RWTH

Time-Based
Decision Trees In
Interaction Design

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University 351

In Cooperation with the
Department of Psychiatry r HHI ‘HH. m.
and Psychotherapy ||!!!H.I..!lunnIIIHHHI””&

University Hospital Aachen 1

Y

Sascha Beckers

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Dr. PD Ute Habel

Registration date: Dec 11th, 2007
Submission date: = July 28th, 2008

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die Arbeit selbststindig
verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt sowie Zitate kenntlich gemacht
habe.

Aachen, July 28th, 2008

iii

Contents

[Acknowledgements|

[Conventions|

(I__Introduction|

(1.1 Chapter Overview|

2.1 Psychological Experiments|.

[2.1.1 Hypothesis Test and Variables|
[2.1.2° Operationalization and Measuring| . .
[2.1.3 Experimental Design|.
214 Samples
21.5 Empirical Test{

216

Neuropsychological Experiments|. . .

XV

Xvii

xix

xxi

11

12

13

14

Contents

22 DecisionTrees 16

221 Time-Based Decision Trees| 18
2.3 Timed Automatal 18
24 TimeConstraints 20

opment/. 24

[2.5 Iterative User-Centered Design| 26
[2.6 Designing for Domain-Expert Users| 27
B Related Work| 31
BT Decsion T, . [UserTnterd l
Design| 31

[3.2 Time-based Decision Trees for the Diagnosis |
of Embedded Systems| 34

33 SMIL] 37
34 SuperLab|............... 38
rren rk h 43
4.1 The Software System “Presentation”| 44
1.1 Scenario Specification| 44

SDI]. 46

Contents

Criticisms| 48

4.1.2 Future Developments| 50

@42 Contextual Inquiry| 50
2.1 hodl. 51

4.2.2 Participants| 53

4 5 53
424 Findings 55
(General Observationsl 55

[User Comments|. 56
[Decision and Time Structures| 57

[User Ideas and Expectations| 58

[Results Discussion| 59

[5 First Prototype: Paper| 61
5 Design| 62
.2 Implementation| 68
Evaluationl 69
[0.3.1 Participants| 69

5 Up| . . . oo 69
B33 Taskd 70

B4 Resultd 71

[6 Second Prototype: Paper| 77

vi

Contents

6 Design| oL 78
[6.2 Implementation| 81
6.3 Evaluationl 82
[.3.1 Participants| 82
0632 Set-Upl 82
B4 Resulfd 83
{7 Third Prototype: Javal 87
Design| L L 88
[7.2 Implementation| 93
721 Visualization] 94
722 D ructure. L. 95
[7.3 Evaluation: Pilot Study|. 96
[7.3.1 Participants| 97
.................. 97
74 Resultd 98
Evaluation 101
[8.1 Changes to the Design| 102
[8.2 Participants| 102
83 Set-Upl 103
8.3.1 Questionnaire| 105

Contents vii
B5 Resultsl 107
[8.5.1 Questionnaire: General Impressions| . 109
18.5.2 Questionnaire: Time-Based Decision |
[Irees|o 110
18.5.3 Questionnaire: GUI. 111
[8.5.4 Questionnaire: Trial Window| 112
[8.5.5 Questionnaire: Complex Tree| 112
[8.5.6 Suggestions for Improvement|. 113
9 Conclusion| 115
1 Futur i 116
[9.1.1 Extension to Full Experiment System| 116

[9.1.2 Realization of All Displayed Functions| 118

[9.1.3 Repeated Template Structures|.

[9.1.7 Significance for Interaction Design| . .

0.2 Summary|.

A Additional Paper Prototype Screens|

(B Software Prototype: Sample Run|

|C Final Evaluation: Questionnaire|

121

123

125

129

139

viii Contents

| Bibliography| 145

[Index 149

ix

List of Figures

21 Decisiontreel, 17
2.2 Timed automaton| 19
2.3 Model Human Processor (CMN model)] . . . 21
2.4 UML sequence diagram| 25
5 DIACycle 27
B.1 Decision tree for interactor selection| 33

[3.2 Diagnostic time-based decision tree example| 36

3.3 Screenshot of SuperLabl. 39
3.4 Screenshot of SuperLabl. 41
@.1 Screenshot of Presentationl 45
p.1 First paper prototype: Main screen| 63
[5.2 First paper prototype: Header dialog|. 64
[5.3 First paper prototype: Trial window| 65

