
by
René Bohne

LumiNet
An Organic Interactive

Illumination Network

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr.-Ing. Stefan Kowalewski

Registration date: Oct 14th, 2008
Submission date: May 20th, 2009

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, Mai 2009
René Bohne

v

Contents

Abstract xv

Überblick xvii

Acknowledgements xix

Conventions xxi

1 Introduction 1

1.1 (Wireless) Sensor Networks 3

1.1.1 Network Reprogramming 4

1.2 Wearable Computing 4

1.3 Bio-inspired Artificial Intelligence 5

2 Related work 7

2.1 Physical Computing Frameworks 7

2.1.1 Wiring 7

2.1.2 Arduino 8

vi Contents

2.1.3 Wearable Computing - The LilyPad
Arduino 10

2.1.4 Blink Pattern Control System 13

2.1.5 BlinkM 14

2.1.6 NeuoLED 15

2.2 Networks . 16

2.2.1 Spiking Neural Networks 16

2.2.2 Cybords 16

2.2.3 (Wireless) Sensor Networks 18

XNP 20

MNP 20

Deluge 21

2.2.4 Distributed Particle Display System . 21

2.3 LumiNet Hardware Board 22

2.4 Comparison 23

3 Design 25

3.1 Network Topology 25

3.1.1 Overall Design 26

3.2 Early Implementations 27

3.3 The Arduino Idea 27

3.4 Requirements 28

3.4.1 Usability 29

Contents vii

3.4.2 Network Reprogramming 30

3.4.3 Bio-inspired Aspects 30

4 Implementation 31

4.1 Multi-hop Bootloader 31

4.1.1 Topology Scan and Vector Node De-
tection 32

4.1.2 Transmission Protocol 33

4.1.3 Dissemination Program for Vector
Nodes 34

4.2 Serial Communication 35

4.3 Arduino Core for LumiNet 37

4.4 Arduino IDE for LumiNet 39

4.5 Bio-inspired Communication - Bynase 40

4.5.1 Random Number Generator 41

4.5.2 Details About the Bynase Implemen-
tation 42

4.5.3 Bynase for LEDs 43

4.5.4 Byte Communication on top of Bynase 43

4.6 LED Extensions 45

4.7 Sensor Nodes 45

4.8 How to use the Arduino IDE 46

4.8.1 Uploading Sketches to LumiNet . . . 46

4.8.2 Uploading the Bootloader to LumiNet 48

viii Contents

4.9 Problems Encountered and Their Solutions . 49

4.9.1 Create BIN file from HEX file 50

4.9.2 Fuses 50

4.9.3 Calling the Bootloader 50

4.9.4 Use Assembler Code in an ANSI C
Environment 52

4.9.5 Use Assembler Code in the Arduino
C++ Context 52

4.9.6 Serial Communication and the de-
lay() Function 53

4.9.7 Clock Calibration 53

5 Evaluation 55

5.1 Sensors and Actuators 55

5.1.1 LED Light Sensor 56

5.1.2 Touch Sensor 57

5.2 Example Algorithms and Applications 58

5.2.1 Fading LED 58

5.2.2 LightRing 58

5.2.3 Cellular Automata on LumiNet 59

5.2.4 Genetic Algorithms on LumiNet . . . 61

5.2.5 Langton’s Ant 65

5.3 Power Consumption 66

5.4 Requirements Analysis 67

Contents ix

6 Summary and Future Work 69

6.1 Summary and Contributions 69

6.2 Future Work 70

A APPENDIX: Installation and Setup 73

A.1 Hardware Installation 73

A.1.1 Connecting Nodes 73

A.1.2 Power Supply 76

A.1.3 Connect an ISP programmer 76

A.2 Software Installation 76

A.2.1 Run the IDE 77

A.2.2 Open an Existing Sketch 77

A.2.3 Compile the Sketch 78

A.2.4 Upload a Sketch to the Network . . . 78

B APPENDIX: Reference Of Hardware Design 79

C Glossary 83

Bibliography 87

Index 91

xi

List of Figures

2.1 Arduino Diecimila hardware board 9

2.2 Screenshot of the Arduino IDE 10

2.3 LilyPad and LumiNet 11

2.4 BlinkM and LumiNet 14

2.5 Bynase: the sender sends out probabilistic
HIGH pulses 17

2.6 Bynase: the receiver counts the number of
HIGH pulses 18

4.1 UART frame format 37

4.2 Arduino RS232 to USB convertert 47

4.3 FTDI BitBang: Arduino Diecimila as an ISP
for LumiNet 49

5.1 Lightsensor 56

5.2 Genetic Algorithm 64

A.1 Pins of the LumiNet hardware board 74

A.2 Two LumiNet nodes - horizontal 75

xii List of Figures

A.3 Two LumiNet nodes - vertical 75

B.1 LumiNet hardware board revision 3.6
schematics . 80

B.2 LumiNet hardware board revision 3.6 layout 81

xiii

List of Tables

2.1 Related work: hardware boards 23

4.1 Voltage measured when different byval val-
ues were send out from a LumiNet node op-
erated at 5V 43

4.2 Different values stored in OSCCAL regis-
ter at 5V and 3.6V result in different clock
speeds for a sample node. 54

5.1 Cellular auomaton with rule set 110 60

5.2 Cellular auomaton with rule set 30 60

5.3 Power consumption of an Arduino Diecim-
ila, a LilyPad Arduino, and a LumiNet node,
performing three different tasks at different
voltage levels and system clocks 67

A.1 Pin mappings for pins 8, 9, and 10 75

xv

Abstract

In this thesis paper we propose a distributed physical computing framework for
low-cost microcontroller-based devices. The framework can be used to implement
bio-inspired algorithms in a network of identical target nodes. In addition to the
implementation of this framework, bio-inspired examples are provided with this
thesis work.

We provide a brief survey of physical computing frameworks, including wearable
computing, and analyze different network reprogramming protocols from wireless
sensor networks. We also introduce examples from bio-inspired computing, like
spiking neural networks, genetic algorithms, and cellular automata.

While we discussed to implement a new framework from scratch when we started
this work, we ended up with a modified version of an existing, widely used
physical computing framework. We extended it not only to support the LumiNet
hardware, but also added other features like, e.g., Assembly language support.

None of the analyzed physical computing frameworks supports distributed com-
puting or network reprogramming, so one main goal of this thesis is to add these
features to the new framework.

xvi Abstract

xvii

Überblick

In dieser Diplomarbeit stellen wir ein verteiltes physical computing Framework
für kostengünstige mikrocontroller-basierte Geräte vor. Das Framework kann
dazu genutzt werden, um biologisch-inspirierte Algorithmen in einem Netzwerk
von identischen Zielknoten zu implementieren. Zusätzlich zur Implementa-
tion des Frameworks werden biologisch-inspirierte Beispiele mit dieser Arbeit
veröffentlicht.

Wir geben eine grobe Übersicht über physical computing Frameworks, wearable
computing einbegriffen, und analysieren verschiedene network reprogramming
Protokolle von drahtlosen Sensornetzwerken. Wir stellen ausserdem Beispiele
aus dem Bereich bio-inspired computing vor, wie z.B. spiking neural networks,
Genetische Algorithmen und Zelluläre Automaten.

Während wir zu Beginn noch darüber diskutiert haben, ein neues Framework von
Null an neu zu entwerfen, endeten wir mit einer Modifikation eines bestehenden,
weitverbreiteten physical computing Frameworks. Dieses haben wir nicht nur
um die Fähigkeit erweitert, die LumiNet Hardware zu unterstützen, sondern es
wurden auch neue Features hinzugefügt, wie z.B. Unterstützung der Assembler
Programmiersprache.

Da keins der untersuchten Frameworks distributed computing oder die Codeve-
breitung via network reprogramming unterstützt, wurde es zu einer Kernaufgabe,
diese Elemente in das neue Framework einzubauen.

xix

Acknowledgements

I want to thank Professor Dr. Jan Borchers for inviting me to work on his LumiNet
project. All credits to the hardware design go to him and many concepts that I
implemented in this work are based on his visions.

I want to thank my supervisor, Gero Herkenrath, for his support and feedback. In
numerous discussions with Professor Borchers and Gero Herkenrath the design of
the system evolved into what it is now.

Additionally, I want to thank Professor Dr. Stefan Kowalewski for beeing the
second examiner.

I also want to thank Dr. Walter Unger at the Lehrstuhl für Informatik 1 at RWTH
Aachen University for the inspiring talk about distributed algorithms, and Olaf
Landsiedel at the Distributed Systems Group of RWTH Aachen University for the
meeting about distributed systems and sensor networks.

I want to thank James ”Laen Finehack” Neal from Portland for his explanations of
the Bynase protocol and David A. Mellis of the Arduino development team for his
information and advice about the Arduino core.

Special thanks go to Anja Müschen. She was the only person not affiliated to
RWTH Aachen University, who reviewed this thesis.

Finally (and most importantly) I want to thank my parents. I would not have been
able to pay the tuition fees without their financial support.

xxi

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

SENSOR NETWORK:
A sensor network is a set of devices - distributed in a
network - which use communication lines (wireless or
wired) to exchange sensor information

Definition:
Sensor Network

Source code and implementation symbols are written in
typewriter-style text.

uint8 t r = 0;

The whole thesis is written in American English.

The plural “we” will be used throughout this thesis instead
of the singular “I”, even when referring to work that was
primarily or solely done by the author.

1

Chapter 1

Introduction

Recently there has been a great interest in organic user in-
terfaces (OUIs), physical computing frameworks and bio-
inspired algorithms.

Classic user interfaces (UIs) mainly consist of output de-
vices like displays and input devices like a mouse or a key-
board. Most OUIs use flexible displays or projectors as
output devices and sensors like accelerators as input de-
vices. Unlike classic UIs that use the desktop metaphor,
OUIs mimic things of daily life. If a UI feels natural to the
user then it can be considered to be an OUI. A principle for
OUIs is that input equals output. Deformable objects make
use of this principle as deformation can be input that a user
puts into the system or it can be output that a user expe-
riences. Current OUIs use the same hardware as desktop
computers and in some cases this might be limiting. A cen-
tral computing unit with a flexible display and sensors that
measure physical variables can be sufficient for an OUI, but
in nature many things don’t have a central computing de-
vice. (Many ideas in this paragraph were taken from or
were inspired by [Holman and Vertegaal, 2008])

Cells, neurons and synapses can be role models for dis-
tributed computing devices in OUIs.

Physical computing frameworks can be used for creating
prototypes of OUIs. They include all the parts needed to

2 1 Introduction

create devices that can interact with the physical world.
Most physical computing frameworks have a central com-
puting unit with many sensors and actuators connected to
it. A physical computing framework that supports dis-
tributed computing has the potential to bring the benefits of
neural networks into the world of organic user interfaces.

Bio-inspired algorithms take principles from nature and
use them to solve problems. Most bio-inspired algorithms
don’t look at a single individual, but on a population of in-
dividuals. For example, evolutionary algorithms consider
a set of possible solutions and only the fittest of those so-
lutions are accepted. Using bio-inspired algorithms in or-
ganic user interfaces can support the natural feel of the sys-
tem.

In this work a distributed physical computing framework
is introduced. It adds distributed computing into the world
of physical computing frameworks.

While the following sections explain some basic terms of
this paper, the following chapters present a new distibuted
physical computing framework that supports low-cost mi-
crocontroller boards.

2—“Related work” In this chapter we give an overview of
related work that influenced this thesis or presents similar
ideas.

3—“Design” explains the design of the framework. Re-
quirements of the implementation are defined and a brief
description of early implementations is given in this chap-
ter.

4—“Implementation” gives an overview about the final im-
plementation of the distributed physical computing frame-
work.

5—“Evaluation” analyzes the implementation and gives
examples for applications that use the new framework.

6—“Summary and Future Work” summarizes this work
and identifies its contributions. It also gives an outlook on
future work.

1.1 (Wireless) Sensor Networks 3

1.1 (Wireless) Sensor Networks

Wireless sensor networks face the same problems that
physical computing frameworks have. Sensors must be
supported, incoming sensor data must be processed, and in
some cases output variables must be changed. Unlike cur-
rent physical computing frameworks, wireless sensor net-
works already support and use distributed computing.

SENSOR NETWORK:
A sensor network is a set of devices - distributed in a
network - which use communication lines (wireless or
wired) to exchange sensor information.

Definition:
sensor network

The main task of a (wireless) sensor network is to moni-
tor physical values like temperature, force, sound or pres-
sure. The devices operate autonomously in order to collect
their local values, but the cooperation of many devices in a
network allows data exchange and distributed calculations.
Sensor networks do not need to be wireless, but in recent
years, wireless sensor networks became more important
than wired solutions. A typical sensor node is equipped
with a microcontroller, some sort of communication inter-
face, and on-board sensors or connectors for off-board sen-
sors. Wireless sensor nodes contain a radio transceiver and
a battery.

The wireless structure allows a larger set of possible spa-
tial distributions of the sensor nodes compared to wired
sensor networks. But there are still some interesting ap-
plications left where wired sensor networks have benefits.
An example is wearable computing, where a wired sensor
network could be distributed over the body and the wired
architecture keeps the overall structure of the network sim-
ple and reduces costs, while sensor data like temperature
or heartbeat-rate can easily be exchanged. Another exam-
ple is home automation. It is easy to use a wired network
for home automation when a new house is constructed. In-
stalling wires in an already existing house is more difficult
than installing a wireless sensor network, but it is not im-
possible and has some benefits like power supply or faster
reaction times, no radiation, better security, and less distur-

4 1 Introduction

bance caused by noise.

Wireless networks are often ad-hoc networks and they have
special demands for communication protocols and routing
strategies, derived from existing solutions used in the inter-
net.

A wired network can be a prototype for a wireless network
in some cases, allowing tests of some core algorithms and
ideas.

1.1.1 Network Reprogramming

The nodes of a network can be reprogrammed one by one
using in system programming (ISP). This has several disad-
vantages, e.g., the network must be disassembled and each
node has to be programmed using a PC and special pro-
gramming hardware. Or the ISP pin headers of each node
must be accessible so that a mobile programmer can upload
new program code to every single node.

An easier solution would be to leave the network as it is
and to upload new program code only to a single node of
the network. Then this node propagates the code to other
nodes in the network until every node has received the new
program code. This is called network reprogramming.

