the system. As the
batons did not offer a visual input field, this musical interface was also provided with
a keyboard representation. In contrast to the last prototype, only one keyboard was
displayed for input and output to save screen space as several players needed to be
provided with feedback this time. This depiction, of course, implied different ways
to picture input and output. The buttons used here have a highlight function that

62 5. Final System Development

shades the whole button; this mechanism was used to depict the output. As the
input involves the player pressing a key, a representation of a finger was chosen to
mark a key: a pressed key receives an “O” to depict the touch of a fingertip. For
the batons, input and output are always the same, as the gestures coming from the
infrared sticks are not corrected but mapped.

Figure 5.3: The players’ fields on a drawer attached to the main window (lower),
and an additional window (upper).

For the information on the player’s current role in the session, the field was extended
by another button that was meant to depict an emphasised field. It displays the
strings “Soloing” or “Accompanying” in respect to the player’s role. An upcoming
solo is announced by a countdown of the beats in the last bar before the beginning
of the solo. The field of the soloist is further highlighted by a white rectangle in the
background to allow a better orientation.

Some further buttons were integrated in the field: a “Close” button is provided to
enable players to leave the system, and free the screen space occupied by her field.
Access to the player’s options dialogue is granted via the “Options” button; the
dialogue will be described in the next section. Finally, a “Detach” button offers to
remove the player’s field from the drawer, and open an own window for it. With this
mechanism, the players can arrange their fields on the screen to their liking, and take
advantage of, for example, multiple displays. Here, two modes for that button were
purposely deployed: originally, it “detaches” the player field to a window. After that,
the mode (and labelling) changes to “attach”, reattaching the field to the drawer.
These modes were deployed as attaching and detaching stand in relationship with
each other, and either one leads to a change of context (window, drawer).

5.1.3.4 Configuration Controls

The decision was reached to hide all controls concerned with configuring the system.
Yet, the buttons to access these controls were arranged clearly visible on the user
interface. Two dialogues for configuration are used as one was concerned with the

5.1. Design 63

options for a user, and therefore needed to deployable several times (the number of
players to be exact), while the general options of the system only have to be provided
in one dialogue.

General options for the system were situated on another drawer that can be opened
to one side of the main window. Therefore, another button that opens the drawer if
pressed, was placed beside the control elements above the lead sheet. It was avoided
to add another mode for that button that would close the drawer that instead was
equipped with another button labelled“Close OptionsDrawer” for that purpose. The
drawer further contains two pop-up-buttons: if pressed, the first one reveals a list of
all possible numbers of players (based on the number of MIDI input ports), and is
therefore labelled accordingly. The second is labelled “General Sound Source”, and
contains a list of all available MIDI output ports, from which one can be chosen
for sending all occurring notes to. Parting lines including names for the different
sections were used to visually separate the sections from each other. Figure 5.4
shows a third section called Accompaniment that was created to include options on
the drum and bass accompaniment (e.g., turning them on or off). This idea however
was neglected in favor of spending more time on features more vital to the analysis.

Figure 5.4: The drawer containing the settings for general options.

User-averted options are arranged on a special dialogue window that can be instan-
tiated for each new player. It is accessible through the options button in the player
field, and contains control elements for MIDI settings as well as a representation of
the user level system for the user to adopt to his skills. In the MIDI section, the
user can state which interface (keyboard or batons) he uses, and at what MIDI port
it is connected. The section on skill settings is separated into two subsections: a

64 5. Final System Development

representation of the user level scheme is provided in the first subsection, each di-
mension/aspect represented by a field of radio buttons. These radio buttons depicted
the levels of the aspect, and are labelled with a first-person description of the abili-
ties summarised by that level. So the user can select the most suitable descriptions
for his level of expertise. To offer a facilitation for adjusting these settings, a set of
presets were created, and are offered in the second subsection by a pop-up-button.

Figure 5.5: The options dialogue for adjusting input and skill settings.

5.1.4 Features

In this prototype the features were not allocated to the different user level; instead,
they are configured with the settings a user adjusts in the options dialogue. The
focus was shifted from the single features to a reasonable combination of their func-
tionalities. Additionally, the mistakes users made using the keyboard when playing
with the last prototype needed somehow to get rid of.

With the new musical interface — the batons —, a more differentiated interpretation
of the input was inevitable: the notes from the keyboard still have to be corrected
but the gestures coming from the Buchla system are not connected to a note in
the first place; a meaningful way to establish this connection needed to be found.
The use of the batons did not imply mistakes like the keyboard, and the missing
orientation of users left more freedom for the mapping of gestures to notes. To
reflect this clear distinction in handling input coming from the musical interfaces,
this section will describe the processing of note and gestures separately.

5.1. Design 65

5.1.4.1 Processing a Note

Notes coming from the keyboard are still interpreted in the area of notes that they
originally came from. A strong cohesion between the played note, and the system’s
output needed to be assured particularly as one consistent combination of features
was used for all user levels. The following sequence of features is used to process an
incoming note:

1. Filtering out mistakes:
if a user is a novice in terms of playing the keyboard (Command of the in-
strument, level 0), the system checks if the last key pressed could actually
have been played by mistake. Should a neighbouring key have been played
within the last 10 milliseconds before, the system discards the last key pressed
as being triggered by mistake: it assumes the user accidentally pressed two
neighbouring keys with one finger, and does not further process that key (be-
side giving feedback that it had been pressed). Otherwise, the next step in the
sequence of features is started.

2. Finding the most probable neighbour:
to check if a note connected to a pressed key is suitable based on the user’s
level of skill, and the current position in the song, a threshold is calculated
that can be compared to the note’s probability. The value of this threshold is
defined to be about 1

12 for novices, and decreases with increasing skill of the
user. Thus, a novice is allowed to play all notes in an equal distribution of
note probabilities. For the determination of the user’s level of skill, only the
command of instrument aspect is observed here.

If the probability of an incoming note is lower than the threshold, the note’s
neighbourhood is checked for more probable notes: the most probable of these
notes in the is picked to substitute for the incoming note. The size of the neigh-
bourhood is again dependent on the level of the command of the instrument
aspect chosen by the user: for novices, the system looks up the next two notes
in each direction, decreasing the size of the neighbourhood with increasing user
level.

While the static mappings deployed in the first prototype stuck to the basic
ideas presented by Nishimoto et al. [1998] in RhyMe, this feature depicts a
mixture of these ideas and the probability-based corrections applied by ism
[Ishida et al., 2004]. The probabilities still rather arise from the underlying
chord structure than from comparing the input to a database of melodies. Yet,
the corrections can be flexibly determined based on the current situation.

3. Checking density of played notes in the neighbourhood:
pressing too many keys in a small region leads to a chaotic performance and
at least some dissonance: it is assumed to be another mistake made by novices
as they might not know how to properly use a keyboard. Accordingly, the
density of played notes in small note neighbourhoods is artificially limited. So,
for an incoming note the two next notes to both side are evaluated by a weight
function with decreasing values for increasing distance towards the incoming
note. All weights of already playing notes in this neighbourhood are added up;
if the sum surpasses a certain threshold, the incoming note is not processed

66 5. Final System Development

any further, and no output is created. The threshold is determined using the
level selected by the user for the command of the instrument aspect, and was
chosen to prevent a novices from playing a note if that note’s next neighbours
(to the left and to the right) are both already playing.

4. Finding a suitable chord voicing:
finally, the new mechanism for triggering chord voicings is deployed. For
novices(measured with the knowledge in musical theory level), the same func-
tionality already used in the last prototype is provided: if the note calculated
by the preceding features has a value smaller than 60 (C5, middle C), the
system looks up a voicing of the current chord build on that note (i.e., it has
that note as its lowest member). A new level of chord triggering is used for
more advanced players: the system searches for a voicing including the current
note but only considers it to be valid for triggering if another two notes from
that voicing are already sounding. So an advanced player can trigger a certain
voicing with at least three suitable notes. This mechanism bridges the gap
between classical players using chords with three notes, and the world of jazz
piano playing that comprises at least four notes per chord. This mechanism is
not limited to the lower half of the claviature: as it involves a more complex
method to trigger chords, it is deployed for all octaves to offer more varied
ways to use chords to advanced players while allowing them to play freely over
all notes as well.

5.1.4.2 Processing a Gesture

In terms of the batons, the system recognises hitting gestures. Some efforts were
made to also incorporate sweeping gestures (a downward hit followed be sideward
movement) that would allow to emulate a beater sliding up or down a xylophone.
But this extension resulted in additional (unwanted) notes invoked by normal hitting
gestures. The gestures are reported with a corresponding position on the x axis (0
to 127). This position needs to be interpreted in the context of two octaves to map
the gesture to a note.

To achieve this, the probability space is mapped to the position range of the batons.
Since the back-end normalises the probabilities for one octave to add up to 1.0, the
probability space used here comprises the range between 0 and 2.0. To determine
the note belonging to the gesture, the note probabilities are first converted to the
position range with the formula

width = (p(i)/2) ∗ 128

to receive the width of the virtual target representing note i. These widths are then
added up (which would correspond to lining up the virtual targets) until the sum
surpasses the position of the gesture. In that case, the last width belongs to the
target that was hit. The note connected to that target can then be derived and
played.

5.1.4.3 Processing Velocity

As the collaboration between players was now an integral part of the system, a
mechanism for the support of a session’s structure was necessary. In order to point

5.1. Design 67

out a soloist’s leading role, the accompanying players needed somehow to be deterred.
The idea of restricting expressive parameters developed but not used in the first
prototype was taken up again, and deployed in this version of the system.

To complicate playing loud while accompanying a soloist, the velocity curve is bend:
usually, if a note/gesture arrives with a velocity of i, the system’s output is played
with the same velocity. But while accompanying, the velocity is recalculated with
the formula

newV elocity = (
velocity

128
)bendingFactor ∗ 128.

The bending factor is initially set to a value corresponding to the user’s level in
terms of the experience in group performance aspect, and further on determined
based on the temporal density of the notes played: this parameter is recalculated
whenever a note or a gesture is triggered by the user by adding 1 to represent
the new event, and subtracting time since last note

150 (the value 150 was approximated
by experimenting to receive useful results) to acknowledge the interval between the
last two notes/gestures; it is reset to zero if the time since the last note surpassed
200 milliseconds. The new temporal density is compared to a threshold and if it is
higher (i.e., the user had played “too much”), the velocity bending factor is doubled
to complicate playing loudly even further. The threshold itself was derived from the
user’s level in terms of experience in group performance.

5.1.5 Architectural Design

With Objective-C and Cocoa, an object-oriented environment was employed for
the development of the new prototype. This prerequisite was used to design a
system structure that can preferably be easily understood, extended, enhanced, and
maintained. For that purpose, several steps were taken: the architecture was divided
into several layers to provide a rough structure. The relationships of classes were
often designed using several well known architectural design patterns as defined by
the Gang of four [Gamma et al., 1995]. These patterns describe reusable solutions
to reoccurring problems in software development in form of micro-architectures (a
few classes with defined roles and relationships) and offer a common knowledgebase
to describe and understand object-oriented software architectures. This section will
describe the different aspects of this architecture; simplified UML diagrams are used
to depict the relationships between the different classes. More thorough diagrams
were collected in appendix C. Figure C.1 shows an overview of the architecture
described here.

Five layers were deployed to create a clear distinction between the different parts
of the system: the View, Controller and Logic layers reflected the commonly
used separation of a programs inner logic and its graphical representation. Classes
encapsulating data used in the system were centralised in the Data layer to keep a
clear distinction between the system’s elements processing or displaying the data,
and the data itself. Finally, special tasks were integrated in Singleton classes (a
design pattern defined later on) in the Singleton layer. This section will provide
descriptions of the inner structure of these layers and their interconnections.

5.1.5.1 System Foundation

To establish a basic structure for the system to build upon, the so-called Model-View-
Controller pattern (MVC) was used: it encapsulates the application’s state, and its

68 5. Final System Development

most fundamental functionality in a Model class and the user interface including
the visualisation in a View class. To decouple these elements, a Controller class
is added to negotiate between them. This results in a flexible combination: the
Model can be changed, without having to adopt the View, and new Views can be
added while leaving the Model unchanged. To keep the Model class’s functionality
independent from the depiction, it does not know of the Controller class.

For passing information from the Model to the Controller nonetheless, a Con-
troller needs to register with the Model making use of the Observer design pat-
tern: the Observer object (the Controller) deposits a reference to itself with the
subject (the Model), which uses the reference to report changes of its states. Several
Observers can register with one subject in this manner. For further de-coupling of
the Model it uses NSInvocation objects to send a predefined set of messages that
the Controller needs to interpret.

In coJIVE, this pattern was deployed two times thereby covering the first three
layers: the first MVC is used to be a central base for the main application. The
MainView is represented by the system’s main window(an NSWindow) that is con-
nected with a MainController. The latter plays the role of the mediator, receiving,
formatting, and passing on information on events from MainView to MainModel or
information on changes of the application’s state the other way. MainModel is re-
sponsible for the structure of the performance, communication with the back-end,
and controls the playback including the accompaniment. MainView is furthermore
connected to a LeadSheetView object, a subclass of NSView depicting the lead sheet
with time scale and cursor.

MainController

MainView

(NSWindow)

MainModel

1

observer

1

subject

PlayerModelPlayerController
1

observer

1

subject

PlayerView

(NSView)

1 observer

1..* subject

1 observer

subject 1..*

Figure 5.6: The system’s foundation and the representation of players using MVCs.

The second MVC represents a player in the system: the PlayerView is an NSView
object containing the player field, while the PlayerModel is equipped with mech-
anisms to receive, interpret, and send notes/gestures (described later on in this
section). Again, the PlayerController is a mediator between these two classes.
Both PlayerController and PlayerModel objects are created and collected by
their main application counterpart (MainController and MainModel), which also
register with them as Observers for several purposes: acknowledging a user leaving
the system, receiving information on played notes, etc.

5.1.5.2 Centralised Tasks

Some tasks to be met by the system had special attributes: they needed to be
executed in a centralised way as several solutions at once would lead to inconsistent

5.1. Design 69

results, and be accessible for several modules in the system. Accordingly, those tasks
were implemented using the Singleton design pattern that offers a general solution
for these requirements: a class implemented as a Singleton itself sees to that only
one instance can be created, and makes this object available throughout the system.
Three tasks were identified that exhibited these attributes: creating a system clock
to control the playback, enabling recording of the users’ performances in MIDI files,
and integrating the back-end into the system. Accordingly, three singletons were
created for these tasks.

Adapter

Adaptee

CJFrameWork

(Backend)

PlaybackEngine

<<Singleton>>

Delivering Probabilities for notes

and chord voicings based on the

input and the song structure

RecordingEngine

<<Singleton>>

BackendDummy

<<Singleton>>

<<ObjectAdapter>>

BachendDummy respresents

CJFramework in the system and

adapts this analytical framework to

an Objective-C interface accessible

by the system

RecordingEngine creates MIDI Files

with unprocessed input on one and

processed input on another track

MainModelLeadSheetViewAccompaniment

Output

observer

subject

observerobserver

PlaybackEngine creates MIDIClock,

announces current time and

controls the playback of the

accompaniment.

Figure 5.7: The singletons deployed in coJIVE.

The system clock was encapsulated in the PlaybackEngine class. It generates tick
signals in a certain frequency (depending on the appointed tempo) that are counted
and transformed into the system’s main time format: Bars – beats – ticks, where a
beat consists of 48 ticks, and the number of beats in a bar is determined by a song’s
metre. Bars and beats are counted starting with 1, while the first tick in a beat is 00.
Other objects can register as Observer with the PlaybackEngine, and will then be
informed of time changes (i.e., whenever a tick occurrs) and whenever a new chord
starts. For that purpose, the PlaybackEngine holds information on the current
song including default tempo, metre, and the song’s structure; the classes used to
encapsulate this data will be discussed later in this section. The classes observing the
PlaybackEngine are the MainModel, the LeadSheetView and the classes concerned
with generating the accompaniment (described in the net subsection).

Besides the control of the playback, a mechanism to record the musical data in the
MIDI file format has to be provided. Accordingly, the class to implement this mech-
anism is called RecordingEngine. To offer this service to different sources of musical
data (e.g., accompaniment, user performances), RecordingEngine is deployed as a
Singleton. The MainModel informs the RecordingEngine on starting the playback
about the number of players in the system, and two tracks for each player are cre-
ated (to record the original input and the processed output separately). In playback
the MainModel reports every input event along with its processed version to the
RecordingEngine that transforms the events into the MIDI format, and collects the
obtained data until the playback is stopped. Then, the data can be written to a
MIDI file.

70 5. Final System Development

Finally, a Singleton called BackendDummy was created that encapsulates and rep-
resents the back-end in the system. This class also uses the Object Adapter de-
sign pattern: it adapts the back-end’s interface, which was written in C++, to an
Objective-C-conform interface by instantiating the framework, and forwarding calls
to and replies from the back-end. Here, the characteristics of the Singleton also re-
flect the back-end’s behaviour towards its clients: the framework does not know its
clients, and conducts its analysis independent from the calling client. Respectively,
the BackendDummy must be called with an additional reference to the calling object
for being able to inform the client about the various results. The MainModel calls
the BackendDummy to initiate the analysis or when chord changes occur to receive
new note probabilities and chord voicings.

5.1.5.3 MIDI Encapsulation

As several MIDI connections are necessary throughout the system, an inheritance
hierarchy to encapsulate the necessary functionality provided by CoreMIDI and add
system specific behaviour was created. A common root class for that hierarchie
called MIDIio was build because CoreMIDI requires similar actions to connect to
input and output ports. Derived from that class were MIDIInput and MIDIOutput,
the first of which being abstract yet defining the mechanism to register with an
input port, and receive MIDI messages, while the second one — a concrete class —
establishes a connection to a MIDI output port, and can send messages to that port.

AccompanimentOutput

BassOutput

DrumOutput

MidiInput MidiOutput

KeyboardInput

BatonInput

MIDIio

Figure 5.8: The MIDI classes.

MIDIInput is used as an abstract class because the input depends on the input
device. Accordingly, two subclasses of MIDIInput with different behaviours were
implemented: KeyboardInput and BatonInput. A PlayerModel object receives an
object from one of the two classes for note input using them as instances of MIDIIn-
put. KeyboardInput provides a very basic behaviour: it just passes on the note value
and velocity for each incoming note, and ignores all other MIDI messages. Whereas

5.1. Design 71

the BatonInput class encapsulates the gesture recognition using MIDI messages with
data on the batons’ positions: it waits for the first downwards movement, storing the
initial co-ordinates and the time of its occurrence. When the baton move upwards
again, the gesture is considered to have ended, and the coordinates are compared to
extract gesture size and its duration (both used to calculate the velocity), as well
as the position on the x axis. After that, velocity and position are passed on to the
PlayerModel.

MIDIOutput is used for sending out the users’ performances: a PlayerModel object
receives an instance of that class, and sends note values and velocity to that in-
stance, which turns this data into a MIDI message, and sends it to the output port.
Furthermore, the class is able to change the channel on which to output, and set
the instrument in a MIDI sound set to use. Another application for the output of
MIDI notes is the accompaniment. As this performance is generated depending on
the time of the playback, an abstract class called AccompanimentOuput was derived
from MIDIOutput: it adds a mechanism to receive time signals from the system
clock (by registering as Observer with the PlaybackEngine), and to store and play
a melodic pattern inside a key-value-based NSDictionary object (with the time as
key and note value as object).

Since the accompaniment consisted of bass and drums, both parts are represented
by a subclass adding its specific behaviour: DrumOutput sends its output on channel
10, the default drum channel in MIDI, which offers a different element of a drum-
set (Snare Drum, Kick Drum, etc.) on each note value instead of one sound in
different pitches. Similar to the first prototype, it only uses a simple swing pattern
to play. The BassOutput sets a bass sound to play with, and uses a simple method
to calculate a bass-line: it plays the notes of the first chord voicing transposed to
the fourth octave (C3 to B3) in a specific order (lowest note – second lowest note –
highest note – second highest note) that way sticking to the current chord.

5.1.5.4 Processing Input Data

The decision was made to encapsulate the features used to interpret gestures and
notes in an additional class hierarchy to keep it open to changes, without having
to alter other mechanisms. The InputProcessor class serves as the root class of
this hierarchy, defining almost all of the necessary behaviour. As different chord
triggering mechanisms are deployed, one subclass for each mechanism was created:
InputProcessor itself has no chord mapping for users capable of handling jazz
voicings, while NoviceProcessor implements the one-key chord triggering, and Ad-
vancedProcessor puts the chord triggering based on three keys into practice. A
PlayerModel object receives one object from this class hierarchy depending on the
user’s skills thereby completing the chain of input → processing → output.

5.1.5.5 Data Representation

The central piece of data to be represented in the system is a song: its name, default
tempo, metre, and structure are encapsulated in a class called Song for consistent
representation and access. In the system, the PlaybackEngine creates a Song object
on receiving information after a new song was loaded, and the LeadSheetView is
handed a reference to that object to access the data for displaying.

72 5. Final System Development

InputProcessor

NoviceProcessor

AdvancedProcessor

Figure 5.9: The class hierarchy for processing user input.

Song
ChordSymbol

1..*

Figure 5.10: Classes encapsulating data.

The structure of the song is described by a progression of chord symbols. As each of
these chord symbols has a textual notation as well as a starting point given in the
system’s time format (bar – beat – tick), a class called ChordSymbol was created
to encapsulate these pieces of information for every chord change. A list of such
objects representing the sequence of chords in a song is created in the BackendDummy
using data obtained from the back-end framework. This list is then handed to the
PlaybackEngine to be included in the Song object.

5.2 Implementation

With the shift to Cocoa, several of the components that Max/MSP had provided
needed to be newly implemented: besides creating a new user interface, MIDI con-
nections needed to be established using the CoreMIDI [Apple Computer Inc., 2001a,
pages 75–106] library, provided by Max OS X. Additionally, new hardware and the
functionality of the back-end had to accounted for in the new implementation.

This section will first present the aspects making up the new environment for the
second prototype. After that, the particularities implied by Cocoa and the Objective-
C language used in Cocoa as well as how they were dealt with in the implementation
are presented. A description of implementation of the most relevant parts of the
system makes up the rest of this section.

5.2. Implementation 73

5.2.1 Environment

The new circumstances led to a change in the development environment and the
extension of the system with new hardware. This section will describe the changes
and additions made to extend the system.

5.2.1.1 The Back-end

The analytical back-end was developed in the form of an Mac OS X framework
in C++ to be easily included in applications. Its goals were to analyse the chord
progression defining a song structure, and calculate the probabilities of notes in one
octave (so 12 values are calculated) for each chord based on all scales possible over
that chord. Furthermore, it maintained a database of chord voicings that could be
queried by a client.

To enable such clients to use the framework, they need to instantiate the framework,
and can then use a public interface to access the framework’s functionality: it can be
told to load a specific song file, triggering the analysis by doing so. After that, the
song can be accessed for information on its contents (chord symbols, tempo, etc.).
The client can also tell the framework the number of a chord, and then query it for
the probability distribution of notes and chord voicings for that chord.

A new song format using XML was created to represent and store songs to be later
on loaded by the framework. Such files representing songs contain the name, tempo,
and metre of the song, as well as the progression of chords, each stored as a textual
notation. The framework can read these files, and extract all the different pieces of
information. A detailed description of the framework was compiled by Klein [2005].

5.2.1.2 Hardware

The Batons
The most important new piece of hardware deployed in this prototype was the Buchla
[1995] Lightning II system, consisting of the two batons, an infrared sensor, and a
controller unit. This device can be programmed to recognize different gestures (e.g.,
sweeps, hits, curves), and transmit events and all available data via MIDI messages.
In the prototype at hand, the internal gesture recognition was not used. Instead, the
system uses the data on the batons’ position to recognize the gestures itself. This
data is transmitted by the device in different ControlChange messages.

Viscount Viva76 Stage Piano
To further approach the claviature-based interface used in real jazz sessions — the
piano — another keyboard was deployed with this prototype in the user tests: the
Viscount [2003] Viva76 Stage Piano. It has 76 half-weighted keys, and therefore
offers a wider access to the available notes. Equipped with MIDI input and output
ports, it can be easily integrated into a MIDI setup.

