
IEEE Wireless Communications • December 20022 1070-9916/02/$17.00 © 2002 IEEE

Event
Heap

ISlider

Event

IButtonEvent

Win2K PC

Web configuration
Encoder IC Decoder IC
RF trans. RF rec.

F 300 MHz RF

FM band

FM

Most smart homes
are created
evolutionarily. This
incremental addition
of technology
requires a highly
flexible infrastructure
to accommodate
both future exten-
sions and legacy
systems without
requiring extensive
rewiring of hardware
or reconfiguration on
the software level.

SMART HOMES

IROS: APPLICATION COORDINATION IN
UBIQUITOUS COMPUTING ENVIRONMENTS

SOFTWARE REQUIREMENTS FOR
RAPID INTEGRATION AND EVOLUTION

The ability to continually integrate new tech-
nologies and handle failures in a noncatastrophic
manner is be essential to smart homes and relat-
ed ubiquitous computing environments. Our
experience working in the Stanford iRoom
enables us to identify four important require-
ments for a software infrastructure in a ubiqui-
tous computing environment.

Heterogeneity: The software infrastructure
must accommodate a tremendous variety of
devices with widely ranging capabilities. This
implies that it should be lightweight and make
few assumptions about client devices so that the
effort to “port” any necessary software compo-
nents to new devices will be small.

Robustness: The software system as a whole
must be robust against transient or partial fail-
ures of particular components. Failures should
not cascade, and failure or unexpected behavior
of one component should not be able to infect
the rest of the working system.

Evolvability: The application program inter-
face (API) provided must be sufficiently flexible
to maintain forward and backward compatibility
as technology evolves. For example, it should be
possible to integrate a new type of pointing
device that provides higher resolution or addi-
tional features not found in older devices, with-
out breaking compatibility with those older
devices or existing applications.

Compatibility: It should be easy to leverage
legacy applications and technologies as building
blocks. For example, Web technologies have
been used for user interface (UI) prototyping,
accessing remote applications, and bringing rich
content to small devices; desktop productivity

JAN BORCHERS, MEREDITH RINGEL, JOSHUA TYLER, AND ARMANDO FOX
STANFORD UNIVERSITY

OVERVIEW
Most smart homes are created evolutionarily

by adding more and more technologies to an
existing home, rather than being developed on a
single occasion by building a new home from
scratch. This incremental addition of technology
requires a highly flexible infrastructure to accom-
modate both future extensions and legacy sys-
tems without requiring extensive rewiring of
hardware or extensive reconfiguration on the
software level. Stanford’s iStuff (Interactive
Stuff) provides an example of a hardware inter-
face abstraction technique that enables quick
customization and reconfiguration of Smart
Home solutions. iStuff gains its power from its
combination with the Stanford Interactive Room
Operating System (iROS), which creates a flexi-
ble and robust software framework that allows
custom and legacy applications to communicate
with each other and with user interface devices
in a dynamically configurable way.

The Stanford Interactive Room (iRoom,Fig.
1), while not a residential environment, has many
characteristics of a smart home: a wide array of
advanced user interface technologies, abundant
computation power, and infrastructure with which
to coordinate the use of these resources (for
more information on the iRoom or the Interac-
tive Workspaces project, please visit
http://iwork.stanford.edu).As a result, many
aspects of the iRoom environment have strong
implications for, and can be intuitively translated
to, smart homes. In particular, the rapid and fluid
development of physical user interfaces using
iStuff and the iROS, which has been demonstrat-
ed in the iRoom, is an equally powerful concept
for designing and living in smart homes.

Before focusing on the details of iStuff, we
describe the software infrastructure on which it
is based and the considerations that went into
designing this infrastructure.

STANFORD INTERACTIVE WORKSPACES:
A FRAMEWORK FOR PHYSICAL AND

GRAPHICAL USER INTERFACE PROTOTYPING

IEEE Wireless Communications • December 2002 3

applications such as Microsoft PowerPoint™
contain many elements of a “rich content display
server;” and so on. Furthermore, since technolo-
gy in smart spaces tends to accrete over time,
today’s new hardware and software will rapidly
become tomorrow’s legacy hardware and soft-
ware, so this problem will not go away.