1.2 Wearable Computing

Wearable Computing is a new research field that adds small
computers and electrical parts like LEDs to clothes. It
can be used to motivate beginners for microcontrollers and
electrical engineering. Even children can build their own
electronic clothes by using a simple framework. This re-
search field also deals with real-world problems like how
to create circuits on fabric, how to attach devices that sup-
port body-movement or how to make sure that all parts are
washable. Today wearable computing projects use low-cost
parts and wires. It is possible to use more than one micro-

1.3 Bio-inspired Artificial Intelligence 5

controller in a wearable computing project, so that it can be
considered a wired sensor network. Because the controllers
are usually fixed on the clothing, reprogramming the net-
work is a problem, especially if the devices are hard to reach
because they are hidden under fabric. Some projects and
examples for wearable computing can be found in chap-
ter 2—“Related work”.

1.3 Bio-inspired Artificial Intelligence

Bio-inspired or biologically-inspired means that an artifi-
cial system is inspired by nature. The term ”organic” can
have many meanings and is used by artists and scientists
for different things. In this thesis, we use the word ”or-
ganic” as a synonym for ”bio-inspired”.

There are several levels of abstraction at which a system can
be inspired by nature:

• User Interface (UI)

• Algorithms

• Communication Protocols

• Firmware / Operating System

• Hardware

Bio-inspired user interfaces are sometimes called organic
user interfaces, although there might exist organic user in-
terfaces that are not inspired by biology at all.

Algorithms can be inspired, e.g., by the behavior of species
(swarm intelligence) or by evolution (evolutionary algo-
rithms). Cellular automata are an example for a bio-
inspired structure that can be the foundation for many al-
gorithms. Some bio-inspired algorithms have been imple-
mented on LumiNet for this work. Chapters 5.2.3 and 5.2.4
show these examples.

6 1 Introduction

Higher-level Communication protocols can be inspired by
language or social behavior of a species. Lower-level com-
munication can be inspired by analog - electrical or chemi-
cal - information exchange like the one between cells. While
serial communication protocols are very popular in infor-
mation technology today, cells of the body or neurons in
the brain do not use serial communication.

The firmware level connects the higher levels with the
hardware. On more sophisticated devices, an operating
system replaces the firmware. An operating system could
use bio-inspired filesystems and inter-process communica-
tion, extending the parallel and distributed capabilities of
the operating system.

On the hardware level, the circuit design can be inspired
by nature. Hardware can even be used to interface with bi-
ological cells. This allows communication with the human
brain or other parts of the body on a physical level.

7

Chapter 2

Related work

In this chapter, we will provide an overview of research
publications and commercial products in the fields of
physical computing frameworks, wearable computing, bio-
inspired computing, and wireless sensor networks.

Related work was searched by using the following terms:
bio-inspired, organic, bootloader, sensor network, wear-
able computing, network reprogramming, smart LED.

2.1 Physical Computing Frameworks

2.1.1 Wiring

Wiring1 is an open source physical computing framework.
It consists of a graphical development environment and a
hardware board. The project addresses projects in the field
of (electronic) arts, teaching, electronic prototyping, and
tangible media.

Currently, two hardware boards are available: the Wiring
I/O Board and the Wiring Mini. They have 43 digital I/O
pins and 8 analog input pins, powered by an Atmel AT-
Mega128 microcontroller. This controller has two hardware

1http://www.wiring.org.co/

http://www.wiring.org.co/

8 2 Related work

UARTs and supports the Inter-Integrated Circuit (I2C) in-
terface. One serial connection is connected to the USB port
and the other one can be used for applications. The boards
can be programmed via USB.

2.1.2 Arduino

The Arduino2 physical computing platform consists of a
microcontroller-based I/O board and cross-platform Java
IDE. The Arduino Diecimila hardware board (see figure 2.1)
has 14 digital I/O pins, 6 analog input pins, a 5V-regulator,
a USB to serial bridge, and an Atmel ATmega168 mcu that
operates at 16 MHz. While older boards used an ATmega8
mcu, newer boards now use an ATmega328 mcu. The
Arduino board3 is based on the Wiring I/O board. The
programs that run on this hardware are called sketches.
The main Arduino I/O board can be extended by so-called
shields. A common pin header allows to connect shields to
the Arduino board in only one direction. Shields can con-
tain any electronic components, like accelerometers, light
sensors, temperature sensors or other pin headers that al-
low to connect external peripherals. For example, there
exists a shield that allows to control DC motors and a
shield with a breadboard attached to it. With the Ether-
net shield the Arduino gets connected to a local area net-
work and possibly to the internet. For wireless applica-
tions an XBee shield can be connected to the Arduino. For
almost all shields, an open-source library that allows to
write sketches, which use the shield, is available. A typ-
ical Arduino hardware board costs about USD 30. [Igoe,
2007] gives many examples for everyday problems that can
be solved with the Arduino. Sensors and communication
are very well explained in this book.

The Arduino IDE looks similar to the Processing4 IDE and
originated from it. Sketches can be programmed in a pro-
gramming language that is very similar to the Wiring pro-
gramming language, which is a simplified version of C. Ac-
tually, the compiler, which is used, is the gnu gcc compiler,

2http://www.arduino.cc
3in this work, this refers to the Arduino Diecimila
4 http://www.processing.org

http://www.arduino.cc
http://www.processing.org

2.1 Physical Computing Frameworks 9

Figure 2.1: Arduino Diecimila hardware board

and the core libraries of the Arduino are written in C++
and C. That way sketches can be written in C or C++, but
most users will use the simple Wiring programming lan-
guage, which allows to write simple and readable code for
the most common tasks (digital and analog I/O, serial com-
munication, etc.). Arduino is an open-source project with a
world-wide user community. More than 10000 people are
registered in the forums and many projects are well docu-
mented, so that later projects can be built upon them. Fig-
ure 2.2 shows the Blink sketch edited in the Arduino IDE
on a PC.

10 2 Related work

Figure 2.2: Screenshot of the Arduino IDE

2.1.3 Wearable Computing - The LilyPad Arduino

WEARABLE COMPUTING:
Wearable Computing is computing on clothes. Small mi-
crocontrollers can be used on clothes to do computations
and they can be connected to electronic components like
LEDs or sensors.

Definition:
Wearable Computing

Clothes are a part of fashion, thus wearable computing has
the potential to become a part of a new fashion. For exam-
ple blinking LEDs attract people’s interest and individual

2.1 Physical Computing Frameworks 11

Figure 2.3: LilyPad and LumiNet

blink patterns add an individual note to clothing.

Electronic textile (e-textile) researchers look for new ways
to add electronic components and micorcontrollers into
clothes. [Buechley and Eisenberg, 2009] present three tech-
niques for attaching electrical components to textiles. They
also show problems that arise when e-textiles get washed.

The LilyPad Arduino is a fabric-based wearable computing
framework that allows inexperienced programmers and
people, who have never ever written a piece of software,
to design and create their own e-textiles. Figure 2.3 shows
a LilyPad Arduino next to a LumiNet node. [Buechley
et al., 2008] say that technology (as automation or as enter-
tainment) can improve the human condition and can ”ex-
pand and democratize the range of human expression and
creativity” (p. 423). The LilyPad Arduino is the successor
of an e-textile construction kit that used an ATtiny26 mi-
crocontroller. This initial construction kit used Atmel pro-
gramming tools and thus the user had to use a text edi-
tor for writing programs and command line tools for com-
piling and uploading. Another problem was that this kit
needed special programming hardware and that the chip
had to be removed from the clothes for reprogramming.
This process was too complicated and thus the develop-

12 2 Related work

ment team decided that the new LilyPad hardware should
be compatible with the Arduino IDE. Since the Arduino
project did not support the ATtiny chip, the new LilyPad
was designed to use the ATmega168 microcontroller. The
open-source Arduino software was modified to support the
LilyPad Arduino and some libraries were developed that
allow to use the LilyPad sensors and actuators. There were
several reasons for not creating a new programming envi-
ronment but instead use the Arduino IDE:

• The project team wanted to focus on the e-textile
hardware, not on the software.

• Ideas and tools should be available to a wide audi-
ence. The Arduino community offers support and the
LilyPad users extend this community.

Typical LilyPad setups consist of only one processing unit
(LilyPad mainboard) and many devices like sensors or
LEDs connected to it. The programming logic is located
at this central point, no distributed computations are per-
formed. LilyPad applications do not use wires but con-
ductive thread to connect the mainboard and the peripher-
als. This has electrical disadvantages but allows sewing the
components to the fabric. Silver thread corrodes over time,
so that the resistance increases - especially if the clothes
get washed. Many components can be connected to the
LilyPad Arduino main board. Some popular components
are:

• LilyPad Accelerometer: holds an ADXL330 three axis
acceleration sensor. It outputs analog signals in the
range from 0V to 3V for each axis. It is the most ex-
pensive sensor for the LilyPad Arduino and the most
difficult one to understand

• LilyPad Bright White LED: a bright white LED with
250 mcd

• LilyPad Button Board: contains a momentary push
button, thus it opens when it gets released and it
closes when it gets pushed

2.1 Physical Computing Frameworks 13

• LilyPad Buzzer: allows to make sound with a buzzer
at different frequencies

• LilyPad Light Sensor: a sensor for ambient light. At
daylight it outputs 5 V, indoors about 1.5 V, and at
night or when covered it outputs 0 V

• LilyPad Power Supply: has battery clips for an AAA
battery. It takes input from 1.2V to 5V and transforms
it to 5V with a maximum of 100mA. It is short circuit
protected and has a power switch and an indicator
LED

• LilyPad Tri-Color LED: not so bright rgb LED with a
common anode

• LilyPad Vibe Board: a vibration motor that shakes
when power is applied to it

• LilyPad Temperature Sensor: holds a MCP9700 tem-
perature sensor for measuring ambient temperature
conditions. It gives analog voltage values propor-
tional to the temperature. For example, at 0 degrees
Celsius the sensor will output 0.5 V, and at 25 degrees
Celsius it will output 0.75 V

A project that uses LilyPad Arduinos is the EduWear5

project, funded by the European Commission.

2.1.4 Blink Pattern Control System

[Hosomi et al., 2007] explain that it is difficult for a user
of a wearable computing framework to program the mi-
crocontroller with a desired blink pattern that some LEDs
should show. Thus they introduce a control system that al-
lows to easily program blink patterns to a microcontroller.
They identify three requirements for a blink pattern (called
flicker pattern) control:

1. A programming method for a blink control pattern

5 http://dimeb.informatik.uni-bremen.de/eduwear/

 http://dimeb.informatik.uni-bremen.de/eduwear/

14 2 Related work

Figure 2.4: BlinkM and LumiNet

2. Compression methods for a blink pattern.

3. Application development environments: a graphical
program editor runs on the PC and the hardware
board communicates with the PC via serial communi-
cation. The same problem is addressed by the BlinkM
device (more about this device follows in the next
paragraph) that uses a Java GUI for simple creation of
blink patterns. Both systems only allow to program
pre-defined patterns that cannot react on user input
or environmental events

2.1.5 BlinkM

BlinkM6 is a smart LED made by a company called ThingM.
It consists of a bright RGB-LED and an eight-bit microcon-
troller. A single device costs about USD 15. BlinkM devices
communicate using the I2C Bus. The BlinkM is the I2C
slave and can be controlled by any I2C Master. BlinkM is
limited to I2C communication and does not provide more

6http://blinkm.thingm.com

http://blinkm.thingm.com

2.1 Physical Computing Frameworks 15

than one communication port. The default usage is to con-
nect the BlinkM to an Arduino Board that runs a special
sketch called BlinkM Communicator and then start another
piece of software, the BlinkM Sequencer, to upload blink se-
quences to the BlinkM device. A sequence is divided into
different time-slots. Each time slot gets a color assigned.
Then the whole sequence is uploaded to the BlinkM device
and stored there. Now the device can play this sequence
without an Arduino or any other I2C master. It only needs
3V-5V power supply and plays the sequence. No other
software is executed then, especially no communication be-
tween different devices takes place and no sensor data can
be read in order to react to environmental events. A more
powerful solution, called BlinkM MaxM, is available that
has four limited analog input pins. The I2C bus has some
electrical disadvantages if it is used over long distances by
many devices. Figure 2.4 shows a small BlinkM device next
to a LumiNet node. The electronic parts, including the mi-
crocontroller are hidden on the back of the BlinkM device.

2.1.6 NeuoLED

NeuoLED7 is a commercial product manufactured by a
company called Cosinova. Any amount of NeuoLED de-
vices can be connected to form a network. The unusual
shape of the devices allows to create networks of almost
any topology. Each device consists of three sets of three
rgb LEDs, a light sensor, a push-button, and a Java-enabled
microcontroller. Although it is possible to use a bus sys-
tem and addresses, the nodes can also be used like artificial
neurons that only propagate signals from one device to the
other. A demo application, e.g., detects the shape of a per-
son and renders its shadow on the LEDs of the NeuoLED
network. New program code can be written in Java and
can be uploaded to the network using a network repro-
gramming algorithm. Every node can store more than one
application and the different applications can be started at
runtime without reprogramming the network.

7http://www.NeuoLED.com

http://www.NeuoLED.com

16 2 Related work

2.2 Networks

In this section, two examples for bio-inspired networks are
given (Cybords and Spiking Neural Networks) and wire-
less sensor networks are explained.

2.2.1 Spiking Neural Networks

[Floreano et al., 2006] explain Spiking Neural Networks
and introduce an implementation on an eight bit microcon-
troller. A Spiking Neural Network is a network that uses
spikes for data exchange. Spikes are electrical pulses that
biological neurons send to each other. Two properties of a
spike are important:

• Firing rate of a neuron: average quantity of spikes
emitted by a neuron within a long time window

• Firing time: the precise time when a single spike is
emitted

2.2.2 Cybords

Cybords8 are very simple microcontroller-based boards
that concentrate on biologically inspired ideas. Cybords
were invented by Ward Cunningham, the computer pro-
grammer who developed the first Wiki. They communicate
with each other via a bio-inspired protocol called Bynase.
Bynase uses the firing rate to indicate different values. OnBynase uses the

firing rate the electrical side, Cybords do not use pull-up or pull-down
resistors on the communication pins. The sender simply
puts pulses with a pulse frequency of about 15kHz on the
line, regardless of the line’s state. Collisions are allowed
and there is no media access layer.