5.2.1.3 Cocoa

Cocoa [Apple Computer Inc., 2001b] is Apple’s newest derivative of NeXTSTEP,
an object-oriented development environment developed by NeXT Computer. It pro-
vides a wide variety of classes to use to in development: a basic class NSObject ,
from which all other classes are derived, offers all the basic behaviour, a Cocoa ob-
ject needs: it has a unique ID, functions to query the object for the existence of a

74 5. Final System Development

specific function, functions to invoke a specific function, etc. Moreover, Cocoa offers
several mechanisms for message sending, for example, the NSInvocation class that
needs to be configured with a target object, the name of the function to be invoked,
and an NSDictionary object including all parameters.

Furthermore, numerous container classes and additional helper classes facilitate data
management in applications (e.g., NSArray , NSDictionary, NSIterator). Data itself
can be encapsulated with special data classes (e.g., NSData, NSText , NSNumber).
GUI-elements like buttons and text fields have their representative class (NSButton
and NSTextfield respectively) to allow programmatic access and configuration of
these elements. All the classes representing GUI-elements are derived from NSView,
an abstract class concerned with drawing the elements and handling events (e.g.,
mouse clicks).

Admittedly, the composition of user interfaces (e.g., arranging elements on a window)
in Cocoa is usually done using the InterfaceBuilder, a tool that provides palettes
with the most common GUI-elements, and allows arrangement of those elements
on a window by just dragging them to the desired place. The obtained window is
then stored in a nib-file from which it can later on be restored at runtime. This
mechanism was also deployed to create the user interface for the new prototype. If
an element (or the window itself) needs to accessible in the program, the respective
class must contain an instance variable of the element’s representative class marked
by the attribute IBOutlet. These variables can be recognised by InterfaceBuilder,
and may be connected to the object used in the tool. Similarly, events occurring
on an element can be connected to a function that needs to be declared with the
attribute IBAction for that purpose. If the event occurs in the running system, the
connected function is called.

To simplify the development, an integrated development environment was used:
XCode is such a tool provided by Apple Computer Inc. [2003] to use when creating
Mac-based projects. Besides common features like syntax highlighting and code
completion, XCode offers mechanisms for easy integration of resources (e.g., images),
libraries, and frameworks. A debugger is also provided with several functions to
locate and remove errors.

The development in Cocoa can be conducted in Objective-C(++) and Java. For
the reasons of performance and to enable a trouble-free integration of the back-
end framework, Objective-C was chosen for the development of the next coJIVE
prototype. A special feature of Objective-C is the reference counting: an object
is maintained as long as some other objects retain references to that object. This
mechanism facilitates dynamic memory allocation and release. Furthermore, the
methods and functions declared in Objective-C are mostly described using a selec-
tor; this string contains of the method’s name by leaving out the types and names
of the variables, and indicating slots to fill in variables with colons (e.g., perform-
Selector: indicates one variable in the method’s signature). This syntax will also
be used in this document.

5.2.1.4 CoreMIDI

In Mac OS X, MIDI functionality is a part of the overall audio architecture. To
access the MIDI services provided by the MIDI server of the operating system,

5.2. Implementation 75

an API was created in form of a framework, CoreMIDI. This framework defines
a hierarchy of representations: a device represents an actual device connected to
the system (e.g., MIDI controller, synthesizer), which can consist of one or several
entities (the connection ports). Entities themselves can have several endpoints that
are either sources of or destination for MIDI messages to enable communication in
either direction.

Applications can connect to an endpoint and register a client reference with the MIDI
server and a port either to listen to incoming messages (by specifying a callback
function) or to send messages. With these mechanisms, a program is able to route
MIDI data freely between different ports or just record or generate messages.

5.2.1.5 SimpleSynth

This Mac OS X application by Yandell [1995] is a software synth with a sound set
adhering the MIDI standard. It uses the Quicktime synth provided by Mac OS ,and
can be addressed by programs just like any other MIDI port via its SimpleSynth
virtual input. The input port can also be adjusted to every input port present in
the system. SimpleSynth is free-ware, and was developed by Peter Yandell. In the
second prototype it was used as a general sound source for drums, bass and the user
performances.

5.2.2 Implementation Principles

The system was implemented taking advantage of some of Objective-C’s and Co-
coa’s special features: for data storage, NSDictionaries and NSArrays are used
if possible. In relationships between Observers and their subjects, message passing
mechanisms are deployed to remove the need for further knowledge of the Observers ’
classes: if several Observers are expected, NSInvocation objects are used, for one
Observer its performSelector: method is called. Both methods pass a selector
to the Observers, and tell the Observer to invoke the function corresponding to the
selector.

Cocoa also offers mechanisms and classes for multithreading in applications: the
NSThread class can be instantiated or used to create a new thread by calling the class
function detachNewThreadSelector:toTarget:withObject: that creates a new
thread automatically, and calls a given method on a certain object in that thread.
To prevent critical pieces of code (e.g., reading/writing to a instance variable) from
being entered by two threads at the same time, NSLocks can be used. These objects
need to be locked before and unlocked after the critical code, preventing a fatal
situation because they can be locked only once before being unlocked.

The reference counting mechanism provided by Objective-C is deployed to achieve
a dynamic memory management: The memory for an object is reserved by calling
alloc, and the object itself is created by triggering a constructor (usually called
init). Another object can increase the reference count of that object via the retain
method (defined by NSObject). Analogously, the count is decreased via the release
method. If the reference count reaches zero, the runtime system automatically sends
a message to the corresponding object triggering the dealloc method that disposes
of the object, and frees the memory.

Nonetheless, Objective-C has some disadvantages in terms of information hiding:
functions declared in the main interface of a class are always public and can neither be

76 5. Final System Development

declared to be private nor protected. Another special feature provided by Objective-
C was used to resolve this problem, the so-called Categories . With this feature, the
interface can be split up and categorised for different purposes (e.g., partitioning the
functions by implemented tasks). Here, a second interface category called “private”
was created in the implementation file instead of the header file (thereby hiding it)
containing the functions that are meant to be used privately. Unfortunately, this
procedure was not possible for allegedly protected functions, as they would also be
hidden from the subclasses.

Furthermore, the underlying system allows unknown functions to be called leaving
the developer with the task to check these calls: if an object sends a message to
another object that is not declared in the second object’s interface, the compiler
will merely give a warning stating that the second object might not respond to the
message (so even hidden functions may be called and executed by other objects).
To prevent serious runtime errors to happen due to this fact, all warnings were
retraced rigourously, and their cause was removed. A similar problem arises from
the use of the different message-passing mechanisms: NSInvocation objects and
the performSelector method of NSObjects both pass selectors to an object to
be executed. These parameters cannot be checked by the compiler when compiling
the system. Here, errors are evaded by using NSObject’s respondsToSelector:
method to check if a selector is valid in the context of an object before sending it
for execution.

A special emphasis was put on the readability of the code. Names of variables and
functions were chosen to be significant, and they describe the purpose of the element.
This sometimes resulted in rather long names. Furthermore, the naming followed
the guidelines given by the numerous Cocoa classes to achieve a consistent style in
the code: Names of classes start with a capital letter, while the names of functions
and variables start with a word in small letters followed by capitalised words (e.g.,
performSelector, respondsToSelector).

5.2.3 System Foundation

The MainController is automatically instantiated whenever the application is
started, and its method awakeFromNib is triggered after the main window and the
options dialogue have been loaded from the corresponding nib-file (whose creation
was described in subsubsection 5.2.1.3). In this method, the MainModel and the
LeadSheetView are created, and various default values are set including a list of
MIDI input ports obtained from the MainModel. Additionally, the MainController
implements various methods connected to the control elements that mostly trig-
ger corresponding methods in the MainModel: openPressed, playPressed, stop-
Pressed, numberOfPlayersChanged, etc. The latter method determines the number
of players that need to be created, and instantiates the corresponding PlayerCon-
troller objects and deposits them in an NSMutableArray 1.

As the MainController registers as Observer with the MainModel and the Play-
erController objects, it needed to implement some further methods: a Player-
Controller can trigger addPlayerView: and playerViewRemoved to place a player

1An NSMutableArray is a version of NSArray that can be dynamically resized by adding or
removing objects.

5.2. Implementation 77

field (an NSView object) in the drawer attached to the bottom of the main window or
remove it again (this way enabling dynamical attaching and detaching of the fields) or
removePlayer: to commence the removal of the respective player’s representation in
the system. The MainModel uses setSongName:andMeter:andTime:andTempo: to
set and display information on a newly loaded song as well as
setCurrentTime: to display the current time.

On instantiation, the MainModel creates two NSMutableArrays with the names of all
MIDI sources and destinations for a later selection in the user interface, a BassOut-
put and DrumOutput object, sets various default values (time, etc.), and registers as
Observer with the PlaybackEngine. If it is informed by the
MainController about the creation of a new player (via createPlayer), it in-
stantiates a PlayerModel object, registers with it as Observer, deposits it in a
NSMutableArray, and returns it. Messages about control of the playback (when-
ever startPlaying or stopPlaying are triggered) are forwarded to the Playback-
Engine. If stop is pressed and the playback is not running, the MainModel tells the
PlaybackEngine to reset the time.

Furthermore, the MainModel creates and ensures the structure of the session. The
number of the current soloist — corresponding to the position of the respective
PlayerController in the array —, and the bar at which the next solo change will
occur are stored in instance variable. Whenever setBar:Measure:Tick: is triggered
by the PlaybackEngine, the model checks whether the current bar is the preceding
bar of the next solo change, in which case the PlayerModel corresponding to the
next soloist is informed with the number of beats to go before the change, or if the
time of the solo change is reached already. In the latter case the PlayerModels of
the current and the next soloist are informed about the change of roles. On every
chord change indicated by the PlaybackEngine, the MainModel informs the Back-
endDummy, and distributes the obtained probabilities and chord voicings — both
received in NSArrays — among all PlayerModels. To allow the recording of perfor-
mances, the model initially informs the RecordingEngine on the number of players
taking part when the playback is started, forwards all note events reported by the
PlayerModels (by triggering triggeredNote:forNote:asActive:byPlayer:), and
reports the stoppage of the playback to the RecordingEngine.

PlayerController and PlayerModel have a connection similar to that of
MainController and MainModel. The PlayerController is connected to the view
depicting the player field, and reports changes in the player’s options dialogue
to the PlayerModel by triggering setInputType:atEndpoint: and setInstru-
mentSkill:
andTheorySkill:andCollaborativeSkill: that adjust the MIDIOutput object and
create a new InputProcessor object based on the theory skill level (corresponding
to the setting of the Knowledge in musical theory aspect in the options dialogue).
The latter object is also fed with new note probabilities and chord voicings whenever
setProbabilities and setVoicings are triggered by the MainModel.

When the MIDIInput object reports a note or gesture (by triggering incoming-
Note:atVelocity:atTime: or incomingGestureOfType:atPosition:atVelocity:
duration:), the processing of the input data is commenced (which will be described
further later on in this section). For that purpose, a PlayerModel has an NSMutable-

78 5. Final System Development

Dictionary2 to store the note actually played by user (value) in connection to the
notes resulting from the processing (keys) for as long as it is held as well as a set to
query, and change this dictionary (isNoteSounding:, addNoteSounding:forNote:
and removeNoteSounding:).

A PlayerModel also reports a set of events to its corresponding PlayerController
with the help of NSInvocation objects (as the PlayerController is its Observer):
when
upcomingSoloIn: is triggered, an invocation triggers the method with the same
name in the PlayerController, while a call for setSoloing: leads to the invo-
cation of showSoloing: in the PlayerController. The model also reports note
events after processing with an NSInvocation triggering triggeredNote:forNote:
asActive:byPlayer: in the PlayerController that forwards the event to its own
methods notePlaying:forNote: or noteStopped:forNote:, based on the note
event being a NoteOn or NoteOff event that highlight or de-highlight the respective
buttons in the player field.

5.2.4 The Lead Sheet and Data Classes

An instance of the LeadSheetView class acts as a canvas, while at the same time
deploying the mechanisms to draw the pieces of information necessary to depict
the lead sheet. It is created by the MainController and positioned inside a NSS-
crollView3 on the main window acting as a frame. The instance observes the
PlaybackEngine (described in the next subsection) to receive the current time, and
obtains a reference to the current Song object to access information on the song.
To draw the basic grid, the chord symbols and the cursor, the LeadSheetView uses
NSBezierPath objects. These objects describe paths (in a view) that can be assem-
bled from lines and curves with the help of various methods (e.g., moveToPoint:,
lineToPoint:, curveToPoint:controlPoint1:controlPoint2:), and then drawn
to the lead sheet.

The basic grid is drawn by separating the lead sheet vertically into two to four parts
each part depicting a line with four or eight bars, based on the total number of
bars in the current song. Bars and beats are indicated by tick marks; their numbers
are decided by the metre of the song. With the time of the chord changes stored
in the ChordSymbol objects collected in the Song, the chord progression is drawn
using the notation stored in the symbol classes. An orange rectangle highlighting
the duration of the current chord is drawn by using the class methods fillRect:
and strokeRect: of the NSBezierPath class. The current time is depicted by a red
vertical line (the cursor) on the current part of the song.

Song and ChordSymbol are simple container classes with setter and getter functions.
A ChordSymbol object encapsulates the time of the chord change as beat, bar and
tick (all int variables) as well as a textual notation of the chord symbol in an
NSString object. An instance of the Song class contains the song’s name (NSString),
its tempo , number of bars and chords, and the denominator and numerator making
up the song’s metre (all int) as well as an NSArray of the ChordSymbols defining

2An NSMutableDictionary is a version of NSDictionary that can be dynamically resized by
adding or removing key-value pairs.

3NSScrollView is a subclass of NSView meant for contents of arbitrary size that can then be
browsed by using the scroll bars.

5.2. Implementation 79

the song’s structure. The latter object can be queried by their index, as a sequential
processing of the chords was expected.

5.2.5 Singletons

A Singleton class needs to ensure that only one instance can be created by itself.
Therefore, constructors are declared to be private, and are only triggered by a static
function that can be triggered by other objects, without having an instance to begin
with. The single instance is managed by the class in a static instance variable: if
the object is requested, this variable is checked to be empty (i.e., if the class has not
yet been instantiated). In that case, the constructor is triggered, and the resulting
object is stored in the instance variable, and a reference is send to the enquiring
client object.

5.2.5.1 PlaybackEngine

Objects can register as Observers with the PlaybackEngine by triggering its
addObserver: method that is parameterised with the calling object’s id to be stored
in an NSMutableArray. Tto receive the notifications produced by the Playback-
Engine, the Observers need to implement a set of public methods: setBar:andMea-
sure:andTick: to frequently receive the current time, chordChangedToNumber: to
get updates on which chord is current, playbackStopped to be notified when the
stop button is pushed, and songHasChanged to know if a new song has been loaded
into the system. These methods are triggered from the PlaybackEngine using one
NSInvocation object per method.

The system clock was implemented in its own thread: when the play button is
pressed, the method startPlayback is triggered in the PlaybackEngine. This
method locks an NSLock object — an instance variable of the PlaybackEngine —,
and invokes a private method called play using detachNewThreadSelector:toTar-
get:withObject: from the NSThread class to swap out the system clock to a new
thread. The play method initiates an NSTimer object with a delay time correspond-
ing to the current tempo, after which it will frequently trigger the method nextTick.
This object is then attached to a newly created NSRunLoop object, and the NSLock is
again locked, thus assuring that the thread is going to run until the main thread (in
which the lock was initially locked) will unlock the NSLock. This was implemented
in the method stopPlayback that is invoked when the stop button is pressed. Af-
ter that, the thread running the clock can release the NSLock, and invalidate the
NSTimer — thereby stopping the clock — and stop itself.

The method nextTick implements two tasks: initially, it increases the tick count on
invocation, and adjusts the time that is stored in three int instance variables: bar,
beat, and tick. After that, it calls the method setBar:andMeasure:andTick to
inform the Observers of the new time. This method also checks if the time for the
next chord change is already reached. If that is the case, the method chordChange
will be called: here, the chord change is propagated to the Observers, and the time
of the next chord change is extracted from the Song object.

Besides running a system clock, the PlaybackEngine also holds the Song object
encapsulating information on the currently loaded song. On creation, the engine
instantiates a default Song with a simple structure. When a song file is loaded, the

80 5. Final System Development

BackendDummy passes the song’s name, numerator and denominator of the metre, an
NSArray with the ChordSymbols, and the number of bars in the song through the
MainModel on to the PlaybackEngine. Here, a new Song object is created with this
set of data, and the Observers are informed that a new song had been loaded.

5.2.5.2 RecordingEngine

At the beginning of a performance, the RecordingEngine needs to be prepared for
recording. Accordingly, the method prepareRecordingFor:andDenominator:and
Numerator: was supplied that is triggered with the number of players and infor-
mation on the song’s metre (numerator and denominator). This method creates
the main header for the MIDI file (by calling createHeader) and the header for all
tracks (by calling createTracks), supplying two tracks per player (for input and
output).

The main header and all tracks are kept in separate char-buffers. This separation
is necessary because the MIDI file format defines that the tracks must be stored
successively. The buffer for each track is initialised with 100 kilobytes of memory
to offer enough space even for long and excessive performances. Furthermore, a
position counter containing the current position in a track and an instance variable
containing the time of the last event are created per track. The latter variable is
necessary due to the fact that events are noted in the MIDI file format including not
the absolute time of their occurrence but the relative time relating to the last event
in the same track.

A note event is reported to the engine by triggering the method noteTriggered:for
Note:asActive:byPlayer:atTime with a list of notes to be played, the original note
value triggered by the player, a bool value identifying the event as a NoteOn (true)
or NoteOff (false), the number of the accountable player, and the absolute time of
the event in ticks. The method first calculates the relative time of the event, decides
on a velocity value (100 for NoteOns and 0 for NoteOff s), and adds the event to the
respective tracks: for player i, the original note is stored in track i while the list of
notes obtained from processing the original note are stored in track i+1. The private
method addData:inTrack: is used to add each piece of information (relative time
of the event, type of the MIDI message, note values, and velocity) serially each time
adjusting and checking the position counter of the track as some space is needed at
the end of each track for special marks (end of track). If there is only space enough
for these marks in one of the tracks, the recording is stopped.

Some data in MIDI files — like the relative time of an event — needs to be stored
in a special format, variable quantity bytes. These bytes are used as seven-bit en-
tities leaving the last bit to indicate the end of a sequence of these bytes. This
allows to encode an arbitrarily-sized piece of data as a progression of these variable
quantity bytes. To encode data in this format, the method convertToVariable-
Size:toTrack: implemented a method described by Glatt [2001].

If the recording is somehow stopped — by pushing the stop button or if a track
buffer is full —, the method endRecording is triggered. It first calls closeTracks,
a method adding the end marks to all tracks, and then combines the main header

5.2. Implementation 81

and all tracks in one NSMutableData object4. This object allows storing its contents
in a file, which is done before the buffers are finally freed.

5.2.5.3 BackendDummy

As the BackendDummy is meant to reflect the back-end’s characteristic to be unaware
of its clients, a client (in this prototype the MainModel is always this client) needs to
deposit an id — preferably its own — when querying one of the back-end’s services
through the BackendDummy that the Singleton uses to send the results to. Again,
this is done via NSInvocation objects, expecting the client to implement a set of
methods corresponding to the available services.

To load a song into the back-end and obtained information on that song, the
BackendDummy supplied the method openSong:forClient: that needs to be trig-
gered with the name and path of the song file to be loaded. This filename is then
passed on to the instance variable of the CJFramework, calling the back-end’s load-
Song method. After that, a CJSong instance can be requested, from which the
necessary information can be extracted. These are fed to an NSInvocation, includ-
ing an NSArray with the ChordSymbol objects corresponding to the song’s structure.
The NSInvocation object, if invoked, passes this information to the client by trigger-
ing the client’s setSongName:andMeterDenominator:andMeterNumerator:andTem-
po:andChordSymbols:andNumberOfBars:.

A client can also report a chord change to the BackendDummy by triggering
chordChangeNumber:occuredForClient:. This method passes the number of the
new chord to the CJFramework thereby triggering the analysis for that particular
chord. Then the new note probabilities and chord voicings are passed to the client,
both stored in NSArray objects. To achieve this, another NSInvocation triggers the
client’s setVoicings:andProbabilities: method.

5.2.6 The MIDI Classes

An application willing to connect to a MIDI port in Mac OS X needs to execute a
few steps: initially, a reference to an endpoint needs to be received5, and a MIDI-
ClientRef needs to be registered with the CoreMIDI server. Finally, the port to use
that again differs for input and output ports needs to be created. The MIDIio class
defines the basic behaviour for these steps deploying the Template Method design
pattern that describes the method of an abstract class depicting the skeleton of a
algorithm calling other functions to be defined by concrete subclasses. With this
mechanism, every subclass can create its own version of the algorithm by redefining
the different steps — the different functions called by the Template Method — while
leaving the course of events in the algorithm unchanged.

Whenever an object from the MIDI class hierarchy — based on MIDIio — is created,
initWithEndpoint: (a Template Method) is called with the number of the end-
point to use, which calls initEndpoint:. This method itself is a Template Method
calling getEndpoint: (re-implemented by MIDIInput and MIDIOutput to either

4An NSMutableData is a version of NSData that can be dynamically resized by adding or
removing data buffers.

5The function to use is dependent on whether the endpoint is a source (for input) or a destination
(for output).

82 5. Final System Development

use MIDIGetSource or MIDIGetDestination) to receive the MIDIEndpointRef be-
fore creating and registering the client reference via MIDIClientCreate. After that,
initWithEndpoint: triggers initPort that again is redefined by the classes derived
from MIDIio to use MIDIInputPortCreate or MIDIOutputPortCreate. MIDIInput
thereby registers a callback function — readProcedure — that can then be be called
by the CoreMIDI server in case a MIDI message is send to the respective input port.

If such a message occurs, readProcedure receives a MIDIPacketList with a set
of MIDI messages. This packet list is fragmented into messages by handleMIDI-
Packet:, each time calling handleMIDIMessage:onChannel:withData:withData2:
atTime. This method is redefined by KeyboardInput6 as well as BatonInput7 to
incorporate the respective behaviour.

For the recognition of gestures, BatonInput supplies several instance variables for
each baton: two int arrays with two elements each (representing x and y co-
ordinates) to store the initial coordinates of a gesture, and the last coordinates
of the baton for comparison, a bool to indicate if a gesture is in progress, and a
UInt64 to store the start time of the gesture in. Changes in the coordinates of a
baton are reported via ControlChange MIDI messages.

If no gesture is in progress, the BatonInput object waits for the first downward
movement by comparing newly reported y coordinates with the one stored last.
On the occurrence of this downward movement, a new gesture is declared to be
in progress and the current coordinates and the time are stored. When the baton
moves upward then next time, the gesture is declared to have ended, the velocity is
calculated using the size of the gesture (initial y value of the gesture decreased by
the current y value) and the duration (current time decreased by the initial time of
the gesture) in the function calculateVelocityForDistance:startedAt:, and the
gesture is finally reported to the PlayerModel deploying the last x value as position.

To enable the triggering of notes in a sound source (here: SimpleSynth), the MID-
IOutput class provides two similar functions as the keyboard provides both No-
teOn as well as NoteOff message, while the gesture recognition only triggers the
start of a note. playNote:atVelocity: only forwards note value and velocity
to sendMIDIMessage:withData1:withData2:forMillisecs: with a duration of 0
milliseconds, while playNote:atVelocity:forMillisecs: receives a specific du-
ration to forward. sendMIDIMessage:withData1:withData2:forMillisecs: uses
these pieces of information to create MIDIPackets to be sent to the registered port.
If a specific duration longer than 0 milliseconds is given, a NoteOff packet is created
and provided with a time-stamp calculated by adding the duration to the current
time. The respective message is stored in the CoreMIDI server when sent off, and
is forwarded to the port when the time stated by the time-stamp is reached (thus
delaying the NoteOff for the given duration).

The AccompanimentOutput class adds the behaviour necessary for calculating and
automatically playing notes: on creation an object registers as Observer with the
PlaybackEngine so that setBar:Measure:Tick: is triggered whenever a new tick is
produced by the system clock, and the object can check whether the NSDictionary

6In KeyboardInput, this method forwards NoteOn and NoteOff messages to the PlayerModel.
7In BatonInput, the redefined method triggers the gesture recognition and informing the Play-

erModel on gestures.

5.2. Implementation 83

containing the current melodic pattern includes one or several notes stored in an
NSArray (value) for the current tick in relation to the current bar (key). If this is
the case, each note is send with a specific duration and a determined velocity using
the functions inherited from MIDIOutput. The duration is calculated whenever is
triggered by the PlaybackEngine to account for changes in tempo. It is set to the
duration of a beat at the current playback speed to allow a fluid performance of the
walking bass (so each notes passes into the next).

