
CHI Meets PLoP: An Interaction Patterns Workshop

Jan O. Borchers

To appear in ACM SIGCHI Bulletin, Vol. 32, No. 1, January 2000

Abstract

This report summarizes the results of a workshop on pattern
languages for human-computer interaction which took place
at the ChiliPLoP’99 Conference on Pattern Languages of Pro-
gramming. It suggests a definition and taxonomy for interac-
tion patterns, explains how Writers’ Workshops are used to
improve patterns, and points out some surprising issues about
pattern languages as they are understood by key players in
that field. It shows the importance of user interface and soft-
ware engineering researchers to exchange their thoughts on
this hot topic.

What’s ChiliPLoP?

The annual ChiliPLoP conference in Arizona is part of the
Pattern Languages of Programming (PLoP) conference se-
ries, its partner conferences being the annual main PLoP con-
ference in Chicago, and the EuroPLoP which is held in (sur-
prise) Europe. ChiliPLoP’99 took place in Wickenburg, Ari-
zona, from 16 to 19 March 1999. Common goal of these
conferences is to gather and discuss design patterns from soft-
ware engineering and related areas. Two techniques are used
to accomplish this: First, experienced pattern writers shep-
herd the pattern drafts of new authors before the conference,
especially for PLoP. Second, submitted patterns are discussed
at the conference in Writers’ Workshops in presence of the au-
thor.

This year, ChiliPLoP consisted of a Newcomers track, and
a Hot Topics track. Newcomers were instructed about the ba-
sics of writing patterns by renowned pattern authors. The Hot
Topics were workshops about specific pattern areas. They in-
cluded Agent Patterns, Elementary Patterns (goal: a patterns
book accompanying introductory computer science courses
at university), Interaction Patterns, Component Design Pat-
terns, Organizational Patterns, and Telecommunications Pat-
terns (TelePLoP). Some of these Hot Topics, such as Tele-
PLoP, have been continued for several years already, whereas
others like Interaction Patterns were new to the conference.

The Interaction Patterns workshop consisted of six partic-
ipants. I turned out to be the only “CHI person”, with all
others being rooted in software engineering with an interest
in HCI issues. This made the meeting quite different from the
first workshop at CHI’97 on this subject [3], and also made it

a particular interesting experience for me, as it was up to me
to explain and defend the paradigms of HCI. . .

Results of the Interaction Patterns
Workshop

Definition: Interaction Pattern Language

To explain what pattern languages are about in general is be-
yond the scope of this report. Briefly, a design pattern cap-
tures a proven solution to a recurring design problem in a
generative and easy-to-understand, human-readable format.
A pattern language is a hierarchically structured collection of
design patterns that leads the designer from abstract, large-
scale to concrete and small-scale design issues. Design pat-
terns have proven to be a very suitable medium (or literary
form, really) to communicate design experience and the de-
sign values of their author, in architecture where the idea first
emerged as well as in many areas of software engineering
that have picked up this concept. The best way to learn about
pattern languages is to have a look at architect Christopher
Alexander’s original books on the subject, which are a fasci-
nating read even for non-architects [1],[2].

Our workshop started out by trying to define what it means
to create pattern languages for human-computer interaction
design. After much discussion, we arrived at the following
definition, which also found broad approval by the other pat-
tern people at the conference:

An Interaction Pattern Language generates
space/time interaction designs that create a system
image close to the user’s mental model of the task
at hand, to make the human-computer interface as
transparent as possible.

A Taxonomy of Interaction Patterns

We agreed upon three main dimensions along which interac-
tion patterns can be classified meaningfully (see Fig. 1).

The most important dimension is level of abstraction:
Interaction design patterns can address very large-scale is-
sues that comprise a user’s complete task, they can address
smaller-scale, slightly more concrete topics that describe the
style of a certain part of the interaction (such as the Browser
style identified by workshop organizer Bill Brooks), or they

1



L
ev

el
 o

f 
ab

st
ra

ct
io

n
Function

Ta
sk

S
ty

le
O

bj
ec

ts
Perception NavigationManipulation

sp
ac

e

se
q.

tim
e

sp
ac

e

se
q.

tim
e

sp
ac

e

se
q.

tim
e

Physical Dimension

Figure 1: A taxonomy of human-computer interaction design
patterns.

can deal with low-level questions of user interface design that
look at individual user interface objects (whether virtual or
physical).