Our prototype meta-operating system, iROS
(Interactive Room Operating System), meets the
above criteria. We call it a meta-OS since it con-
sists entirely of user-level code running on
unmodified commodity operating systems, con-
necting the various iRoom entities into a “sys-
tem of systems.” We discuss the main principles
of iROS here to give the reader an understand-
ing of how it facilitates building new behaviors
using iStuff.

IROS AND APPLICATION COORDINATION
We will frame our discussion in the context of
the Stanford iRoom, a prototype environment
we constructed that we believe is representative
of an important class of ubiquitous computing
installations. The iRoom is intended to be a ded-
icated technology-enhanced space where people
come together for collaborative problem solving
(meetings, design reviews, brainstorming, etc.),
and applications we prototyped and deployed
were driven by such scenarios.

The basis of iROS is application coordination.
In the original formulation of Gelernter and
Carriero [1], coordination languages express the
interaction between autonomous processes, and
computation languages express how calculations
of those processes proceed. For example, proce-
dure calls are a special case in which the caller
process suspends itself pending a response from
the callee. Gelertner and Carriero argue that
computation and coordination are orthogonal
and that there are benefits to expressing coordi-
nation in a separate general-purpose coordina-
tion language; our problem constraint of
integrating existing diverse components across
heterogeneous platforms leads directly to sepa-
rating computation (the existing applications
themselves) from coordination (how their behav-
iors can be linked).

In iROS, the coordination layer is called the
Event Heap [2].The name was chosen to reflect
that its functionality could be viewed as analo-
gous to the traditional event queue in single-
computer operating systems. The Event Heap is
an enhanced version of a tuplespace, one of the
general-purpose coordination languages identi-
fied by Gelernter and Carriero. A tuple is a col-
lection of ordered fields; a tuplespace is a
“blackboard” visible to all participants in a par-
ticular scope (in our case, all software entities in
the iRoom), in which any entity can post a tuple
and any entity can retrieve or subscribe for noti-
fication of new tuples matching a wildcard-based
matching template. We have identified impor-
tant advantages of this coordination approach
over using rendezvous and RMI (as Jini does) or
simple client-server techniques (as has been
done using HTTP, Tcl/Tk [3], and other
approaches); these advantages include improved
robustness due to decoupling of communicating
entities, rapid integration of new platforms due
to the extremely lightweight client API (we sup-

port all major programming languages, including
HTML, for posting and retrieving tuples), and
the ability to accommodate legacy applications
(simple “hooks” written in Visual Basic or Java
can be used to connect existing productivity,
Web, and desktop applications to the
iRoom).The only criterion for making a new
device or application “iRoom-aware” is its ability
to post and/or subscribe to tuples in the Event
Heap; since we can create Web pages that do
this, any device that enters the room running a
Web browser is already minimally iRoom-aware.

ON-THE-FLY
USER INTERFACE GENERATION IN IROS

The Event Heap is the core of iROS, but we
have also built other iROS services that provide
higher-level functionality. Most notably, the
Interface Crafter (iCrafter) framework [4] can
generate UIs dynamically for virtually any iRoom
entity and on virtually any iRoom-aware device.
Although it extends previous work in several
important ways, including integration of service
discovery with robustness and the ability to cre-
ate UIs ranging from fully custom to fully auto-
matic, its main role in the present scenarios is to
serve as an abstraction layer between devices
and UIs. Briefly, iCrafter is used as follows:

¶Controllable entities beacon their presence
by depositing self-expiring advertisements in the
Event Heap. These advertisements contain a
description of the service’s controllable behav-
iors (i.e., methods and their parameters)
expressed in SDL, a simple XML-based markup
language we developed.