5.2.7 Input Processing

The processing of the input data is triggered whenever a note or gesture is reported
to a PlayerModel object. This model then hands over the incoming data to the
current InputProcessor object for processing (is further described below), reports
all resulting notes to its MIDIOutput object to trigger them, and then reports the
whole event (including original and resulting notes as well as the processed velocity)
to its Observers for recording, displaying, etc.

5.2.7.1 Note Processing

When incomingNote:atVelocity:atTime: is triggered in the PlayerModel, this
model calls the function processNote: of the corresponding InputProcessor. This
function implements the algorithm described in subsubsection 5.1.4.1 as a Template
Method. Each step of the algorithm is implemented in an own function, leaving the
last step — the determination of a chord voicing — to be re-implemented by In-
putProcessor’s subclasses, since it is the only varying step. processNote: returns
an NSMutableArray with the notes to be played.

isError: is triggered first by processNote: with the note value of the originally
played note. It returns a bool value stating whether the note is assumed to be played
by mistake (i.e., by accidentally hitting two keys with one finger) or on purpose, in
the first case cancelling the algorithm causing it to return an empty array. For
the determination, the notes are classified by the keys representing them on the
claviature8 as their positions cause these unwanted occurrences: if a black key is
situated next to a white key, this white key can either be unintentionally be pressed
by slipping from the black key or by slightly missing the centre of the next white
key (beyond the black key), and pressing both white keys with one finger.

The InputProcessor furthermore holds an array of 128 UInt64 variables represent-
ing the time of the last invocation of each of the 128 notes (as defined by the MIDI
protocol). For the incoming note, the notes that could be involved in its uninten-
tional triggering are identified, and the times of their last invocation is compared
with the current time. If one of the time differences is smaller than 10 milliseconds,
the incoming note is declared to be played by mistake. If the whole algorithm is not
cancelled by this or one of the other functions, the current time is noted in the array
of invocation times for the incoming note value.

The next step is implemented by the function called findMostProbableFor:. If
the probability of the incoming note falls below a threshold (based on the instru-
ment skill), this function compiles a list — an NSMutableArray to be exact — of all

8Three classes of keys are defined: black keys, white keys with only one black key to the left/right
and white keys surrounded by two black keys.

84 5. Final System Development

notes in the neighbourhood of the incoming note sorted by descending note proba-
bilities. The size of the neighbourhood differs based on the instrument skill set by
the user (corresponding to the Command of the instrument aspect in the options
dialogue). Beginning at the top of that list (with the most probable note in that
neighbourhood), findMostProbableFor: checks for each note if it is already play-
ing by triggering isNoteSounding: in the MainModel until a note is found that is
not sounding already. This note is declared to be the most probable note for the
incoming note and returned for further processing by the algorithm.

neighbourhoodTooDenseFor:, implementing the next step, checks whether too much
notes in the neighbourhood of the note determined in the last step are already play-
ing, and cancels the algorithm if the result is positive. For that purpose, a weight
for each note in the neighbourhood9 is calculated as

weight(i) = |1/(incoming note− i)|

using the distance of i to the incoming note. For all notes in the neighbourhood that
are already playing, the weights are added up and compared to a threshold that is
determined based on the instrument skill. If the result surpasses the threshold,
the density of playing notes in the neighbourhood is declared to be too high. The
threshold was configured to assure for novices that if the two neighbouring notes of
the incoming note are already playing, the density is deemed to be to high, while
experienced users are not affected by this function. A bool is returned stating
whether the density is too high, cancel the rest of the algorithm if the value is true
(also-called YES in Objective-C).

The last step in the algorithm is the determination of a suitable chord voicing for
the note determined by the preceding part of the algorithm. For that purpose, In-
putProcessor declares the function findSuitableChordFor: that returns an NS-
MutableArray, and is implemented by the NoviceProcessor and the AdvancedPro-
cessor. The first of these derived classes deploys the one-key chord triggering mech-
anism similar to the one deployed in the first prototype. Here, findSuitableChord-
For: checks the array of voicings delivered through the
PlayerModel from the MainModel on each chord change for a chord with the in-
coming note as its lowest member (thereby following the selection criteria used in
the first prototype to manually determine chord voicings for the static mappings).

The version of findSuitableChordFor: implemented by the AdvancedProcessor
class supplies the algorithm with the new three-key chord triggering mechanism. It
checks the chord voicings for a suitable candidate by inspecting whether a voicing
contains the incoming note. This process involves checking it for comprising the
incoming note disconnected form its octave (leaving the value between 0 and 11) or
the same value increased by one octave (between 12 and 23) as the chord voicings
used can span over two octaves. If this should be the case, the other members
of the octave are brought to the respective octave, and it is checked if they are
already sounding with isNoteSounding: in the PlayerModel. The chord voicing is
declared to be suitable if the number of sounding members surpasses 1, which means
that two of its notes in the respective octave are already sounding extended by the
note currently being processed (resulting in three sounding notes from that voicing).

9The neighbourhood includes two notes to either side of the incoming note.

5.2. Implementation 85

Since the notes in the chord voicings are stored independent of the octave to use
(i.e., as the values 0 to 11, and if a voicings spans over two octaves, the values 12
to 23), the incoming note needs to be disconnected from its octave (bringing it to
the range between 0 to 11), and the resulting voicing needs to be transposed to this
octave (by adding 12 ∗ octave to each chord note) in both versions of the function.

In addition to the steps described in the algorithm, processNote also triggers
recalculateTemporalDensity that is used to rate the number of notes played per
time whenever the user is accompanying and not soloing. It calculates the so-called
velocityBendingFactor that is used in the processing of velocity values (described
later on in this section), based on this rating. The temporalDensity itself is cal-
culated as described in subsubsection 5.1.4.3, and if its value surpasses a threshold
based on the collaborative skill (corresponding to the Experience in group perfor-
mance aspect in the options dialogue), the value of the velocityBendingFactor is
doubled.

The PlayerModel first stores the result in the NSMutableDictionary thereby allow-
ing the retracing and removal of the notes processed based on the original note as
soon as the corresponding NoteOff arrives. After that, the MIDIOutput to send of
the corresponding MIDI message for each of the newly determined notes, and the
Observers (MainModel and PlayerController) are informed of the new note event.
The sequence diagram in figure C.2 (Appendix C) depicts the flow of events during
the processing of a note.

5.2.7.2 Gesture Processing

The processing of a gesture is started by the triggering of incomingGestureOfType:
atPosition:atVelocity:duration: in the PlayerModel that in turn calls pro-
cessGesture: in the InputProcessor. This function implements the procedure
described in subsubsection 5.1.4.2 with a slight variation: in order not to lose the
precision of the note probabilities stored in float-variables, the input area of the
batons is mapped to the probability space of the two octaves, and not the other way
around. Yet, only a probability space covering one octave is used to speed up the
calculation, and the resulting note is transposed up one octave if the position of the
gesture should be > 63. To calculate the note, the position (subtracted by 64 in the
case just described) is brought to the probability space by dividing it by 64. Now,
the probabilities for the notes in the octave are added up one after another, each
time checking whether the value calculated from the gesture’s position is surpassed,
in which case the note whose probability was added last is the note to be triggered.
Figure C.3 (Appendix C) shows the course of events necessary for the whole process
in detail.

5.2.7.3 Velocity Processing

The processing of the velocity of incoming events is not dependent on the type of
event; both notes and gestures are treated equally in that respect. So, in both incom-
ingNote:atVelocity:atTime: and incomingGestureOfType:atPosition:atVe-
locity:duration: of the PlayerModel object the InputProcessor’s function pro-
cessVelocity: is triggered. In this function, the velocity is first divided by 128
to receive a float value between 0 and 1. This value is then raised to the power
of the velocityBendingFactor previously calculated recalculateTemporalDen-
sity:, thereby decreasing it if this factor is larger than 1. The result is multiplied

86 5. Final System Development

by 128, and rounded to obtain the corresponding velocity value that finally is re-
turned by the function.

5.3 Analysis

Similar to the analysis phase of the last DIA cyle, a set of user tests was conducted
to allow an evaluation of the system. Again, the users were asked to play with the
system with no imposed time-limit. Yet, the users were asked to use the system in
pairs to account for the newly introduced concept of collaboration.

5.3.1 User Tests

For this prototype, a more thorough user study was conducted with a total of 20
subjects. Four of these subjects tested the system on their own, which was mostly
due to problems in the schedule, while the other 16 were grouped in pairs to co-
operate in using the prototype.

The group of subjects was this time composed of a wider spectrum of people. As
the level of support the system provides was adjusted to the users’ skills, it had to
be checked if that support was suitable for all the different user groups. Three of
the subject had actual experience in jazz sessions, one with playing the trumpet,
another one using a guitar, and the last one playing piano. Additionally, two people
with some classical education in playing the keyboard or piano tested the system.
The rest of the subjects consisted total novices in the field of music and some hobby
musicians.

Again, questionnaires were handed to the subject right after the tests. Since the
supporting mechanisms of the system were more sophisticated this time, a more
thorough enquiry was necessary this time. The collaboration aspect needed to be
covered as well as the appropriateness of the support by the system.

5.3.1.1 Procedure

At the beginning of a test, the subjects were asked to settle what instrument each
subject would play. Some of the subjects were eager to try both instruments, which
was not prevented, but to keep the tests within a certain time the pairs were only
asked to perform in one setup. After that, they were asked to decide on a song to
play. Since most of the subjects were not familiar with the songs provided by the
system, the choice was usually made at random. Finally, they had to adjust the skill
settings according to their own ability.

Before starting the performance, the subjects were asked to watch the prototype
closely while playing. They were not explicitly told about the collaboration mecha-
nisms to test how these mechanisms would affect the performance. The duration of
the performance could freely be chosen by the subjects, which again was a matter
of coordination between the two subjects. Single user tests were conducted very
similar, as the activity was not very different in that case, and the collaboration
mechanisms were not active for one person only. Similar to the last user tests, the
subjects received no further information on the song they chose like a score.

5.3. Analysis 87

5.3.1.2 Questionnaires

The questionnaires were divided into four sections starting with the enquiry of per-
sonal data. Here, the users were asked to name their main instrument (if any), how
long they have been playing it, what other instruments they play occasionally, and
the duration of their musical education so far. The second section asked for general
information on the test like the song performed in the test, what instrument the sub-
ject had played, and if he had played that song before. Furthermore, the subjects
were asked which skill settings they had used in the system to check whether they
would make consistent statements on their abilities before and after the test (for
that purpose, the settings in the system were noted at the beginning of the test).

The third section comprised statements on the test process with a consistent rating
scheme. The subjects could rate each description by choosing one of five levels
between “always applicable” and “never applicable”. Some of these sentences were
related to question in the questionnaire covering the tests of the last prototype since
similar or same aspects had to be checked again. The requirements and aspects
of the new prototype had to be covered as well, and therefore, a set of additional
aspects were covered by other statements. The first set of descriptions was meant
to cover the subject’s conduct during the test, as well as their perception of the
system’s reaction to the users’ input, and how it affected their performance:

1. I followed the chord symbols during the performance.

2. I followed my own performance on the screen.

3. This feedback did help me in performing.

4. I perceived to play something suitable.

5. I perceived to have control over my performance.

6. The system clearly enhanced my input.

7. It was obvious how the system supported me.

8. The system corrected “wrong” notes in my input.

9. I would need more assistance to find nice melodies.

10. The assistance to play chords was really helpful for me.

11. The system has lowered my inhibition threshold to try new things.

12. The system has help me to enjoy the performance (even more).

The subsequent set of statements was added to evaluate the collaborative aspect of
the system. The subject should rate their behaviour towards each other, as well as
how they co-operated and the systems support in that context.

13. My partner and I played well together.

14. The system helped us with that by systematically deploying support.

88 5. Final System Development

15. It was obvious how the system structured the session.

16. I noticed in time if my solo was going to start.

17. I noticed in time if my solo was going to end.

18. My partner did not interfere with my solos too often.

19. I did not interfere with my partner’s solo too often.

Finally, two statements were appended to obtain the subjects’ overall impression of
the system:

20. The system has sufficiently supported my performance.

21. The system has limited my performance too much.

The questionnaire was concluded — similar to the last questionnaire — with a
section asking for personal remarks, opinions, and suggestions for improvements by
the subject. In contrast to the questionnaire used in the last cycle, this aspect was
this time presented in an own section than just being one point in a list of questions.
This classification was due to the fact that it had proven to be a beneficial source
of further information and useful proposals leading to some of the design decision
implemented in this prototype. Again, no time-limit was imposed on filling out the
questionnaires.

5.3.2 Results

Some problems of the system became apparent very quickly during the tests just from
observing the subjects: while subjects belonging to the group of absolute novices
seemed to be pleased with the amount of support, especially intermediate users
often had a hard time coping with assistance. The experienced keyboard players,
for example, were very irritated by the fact that the system would sometimes play
a different note than what they originally played.

It was also obvious that the deployed tuning of the musical assistance with the
help of the skill factors did not cover all the cases present in the group of subjects.
The jazz trumpet player, for instance, had thorough knowledge of jazz theory, and
thus knew what she wanted to play. Yet, she only played the piano occasionally
causing the system to correct some of her input, which led to her complaining about
the prototype’s behaviour. In Addition, some subjects stated that the levels for
the skills did not include their special case by pointing out that they would rate
themselves in-between two of the levels of an aspect in the options dialogue.

There were also problems concerned with the velocity: On the one hand, some of
the novices were not used to the half weighted keys on the keyboard deployed for
the tests. They had a hard time playing loud, and it often took them some time to
figure out that more impact on a key would result in a louder note. On the other
hand, the bending of the velocity curve for accompanying users was initially meant
to detain them from playing too loud conveying them to perform more subtly. Yet,
this mechanism often led to the opposite behaviour as some user tried even harder
to make their performance heard once they noticed it to grow more mute.

5.3. Analysis 89

This effect was intensified even more by two other problems of the prototype: On
the one hand, the display of the users’ roles and the announcement of upcoming
solos were often overlooked. Some of the subjects would just play on independent
of the display. These circumstances were very bothersome especially for the subject
playing the batons as the keyboard was explicitly louder. On the other hand, the
gesture recognition deployed for the batons did not work reliably. All subjects had
a hard time to play a sequence of notes with one baton, and the condition even
worsened when using the second baton in addition. Additionally, the feedback for
the batons — also on a virtual keyboard — seemed to afford for most subject’s to
try hitting specific notes that sometime distracted them from creating melodies.

The second mechanism for chord triggering — using three keys — was not as ac-
cepted by the subjects as expected; often they did not notice its application in the
performance, and some subjects did not even understand the statement on this fea-
ture in the questionnaire. Nevertheless, one of the subject explicitly complained
about the mechanism being applied all over the claviature. He mentioned that even
when trying to play a melody with his right hand the system would sometimes add
notes to form chords.

The length of the solo seemed to be problem for most subjects. The jazz musicians
explained that eight bars are inappropriate to develop a melody in especially as the
time grows shorter in faster songs, while some of the novices seemed to be in a hurry
just to keep up with the structure of the session. The later fact was also due to the
announcements starting only one bar ahead of the next solo.

Besides these problems, the tests also showed improvements in the new prototype:
the mechanisms to filter out mistakes (the unintentional pressing of a key and press-
ing too many neighbouring keys at the same time) were not discovered by any of
the subjects, yet, the recordings of the performances show that they were applied
in numerous performances. It can be argued that this fact proves the assumptions
leading to the development of these mechanisms. Some of the subjects who had also
attended the first user study expressed their opinion that the new prototype was a
big improvement over the first one, as its behaviour proved to be more flexible (as
intended by the new design). They stated to have had a much more satisfying expe-
rience compared to the first round of tests. The new user interface was mentioned
to be concise, and the depiction of the lead sheet seemed satisfactory to all subjects
since experienced users could get enough information, while novices often ignored
the chord symbols.

Some of these results were also confirmed by the users’ ratings of the statements in
the questionnaire; the values derived suggested that the better the subject’s com-
mand of the instrument is, the more likely she is to follow the chord symbol at the
same time being less likely to use the feedback displayed by the system. Similar to
the results of the first user study, the users’ ratings of the statements on their percep-
tion of their own performance (i.e., feeling to be in control and of playing something
suitable) were rather inconclusive since they varied heavily. The statements on suf-
ficient support and being too restricted were rated analogously although a slight
relation between the subject’s knowledge in musical theory and those statements
was visible (with more knowledge, the support was rated to be less sufficient, while
the subject’s felt more restricted). These observations still need to be confirmed by

90 5. Final System Development

an in-depth statistical analysis. Since this would go beyond the scope of this thesis,
it is left for future work.

5.3.3 Discussion

With these results, the aspects in the system to be adjusted were rapidly identified.
The discontent of the advanced users with the support was mainly due to the manner,
in which the various mechanisms and features were tuned with the help of the skill
parameters since most features were tuned with only one of the parameters. This
resulted in some special cases (e.g., the jazz trumpet player not used to playing the
keyboard) not being supported correctly. Additionally, the classification of the skill
parameters still seemed to be too rough to account for most cases. The difference
between classical musicians and jazz musicians10 also seemed not to be sufficiently
covered by the parameters.

In terms of collaboration, the announcement of a solo change and the display of
the roles was insufficient and clearly in need of a more highlighted representation.
This new depiction, of course, needed to be accompanied by the introduction of
longer and more flexible soloing times. A solo’s duration should not be bound to the
tempo of a song since this leads to a hectic change of soloist for fast songs, while in
slow songs the accompanying players wait too long for their turn. This should also
limit the effect of the velocity bending mechanism to animate users to play harder
since they would be better informed on their own role. Still, this mechanism seems
unavoidable to support the soloist in being the centre of the performance. To further
ease the effect just mentioned, the velocity curve should not be bent as hard.

As for the chord triggering, the mapping of the mechanism and the feature itself
needed to be revised. The mechanism should be able to decide on the coherence
of several pressed keys. It could also be beneficial to deploy different mechanism
distributed over the claviature since chords can be played over the whole keyboard,
while being applied differently in certain areas.

The depiction of the feedback for the batons proved to be inappropriate, as it deploys
a precise metaphor for this interface with rather fuzzy control. To reflect the char-
acteristics of the batons, a fuzzy feedback would be more adequate, and should not
mislead the users into anticipating precise control. Accordingly, a suitable metaphor
for displaying the gestures should be found.

5.4 Changes in the Third Cycle
The changes necessary to eliminate the identified problems were viable, without a
total restructuring of the system. The problems only indicated the rearrangement of
some mechanisms and the addition of other aspects. Furthermore, the back-end was
also altered with the help of the findings in the last user study. Some of these changes
had to be accounted for in the front-end: First, the probabilities are calculated for
all 128 notes as defined by the MIDI standard in the revised back-end, leading to
some modifications in the mechanism for note and gesture processing. Secondly,
probabilities are now determined for each player individually, since the back-end
also uses the users’ input to calculate the probabilities. Accordingly, a mechanism
for reporting note events to the back-end had to be added, and the distribution of
the probabilities needed to be changed for individual assignment.

10In contrast to jazz musicians, classical musicians are not used to improvising.

5.4. Changes in the Third Cycle 91

5.4.1 Design

The redesign of the system followed one basic principle: the original design should
be maintain as much as possible, since the overall design of the second prototype
(graphical user interface and architecture) had proven to be effective in regard to
the main goals of the system. Therefore, the main mechanisms were retained and
extended if necessary. The architecture was only slightly altered to reflect some of
the changes made. Figure 5.11 depicts the interaction concept, and the output of
the final system.

Lights

Accompaniment &

Altered Performances (R)

 F

e
e

d
b

a
c

k

L
e

a
d

 S
h

e
e

t

Accompaniment &

Altered Performances (L)

Off/On On/Off

0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1

0 1 0 1 0 0 1 0 1

N
o
te

s
G

e
s
tu

re
s

coJIVE

Application

Lights

Speaker Speaker

Digital Note Stand

(Display)

Figure 5.11: The interaction concept of the final system.

5.4.1.1 Performance Control

To further conform to real jazz sessions, a mechanism for reciting a song’s main
melody (theme) was needed; most users cannot be expected to play a given melody
even with a notation. For that purpose, the melodies of the songs mentioned in
subsubsection 5.1.1.3 were stored in MIDI files and referenced in the files describing
the songs. In accordance with real jazz sessions, the revised system starts a session by
playing the theme11, after which the usual solo alteration commences. The repetition
of the theme after the solos was left out intentionally. Since the users’ performances
would be over by then, the users would surely not be willing to listen inactively to
the system performing the melody again. The bass creation mechanism was also
altered to allow more varied bass-lines. The calculation algorithm was changed to
approach the first bass note of the next bar with the last notes in the current bar
to achieve more fluid transitions. Additionally, some bass-lines were stored in MIDI
files and referenced in the song fields analogously to the themes. If such a bass-line

11While coJIVE recites the theme, all users have the role of accompanying the theme.

92 5. Final System Development

is present for the current song, the automatic calculation of the bass performance is
suspended.

The length of solos was changed from a predefined number to a dynamically calcu-
lated number of bars spanning between 30 seconds and one minute. The calculation
is based on two aspects: the tempo of the song and the behaviour of the soloist. To
evaluate the latter aspect, the number of note events and their mean velocity in the
time of each beat is recorded. These values are especially recorded after 15 seconds
into the solo as presumed peaks assuming the user to have realised his new role
by that time (should they fall below certain values, they are substituted by default
values). After about 25 seconds into the solo, and then repeatedly 5 seconds before
a granted prolongation ends, a decision is made whether to increase the solo length
for about 15 seconds based on the recorded values. This prolongation is not granted
if the values mainly decreased over the last 10 seconds, their mean values are below
50% of the presumed peaks or the prolonged solo time would surpass the limit of 1
minute.

This new structuring of sessions, of course, needed to be supported by new ways of
communicating the roles, and changes to the users since the depiction deployed had
proven to be insufficient. A new metaphor was found to implement this communi-
cation: the spotlight. On a stage, the leading musician is sometimes highlighted by
levelling a spotlight at her. To emulate this procedure in coJIVE, a Teleo system
[Making Things LLC, 2002] was applied. This hardware module is connected to the
computer via USB and controls two LEDs (one for the keyboard and one for the
batons). The LED representing the current soloist is lit, and an alternating blinking
of both LEDs is used to indicate an upcoming solo change. Beside this visual medi-
ation of the session’s structure, an audible signal was also included by altering the
drum accompaniment. In the last bar before a solo change, the drum plays a short
fill-in deviating from its usual pattern to imply the change.

5.4.1.2 User Support

The user level scheme was further adopted to deploy a continuous range of values
for each parameter instead of discrete levels. Accordingly, a user’s ability for each
parameter can be approximated in more detail. As the old scheme also did not
properly account for the differences between jazz musicians and classical musicians,
an additional parameter (Knowledge in jazz theory) was appended to allow the
estimation of the users’ abilities in the field of jazz.

To approach the problem of the system not properly supporting advanced musicians,
the thresholds used to configure the assistance features were adjusted. The formulas
used to determine their values were redesigned to reflect the different skill param-
eters’ influences on the respective aspects. Such a formula was initially set up to
produce the correct values for the most basic cases — total novices and experienced
jazz musician —, and then was altered step by step to cover some of the special cases
experienced in the last user study (i.e., producing the values leading to the desired
behaviour of the system).

The chord triggering mechanism was again extended by another mode: two key
triggering. With this mode, a more fluent transition from one- to three key triggering
was enabled as some of the advanced users had problems pressing a three key chord.

5.4. Changes in the Third Cycle 93

Similar to the one key triggering, the lowest member of a voicing to be played must
be pressed to establish a connection between the keys pressed and the overall pitch of
the voicing. For the two and three key modes, another aspect was introduced; keys
had to be pressed within a certain time-limit to be considered in the calculation.
The users are able to play freely with several keys with this mechanism, while a
chord will only be triggered if the keys are pressed more or less simultaneously. The
time-limit itself is calculated based on the instrument and theory skills of the user —
it ranges from 0 to 400 milliseconds — to account for the fact that less experienced
users are not as fast at playing a certain chord. A new mapping of these modes to
the claviature (as shown by Table 5.1) was established based on one assumption:
if a user plays three keys belonging to a voicing simultaneously, it can be assumed
that he wanted to play a chord rather than a sequence of single notes.