We discussed the inclusion of a fourth layer here which
would be called “technology”, to distinguish the actual in-
put and output hardware considerations, but finally decided
against it since the distinction from software objects did not
seem useful enough.

The second fundamental dimension is function: Patterns
can be classified into those that address mainly questions
of (visual, auditory, etc.) perception (interface output), and
those that deal with interface input, or, more specifically, ma-
nipulation of some kind of application data, or navigation
through the system.

Human Factors people will probably consider this, espe-
cially the disctinction between navigation and manipulation,
a bit unusual and too software-centered, but it has to be kept
in mind that the whole work was as a result of software engi-
neering and CHI paradigms being brought together, and mea-
sured against each other!

The third dimension that we identified is physical dimen-
sion: Some patterns will address questions of spatial layout,
while others deal with issues of sequence (discrete series of
events, e.g., a sequence of dialogs), or with continuous time
(such as a design pattern about good animation techniques in
the user interface).

This taxonomy is the result of some iterations in which we
looked at interaction patterns in the sense of our definition
that some participants had submitted, and tried to sort them
into our classification scheme.

For example, the pattern Incremental Revealing captures
the idea that a user interface for non-expert users should ini-
tially appear relatively simple and easy to grasp, and that the

system should only reveal additional “depth” (contents or fea-
tures) when the user becomes active and looks for it. The
pattern is described in more detail in [4].

This pattern lies at a high level of abstraction: it addresses
how the complete task of the user is dealt with. Its function
lies mainly in perception as it suggests how much informa-
tion to display or otherwise output to the user. Its physical
dimension is sequence as it deals with the distribution of this
information over a sequence of user events, e.g., subsequent
screens of an information system.

Writers’ Workshop

This is a quite formal process widely used in the software pat-
terns community to discuss the patterns submitted by an au-
thor: After an initial welcoming, the author first reads a part
of her work to the authors, to remind everybody of the person
behind the work. All critics, who usually are pattern authors
themselves, have read the paper before the workshop. After
this introduction, the author fades into the background and at-
tends the following discussion without interfering (called a fly
on the wall). One of the critics now summarizes the paper in
his own words; the others can add to this summary. Next,
positive comments on form and content of the submission
(what should be kept), and subsequently constructive negative
comments on form and content (what could be improved) are
collected. The discussion ends with a summary of the good
points of the paper (this sandwich technique avoids a negative
lasting impression). After this, the author is welcomed back
into the group and allowed to ask questions if some comments
were not clear to her, or if she wishes to see another aspect
of her paper discussed. She is not allowed, however, to de-
fend her work at this time. As this whole discussion can be
a bit harsh at times, the author is finally applauded for her
work (and braveness to submit it), and somebody closes the
session with an entertaining unrelated story.

We held Writers’ Workshops on two of our paper drafts.
For me, it turned out to be a very useful activity that gave me
many constructive suggestions for improving my paper – as
an author, you get the chance to observe how others actually
interpret and understand your text, and where problems arise.
The whole technique, by the way, is taken from the world
of literature where it is used to discuss an author’s poems;
Richard Gabriel has carried it over to the area of software
patterns.

Literature Review

The organizers handed out a CD with a collection of existing
research papers and pattern collections on the subject. Most
of them can be found at [5].

2



Other Activities

Two other talks at the conference were of particular impor-
tance for interaction design patterns.

Write Languages, Not Patterns

In one of his presentations, James Coplien pointed out that the
connections between patterns are at least as important as the
patterns themselves. An isolated pattern does not make much
sense; only a language of patterns can capture the quality of a
system as a whole. Therefore, a pattern author should not try
just to write individual patterns, but, starting out from existing
systems, try to extract their positive qualities and cast them
into a hierarchical pattern language.

It is interesting to note that Coplien and numerous others at
that conference did not regard the well-known design patterns
book by the Gang of Four [6] as a pattern language; some
went so far as to claim that it might not even contain patterns
at all. The reason stated for this is that the book does not
really describe the principles of object-oriented design, but
rather a collection of workarounds to put into reality certain
concepts of object oriented design using an incomplete OO
language such as C++. Therefore, it is probably not a good
idea to teach object-oriented design in courses by just going
through this book.

