
Flowboard equipped with various components

Figure 1: Flowboard’s hardware frame
combines a large iPad Pro with an Ar-
duino board beneath it, and one bread-
board left and one right of the iPad. The
user develops her embedded code using
Flowboard’s visual flow-based program-
ming app on the iPad. Electronic compo-
nents for sensing (input, left) and actua-
tion (output, right) are plugged into the
breadboards and linked seamlessly to pro-
cessing nodes on the screen via two dupli-
cate rows of I/O pins. Parallel processes
are easy to code: Here, a physical button
controls what is written to a serial OLED
display, a force sensor dims an LED, an on-
screen slider controls a servo, and a 3-axis
accelerometer is connected just to see its
sensor values live.

Flowboard: A Visual Flow-Based
Programming Environment for
Embedded Coding

Anke Brocker
RWTH Aachen University
52056 Aachen, Germany
brocker@cs.rwth-aachen.de

Simon Voelker
RWTH Aachen University
52056 Aachen, Germany
voelker@cs.rwth-aachen.de

Tony Zhang, Mathis Mueller
RWTH Aachen University
52056 Aachen, Germany
[zhang,mueller]@cs.rwth-aachen.de

Jan Borchers
RWTH Aachen University
52056 Aachen, Germany
borchers@cs.rwth-aachen.de

ABSTRACT
With Maker-friendly environments like the Arduino IDE, embedded programming has become an
important part of STEM education. But learning embedded programming is still hard, requiring both
coding and basic electronics skills. To understand if a different programming paradigm can help, we
developed Flowboard, which uses Flow-Based Programming (FBP) rather than the usual imperative
programming paradigm. Instead of command sequences, learners assemble processing nodes into a
graph through which signals and data flow. Flowboard consists of a visual flow-based editor on an
iPad, a hardware frame integrating the iPad, an Arduino board and two breadboards next to the iPad,
letting learners connect their visual graphs seamlessly to the input and output electronics. Graph edits
take effect immediately, making Flowboard a live coding environment.

CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in Proceedings of CHI Conference on Human Factors in Computing Systems Extended Abstracts, May 4–9,
2019, https://doi.org/10.1145/3290607.3313247.

https://doi.org/10.1145/3290607.3313247


Flowboard: A Visual Flow-Based Programming Environment for Embedded Coding CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland UK

KEYWORDS
Embedded Development Environments; Visual Flow-Based Programming; Electronics; Young Learners

INTRODUCTION
Embedded development environments like the Arduino IDE have greatly lowered the threshold to
get involved in the maker movement [7]. They enable makers to create interactive artifacts, and
have become a main ingredient of STEM education [8]. However, learning embedded development
is inherently challenging, requiring an understanding of (a) basic electronics, (b) coding, and (c) the
connections of hardware and software of a project [6]. A number of research projects have tackled the
first aspect, we set out to address the other two facets (b and c). The traditional imperative programming
paradigm is widespread and the default in embedded development environments, including Arduino.
Users need to type in their program as a sequence of programming statements, which requires knowing
the language and is prone to syntax errors. Block-based programming environments like Scratch11https://scratch.mit.edu
replace textual source code with a graphical editor to assemble code from visual programming blocks.

We wanted to explore if the flow-based programming paradigm can provide a better starting point
to learn embedded development. In FBP, programs are not sequences of commands, but a network of
processing nodes through which data flows. Each node changes the data based on its parameters. This
paradigm closely resembles electronic signal processing circuits. Unlike in imperative programming,
parallel processes in one program are straightforward [3]. FBP has been used in commercial IDEs in
many domains, from scientific experimentation (LabVIEW2) to interactive media systems (Max/MSP3).2https://ni.com/labview

3https://cycling74.com/products/max FBP-based embedded development environments such as Microflo4 and XOD5 have been available

4http://microflo.org
5https://xod.io

for a few years. TAC[1] lets user specify their circuit in a FBP graphical editor, then presents the user
possible physical circuit designs and matching embedded textual source code. These systems are
missing two aspects that motivated us to design and build our own hardware and software:

Liveness: We made use of a key opportunity of FBP for embedded development: program graphs
can process incoming data and reflect changes directly. These live programs, like analog circuits,
can respond immediately to incoming electronic signals, without an Edit-Compile-Run cycle.