Class of users (rough) Mode used for notes < C5 Mode used for notes ≥ C5

Novice One-key Three-key
Advanced Two-key Three-key
Classical Musician Three-key Three-key
Jazz Musician none none

Table 5.1: Chord-triggering modes used based on user level and position on the
claviature.

Since the velocity bending mechanism did not have the presumed effect, it was miti-
gated to not bend the velocity curve as hard. For inexperienced users, an additional
mode for this mechanism was introduced: during a solo, this mode bends the velocity
curve upwards to facilitate playing loud notes, since often novices are not familiar
with the principle of velocity on a keyboard.

A closer look at the probability values supplied by the back-end revealed that at least
one of three subsequent note values is very probable in a given context. Accordingly,
the size of neighbourhoods used to determine the most probable candidate based on
a note does not need to be dynamic. So, the mechanism for looking up the most
probable note was redesigned to only consider the direct left and right neighbours
of the incoming note.

To further improve performances with the batons, the notes playable were further
limited by using the same threshold deployed for finding the most probable note.
Notes less probable than this threshold are not represented by a virtual target and
cannot be played accordingly. This fact, of course, connects the batons to the users’
skills; more experienced users are more likely to cope with occasional dissonant notes.

5.4.1.3 User Interface

The graphical user interface, too, was only slightly changed since it had proven to
be effective for the most part. To provide a better overview, the button for opening
the options drawer was provided with an icon, and was placed alongside the other
buttons (open, play and stop) for a more consistent look. The previously neglected
second mode of operation for that button — if the drawer is open, another push of
the button will close it — was now added intentionally since some user had been
expecting the button two work with the two modes; the additional button for closing

94 5. Final System Development

the drawer was still left in the drawer. Changing the tempo of the playback had
been very cumbersomely with the two buttons. Accordingly, they were replaced by
a slider in the new design. Additionally, the labelling of the options button in the
player fields was changed to “Settings”, thereby preventing the users from confusing
it with the button for the general options.

Figure 5.12: The revised controls in the final system.

The changes made to the user level scheme also needed to be reflected in the options
dialogue. Sliders were used instead of the previously deployed radio buttons to
indicate the range to be continuous; they were each equipped with four tick marks
to imply levels similar to the previous version. To allow users to relate even more to
the statements, the descriptions at the tick marks were changed to provide a more
quantitative classification (e.g. “I play the keyboard once every six months”). The
same depiction was used for the new jazz skill parameter that was furthermore added
to the dialogue.

Figure 5.13: The new options dialogue for adjusting input and skill settings.

5.4. Changes in the Third Cycle 95

A more fuzzy feedback was created for the batons to reflect their type of control; the
range is depicted by a black rectangle with a single tick mark (middle C) to offer
rough orientation. Gestures are displayed as green circles in the determined note’s
area of the range, their radius indicating the velocity.

Figure 5.14: The feedback visualisation for the baton performances.

5.4.1.4 Altering the Architecture

For the playback of a song’s theme, another subclass of AccompanimentOutput was
created: ThemeOutput. After the back-end has loaded a new song, an object of that
class is provided with the theme. Similar to the other subclasses of Accompaniment,
it checks for the current time whether a note needs to be played (or stopped), and
acts accordingly.

AccompanimentOutput

DrumOutput BassOutput ThemeOutput

Figure 5.15: The extended inheritance tree of accompaniment classes.

Since the structuring of a session had become a more extensive task, the MainModel
was relieved of it, and the PerformanceStructurizer class was created for that pur-
pose. It includes NSMutableArrays for storing histograms on the players’ behaviour
in the session and implements the mechanisms for determining a session’s structure.
Therefore, it resorts to some of the functionality supplied by the MainModel for that
purpose (e.g., informing the player classes).

To facilitate the sending of note events between objects, which usually includes the
original notes values, the calculated notes, etc., a new container class was created.
NoteEvent encapsulates the note originally pressed by the user, the notes determined
by the system, the velocity, duration, time of invocation, and the player responsible
for the event. In the revised architecture, this class is deployed whenever a note
event leaves a PlayerModel and to represent note sequences (themes and bass-lines).
Figure 5.16 shows what other classes use the NoteEvent.

The displaying of the new baton feedback was separated from the PlayerController
class (responsible for the keyboard-based feedback so far) by creating a new subclass

96 5. Final System Development

AccompanimentOutput

RecordingEngine

<<Singleton>>

BackendDummy

<<Singleton>>

<<ObjectAdapter>>

NoteEvent

1..*

MainModel

PlayerModel

PlayerController

Figure 5.16: The new NoteEvent class and the classes that it is used by.

of NSView. FuzzyFeedback itself is a view, and is incorporated in the player fields.
It contains the mechanisms to depict notes as described in the last section. The
range of notes to display can be freely adjusted in an object of the class.

As the chord triggering mechanism — the only reason for the sub-classing of
InputProcessor — was changed to be applied not only depending on the users’
skills, one subclass per mode was inappropriate. Accordingly, the subclasses
NoviceProcessor and AdvancedProcessor were removed, and all the mechanisms
were integrated into InputProcessor. Figure C.4 shows the revised architecture of
the final system, and it is followed by further figures depicting detailed descriptions
of the classes present in this version of the system.

5.4.2 Implementation

The implementation of the changes, too, was created mainly by reusing and altering
the existing methods and mechanisms. Some of these methods were just slightly
extended or newly configured. Some changes in the system’s environment were also
put on for the implementation of the new concepts.

5.4.2.1 Environment

With some of the additional features to be implemented, new hardware was neces-
sary. And again, a new keyboard was used to further approach the feeling of a real
piano. This section will take a brief look at the new devices deployed in the final
version of the system.

Teleo
Teleo [Making Things LLC, 2002] modules are hardware components for rapid hard-
ware prototyping that can be connected to a computer via a USB port and pro-
grammed using various programming languages (e.g., C, Java). They offer the pos-
sibility to control other devices (like LEDs) or connect buttons and report events to
all applications that registered with the driver.

Casio Digital Piano
The keyboard used for the analysis of the final version of coJIVE is a digital piano
with 88 fully weighted keys. Its handling resembles that of a real piano very closely.

5.4. Changes in the Third Cycle 97

5.4.2.2 The New and Revised Classes

Similar to ChordSymbol, the new NoteEvent class is a container class with the data
described in the last section and the corresponding getter and setter methods. An
object of the class can be instantiated at two points in the system: as soon as the
processing of a note or gesture is completed, a PlayerModel creates a NoteEvent to
inform its Observers. MainModel forwards the event to the RecordingEngine and
the new PerformanceStructurizer, while PlayerController uses the information
for displaying feedback. The BackendDummy uses the information on the theme
and bass-line retrieved from the back-end to create a representation of these note
sequences in form of NoteEvent objects.

The ThemeOutput was based on the mechanisms supplied for the other subclasses
of AccompanimentOutput. Yet, a theme is stored in an NSArray instead of an
NSDictionary since the NoteEvents objects include the time of their occurrence
themselves. The theme is delivered by the MainModel that also instantiates the
ThemeOutput on the start of the application, by calling for the setTheme: method.
In playback, the ThemeOutput stores the first NoteEvent’s time of occurrence in three
int instance variables. As soon as this point in time is reached (i.e., when Play-
backEngine triggers setBar:Measure:Tick in the ThemeOutput object with the
corresponding values), the notes of the event are triggered (i.e., played or stopped,
based on the velocity), and the time of the next NoteEvent in line is stored.

The same mechanism is deployed for the BassTheme in addition to the bass calcu-
lation. To alter the calculation as described above, a set of NSArrays describing
the bass sequence for one bar by the indices of the notes in the delivered voicings.
Whenever a new voicing is delivered together with the root note of the next chord
(setNewChord:nextRoot:), the member of the chord voicing closest to the next root
note is calculated, and the respective NSArray ending with that member’s index is
chosen and used to create the NSDictionary for the “old” bass creation mechanism.

The PerformanceStructurizer is instantiated by the MainModel, and is informed
on the number of player whenever they change (using setNumberOfPlayers: and
PlayerLeft:). Most of the mechanism used to structure a session in the Main-
Model of the last prototype was re-implemented here, extended by the histograms
mentioned above and the functions to analyse their content. For each player, four
histograms are maintained: the density and velocity history for the current beat
and the whole session. As soon as a beat is completed, the recorded value for
density (number of events played during the beat) and the mean value of velocity
is transfered as the next values into the respective session history. The Perfor-
manceStructurizer is furthermore not directly connected to the PlaybackEngine
but receives notifications on each new beat and bar from the MainModel (i.e., by
triggering nextBeat or nextBar:).

To allow the decision on whether to prolong-ate a solo, several values are maintained
in instance variables and adjusted whenever the tempo is changed (as they approx-
imate a certain time in bars): the bar marking the next solo change, the number of
bars to inform the players on upcoming solos (about 3 seconds before the change),
the number of bars to take the peak values after (15 seconds into a solo), the number
of bars the current solo is running already, as wells as the minimum and maximum
number of bars in a solo. To incorporate the Teleo system that controlls the LEDs,

98 5. Final System Development

the corresponding library is used in the PerformanceStructurizer. With the help
of functions provided by this library, the LEDs can be turned on or off. Further
information on upcoming solos or actual changes of the players’ roles are forwarded
to the MainModel for distribution.

Like the LeadSheetView class, FuzzyFeedback is a subclass of NSView and uses the
NSBezierPath class to draw the background and circles. It was connected to the
player fields with the InterfaceBuilder tool. Therefore, an NSTabView was created,
and the buttons depicting the virtual keyboard and a FuzzyFeedback object were
placed in different tabs that could be selected by changing the instrument in a
player’s options dialogue. The range covered by the FuuzyFeedback can be set
via setRangeFrom:To: that also triggers the calculation of the central tick mark
depicting the C note nearest to the centre of that range.

The class also introduces a notion to adjust the feedback to the instrument used: an
instrument factor can be set via setInstrumentFactor: to an int value describing
the maximum number of notes simulatneously playable with the instrument (i.e.,
two note in the case of the batons). An NSMutableArray is filled with that number
of NSBezierPath objects, each one depicting a single circle representing a note. If
more than that number of notes is played, the first circle is deleted and replaced by
another circle depicting the new note.

To provide the revised back-end with the input from the users and to reflect its indi-
vidualised probabilities, the BackendDummy was extended. The MainModel informs it
of played notes by triggering its triggeredNote: method, thereby passing the notes
on to the back-end, and triggers the private method setProbabilitiesForPlayer:
to send the new probabilities to the player responsible for the note.

To set the number of players in the back-end, the MainModel triggers prepare-
ForClient:withNumberOfPlayers: in the BackendDummy as soon as the playback
is started. Whenever chordChangeNumber: is triggered, the new voicings are dis-
tributed similar to the last prototype, and the probabilities are distributed for each
player individually. The new private function convertMidiTrack: is used to trans-
form MIDI tracks received from the back-end12 into a series of NotesEvent objects.

5.4.2.3 Note and Gesture Processing

The new thresholds were implemented as instance variables of the InputProcessor
class and are recalculated each time the skill parameters are changed (and reported
to the processor object through triggering setInstrumentSkill:andTheorySkill:
andJazzSkill:andCollaborativeSkill:). Since the values for the skill parameters
come from a continuous range (0 to 3) as float values, the thresholds are also mostly
stored in float-variables. The following thresholds are used in the InputProcessor:

• probabilityThreshold:
0.0078 (1

128) is the basic value for this threshold coming from an equal distri-
bution. For more advanced players, 0.0048 is subtracted from that value to
allow outside notes slightly raised in probability by the back-end based on the

12The back-end loads MIDI tracks with the help of the jdkmidi library provided by Koftinoff
[1986-2004].

5.4. Changes in the Third Cycle 99

player’s input (described by Klein [2005] for more information) to be played.
The value

0.002 ∗ instrumentSkill + 2 ∗ theorySkill + 4 ∗ jazzSkill

7

is further subtracted to adjust the threshold according to its usage in the
system (e.g., the jazz skill is weighted higher than the other parameters since
jazz musicians should know what notes sound good).

• temporalDensityThreshold:
This threshold is used to configure the velocity bending mechanism in terms
the user is currently accompanying another user. It is calculated by the formula

2 +
2 ∗ collaborativeSkill + theorySkill + instrumentSkill + 2 ∗ jazzSkill

6
.

The collaborative and jazz skill parameters are weighted higher than the other
parameters since the threshold is used in a collaborative context especially
influenced by the characteristics of a jazz session.

• neighbourhoodDensityThreshold:
Since this threshold was deployed to determine whether a player properly used
the keyboard, it was mainly based on the instrument and theory skill param-
eter:

2 +
instrumentSkill + theorySkill

2
.

The 2 as the basic value arranges for absolute novices that if the left and right
neighbour of a note are sounding already, the note itself will not be played to
prevent dissonance by overloading the performance.

• chordThreshold:
The only threshold stored as an int value13 is determined by a more thorough
procedure based on the instrument skill parameter. Should this value be lower
than 1, the threshold is set to 1 if the user exhibits advanced jazz and theory
skills, otherwise it is set to 0. With a instrument skill parameter value between
1 and 2, the threshold is set to 1 for an advanced jazz or theory skill and it
is set to 2 if both these skill parameters are set to an advanced setting. For
an instrument skill value of 2, the threshold at least exhibits the value 1,
incremented by 1 if jazz and theory skill are advanced or incremented by 2 if
both skills are set to an expert setting. Should the instrument skill be even
higher, the threshold at least contains a value of 2, and only an expert jazz
skill can increment it to 3.

To implement the new chord triggering mechanism, more (private) functions were
implemented: findChordForOneNote: reuses the implementation of the one key
chord triggering deployed in the last prototype. findChordFor:triggeredBy: can
be configured to, based on the given note, find a voicing that has at least a given num-
ber of its member sounding already, and therefore is used for the two and three key

13This fact is due to the discreet number of modes the chord triggering mechanism provides.

100 5. Final System Development

triggering mechanisms. This function also uses the private function notesPlaying-
InVoicing:equalOrMoreThan:onOctave: that incorporates some of the functional-
ity deployed in the three key triggering in the last prototype and is used to establish
a distinction between the sub-tasks in the mechanism (i.e., finding a voicing and the
octave it is based on, then checking how many of its members are sounding already).
The function findSuitableChordFor: declared in the previous prototype is used
to interpret the chordThreshold and the value of the incoming note in accordance
with the mapping described in table 5.1 and respectively trigger one of the functions
just mentioned.

The mechanism for mapping gestures to notes needed to be adapted to account
for two major changes: since the revised back-end calculates probabilities for 128
notes instead of only 12, the accumulated probabilities for one octave are no longer
normalised to a certain value. Additionally, not all notes in the observed range
are counted based on the probabilityThreshold. To incorporate these changes,
the sum of all note probabilities higher than the threshold is calculated whenever
new probabilities are delivered. This sum is used when a gesture is reported to
map the position of the gesture to the range of relevant notes. At summing up the
probabilities of the relevant notes to decide on the note to trigger, the probabilities
of the irrelevant notes are also left out.

The triggering of note and the gesture processing were consolidated in
incomingInstrumentData: in the PlayerModel, which receives all necessary data
collected in an NSDictionary object. Among the information is an int variable de-
scribing the type of event (note or gesture) that is used to decide on what processing
method to use. This change was made to incorporate more event types or change
the processing steps, while maintaining a central interface for the input objects and
to centralise the steps similar to the processing of both events. The figures C.10 and
C.11 (appendix C) show sequence diagrams depicting the sequence of methods and
functions performed in the revised system for processing a note or gesture.

5.4.2.4 System Performance

Since the gesture recognition did not work properly in the last prototype, the re-
vised system was changed to deploy the batons’ internal recognition of gestures. The
Buchla Lightning System reports each type of gesture by sending a NoteOn message
with a specific note value, and calculates velocity and duration for each gesture by
itself. Accordingly, the x axis value needed to still be observed to determine the po-
sition of a gesture. The note values for downward hits were identified and connected
to the triggering of the gesture processing (i.e., calling incomingInstrumentData:
in the PlayerModel).

A closer look at the CoreMIDI documentation revealed, that the courses of events
depicted in the figures C.2 and C.3 in the second prototype were executed on a high-
priority thread created by the CoreMIDI server. This thread could disrupt the execu-
tion of the application’s thread for quite some time. To bypass this problem, the trig-
gering of incomingNoteData: was made indirect by passing the method’s selector to
the PlayerModel’s performSelectorOnMainThread:withObject:waitUntilDone:
method14, which then triggers incomingNoteData:.

14This method is defined by NSObject to call a method from arbitrary threads on the main
thread.

5.4. Changes in the Third Cycle 101

This solution led to another complication: since the application’s main thread
was also busy with drawing the lead sheet, etc., the instruments could only be
played with a noticeable latency. To solve this interfering problem, instead of using
performSelectorOnMainThread:withObject:waitUntilDone: to trigger
incomingNoteData: on the main thread, NSThread’s class method
detachNewThreadSelector:toTarget:withObject: was used to create a new
thread for each event. This new solution implied some more changes to secure
the synchronisation of access to some objects: the PlayerModel’s NSMutableDic-
tionary for the storage of triggered and calculated notes was secured by deploying an
NSRecursiveLock15 since storing or removing a note event leads to several accesses
to the container object. With these changes, the latency was minimised to rarely
noticeable delay, and the overall performance of the system was improved.

5.4.3 Analysis

The effectiveness of the changes made to obtain this final version of the system, of
course, needed to be evaluated. Once again, a user study was conducted for that
purpose. Initially, 30 people tested the system in pairs in this final analysis phase,
but as the latency mentioned in the last section was first discovered by some of the
experienced subjects in the first few tests, the data retrieved from the first three
tests had unfortunately to be discarded.

5.4.3.1 User Tests

Again, some of the subjects who had attended in the last series of tests were also
asked to attend this user study, too. In addition, some experienced musicians could
be persuaded to take part in the tests: an experienced jazz pianist, a jazz guitar
player, and a jazz bass player, as well as four people with some experience in playing
the keyboard or the piano were added to the list of subjects.

Similar to the last user study, the subjects were asked to perform in pairs with the
system. Yet this time, the procedure itself was more guided as some statements on
how close this version of the system gets to achieving the initial goals needed to be
achieved. Each subject was to play each instrument in two phases: in on of the
phases, they were supported by the system, while in the other phase, the support
was turned of (by setting the skill settings to the setting for professionals). Half
of the pairs started with the supported phase, and the other half started with the
unsupported phase to ensure that the effects of both possible successions was covered
in the user study. After setting up the system for the supported phase, the subjects
were told about the kind of support the system would provide. This was done to see
whether the subjects would use the support more deliberately once they new how it
worked. Since the solos were much longer this time, each phase was limited to two
solos per players.

The evaluation of the tests was once more conducted with the help of questionnaires.
These questionnaires were adapted to reflect the changes to the representation of the
user level scheme, and included a more clear distinction between questions on the
batons and the keyboard. It was separated into three sections this time. The first
section, again, focused on the skills of the subject. It contained five lines, each one

15This subclass of NSLock allows being locked several times by the same thread.

102 5. Final System Development

was meant to be filled out with a certain instrument the subject plays, and how often
she plays this instrument. Additionally, the subject was asked to state how long she
was educated in music, and for how long she had played jazz. The second section
contained statements that could be again rated in five steps between“I totally agree”
and “I do not agree at all”. Another column was added to each statement that could
be marked with a cross the subject wanted to abstain from rating a statement. For
a clear distinction between the circumstance in question, the section was separated
into four subsections, the first one covering the keyboard:

1. I followed my own performance on the screen.

2. The feedback on the screen did help me in performing.

3. The system’s assistance in the supported phase was sufficient.

4. The assistance to play chords was really helpful for me.

5. The system has limited my performance too much.

Similar statements were used in the next subsection on the performance with the
batons:

6. I followed my own performance on the screen.

7. The feedback on the screen did help me in performing.

8. The system’s assistance in the supported phase was sufficient.

9. The system has limited my performance too much.

In both of these two subsections, the subjects were additionally asked to rate their
own performance in the supported and the unsupported phase with a rating between
1 and 5 (1 being the best rating). This self-rating was added to obtain opinions on
the question whether the system could help users creating subjectively “better” per-
formances. The subsequent subsection was concerned with more general statements
on the test:

10. I followed the chord symbols during the performance.

11. I orientated my performance towards the chord symbols.

12. The system has lowered my inhibition threshold to try new things.

13. The system has help me to enjoy the performance (even more).

The last subsection covered the collaborative aspect of the system with statements
similar to the ones used in the last user study:

14. My partner and I played well together.

15. The system helped us with that by systematically deploying support.

5.4. Changes in the Third Cycle 103

16. It was obvious how the system structured the session.

17. We abided the structure implied by the system

18. I noticed in time if my solo was going to start.

19. I noticed in time if my solo was going to end.

20. I would have liked to decide on the length of the solo myself.

21. I found the specification of the structure by the system to be both-
ersome.

The final section of the questionnaire again offered space to write down comments,
remarks, etc. for the subjects to collect further opinions. Similar to the last two
user studies, there was no time-limit was imposed on filling out the questionnaire.

5.4.3.2 Results

With the revised handling of the batons, the users seemed to be really enjoying the
performance. To mark the area in which the batons could be played, a piece of duct
tape was put on the floor in front of the sensors. This courtesy seemed to enable
most subjects to play more freely. Most of the subjects who had attended this user
study as well as the last one mentioned the handling of the batons to have improved
noticeably, and some remarks mentioned the new feedback to be more suitable. Yet,
several subjects expressed their wish to choose the note to be played, even if they
are not experienced in music. The threshold-based limitation of notes to be played
with the help of the batons seemed to make no clear difference comparing supported
and unsupported performance from just observing. The self-ratings by the subjects
(discussed later in this section), however, indicated them to have sensed a difference.

The structuring of the sessions was clearly more reflected by the subjects behaviour,
which was mainly due to two aspects: on the one hand, the subjects were told before
the session was started how the system would structure the session, and how changes
would be indicated. On the other hand, the LEDs proved to be very efficient. The
subjects clearly reacted to the signals, which was also confirmed by their indication
in the questionnaires. Analogously, the subjects behaviour was often reflected by
the system. If a subject stopped playing in his solo, the system would often switch
the roles of the subjects after a few bars16. The more experienced subjects, however,
annotated that the structuring itself was still inappropriate since a solo could end
or start in the middle of the song structure.

Although the subjects made better use of the chord triggering assistance, they gen-
erally were very cautious with deploying it in their performance. Yet, their ratings of
the respective statement in the questionnaire implied this feature to be really help-
ful. This may indicate that with an insufficient education the use of chords in the
performance is a difficult task even with facilitated access. The involvement of the
user’s input in the calculation of the note probabilities in the back-end seemed also
to be beneficial to the performances of more experienced subjects. They were able
to play chromatic sequences of notes, without creating dissonance, which seemed to
be more appropriate to them according to their questionnaires.

16This would, of course, only happen after the minimum amount of time in a solo, 30 seconds.

104 5. Final System Development

The ratings of the performances made by the subjects themselves when filling out
the questionnaires were regarded more thoroughly. Since both the supported and
unsupported phases were evaluated, a direct comparison of the subjects’ perceptions
could be conducted. This analysis was executed separately for the keyboard and the
baton performances.

Figure 5.17 shows the distribution of ratings over the five possible values for the key-
board performances. The diagram to the left depicts the ratings for the unsupported
phases; most subjects rated their performance badly, and no rating better than 3
was given. In the supported phases, the subjects seemed to be slightly more satis-
fied with their performance. The right diagram shows a shift to the better ratings.
There, the best rating is a 2, and the worst possible rating (5) was never given. This
difference in the ratings indicate that the assistance provided by the system resulted
in performances superior to what most subjects were able to do without support.

Ratings Keyboard w/0 support

0

2

4

6

8

10

12

1 2 3 4 5

Rating Values

A
m

o
u

n
t

o
f

O
c
c
u

r
r
e
n

c
e
s

Ratings Keyboard w/ support

0

2

4

6

8

10

12

14

1 2 3 4 5

Rating Values

A
m

o
u

n
t

o
f

O
c
c
u

r
r
e
n

c
e
s

Figure 5.17: The amount of occurrences of the different ratings for the keyboard
performances. The left diagram shows the ratings for the unsupported phases, while
on the right the ratings of the supported performances are depicted. On an average,
the users rated their performances in the supported phases slightly better.