[5.4 First paper prototype: Text stimulus dialog| . 66

List of Figures

[p.5 First paper prototype: Repeated trial com-

pound window| 67
6.1 Second paper prototype: Main screen| 79
paper p YP
6.2 Second paper prototype: Trial window|. . . . 80
paper p YP
7.1 Software prototype: Main screen| 89
P YP
7.2 Software prototype: Connection conditions
P typ
dialog|. 91
[7.3 Software prototype: Trial window| 92
7.4 Software prototype: Image properties dialo 93
p YP &€ prop
7.5 Software prototype: Text properties dialo 93
p YP prop
[8.1 Complex example experiment structure| . . . 105
.1 Second paper prototype: Main screen| 125
paper p YP
.2 Second paper prototype: Repeated trial com-
paper p YP P
pound window| 126
[A.3 Second paper prototype: Template table| . . . 126
.4 Paper prototype: Header dialog|. 127
per p YP
[A.5 Paper prototype: Header dialog|. 127
.6 Second paper prototype: Image properties
paper p YP g€ prop
dialog|. 128
[A.7 First paper prototype: Picture properties di- |
alogl 128
B.1 Software prototype: Sample run (01)| 129
|Y YpP p
B.2 Software prototype: Sample run (02)| 130
P YP p

List of Figures

xi

[B.3 Software prototype: Sample run (03)| 130
[B.4 Software prototype: Sample run (04) 131
[B.5 Software prototype: Sample run (05) 131
[B.6 Software prototype: Sample run (06), 132
[B.7 Software prototype: Sample run (07) 132
[B.8 Software prototype: Sample run (08)| 133
[B.9 Software prototype: Sample run (09), 133
[B.10 Software prototype: Sample run (10)| 134
[B.11 Software prototype: Sample run (11)| 134
[B.12 Software prototype: Sample run (12)| 135
[B.13 Software prototype: Sample run (13)| 135
[B.14 Software prototype: Sample run (14)| 136
[B.15 Software prototype: Sample run (15) 136
[B.16 Software prototype: Sample run (16) 137
[B.17 Software prototype: Sample run (17) 137

IC.1 Questionnaire used in the final evaluation of

the software prototype (page1).| 140

|C.2 Questionnaire used in the final evaluation of

the software prototype (page?2).| 141

IC.3 Questionnaire used in the final evaluation of

the software prototype (page 3).| 142

IC.4 Questionnaire used in the final evaluation of

the software prototype (page4).| 143

xiii

List of Listings

3.1 SMILexample 38
41 SDLexamplel. 47
42 PCLexample|. 49

XV

Abstract

This thesis describes the design of the Presentation Visual
Editor, a new user interface for the stimulus delivery and
experimental control software system Presentation. The Vi-
sual Editor is a graphical development environment for the
creation of psychological experiments. It allows the visual
creation of experiment structures and direct layout of visual
stimuli.

The design is based on time-based decision trees which are
used to model time structures in interactions. Time-based
decision trees are graph representations of hierarchical de-
cision rule systems that include time conditions.

Before starting the development of the system, I conducted
a Contextual Inquiry to get an understanding of the psy-
chological domain and to learn about the users” working
methods and problems in the operation of Presentation.
The users were observed in the field while implementing
experiments.

The design was evolved in three cycles of an iterative user-
centered design process. In the first iteration, a paper pro-
totype was designed to test the users” understanding of the
concept and to collect fundamental feedback about the in-
teractions of the interface. This paper prototype was then
refined and evaluated again in the next iteration. Finally, I
have implemented a working interactive prototype in Java
to test the interface in more detail.

A final evaluation compared the Presentation Visual Edi-
tor with Presentation’s original interface and measured the
performance of the design. This study showed that time-

xvi Abstract

based decision trees are beneficial for the design of psycho-
logical experiments. The thesis closes with a discussion of
the significance of the results for general interaction design.

xvii

Uberblick

Diese Diplomarbeit beschreibt die Entwicklung des Pre-
sentation Visual Editor, einer neuen Benutzeroberflache
fiir das Softwaresystem Presentation, das der Stimu-
lustiberbringung und Experimentsteuerung dient. Der Vi-
sual Editor ist eine graphische Entwicklungsumgebung zur
Erstellung psychologischer Experimente. Er erlaubt die
visuelle Erstellung von Experimentstrukturen und die di-
rekte Gestaltung von visuellen Stimuli.