Seamlessness: The points where electrical signals flow into and out of the program graph have a
direct correspondence both in the visual FBP graph and, as I/O pins, in the hardware circuit, as
Flowboard places these virtual and physical pins directly next to each other.

Liveness and seamlessness fit the visual FBP paradigm for embedded development naturally: A graph
is easy to consider always-active, and the hardware/software boundary are simply particular edges in
the graph. In imperative programming environments, it is less trivial to create liveness [4], and the
interface to hardware is represented in statements that are spatially dispersed by the code, making it
more challenging to create a seamless view [5].

https://scratch.mit.edu
https://ni.com/labview
https://cycling74.com/products/max
http://microflo.org
https://xod.io


Flowboard: A Visual Flow-Based Programming Environment for Embedded Coding CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland UK

SYSTEM DESIGN AND IMPLEMENTATION
The user creates her program graph using a visual, flow-based multitouch editor on a 12.9" iPad Pro
lying flat on the table. This allows for a system design with a seamless link between electronics and
program graphs. Touch-based interfaces also support more natural interactions that can support
learning [2]. Flowboard contains an Arduino Uno board and a custom printed circuit board that

Flowboard’s system architecture

Figure 2: Flowboard system architecture.
TheArduino pins are brought out to the in-
put and output side of the Flowboard via
the switchboard, which controls the con-
nection to either side. The iPad runs the vi-
sual flow-based editor, and communicates
with both the Arduino and the microcon-
troller on the switchboard via Bluetooth
using the Firmata protocol.

Figure 3: The Flowboard case contains sev-
eral layers to house the iPad, the custom
circuit board, the Arduino, and a 5V bat-
tery pack.

also holds the “switchboard”: a second microcontroller and 18 electronic switches. The Flowboard
app is a native iOS app. The iPad editor talks to the Arduino and the switchboard controller via
Bluetooth. The Arduino is running our modified version of the Firmata6 protocol. Firmata allows

6https://github.com/firmata/protocol/blob/
master/protocol.md

the iPad editor to set and read the Arduino pins through serial commands sent via Bluetooth. We
extended the protocol to cover additional electronic components. With a real-time protocol like
Firmata Flowboard is a live system as the iPad editor interprets the graph continuously, sending
Firmata commands to the Arduino to achieve the appropriate behavior. We provide all files here:
https://github.com/i10/Flowboard.

Flowboard Hardware
The user has access to all Arduino’s I/O pins twice, once on each side of the iPad, except the two pins
required used for Bluetooth. If a user connects to a virtual in- or output pin in the editor, it instantly
instructs the switchboard controller that enusres that each Arduino pin is connected to either the
input or output row. Pins are Always active and detect plugged in components automatically. The
Flowboard, and also its breadboards, can be powered through a battery pack in the frame or via the
Arduino USB connector. Below the screen, a hardware toggle switch lets the learner disconnect power
from the breadboards to reduce the risk of short circuits while building them. The Flowboard case was
lasercut out of plywood. Its bottom layer contains the custom circuit board, switchboard controller,
cables, and the battery pack. The middle layer serves as platform for the breadboards and the iPad.
The top layer contains the breadboards, the external pin row connectors, a power switch, and the
iPad. The side walls hold all three layers together (Fig. 3).

Visual Editor
The visual editor initially shows an empty canvas to place nodes on. The user drags nodes onto the
canvas from the node menu, and connects them by drawing virtual wires between them. Both sides
of the editor show virtual representations of the input resp. output pins, aligned with the hardware
pins on each side of the iPad. A virtual output pin is greyed out if something is connected to the
physical pin at the input side and vice versa. Active pins show a green LED and are not greyed out on
screen. To maximize screen space for the program graph, the node menu on the bottom is only visible
while adding nodes. Scrolling sideways through it shows all available nodes, with direct shortcuts

https://github.com/firmata/protocol/blob/master/protocol.md
https://github.com/firmata/protocol/blob/master/protocol.md
https://github.com/i10/Flowboard


Flowboard: A Visual Flow-Based Programming Environment for Embedded Coding CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland UK

for experienced users. The node menu includes nodes for basic mathematical and logical processing
functions as well as nodes to work with more complex electronic components, such as servo motors.