As for the performances with the batons, the subject’s ratings exhibited a similar re-
lation. Figure 5.18 depicts the ratings for baton performances without (the diagram
to the left) and with the support of the system (the diagram to the right). Again,
a shift in the results towards the better ratings can be observed for the supported
performances compared to the unsupported ones. In contrast to the keyboard per-
formances, the ratings are more varied here. Although most subjects had expressed
their opinion to have enjoyed performing with the batons, they exhibited a more
divers behaviour in rating their own performance.

The results for both keyboard and baton performances indicate that coJIVE has
met one of its main tasks: the system can help most users to create performances
beyond their normal abilities, and thus allows them to have a satisfying experience.
Yet, the results presented in this section are not as explicit as they were intended
to be. Accordingly, some more work invested in the system would be necessary to
widen the gap between the normal capabilities of the players and the performances
they can create with coJIVE.

5.4. Changes in the Third Cycle 105

Rating Batons w/o support

0

2

4

6

8

10

12

1 2 3 4 5

Rating Values

A
m

o
u

n
t

o
f

O
c
c
u

r
r
e
n

c
e
s

Rating Batons w/ support

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Rating Values

A
m

o
u

n
t

o
f

O
c
c
u

r
r
e
n

c
e
s

Figure 5.18: The amount of occurrences of the different ratings for the baton per-
formances. The left side shows the ratings for the unsupported phases, the right
diagram contains the ratings of the supported performances. Here, too, the users
tended to rate their performance in the supported phases slightly better.

106 5. Final System Development

6. Conclusion

The work at hand has shown how the coJIVE front-end was developed to allow
the participation in a simple jazz session to a wide variety of people. Most systems
concerned with similar goals (as presented in the chapter on related work) only
focus on few aspects of such performances: musical assistants, the creation of an
accompaniment, etc. With coJIVE, a broader approach was taken that tried to
incorporate several of the most important aspects. The results obtained from the
numerous user tests indicate that the system was successful in covering these aspects
and providing a satisfying experience to a wide spectrum of users; yet, the results
also suggest that most aspects still need further development and improvement.

coJIVE ’s development was based on three main goals. To evaluate the system’s
efficiency, this chapter will again take a look at those goals and state the system’s
abilities leading towards their achievement, as well as areas lacking proper coverage
by the system. The statements made in this chapter are based on the observations
made in the different user studies. The data received in the tests can only indicate
a certain coherence since the user studies were conducted with subjects that were
not equally distributed over the range of abilities examined. For more quantitative
results, a larger series of tests would be necessary, which was beyond the scope of
this work.

6.1 Adjusted Musical Assistance
In its three stages of development, the system has greatly improved its capabilities
to support different kinds of users in creating improvisations. Throughout the three
user studies, especially the inexperienced subjects repeatedly stated to perform be-
yond their normal abilities when using the keyboard. The combination of features
— context-based reduction of usable notes and filtering out the most common mis-
takes, while providing simple access to chords — has proven to be effective. Still,
the tests have shown that the performances created by novices are nor just far from
what musicians are able to create, but only rarely exhibit a clear melody; further
work is necessary in this area.

More advanced users proved to be less likely to be satisfied by the system’s assistance;
as most of them were more or less classically educated, they had a hard time turning

108 6. Conclusion

away from their usual way of performing (i.e., reciting pre-composed songs) and
focusing on improvising. In addition, they were irritated by the corrections the
system made during their performance. Accordingly, more work is necessary to
further close the gap between playing a score and improvising new melodies.

The batons proved to provide an interesting new method of playing to most users;
most subjects stated to have experienced an interesting performance when using the
infrared sticks. Yet, almost all users expressed their desire to have visual clues to
choose what notes to play. Of course, this visualisation would bypass the concept of
fuzzy control.

6.2 Collaboration

The collaborative aspect was introduced into the system as a limiting aspect1, and
was revised to be more flexible and to comply with the users’ behaviour. As for the
direct interaction between users, coJIVE did not interfere with the performances
to not further limit the players’ freedom. To achieve such collaborative behaviour,
the system would need to give clues on how to co-operate without disturbing the
players.

6.3 Simulating a Jazz Session

The accompaniment provided by the system seems substantial enough to support
the users’ performances; however, it is still very basic and rudimental. For a more
authentic experience, new and flexible methods would be needed to create more
genuine bass and drum parts.

Restraining the session structure to the mode of alternating solos (preceded by the
theme) seems justified since many subjects exhibited problems with the short solo
time of eight bars in the second prototype; modes like the already mentioned trad-
ing fours would incorporate shorter solos and are much harder to communicate to
inexperienced users. In spite of these circumstances, sessions with several modes of
structuring would enhance and render performing with coJIVE more varied.

1This notion still seems somewhat reasonable considering the target users of the system.

7. Future Work

As the previous chapter suggested, some additional work could further improve the
system noticeably. Since these improvements were not feasible in the scope of this
thesis, a set of ideas for the future course of work will be presented in this chapter.

7.1 Musical Assistance

Although the amount of dissonant notes can be observably reduced by the final
version of the system, especially novices seemed still not able to create melodies like
experienced musicians. Some more support is necessary in that respect.

7.1.1 Melody Guidance

The user tests have shown that even with coJIVE ’s assistance, inexperienced players
could not always create nice melodies. Klein [2005] suggests that the involvement of
the player’s input in the calculation of note probabilities in the back-end could be
extended to recognise melodic patterns and change the probabilities accordingly. In
the front-end this could be supported by returning to a wider search when looking
for a more appropriate note to substitute for the incoming note. Of course, this
mechanism would imply a cautious application to not irritate users by substituting
a note by a distant note.

7.1.2 Rhythmic Guidance

The untrained users also seemed to have problems with finding a suitable timing
to play their notes in. When playing the batons, some users just try to constantly
hit on the beat of the playback. Since the method of quantisation was found to be
inappropriate, a more highlighting approach could be taken. To indicate relevant
rhythmic positions, for example, the system could be altered to display signals on
each beat, between beats and on swing notes. This depiction of the rhythm could
offer a visual relation in addition to the audible accompaniment, which some users
may find easier to rely on.

110 7. Future Work

7.1.3 New Chord Voicings

The chord voicings used for the chord triggering mechanism so far were all narrow ;
they span one or at most two octaves. In jazz, however, the piano players often
use wide voicings spanning three or more octaves. Some of these voicings are even
named after the musician who first found them. If these were included in the back-
end’s database, the two- and three-key chord triggering could be altered to include
more sophisticated recognition mechanisms. The distance of the involved notes, for
example, could be used to decide on what voicing to trigger. This procedure would,
of course, involve more decisions based on the user’s skills: What do users know
about wide voicings? Who would intentionally choose a wide voicing over a narrow
one?

7.1.4 Responding to Classical Musicians

Since most classically educated musicians are more familiar with playing scores, some
changes to the system could help them to use this ability in improvisation. Besides
displaying the names of the chord symbols on the lead sheet, they could also be
depicted as notation; with these notes to read, the classical musicians could try to
play different versions of the chord (e.g., by picking three of the notes to play with
the left hand).

For the creation of a melody, the system could additionally display the most probable
notes as a score in an additional display; this depiction may offer an appropriate
representation of the repertoire of notes jazz musicians choose from after having
analysed the chord progression. This kind of assistance would, of course, afford a
musician to spontaneously choose one of the depicted notes, which may be perceived
as a slight abstraction from the initial task of coming up with a whole sequence of
notes. Additionally, the depiction of notes may lead to the musician remembering
melodies she has played from a score before that she may then be able to recite.

7.2 Collaboration and Session Arrangement

7.2.1 Solo Arrangement

A necessary change of the possible lengths of solos was pointed out in the last user
study; in normal jazz sessions a solo starts at the beginning of the song structure
and ends together with the last chord of the song. Accordingly, the length of a solo
needs to be a multiple of the length of the song’s structure. Integrating this in the
system will clearly bring it closer to a real jazz session.

Since the new PerformanceStructurizer class already introduced the notion of
recording histograms of the players’ behaviour, it could be used to further analyse
the structure of solos. To receive more data on solos performed by real jazz artists,
more jazz musicians could be asked to perform solos with the system, which then
could record all relevant data. This data could be analysed for a common course of
events in a solo (e.g., arc of suspense, distribution of note velocities), which may lead
to new methods of supporting solos and sensing its structure. With these structure
sensing mechanisms, the system could be able to recognise whether the solo is in a
louder or softer phase; this information could be used to adjust the accompanying
players’ performance.

7.3. Special Assistance for Jazz Musicians 111

New modes of collaborative performing — beside the currently implemented alter-
ation of solos — would enrich the system to provide more varied experiences. The
already mentioned mode of trading fours would afford a clearer allocation of roles
since the time to play for each player is very short (e.g., by displaying a clearly visible
countdown to the next solo change) and may probably be only reasonable with more
experienced users. With a faster change of roles, the users’ performances could be
used to influence each other; the solo performance could be fed to the back-end for
the accompanying players to adjust the probabilities used for altering their input.

For a more authentic simulation of a real jazz session, the accompaniment provided
by the system needs to be further improved. This enhancement could be achieved by
using pre-recorded drum and bass performances stored in MIDI files; the accompa-
niment created with this method would of course be rather static and not responsive
to the users’ performances at all. A more interesting alternative would be to link
coJIVE to another system concerned with creating an accompaniment. JOINME
[Balaban and Irish, 1996], for example, presented in the chapter on related work
would be interesting in the sessions created with the help of coJIVE.

7.3 Special Assistance for Jazz Musicians

The assistance provided by the system focuses mainly on abilities necessary for
participating in jazz sessions; experienced jazz musicians, however, have already
mastered these skills. The question remains what kind of assistance a system like
coJIVE could supply for these jazz musicians. Based on talking to test subjects
with jazz experience, two main ideas for potential features were developed.

7.3.1 The Retry Button

The first idea is based on the assumption that even experienced jazz musicians are
not always satisfied by their own performance; a solo may not come to the interesting
termination the musician had hoped to achieve (e.g., because he cannot transpose
the complex melodic pattern he initially wanted to use for the final of his solo to the
harmonic context of the song). In a normal jazz session, the solo cannot be repeated
since the player usually has forgotten his ideas by the time the next player starts
her solo.

Deploying the recording of the player’s previous performance, coJIVE could make
a difference in that respect. Each player could be equipped with a button, the retry
button; should the player be unhappy with his performance, a touch of that button
could set the session back to the start of the solo in question. The system would
replay the player’s previous performance to allow the user to retrace the ideas he had
in during that solo. As soon as the player starts playing different notes compared
to the recording1, the system would fade out the playback of his previous solo.
This feature may allow a musician to recreate the train of thought he had during
the performance and thereby retry to create the performance he initially wanted to
obtain.

1At that point the player is assumed to pick up the performance and create new melodies for
the parts he wanted to change.

112 7. Future Work

7.3.2 Recording Statistics

Another interesting feature for jazz musicians would be the statistical analysis of the
recorded performance. Musicians may be interested in seeing whether they tend to
repeat certain patterns or stick to certain notes, while leaving others out entirely. A
database with the melodic phrases a player uses could be established and the progress
in extending the personal repertoire could be monitored by the player himself.

Additionally, a comparison between the analysis of the back-end and the player’s
own interpretation of a song’s structure could be of interest, too. An analysis of the
played notes in the context of a certain chord could reveal, if the player often sticks
to the chord notes, leaves the scales determined by the back-end or even uses other
scales. These results may, of course, also be beneficial for further improvements
concerning the back-end.

A. Max/MSP Objects

This appendix will describe the Max/MSP objects deployed in the first prototype
for a more thorough insight in the workings of the prototype’s different parts. The
objects’ individual tasks will be explained without addressing possible combinations.

An object in Max/MSP can have inputs and output (called inlets and outlets), with
which it can receive and send messages or signals. The object itself transforms the
input in a certain way to produce an output. Therefore, several parameters can
be specified in the object, which sometimes are also represented by inlets. An inlet
can be connected to an outlet of another object to achieve a combination of the
transformation process of both objects.

A.1 Basic Objects

Message
message objects do not process input but can store messages and, if clicked, send off
these messages. The object’s inlet can receive bang signals1, which also trigger the
sending of the message stored in the object through its outlet. If the message object
receives the message set XYZ, its stored message is replaced by XYZ.

Button
A button object sends of a bang through its outlet whenever it is clicked. It can also
be triggered automatically by sending a bang signal to its inlet.

Loadbang
loadbang objects send out a bang signal when the patch it is incorporated in is loaded.
This object can be used to set default values or automatically start processes.

Inlet and Outlet
Usual objects have a (dynamic or static) set of inlets and outlets. Sub-patches defined
by a developer must be equipped with inlets and outlets to allow connections to the
other objects in the patch. inlet objects have an outlet, through which all incoming

1bang is a standard signal in Max/MSP used to trigger events and processes.

114 A. Max/MSP Objects

messages and signals are fed to the objects inside the sub-patch. Accordingly, outlet
objects have an inlet.

Patcher
With patcher objects, sub-patches can be defined that can be used like self-developed
objects by connecting them to other objects. This is reasonable if the sub-patch
serves an explicit task and is very likely to be used again or to arrange sub-tasks
hierarchically in the main task. Accordingly, sub-patches itself can include further
sub-patches.

Metro
A metro object sends out ticks in a certain frequency through its outlet. The inlets
are used to start and stop the metronome (left inlet) or to send delay between ticks
in milliseconds (right outlet). The latter value can also be given as a parameter in
the object.

Delay
delay objects can delay an bang received in its left inlet for a certain time and than
send it out through its outlet. The delay time can again be set as a parameter or
set using the right inlet.

A.2 Math Objects
The objects depicted in this section all implement binary mathematical operations;
accordingly, they provide two inlets for the operands. The second operand, however,
can also be set to a specific value by a parameter in the objects (as depicted by the
images). The result of the operation is sent out the outlet.

Addition
The two operands are added to a sum.

Subtraction
The second operand is subtracted from the first.

Division
The first operand is divided by the second one.

Multiplication
The first operand is multiplied by the second one.

Modulo
The first operand is taken modulo the second one.

Abs
abs objects are the only exception to the description given above; they calculate
the absolute value of the received value and therefore represent a unary operation.
Accordingly, only one inlet and one outlet are necessary for this kind of object.

A.3 Control and Selection Objects

If Then Else
To allow programming-like control structures in Max/MSP, this kind of object was

A.4. MIDI Objects 115

provided with a syntax similar to most programming languages. The amount of
inlets and outlets is determined by the statements used in the objects; inlets can be
referenced (e.g., if $i1 < $i2...) in the statements and outlets can be used to send
signals or messages through (e.g., ... then out1 $i1 else out2 bang).

Select
A select object can check the incoming message for containing a special value (e.g.,
certain numbers, words). For each of the values given as parameters in the object,
one outlet is created, which is used to send out a bang whenever the respective value
is received in the inlet of the select object. An additional outlet is used to pass on
the received messages or signals if none of the given parameters applies.

Gate
gate objects can be used to route incoming messages to certain areas in the patch.
A numerical parameter in the object specifies the number of outlets of the gate. The
right inlet is used to receive the messages to be routed, while the left inlet receives
numerical values specifying the outlet to send the messages through exclusively (0
closes all outlets).

Counter
A counter objects counts the occurrences of bangs received on its leftmost inlet that
also allows to set the counter to a specific value. The next inlet to the right allows
to set the counting to increasing or decreasing, while the next two inlets are used to
reset the counter (either immediately or on the next bang). The last (rightmost) inlet
allows the stating of a maximum for the count. The outlets send out the current
counter value (leftmost outlet), set flags for under- and overflow and send out a
carry count (rightmost outlet); this carry count counts each nth bang, and n can be
specified as a parameter in the object.

Send
Message can be send throughout a Max/MSP application without using patch chords
(e.g., from one sub-patch to the other). For that purpose, send objects are deployed;
the message’s identifier is given as a parameter in the object and the value to be
sent is fed into the object through an inlet.

Receive
To receive messages send by a send object, receive objects need to include the same
message identifier as the respective send object. The received value is send out
through an outlet. Arbitrarily many receive objects can be used to pick up a dis-
patched message, thus facilitating the distribution of specific messages to remote
sections of an application.

A.4 MIDI Objects

MIDI-related objects reflect the characteristics of the MIDI protocol (described in
the next appendix): MIDI messages are received from a certain port2 on a specific
channel. The port and channel can usually be specified as parameters in these
objects.

2In Max/MSP, MIDI ports are classified by a letter.

116 A. Max/MSP Objects

NoteIn
To receive messages on note events (NoteOn or NoteOff) from a certain MIDI port
(and channel), a notein object with the specific parameters can be used. Such objects
have no inlets but three outlets. While the leftmost outlet sends out the note value to
specify which note was played, the middle outlet sends out the velocity of the event
— NoteOffs are reported with a velocity value of 0 — and the rightmost outlet sends
out the channel, on which the event was received.

NoteOut
A noteout object is the counterpart of the notein object; it can send NoteOn and
NoteOff messages to a certain MIDI port on a specific channel. Therefore, it has
three inlets corresponding to the three outlets of he notein object (for note value,
velocity and channel).

CtlOut
This type of object is used to send ControlChange messages to channels of MIDI
ports; in the first prototype, this kind of object was used to send the AllNotesOff
message to the receiving MIDI port. It has three inlets for controller value, controller
number and the channel to send to. Max/MSP also provides the corresponding ctlin
object, which, however, was never used in the context of this work.

PgmOut
The change of programs (i.e., instrument) on one channel is transmitted via Pro-
gramChange messages in MIDI; in Max/MSP, this kind of message can be sent to
a MIDI port with a pgmout object. Two inlets are deployed by this type of object
for the number of the program to change to and the channel on which to send the
message.

Keyboard
The keyboard objects depicts a claviature, which can be used to visualise notes but
also to create them. Therefore, this type of object deploys inlets and outlets for both
note value and velocity. Notes received through the inlets are displayed by high-
lighting the respective keys, which can also be clicked to trigger the corresponding
notes. For the depiction of incoming note, the keyboard object can either be set to
monophonic (i.e., only highlighting the key corresponding to the last received notes)
or polyphonic (i.e. highlighting a key for as long as the respective note is sounding,
independent of other notes).

MakeNote
To facilitate triggering notes without the need to specifically send the corresponding
NoteOff messages, the makenote object is provided by Max/MSP. It has three inlets
for note value, velocity and the duration of the note in milliseconds. The last two
values can also be set as parameters in the object. With these values, the makenote
object passes on note value and velocity through its two outlets, and after the given
duration it sends out the note value again with a velocity value of 0 (the respective
NoteOff message).

B. MIDI Basics

This appendix will provide a short introduction to the MIDI standard. The infor-
mation contained suffices to follow the implementation of the Cocoa-based versions
of the coJIVE system. MIDI stands for Musical Instrument Digital Interface, and it
provides a standard to connect electronic instruments and devices with each other.
Besides hardware elements for physical connections, it also defines a protocol to
transmit data between different ports; therefore, a set of messages and conventions
was defined.

B.1 Basic Principles

Devices conforming to the MIDI standard can have input ports and output ports.
A MIDI port usually has 16 channels to receive or send messages of different types
on. Each channel has one program, which normally refers to the instrument that
is played on the channel in different pitches (notes). Channel 10 is defined to be
the drum channel; instead of using one sound, so-called drum maps are provided in
this channels, in which each note refers to a different part of a drum set (e.g., snare
drum, crash).

For each played note, two messages are sent: the first message (the NoteOn) indi-
cates that the note has just been triggered (e.g., by pressing the respective key);
as soon as the note stops (e.g., the key is released), a NoteOff message is sent.
Both messages include a velocity value representing how hard the respective key
was pressed (or released), which is usually used to determine how loud the note is
played (corresponding to the handling of a piano). Most devices recognise a NoteOn
message with a velocity value of 0 to be equivalent to a NoteOff message.

Besides predefined controllers for controlling the overall volume in a channel, etc.,
the MIDI standard also defines a set of controllers that can be individually mapped
to a specific parameter by each device. The Buchla Lightning II system[Buchla,
1995], for example, uses four of these controllers to transmit the position of the two
batons as x and y values.

118 B. MIDI Basics

B.2 Message Types

Each of the message types in MIDI has three values, the message type and two
data bytes (which can either be used to further specify the message type or just
contain data); the data bytes can range from 0 to 127. The value for the message
types presented in this section is made up of the type and the channel, on which
the message is sent or received. Accordingly, a NoteOn message has a different type
value on channel 1 compared to the same message on channel 2.

B.2.1 NoteOn

The type value for a NoteOn message ranges between 144 to 159 to cover all channels.
The first data byte contains the value identifying the note to play (the next section
will explain how notes are encoded as numbers in MIDI). A velocity for the note is
given by the second data byte. A triggered note is regarded to be active since the
corresponding NoteOff message is received. Should a NoteOn for an active note be
received, a device can choose to either re-trigger the note or to ignore the message.

B.2.2 NoteOff

NoteOff messages are constructed in analogy to NoteOn messages: a type value
between 128 and 143, a note value and a velocity. The velocity represents how fast a
key was released; some devices use this value to decide on how long the sound fades
out after the message is received.

B.2.3 ProgramChange

With a type value ranging from 208 to 223, ProgramChange messages only use the
first data byte to specify the program to change to. On channel 10, this type of
message is used to switch between different drum maps suited for different types of
music (e.g., jazz, rock).

B.2.4 ControlChange

The previously described controllers can be set with ControlChange messages with
a type value between 176 and 191. The first of the two data bytes is used in these
messages to identify the specific controller, and the second byte contains the value
to set to the controller. In the Max/MSP-based prototype, for example, a Con-
trolChange message with the two values 123 and 0 in the data bytes was used to
send an AllNotesOff message, which causes the receiving device to shut off all active
notes in the corresponding channel.

B.3 Note Values

A note is usually made of a pitch class (e.g., C, D, E) and the octave it belongs to.
Table B.1 shows how a note’s value is defined in MIDI based on its pitch class and
octave.

B.3. Note Values 119

Oct. C C" D D" E F F" G G" A A" B
(D!) (E!) (G!) (A!) (B!)

1 0 1 2 3 4 5 6 7 8 9 10 11
2 12 13 14 15 16 17 18 19 20 21 22 23
3 24 25 26 27 28 29 30 31 32 33 34 35
4 36 37 38 39 40 41 42 43 44 45 46 47
5 48 49 50 51 52 53 54 55 56 57 58 59
6 60 61 62 63 64 65 66 67 68 69 70 71
7 72 73 74 75 76 77 78 79 80 81 82 83
8 84 85 86 87 88 89 90 91 92 93 94 95
9 96 97 98 99 100 101 102 103 104 105 106 107
10 108 109 110 111 112 113 114 115 116 117 118 119
11 120 121 122 123 124 125 126 127

Table B.1: The note values used in MIDI to identify a note’s pitch class and octave.

120 B. MIDI Basics

C. UML Diagrams

In this appendix, numerous UML diagrams are collected to describe the inner work-
ings of the Cocoa-based versions of the coJIVE -system. Therefore, the appendix is
separated in two sections that both cover one of the two versions.

Besides an overview of the system’s architecture and the detailed descriptions of
the classes involved, sequence diagrams are used to depict the activities inside the
system whenever a note is received or a gesture is recognised. To keep these diagrams
clearly laid out, they are only concerned with the classes created for the system and
those necessary for the message-passing; accesses to container classes like NSArray
or NSDictionary are left out.

The section covering the final system includes several class diagrams with detailed
class descriptions. The declarations in these diagrams were kept in the syntax of
Objective-C to facilitate the retracing of specific selectors, mentioned in the section
of the implementation

The diagrams presented in this chapter were created with OmniGraffle, a tool for
creating diagrams and charts in Mac OS X. It was developed by The Omni Group
[2000].