A value is encoded by a sequence of pulses. The pulses are
proportionally HIGH or LOW within a certain time win-
dow and the distribution of pulses within this time window

8http://c2.com/cybords/

http://c2.com/cybords/

2.2 Networks 17

is random. In other words, the sender sends out noise, but
with a certain probability for the signal to be HIGH. Thus
a value of 60 means that 60 percent of the pulses within a
certain time window are HIGH. This can be accomplished
by the pseudo code seen in figure 2.5.

int value = 123;
while(TRUE)
{

if(value >= random())
{
digitalWrite(pin, HIGH);

}
else
{
digitalWrite(pin,LOW);

}
}

Figure 2.5: Bynase: the sender sends out probabilistic
HIGH pulses

On the other side, the receiver looks at the line at fixed in-
tervals. It counts the pulses that are HIGH within a certain
time window. This can be the same time window that the
sender uses, but as the clocks are not synchronized, usually
the receiver uses a different time window. For example, the
receiver might take 100 samples as in figure 2.6. The value
of the variable result says how many samples out of 100
were HIGH. This is the same probability for the pulse to be
HIGH that the sender did send. A value of 0 means that the
line is never HIGH and a value of 100 means that the line is
always HIGH.

Bynase is not good for transmitting fast changing data, be-
cause the time windows should not be too small. But it
is good for asynchronous communication where the exact
time when a receiver looks on the line is not important.

While Spiking Neural Networks represent a scientific
model of how neural networks can be translated into the
artificial world of computers, Cybords represent a practical
experiment that relies on the same basic bio-inspired ideas.

18 2 Related work

int result = 0;
for(y=0;y<100;y++)
{
if(pin is HIGH)
{
result++;

}
}

Figure 2.6: Bynase: the receiver counts the number of
HIGH pulses

2.2.3 (Wireless) Sensor Networks

[Sugihara and Gupta, 2008] define four important require-important
requirements for
sensor network
applications

ments for sensor network applications:

• Energy-efficiency: sensor nodes need to be operating
for months. To reduce power consumption, it is a
good idea to avoid unnecessary wireless data trans-
mission.

• Scalability: the network must allow to add and re-
move nodes dynamically. A problem is the overall
communication bandwidth and again, reducing data
transmission can be a solution.

• Failure-resilience: the network must remain func-
tional even if some nodes are malfunctioning, unex-
pected failures occur or if communication becomes
unreliable.

• Collaboration: network nodes must collaborate in
two ways:

– Data collection: in most applications, (pro-
cessed) data must be transmitted to a central
server. The nodes must help each other to trans-
fer the data to the destination.

– Collaborative information processing: readings
from multiple sensors must be processed.

2.2 Networks 19

Wireless sensor networks (WSNs) demand operating sys-
tems that can handle events. Different operating systems
and wireless sensor network platforms use different pro-
gramming models and styles. [Mozumdar et al., 2009] com-
pare the programming models of two free academic oper-
ating systems (MANTIS OS9 and TinyOS10) and one pro-
prietary network stack implemantation (Ember11 ZigBee).
Two main paradigms are noted:

1. Multi-threaded or multi-tasking programming
(MANTIS OS)

2. Split-phase non-preemptive request-response pro-
gramming (TinyOS and Ember ZigBee)

The authors identify a single code writing style that can be
ported easily across these three platforms by creating an
API abstraction layer for non-blocking OS calls and for sen-
sors and actuators. This code writing style is like a finite
state machine (FSM). They also compare the libraries that
implement frequently used functions. The ZigBee imple-
mentation provides the most advanced and richest set of
functions.

If new program code must be installed on nodes of a wire-
less sensor network, it is a good idea to use network repro- network

reprogramminggramming algorithms that allow to leave the network un-
changed, because some nodes might not be (physically) ac-
cessible or it would be too time consuming if each node has
to be connected to programming hardware and then would
be reinstalled at the target location. A data dissemination
protocol must be used to propagate new program code in a
WSN. In contrast to runtime data dissemination, protocols
for software updates need very reliable data transport pro-
tocols. Most dissemination protocols consists of at least the
following three basic steps:

• Advertisement of available software update

• Selection of a source
9http://mantis.cs.colorado.edu

10http://www.tinyos.net
11http://www.ember.com

http://mantis.cs.colorado.edu
http://www.tinyos.net
http://www.ember.com

20 2 Related work

• Reliable download to target

Among others, three protocols are well known in the field
of WSNs: XNP, MNP and Deluge (see [Hui and Culler,
2004]).

XNP

XNP (Crossbow Network Programming) is a single-hop in-
network program code dissemination protocol running on
TinyOS. Single-hop means, that program data is transmit-single-hop protocol
ted from one node to another device that is within commu-
nication range. Nodes that received code do not become
senders. A host PC loads a program image to a single node
or to a single group of nodes within the radio range of the
host. The transmission can use a unicast mode, where XNP
checks the delivery of each packet via ACK/NACK, or a
multicast mode, where all packets are transmitted without
check can be used and after the full image is transmitted,
receivers can request missing (or corrupted) packets. All
received data is stored in external memory. The host can
send a reboot command after program code transmission
and then a special bootloader copies the program image
from external memory into program memory. After this,
the new program can be started.

MNP

MNP (Multihop Network Programming) is a multi-hop
network reprogramming protocol running on TinyOS that
uses the XNP bootloader. In a multi-hop protocol, the targetmulti-hop protocol
can become a source after successful software download.
The MNP protocol operates in four phases:

1. Request/Advertisement: sources advertise new pro-
gram code. Interested nodes make requests. Nodes
listen to both, advertisements and requests and de-
cide if they have to receive new program code or have
to forward received code.

2.2 Networks 21

2. Download/Forward: The host sends the whole
packet to receiving nodes (without ACK). The re-
ceivers store the program code in external memory.

3. Update/Query: nodes can request missing packets.
Nodes that have received the full program image then
become source nodes.

4. Reboot: after rebooting, the node copies the received
image from external memory to program memory.

Deluge

Deluge also operates on TinyOS. It is a multi-hop pro-
gram code dissemination protocol that uses incremental
updates. It can propagate large data objects from one or
more sources to one or many targets. The advertisement
packet contains a version number and target nodes request
single packets until they received the full program image.
Nodes can advertise packets immediately after receiving;
even if they have not yet received the full image. Requests
can also be used to receive missing or corrupted packets
since there is no ACK or NACK mechanism.

Current dissemination protocols use incremental updates
for size reduction. They only exchange the pages of a pro-
gram that changed from one version to another. This re-
duces data transfer and overall transmission time, but it is
only suitable when new versions of the same application
shall be transmitted.

A problem in WSNs is that attackers can easily reprogram
a whole network. There exist solutions that add public-key
based program code authentication, strong integrity verifi-
cation or freshness checks (e.g. [Dutta et al., 2006]).

2.2.4 Distributed Particle Display System

[Sato, 2008] introduced a new display system called Dis-
tributed Particle Display System. Hundreds of wireless

22 2 Related work

nodes with rgb LEDs are controlled by a PC with a cam-
era. The distributed pixels can be installed on any object
and the resolution of the display can be changed by adding
or removing nodes or by changing the space between them.
The camera is used to determine the location of the nodes.
For this the LEDs are activated sequentially one after the
other. Once all nodes are located, the PC can control them
with a wireless communication interface. The project did
not create new hardware but used the existing S-node12 that
has a microcontroller, a wireless communication unit and
an rgb LED. The nodes can also be attached to clothes and
the camera might then be able to track a person that wears
some smart nodes.

The bio-inspired concepts of spiking neural networks and
the Bynase protocol are used in this work for in-network
communication between nodes.

The program code dissemination protocols used by wire-
less sensor networks solve some problems that do not ex-
ist in wired networks, but the concept of multi-hop repro-
gramming is used in this work for what we call program-
ming by infection.

The Arduino project has the biggest impact on this work,
because as we will see later, this work extends the Arduino
framework to support LumiNet hardware. The same hap-
pened in the process of the LilyPad project.

2.3 LumiNet Hardware Board

The hardware board that was used in this paper is called
LumiNet hardware board. The current hardware revision
is version 3.6. Details about the board like schematics and
the board layout can be found in B—“APPENDIX: Refer-
ence Of Hardware Design”. The hardware board was de-
veloped by Professor Jan Borchers. It is a low-cost board
that only uses components that are essentially necessary for
a ATtiny-based microcontroller board. The only additional
component is an rgb LED. Other additional components,

12by YMATIC Corp.

2.4 Comparison 23

like an external crystal are missing. The small footprint
and the additional holes allow to use the board for wear-
able computing projects. Because application development
for this board was not easy, one of the main tasks of this
thesis was to create a application development framework
for this hardware.

2.4 Comparison

The following table compares the key properties of the re-
lated hardware boards mentioned in this section. Proper-
ties like distributed computing and network reprogram-
ming can be implemented on most platforms, but only
LumiNet (as a result of this thesis) and NeuoLED support
these features by default. The prices are estimations that
have been valid when this thesis was written.

Project Bio-inspired Distributed Network Size Price
computing reprogramming

Wiring No No No Medium 100 USD
Arduino No No No Medium 30 USD
LilyPad No No No Small 20 USD
BlinkM No No No Small 15 USD
NeuroLED Yes Yes Yes Big Unkown
Cybords Yes No No Small Low
LumiNet Yes Yes Yes Small 8 USD

Table 2.1: Related work: hardware boards

25

Chapter 3

Design

This chapter describes the software design of the dis-
tributed physical computing framework for the LumiNet
hardware and presents early implementations of the frame-
work as well as improvements to these implementations.

3.1 Network Topology

The network will consist of three classes of nodes: three classes of
nodes

• Normal nodes: most nodes are normal nodes. All of
them run the same application.

• Vector nodes: these nodes infect the network with
new program code.

• Sensor nodes: these special nodes run a special pro-
gram for reading and interpreting sensor data. They
send interpreted sensor values to the network. Sensor
nodes do not progagate program code and they have
to be programmed by hand since each sensor node
has its own application that can only operate with the
connected sensor device.

The nodes can be connected with at most one neighbor on
every side. This allows to create two dimensional fully

26 3 Design

meshed networks. The framework must not limit the topol-
ogy of the network.

3.1.1 Overall Design

The new distributed physical computing framework that
is developed in this work should make use of the physi-
cal and electrical properties of the LumiNet hardware. A
network can be created by using the four pins in each of
the four cardinal directions. On the software side, a li-
brary must be implemented that allows to use the pins
for communication. A LumiNet hardware board in such
a LumiNet network is called node. The same application
runs on every normal node and the framework is meant
to be used for developing distributed applications for the
whole network; although it can also be used for develop-
ing applications for a single node.

Because the same application runs on every normal node
and the framework defines the communication between
nodes, a multi-hop network reprogramming mechanism
can be integrated into the framework. This allows to repro-
gram all nodes at once without disassembling the network.
A bootloader that supports this mechanism must be imple-
mented and stored in the flash memory of the nodes.

Because it is possible to control the I/O pins on the lowest
level, in addition to the serial communication, an example
for a bio-inspired communication protocol should be im-
plemented for the LumiNet hardware. To make the plat-
form even more organic, some bio-inspired example appli-
cations should be created as a proof of concept.

Communication is just one aspect of the framework. More
functions should be included in the framework in order to
make it as comfortable as possible. It should have a steep
learning curve, so learning how to use it should be easy,
although some basic programming skills are still necessary.

3.2 Early Implementations 27

3.2 Early Implementations

The initial idea behind this work was to provide a soft-
ware framework that allows to easily create applications for
the LumiNet hardware. Bio-inspired ideas should be used
where possible and a good usability should enable novice
programmers to use the system. The framework must also
allow to reprogram the nodes without modifying the net-
work.

First implementations used C macros and functions to meet
these general requirements, but the user had to use his own
code editor and compile the sources with the command line
tools. There was a demand for an even better usability.

Another problem was the reprogramming mechanism.
Vector nodes were not able to receive new program code,
but they had to be prepared with an ISP programmer. Spe-
cial batch files modified the payload and merged it with the
main application of the vector node. This was a very com-
plicated process that should be hidden from the user.

Three main requirements can be extracted from the initial
idea:

• Good usability

• Easy reprogramming

• Bio-inspired approaches

3.3 The Arduino Idea

Because the Arduino is the most popular open-source phys-
ical computing framework today, it was a big inspiration
for the initial implementations of our framework. Since
the Arduino software did not support the ATtiny family
of micro-controllers, a new design goal was to modify the
existing Arduino framework so that it can be used on the
LumiNet hardware. This included two main parts: the

28 3 Design

so-called core for the micro-controller, and the Arduino
IDE. So the usability was improved by this step, but the
other requirements were not addressed by this decision.
The Arduino framework was extended to meet the remain-
ing requirements by supporting the Bynase communica-
tion protocol and the programming by infection mecha-
nism that was developed for early implementations of our
framework.

Porting the Arduino framework to the LumiNet hardware
provides more benefits than just better usability:

• Usability: a JAVA IDE that allows coding, compiling
and uploading of sketches all in one place

• Multi-platform: the IDE runs on many platforms in-
cluding Windows, Mac OS X and Linux

• Community: more than 10000 registered users from
all over the world share their projects and knowledge
in the forums.

• Open source: everyone is allowed to modify the
sources and bring in new ideas to the project

3.4 Requirements

In the end, three main requirements can be listed:three main
requirements

• M1: Improve the usability (port the Arduino frame-
work to the LumiNet hardware)

• M2: Enable easy reprogramming (programming by
infection must be included in every sketch, invisible
to the user)

• M3: Use bio-inspired approaches (add Bynase and
provide bio-inspired example algorithms)

In addition to the three main requirements, we defined sixsix important
requirements important requirements that should be met by the final im-

plementation of the framework:

3.4 Requirements 29

• R1: Support many sensors and actuators

• R2: Support all communication directions of the
LumiNet hardware

• R3: Support distributed processing

• R4: No constant pattern generators - the network
must be interactive

• R5: A wide audience should have access to the frame-
work

• R6: Multi platform compatibility

In the following subsections, more details about the main
requirements are provided.

3.4.1 Usability

Microcontrollers are often programmed in programming
languages like C or Assembler. These languages are dif-
ficult for beginners and concepts like pointers, stacks, and
interrupts can be too complicated for them. The LumiNet
framework should motivate beginners to use microcon-
trollers and solve simple problems with them, e.g. blink
an LED. A set of commonly used functions collected in a
software library can help beginners to solve their problems
without noting that they are using a C compiler in the back-
ground. They do not even know what a compiler is, but
they want to see the blinking LED when they hit the Start
button or power up the device. However, the software li-
brary cannot provide a function for every possible problem.
So the user has to learn how to use the basic functions by
investigating examples. The LumiNet framework should
provide useful functions for common problems that can be
solved by a microcontroller system and it should give ex-
amples that explain how to use these functions. Compil-
ing and uploading of new program code should be invisi-
ble to the user and must be as comfortable as possible. As
mentioned before, the step towards an Arduino-compatible
framework increases the usability and almost all examples
and most parts of the documentation of the Arduino project
can be used by LumiNet users.