Alexander on the Moral Aspects of Patterns

Another highlight was the videotaped talk from the OOP-
SLA’96 conference by the inventor of the pattern concept,
architect Christopher Alexander, who put forward the fol-
lowing thesis: Even if all architects around the world were
to pick up his language of patterns, he would not reach his
original goal of improving the quality of life measurably, be-
cause architecture only influences a small part of people’s en-
vironments. Computer science, on the other hand, touches
on an increasingly large part of everyday life. Therefore, the
computing community should not just use patterns as a “nice
way of describing software design knowledge”, but also pick
up Alexander’s original goal: To strive for systems with the
Quality Without A Name that improve the quality of everyday
life. This goal should be the starting point of every pattern
language, and every software design. To me, it seems that
the ethics discussion actually has a better chance of entering
the software engineering world via this new vehicle of design
patterns.

Summary and Future Work

It became clear that the software engineering patterns com-
munity requires more input from other disciplines such as
HCI. Nevertheless, the atmosphere at the conference was
very open and interdisciplinary already. The workshop par-
ticipants plan to put existing material and findings together

at a dedicated internet domain. A workshop on patterns in
human-computer interaction at INTERACT’99 in Edinburgh
in September, which the author co-organizes, will be another
important step to bring the pattern idea to our discipline. The
long-term goal is to have an online repository of documented,
interlinked patterns and pattern languages for user interface
designers to access for help in their daily work.

Acknowledgements

The findings of this workshop would not have been arrived
at without the cooperation of all workshop participants, and
I would like to thank the other participants for this: Bill
Brook, who organized the workshop, Andrew Carlson, and
Anthony Flaks (all of AT&T Labs, UK) Todd Coram (of
Blacksmith,Inc., USA), and Jens Coldewey (of Coldewey
Consulting, Germany).

References

[1] Christopher Alexander. The Timeless Way of Building.
Oxford University Press, 1979.

[2] Christopher Alexander, Sara Ishikawa, Murray Silver-
stein, Max Jacobson, Ingrid Fiksdahl-King, and Shlomo
Angel. A Pattern Language: Towns, Buildings, Construc-
tion. Oxford University Press, 1977.

[3] Elisabeth Bayle, Rachel Bellamy, George Casaday,
Thomas Erickson, Sally Fincher, Beki Grinter, Ben
Gross, Diane Lehder, Hans Marmolin, Brian Moore,
Colin Potts, Grant Skousen, and John Thomas. Putting
it all together: Towards a pattern language for interaction
design. SIGCHI Bulletin, 30(1):17–23, 1998.

[4] Jan Borchers. Designing interactive music systems: A
pattern approach. In Proceedings of the HCII’99 8th
International Conference on Human-Computer Interac-
tion, Munich, Germany, August 22–27 1999.

[5] Thomas Erickson. Interaction patterns home page.
Established February 1998. http://www.pliant.org/ per-
sonal/Tom Erickson/InteractionPatterns.html.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

About the Author

Jan Borchers is a researcher at the Telecooperation Group
at the University of Linz in Austria. He works at user in-
terface design issues for new media, and currently develops

3



an interdisciplinary pattern-based approach to designing in-
teractive systems that will help software engineers, user in-
terface designers, and application domain experts to talk to
each other. He has also managed several projects in desig-
ining computer-based interactive exhibits, such as the award-
winning WorldBeat music exhibit at the Ars Electronica Cen-
ter in Linz, and authored a number of publications on these
issues. Currently, he works as visiting scientist and lecturer
for Human-Computer Interaction courses at the University of
Ulm in Germany.

Author’s Address

Jan O. Borchers
Telecooperation Group
University of Linz
Altenberger Str. 69
4040 Linz, Austria
Phone: +43 732 2468 744
Fax: +43 732 2468 9829

Visiting Scientist at:
Distributed Systems Department
University of Ulm
James-Franck-Ring
89069 Ulm, Germany
Phone: +49 731 502 4192
Fax: +49 731 502 4142

Email: jan@tk.uni-linz.ac.at
WWW: http://www.tk.uni-linz.ac.at/∼jan/

4