¶A device capable of displaying a UI (Web
browser, handheld, etc.) can make a request for

� Figure 1. The Stanford iRoom contains a wireless GyroMouse and keyboard
(visible on the table), three touch-sensitive SmartBOARDs and one non-
touch-sensitive tabletop display, and a custom-built OpenGL hi-res graphic
mural. The room is networked using IEEE 802.11b wireless Ethernet. Except
for the hi-res mural and the tabletop, all hardware is off-the-shelf, all operating
systems are unmodified Windows (various flavors) or Linux, and all software
we have written is user-level.

IEEE Wireless Communications • December 20024

the UI of a specific service, or can query the
iCrafter’s Interface Manager (which tracks all
advertisements) to request a list of available ser-
vices. This initial request is made via whatever
request-response technology is available on the
client: visiting a well-known dynamically generat-
ed Web page is one possibility.

¶The desired UI is created by feeding the
SDL contained in a recent service advertisement
to one or more interface generators. These may
be local or remote (i.e., downloaded on demand
over the Web), and may be specialized per ser-
vice and/or per device. The Interface Manager
determines the policy for selecting a generator.
Part of this process includes integrating contex-
tual information from a separate context
database relevant to each workspace, making a
“static” UI description portable across installa-
tions. For example, in a workspace such as ours
with three large wall-mounted displays, it is
preferable for a UI to refer to these as “Left,
Center, Right” than to use generic names such
as “screen0, screen1, screen2” (Fig. 2).

Note that in the last step the client device
and service do not need to establish a direct con-
nection (client-server style).This makes each

robust to the failure of the other. They do not
even need to be able to name each other using
lower-level names such as network addresses
because the tuple-matching mechanism can be
based on application-level names or attributes of
the service (“retrieve advertisements for all
devices of type LightSwitch”).The same service
can be controlled from a variety of different
devices without knowing in advance what types
of devices are involved, since the same SDL
description can be processed into quite different
UIs by different interface generators.

The ability to insulate the service and UI from
each other in these ways has been critical to the
rapid prototyping of new UI behaviors. iStuff
builds on this ability, usin this indirection to
enable rapid prototyping of physical UIs as well.

ISTUFF: PHYSICAL DEVICES FOR
UBIQUITOUS COMPUTING

ISTUFF MOTIVATION AND DEFINITION
iStuff is a toolbox of wireless platform-indepen-
dent physical UI components designed to lever-
age the iROS infrastructure (which allows our
custom-designed physical devices to send and
receive arbitrary commands to and from other
devices, machines, and applications in the
iRoom).The capability to connect a physical
actuator to a software service on the fly has
appeal to users of a ubiquitous computing envi-
ronment such as a smart home. Residents would
have the ability to flexibly set up sensors and
actuators in their home, and designers of such
homes would be able to prototype and test vari-
ous configurations of their technology before
final installation.

There are several characteristics that are cru-
cial for our iStuff:
• Completely autonomous packaging, wireless

connection to the rest of the room, and bat-
tery-powered operation

• Seamless integration of the devices with iROS
as an existing, available, cross-platform ubiqui-

IMPLEMENTATION DETAILS
Transmitting devices (buttons, sliders) contain a Ming TX-99 V3.0 300 MHz
FM radio frequency (RF) transmitter and a Holtek HT-640 encoder to send 8
bits of data to a receiver board, which contains a Ming RE-99 V3.0 RF receiver
and a Holtek HT-648L decoder. The receiver board sends its data to a PC using
either the parallel or USB port, and a listener program running on the PC then
posts an appropriate tuple (based on the ID received) to the iRoom’s Event
Heap. Receiving devices (buzzers, LEDs) work in the opposite manner: a listen-
er program receives an event intended for the iStuff and sends the target
device ID through either the parallel or USB port to an RF transmitter. This
data is then received wirelessly by an RF receiver in the device, resulting in the
desired behavior. The iSpeaker has a different architecture, since the RF tech-
nology we employed is not sufficient for handling streaming media. Instead, a
listener program on the PC waits for speaker-targeted events, and in response
streams sound files over an FM transmitter, which our iSpeaker (a small
portable FM radio) then broadcasts.