30 3 Design

3.4.2 Network Reprogramming

Before the network can be infected by new program code,
the local topology of the network must be determined.
Each node has to identify its neighbors and if a vector node
is present. No node knows the complete topology of the
network, only the local topology defined by the neighbor-
hood of the node can be detected by the topology scan al-
gorithm.

The data transfer should use a fast serial communication
protocol instead of the slow Bynase protocol to reduce pro-
gramming time.

A multi-hop dissemination protocol must be used to reach
all nodes.

If reprogramming of a single node fails, the rest of the net-
work should not be affected by this failure.

Data integrity must be provided: corrupted data has to be
identified and only verified bytes can be programmed to
the flash memory.

3.4.3 Bio-inspired Aspects

Bio-inspired ideas should be used where possible. The
most obvious bio-inspired part of this work is the Bynase
communication protocol, but the examples provided in the
Evaluation chapter prove that the framework can be used
for bio-inspired algorithms and concepts.

31

Chapter 4

Implementation

In this chapter we describe the final implementation of the
distributed physical computing framework, explain how
programming by infection and topology scan works, intro-
duce the supported communication protocols, and give a
short introduction on how to use the Arduino IDE for up-
loading sketches and bootloader code.

4.1 Multi-hop Bootloader

If new program code needs to be uploaded to the LumiNet
nodes, it does not make sense to use an ISP programmer
and flash the nodes one after the other, because this would
take too much time and the network must be disassembled
for this process. A LumiNet network can contain hundreds
of nodes and they should be programmed all at once in a
single step. The idea is to load the code to the network
using a vector node. The vector node contains the new pro-
gram code and will upload it to a node in the network. Af-
ter receiving the new program code, each node will become
a sender and give the progam code to its neighbors. In this
way the new program code spreads in the network like a
virus. This is called programming by infection. programming by

infection

32 4 Implementation

4.1.1 Topology Scan and Vector Node Detection

Before the dissemination of program code can start, the
topology of the network must be detected. Therefore, each
LumiNet node performs the topology scan and vector node
detection algorithm after power-on. After this, the node
knows its direct neighbors, but there is no node that knows
the whole network topology.no node that knows

the whole network
topology The topology scan algorithm for a normal node looks like

this:

1. Activate inputs with pull-up resistors

2. All outputs to LOW

3. Read inputs: if an input is LOW, then a neighbor is
detected. Until now this must be considered a normal
node

4. All outputs to HIGH

5. Read connected inputs: only consider inputs where
a neighbor was detected before. If the input is LOW,
then this neighbor is a vector node. Set all other out-
puts to LOW

If more than one vector node was detected, only one will
be selected. The priority sequence for this selection is:
WEST, NORTH, SOUTH, EAST. This ensures that in a fully
meshed network no deadlocks will occur, because the order
of the vector paths is well-defined.

The topology scan algorithm for a vector node looks quite
similar but step four is different:

1. Activate inputs with pull-up resistors

2. All outputs to LOW

3. Read inputs: if an input is LOW, then a neighbor is
detected. Until now this must be considered a normal
node

4.1 Multi-hop Bootloader 33

4. Keep all outputs at LOW

5. Read connected inputs: only consider inputs where
a neighbor was detected before. If the input is LOW
then this neighbor is a vector node. It is not recom-
mended to install more than one vector node in a sin-
gle LumiNet network.

Sensor nodes do not have this bootloader. They do not re-
ceive program code and they do not give it to their neigh-
bors. Sensor nodes should be attached to the edge of the
network. They perform the topology scan algorithm but
they do not detect vector nodes:

1. Activate inputs with pull-up resistors

2. All outputs to LOW

3. Read inputs: if an input is LOW, then a neighbor is
detected.

4. All outputs to HIGH

All nodes store the information about their detected neigh-
bors in the EEPROM after the topology scan finished be-
cause it is needed by the bootloader or an application later.

4.1.2 Transmission Protocol

In the bootloader, data is transmitted using an RS232 pro-
tocol at 9600 baud. Normal nodes have a bootloader, lo-
cated at flash byte address 0x1600. When a vector node is
detected with the topology scan algorithm, the bootloader
gets called. The connections information (previously writ-
ten to EEPROM by the topology scan algorithm) is read and
the program code is transferred to all connected nodes. The
sequence in that the code is transferred, is: EAST, SOUTH,
NORTH, WEST. The bootloader performs these steps:

1. Send 0xA0 (START)

34 4 Implementation

2. For each payload byte 0xpp: send 0xB0 (DATA) fol-
lowed by 0xpp and read the byte back from the line.
If the received byte does not match 0xpp send: 0xB1
(RETRANSMIT) followed by 0xpp until it matches
the original value. No escape characters are used,
but it is important that no control character like 0xB0
or 0XB1 get lost or destroyed on the signal line. If
this happens, the payload can be destroyed. Future
versions of the transmission protocol should include
checksums, but this slows the transmission down.

3. Send 0xC0 (STOP)

The rgb LED is used to indicate the state of a node. The
following color codes are used:

• red: node is waiting for new program code

• green: node finished transmission to all of its neigh-
bors

• blue: node is sending to a neighbor

• off: node is receiving data from a neighbor

When all nodes shine green or blue, the vector node must
be detached and the network can be rebooted. Because
the bootloader starts at byte address 0x1600, the remaining
bytes 0x0000 -0x15FF can contain payload code. The flash
is organized in pages with a pagesize of 64 bytes. Thus 88
pages (5632 bytes) are available for payload. After power5632 bytes are

available for payload up, the mcu starts to search for program code at address
0x000. If no valid program code was found, it continues
to look for program code at higher addresses of the flash
memory. This allows to put the bootloader for a normal
node at address 0x1600 and clear all previous memory ad-
dresses. Thus, the bootloader get started on an otherwise
empty normal node.

4.1.3 Dissemination Program for Vector Nodes

Vector nodes can be connected to a PC using an RS232 to
TTL converter or a USB to serial bridge like the FTDI chip

4.2 Serial Communication 35

used on the Arduino hardware (see also 4.8.1—“Uploading
Sketches to LumiNet”). The PC must be connected to the
WEST port of the vector node. The network must be con-
nected to the EAST port. If a jumper is present between
ground and pin 1 (PB2), the PC can send the new pro-
gram code to the vector node. After the vector node re-
ceived the code it can send the payload to the connected
LumiNet nodes. The vector node stores the payload in the
flash memory at byte address 0x0800. If the jumper is not
present, the vector node will not receive payload from the
PC, but will send the payload that is stored in flash, starting
at address 0x0800.

Hence the vector node can be preprogrammed by the PC
and then the LumiNet network can be infected by its code
even if no PC is available.

The vector nodes do not have a bootloader at byte address vector nodes do not
have a bootloader0x1600. Instead of this, they have a regular program located

at address 0x0000 that receives the payload from the PC or
sends the payload to the network. Payload should not be
bigger than 5632 bytes (88 pages, 64 bytes each) because
that is the maximum size a normal node can store in the
flash memory without overwriting the bootloader.

If for any reason corrupted payload is uploaded to a node,
the node might not call the bootloader after the next reset.
Invalid payload code can thus make a network inoperable
and nodes with invalid payload must be reprogrammed us-
ing an ISP programmer.

4.2 Serial Communication

Two wires in each direction allow at least four modes of
operation:

• Bidirectional (full duplex) asynchronous serial com-
munication (like RS232).

• Unidirectional or bidirectional (half duplex) syn-
chronous serial communication (like I2C).

36 4 Implementation

• Simple bang protocols: nodes wait for pin change on
input pins and transmit bits at a special firing time
(like spiking neural networks).

• Bio-inspired communication based on the firing rate
in a spiking neural network (like Bynase).

LumiNet supports serial communication (RS232 at TTL
level), but serial communication relies on synchronized
clock speeds. LumiNet nodes do not have crystal oscil-
lators and the internal clock source is not precise enough
in all situations. So we do not recommend serial commu-
nication with LumiNet. The bootloader uses serial com-
munication and therefore it should only be used with syn-
chronized nodes. Clock calibration is important if the boot-the bootloader

should only be used
with synchronized
nodes

loader should be used. Most nodes perform very good if
they are operated at 5V when the bootloader is executed. If
the bootloader needs to be executed in a network that oper-
ates at 3.6V, the nodes have to be calibrated at this voltage
level before the network is assembled.

The communication line uses the internal pull-up resistors
of the receive pins. The line is HIGH when it is idle. The
sender initializes the transmission of a byte by pulling the
line low for one bit period - this indicates the start bit. The
receiver detects the falling edge on that pin and will now
receive 8 data bits, each one bit period wide. The least sig-
nificant bit is transmitted first. The transmission stops with
the stop bit, which is a HIGH level on the line for one bit
period. The length of a bit period depends on the transmis-
sion speed, also called baud rate. In this case the baud rate
is equal to the number of bits transmitted per second, in-
cluding start bit and stop bit. So the bit period is shorter for
higher baud rates and longer for smaller baud rates. The
smaller the bit period becomes, the more sensitive the com-
munication becomes to errors caused by noise. Lower baud
rates allow less errors caused by noise, higher baud rates
mean faster transmission speed.

Serial communication is implemented in assembler, based
on the Atmel application note AVR305 ([Atmel, 2005]). The
implementation of the software UART does not use any
timers or external interrupts. The serial communication is
fixed at 9600 baud, using one START bit, 8 data bits and 1

4.3 Arduino Core for LumiNet 37

Figure 4.1: UART frame format. Showing 0x61 (’a’) with
one start bit and one stop bit

STOP bit. The frame format is shown in figure 4.1, where
the character ’a’ is transmitted.

Another error source is the clock of the microcontroller. Ta-
ble 4-2 of the application note says that the software UART
at 9600 baud on a 1 MHz microcontroller performs with
an error of 2.7%. A lower baud rate of 4800 baud would
result in an error of 0.3%. But transfer time is critical if a
big network should be programmed. In order to switch
from 9600 baud to 4800 baud, the b-value in uart.S must be
changed from 14 to 31 according to the table from the appli-
cation note. All nodes of the network must operate at the
same baud rate. The baud rate can not be changed at run-
time. If the microcontroller runs faster than 1 MHz (clock
speed can be changed at runtime), the baud rate gets raised
by the same factor. For example, at 2 MHz system clock,
the baud rate of the serial interface rises from 9600 baud to
about 19200 baud. If the baud rate should be changed for
all nodes without modification of the system clock, then a
modified bootloader must be flashed to every node.

4.3 Arduino Core for LumiNet

An Arduino core is the part of the Arduino framework
that implements the main functions of the framework that

38 4 Implementation

are listed in the Arduino reference. This includes func-
tions like digitalWrite() and delay(), but also analogRead()
or Serial.begin(). The pin mapping is another important
part of an Arduino core. Because the original cores only
support official Arduino boards which use ATmega micro-
controllers, Because it became a requirement to port the
Arduino framework to the LumiNet hardware, a new core
had to be written.

In this section we explain which changes are necessary to
create a new core from the original Arduino core. The eas-
iest way to create a new core for the Arduino framework is
to copy an existing core and modify the files.

1. The folder called ”arduino” from the hardware/cores
directory must be copied and this copy must be re-
named.

2. The pin mapping must be adjusted in the file
”pins arduino.c” and the corresponding definitions
must be adjusted in ”pins arduino.h”.

3. A new entry has to be added to the file ”boards.txt”
that is situated in the hardware directory. All lines
starting with atmega168 (for example) must be copied
and the name (in this case atmega168) is to be re-
placed by the name of the new core. Then the parame-
ters must be modified and the most important change
is the line newcorename.build.core. The value of this
property is arduino and it has to be changed to the
name of the new core.

4. The Arduino IDE should be started now and the new
core must be selected in the Tools-Board menu. If the
sketch compiles without warnings and errors, then
everything is fine. If errors occur, the remaining files
of the core must be modified until the sketch com-
piles. For new cores with an ATtiny controller, a lot
must be modified, because the Arduino core is de-
signed for ATmega microcontrollers. In this case it
is better to start with a copy of our LumiNet core and
compare the LumiNet core with the arduino core to
understand the changes in detail.

4.4 Arduino IDE for LumiNet 39

Some official Arduino hardware libraries do not compile
with our LumiNet core: Ethernet, Firmata, Stepper. The
main problem with these libraries is that they use defini-
tions that only work for the ATmega microcontrollers.

The Bynase protocol that is used in the LumiNet core is also
available as a standalone library for the Arduino project.
This allows bio-inspired communication between LumiNet
hardware and Arduino hardware.

4.4 Arduino IDE for LumiNet

The Arduino software from the Arduino project cannot be
used with LumiNet nodes. Instead, a customized package
must be used. Although LumiNet nodes are compatible
to Arduino sketches, it is not an official Arduino platform.
Differences between the original Arduino distribution and
the LumiNet version are presented in this section.

The Arduino software that was ported had the version
number 0012 and later the versions 0013 and 0014 were
used.

The file boards.txt contains a list of supported hardware
boards that can be used with the IDE. The LumiNet ver-
sion of the IDE contains all platforms that are supported by
the original distribution and additionally it has three new
entries:

• LumiNet Vector Node: this entry must be selected to
prepare the IDE for a vector node. Payload can be
uploaded to the vector node by pressing the Upload
button, or if the bootloader should be uploaded to the
node, the program image for the vector node is used.

• LumiNet Normal Node: this entry should only be se-
lected if the user wants to upload the bootloader to a
normal node. Payload can not be uploaded to a nor-
mal node directly; a vector node is needed to infect a
LumiNet network.

40 4 Implementation

• LumiNet Sensor Node: this entry uses the specified
ISP hardware programmer (default: stk500) to flash a
single LumiNet node using ISP. A different topology
scan algorithm will be executed: vector nodes will not
be detected, because sensor nodes cannot disseminate
payload.

A new entry was added to programmers.txt in order to
support the Atmel stk500 programmer with firmware ver-
sion 2.

Because there has not yet been an official Arduino based
on an ATtiny micocontroller, the official IDE is limited to
atmega chips. In order to support the LumiNet hardware,
changes to ArduinoUploader.java had to be made. The Lu-
minetUploader was integrated into this class as well.

