
René Röpke und Ulrik Schroeder (Hrsg.): 21. Fachtagung Bildungstechnologien (DELFI),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 269

cba doi: 10.18420/delfi2023-50

Flowboard: Visual Flow-Based Embedded Programming
for Young Learners

Anke Brocker1 and Simon Voelker1

Abstract: Through beginner-friendly environments like the Arduino IDE, embedded programming

has become an essential part of STEM education. Learning embedded programming demands

coding knowledge as well as basic electronics skills. To explore if a different programming

paradigm can help with learning, we developed Flowboard, which uses Flow-Based Programming

(FBP) rather than the usual imperative programming paradigm. This way, users code using

processing nodes arranged in a graph instead of command sequences. Flowboard consists of a visual

flow-based editor on an iPad, an Arduino board in the hardware frame and two breadboards next to

the iPad, letting learners connect their visual graphs seamlessly to the electronics. Graph edits are

implemented directly, making Flowboard a live coding environment.

Keywords: Embedded Development Environments, Young Learners, Learning Tools

1 Introduction

Embedded development environments like the Arduino IDE enable makers and novices

to develop interactive artifacts [PGJ00]. However, learning embedded programming is

challenging as it requires an understanding of (a) basic electronics, (b) coding, and (c) the

connections between hardware and software [Mc01]. The traditional imperative

programming paradigm is widespread. Users mostly need to type source code in text,

which may lead to syntax errors. Block-based environments like Scratch replace textual

source code with a graphical editor to assemble code from visual programming blocks.

That avoids syntax errors but is still the imperative programming paradigm. We wanted

to understand if a different programming paradigm, called flow-based programming

(FBP), can help learners even more. In FBP, data flows through a network of nodes that

process the data. This paradigm closely resembles electronic signal processing circuits.

Unlike in imperative programming, parallel processes in one program are straightforward

[WMR02]. FBP development environments such as Microflo or XOD have been available

for a few years. These systems are missing two aspects that motivated us to design and

build our own hardware and software: 1) Liveness: Program graphs can process incoming

data and reflect changes directly. These live programs, like analog circuits, can respond

immediately to incoming electronic signals, without an Edit-Compile-Run cycle. 2)

Seamlessness: The points where electrical signals flow into and out of the program graph

have a direct correspondence both in the visual graph and as hardware I/O pins.

1 RWTH Aachen University, brocker@cs.rwth-aachen.de, voelker@cs.rwth-aachen.de

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/delfi2023-50
mailto:brocker@cs.rwth-aachen.de
mailto:voelker@cs.rwth-aachen.de

270 Anke Brocker and Simon Voelker

2 System Design

The user creates her program graph using a visual, flow-based multitouch editor (cf.

https://hci.rwth-aachen.de/flowboard) running an iOS app on a 12.9" iPad Pro. Touch-

based interfaces also support more natural interactions that can support learning [Ho04].

Flowboard contains an Arduino Uno board and a custom printed circuit board that also

holds the “switchboard'': a second microcontroller and 18 electronic switches. The iPad
editor talks to the Arduino and the switchboard controller via Bluetooth. The Arduino is

running our modified version of the Firmata protocol. Firmata allows the iPad editor to set

and read the Arduino pins through serial commands sent via Bluetooth. With a real-time

protocol like Firmata Flowboard is a live system as the iPad editor interprets the graph

continuously, sending Firmata commands to the Arduino to achieve the appropriate

behavior. We provide all files open source. The user has access to all Arduino's I/O pins

twice, once on each side of the iPad. Pins are always active and detect plugged-in

components automatically. Below the screen, a hardware toggle switch allows

disconnecting power from the breadboards to reduce the risk of short circuits while

building them. The Flowboard case has three layers, the bottom layer contains the custom

circuit board, switchboard controller, and cables. The middle layer holds the breadboards

and the iPad. The top layer contains the breadboards, the external pin row connectors, and

a power switch. The user drags nodes onto the canvas from the node menu and connects

them by drawing virtual wires between them. Both sides of the editor show virtual

representations of the input resp.~output pins aligned with the hardware pins on each side

of the iPad. Active pins show a green LED and are not greyed out on the screen. The node

menu includes nodes for basic mathematical and logical functions as well as nodes to work

with more complex electronic components, such as servo motors. We believe that our

Flowboard prototype using FBP, liveness and seamlessness may increase students'

understanding of the interaction between embedded hardware and software code. We hope

to facilitate the mental model of students in terms of what programming an electronic

component involves and would like to study what students are able to translate of their

gained knowledge to non-graphical IDEs. More about the project can be found on

https://hci.rwth-aachen.de/flowboard.

Bibliography

[PGJ00] Papavlasopoulou, S.; Giannakos, M.; Jaccheri, L. (2016). Empirical Studies on the

Maker Movement, a Promising Approach to Learning: A Literature Review.

Entertainment Computing. 18. doi: 10.1016/j.entcom.2016.09.002.

[Mc01] McGrath, W. et al: 2018. WiFröst: Bridging the Information Gap for Debugging of

Networked Embedded Systems. In Proc. ACM UIST '18. 447–455.

[WMR02] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004. Advances in

dataflow programming languages. ACM Comput. Surv. 36, 1 (March 2004), 1–34.

[Ho04] Hornecker, E. et al.: 2008. Collaboration and interference: Awareness with mice or touch

input. In Proc. CSCW '08. 167–176.

https://hci.rwth-aachen.de/flowboard
https://hci.rwth-aachen.de/flowboard