122 C. UML Diagrams

C.1 The Second Prototype
D
a
ta

S
in
g
le
to
n
s

L
o
g
ic

C
o
n
tro
lle
r

V
ie
w
s

C
J
F

ra
m

e
W

o
rk

(B
a

c
k
e

n
d

)

M
a
in
C
o
n
tro
lle
r

S
o
n
g1

M
a
in
V
ie
w

(N
S
W
in
d
o
w
)

M
a
in
M
o
d
e
l

1o
b

s
e

rv
e

r

1

s
u

b
je

c
t

P
la
y
b
a
c
k
E
n
g
in
e

<
<
S
in
g
le
to
n
>
>

o
b
s
e
rv

e
r

1

 s
u
b
je

c
t

1

D
e
liv

e
rin

g
P

ro
b
a
b
ilitie

s
fo

r
n
o
te

s

a
n
d

c
h
o
rd

v
o
ic

in
g
s

b
a
s
e
d

o
n

th
e

in
p
u
t a

n
d
 th

e
 s

o
n
g
 s

tru
c
tu

re

A
c
c
o
m
p
a
n
im
e
n
tO
u
tp
u
t

D
ru
m
O
u
tp
u
t

B
a
s
s
O
u
tp
u
t

1
1

L
e
a
d
S
h
e
e
tV
ie
w

o
b
s
e
rv

e
r

1

P
la

y
b

a
c
k
E

n
g

in
e

c
re

a
te

s

M
ID

IC
lo

c
k
,

a
n

n
o
u

n
c
e

s
c
u

rre
n

t

tim
e

a
n

d
c
o

n
tro

ls
th

e
p

la
y
b

a
c
k

o
f

th
e
 a

c
c
o

m
p

a
n

im
e

n
t.

o
b
s
e
rv

e
r

1
..*

R
e
c
o
rd
in
g
E
n
g
in
e

<
<
S
in
g
le
to
n
>
>

P
la
y
e
rM
o
d
e
l

P
la
y
e
rC
o
n
tro
lle
r

1o
b

s
e

rv
e

r

1

s
u

b
je

c
tM
id
iIn
p
u
t

1

1

M
id
iO
u
tp
u
t

1

1

K
e
y
b
o
a
rd
In
p
u
t

B
a
to
n
In
p
u
t

M
ID
Iio

P
la
y
e
rV
ie
w

(N
S
V
ie
w
)

1
 o

b
s
e
rv

e
r

1
..* s

u
b
je

c
t

1
 o

b
s
e

rv
e

r

s
u

b
je

c
t 1

..*

In
p
u
tP
ro
c
e
s
s
o
r

N
o
v
ic
e
P
ro
c
e
s
s
o
r

A
d
v
a
n
c
e
d
P
ro
c
e
s
s
o
r

1

C
h
o
rd
S
y
m
b
o
l

1
..*

B
a
c
k
e
n
d
D
u
m
m
y

<
<
S
in
g
le
to
n
>
>

<
<
O
b
je
c
tA
d
a
p
te
r>
>

A
d
a
p
te

r

A
d
a
p
te

e

M
ID
Iio

M
id
iO
u
tp
u
t

B
a

c
h

e
n

d
D

u
m

m
y

re
s
p

re
s
e

n
ts

C
J
F

ra
m

e
w

o
rk

in
th

e
s
y
s
te

m
a
n

d

a
d

a
p
ts

th
is

a
n

a
ly

tic
a

l
fra

m
e
w

o
rk

to

a
n

O
b

je
c
tiv

e
-C

in
te

rfa
c
e

a
c
c
e
s
s
ib

le

b
y
 th

e
 s

y
s
te

m

R
e

c
o

rd
in

g
E

n
g

in
e

c
re

a
te

s
M

ID
I

F
ile

s
w

ith
u
n

p
ro

c
e
s
s
e

d
in

p
u

t
o

n

o
n

e
a

n
d

p
ro

c
e
s
s
e
d

in
p

u
t

o
n

a
n

o
th

e
r tra

c
k

Figure C.1: The architecture of the second coJIVE prototype.

C.1. The Second Prototype 123

 c
o
n
v
e
rtT

o
V

a
ria

b
le

Q
u
a
n
tity

:d
e
lta

T
im

e

 c
o
n
v
e
rtT

o
V

a
ria

b
le

Q
u
a
n
tity

:d
e
lta

T
im

e

P
la
y
e
rM
o
d
e
l

N
o
v
ic
e
/A
d
v
a
n
c
e
d

P
ro
c
e
s
s
o
r

M
ID
IO
u
tp
u
t

P
la
y
e
rC
o
n
tro
lle
r

M
a
in
M
o
d
e
l

R
e
c
o
rd
in
g
E
n
g
in
e

re
a

d
P

ro
c
e

d
u

re
(M

ID
IP

a
c
k
e

tL
is

t)

(C
o

re
M

ID
I S

e
rv

e
r re

p
o

rtin
g

a
 N

o
te

O
n

 m
e

s
s
a

g
e

)

K
e
y
b
o
a
rd
In
p
u
t

in
c
o
m

in
g
N

o
te

:d
a
ta

1

 a
tV

e
lo

c
ity

:d
a
ta

2

 a
tT

im
e
:tim

e
s
ta

m
p

p
ro

c
e

s
s
N

o
te

:d
a

ta
1

is
E

rro
r:d

a
ta

1

re
s
u

lt

N
S
In
v
o
c
a
tio
n

 is
N

o
te

S
o

u
n

d
in

g
:re

s
u

lt

is
N

o
te

S
o

u
n

d
in

g
:c

a
n

d
id

a
te

N
o

te

b
o

o
l

p
la

y
N

o
te

:n
o

te
 a

tV
e

lo
c
ity

:n
e

w
V

e
lo

c
ity

 s
e

n
d

M
ID

IM
e

s
s
a

g
e

:0
x
9

0

w
ith

D
a

ta
1

:n
o

te

w
ith

D
a

ta
t2

:n
e

w
V

e
lo

c
ity

fo
rM

illis
e

c
s
:0

s
e

tA
rg

u
m

e
n

t:&
n

o
te

 a
tIn

d
e

x
:2

in
v
o

k
e

W
ith

T
a

rg
e

t:M
a

in
M

o
d

e
l

trig
g

e
re

d
N

o
te

:n
o

te

 fo
rN

o
te

:d
a

ta
1

 a
s
A

c
tiv

e
:(n

e
w

V
e

lo
c
ity

>
0

)

 b
y
P

la
y
e

r:p
la

y
e

rN
r

trig
g

e
re

d
N

o
te

:n
o

te

 fo
rN

o
te

:d
a

ta
1

 a
s
A

c
tiv

e
:(n

e
w

V
e

lo
c
ity

>
0

)

 b
y
P

la
y
e

r:p
la

y
e

rN
r

 a
tT

im
e

:c
u

rre
n

tT
im

e

 a
d
d
D

a
ta

:d
a
ta

 in
T

ra
c
k
:tra

c
k

in
v
o

k
e

W
ith

T
a

rg
e

t:P
la

y
e

rC
o

n
tro

lle
r

trig
g

e
re

d
N

o
te

:n
o

te

 fo
rN

o
te

:d
a

ta
1

 a
s
A

c
tiv

e
:(n

e
w

V
e

lo
c
ity

>
0

)

 b
y
P

la
y
e

r:p
la

y
e

rN
r

n
o

te
P

la
y
in

g
:n

o
te

 fo
rN

o
te

:d
a

ta
1

 a
d
d
D

a
ta

:d
a
ta

 in
T

ra
c
k
:tra

c
k

 a
d
d
D

a
ta

:d
a
ta

 in
T

ra
c
k
:tra

c
k

 a
d
d
D

a
ta

:d
a
ta

 in
T

ra
c
k
:tra

c
k

 a
d
d
D

a
ta

:d
a
ta

 in
T

ra
c
k
:tra

c
k

 a
d
d
D

a
ta

:d
a
ta

 in
T

ra
c
k
:tra

c
k

 a
d
d
D

a
ta

:d
a
ta

 in
T

ra
c
k
:tra

c
k

 a
d
d
D

a
ta

:d
a
ta

 in
T

ra
c
k
:tra

c
k

 a
d
d
D

a
ta

:d
a
ta

 in
T

ra
c
k
:tra

c
k

 a
d
d
D

a
ta

:d
a
ta

 in
T

ra
c
k
:tra

c
k

s
e

tA
rg

u
m

e
n

t:&
d

a
ta

1
 a

tIn
d

e
x
:3

s
e

tA
rg

u
m

e
n

t:&
(v

e
lo

c
ity

>
0

) a
tIn

d
e

x
:4

s
e

tA
rg

u
m

e
n

t:&
p

la
y
e

rN
r a

tIn
d

e
x
:5

n
e

w
V

e
lo

c
ity

p
ro

c
e

s
s
V

e
lo

c
ity

:d
a

ta
2

fi
n

d
M

o
s
tP

ro
b

a
b

le
:d

a
ta

1

re
c
a

lc
u

la
te

T
e

m
p

o
ra

lD
e

n
s
ity

a
d

d
N

o
te

S
o

u
n

d
in

g
:re

s
u

lt

fo
rN

o
te

:d
a

ta
1

h
a
n
d
le

M
ID

IM
e
s
s
a
g
e
:m

s
g
T

y
p
e

 o
n
C

h
a
n
n
e
l:c

h
a
n
n
e
l

 w
ith

D
a
ta

1
:d

a
ta

1

 w
ith

D
a
ta

2
:d

a
ta

2

 a
tT

im
e
:tim

e
s
ta

m
p

h
a
n
d
le

M
ID

IP
a
c
k
e
t:M

ID
IP

a
c
k
e
tL

is
t

 n
e

ig
h

b
o

u
rh

o
o

d
T

o
o

D
e

n
s
e

F
o

r:m
o

s
tP

ro
b

a
b

le

fi
n

d
S

u
ita

b
le

C
h

o
rd

F
o

r:m
o

s
tP

ro
b

a
b

le

is
N

o
te

S
o

u
n

d
in

g
:c

h
o

rd
M

e
m

b
e

r

b
o

o
l

is
N

o
te

S
o

u
n

d
in

g
:c

h
o

rd
M

e
m

b
e

r

b
o

o
l

 is
N

o
te

S
o

u
n

d
in

g
:re

s
u

lt

Figure C.2: The sequence of events necessary for processing a note in the second
prototype.

124 C. UML Diagrams

 convertToVariableQuantity:deltaTime

 convertToVariableQuantity:deltaTime

PlayerModel InputProcessor MIDIOutput PlayerControllerMainModel RecordingEngine

readProcedure(MIDIPacketList)

BatonInput

processGesture:position

note

NSInvocation

playNote:note

 atVelocity:newVelocity

 forMillisecs:duration

 sendMIDIMessage:0x90

withData1:note

withDatat2:newVelocity

forMillisecs:duration

setArgument:¬e atIndex:2

invokeWithTarget:MainModel

triggeredNote:note

 forNote:(-1)

 asActive:(true)

 byPlayer:playerNr

triggeredNote:note

 forNote:(-1)

 asActive:(true)

 byPlayer:playerNr

 atTime:now

 addData:data inTrack:track

invokeWithTarget:PlayerController
triggeredNote:note

 forNote:(-1)

 asActive:(true)

 byPlayer:playerNr

notePlaying:note

 forNote:(-1)

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

setArgument:&(true) atIndex:4

newVelocity

processVelocity:data2

(CoreMIDI Server reporting a

ControlChange holding a new

y value of the red baton, which

marks the end of a gesture)

resetGestureRed

recalculateTemporalDensity

 convertToVariableQuantity:deltaTime

 convertToVariableQuantity:deltaTime

setArgument:&lastNote atIndex:2

invokeWithTarget:MainModel

triggeredNote:lastNote

 forNote:(-1)

 asActive:(false)

 byPlayer:playerNr

triggeredNote:note

 forNote:(-1)

 asActive:(false)

 byPlayer:playerNr

 atTime:now

 addData:data inTrack:track

invokeWithTarget:PlayerController
triggeredNote:note

 forNote:(-1)

 asActive:(false)

 byPlayer:playerNr

 noteStopped:lastNote

 forNote:(-1)

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

 addData:data inTrack:track

setArgument:&(-1) atIndex:3

setArgument:&(false) atIndex:4

setArgument:&playerNr atIndex:5

incomingGestureOfType:type

 atPosition:lastPositionRed[0]

 atVelocity:velocity

 forMillisecs:duration

handleMIDIMessage:msgType

 onChannel:channel

 withData1:data1

 withData2:data2

 atTime:timestamp

handleMIDIPacket:MIDIPacketList

interpretDataRed:data1

Figure C.3: The sequence of events necessary for processing a gesture in the second
prototype.

C.2. The Final System 125

C.2 The Final System

D
a
ta

S
in
g
le
to
n
s

L
o
g
ic

C
o
n
tro
lle
r

V
ie
w
s

c
o
J
IV
E

C
J
F

ra
m

e
W

o
rk

(B
a
c
k
e
n
d
)

M
a
in
C
o
n
tro
lle
r

S
o
n
g

1

M
a
in
V
ie
w

(N
S
W
in
d
o
w
)

M
a
in
M
o
d
e
l

1o
b
s
e
rv

e
r

1

s
u
b
je

c
t

P
la
y
b
a
c
k
E
n
g
in
e

<
<
S
in
g
le
to
n
>
>

o
b
s
e
rv

e
r

 s
u
b
je

c
t

1

D
e
liv

e
rin

g
P

ro
b
a
b
ilitie

s
fo

r
n
o
te

s

a
n
d

c
h
o
rd

v
o
ic

in
g
s

b
a
s
e
d

o
n

th
e

in
p
u
t a

n
d
 th

e
 s

o
n
g
 s

tru
c
tu

re

A
c
c
o
m
p
a
n
im
e
n
tO
u
tp
u
t

D
ru
m
O
u
tp
u
t

B
a
s
s
O
u
tp
u
t

T
h
e
m
e
O
u
tp
u
t

1
1

1

L
e
a
d
S
h
e
e
tV
ie
w

o
b
s
e
rv

e
r

P
la

y
b
a
c
k
E

n
g
in

e
c
re

a
te

s
M

ID
IC

lo
c
k
,

a
n
n
o
u
n
c
e
s

c
u
rre

n
t

tim
e

a
n
d

c
o
n
tro

ls
th

e
p
la

y
b
a
c
k

o
f

th
e

a
c
c
o
m

p
a
n
im

e
n
t.

o
b
s
e
rv

e
r

1
..*

R
e
c
o
rd
in
g
E
n
g
in
e

<
<
S
in
g
le
to
n
>
>

P
la
y
e
rM
o
d
e
l

P
la
y
e
rC
o
n
tro
lle
r

1o
b
s
e
rv

e
r

1

s
u
b
je

c
t

M
id
iIn
p
u
t

1

1

M
id
iO
u
tp
u
t

1

1

K
e
y
b
o
a
rd
In
p
u
t

B
a
to
n
In
p
u
t

M
ID
Iio

P
la
y
e
rV
ie
w

(N
S
V
ie
w
)

1
 o

b
s
e
rv

e
r

1
..* s

u
b
je

c
t

1
 o

b
s
e
rv

e
r

s
u
b
je

c
t 1

..*

In
p
u
tP
ro
c
e
s
s
o
r

1

C
h
o
rd
S
y
m
b
o
l

1
..*

B
a
c
k
e
n
d
D
u
m
m
y

<
<
S
in
g
le
to
n
>
>

<
<
O
b
je
c
tA
d
a
p
te
r>
>

A
d
a
p
te

r

A
d
a
p
te

e

M
ID
Iio

M
id
iO
u
tp
u
t

B
a
c
h
e
n
d
D

u
m

m
y

re
s
p
re

s
e
n
ts

C
J
F

ra
m

e
w

o
rk

in
th

e
s
y
s
te

m
a
n
d

a
d
a
p
ts

th
is

a
n
a
ly

tic
a
l

fra
m

e
w

o
rk

to
a
n

O
b
je

c
tiv

e
-C

in
te

rfa
c
e

a
c
c
e
s
s
ib

le
b
y

th
e
 s

y
s
te

m

R
e
c
o
rd

in
g
E

n
g
in

e
c
re

a
te

s
M

ID
I

F
ile

s

w
ith

u
n
p
ro

c
e
s
s
e
d

in
p
u
t

o
n

o
n
e

a
n
d

p
ro

c
e
s
s
e
d
 in

p
u
t o

n
 a

n
o
th

e
r tra

c
k

P
e
rfo
rm
a
n
c
e
S
tru
c
tu
riz
e
r

1

1

F
u
z
z
y
F
e
e
d
b
a
c
k

N
o
te
E
v
e
n
t

1
..*

N
o
te

E
v
e
n
t

Figure C.4: The architecture of the final coJIVE prototype.

126 C. UML Diagrams

MainController

NSButton* playButton;

NSButton* stopButton;

NSButton* openButton;

NSButton* recordToggle;

NSButton* tempoIncreaseButton;

NSButton* tempoDecreaseButton;

NSSlider* tempoSlider;

NSButton* optionsButton;

NSTextField* timeView;

NSTextField* tempoView;

NSTextField* infoView;

NSTextField* structureView;

NSScrollView* leadSheetFrame;

LeadSheetView* leadSheetCanvas;

NSPopUpButton* numberOfPlayers;

NSComboBox* accompBassSound;

NSComboBox* accompDrumKit;

NSComboBox* accompThemeSound;

NSPopUpButton* generalSoundSource;

NSButton* bassToggle;

NSButton* drumToggle;

NSButton* themeToggle;

NSComboBox* numberOfSolos;

NSButton* leaveOutTheme;

NSButton* addFreePass;

NSWindow* mainWindow;

NSDrawer* optionsDrawer;

NSDrawer* playerDrawer;

NSPanel* aboutPanel;

MainModel* mainModel;

NSMutableArray* players;

NSMutableDictionary* aboutDialogOptions;

int playersVisible;

+ (IBAction)playPressed:(id)sender;

+ (IBAction)stopPressed:(id)sender;

+ (IBAction)openPressed:(id)sender;

+ (IBAction)optionsPressed:(id)sender;

+ (IBAction)tempoChanged:(id)sender;

+ (IBAction)numberOfPlayersChanged:(id)sender;

+ (IBAction)bassOptionsChanged:(id)sender;

+ (IBAction)drumOptionsChanged:(id)sender;

+ (IBAction)themeOptionsChanged:(id)sender;

+ (IBAction)generalSoundSourceChanged:(id)sender;

+ (IBAction)recordToggleChanged:(id)sender;

+ (IBAction)showAboutDialog:(id)sender;

+ (IBAction)numberOfSolosChanged:(id)sender;

+ (IBAction)playThemeChanged:(id)sender;

+ (IBAction)addFreePassChanged:(id)sender;

+ (void)windowResized:(NSNotification*)notification;

+ (void)awakeFromNib;

+ (void)setSongName:(NSString*)name andMeter:(NSString*)meter andTime:(NSString*)time

andTempo:(NSString*)tempo;

+ (void)setCurrentTime:(NSString*)time;

+ (void)addPlayerView:(NSView*)playerView;

+ (void)playerViewRemoved;

+ (void)removePlayer:(int)playerNumber;

+ (void)fileSelectedIn:(NSOpenPanel*)panel withReturnCode:(int)code

contextInfo:(void*)context;

+ (void)dealloc;

+ (void)rearrangePlayerViews;

+ (void)setMaxNumberOfPlayers:(int)maximum;

MainModel

Song* currentSong;

PlaybackEngine* playbackEngine;

RecordingEngine* recordingEngine;

PerformanceStructurizer* structurizer;

id delegate;

NSMutableArray* players;

NSMutableArray* midiDestinations;

NSMutableArray* midiSources;

NSArray* currentVoicings;

NSArray* currentProbabilities;

NSDictionary* inputTypes;

NSDictionary* userLevels;

BackendDummy* backend;

NSInvocation* propagateTime;

NSInvocation* propagateSongInfo;

AccompanimentOutput* drums;

BassOutput* bass;

ThemeOutput* theme;

int bar;

int beat;

int tick;

int passNumber;

int soundSourceEndpointNumber;

bool record;

bool playing;

+ (id)initWithDelegate:(id)newDelegate;

+ (void)startPlaying;

+ (void)stopPlaying;

+ (void)setNewTempo:(int)newTempo;

+ (void)setBar:(int)newBar Measure:(int)newMeasure Tick:(int)newTick;

+ (void)openSong:(NSString*)fileName;

+ (PlayerModel*)createPlayer;

+ (void)removePlayer:(int)playerNumber;

+ (void)playbackStopped;

+ (void)triggeredNote:(NoteEvent*)noteEvent;

+ (NSArray*)midiSources;

+ (NSArray*)midiDestinations;

+ (NSDictionary*)inputTypes;

+ (NSDictionary*)userLevels;

+ (void)setSongName:(NSString*)newName andMeterDenominator:(int)newDenominator

andMeterNumerator:(int)newNumerator andTempo:(int)newTempo

andChordSymbols:(NSArray*)chords andNumberOfBars:(int)number;

+ (void)setNewTheme:(NSArray*)newTheme andBassLine:

(NSArray*)newBassline;

+ (void)setVoicings:(NSArray*)newVoicings nextRoot:(int)newRoot;

+ (void)setProbabilities:(NSArray*)newProbabilities

forPlayer:(int)number;

+ (void)chordChangeToNumber:(int)number;

+ (void)generalSoundSourceChanged:(int)number;

+ (void)activateBassAccompaniment:(bool)active;

+ (void)activateDrumAccompaniment:(bool)active;

+ (void)activateThemeAccompaniment:(bool)active;

+ (void)recordPerformance:(bool)doRecord;

+ (void)upcomingSoloFor:(int)player In:(int)beats;

+ (void)changeSoloistFrom:(int)current To:(int)next;

+ (void)songHasChanged;

LeadSheetView

NSRect viewRect;

NSPoint upperRight;

NSColor* progressColor;

PlaybackEngine* playbackEngine;

Song* currentSong;

int currentBar;

int numberOfLines;

int barsPerLine;

int lineSpacing;

float barWidth;

float measureWidth;

float progressBarWidth;

float realProgressBarWidth;

+ (id)initWithFrame:(NSRect)frame;

+ (void)songHasChanged;

+ (void)drawRect:(NSRect)aRect;

+ (void)setBar:(int)newBar Measure:(int)newMeasure Tick:(int)newTick;

+ (void)playbackStopped;

+ (void)mouseDown:(NSEvent*)anEvent;

+ (void)chordChangeToNumber:(int)number;

+ (void)drawLeadSheet;

+ (void)drawProgressBar;

+ (void)drawChordSymbols;

PerformanceStructurizer

MainModel* mainModel;

int numberOfPlayers;

int numberOfBarsInSong;

int timeDenominator;

int timeNumerator;

int instrumentFactors[10];

int numberOfCurrentBar;

int numberOfCurrentBeat;

int currentTempo;

int passThroughSong;

int numberOfPlayedSolosPerPlayer;

int numberOfCurrentSoloist;

int minNumberOfBarsInSolo;

int maxNumberOfBarsInSolo;

int nextSoloChangeAtBar;

int soloChangePostponeIncrement;

int barsToReportChangesAhead;

int soloRunningForBars;

int barsToTakePeakAfter;

NSMutableArray* densityHistoryForLastBeat;

NSMutableArray* densityHistoryForLastBar;

NSMutableArray* densityHistoryForPlayers;

int suspectedDensityPeak;

NSMutableArray* velocityHistoryForLastBeat;

NSMutableArray* velocityHistoryForLastBar;

NSMutableArray* velocityHistoryForPlayers;

float suspectedVelocityPeak;

bool record;

bool themePlaying;

bool teleoConnected;

@ TeleoDeviceManager* deviceManager;

@ TIntroDout* outOne;

@ TIntroDout* outTwo;

+ (id)initWithModel:(MainModel*)newModel;

+ (void)setNumberOfPlayers:(int)newNumber;

+ (void)setInstrumentFactor:(int)factor forPlayer:(int)number;

+ (void)setTempo:(int)newTempo;

+ (void)setBarsInSong:(int)newBars;

+ (void)setRecord:(bool)record;

+ (void)setTimeDenominator:(int)newDenominator andNumerator:(int)newNumerator;

+ (void)playerLeft:(int)player;

+ (void)triggeredNote:(NoteEvent*)noteEvent;

+ (void)nextBeat;

+ (void)nextBar:(int)newBar;

+ (void)prependTheme;

+ (void)reset;

- (void)checkForUpcomingSolo;

Figure C.5: The classes making up the main part of the application.

C.2. The Final System 127

PlayerController

IBOutlet NSButton *detachButton;

IBOutlet NSButton *soloButton;

IBOutlet NSTabView *feedbackFrame;

IBOutlet FuzzyFeedback *fuzzyFeedback;

IBOutlet NSButton *buttonA0;

IBOutlet NSButton *buttonBb0;

IBOutlet NSButton *buttonB0;

IBOutlet NSButton *buttonC1; // MidiNote 12

IBOutlet NSButton *buttonDb1;

IBOutlet NSButton *buttonD1;

IBOutlet NSButton *buttonEb1;

IBOutlet NSButton *buttonE1;

IBOutlet NSButton *buttonF1;

IBOutlet NSButton *buttonGb1;

IBOutlet NSButton *buttonG1;

IBOutlet NSButton *buttonAb1;

IBOutlet NSButton *buttonA1;

IBOutlet NSButton *buttonBb1;

IBOutlet NSButton *buttonB1;

IBOutlet NSButton *buttonC2; // MidiNote 24

 .