Programming by infection is not supported by the offi-
cial Arduino IDE. Hence, a new uploader class was imple-
mented: LuminetUploader.java. This file implements the
serial communication protocol for the bootloader. It uses
9600 baud.

The official Arduino IDE does not support assembler files.
Inline assembler is supported, but dedicated .S files with
assembler code cannot be used neither in a core, nor in a
library, nor in a sketch. Because the LumiNet core uses as-
sembler code for the serial communication, modifications
to Compiler.java were made.

4.5 Bio-inspired Communication - Bynase

While the bootloader needs a classic serial communication
protocol to transfer the programm code, runtime communi-
cation is performed by a protocol called Bynase. Serial pro-
tocols have a problem that is critical with LumiNet hard-
ware: the receiver has to be listening at the time when the
sender is transmitting data. Some serial protocols also need
precise crystal oscillators in order to keep the right timing.
Another problem with serial protocols is that noise can de-
stroy data. For example a single bit can flip, changing the

4.5 Bio-inspired Communication - Bynase 41

byte 00100101 into 01100101 as a result of noise on the data
line. A desirable communication protocol does not rely on a desirable

communication
protocol

good clocks on the receivers (and senders) and is robust
against noise. An analog signal like a PWM signal could be
a solution. But if the clock skew between the receiver and
the sender is too big and constant, the receiver will always
read the same fraction of the pwm signal. This might re-
sult in wrong readings. It should not be predictable when
the pin is HIGH or when it is LOW. Thus PWM with a ran-
dom distribution of HIGH and LOW signals would be a
perfect solution to the problems. This is the concept that is
used in the Bynase communication protocol. Bynase puts
noise on the signal line and the data is statistically encoded.
With a certain probability the line is HIGH. If the value (the
data that should be send) is lower than a random number
then the signal line should be HIGH, otherwise it should be
LOW.

4.5.1 Random Number Generator

It is not important that the numbers are perfectly ran-
dom. But it is important that the random number generator
generates sequences of alternating low numbers and high
numbers. The implementation must be very fast because
it is called by an Interrupt Service Routine (ISR). The ran-
dom() function of the Arduino framework takes too long.
Ward Cunningham proposed an ”inverted counter” for his inverted counter
Bynase implementation. This can be described by the fol-
lowing example:

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

The slowest changing bit is the least significant bit (lsb). An
implementation in C that is used by LumiNet at the mo-

42 4 Implementation

ment comes from James Neal1 :

uint8_t byrand ()
{
uint8_t v = counter++;
uint8_t r = 0,q = -1;
while(q) {
r = (r << 1) | (v & 1);
v >>= 1;
q >>= 1;

return r;
}

It uses a normal counter and then inverses the bit sequence
of the number.

4.5.2 Details About the Bynase Implementation

LumiNet uses an implementation of the Bynase protocol
that can operate in all four directions. It uses one line for
incoming data and one line for outgoing data. It would
even be possible to use one single line for incoming and
outgoing data, but as the hardware design of LumiNet has
two pins in each direction, we decided to keep the protocol
simple and use one dedicated line for each data direction.
Two functions handle the Bynase communication: byin()
and byout(). byin() and byout() are called within an ISR
when timer1 overflows. This should happen every 55 clock
cycles but the speed can be set as a parameter of the by-
nase init() function. For each direction exists a byval in
value and a byval out value (e.g. byval in south or by-
val out east). The value of these variables must be between
0 and 100, indicating the probability in percent that the line
will be HIGH.

In an experiment (see Table 4.1) we changed the byval value
for the PB2 pin from 100 to 0 and measured the resulting
Voltages on pin PB2 with a voltmeter (Digitek DT-4000ZC).

1http://www.laen.org/

http://www.laen.org/

4.5 Bio-inspired Communication - Bynase 43

As a byval of 100 results in a voltage of 4.94V we set the
other values in relation to 4.94V and even though the byval
value and this percentage do not exactly match, the result
is sufficient for the receiver to distinguish between ten dif-
ferent levels using the byin() function.

byval Volt Percent of 4.94V
100 4.94 100
90 4.59 92.9
80 4.21 85.2
70 3.82 77.3
60 3.44 69.6
50 2.90 58.7
40 2.32 47.0
30 1.74 35.2
20 1.16 23.5
10 0.58 11.7
0 0.00 0

Table 4.1: Voltage measured when different byval values
were send out from a LumiNet node operated at 5V

4.5.3 Bynase for LEDs

The three LEDs (red, green, blue) have their own byval val-
ues (byval red, byval green, byval blue) and are controlled
by byout() just like any other output pin. This allows to dim
the LEDs, because different byval values result in different
voltages on the pins connected to the LEDs. So the LEDs
on the LumiNet boards are not dimmed by PWM but by LEDs on LumiNet

boards are dimmed
by Bynase

Bynase. The LEDs have a higher output priority and they
are updated twice as often as a normal output pin. This
reduces flicker.

4.5.4 Byte Communication on top of Bynase

Usually, users want to transmit bytes over a data line. With
Bynase it is only possible to put a value on the line. The
resolution of Bynase is not good enough to distinguish be-
tween 256 values. So we added a layer on top of Bynase

44 4 Implementation

that can transmit bytes. A data value is split into four parts.
Each part consists of two bits.

A Bynase value of 100 indicates the start of a new byte. This
value is held on the line for tpacket, as all other values are.
Then the value 0 is on the signal line. The four possible
messages of a data part are 00, 01, 10 or 11, or as decimal
values: 0,1,2 or 3. Instead of sending the decimal value di-
rectly, it is first incremented by one and then multiplied by
ten, so values 10,20,30 or 40 are send as data parts. Between
two data parts, a control message is added. It has the value
0, so the line is low for the time period tpacket. If the byte
x has the bit representation aabbccdd, then the following
values will be on the Bynase signal line:

1. 100

2. 0

3. (aa +1) * 10

4. 0

5. (bb +1) * 10

6. 0

7. (cc +1) * 10

8. 0

9. (dd +1) * 10

10. 0 (line idle again)

Each single value is hold on the line for a certain amount
of time tpacket (e.g. 50 ms). So a byte takes nine times the
time tpacket (e.g. 450 ms) which makes byte communication
very slow. Shorter values for tpacket are possible but then
it can occur that the receiver can not take enough samples
for a good average of the statistically encoded data that it
received.

4.6 LED Extensions 45

4.6 LED Extensions

The LED is the most important device for any LumiNet
node. For an illumination network, handy functions and
macros that allow to control the LED easily, improve the us-
ability. The following functions and macros are available:

• RED ON, RED OFF

• GREEN ON, GREEN OFF

• BLUE ON, BLUE OFF

• YELLOW ON, YELLOW OFF

• WHITE ON, WHITE OFF

• SetRGB(red, green, blue)

While macros like RED ON or BLUE OFF allow to switch
an LED on or off, the function SetRGB allows to mix all
possible colors.

SetRGB() has three parameters, each in the range from 0 to
255. Any RGB color can be mixed by this function. Exam-
ple: SetRGB(10,60,23)

4.7 Sensor Nodes

Sensor nodes send data collected by sensors into the net-
work. Examples for the following sensors exist:

• Analog values (ADC) - Potentiometers

• Brightness

• IR: infrared communication

In addition that that, the Arduino community shows many
examples for different sensors. Most examples can be used

46 4 Implementation

with LumiNet, but it is important to check if delay values
must be changed, because the Arduino board runs at 16
MHz while LumiNet nodes operate at 1 MHz.

4.8 How to use the Arduino IDE

With the IDE, the user can edit sketches, compile them and
upload them to the hardware boards. This section con-
centrates on the upload process and explains the different
kinds of upload that can be used with LumiNet nodes.

4.8.1 Uploading Sketches to LumiNet

When the user hits the Upload button, the current sketch
gets compiled and will be uploaded to the hardware. The
Arduino board has a bootloader that is compatible to the
stk500 procotol. Thus the IDE can use a tool called avrdude
to upload the compiled sketch to the Arduino board using
the USB connection or any serial port.

LumiNet nodes do not support this upload process. They
have a different bootloader and are not supported by avr-
dude. An uploader called LumiNetUploader was imple-
mented and integrated into the IDE. To the user, the up-
load process seems to be the same as the one used with the
Arduino hardware; the Upload button has the same func-
tionality.

Because LumiNet nodes do not have a USB port, the con-
nection to the PC must be established by one of the follow-
ing possibilities:

• Use an RS232 to TTL converter and connect it to a se-
rial port of the PC.

• Use an RS232 to TTL converter and an RS232 to USB
bridge and connect it to a USB port of the PC.

4.8 How to use the Arduino IDE 47

Figure 4.2: Use the Arduino hardware board as a USB to serial converter for pro-
gramming by infection

• Use a TTL to USB converter like the one on the
Arduino board (see figure 4.2) and connect it to a USB
port of the PC.

In any case, the TTL side must be connected to the WEST
port of a vector node. Then three simple steps must be per-
formed to upload the sketch to a vector node:

1. In the Tools menu of the Arduino IDE the Board
LumiNet Normal Node must be selected

2. In the Tools menu of the Arduino IDE the correct Se-
rial Port must be selected

3. Upload sketch to board (hit the Upload button)

It is possible to use the Arduino board as a USB to serial
converter. The safest way is to remove the microcontroller
from the Arduino board and connect GND of the Arduino
board to GND of the LumiNet node. Also the pins rx and tx
(pin 0 and pin 1 on the Arduino board) must be connected
to the left rx and tx pins of the LumiNet node (pins 6 and
7), as illustrated in figure 4.2.

Sensor nodes do not support programming by infection.
Uploading sketches to a sensor node can only be performed

48 4 Implementation

by using an ISP programmer. The serial port of the ISP pro-
grammer must be selected from the serial port menu and
in the Board menu, the LumiNet sensor node must be cho-
sen. Programming sensor nodes is an advanced topic, the
standard user writes code for normal nodes.

4.8.2 Uploading the Bootloader to LumiNet

The LumiNet nodes are preprogrammed with a bootloader.
Normal nodes, sensor nodes, and vector nodes have differ-
ent bootloaders. If for any reason a node lost its bootloader,
it can be reprogrammed using the Arduino IDE. The boot-
loader cannot be uploaded via programming by infection.
An ISP programmer is mandatory for this task. For exam-
ple, the Arduino hardware board could be modified to be-
come an ISP programmer for the LumiNet hardware (see
figure 4.3).

Three steps have to be performed to upload the bootloader
to a vector node:

1. In the Tools menu of the Arduino IDE, the board
LumiNet vector node must be selected

2. In the Tools menu, the correct serial port of the ISP
programmer must be selected

3. In the file menu, select Upload bootloader to board

For normal nodes and sensor nodes, the corresponding
board must be selected in the first step.

The LumiNet edition of the Arduino IDE remembers the
ISP programmer that was used and it has a keyboard
shortcut for uploading the bootloader to the target node:
CTRL+U. Because the original Arduino IDE does not have
these two features, uploading bootloaders to many target
boards is less comfortable at the moment.

If the user does not have an ISP programmer, the Arduino
board can be modified to act as an ISP programmer. Four

4.9 Problems Encountered and Their Solutions 49

Figure 4.3: FTDI BitBang: Arduino Diecimila as an ISP for LumiNet

pins have to be soldered to the X3 port of the Arduino port.
Then wires from these four pins and from GND and VCC
must be assembled to a six-pin connector as illustrated in
figure 4.3.

The Arduino ISP Programmer and the serial port that is
connected to the USB connection of the Arduino board have
to be selected in the menu. This feature is not available with
the original Arduino IDE and is currently only supported
for Windows and Mac OS X.

4.9 Problems Encountered and Their So-
lutions

In this section we present unexpected problems and solu-
tions that should help to prevent those problems in the fu-
ture.

50 4 Implementation

4.9.1 Create BIN file from HEX file

Early implementations needed to create a .bin file with raw
binary data from a .hex file that has intel hex ASCII encod-
ing. Even the final implementation creates such a .bin file,
but this is done in the background in a step of the Lumine-
tUploader class of the IDE. The command that can convert
hex to bin is called avr-objcopy and the tool can create the
bin file with the following parameters:

avr-objcopy -I ihex -O binary main.hex main.bin

4.9.2 Fuses

Every Atmel microcontroller has fuse bits. They configure
the microcontroller. LumiNet uses the attiny84 microcon-
troller and the following fuses must be programmed to a
node:

efuse 0xFE
hfuse 0xDF
lfuse 0x62

The IDE programs these fuses of the node when a boot-
loader is uploaded, so the user does not have to take care
of this.

4.9.3 Calling the Bootloader

As the bootloader is stored in flash memory at a fixed byte
address, the normal program code that starts at flash ad-
dress 0x0000 must call the bootloader if a vector node is
present. A common practice for calling code that is located
at a fixed memory address in ANSI C is to define a function
pointer and then execute this function:

void startBootloader(void) = (void *) 0x1600;

4.9 Problems Encountered and Their Solutions 51

main()
{
...
startBootloader();

}

This works well for simple and small programs. But in
more complex programs that use more memory, this no-
tation does not work for the current avr-gcc compiler and
the ATtiny84. The resulting assembler code might look like
this:

lds r30, 0x0062
lds r31, 0x0063
icall

This means that the values stored at the sram addresses
0x0062 and 0x0063, are loaded into the so called Z register
of the microcontroller, and then icall makes the controller
run the code that is located at the memory address that was
encoded in the sram cells. It seems like the linker does not
store the correct values in the sram memory or that these
values get overwritten at runtime. As a result, the node
cannot call its bootloader anymore and this means that the
network cannot be reprogrammed but must be disassem-
bled and each node must be flashed using an ISP program-
mer.

The solution to this problem is to use the following assem-
bler routine to call the bootloader:

ldi r30, 0x00
ldi r30, 0xb0
icall

This loads the word address 0x0b002 into the Z register
(see C—“Glossary”) and then calls the (bootloader) func-
tion that is located at this address.

2The flash memory uses 16bit words, so 0x1600 divided by 2 is the
word address: 0x0b00

52 4 Implementation

4.9.4 Use Assembler Code in an ANSI C Environ-
ment

The serial communication routines are written in assembler
for performance reasons. Calling these assembler routines
in an ANSI C context needs assembler code in a special for-
mat. The functions must be introduced by the .global mod-
ifier, followed by the .func modifier:

.global MyFunctionnameASM

.func MyFunctionnameASM
MyFunctionnameASM:
;* DO SOMETHING

ret
.endfunc

If the C context wants to pass parameters to a function,
the parameters are stored in registers r25, r24, etc., depend-
ing on the data type. If an assembler function has a return
value, the same registers are used for it.