� Figure 2. Screen/projector control UIs customized for various devices and incorporating installation-spe-
cific information from the context database: (a) A fragment of a projector HTML interface that can be
rendered by any Web browser. This UI was generated by a projector-specific HTML generator. The symbol-
ic names such as iRoom Server are stored in the context database and appear in the SDL markup as
“machine0,” “machine1,” and so on. (b) Room control applet for the same room, generated by a Java
Swing-UI generator. The geometry information for drawing the widgets comes from the context database,
so the generator itself is not installation-specific. Users can drag and drop Web pages onto the screen wid-
gets to cause those documents to appear on the corresponding room screens. (c) The same UI using differ-
ent geometry information (for a different room) from the context database. (d) A Palm UI rendered in
MoDAL [8] that lacks the drag-and-drop feature.

IEEE Wireless Communications • December 2002 5

tous computing environment to let devices,
machines, and services talk to each other and
pass information and control around

• Easy configuration of mappings between
devices and their application functionality, by
customizing application source code, or even
just updating function mappings using a Web
interface

• Simple and affordable circuitry
Various other research projects have looked

at physical devices in the past; Ishii’s Tangible
Bits project [6] introduced the notion of bridging
the world between bits and atoms in UIs, and
more recently Greenberg’s Phidgets [7] repre-
sent an advanced and novel project in physical
widgets. Phidgets, however, are designed for use
in isolation with a single computer, are tethered,
and do not work across multiple platforms.

DEVICE CLASSIFICATION AND IMPLEMENTATION
The range of potentially useful UI components
is almost unlimited, and the really useful devices
to go in a standard toolbox will only be identi-
fied over time. Ideas for such devices can be cat-
egorized according to whether they are input or
output devices, and the amount of information
they handle, as in the following examples:
• One-bit input devices, such as pushbuttons and

toggle buttons, or binary sensors such as light
gates

• Multiple-bit discrete input devices, such as
rotary switches or digital joysticks as well as
packaged complex readers that deliver identi-
fication data as a result (e.g., barcode readers
or fingerprint scanners)

• Near-continuous input devices, such as sliders,
potentiometers, analog joysticks or trackballs,
and various sensors (light, heat, force, loca-
tion, motion, acceleration, etc.)

• Streaming input devices, such as microphones
and small cameras

• One-bit output devices, such as a control or
status light, beepers/buzzers, solenoids, and
power switchers

• Multiple-bit discrete output devices, such as
LED arrays or alphanumerical LCD displays

• Near-continuous output devices, such as ser-
vos, motors, dials, and dimmers

• Streaming output devices, such as speakers
and small screens
Thus far, students in our laboratory have

designed and built five types of prototype iStuff
devices spanning four of the above categories:
iButtons, iSliders, iBuzzers, iLEDs, and iSpeak-
ers (Fig. 3).While our hardware designs have
proven surprisingly powerful and proofs of con-
cept, they are simple enough to be reproduced
easily (see box).

We have developed several successful setups
using iStuff in the Stanford iRoom:

¶New users coming into our iRoom are not
familiar with the environment, and need an
“entry point” to learn about the room and its
features. Using our iStuff configuration Web
interface, we programmed one iButton to
• Send events that turn on all the lights in the

room
• Switch on all SMARTBoards (large touch-sen-

sitive displays) and our interactive table dis-
play

• Bring up a Web-based introduction to the
room on one SMARTBoard

• Show an overview of document directories for
the various user groups on a second SMART-
Board

• Open up our brainstorming and sketching
application on the third SMARTBoard
It is worth nothing that setting up this iRoom

Starter took less than 15 minutes of configura-
tion using the Web interface.

¶SMARTBoards provide only a rather incon-
venient way to issue right clicks when using the
touch-sensitive board for input — users have to
press a right-click “mode key” on the tray in front
of the board to have their next touch at the board
be interpreted as a right click. To study whether
having the right-click modifier closer to the actual
input location at the board would make this inter-
action more fluid, we built a specialized iButton
that was shaped to fit inside a hollow pen proto-
type made from RenShape plastic by a product
design student in our model shop. When the but-
ton is pressed it sends an event to the Event
Heap that is then received by a listener applica-
tion running on the computer associated with the
SMARTBoard. The listener then tells the
SMARTBoard driver to interpret the next tap as
a right click. Users can now simply press the but-
ton on the pen and then tap to issue a right click.