 .

 .

IBOutlet NSButton *buttonB6;

IBOutlet NSButton *buttonC7; // MidiNote 84

IBOutlet NSButton *buttonDb7;

IBOutlet NSButton *buttonD7;

IBOutlet NSButton *buttonEb7;

IBOutlet NSButton *buttonE7;

IBOutlet NSButton *buttonF7;

IBOutlet NSButton *buttonGb7;

IBOutlet NSButton *buttonG7;

IBOutlet NSButton *buttonAb7;

IBOutlet NSButton *buttonA7;

IBOutlet NSButton *buttonBb7;

IBOutlet NSButton *buttonB7;

IBOutlet NSButton *buttonC8; // MidiNote 96

IBOutlet NSPanel* boundingWindow;

IBOutlet NSView *playerPanel;

IBOutlet NSBox* boundingBox;

IBOutlet NSView* keyOverlay;

IBOutlet NSView* background;

IBOutlet NSPanel* optionsWindow;

IBOutlet NSPopUpButton *midiSources;

IBOutlet NSPopUpButton *inputTypes;

IBOutlet NSPopUpButton *userLevels;

IBOutlet NSSlider *instrumentSkills;

IBOutlet NSSlider *musictheorySkills;

IBOutlet NSSlider *jazzSkills;

IBOutlet NSSlider *collaborativeSkills;

id delegate;

PlayerModel* playerModel;

NSArray* noteButtons;

NSMutableDictionary* correctionArrows;

NSBezierPath* soloHighlight;

int playerNumber;

int currentInputEndpoint;

int currentInputDevice;

int currentUserLevel;

bool detached;

float oldInstrumentSkill;

float oldTheorySkill;

float oldJazzSkill;

float oldCollaborativeSkill;

NSInvocation* propagateAddingView;

NSInvocation* propagateRemovingView;

NSInvocation* propagatePlayerLeaving;

+ (IBAction)showPanel:(id)sender;

+ (IBAction)terminate:(id)sender;

+ (IBAction)unhideAllApplications:(id)sender;

+ (IBAction)hideOtherApplications:(id)sender;

+ (IBAction)orderFrontStandardAboutPanel:(id)sender;

+ (IBAction)hide:(id)sender;

+ (IBAction)detachView:(id)sender;

+ (IBAction)userLevelChanged:(id)sender;

+ (IBAction)optionsChanged:(id)sender;

+ (IBAction)closeOptionsWindow:(id)sender;

+ (IBAction)showOptions:(id)sender;

+ (IBAction)playerLeaves:(id)sender;

+ (IBAction)theorySkillsChanged:(id)sender;

+ (bool)windowShouldClose:(id)sender;

+ (id)initWithNumber:(int)number andDelegate:(id)newDelegate

andModel:(PlayerModel*)newModel;

+ (void)setDelegate:(id)newDelegate;

+ (void)setNewNumber:(int)number;

+ (void)setMidiSources:(NSArray*)sources andInputTypes:(NSDictionary*)types

andUserLevels:(NSDictionary*)levels;

+ (void)triggeredNote:(NoteEvent*)noteEvent;

+ (void)upcomingSoloIn:(int)measures;

+ (void)showSoloing:(bool)soloing;

+ (void)awakeFromNib;

+ (void)notePlaying:(NSArray*)value forNote:(int)corrected;

+ (void)noteStopped:(NSArray*)value forNote:(int)corrected;

+ (void)setupNoteArray;

+ (void)redrawKeyboardAt:(int)value;

PlayerModel

MIDIInput* plInput;

MIDIOutput* plOutput;

InputProcessor* inputProcessor;

int playerNumber;

int collaborationFactor;

int lastNote;

NSMutableDictionary* soundingNotes;

NSLock* threadLock;

NSMutableArray* observers;

NSInvocation* propagateNoteTriggered;

NSInvocation* propagateUpcomingSolo;

NSInvocation* propagateSoloChange;

+ (id)initWithNumber:(int)number;

+ (void)dealloc;

+ (void)setNewNumber:(int)number;

+ (void)setSoundSourceEndpoint:(int)newEndpoint;

+ (void)incomingInstrumentData:(NSDictionary*)data;

+ (void)addObserver:(id)anObserver;

+ (void)addNoteSounding:(int)value forNote:(int)corrected;

+ (NSMutableArray*)removeNoteSounding:(int)value;

+ (bool)isNoteSounding:(int)value;

+ (int)wasNoteCorrectedBefore:(int)value;

+ (void)setInputType:(int)type atEndpoint:(int)newEndpoint;

+ (void)setProbabilities:(NSArray*)newProbabilities;

+ (void)setVoicings:(NSArray*)newVoicings;

+ (void)setInstrumentSkill:(float)instrumentSkill andTheorySkill:(float)theorySkill

andJazzSkill:(float)jazzSkill andCollaborativeSkill:(float)collaborativeSkill;

+ (void)newPassStarting;

+ (void)setSoloing:(bool)soloing;

+ (void)upcomingSoloIn:(int)measures;

InputProcessor

float probabilities[128];

NSArray* voicings;

bool soloing;

float instrumentSkill;

float theorySkill;

float jazzSkill;

float collaborativeSkill;

float velocityBendingFactor;

float probsInViewedOctaves;

int chordThreshold;

float probabilityThreshold;

float temporalDensityThreshold;

float neighborhoodDensityThreshold;

UInt64 timeOfLastNote;

UInt64 timeOfLastInvocation[128];

float temporalDensity;

PlayerModel* playerModel;

+ (id)initWithModel:(PlayerModel*)newModel;

+ (NSMutableArray*)processNote:(int)value;

+ (NSMutableArray*)processGesture:(int)position;

+ (int)processVelocity:(int)velocity;

+ (void)setProbabilities:(NSArray*)newProbabilities;

+ (void)setVoicings:(NSArray*)newVoicings;

+ (void)setSoloing:(bool)isSoloing;

+ (bool)soloing;

+ (void)setInstrumentSkill:(float)newInstrumentSkill

andTheorySkill:(float)newTheorySkill andJazzSkill:(float)newJazzSkill

andCollaborativeSkill:(float)newCollaborativeSkill;

+ (NSMutableArray*)findSuitableChordFor:(int)value;

+ (void)dealloc;

- (int)findMostProbableFor:(int)value;

- (bool)neighborhoodTooDenseFor:(int)value;

- (void)recalculateTemporalDensity;

- (bool)isError:(int)value;

- (NSMutableArray*)findChordForOneNote:(int)value;

- (NSMutableArray*)findChordFor:(int)notes triggeredBy:(int)value;

- (bool)notesPlayingInVoicing:(int)number equalOrMoreThan:(int)threshold

onOctave:(int)octave;

- (void)calculateChordThreshold;

- (void)accumulateRelevantProbabilities;

FuzzyFeedback

int rangeMinimum;

int rangeMaximum;

int atEventNumber;

float noteWidth;

float velocityHeight;

float positionOfMark;

NSAttributedString* mark;

NSMutableArray* events;

NSMutableArray* keysForEvents;

NSTimer* notifyOnInactivity;

+ (void)setRangeFrom:(int)minimum To:(int)maximum;

+ (void)setInstrumentFactor:(int)newFactor;

+ (void)triggeredNote:(NSArray*)value forNote:(int)corrected

withVelocity:(int)velocity;

- (float)calculatePositionOfMark;

- (bool)rangeEncloses:(int)value;

- (void)playerInactive: (NSTimer*)timer

Figure C.6: The classes representing users in the system.

128 C. UML Diagrams

MIDIio

MIDIEndpointRef endpointRef;

MIDIClientRef client;

MIDIPortRef port;

int channel;

+ (id)initWithEndpoint:(int)endpointNumber;

+ (void)clear;

+ (MIDIEndpointRef)getEndpoint:(int)endpointNumber;

+ (bool)initEndpoint:(int)newEndpoint;

+ (bool)initPort;

+ (void)dealloc;

MIDIInput

PlayerModel* playerModel;

+ (void)setPlayerModel:(PlayerModel*) newModel;

+ (void)handleMIDIPacket:(const MIDIPacketList*)pktList;

+ (void)handleMIDIMessage:(int)type onChannel:(int)channel withData1:(int)data1

withData2:(int)data2 atTime:(UInt64)timestamp;

+ void readProcedure(const MIDIPacketList *pktList, void *readProcRefCon,

void *srcConnRefCon);

KeyboardInput

BatonInput

int lastPositionGreen[2];

int lastPositionRed[2];

int lastNoteGreen;

int lastNoteRed;

+ (void)resetValues;

MIDIOutput

int midiInstrument;

+ (void)setInstrument:(int)instrument;

+ (void)playNote:(int)value atVelocity:(int)velocity;

+ (void)playNote:(int)value atVelocity:(int)velocity

forMillisecs:(unsigned)duration;

+ (void)sendMIDIMessage:(int)msg withData1:(int)data1 withData2:(int)data2

forMillisecs:(unsigned)duration;

+ (void)setNewEndpoint:(int)newEndpoint;

+ (void)setChannel:(int)newChannel;

AccompanimentOutput

PlaybackEngine* playbackEngine;

NSDictionary* currentPattern;

int velocityOffset;

unsigned beatLength;

+ (id)initWithEndpoint:(int)endpointNumber;

+ (void)playbackStopped;

+ (void)setSongType:(int)newType;

+ (void)setBar:(int)newBar Measure:(int)newMeasure Tick:(int)newTick;

+ (void)chordChangeToNumber:(int)number;

+ (void)playFillIn;

+ (void)songHasChanged;

DrumOutput

NSDictionary* swingPattern;

NSDictionary* fillIns[4];

BassOutput

NSArray* startRootEndNext[4];

NSDictionary* swingPattern;

NSArray* currentChord;

int numberOfChordChange;

int lastNote;

bool walkingUpwards;

NSArray* bassLine;

int indexOfNextNote;

int barOfNextNote;

int beatOfNextNote;

int tickOfNextNote;

int currentBar;

int currentBeat;

int currentTick;

int numberOfBarsInSong;

+ (void)setNewChord:(NSArray*)newChord nextRoot:(int)newRoot;

+ (void)setNewBassline:(NSArray*)line;

+ (void)setBarsInSong:(int)numberOfBars;

+ (void)reset;

ThemeOutput

NSArray* mainTheme;

int indexOfNextNote;

int barOfNextNote;

int beatOfNextNote;

int tickOfNextNote;

int currentBar;

int currentBeat;

int currentTick;

int numberOfBarsInSong;

bool themePlaying;

- (void)setNewTheme:(NSArray*)theme;

- (void)setPlaying:(bool)playing;

- (void)setBarsInSong:(int)numberOfBars;

- (void)reset;

Figure C.7: The MIDI classes.

C.2. The Final System 129

PlaybackEngine

int tempo;

int delay;

int timeDenominator;

int timeNumerator;

int currentBar;

int currentMeasure;

int currentTick;

int nextChordNumber;

int nextChordChangeAt[3];

NSTimer* timer;

bool playbackRunning;

NSThread* playThread;

NSLock* threadLock;

NSInvocation* propagateChordChange;

NSInvocation* propagateTime;

NSInvocation* propagateStop;

NSInvocation* propagateSongChange;

Song* currentSong;

NSMutableArray* observers;

id instance;

+ (id)getInstance;

+ (void)setSongName:(NSString*)newName andMeterDenominator:(int)newDenominator andMeterNumerator:(int)newNumerator andTempo:(int)newTempo

andChordSymbols:(NSArray*)chords andNumberOfBars:(int)number;

+ (void)startPlayback;

+ (void)stopPlayback;

+ (void)addObserver:(id)observer;

+ (void)setNewTempo:(int)newTempo;

+ (id)getSong;

+ (int)tempo;

+ (int)numberOfBars;

+ (int)numerator;

+ (void)setBar:(int)newBar Measure:(int)newMeasure Tick:(int)newTick;

+ (id)init;

+ (void)setNewTimeDenominator:(int)newDenominator andNumerator:(int)newNumerator;

+ (void)playing;

+ (void)resetTime;

+ (void)nextTick;

+ (void)chordChange;

RecordingEngine

NSFileHandle* midiFileHandle;

Byte* midiFileHeader;

Byte header[14];

Byte** midiFileContent;

NSString* midiFileName;

int* positionCount;

int numberOfTracks;

int denominator;

int numerator;

bool recording;

int* timeOfLastEvent;

id instance;

+ (id)getInstance;

+ (void) prepareRecordingFor:(int)numberOfPlayers andDenominator:(int)newDenominator andNumerator:(int)newNumerator;

+ (void) triggeredNote:(NoteEvent*)noteEvent;

+ (void) endRecording;

+ (id) init;

+ (void) createHeader;

+ (void) createTracks;

+ (void) closeTracks;

+ (void) convertToVariableQuantity:(int)value toTrack:(int)number;

+ (void) addData:(Byte)data inTrack:(int)track;

BackendDummy

NSMutableArray* chordVoicings;

NSMutableArray* basicProbabilities;

NSInvocation* propagateChordInfo;

NSInvocation* propagateSongInfo;

NSInvocation* propagateMIDIInfo;

NSInvocation* propagatePlayerInfo;

int meterDenominator;

int meterNumerator;

int numberOfBars;

int numberOfChords;

int numberOfPlayers;

bool songLoaded;

id instance;

- CJFramework framework;

+ (id)getInstance;

+ (bool)openSong:(NSString*)fileName forClient:(id)client;

+ (void)prepareForClient:(id)client withNumberOfPlayers:(int)players;

+ (void)triggeredNote:(NoteEvent*)noteEvent;

+ (void)chordChangeNumber:(int)number;

- (id)init;

- (void)setAllProbabilities;

- (void)setProbabilitiesForPlayer:(int)number;

- (NSArray*)convertMidiTrack:(jdkmidi::MIDIMultiTrack*)track;

Figure C.8: The Singleton classes.

130 C. UML Diagrams

NoteEvent

int corrected;

NSArray* notes;

int velocity;

int duration;

int atBar;

int atBeat;

int atTick;

int playedByPlayer;

+ (id)initWithNotes:(NSArray*)newNotes forCorrected:(int)newCorrected withVelocity:(int)newVelocity andDuration:(int)newDuration atBar:(int)newBar

atBeat:(int)newBeat atTick:(int)newTick playedBy:(int)player;

+ (id)initWithNotes:(NSArray*)newNotes forCorrected:(int)newCorrected withVelocity:(int)newVelocity playedBy:(int)player;

+ (id)initWithNotes:(NSArray*)newNotes forCorrected:(int)newCorrected withVelocity:(int)newVelocity;

+ (id)initWithNotes:(NSArray*)newNotes withVelocity:(int)newVelocity atBar:(int)newBar atBeat:(int)newBeat atTick:(int)newTick;

+ (int)getValueWithIndex:(int)index;

+ (NSArray*)getAllValues;

+ (int)getOriginalNote;

+ (int)getNoteCount;

+ (int)getVelocity;

+ (int)getDuration;

+ (int)getBar;

+ (int)getBeat;

+ (int)getTick;

+ (int)getResponsiblePlayer;

+ (void)changeTimeToBar:(int)newBar andBeat:(int)newBeat andTick:(int)newTick;

+ (void)changeDuration:(int)newDuration;

NoteEvent

NSString* name;

int atBar;

int atBeat;

int atTick;

+ (id)initWithName:(NSString*)newName andBar:(int)newBar andBeat:(int)newBeat andTick:(int)newTick;

+ (NSString*)name;

+ (int)bar;

+ (int)beat;

+ (int)tick;

Song

NSString* name;

int tempo;

int numberOfBars;

int timeDenominator;

int timeNumerator;

NSArray* chordSymbols;

+ (id)initWithName:(NSString*)newName andTempo:(int)newTempo andChordSymbols:(NSArray*)newChords andTimeDenominator:(int)newDenominator

andTimeNumerator:(int)newNumerator andNumberOfBars:(int)newNumberOfBars;

+ (int)timeDenominator;

+ (int)timeNumerator;

+ (int)tempo;

+ (int)numberOfBars;

+ (int)numberOfChords;

+ (ChordSymbol*)getChordAt:(int)index;

+ (NSString*)name;

Figure C.9: The classes encapsulating data.

C.2. The Final System 131

 c
o

n
v
e

rtT
o

V
a

ria
b

le
Q

u
a

n
tity

:d
e

lta
T

im
e

 c
o

n
v
e

rtT
o

V
a

ria
b

le
Q

u
a

n
tity

:d
e

lta
T

im
e

P
la
y
e
rM
o
d
e
l

In
p
u
tP
ro
c
e
s
s
o
r

M
ID
IO
u
tp
u
t

P
la
y
e
rC
o
n
tro
lle
r

M
a
in
M
o
d
e
l

R
e
c
o
rd
in
g
E
n
g
in
e

re
a
d
P

ro
c
e
d
u
re

(M
ID

IP
a
c
k
e
tL

is
t)

(C
o
re

M
ID

I S
e
rv

e
r re

p
o
rtin

g

a
 N

o
te

O
n
 m

e
s
s
a
g
e
)

K
e
y
b
o
a
rd
In
p
u
t

N
S

T
h

re
a

d
:

d
e

ta
c
h

N
e

w
T

h
re

a
d

S
e

le
c
to

r:in
c
o

m
in

g
In

s
tR

u
m

e
n

tD
a

ta

 to
T

a
rg

e
t:P

la
y
e

rM
o

d
e

l

 w
ith

O
b

je
c
t:N

S
D

ic
tio

n
a

ry

p
ro

c
e

s
s
N

o
te

:d
a

ta
1

is
E

rro
r:d

a
ta

1

re
s
u
lt

N
S
In
v
o
c
a
tio
n

 is
N

o
te

S
o
u
n
d
in

g
:re

s
u
lt

is
N

o
te

S
o
u

n
d
in

g
:c

a
n
d
id

a
te

N
o

te

b
o
o
l

p
la

y
N

o
te

:n
o
te

 a
tV

e
lo

c
ity

:n
e
w

V
e
lo

c
ity

 s
e
n
d
M

ID
IM

e
s
s
a
g
e
:0

x
9
0

w
ith

D
a
ta

1
:n

o
te

w
ith

D
a
ta

t2
:n

e
w

V
e
lo

c
ity

fo
rM

illis
e
c
s
:0

in
v
o
k
e
W

ith
T

a
rg

e
t:M

a
in

M
o
d
e
l

trig
g
e
re

d
N

o
te

:n
o
te

E
v
e
n
t

trig
g
e
re

d
N

o
te

:n
o
te

E
v
e
n
t

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

in
v
o
k
e
W

ith
T

a
rg

e
t:P

la
y
e
rC

o
n
tro

lle
r

trig
g
e
re

d
N

o
te

:n
o
te

E
v
e
n
t

n
o
te

P
la

y
in

g
:n

o
te

 fo
rN

o
te

:c
o
rre

c
te

d

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

n
e
w

V
e
lo

c
ity

p
ro

c
e
s
s
V

e
lo

c
ity

:d
a
ta

2

fi
n
d
M

o
s
tP

ro
b

a
b
le

:d
a
ta

1

re
c
a
lc

u
la

te
T

e
m

p
o
ra

lD
e
n
s
ity

a
d
d
N

o
te

S
o
u
n
d
in

g
:re

s
u
lt

fo
rN

o
te

:d
a
ta

1

h
a
n
d
le

M
ID

IM
e
s
s
a
g
e
:m

s
g
T

y
p
e

 o
n
C

h
a
n
n
e
l:c

h
a
n
n
e
l

 w
ith

D
a
ta

1
:d

a
ta

1

 w
ith

D
a
ta

2
:d

a
ta

2

 a
tT

im
e
:tim

e
s
ta

m
p

h
a
n
d
le

M
ID

IP
a
c
k
e
t:M

ID
IP

a
c
k
e
tL

is
t

 n
e
ig

h
b
o
u
rh

o
o
d
T

o
o
D

e
n
s
e
F

o
r:m

o
s
tP

ro
b
a
b
le

fi
n
d
S

u
ita

b
le

C
h
o
rd

F
o
r:m

o
s
tP

ro
b
a
b
le

 is
N

o
te

S
o
u
n
d
in

g
:re

s
u
lt

 fi
n
d
C

h
o
rd

F
o
rO

n
e
N

o
te

:m
o
s
tP

ro
b
a
b
le

s
e
tA

rg
u
m

e
n
t:&

n
o
te

E
v
e
n
t a

tIn
d
e
x
:2

N
o
te
E
v
e
n
t

in
itW

ith
N

o
te

s
:re

s
u
lt

 fo
rC

o
rre

c
te

d
:p

o
s
itio

n

 a
tV

e
lo

c
ity

:n
e
w

V
e
lo

c
ity

 p
la

y
e
d
B

y
:p

la
y
e
rN

u
m

b
e
r

in
itW

ith
N

o
te

s
:re

s
u
lt

 fo
rC

o
rre

c
te

d
:p

o
s
itio

n

 a
tV

e
lo

c
ity

:n
e
w

V
e
lo

c
ity

 a
n
d
D

u
ra

tio
n
:0

 a
tB

a
r:0

 a
tB

e
a
t:0

 a
tT

ic
k
:0

 p
la

y
e
d
B

y
:p

la
y
e
rN

u
m

b
e
r

n
o
te

E
v
e
n
t

c
h
a
n
g
e
T

im
e
T

o
B

a
r:b

a
r

 a
n
d
B

e
a
t:b

e
a
t

 a
n
d
T

ic
k
:tic

k

R
e
c
o
rd
in
g
E
n
g
in
e

trig
g
e
re

d
N

o
te

:n
o
te

E
v
e
n
t

a
d
d
N

o
te

S
o
u
n
d
in

g
:fo

rN
o
te

: a
n
d

is
N

o
te

S
o
u
n
d
in

g
: u

s
e
 a

n

N
S

R
e
c
u
rs

iv
e
L
o
c
k
 to

 s
y
n
c
h
ro

n
is

e

a
c
c
e
s
s
 s

in
c
e
 fo

r e
a
c
h
 in

c
o
m

in
g

n
o
te

 a
 n

e
w

 th
re

a
d
 is

 c
re

a
te

d
.

Figure C.10: The sequence of events necessary for processing a note in the final
system.