The assembler function must be declared extern in a .h
header file.

4.9.5 Use Assembler Code in the Arduino C++
Context

The Arduino core is coded in C++. It was not possible to
call the same assembler routines that were decribed in the
previous section out of a C++ class. Actually the linker
could not resolve the .global function names of the assem-
bler routines. Instead, a C wrapper for the assembler code
had to be written. Then the functions of this C wrapper can
be called by C++ classes.

As a result, the same serial communication routines that
are used in the bootloader can be used in any sketch for
the LumiNet nodes if the application cares about deadlocks
and the nodes have calibrated clocks.

4.9 Problems Encountered and Their Solutions 53

4.9.6 Serial Communication and the delay() Func-
tion

Interrupts must be disabled while serial communication
takes place. Otherwise wrong bits could be read or bits can
be missed. The putc() and getc() functions disable all inter-
rupts and reactivate them after they performed their task.
The delay() function uses timer overflow interrupts and as
a consequence, this function should not be used when serial
communication is used. Instead, the delay loop 2() func-
tion should be used.

4.9.7 Clock Calibration

The microcontrollers come with a calibrated internal RC
clock. This clock runs 8 MHz at 5 V and 25 degree Cel-
sius. LumiNet should not be operated at 5 V because the
LEDs are designed for 3.6 V. The battery pack supplies 3.6V.
LumiNet runs with the CKDIV8 fuse programmed, so the
clock of LumiNet runs at 8 MHz divided by 8 = 1 MHz. We
measured the clocks of some nodes at 3.6V and instead of
1MHz they run at 1.017 to 1.024 MHz, which is too fast.

The clock signal can be debugged on pin PB2 if the low
fuse of the device is programmed to 0x22. The signal on
PB2 should read 1 MHz. If the clock is off, it must be cali-
brated. Atmel application note AVR053 describes how the
clock can be calibrated.

Because PB2 is used for communication, the low fuse must
be programmed to 0x62 after calibration is finished. The
bootloader must be flashed at 0x1600 after calibration.

In an experiment we calibrated a node at a constant room
temperature. Three important values can be found for this
node in table 4.2. Different nodes have different values,
so the table is not a reference for all LumiNet nodes but
it shows the values measured for a certain node.

The ATtiny84 microcontroller on the sample node came
with the value 0x74 pre-programmed which is a good value

54 4 Implementation

OSCCAL MHz at 5V MHz at 3.6V
0x72 0.961 1.000
0x73 0.990 1.006
0x74 0.999 1.017
0x75 1.005 1.024

Table 4.2: Different values stored in OSCCAL register at 5V
and 3.6V result in different clock speeds for a sample node.

for this node at 5 V. If the node is operated at 3.6 V (with this
calibration value) it runs at 1.017 MHz which is too fast for
the software UART implementation.

If a node cannot be calibrated close enough to 1 MHz it can-
not be used with the software UART and thus cannot be
used with the bootloader. Our discovery is that badly cal-
ibrated nodes should not be used in the LumiNet because
this might destroy the payload.

55

Chapter 5

Evaluation

In this chapter we evaluate the implementation. Sensors
and actuators connected to the LumiNet hardware will
be used with the distributed physical computing frame-
work. Examples for bio-inspired algorithms and applica-
tions show that the framework can be used for bio-inspired
ideas and might motivate and inspire users to implement
their own bio-inspired work.

5.1 Sensors and Actuators

Many sensors can be attached to a LumiNet node. Nodes
that read and process sensor data should use a different
program code than normal nodes. Because almost ev-
ery Arduino sketch runs on LumiNet nodes, the sketches
for reading sensors can easily be used on LumiNet sensor
nodes. The Arduino community offers sketches for almost
every kind of sensor, this includes potentiometers, photo
sensors, temperature sensors, touch sensors, bending sen-
sors, GPS, and DCF77 clocks.

Actuators are very similar to sensors. LumiNet does not
define an actuator node class. Instead nodes with actua-
tors are also called sensor nodes. Again, examples from the
Arduino community can be used to control, for example,
motors, speakers, relays, servos, etc.

56 5 Evaluation

Figure 5.1: Lightsensor

It is even possible to use the on-board LED as a sensor as
explained in the next paragraphs.

5.1.1 LED Light Sensor

[Dietz et al., 2003] explain how to use an LED as a photo-
sensor. This concept needs two microcontroller I/O pins
and an LED with a resistor between them.

Two steps must be taken to measure brightness with an
LED:

1. The LED must be reverse-biased: the anode must be
connected to a pin that is driven LOW and the cath-
ode must be connected to a pin that is driven HIGH.
The LED charges.

2. The HIGH pin must be turned to an input pin. The
LED discharges. The time until the level falls be-
low the digital input threshold can be measured. The
longer this takes, the darker it is. The faster this is, the
brighter it is.

As each LumiNet node has an rgb LED, a LumiNet node
can be used to measure the brightness of ambient light.

5.1 Sensors and Actuators 57

The source code for the LED Light Sensor example can be
found on the DVD that is provided with this thesis.

5.1.2 Touch Sensor

Under constant light conditions the light sensor that was
introduced in the last subsection can be used as a touch sen-
sor. When the LED is covered by a finger, the discharging
time of the LED is much longer than when the LED is not
covered.

Under changing light conditions this method does not pro-
duce reliable results. [Hudson, 2004] presents a way to
solve this problem: two measurements must be taken:

1. Non-illuminated measurement phase: the brightness
is measured by an LED without any other LED illu-
minated.

2. Illuminated measurement phase: while another LED
is activated, the sensor LED measures the brightness.

Then the amount of reflected light can be determined by
subtracting the brightness value of the illuminated mea-
surement phase by the value of the non-illuminated mea-
surement phase.

We tried to use the onboard rgb LED for this kind of sen-
sor, but it is not possible to use one of them for illumination
while another one is used for measuring the brightness, be-
cause they all share the same cathode. So this kind of sensor
needs external LEDs, or simply use the light sensor from
the previous section in ambient light.

It is also possible to touch the wire that connects the jumper
pin with the rgb pin. The value of the measurement gets
influenced by touching the wire. Thus the light sensor code
can also be used as a touch sensor, but the user has to touch
the wire, not the board or the LED.

58 5 Evaluation

5.2 Example Algorithms and Applications

In this section we present some examples for bio-inspired
algorithms and applications that can be implemented on
LumiNet. The examples use the distributed physical com-
puting framework that we implemented for this work.
Users can build upon these examples and create their own
bio-inspired ideas with LumiNet. All examples can be
found on the DVD that is supplied with this work. The
software is also available for download at the LumiNet1

project homepage.

5.2.1 Fading LED

This example is very easy: it uses a random number that
determines the next color and then fades from the current
color to the next color. All colors are displayed on the rgb
LED that is controlled by Bynase for LEDs. No events are
processed. This is a simple demo that demonstrates the ca-
pabilities of the LEDs. Users can extend this demo and add
interaction by processing sensor readings or communica-
tion.

5.2.2 LightRing

The LightRing is one of the first applications that were de-
veloped on an early framework and was then ported to the
new Arduino framework. A node samples all four input
pins and stores the samples in a buffer. When the buffer is
full, the samples are put on the output pins. This is sim-
ilar to the idea of spiking neural networks. The node be-
haves like a neuron and the signals propagate through the
network with an artificial delay that makes the signals in-
teresting for human visual perception. Although it would
be easy to use the Bynase functions for this application, we
decided to keep the original algorithm to show that bio-
inspired ideas can be implemented on LumiNet on the low-
est I/O level.

1http://www.luminet.cc or http://hci.rwth-aachen.de/luminet

http://www.luminet.cc

5.2 Example Algorithms and Applications 59

5.2.3 Cellular Automata on LumiNet

A cellular automaton consists of a grid of cells with a fi-
nite set of states. Each cell has a neighborhood of cells, neighborhood
that surrounds it. In a one-dimensional cellular automa-
ton, each cell can have up to two neighbors, so three cells
form a neighborhood. In a two-dimensional cellular au-
tomaton, the four direct neighbors (that are orthogonal)
build the Von Neumann neighborhood and the set of all
eight surrounding cells is called Moore neighborhood. All
cells have the same rules for updating and all cells update
at the same time. This leads to a new generation of cells.
A Moore neighborhood can build 512 different patterns, a
Von Neumann neighborhood can build 32 patterns. For
each pattern, an update rule defines if the cell in the cen-
ter of the neighborhood will change its state on the next
update. One-dimensional cellular automata have 256 dif-
ferent update rules. The rules can be defined by two rows:
the first row represents the current state of the three cells
of the neighborhood and the second row contains the state
of the cell in the center of that neighborhood after the next
update.

If a cellular automaton is simulated on a finite grid (instead
of an infinite plane), a problem is how neighborhoods at the
edges should be handled. The simplest solution to this is to
make their state constant. In this case, they are not affected
by update rules. Another solution would be to define dif-
ferent neighborhoods with new update rules for cells lo-
cated at edges. It is also possible to connect cells on the
right side of the grid with cells on the left side of the grid,
and cells on the bottom can be connected with cells on the
top of the grid. This solution simulates an infinite tiling.
The cells are no longer on a grid or plane but on a torus.

The one-dimensional cellular automata with a neighbor-
hood of three cells have 8 update rules. The bit sequence
of the center cells after the update process can be used to
encode a binary number. The automata can be indexed by
using this number. For example, the rule set shown in ta-
ble 5.1 defines the cellular automaton with index number
110 (binary: 01101110).

60 5 Evaluation

current state 111 110 101 100 011 010 010 000
next center cell 0 1 1 0 1 1 0 0

Table 5.1: Cellular auomaton with rule set 110

This is a very interesting rule set because the behavior of
it is neither completely random nor completely repetitive.
Rule 110 has been the basis over which some of the smallest
universal Turing machines have been built.

Table 5.2 defines the cellular automaton with index number
30 (binary: 00011110). This rule set can be used as a pseu-
dorandom number generator with its center cell as output.

current state 111 110 101 100 011 010 010 000
next center cell 0 0 0 1 1 1 1 0

Table 5.2: Cellular auomaton with rule set 30

All 256 elementary one-dimensional cellular automata canone-dimensional
cellular automaton be simulated on LumiNet. A node is considered a cell of

the automaton. The cells are arranged in a horizontal row,
from the left to the right. Each cell stores the current state of
the cells in its neighborhood. All nodes have the same eight
update rules. A cell calculates its next state by the update
rules and after an update, it changes its state and tells all
neighbors about it.

A grid of LumiNet nodes can be used to simulate a two-
dimensional cellular automaton. Each cell has only fourtwo-dimensional

cellular automaton neighbors: one to the left, one to the right, one to the bot-
tom, and one to the top. This allows communication within
a Von Neumann neighborhood. As a consequence, it is not
natural to run Conway’s Game of Life (see [Gardner, 1970])
on LumiNet, because this uses the Moore neighborhood.
Each cell updates its state using the same update rules. Af-
ter an update, the cell sends the new state information to
all four neighbors.

Cellular automata are considered to run synchronously.
Without a central controller, at least two possible synchro-
nization mechanisms are possible:

5.2 Example Algorithms and Applications 61

• A dedicated node behaves as a clock source for
the network. This node sends a special (PER-
FORM UPDATE) message at a constant update pe-
riod.

• Another approach is to use a token. Only the node
that holds the token is allowed to perform updates
and then gives the token to the next node.

But it is also possible to let the cells update without this syn-
chronization message. This will result in an asynchronous
cellular automaton. An example for this class of automata
would be a probabilistic cellular automaton. An example
for a probabilistic cellular automaton is a forest fire simula- example: forest fire
tion, where each cell can have one of these three states: 1.
empty, 2. tree, 3. burning. With a certain probability, a cell
with a tree will catch fire if at least one of its neighbors is
burning. After some time, the tree burns down and the cell
becomes empty. Empty cells cannot catch fire. Instead, on
an empty cell, a new tree will grow.

5.2.4 Genetic Algorithms on LumiNet

In 1859, Charles Darwin published his book ”On the Origin
of Species” (Darwin [1859]) in which he explains concepts
like natural selection and survival of the fittest, which are
the foundation of biological evolution. Evolutionary algo-
rithms abstract from this biological process, especially by
the following aspects:

1. Selection and reproduction: the fittest individuals
will survive and produce offspring more probably.

2. Crossover: no two individuals are identical. Their
genetic code is different and when two individuals
produce offspring, parts from both parents’ genes are
mixed.

3. Mutation: random changes in genetic representation
can help to adapt to a given environment.

62 5 Evaluation

Evolutionary Algorithms are designed for a purpose, for
example to solve an optimization problem. So they do not
try to simulate evolution but instead they use the concepts
for solving problems.

GENOTYPE:
The genotype is the genetic material of an individual. It
contains distinguishable information units called genes.
The genotype encodes the phenotypical properties of an
individual. (see [Floreano and Mattiussi, 2008] p. 5)

Definition:
Genotype

An individual in an evolutionary algorithm is a possible
solution to the problem that the algorithm tries to solve.
The genotype of this artificial individual can be the binary
representation of a floating-point number or any other data
type. All possible genotypes form the search space.

PHENOTYPE:
The phenotype of an individual is its observable appear-
ance, properties and characteristics. It is the manifesta-
tion of the individual. (see [Floreano and Mattiussi, 2008]
p. 5)

Definition:
Phenotype

Evolutionary algorithms often use a mapping between
genotype and phenotype. In many cases this is a 1:1 map-
ping, but more sophisticated mappings are possible. The
solution candidates of an evolutionary algorithm are ele-
ments of the problem space.

EVOLUTIONARY ALGORITHM:
An evolutionary algorithm is an (optimization) algo-
rithm that uses mechanisms inspired by evolution, like
natural selection, crossover and mutation. The fittest
(surviving) individuals are possible candidates for a so-
lution of a given problem.

Definition:
Evolutionary
Algorithm

The advantage of evolutionary algorithms compared to
other optimization methods is that they only make few as-
sumptions about the problem they should solve.

5.2 Example Algorithms and Applications 63

Genetic algorithms (see [Holland, 1992]) are a subclass of genetic algorithms
evolutionary algorithms operating on binary representa-
tions of the individuals’ genotypes. The implementation
of a genetic algorithm on LumiNet will be described in the
following paragraphs.