Das Design basiert auf zeitbasierten Entschei-
dungsbdaumen, die zur Modellierung von Zeitstrukturen
in Interaktionen benutzt werden. Zeitbasierte Entschei-
dungsbdaume sind Graphdarstellungen von hierarchischen
Entscheidungsregelsystemen, die Zeitbedingungen bein-
halten.

Bevor ich mit der Entwicklung des Systems begann, fiihrte
ich eine kontextabhidngige Untersuchung durch um ein
Verstdndnis fiir die psychologische Doméne zu entwickeln
und um die Arbeitsmethoden und Probleme der Benutzer
bei der Bedienung von Presentation in Erfahrung zu brin-
gen. Die Benutzer wurden hierzu wéahrend der Implemen-
tierung von Experimenten im Feld beobachtet.

Das Design wurde in drei Zyklen eines iterativen, be-
nutzerzentrierten Designprozesses entwickelt. In der er-
sten Iteration wurde ein Papierprototyp entworfen um das
Verstdandnis der Benutzer fiir das Konzept zu testen und
um grundsétzliches Feedback {tiber die Interaktionen in
der Benutzeroberfliche zu sammeln. Dieser Papierproto-
typ wurde danach in der néchsten Iteration verfeinert und
erneut evaluiert. Schliefilich habe ich einen funktionieren-

xviii

Uberblick

den interaktiven Prototypen in Java implementiert um die
Benutzeroberfliche genauer zu testen.

Eine Endevaluierung verglich den Presentation Visual Ed-
itor mit Presentations urspriinglicher Benutzeroberfldache
und mafs die Leistung des Designs. Diese Studie zeigte,
dass zeitbasierte Entscheidungsbdume sich vorteilhaft auf
das Design von psychologischen Experimenten auswirken.
Die Diplomarbeit schliefst mit einer Diskussion iiber die
Signifikanz der Ergebnisse fiir allgemeines Interaktionsde-
sign.

xix

Acknowledgements

A lot of people contributed to this diploma thesis and I am
very grateful for that. This project would not have been
possible without their help and support.

First of all, I would like to thank Prof. Dr. Jan Borchers for
the opportunity to write this thesis at his chair and my su-
pervisor Jonathan Diehl for his constant support and feed-
back and the many ideas he has contributed to my work.

Special thanks also go to Dr. Ute Habel for being my sec-
ond examiner and for always showing interest for my work
and giving feedback. I am also very grateful to Nils Kohn
and Timur Toygar, my contact persons in the Department of
Psychiatry and Psychotherapy, for introducing me into the
world of psychological research and for their great support
and help and the many ideas they had for my work.

Thanks to everybody at the Media Computing Group. I
really appreciated the good and friendly working atmo-
sphere. Especially, I want to thank Eileen Falke for reading
my thesis and Noriyasu Vontin for his feedback on several
issues.

Further, I would like to thank everybody at the Department
of Psychiatry and Psychotherapy for allowing me to do this
project with them and for warmly welcoming me. Spe-
cial thanks go to all participants of my various evaluations
and user studies for giving valuable feedback and spending
their time for my project.

I also want to thank Eva Temur for reviewing the entire
document.

XX

Acknowledgements

Last but not least, I want to thank my wife Anna for all her
emotional support and patience during the time of this the-
sis and during my entire studies. You gave me the strength
to do this, thank you!

xx1

Conventions

Throughout this thesis I use the following conventions.

The whole thesis is written in American English.

Unidentified third persons, for example users or partici-
pants of evaluation studies, are always described in male
form. This is only done for purposes of readability.

Chapter 1

Introduction

“Time is what we want most, but what we use
worst.”

—William Penn

Time aspects are an important element in the design of
interactive systems. The designers of user interfaces (UI)
of interactive systems should not only consider elements,
such as the visual design or the accessibility of functions. To
achieve good usability and therewith successful systems, it
is important to consider the temporal layout of the interac-
tion. This user interface time controls the whole course of
the interaction. It determines when which actions are taken
or not taken and how the system responses to the behavior
of the user. If the temporal layout is designed properly and
different kinds of time constraints are applied, it is possible
to create sophisticated system behavior. Time constraints
could treat, for example, continuous inactivity or repeated
errors of the user.

