
HyperSource: 
A Hypermedia Program Development And
Documentation System
Jan Oliver Borchers 
Institute for Operating And Dialog Systems, University of Karlsruhe, Germany 
Postal Address: Gottesauer Str. 21, 76131 Karlsruhe, Germany 
Phone: ++49-721-60 65 04, Scall: 01681-113 59 58 
Email: job@ira.uka.de 
URL: http://i31www.ira.uka.de/~job 

Keywords:
Programming, Development, Documentation, Hypertext, Hypermedia, Multimedia, Authoring
Systems, Emacs, HTML

Abstract
HyperSource extends hypermedia to the area of program development: Source code and documentation are
developed as structured multimedia documents. Marginal annotations and images comment the source code.
Links help the reader navigate through it, and find the documentation for a certain piece of code. This
makes programs easier to develop, read, understand, and thus reuse. The concept can also be applied easily
to the area of computer-based learning, especially to computer science practicals. The project includes the
implementation of a real-world development system, based on widespread existing tools and the HTML
standard for structured documents.

Background: How Programmers Document Their Code
The way most programmers write their source code to this day still seems to follow the old Internet saying,
"If it was hard to write, it should be hard to read." Source code is usually saved in ASCII format, with some
humble formatting attempts mostly consisting of lines or boxes made of little asterisks to mark comments.
Images would often be very useful to explain what a piece of code actually does, but if they are included at
all, then as "ASCII Artworks", pictures of a rather questionable value, and often produced arduously with
hardly any tool support. A single, fixed-width font has to be used for printing and display - in short, source
code is usually typographically dreadful, and takes hardly any advantage of the display capabilities of
today's graphical workstations.

Moreover, those documents are essentially linear with no inherent support for navigation, e.g., to go from a
function call to the module where it is defined, or to jump to that paragraph in the documentation where the



algorithm behind a function is explained. Although external tools are available for some of these tasks (e.g.,
the ctags/etags system), they cannot deal with arbitrary links or multimedia documents.

HyperSource: The Concept
To overcome this obsolete situation, we developed the concept of HyperSource: Source code and
documentation are created as structured hypermedia documents. This approach bears several advantages:

Development becomes more natural. To design a graphics software package, for example, the
developer can start from an initial "Top-level Project Index" page, and design the system in a top-
down fashion, creating links from this index to other pages that represent the different modules.
Those pages can contain as anchors the names of functions to be written, pointing in turn to the actual
function definitions (initially empty document frames).

This technique also supports the "Jo-Jo" style typically encountered in real-life software design, as it
makes changing between different levels of abstraction easy and intuitive.

Implementation becomes more efficient because navigation between modules, from function calls to
their definition, etc., is facilitated. A HyperSource authoring system can insert some links
automatically, others can be added by the programmer as he likes. This structural information is
intrinsic to the document, not merely computed syntactically by some external tool. To insert a
comment, the programmer types it in, and the system formats it automatically, e.g., as a "marginal
annotation" next to the source code. Comment headers within the code can also be created easily,
without having to cut-and-paste empty "comment frames" by hand (see Figure 1).

Finally, documentation quality is improved through the possibility to insert multimedia comments into
the source code, and to create links between it and the documentation, both being HyperSource
documents. If the programmer wants to show, for example, which geometrical case is handled by a
certain block of his line intersection function, he can embed a sketch directly next to that part of the
code. Movies or other media types can be attached as well and displayed or edited via external
modules.

This leads to the main advantage of HyperSource program documents: They are much easier to read by
others than ordinary source code. This facilitates understanding the software, which in turn helps people to
"trust" that package. Thus, reusing existing software, instead of reinventing the wheel again and again, is
promoted. Figure 1 shows what HyperSource code may look like.

A Sample HyperSource Editing Tool
To see if this new programming paradigm can be applied successfully in the real world, a HyperSource
editing tool is currently being implemented, mainly for use in Unix/X environments. A questionnaire
showed, among other results, a strong aversion to "new" editors, so the system is implemented in LISP as an
extension of XEmacs [Tho94], an X-aware version of the standard program editor, GNU Emacs [Sta94].
Source code documents are shown in a WYSIWYG manner, with embedded pictures and comments as
marginal annotations, and including links to the documentation. Function calls and other identifiers are
anchors pointing to their definition, and comment headers are displayed in a different style to structure the
source code visually.

To enable many people to benefit from the formatted appearance of HyperSource documents, they are saved
in HTML format, thus being readable by anyone who has access to a HTML browser. To preserve the



"two-column" layout (source code body + annotations), the table feature of the new HTML3 standard
[Rag95] is used.

The system is tailored to help software developers design, implement and document their projects with a
minimum of additional learning or operating effort. The source code can be extracted automatically in a
compiler-readable form as with the "Save as ASCII" option of standard browsers. Compiler errors may be
mapped back into the HyperSource document. The editor supports the development of C programs but can
be easily adapted to deal with other languages.

Evaluation of HyperSource will take place in a programming practical where students are supposed to write
their own modules to complete a given program frame. Problem sheets will be HyperSource documents
describing the problem and containing the existing "framework" parts of the program. We intend to release
the HyperSource implementation on the Internet for evaluation afterwards.

References
[Big88]

Bigelow, James: "Hypertext and CASE", in: IEEE Software, March 1988
[Rag95]

Raggett, Dave: "HTML 3.0 Document Type Definition", Geneva 1995
[Sta94]

Stallman, Richard M. et al.: "GNU Emacs Lisp Reference Manual", Second Edition, Free Software
Foundation, Cambridge,MA 1994

[Tho94]
Thompson, Chuck: "XEmacs", Urbana-Champaign 1994