First Evaluation
After designing Flowboard we gathered feedback from learners concerning layout and design of the
Flowboard editor. We target programming beginners, that can have programming experiences with
Scratch etc. With these, we improved its UI, such as highlighting matching inputs based on input type
when connecting nodes. Furthermore, we tested the study design for exploring our research question
if FBP would make embedded programming more accessible to learners. We found that a 1-on-1
tutorial with guided tasks is more suitable than letting the user read a handbook without guidance
for the first steps in the new system. In the future, we would like to run a user study comparing our
system to an imperative programming environment and evaluate our underlying research question.

Flowboard’s IDE

Figure 4: Flowboard’s editor after launch-
ing. Virtual I/O pins are visible on the left
and right. The bottom menu is only visi-
ble while the user picks a node to add to
his program

The programming nodes

Figure 5: These two programming nodes
(’Greater Than’ and ’Condition’) are exam-
ples of the nodes used on the iPad

CONCLUSION
Our Flowboard prototype uses FBP and is a live and seamless device for embedded development. It
needs to be tested more in terms of suitability for learning embedded development. We hope to gather
feedback concerning its design and functionality during the demonstration. With this feedback we
plan to evaluate and improve Flowboard further as a device for learners.

REFERENCES
[1] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017. Trigger-Action-Circuits: Leveraging Generative Design to

Enable Novices to Design and Build Circuitry. In Proc. UIST ’17. ACM, 331–342. https://doi.org/10.1145/3126594.3126637
[2] Eva Hornecker, Paul Marshall, Nick Sheep Dalton, and Yvonne Rogers. 2008. Collaboration and Interference: Awareness

with Mice or Touch Input. In Proc. CSCW ’08. ACM, 167–176. https://doi.org/10.1145/1460563.1460589
[3] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004. Advances in Dataflow Programming Languages. ACM

Comput. Surv. 36, 1 (March 2004), 1–34. https://doi.org/10.1145/1013208.1013209
[4] Jan P. Krämer, Joachim Kurz, Thorsten Karrer, and Jan. Borchers. 2014. How live coding affects developers’ coding behavior.

In VL/HCC ’14. 5–8. https://doi.org/10.1109/VLHCC.2014.6883013
[5] Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell Karchemsky, David Mellis, and Björn

Hartmann. 2017. Bifröst: Visualizing and Checking Behavior of Embedded Systems Across Hardware and Software. In
Proc. UIST’17. ACM, 299–310. https://doi.org/10.1145/3126594.3126658

[6] Will McGrath, Jeremy Warner, Mitchell Karchemsky, Andrew Head, Daniel Drew, and Björn Hartmann. 2018. Wifröst:
Bridging the Information Gap for Debugging of Networked Embedded Systems. In Proc. UIST ’18. ACM, 447–455.
https://doi.org/10.1145/3242587.3242668

[7] S. Papavlasopoulou, M. Giannakos, and Maria Letizia Jaccheri. 2012. Creative and Open Software Engineering Practices
and Tools in Maker Community Projects. In Proc. EICS ’12. ACM, 333–334. https://doi.org/10.1145/2305484.2305545

[8] S. Papavlasopoulou, M. Giannakos, and Maria Letizia Jaccheri. 2017. Empirical studies on the Maker Movement, a
promising approach to learning: A literature review. Entertainment Computing 18 (2017), 57 – 78. https://doi.org/10.1016/j.
entcom.2016.09.002

https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/1460563.1460589
https://doi.org/10.1145/1013208.1013209
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/3242587.3242668
https://doi.org/10.1145/2305484.2305545
https://doi.org/10.1016/j.entcom.2016.09.002
https://doi.org/10.1016/j.entcom.2016.09.002

	Abstract
	Introduction
	System Design and Implementation
	Flowboard Hardware
	Visual Editor
	First Evaluation

	Conclusion
	References