In a row of LumiNet nodes, where all nodes are connected
WEST to EAST, each node represents an individual of a
population. All nodes use the same so-called ”fitness func-
tion” to determine their own fitness. This function can be
as simple as equation 5.1 and the higher the result of this
function is, the higher is the fitness of the individual and
thus the higher is the probability that the individual will
survive.

Figure 5.2 shows the basic steps of a genetic algorithm.
The following items explain how initialization, selection,
crossover, and mutation are implemented by the provided
example sketch for the LumiNet hardware:

• Initialization: Each LumiNet node creates an array of
random binary values, the genotype.

• Selection: if a left neighbor node is present, it sends
the genotype with the highest fitness value deter-
mined so far. If the fitness value of this gene is higher
than the fitness value of the individual’s own gene,
than the gene is stored in a second array.

• Crossover: if the received gene is fitter than the cur-
rent gene, then some bits of the own gene might be
exchanged by bits of the better gene (received from
the left neighbor). This happens with a high proba-
bility but not every time.

• Mutation: with a low probability it is possible that
few bits of the gene can flip.

The (modified) own gene of the individual and the genome
that was the best candidate to the node’s left neighbor are
compared and the fitter gene is sent to the right neighbor
node. If a node has no right neighbor (the right-most node)
then after some delay, the node sends the fitter value to its

64 5 Evaluation

Figure 5.2: Genetic Algorithm

5.2 Example Algorithms and Applications 65

left neighbor. Candidates that come from the right neigh-
bor are only compared (selection) but no crossover or muta-
tion happens after this selection. After a defined number of
steps the algorithm terminates and the nodes output their
genes by blinking bit after bit. Blue means: bit is set, red
means: bit is not set (bit is clear). White indicates the start
of the byte (gene).

The example GeneticAlgorithm determines possible solu-
tions to this problem: Find the minimum of the equa-
tion 5.1:

f(x) = x2 − 4x + 5 (5.1)

Of course, this is a simple problem that can be solved us-
ing simple mathematics, but it shows that the concept of a
genetic algorithm can be formulated and used on LumiNet.

5.2.5 Langton’s Ant

A simple form of artificial life is called Langton’s Ant. An
aritifical ant moves over a two-dimensional grid, according
to a simple rule set:

• If the cell is active, turn 90 degrees to the right, deac-
tivate the current cell, and move forward to the next
cell in the new direction

• If the cell is inactive, turn 90 degrees to the left, ac-
tivate the current cell, and move forward to the next
cell in the new direction

Langton’s ant can be described as a cellular automaton, but
we implemented it using direct commands and logic.

The implementation on LumiNet makes use of the rgb LED
and all communication pins. The internal pull-up resis-
tors of all nodes are activated for all input pins. All out-
put pins are HIGH. When a falling edge on an input pin is
detected the node indicates this by activating the red LED.
This means that the ant is arriving on that node now. The
node updates the blue LED according to the two update
rules presented before. Then the node pulls the output line

66 5 Evaluation

according to the update rule to LOW for a certain amount
of time and then the line must be set HIGH again. The ant
moves to the next node.

5.3 Power Consumption

LumiNet is designed for mobile applications that use a bat-
tery pack. Thus, electrical energy is a limited ressource.
The microcontroller consumes less power if it operates at
a lower clock speed. Therefore, 1 MHz is the default clock
speed for a luminet node. The clock speed can be changed
at runtime from 1 MHz up to 8 MHz by this code fragment:

cli();
CLKPR = (1 << CLKPCE);//INITIALIZE CLOCK CHANGE
CLKPR = 0x00;//NO PRESCALER

Sleep mode can be activated using this code:

#include <avr/sleep.h>
void setup()
{
set_sleep_mode(SLEEP_MODE_PWR_DOWN);
sleep_enable();
sleep_mode();

}

We measured the power consumption of a LumiNet node
at 5V and at 3.6V that is

1. doing nothing (all pins INPUT),

2. doing nothing and pins 2,3,4,5,6,7 are HIGH (OUT-
PUT) and

3. doing nothing and in sleep mode.

The same sketches were tested on an Arduino Diecim-
ila and a LilyPad Arduino, both operated at 5V. Table 5.3
shows the result of the measurement.

5.4 Requirements Analysis 67

Diecimila LilyPad LumiNet LumiNet LumiNet LumiNet
5V 5V 5V 5V 3.6V 3.6V

16 MHz 16 MHz 1 MHz 8 MHz 1 MHz 8 MHz
1 26.5 8.15 1.39 6.14 0.99 4.29
2 25.8 7.94 1.43 6.39 1.02 4.33
3 8.69 0.30 0.30 0.30 0.24 0.24

Table 5.3: Power consumption of an Arduino Diecimila, a
LilyPad Arduino, and a LumiNet node, performing three
different tasks at different voltage levels and system clocks

5.4 Requirements Analysis

In this section we analyze if all requirements are met by the
implementation.

The three main requirements are met:

• M1 (improve usability): The Arduino framework
works well with the LumiNet hardware and it is easy
to write applications with it. It is easy to learn the core
functions of the framework and the user community
offers a lot of help and examples for a quick start.

• M2 (reprogramming): The user can use the modified
Arduino IDE to prepare a vector node by uploading
payload to it. The vector node can then infect an as-
sembled network without the help of a PC.

• M3 (bio-inspired): A bio-inspired communication
protocol was integrated into the core of the new
Arduino framework, and on top of it bio-inspired ap-
plications can be implemented. Examples like cel-
lular automata, genetic algorithms, etc. show that
LumiNet can be used for bio-inspired applications.

The six requirements R1-R6 are also met:

• R1: Many kinds of sensors can be connected to a
LumiNet hardware board, because the Arduino com-
munity offers a lot of examples. This thesis also

68 5 Evaluation

shows how the on-board LED can be used as a light-
sensor and a simple wire can be used as a touch-
sensor.

• R2: All ports are supported by Bynase, RS232 and
programming by infection.

• R3: The mcu of every node can be used for computa-
tions and data can be exchanged between nodes. This
allows distributed processing. The genetic algorithm
example uses distributed computations to determine
the solution of an equation.

• R4: Sensors can be used for interaction or sketches
can use random numbers to avoid constant pattern
generation if no interaction is possible.

• R5: The framework was introduced to the Arduino
community. Because the modified Arduino IDE is
open-source, the members of the community can im-
prove it in the future and can distribute and use it
everywhere they want.

• R6: The Arduino framework is a multi-platform de-
velopment system and the same multi-platform tech-
nologies like, e.g., Java are used by the new frame-
work that is introduced by this thesis.

69

Chapter 6

Summary and Future
Work

6.1 Summary and Contributions

In this work, a distributed physical computing frame-
work was implemented for a low-cost microcontroller-
based hardware board. Instead of creating a new frame-
work from scratch, the popular Arduino framework was
extended to support the LumiNet hardware. This allows
a wide audience to use LumiNet and in return LumiNet
users become a part of the big Arduino open source com-
munity.

The main contribution of this work is that it shows that bio-
inspired concepts and distributed computing can be used
in a physical computing framework. The Arduino frame-
work also benefits from this work because the provided
patches allow to use assembler files in the Arduino core and
sketches can run on ATtiny microcontrollers. It is even pos-
sible to connect Arduino hardware and LumiNet hardware
and use the bio-inspired Bynase communication protocol
on both of them, since a Bynase library for Arduino is part
of this work.

Inspired by the network reprogramming mechanisms of
wireless sensor networks, the programming by infection

70 6 Summary and Future Work

strategy was implemented for LumiNet. It allows to repro-
gram LumiNet at places where no PC is available and it is
not necessary to disassemble the network for this task. The
programs that are stored on the vector nodes have been up-
loaded by the easy to use, modified Arduino IDE. This IDE
also allows to upload the bootloader to empty LumiNet
nodes and it makes software development easy, even for
people who are new to programming.

6.2 Future Work

A few bio-inspired algorithms were implemented in this
work, but there is no framework yet for creating such algo-
rithms. Future versions of the IDE can support the develop-
ment of bio-inspired algorithms by offering code skeletons
or wizards.

A user study can help to identify if users have prob-
lems with the current framework. An interesting question
would be if the users realize any differences between devel-
oping sketches for the LumiNet hardware and developing
sketches for the original Arduino hardware. Another user
study could compare the LilyPad Arduino and LumiNet in
wearable computing applications.

The remaining libraries must be ported to the LumiNet
framework, making LumiNet almost completely compat-
ible to the Arduino. Advanced parts like interrupts and
timers should be optimized and tested in many applica-
tions, although the current implementation seems to have
no serious problems.

One of the main application areas of LumiNet is wearable
computing. Other application areas must be detected and
published to the community.

A hardware redesign can improve various limitations of thehardware redesign
current platform. For example, an external crystal could
provide a better clock signal, although this change would
occupy two pins. This modification would solve problems
with the serial communication and allows easier synchro-

6.2 Future Work 71

nization of nodes.

The current hardware board connects only two colors of the
rgb LED to hardware PWM pins. A redesign should con-
nect all three colors of the LED to hardware PWM pins. The
LED fading can then be implemented using PWM timers.
Thus the Bynase implementation can be limited to commu-
nication and the saved resources of the mcu can then be
used for custom code.

The jumper must disappear. A user has to remove the
jumper for code upload via ISP programmer. This is hard
to understand and a common source for errors.

A redesign must offer more labels and other marks that
help the user to identify the directions. Maybe another
shape of the boards can also support a quicker identifica-
tion of the directions. The quite rectangular shape of the
boards might be changed into a more triangular shape like
the one used by the NeuroLED.

The pin layout of the connectors must be changed, because
the current version is too dangerous. If the wrong ports are
connected, this can result in a short circuit. We propose that
VCC should be next to GND and that no other pins should
lay between VCC and GND. The power supply connection
must be more stable and safer, especially for wearable com-
puting projects.

Whenever the Arduino software updates to a new release,
the LumiNet software should also include the same im-
provements and provide compatibility. A full integration of
the LumiNet project into the Arduino project is desirable.

73

Appendix A

APPENDIX: Installation
and Setup

This chapter describes how to connect nodes to a LumiNet
network and how to get started using the framework.

A.1 Hardware Installation

This sections explains how to connect nodes in a network.
Special care must be taken when a power supply gets con-
nected to a LumiNet network.

A.1.1 Connecting Nodes

Every node can have up to four direct neighbors. They are
connected to each other using four wires in each direction.
One of the wires offers the supply voltage (VCC) and one
wire is the common ground terminal (GND). The other two
pins can be used for communication. The wire that pro-
vides VCC is blue while all other wires are black. It is im-
portant that only blue1 wires get connected to VCC.

1Blue is the default. If an other color, e.g. red, is used to mark VCC,
then this must be used consequently.

74 A APPENDIX: Installation and Setup

Figure A.1: Pins of the LumiNet hardware board

Figure A.1 shows all pins of a LumiNet hardware board.
The numbers are the pin numbers that can be used by com-
mands like pinMode(), digitalWrite(), etc.

Pins 8,9, and 10 have special functions, as they are not only
used for ISP programming if the jumper is removed, but
they are connected to the three colors of the rgb LED if the
jumper is set. The mapping of these three pins is shown in
table A.1

Two nodes can be connected to each other either horizon-
tally aligned or vertically aligned.

A.1 Hardware Installation 75

pin LED color mcu pin ISP pin
8 red PA4 SCK
9 green PA5 MISO
10 blue PA6 MOSI

Table A.1: Pin mappings for pins 8, 9, and 10

Figure A.2: Two LumiNet nodes - horizontal

Figure A.3: Two LumiNet nodes - vertical

Figure A.2 shows how to connect two LumiNet nodes hori-
zontally. The blue wire marks the supply voltage pin VCC.

Figure A.3 shows how to connect two LumiNet nodes ver-
tically. In contrast to Figure A.2 , the nodes are rotated by
90 degrees. It is important that only a SOUTH port of a

76 A APPENDIX: Installation and Setup

node can be connected to a NORTH port of another node.
It is not allowed to connect a EAST, WEST or NORTH port
to a NORTH port. Only a WEST port can be connected to
an EAST port, etc.

A.1.2 Power Supply

The power supply can be attached to any pair of VCC and
GND pins. It is recommended to use the two pins of the ISP
pin header, because this way the power supply and four
neighbors can be connected to the node at the same time.

The supply voltage must be smaller than 5 V and since
there is no protection against wrong polarity, reversed volt-reversed voltage

levels can destroy
the hardware

age levels can destroy the hardware. Additional com-
ponents should be added for safety, especially in wear-
able computing projects. The power supply must provide
enough current for all nodes of the network.

A.1.3 Connect an ISP programmer

The six pins that must be connected to an ISP programmer
can be seen in figure A.1: on the right side (diagonal) VCC,
/RESET, and GND, and on the left side: SCK, MISO, and
MOSI. The jumper must be open, otherwise the node can-
not be programmed via ISP.

A.2 Software Installation

On the DVD that is distributed with this thesis, a folder
called ”Software” contains the compiled binary files of
the framework that can be used on Windows and Mac
OS X. The software is also available for download at the
LumiNet2 project homepage.

2http://www.luminet.cc or http://hci.rwth-aachen.de/luminet

http://www.luminet.cc

A.2 Software Installation 77

The corresponding subdirectory that fits the used operating
system must be copied to the hard drive.

The directory ”LumiNet sketches” should also be copied
to the hard drive. All examples that are discussed in this
paper are included in this directory.

A.2.1 Run the IDE

On Windows: double-click the run.bat file.

On Mac OS X: double-click the Arduino icon.

It is also possible to run the IDE from the command line. On
Windows, the run.bat can be called from the cmd shell. On
Mac OS X, a terminal should be opened and in the directory
where the Arduino icon is located, the following command
starts the IDE:

./Arduino.app/Contents/MacOS/Arduino

While run.bat on Windows automatically opens a shell
in the background, there is no shell visible after double-
clicking the Arduino icon on Mac OS X. It is recommended
to open the shell because useful status and dabugging in-
formation are only provided in the shell and not in the IDE.

A.2.2 Open an Existing Sketch

In the ”File” menu the item ”Open” opens a file browser
dialog. In the directory called ”Luminet sketches” the
corresponding .pde file must be selected. The sketch
Blink/Blink.pde is a good start.

Every example includes a description that explains how to
wire components for this example. It also gives a brief ex-
planation of what the example does. The description can
be found in the header of each .pde file.

78 A APPENDIX: Installation and Setup

A.2.3 Compile the Sketch

After the correct board (”LumiNet Vector Node”) was se-
lected in the ”Board” menu, the sketch will be compiled
after the ”Play” button is clicked. The sketch will not be
automatically uploaded to the board by this step.