¶We found our iSlider could conveniently
control the paddles for our multiscreen version
of the classic video game Pong, described below.

¶The iSpeaker has been extended to provide
verbal feedback for user actions (e.g., “Pong game
started”) by means of a text-to-speech program —
applications simply send a SpeakText event to the
iSpeaker containing the ASCII text to be spoken.

� Figure 3. The various types of iStuff created so far: buttons, potentiometers,
speakers, and buzzers.

IEEE Wireless Communications • December 20026

¶We are experimenkting with our iLEDs and
iBuzzers to provide feedback about the status of
devices in the room.

As discussed before, the Event Heap is a core
component of the iROS that makes it possible to
decouple the sender and receiver from the con-
tents of the message itself (Fig. 4).This architec-
ture allows great flexibility for the prototyping of
interfaces; for instance, an application can be
controlled by either a traditional mouse, a graph-
ical slider widget, or an iSlider as long as each of
those devices sends the event type (perhaps an
event containing a new Y-coordinate) for which
the application is listening.

In our iRoom we have demonstrated the util-
ity of the combination of Event Heap software
with iStuff hardware by developing iPong, a mul-
timachine version of the video game where play-
ers control the vertical position of virtual paddles
to make contact with a virtual bouncing ball.
The game was written to listen for Paddle
Events, which contain information about the
new position of the target paddle. Any input
method that can generate a Paddle Event can
control the paddle position. We have mapped
the standard mouse, touch panel input, and an
iSlider (a sliding-potentiometer iStuff widget) to
drive the paddle. To the application, the physical
source of the events is irrelevant. Thus, we have
decoupled the link between hardware and soft-
ware components in a physical UI.

Our iButtons are already reconfigurable
dynamically via a Web interface that lets users
enter arbitrary events to send when a specific

button is pressed. We intend to provide this flex-
ible interactive mechanism for mapping applica-
tions and events for all iStuff, using the
on-the-fly service discovery tools of iROS
(described earlier).The result will be a general
virtual Patch Panel that allows even end users to
map events to services and map conversions
between related event types. Thus, iStuff makers
can send and receive their own types of events
(e.g., button events or slider events) without
concern for the exact names of events desired by
end-user applications, and application develop-
ers can send and receive their own types of
events (e.g., Paddle Event) without prior knowl-
edge of every possible type of device the user
might choose to interface with their application.

The iStuff/Event Heap combination has direct
applications to the Smart Home that incremen-
tally acquires new technologies. When residents
acquire a new device or wish to reconfigure
existing devices, they can simply use a utility
such as our Patch Panel to map the event type
sent by the new device to the event type expect-
ed by the target application.

SMART HOME APPLICATIONS
While our iStuff was originally designed with our
iRoom (a space used for meetings and brain-
storming/design sessions) in mind, our technology
and infrastructure could be useful in a dmart
home environment. In particular, the ability to
create task-oriented user interfaces — interfaces
reflecting the user’s task as opposed to the techni-
cal features of an appliance — makes iStuff par-

� Figure 4. The overall system architecture for iStuff. In darker boxes are the actual physical devices, and in
the lighter ones are a couple of examples of applications using iStuff and the iROS Event Heap. An iStuff
server translates the wireless device transmissions into software events, which can be consumed by interest-
ed applications. For example, when the potentiometer of the iSlider is moved, it sends a radio signal, which
is received by the server and turned into a SliderEvent. The event is posted to the Event Heap, and subse-
quently received by the iPong application, which is listening for SliderEvents.

Event
Heap

ISlider

Event

IButtonEvent

iPen (right click)
...
EventHeep.putEvent
(
iLEDEvent);
...

iPong
...
this.waitFarEvent(
iSliderEvent);
...