Therefore, it is crucial to have means for modeling the Ul
time in the design process of an interactive system. The
modeling of time should be efficient and easy understand-
able for humans. Although there are many mature software
development environments for the creation of interactive
systems, the efficient modeling of time is an unsolved prob-
lem which does not seem to receive serious consideration.

It is important to
design the temporal
layout of interactions

Means for modeling
Ul time needed

1 Introduction

Current development
tools neglect Ul time

Time-based decision
trees proposed as
solution

Presentation is an
experimental design
and control software
system

The focus of today’s development environments is primar-
ily on the spatial layout of Uls, i.e. on the arrangement of
interface elements and the assignment of actions to them.
Software modeling techniques, like Unified Modeling Lan-
guage (UML) diagrams, model time only for the visualiza-
tion of internal processes and system architecture. Thus,
these techniques all ignore UI time constraints. The lack
of appropriate design tools causes software developers to
disregard the explicit consideration of time issues and their
effects on the interaction flow during the design process.

In this work, I will explore a new design metaphor based
on time-based decision trees. It can be used to model time
in interactions. Standard decision trees are graph represen-
tations of hierarchical systems of decision rules. A time-
based decision tree extends this notion by including time
into the decision process. Decisions made by the tree de-
pend additionally on time constraints and the tree must
obey to time flow. To test the performance of this new con-
cept, it will be realized in a highly specialized integrated
development environment (IDE).

I will develop the IDE, called Presentation Visual Editor,
in cooperation with the Department of Psychiatry and
Psychotherapy at the University Hospital Aachen. This
clinic conducts psychological and neuropsychological ex-
periments for their research. They implement these experi-
ments with the application Presentation.

Presentation is a stimulus delivery and experimental con-
trol software system for neuroscience used for program-
ming, performing, and analyzing psychological experi-
ments. It is a common system and very powerful, but
it bares some serious disadvantages. The Presentation
UL consisting of two scripting languages, frustrates its
users and even harms their research because the difficul-
ties they experience influence and constrain the design of
their experiments. The underlying languages, the Scenario
Description Language (SDL) and the Presentation Con-
trol Language (PCL), needed for specifying the course of
events, are responsible for laborious experiment realiza-
tion. SDL and PCL base on traditional software techniques,
whereas time aspects are of great importance in psycholog-
ical experiments. Altogether, in the design of the program

the demands of the domain were not taken into account.
This makes Presentation an excellent application for taking
advantage of time-based decision trees.

The main goal of this work is to show that the use of time-
based decision trees is beneficial in interaction design. This
will be achieved by creating design metaphors for using
temporal decisions and applying them in the design of an
improved user interface to Presentation.

The Presentation Visual Editor user interface, which I will
present in this work, has the following properties:

It is a development tool for creating a very special-
ized form of interactive systems: software-controlled
psychological experiments.

The interface bases on Presentation and has the goal
to output executable SDL/PCL code at the end.

In its design time-based decision trees are incorpo-
rated to explicitly model time constraints and the time
flow of the experiment. The trees serve as means for
making the whole time structure visible and less ab-
stract.

In contrast to Presentation, the Presentation Visual
Editor has a real graphical user interface (GUI). The
complete experiment construction process will be
performed with visual interactions and without pro-
gramming. Optional programming of custom exper-
iment features would be possible in the generated
code, though.

The entire process of stimulus creation will be facili-
tated with visual interactions that allow direct manip-
ulation.

The performance of the design will be evaluated in
a comparative study that contrasts the Presentation
Visual Editor prototype directly with Presentation’s
original interface. This will show whether the time-
based decision tree concept has benefits for the design
process.

Research question

Development tool for
interactive systems

Bases on
Presentation

Time-based decision
trees model
experiment structure

GUI system

Visual creation of
stimuli

Evaluated in
comparative study

1 Introduction

User-centered
design approach

My design approach will be guided by the principles of it-
erative user-centered design. This should guarantee good
usability and an intuitive design as the users directly par-
ticipate in the design process. The design will evolve in
several steps. The end product of this work will be an inter-
active high-fidelity prototype of the improved Presentation
interface that can be used to create experiments with visual
stimuli.

1.1 Chapter Overview

Chapter 1 introduces to the topic of this work. It explains
why the modeling of time in the design process of in-
teractive systems is important and an unsolved prob-
lem. Further, it describes the proposed solution to this
problem and introduces the Presentation Visual Edi-
tor user interface that will be designed to test the ap-
proach. This chapter explains the context and the mo-
tivation of this specialized interface and lists its fun-
damental characteristics.