A.2.4 Upload a Sketch to the Network

Three steps are required in order to upload a sketch to a
LumiNet network:

First, the sketch must be uploaded to a vector node:

1. Select ”LumiNet Vector Node” in the ”Board” menu.

2. Select the serial port that connects to the vector node.

3. Connect serial interface to the WEST port of the vector
node

4. Add a jumper to the vector node

5. Click the ”Upload to Board” button.

Then the vector node must be disconnected from the PC
and the jumper must be removed from the vector node.

In the next step, the vector node must be connected to the
LumiNet network. When the network is powered up the
next time, the programming by infection mechanism starts.
After all nodes are reprogrammed, the power supply must
be removed and then the vector node must be removed
from the LumiNet network.

Another option is to connect the network to the EAST port
of the vector node and leave the network connected while
the vector node receives new program code from the PC. In
this case, the network is automatically reprogrammed after
the vector node received the new program code.

79

Appendix B

APPENDIX: Reference
Of Hardware Design

This chapter shows the schematics and the board layout
of the LumiNet hardware boards revision 3.6. The figures
were created by Professor Jan Borchers.

80 B APPENDIX: Reference Of Hardware Design

7/
30

/0
8

6:
52

 P
M

 /
us

er
s/

bo
rc

he
rs

/d
oc

um
en

ts
/e

ag
le

/lu
m

in
et

36
/lu

m
in

et
36

.s
ch

 (S
he

et
: 1

/1
)

Fi
gu

re
B

.1
:L

um
iN

et
ha

rd
w

ar
e

bo
ar

d
re

vi
si

on
3.

6
sc

he
m

at
ic

s

81

Figure B.2: LumiNet hardware board revision 3.6 layout

82 B APPENDIX: Reference Of Hardware Design

83

Appendix C

Glossary

Bootloader: A bootloader is a piece of software that can
load program code to the flash. Usually, this program runs
after boot-up and is stored in a dedicated region of the
flash.

DCF77: is a radio station that broadcasts time information
signals. The callsign of this station stands for D=Germany,
C=long wave signal, F=Frankfurt, 77=77.5 kHz (frequency).

EEPROM: Electrically Erasable Programmable Read-Only
Memory is a non-volatile memory. A microcontroller can
use this memory to store data or read data like configura-
tion bytes.

Flash memory: is a specific type of EEPROM that has to
be erased, programmed, and read in blocks or pages. Mi-
crocontrollers often store their program code in this non-
volatile memory.

I2C: Inter-Integrated Circuit is a serial computer bus that
uses two wires. It was invented by Philips. A popular
variant used by some microcontrolelr vendors is called TWI
(two wire interface).

GPS: the Global Positioning System uses satellites to allow
navigation on Earth. Some GPS receivers can be connected
to a Microcontroller using serial communication. The mi-

84 C Glossary

crocontroller can then read the current position from the
GPS receiver hardware.

ICSP programmer: In Circuit Serial Programming allows
to reprogramm microcontrollers in the circuit. Thus the mi-
crocontroller must not be removed from the circuit. This
allows to reprogramm the mcu in a system, the mcu must
not be programmed before it gets installed in the system.

ISP programmer: In-System Programming: see ICSP pro-
grammer

ISR: An Interrupt Service Routine, also known as Interrupt
Handler, is a software callback routine that gets triggered
by occurrence of an interrupt. This can be a hardware in-
terrupt such as a timer overflow interrupt, or a software
interrupt.

lsb: the least significant bit is the bit of an integer number
that defines if the number value is odd or even.

mcd: stands for ”millicandela” or 1/1000 of a candela. A
candela is the the SI base unit of luminous intensity

Microcontroller: a simple microprocessor with additional
peripherals like memory or timers on a single integrated
circuit (IC).

msb: the most significant bit is the bit of an integer number
is the bit that determines the signess of a signed number
value or the bit with the biggest value of an unsigned num-
ber value.

RS232: Recommended Standard 232 is a standard for serial
binary data signals connecting two devices.

SRAM: Static Random Access Memory is a kind of volatile
memory that must not be periodically refreshed. Microcon-
trollers can use this memory to store dynamic data at run-
time.

TTL: Transistor–transistor logic is a class of electronic de-
vices that operate at a voltage between 0 V and 5 V. A TTL
signal is defined as ”LOW” when it is between 0 V and 0.8

85

V, and it is defined as ”HIGH” when it is between 2.2 V and
5 V. Most microcontrollers operate within this range.

TWI: see I2C

UART: a Universal asynchronous receiver/transmitter is a
piece of hardware that is used for serial data communica-
tion. If a microcontroller includes a UART, then the main
processor of the microcontroller can do other tasks while
the UART handles the serial communication.

XBee: the XBee modules use the physical layer and the me-
dia access layer of ZigBee and allow Microcontrollers to use
it via a serial command set.

ZigBee: the The ZigBee Alliance specified this suite of
radio communication protocols. It supports small, low-
power digital radios based on the IEEE 802.15.4 standard
that specifies the physical layer and media access control
for low-rate wireless personal area networks.

Z register: a special register of the Atmel ATtiny (and AT-
Mega) mcus. It is a 16-bit register containing the register
pair R30, R31. It is a pointer register that is able to point
to a 16-bit SRAM address or to a location of the program
memory (e.g. a word address in flash memory). The higher
byte of the Z register (R31) is called ZH and the lower byte
(R30) is called ZL.

87

Bibliography

Atmel. Avr305: Half duplex compact software uart.
”http://www.atmel.com/dyn/resources/
prod documents/doc0952.pdf”, 2005.

Leah Buechley and Michael Eisenberg. Fabric pcbs, elec-
tronic sequins, and socket buttons: techniques for e-
textile craft. Personal Ubiquitous Comput., 13(2):133–150,
2009. ISSN 1617-4909. doi: http://dx.doi.org/10.1007/
s00779-007-0181-0.

Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali
Crockett. The lilypad arduino: using computational
textiles to investigate engagement, aesthetics, and
diversity in computer science education. In CHI ’08:
Proceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems, pages 423–432, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-011-1.
doi: http://doi.acm.org/10.1145/1357054.1357123.
URL http://portal.acm.org/ft gateway.
cfm?id=1357123&type=pdf&coll=GUIDE&dl=
GUIDE&CFID=24765571&CFTOKEN=91296219.

C. Darwin. On the Origin of Species by Means of Natural Se-
lection. John Murray, London, 1859.

Paul H. Dietz, William S. Yerazunis, and Darren Leigh. Very
low-cost sensing and communication using bidirectional
leds. In Ubicomp, pages 175–191, 2003.

Prabal K. Dutta, Jonathan W. Hui, David C. Chu, and
David E. Culler. Securing the deluge network program-
ming system. In IPSN ’06: Proceedings of the 5th inter-
national conference on Information processing in sensor net-
works, pages 326–333, New York, NY, USA, 2006. ACM.

http://www.atmel.com/dyn/resources/prod_documents/doc0952.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0952.pdf
http://portal.acm.org/ft_gateway.cfm?id=1357123&type=pdf&coll=GUIDE&dl=GUIDE&CFID=24765571&CFTOKEN=91296219
http://portal.acm.org/ft_gateway.cfm?id=1357123&type=pdf&coll=GUIDE&dl=GUIDE&CFID=24765571&CFTOKEN=91296219
http://portal.acm.org/ft_gateway.cfm?id=1357123&type=pdf&coll=GUIDE&dl=GUIDE&CFID=24765571&CFTOKEN=91296219

88 Bibliography

ISBN 1-59593-334-4. doi: http://doi.acm.org/10.1145/
1127777.1127826.

Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial
Intelligence: Theories, Methods, and Technologies. The MIT
Press, 2008. ISBN 0262062712, 9780262062718.

Dario Floreano, Yann Epars, Jean-Christophe Zufferey, and
Claudio Mattiussi. Evolution of spiking neural circuits
in autonomous mobile robots: Research articles. Int. J.
Intell. Syst., 21(9):1005–1024, 2006. ISSN 0884-8173. doi:
http://dx.doi.org/10.1002/int.v21:9.

M. Gardner. Mathematical games: the fantastic contribu-
tions of john conway’s new solitaire game “life.”. Scien-
tific American, October 1970:120–123, 1970.

John H. Holland. Adaptation in natural and artificial sys-
tems. MIT Press, Cambridge, MA, USA, 1992. ISBN 0-
262-58111-6.

David Holman and Roel Vertegaal. Organic user inter-
faces: designing computers in any way, shape, or form.
Commun. ACM, 51(6):48–55, 2008. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/1349026.1349037.

Shinichi Hosomi, Masahiko Tsukamoto, and Shojiro
Nishio. A system for controlling led blink in wearable
fashion. In IWCMC ’07: Proceedings of the 2007 inter-
national conference on Wireless communications and mobile
computing, pages 665–670, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-695-0. doi: http://doi.acm.org/
10.1145/1280940.1281081.

Scott E. Hudson. Using light emitting diode arrays as
touch-sensitive input and output devices. In UIST ’04:
Proceedings of the 17th annual ACM symposium on User in-
terface software and technology, pages 287–290, New York,
NY, USA, 2004. ACM. ISBN 1-58113-957-8. doi: http:
//doi.acm.org/10.1145/1029632.1029681.

Jonathan W. Hui and David Culler. The dynamic behavior
of a data dissemination protocol for network program-
ming at scale. In SenSys ’04: Proceedings of the 2nd inter-
national conference on Embedded networked sensor systems,

Bibliography 89

pages 81–94, New York, NY, USA, 2004. ACM. ISBN 1-
58113-879-2. doi: http://doi.acm.org/10.1145/1031495.
1031506.

Tom Igoe. Making things talk. O’Reilly, 2007. ISBN
9780596510510.

Mohammad Mostafizur Rahman Mozumdar, Luciano
Lavagno, and Laura Vanzago. A comparison of software
platforms for wireless sensor networks: Mantis, tinyos,
and zigbee. Trans. on Embedded Computing Sys., 8(2):1–23,
2009. ISSN 1539-9087. doi: http://doi.acm.org/10.1145/
1457255.1457264.

Munehiko Sato. Particle display system: a real world dis-
play with physically distributable pixels. In CHI ’08: CHI
’08 extended abstracts on Human factors in computing sys-
tems, pages 3771–3776, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-012-X. doi: http://doi.acm.org/10.
1145/1358628.1358928.

Ryo Sugihara and Rajesh K. Gupta. Programming models
for sensor networks: A survey. ACM Trans. Sen. Netw., 4
(2):1–29, 2008. ISSN 1550-4859. doi: http://doi.acm.org/
10.1145/1340771.1340774.

91

Index

I2C . 83

abbrv . see abbreviation
Arduino . 8

BlinkM . 14
Bynase . 16, 40

Cellular Automaton . 59
Clock Calibration . 53
Clock Speed . 66
Cybords . 16

DCF77 . 83
Deluge . 21
Distributed Particle Display System . 21

EduWear. .13
EEPROM . 83
Evolutionary Algorithm. .62
Evolutionary Algortihm. .61

Flash memory . 83
Fuses . 50

Genetic Algorithm . 63
Genotype . 62
GPS. 83

ICSP programmer . 84
ISP programmer . 84
ISR . 84

Langton’s Ant . 65
LightRing . 58
LilyPad Arduino . 11
lsb . 84
LumiNet Hardware Board . 22, 79

MANTIS OS . 19

92 Index

mcd . 84
Microcontroller . 84
MNP . 20
Moore neighborhood. .59
msb . 84

Network Reprogramming . 4, 19
NeuoLED . 15

Organic User Interface . 1

Phenotype . 62
Physical Computing Framework . 7
Processing . 8
Programming by Infection . 31

RS232 . 84

Sensors
- Light Sensor . 56
- Touch Sensor . 57

Sleep Mode . 66
Spiking Neural Networks . 16
SRAM . 84

TinyOS . 19
Topology Scan . 32
TTL . 84
TWI . 85

UART. .85
User Interface . 1

Von Neumann neighborhood . 59

Wearable Computing. .4
Wireless Sensor Network . 3, 18
Wiring . 7

XBee. .8, 85
XNP . 20

Z register . 85
ZigBee . 19, 85

Typeset May 18, 2009

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	(Wireless) Sensor Networks
	Network Reprogramming

	Wearable Computing
	Bio-inspired Artificial Intelligence

	Related work
	Physical Computing Frameworks
	Wiring
	Arduino
	Wearable Computing - The LilyPad Arduino
	Blink Pattern Control System
	BlinkM
	NeuoLED

	Networks
	Spiking Neural Networks
	Cybords
	(Wireless) Sensor Networks
	XNP
	MNP
	Deluge

	Distributed Particle Display System

	LumiNet Hardware Board
	Comparison

	Design
	Network Topology
	Overall Design

	Early Implementations
	The Arduino Idea
	Requirements
	Usability
	Network Reprogramming
	Bio-inspired Aspects

	Implementation
	Multi-hop Bootloader
	Topology Scan and Vector Node Detection
	Transmission Protocol
	Dissemination Program for Vector Nodes

	Serial Communication
	Arduino Core for LumiNet
	Arduino IDE for LumiNet
	Bio-inspired Communication - Bynase
	Random Number Generator
	Details About the Bynase Implementation
	Bynase for LEDs
	Byte Communication on top of Bynase

	LED Extensions
	Sensor Nodes
	How to use the Arduino IDE
	Uploading Sketches to LumiNet
	Uploading the Bootloader to LumiNet

	Problems Encountered and Their Solutions
	Create BIN file from HEX file
	Fuses
	Calling the Bootloader
	Use Assembler Code in an ANSI C Environment
	Use Assembler Code in the Arduino C++ Context
	Serial Communication and the delay() Function
	Clock Calibration

	Evaluation
	Sensors and Actuators
	LED Light Sensor
	Touch Sensor

	Example Algorithms and Applications
	Fading LED
	LightRing
	Cellular Automata on LumiNet
	Genetic Algorithms on LumiNet
	Langton's Ant

	Power Consumption
	Requirements Analysis

	Summary and Future Work
	Summary and Contributions
	Future Work

	APPENDIX: Installation and Setup
	Hardware Installation
	Connecting Nodes
	Power Supply
	Connect an ISP programmer

	Software Installation
	Run the IDE
	Open an Existing Sketch
	Compile the Sketch
	Upload a Sketch to the Network

	APPENDIX: Reference Of Hardware Design
	Glossary
	Bibliography
	Index