Pushbutton

Encoder IC
RF transmitter

Sliding pot

Encoder IC
RF transmitter

LED

Decoder IC
RF receiver

Buzzer

Decoder IC
RF receiver

Win2K PC

Web configuration
Encoder IC Decoder IC
RF trans. RF rec.

300 MHz RF 300 MHz RF

FM band

FM receiver

When residents
acquire a new
device, or wish to
reconfigure existing
devices, they can
simply use a utility
such as our “Patch
Panel” to map the
event type sent by
the new device to
the event type
expected by the
target application.

IEEE Wireless Communications • December 2002 7

ticularly compelling for Smart Home applications.
Dynamic, task-based remote controls: Cur-

rently, when a user wants to watch a movie on a
DVD, they need several remote controls: one to
control the DVD player, another to control their
home’s surround-sound system, and a third to
control the television set (and then the user has
to get up to dim the lights!).Today’s remotes are
device-based, but because the Event Heap archi-
tecture allows for the decoupling of devices from
messages we are able to use iStuff to construct
task-based remote controls. By gathering appro-
priate iStuff components and using the Patch
Panel application to ensure that the appropriate
iStuff events are converted to the events appro-
priate to the target devices (DVD player, speak-
ers, TV set, lights), the user can construct a
task-oriented controller-one device that controls
all appliances relevant to viewing a DVD movie,
regardless of their physical connectivity. iCrafter
could be used in an analogous manner to dynam-
ically create GUI controllers for household
appliances, thus transforming a PDA into a task-
based universal remote control.

Monitoring house state: A user is on her way
out the door of her smart home, about to head
off to work. The display near her door shows her
the status of several devices in her home that
have been instrumented with iSensors: did she
leave the stove on? The lights in her bedroom? Is
the thermostat too high? Is the burglar alarm on?

Setting house state: A user can create an
iButton or similar device to set the house ’s
“state” as she leaves for work every day, and
mount this button by her door. She might con-
figure it to lower her thermostat, switch off all
lights, and activate her security system, for exam-
ple. This type of button is analogous to our Start
iRoom button mentioned earlier.

Smart home design: Architects and interior
designers could use iStuff to fine-tune the place-
ment of controls, speakers, and other interactive
elements of a Smart Home. Researchers and
technology developers could use iStuff to quickly
prototype and test their products before putting
them on the market for addition to smart homes.

DISCUSSION AND SUMMARY

Technology advancements have made much of
the original vision of ubiquitous computing feasi-
ble. A software framework, however, that inte-
grates those heterogeneous technologies in a
dynamic, robust, and legacy-aware fashion and
provides a seamless user experience has been
missing. We have created the Stanford iRoom, a
physical prototypical space for ubiquitous com-
puting scenarios that has been in constant use
for almost two years now, to address this need.
iROS, our iRoom Operating System, runs as a
meta-OS to coordinate the various applications
in the room. iROS is based on a tuplespace
model, which leads to the aforementioned
desired characteristics. Its failure robustness has
been better than average for both induced and
real faults. Its ability to leverage and extend
existing applications has been critical for rapid
prototyping in our research.

The iStuff project builds on iROS, and tack-
les the problem that customizing or prototyping

physical user interfaces for ubiquitous computing
scenarios (e.g., smart homes) is still a very ardu-
ous process. It offers a toolbox of wireless physi-
cal user interface components that can be
combined to quickly create nonstandard user
interfaces for experimentation. The iROS infra-
structure has proven invaluable in making the
software integration of these custom devices very
straightforward. The flexibility of the technology
we developed for Stanford’s iRoom has potential
benefits in a smart home scenario, for example,
by enabling users to quickly create a customized
task-based interface to a system in their home.

In all, we hope that our approach to building
a software and hardware framework for ubiqui-
tous computing environments, and the various
building blocks we have implemented and
deployed, are general and useful enough so that
others will find them of value. For more infor-
mation on our Stanford Interactive Workspaces
project, access iStuff documentation, or down-
load iROS software, please visit our project
homepage at http://iwork.stanford.edu/.