132 C. UML Diagrams

 c
o

n
v
e

rtT
o

V
a

ria
b

le
Q

u
a

n
tity

:d
e

lta
T

im
e

 c
o

n
v
e

rtT
o

V
a

ria
b

le
Q

u
a

n
tity

:d
e

lta
T

im
e

P
la
y
e
rM
o
d
e
l

In
p
u
tP
ro
c
e
s
s
o
r

M
ID
IO
u
tp
u
t

P
la
y
e
rC
o
n
tro
lle
r

M
a
in
M
o
d
e
l

R
e
c
o
rd
in
g
E
n
g
in
e

re
a

d
P

ro
c
e

d
u

re
(M

ID
IP

a
c
k
e

tL
is

t)

(C
o

re
M

ID
I S

e
rv

e
r re

p
o

rtin
g

a
 N

o
te

O
n

 m
e

s
s
a

g
e

)

K
e
y
b
o
a
rd
In
p
u
t

N
S

T
h

re
a

d
:

d
e

ta
c
h

N
e

w
T

h
re

a
d

S
e

le
c
to

r:in
c
o

m
in

g
In

s
tu

m
e

n
tD

a
ta

 to
T

a
rg

e
t:P

la
y
e

rM
o

d
e

l

 w
ith

O
b

je
c
t:N

S
D

ic
tio

n
a

ry

p
ro

c
e
s
s
G

e
s
tu

re
:p

o
s
itio

n

re
s
u
lt

N
S
In
v
o
c
a
tio
n

 is
N

o
te

S
o

u
n

d
in

g
:re

s
u

lt

p
la

y
N

o
te

:n
o

te
 a

tV
e

lo
c
ity

:n
e

w
V

e
lo

c
ity

 s
e

n
d

M
ID

IM
e

s
s
a

g
e

:0
x
9

0

w
ith

D
a

ta
1

:n
o

te

w
ith

D
a

ta
t2

:n
e

w
V

e
lo

c
ity

fo
rM

illis
e

c
s
:0

s
e

tA
rg

u
m

e
n

t:&
n

o
te

E
v
e

n
t a

tIn
d

e
x
:2

in
v
o

k
e

W
ith

T
a

rg
e

t:M
a

in
M

o
d

e
l

trig
g

e
re

d
N

o
te

:n
o

te
E

v
e

n
t

trig
g

e
re

d
N

o
te

:n
o

te
E

v
e

n
t

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

in
v
o

k
e

W
ith

T
a

rg
e

t:P
la

y
e

rC
o

n
tro

lle
r

trig
g

e
re

d
N

o
te

:n
o

te
E

v
e

n
t

trig
g

e
re

d
N

o
te

:n
o

te

 fo
rN

o
te

:c
o

rre
c
te

d

 w
ith

V
e

lo
c
ity

:n
e

w
V

e
lo

c
ity

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

 a
d

d
D

a
ta

:d
a

ta
 in

T
ra

c
k
:tra

c
k

n
e

w
V

e
lo

c
ity

p
ro

c
e

s
s
V

e
lo

c
ity

:d
a

ta
2

a
d

d
N

o
te

S
o

u
n

d
in

g
:re

s
u

lt

fo
rN

o
te

:p
o

s
itio

n

h
a

n
d

le
M

ID
IM

e
s
s
a

g
e

:m
s
g

T
y
p

e

 o
n

C
h

a
n

n
e

l:c
h

a
n

n
e

l

 w
ith

D
a

ta
1

:d
a

ta
1

 w
ith

D
a

ta
2

:d
a

ta
2

 a
tT

im
e

:tim
e

s
ta

m
p

h
a

n
d

le
M

ID
IP

a
c
k
e

t:M
ID

IP
a

c
k
e

tL
is

t

 is
N

o
te

S
o

u
n

d
in

g
:re

s
u

lt

P
la
y
e
rC
o
n
tro
lle
r

N
o
te
E
v
e
n
t

in
itW

ith
N

o
te

s
:re

s
u

lt

 fo
rC

o
rre

c
te

d
:p

o
s
itio

n

 a
tV

e
lo

c
ity

:n
e

w
V

e
lo

c
ity

 p
la

y
e

d
B

y
:p

la
y
e

rN
u

m
b

e
r

in
itW

ith
N

o
te

s
:re

s
u

lt

 fo
rC

o
rre

c
te

d
:p

o
s
itio

n

 a
tV

e
lo

c
ity

:n
e

w
V

e
lo

c
ity

 a
n

d
D

u
ra

tio
n

:0

 a
tB

a
r:0

 a
tB

e
a

t:0

 a
tT

ic
k
:0

 p
la

y
e

d
B

y
:p

la
y
e

rN
u

m
b

e
r

n
o
te

E
v
e
n
t

c
h

a
n

g
e

T
im

e
T

o
B

a
r:b

a
r

 a
n

d
B

e
a

t:b
e

a
t

 a
n

d
T

ic
k
:tic

k

a
d

d
N

o
te

S
o

u
n

d
in

g
:fo

rN
o

te
: a

n
d

is
N

o
te

S
o

u
n

d
in

g
: u

s
e

 a
n

N
S

R
e

c
u

rs
iv

e
L

o
c
k
 to

 s
y
n

c
h

ro
n

is
e

a
c
c
e

s
s
 s

in
c
e

 fo
r e

a
c
h

 in
c
o

m
in

g

n
o

te
 a

 n
e

w
 th

re
a

d
 is

 c
re

a
te

d
.

R
e
c
o
rd
in
g
E
n
g
in
e

trig
g

e
re

d
N

o
te

:n
o

te
E

v
e

n
t

Figure C.11: The sequence of events necessary for processing a gesture in the final
system.

D. coJIVE in Use

This appendix will present a walkthrough of the final version of coJIVE. It will
describe step by step how the system is set up, and how it behaves throughout simple
session with two players. Figure D.1 shows two users playing with the system.

Figure D.1: Two users playing with coJIVE.

A MIDI keyboard and the batons are connected to the computer that runs the
application. One LED is provided for each of the instruments. The application itself
is controlled by the mouse or the computer keyboard.

D.1 Setting Up the System

Figure D.2 shows the system’s initial screen with the depiction of a simple default
song and no registered users. With a click of the “Options” button (the rightmost of
the four buttons at the top left corner of the window), the drawer containing general
options is opened. The number of users can be set by clicking the uppermost pop-
up-button in the drawer and selecting the suitable number (figure D.3).

134 D. coJIVE in Use

Figure D.2: The coJIVE window after start-up.

The system then creates the player fields and displays the options dialogue for each
player one after another. Figure D.4 depicts this dialogue, in which the appropriate
MIDI port and the type of the interface must be selected in the two pop-up-buttons
in the upper box. In addition, the respective player’s skill needs to be set in this
dialogue; the lower box is therefore separated into two parts, the upper one providing
a simple way by using some default settings (accessible again via a pop-up-button),
while the lower one presents four sliders to allow detailed adjustment to the user.
By clicking on the “Ok” button, the settings are applied, and the dialogue is closed
(the “Cancel” button discards the changes made to the settings and then close the
dialogue). A user can later on access her options dialogue again by clicking the
“Settings” button in the corresponding player field.

The second pop-up-button in the general options drawer allows the selection of a
MIDI device to send all notes to (i.e., software synthesizer) as depicted by figure D.5.
By clicking on the “Close OptionsDrawer” button, the drawer can be closed, which
is also feasible by clicking the “Options” button again.

The player fields are arranged in another drawer at the bottom of the main window.
Besides the “Settings” button, a field displaying the player’s current role (“Soloing”
or “Accompanying”), the field for feedback and two additional buttons are given in
the player fields; the “Detach” button can be used to reallocate the player field to
a separate window — in that case the button is relabelled to “Attach” and can be
used to reattach the field to the drawer —, and the “Close” button allows a user to
leave the system (figure D.6).

Before the session can be started, the song to play needs to be selected. Therefore,
the “Open” button is clicked (the leftmost of the four buttons at the top left corner
of the window), which opens a file open dialogue depicted in figure D.7. If a song

D.2. The Session 135

Figure D.3: Adjusting the number of participating players.

file is selected and the “Ok” button in the file dialogue is clicked, the song is loaded,
its structure is shown in the lead sheet and further information is depicted in the
display in the top right corner of the window.

D.2 The Session

Figure D.8 shows how a session is started by clicking the “Play” button that is
situated to the right of the “Open” button. The system starts to play the accom-
paniment and the main theme of the chosen song. The player fields both display
“Accompanying” to be the role of the players, and the LEDs attached to the instru-
ments are turned of. While playing, the cursor moves over the lead sheet to indicate
the current position in the song, and the current chord is always highlighted.

A few bars before the cursor reaches the end of the song structure (and the end of
the main theme), a countdown to the upcoming solo of the first player is displayed
in his field, and the LED attached to his instrument blinks (figure D.9). Once the
end of the song structure is reached, the cursor jumps back to the beginning, and
the playback of the theme is stopped. The field of the first player displays “Soloing”
and his LED stays lit (figure D.10).

After between 30 seconds and one minute, the second player’s field displays a count-
down, and her LED blinks in alteration with the first player’s LED. As soon as
the countdown has finished, the second player’s field displays “Soloing”, while the
first player’s field is set back to “Accompanying” (figure D.11). This change of roles
occurs over again after the time-span mentioned above.

Throughout the session, the system displays feedback on the players’ performances
in their fields. The field of the keyboard player depicts a keyboard, in which those

136 D. coJIVE in Use

Figure D.4: The options dialogue for the players’ settings.

those keys are highlighted that correspond to the currently sounding notes. The
keys that the player is currently pressing are further marked by an “O” to depict
the touch of a finger. Notes played with the batons are represented by green circles
in a black rectangle. The size of these circles depict the applied velocity. Only
two circles are visible at a time, corresponding to the number of batons available.
Figure D.12 shows the keyboard and the batons in use, while figure D.13 depicts the
corresponding two methods of displaying feedback.

The session can be ended by clicking the “Stop” button. This button is situated to
the right of the“Play”button. If the“Stop”button is clicked again, the cursor jumps
back to the beginning of the song’s structure.

D.2. The Session 137

Figure D.5: Adjusting the general sound source.

Figure D.6: The player fields on the drawer and on a separate window.

138 D. coJIVE in Use

Figure D.7: The dialogue for choosing a song file.

Figure D.8: The application on starting the session.

D.2. The Session 139

Figure D.9: The countdown announcing an upcoming solo.

Figure D.10: An LED indicates an upcoming solo change by blinking.

Figure D.11: The player fields depicting the roles after the change.

140 D. coJIVE in Use

Figure D.12: The two musical interfaces in use.

Figure D.13: The player fields depicting feedback on the performances.

References

Apple Computer Inc. Human Interface Design Principles. http://developer.apple.
com/documentation/mac/HIGuidelines/HIGuidelines-15.html, July 1996.

Apple Computer Inc. Audio and MIDI on Mac OS X. htttp://developer.apple.com/
audio/pdf/coreaudio.pdf, May 2001a.

Apple Computer Inc. Cocoa. http://developer.apple.com/cocoa/, 2001b.

Apple Computer Inc. Xcode. http://developer.apple.com/tools/xcode/index.html,
2003.

M. Balaban and S. Irish. Automatic Jazz Accompaniment Computation: An Open
Advise-based Approach. In Proceedings of the ICCSSE ’96 Israeli Conference on
Computer-Based Systems and Software Engineering, pages 67–76. IEEE, Wash-
ington, June 1996.

F. B. Baraldi and A. Roda. Expressive Content Analysis of Musical Gesture: An
Experiment on Piano Improvisation. Technical report, Department of Information
Engineering, University of Padua, Padova, Italy, 2001.

J. A. Biles. GenJam: A Genetic Algorithm for Generating Jazz Solos. In Proceedings
of the ICMC ’94 International Computer Music Conference, Arhus, September
1994. International Computer Music Association.

Jan Borchers. WorldBeat: Designing A Baton-Based Interface for an Interactive
Music Exhibit. In Proceedings of the ACM CHI’97 International Conference on
Human Factors in Computing Systems (Atlanta, Georgia), pages 131–138. ACM,
New York, March 1997.

Jan Borchers. A Pattern Approach to Interaction Design. Wiley Series in Software
Design Patterns. John Wiley & Sons Ltd, Chichestr, England, 2001.

Don Buchla. Buchla Lightning System II. http://www.buchla.com/lightning/index.
html, 1995.

Casio, Inc. Light Guided Instruments — LK-90TV. http://www.casio-europe.com/
de/emi/lightguided/lk90tv/, 2004.

Cycling ’74. Max/msp. http://www.cycling74.com/products/maxmsp.html, 2004.

Roger B. Dannenberg and Jakob J. Bloch. Real-Time Accompaniment of Polyphonic
Keyboard Performance. In Proceedings of the 1985 International Computer Music
Conference, pages 279–290, February 1985.

142 References

Judy Franklin. Multi-Phase Learning for Jazz Improvisation and Interaction. In
Proceedings of the Eighth Biennial Symposium on Arts and Technology, March
2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, Boston, 1995.

Jean-Gabriel Ganascia, Geber Ramalho, and Pierre-Yves Rolland. An Artificially
Intelligent Jazz Performer. Journal of New Music Research, 28(2), 1999.

Dr. Peter Gannon. Band-in-a-box. http://www.pgmusic.com/band.htm, 1989.

Jeff Glatt. Standard MIDI File Format. http://www.borg.com/˜jglatt/tech/midifile.
htm, 2001.

M. Goto, I. Hidaka, H. Matsumoto, Y. Kuroda, and Y. Muraoka. A Jazz Session
System for Interplay among All Players. In Proceedings of the ICMC ’96 Interna-
tional Computer Music Conference, pages 346–349, August 1996.

M. Grachten. JIG - Jazz Improvisation Generator. In Proceedings of the MOSART
Workshop on Current Research Directions in Computer Music, pages 1–6, Novem-
ber 2001.

K. Ishida, T. Kitahara, and M. Takeda. ism: Improvisation Supporting System
based on Melody Correction. In Proceedings of NIME ’04 Conference on new
Interfaces for Musical Expression, pages 177–180. IEEE, Washington, November
2004.

Axel Jungbluth. Jazz Harmonielehre, Funktionsharmonik und Modalität. Schott,
Mainz, Germany, 1981.

Jonathan Klein. A Pattern-based Software Framework for Computer Aided Jazz
Improvisation. Diploma thesis, Rheinisch-Westfälische Technische Hochschule,
May 2005.

J. D. Koftinoff. C++ MIDI Library — libjdkmidi. http://www.jdkoftinoff.com/
main/Free Projects/C++ MIDI Library/, 1986-2004.

Making Things LLC. Teleo. http://www.makingthings.com/teleo.htm, 2002.

Y. Nagashima, T. Hara, T. Kimura, and Y. Nishibori. Global Delayed Session Music
- New Improvisational Music with Network Latency. In Proceedings of the ICMC
’92 International Computer Music Conference, 1992.

K. Nishimoto, C. Oshima, and Y. Miyagawa. Why always versatile? Dynamically
Customizable Musical Instuments Facilitate Expressive Performances. In Proceed-
ings of NIME ’03 Conference on new Interfaces for Musical Expression, pages
164–169. McGill University, Montreal, May 2003.

K. Nishimoto, H. Watanabe, I. Umata, K. Mase, and R. Nakatsu. A supporting
Method for Creative Music Performance - Proposal of Musical Instrument with
Fixed Mapping of Note-functions. May 1998.

References 143

C. Oshima, K. Nishimoto, and Y. Miyagawa. Coloring-In Piano: A Piano that allows
a Performer to Concentrate on Musical Expression. In Proceedings of the ICMPC
’02 International Conference on Music Perception and Cognition, pages 707–710,
October 2002a.

C. Oshima, K. Nishimoto, Y. Miyagawa, and T. Shirosaki. A Concept to Facilitate
Musical Expression. In Proceedings of the Conference on Creativity and Cognition,
pages 111–117. ACM, New York, October 2002b.

François Pachet. Interacting with a Musical Learning System: The Continuator.
In Proceedings of the Second International Conference on Music and Artificial
Intelligence, pages 119–132, London, 2002. Springer Verlag.

Roland. Juno D Synthesizer. http://www.roland.com/products/en/JUNO-D/,
2004.

Marc Sabatella. A Jazz Improvisation Primer. http://www.outsideshore.com/
primer/primer/, 1992-2000.

Chuck Sher, editor. The New Real Book. Sher Music Co., Petaluma, CA, 1988.

The Omni Group. Omnigraffle. http://www.omnigroup.com/applications/
omnigraffle/, 2000.

Viscount. Viscount Viva and Viva X Portable Pianos. http://www.viscountus.com/
pianos/Viva.htm, 2003.

W. F. Walker. A Computer Participant in Musical Improvisation. In Proceedings
of the ACM CHI’97 International Conference on Human Factors in Computing
Systems (Atlanta, Georgia), pages 123–130. ACM, New York, March 1997.

Michael Welzl. Netmusic: Echzeitfähige konzepte und systeme für den telekoop-
erativen austausch musikalischer information. Diploma thesis, Johannes-Kepler-
Universität, Linz, Austria, December 1992.

Pete Yandell. Simplesynth. http://www.pete.yandell.com/software/simplesynth/
Read%20Me.html, 1995.

144 References

Glossary

Accompaniment

The performance of the drum and bass players as well as musicians other the
improviser — the accompaniment — creates a rhythmic and harmonic basis
and is necessary to build an improvisation upon. 2

Avoid Notes

Although a scale was determined by an analysis of a song’s chord progression
to be suitable for a certain chord, not all notes inside this scale are necessarily
consonant in the context of that chord. Notes that are dissonant despite being
a member of the appropriate scale are called avoid notes. Jazz musicians
usually try to avoid them. 34

Bar

A measure that is used to divide a certain time in a musical song or performance
into smaller sections. 26

Beat

A bar can be divided into beats, smaller units of time in music. The metre
of a song states, in how many beats a bar can be divided (e.g., 4

4 means four
beats per bar). Usually, the tempo of a song is given as beats per minute. 26

Chord

A set of notes that, if played together, form a certain harmony is called chord.
In jazz, chords are deployed to define a specific harmonic context for a certain
part of the song’s structure. 2

Chord Note

A note that is a member of a certain chord. 9

Chord Symbol

The textual notation of a certain chord. 2

Chorus

The entire structure of a song is called chorus. The length of a solo is often
measured in the number of choruses it spans. 26

Comping

The activity of taking part in the accompaniment is called comping. 2

146 Glossary

Consonance

If a certain note is perceived to be melodic in a specific harmonic context, it
is called consonant. 2

DIA Cycle

A DIA cycle is one self contained part of a user-centred software design process.
It is divided into three phases that all contribute the first letter of their name
to the term DIA: in the design phase, the basic concepts and user interfaces are
stated and laid out, followed by the implementation phase that contains the
actual generation of the system. Finally, the system is evaluated in the analysis
phase often involving tests with potential future users. Since the results of this
analysis are used for further development in the subsequent cycles, the user’s
wishes are a main criteria in this kind of software development process, and
bugs as well as usability issues can be addressed very early in the development.
4

Dissonance

Dissonance is the opposite of consonance. 2

Harmonic Context

The harmonic context defines what notes sound melodic in that particular
situation and what notes do not. Over the course of a song, the harmonic
context changes very often and is mostly bound to the underlying chord. 2

Jazz Standards

The term jazz standards describes a set of several hundred jazz songs that are
commonly used in jazz sessions. 56

Lead Sheet

The lead sheet usually is a piece of paper that contains the structure of a given
song, further information like tempo and meter, as well as the notation of its
main melody. The structure is described by a progression of chord symbols. 2

Metre

The metre of a song defines its rhythmic structure and is usually given in the
form of a fraction. Its denominator describes the measure that a bar is divided
into (e.g., 4 stands for quarter notes), while the numerator states how many
of these measures make up a bar. 2

MIDI

The Musical Instruments Digital Interface is described in the second appendix.
3

Model View Controller

A software architectural template that is mainly concerned with separating
the data and logic from its depiction in the user interface. Data and logic are
encapsulated in a model class that is disconnected from the depicting view

Glossary 147

class by an additional controller class. The advantage of this arrangement is
that view and model can be changed or extended without the need to change
the respective other part. Also, several views can be incorporated for one
model. 67

Object Adapter

This design pattern describes a solution for the problem that a given class must
be adapted to another interface. This is done with the use of an adapter class;
it references an object of the class that needs to be adopted and implements
the interface by forwarding its calls to the referenced object. 70

Object-Orientation

A style of designing, implementing, and maintaining software systems. The
name is based on the objects, small modules encapsulating data and related
functionality, that make up a software system developed under the object-
oriented paradigm. An object’s structure and behaviour is defined in its class,
a template, which can inherit attributes from other classes, and it can hand
down its attributes to other classes as well. 56

Observer

A design pattern that allows an object to register with another object to be
informed on certain events. Therefore, it must implement on or more functions
that the subject (the observed object) can call, whenever the respective event
occurs. 68

Octave

An octave is the smallest interval in music that includes at least one note from
every pitch class. Accordingly, an octave contains twelve notes, which are also
called semitones, dividing the octave into twelve steps. The interval is also
defined to be the distance between the frequencies f and 2f . 19

Pitch Class

Notes with the same identifier (e.g., C, D, E) are collected in a pitch class.
The theory of Western music knows of twelve pitch class: C, C" (also: D!), D,
D" (also: E!), E, F, F" (also: G!), G, G" (also: A!), A, A" (also: B!), and B.
118

Scale

A scale is a set of notes all described by a degree (e.g., the root note is de-
gree I) that is used to classify notes over a part of a song as being suitable
or unsuitable. If a scale is given in the structure of a song, musicians tend
to mostly use the notes inside the scale since notes outside the scale mostly
sound disharmonious in the given context. While a song usually sticks to one
particular scale in classical music, jazz pieces often have no pre-defined scales;
jazz musicians analyse the chord structure of the song and decide on what scale
to use over what chord usually leading to numerous changes between different
scales in the performance of the song. 2

148 Glossary

Singleton

This design pattern describes a class that has two main attributes: at most
one instance of this class can exist at any point in time, and this instance is
available throughout the application. 69

Solo

The part of a performance, in which one musician is at the centre, while
the other musicians accompany him is called solo. In most musical styles,
musicians use solos to create special performances emphasising their personal
abilities. 2

Template Method

The template method design pattern describing a method defined by a super
class that defines an algorithm by calling several other functions or methods.
These other functions are implemented by the subclass such that each subclass
implements another variant of the algorithm. 81

Theme

In jazz, the term theme is usually used for a song’s pre-composed main melody.
2

Trading Fours

The collaborative mode, in which musicians take turns in soloing for four bars,
is called trading fours. In this specific mode, the musicians draw much more
from the solo of their predecessor compared to usual alternating solos. This
behaviour is often compared to a conversation. 26

Voicing

A specific arrangement of the notes making up a chord. 3

Index 149

Index

Accompaniment, 2
AccompanimentOutput, 71
AdvancedProcessor, 71
Architectural Design Patterns, 67
Avoid Note, 34

BackendDummy, 70
Band-in-a-Box, 13
Bar, 26
BassOutput, 71
BatonOutput, 70
Beat, 26
Buchla, 4

C++, 56
Casio LK-90TV, 22
Category, 76
CHIME, 10
Chord, 2
Chord Note, 9
Chord Symbol, 2
ChordSymbol (class), 72
Chorus, 26
CiP, 18
CJFramework, 81
CJSong, 81
Cocoa, 56
Collaborative Skill, 59
Coloring-In Piano, 18
Command of the Instrument, 59
Comping, 2
Confine to Scale, 33
Consonance, 2
Continuator, 11
ControlChange, 73
CoreMIDI, 72

DIA Cycle, 4
Dissonance, 2
DrumOutput, 71

Experiences in Group Performances,
59

Gang of Four, 67
GenJam, 8
Global Delayed Session Music, 15

Harmonic Context, 2
Help Triggering Compound

Structures, 34
Human Interface Design Principles, 60

Improvisation Supporting System, 20
ImprovisationBuilder, 9
Improviser, 2
Improvisession, 15
InputProcessor, 71
Instrument Skill, 59
ism, 20

Jazz Improvisation, 1
Jazz Skill, 94
Jazz Standards, 56
JIG, 8
JOINME, 12

KeyboardInput, 70
Knowledge of Music Theory, 59

Lead Sheet, 2
LeadSheetView, 68

MainController, 68
MainModel, 68
MainView, 68
Max/MSP, 32
Melody-Based key Illumination, 22
Metre, 2
MIDI, 3
MIDIClientRef, 81
MIDIEndpointRef, 82
MIDIInput, 70
MIDIio, 70
MIDIOutput, 70
MIDIPacketList, 82
Model View Controller, 67

150 Index

Musical Design Patterns, 17

Neighbourhood Density, 65
NeXTSTEP, 73
NIB, 74
Nishimoto Design Principle, 28
NoteOff, 31
NoteOn, 31
NoviceProcessor, 71
NSArray, 74
NSButton, 74
NSData, 74
NSDictionary, 71
NSInvocation, 68
NSIterator, 74
NSLock, 75
NSMutableArray, 76
NSNumber, 74
NSObject, 73
NSRunLoop, 79
NSScrollView, 78
NSText, 74
NSTextfield, 74
NSThread, 75
NSTimer, 79
NSView, 68
NSWindow, 68

Object Adapter, 70
Object-Orientation, 56
Objective-C, 67
Observer, 68
Octave, 19
Offer Automatic Structuring, 35
One-Key Chord Triggering, 21

Pitch Class, 118
PlaybackEngine, 69
PlayerController, 68
PlayerModel, 68
PlayerView, 68
Prohibit Avoid Notes, 34

Quantisation, 38

RecordingEngine, 69
Restrict Expressive Parameters, 36
RhyMe, 19
Roland Juno D Synthesizer, 21

Scale, 2

Selector, 74
SimpleSynth, 75
Singleton, 69
Solo, 2
Song (class), 71

Teleo, 96
Template Method, 81
Temporal Density, 67
Theme, 2
Theory Skill, 59
Trading Fours, 26

Velocity, 31
Velocity Bending Factor, 85
VirJa, 14
Viscount Viva, 73
Voicing, 3

Walkthrough, 133
WorldBeat, 17

XCode, 74