ACKNOWLEDGMENTS
The authors would like to thank Maureen Stone,
Michael Champlin, Hans Anderson and Jeff
Raymakers for their contributions to this work,
as well as the Wallenberg Foundation
(http://www.wgln.org) for its financial support.

REFERENCES
[1] D. Gelernter and N. Carriero, “Coordination Languages

and their Significance,” Commun. ACM, vol. 32, no. 2,
Feb. 1992.

[2] B. Johanson and A. Fox, “The Event Heap: A Coordination
Infrastructure for Interactive Workspaces,” to appear in
Proc. WMCSA 2002, Callicoon, NY, June 2002.

[3] T. D. Hodes et al., “Composable Ad-Hoc Mobile Services
for Universal Interaction,” Proc. ACM MobiCom ’97,
Budapest, Hungary, Sept. 1997.

[4] S. R. Ponnekanti et al., “ICrafter: A Service Framework
for Ubiquitous Computing Environments,” Proc. Ubi-
Comp. ’01, Atlanta, GA.

[5] T. Lehman et al., MoDAL (Mobile Document Application
Language); http://www.almaden.ibm.com/cs/TSpaces/
MoDAL

[6] H. Ishii and B. Ullmer, “Tangible bits: Towards seamless
interfaces between people, bits and atoms,” Proc. CHI
’97, Atlanta, GA, Mar. 22–27, 1997, pp. 234–41.

[7] S. Greenberg and C. Fitchett, “Phidgets: Easy Development
of Physical Interfaces Through Physical Widgets,” Proc. UIST
2001, Orlando, FL, Nov. 11–14, 2001, pp. 209–18.

ADDITIONAL READING
[1] W. K. Edwards and R. E. Grinter, “At Home with Ubiq-

uitous Computing: Seven Challenges,” Proc. UbiComp
’01, Atlanta, GA, pp. 256–72.

[2] E. Kiciman and A. Fox, “Using Dynamic Mediation to
Integrate COTS Entities in a Ubiquitous Computing
Environment,” Proc. HUC2K, LNCS, Springer Verlag.

BIOGRAPHIES
JAN BORCHERS (borchers@cs.stanford.edu) is an acting assis-
tant professor of computer science at Stanford University.
He works on human-computer interaction in the Stanford
Interactivity Lab, where he studies post-desktop user inter-
faces, HCI design patterns, and new interaction metaphors
for music and other types of multimedia. He holds a Ph.D. in
computer science from Darmstadt University, and has been
known to turn his research into public interactive exhibits.

MEREDITH RINGEL (merrie@cs.stanford.edu) is a first-year
Ph.D. student in computer science at Stanford, with a
focus on human-computer Interaction.She received her B.S.
in computer science from Brown University.

JOSHUA TYLER (jtyler@cs.stanford.edu) is a second-year Mas-
ter’s student in computer ccience at Stanford with a spe-

A user can create an
iButton or similar
device to set the

house’s “state” as
she leaves for work

everyday, and mount
this button by her

door. She might
configure it to lower

her thermostat,
switch off all lights,

and activate her
security system,

for example.

IEEE Wireless Communications • December 20028

cialization in human-computer interaction. He received a
B.S. in computer science from Washington University.

ARMANDO FOX (fox@cs.stanford.edu) joined the Stanford fac-
ulty in January 1999.His research interests include the design
of robust Internet-scale software infrastructure, particularly
as it relates to the support of mobile and ubiquitous com-
puting, and user interface issues related to mobile and ubiq-
uitous computing. He received a B.S.E.E. from M.I.T., an
M.S.E.E. from the University of Illinois, and a Ph.D. from UC
Berkeley. He is a founder of ProxiNet, Inc. (now a division of
PumaTech), which commercialized thin client mobile com-
puting technology developed at UC Berkeley.

The iStuff project
builds on iROS, and
tackles the problem
that customizing or
prototyping physical
user interfaces for
ubiquitous computing
scenarios is still
a very arduous
process.