Chapter 2 covers the theoretical background for this work.
It starts with an explanation of the main concepts
of (neuro-) psychological experiments. After intro-
ducing general decision trees and time-based deci-
sion trees, I will explain the concept of timed au-
tomata and argue why decision trees are preferred in
this work. The next section covers the importance
of time constraints for humans and interactive sys-
tems. Moreover it illustrates the current state in soft-
ware development. Then I will describe the impor-
tant concept of iterative user-centered design. The
chapter concludes with an examination of the soft-
ware requirements of domain experts.

Chapter 3 presents example systems that incorporate de-
cision trees—with and without the consideration of
time conditions. However, there is no system that is
directly related to my concept. Furthermore, I will de-
scribe SMIL, a language for creating Internet presen-
tations, and SuperLab, a graphical experiment design

1.1 Chapter Overview

system, which is an alternative application to Presen-
tation. I will describe its characteristics and argue
why the Presentation Visual Editor is superior.

Chapter 4 investigates the current state of experiment de-
sign with Presentation. After explaining the system
in detail, it deals with the Contextual Inquiry I con-
ducted to learn about the users’” problems with Pre-
sentation. I describe the method and the design of the
study and finally present the findings that had great
influence on the first prototype.

Chapter 5 is about the first design cycle in the develop-
ment process. It presents the design of the first pro-
totype of the Presentation Visual Editor, which is a
paper prototype, and its evaluation. The prototype
aimed at fundamental high-level feedback. My goal
has been to learn whether the users understand the
time-based decision tree concept and whether the in-
teractions are intuitive. The feedback provided many
suggestions for improvement and valuable qualita-
tive results about the features of the interface.

Chapter 6 describes the second paper prototype of the in-
terface. Motivated by the evaluation results from the
previous chapter, I made several modifications to re-
fine the design. In addition, I incorporated some new
design ideas. The aim was to construct a clearer and
simpler interface before implementing a working sys-
tem. The focus of the evaluation was on gathering
feedback about the design changes.

Chapter 7 presents the final prototype of the Presentation
Visual Editor, an interactive software prototype im-
plemented in Java. The design of the system was
again refined considering the previous evaluation re-
sults. The prototype was evaluated in a pilot study
that aimed at obtaining more detailed feedback. Its
purpose was to prepare the final evaluation. I had
to ensure that the interactions are understood by the
users and that no unexpected problems occur.

Chapter 8 describes the final evaluation of the interface. I
conducted a comparative study that contrasted the
Presentation Visual Editor prototype with Presenta-
tion’s original interface. In addition, the users were

1 Introduction

supposed to fill in a questionnaire. The study allowed
me to measure the performance of the design and to
collect quantitative and qualitative feedback.

Chapter 9 concludes this work. It summarizes the results
of the project and gives an overview of the issues
that should be treated in the future. I discuss how
several issues can be implemented in future develop-
ment to solve problems of the interface and to facil-
itate experiment construction. Further, this chapter
addresses open problems that were out of the scope
of this project. Finally, it is discussed to what extent
the results of this work can be generalized to interac-
tion design.

Chapter 2

Theory

“It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are. If it doesn't
agree with experiment, it's wrong.”

—Richard P. Feynman

This chapter presents the theoretical background that is
needed to understand my work. First, I will give an in-
troduction to psychological experiments. Then I will ex-
plain decision trees and their extension to time-based deci-
sion trees and will distinguish them from timed automata.
Afterwards, this chapter covers the importance of time con-
straints for humans and interactive systems. Finally, I will
explain iterative user-centered design, an important con-
cept this work adheres to, and discuss the special require-
ments of domain-expert users for software design.

2.1 Psychological Experiments

The interface, which I will develop in this work, has the
function to design and to implement psychological exper-
iments. Therefore, this section will briefly introduce the
main concepts of designing and performing psychologi-
cal experiments. This will give first insights into the psy-
chological domain. The description of the experiments is
mainly based on the book of Huber| [2005].

2 Theory

Psychology deals
with human behavior,
experience, and
consciousness

Falsification basis for
empirical research

Hypotheses predict
experiment results

Three types of
variables: IV, DV, EV

EVs must be
neutralized

Zimbardo and Gerrig|[1999] define the subject of psychol-
ogy as the behavior, experience, and consciousness of hu-
man beings and their development over the span of life
and their interior and exterior conditions and causes. The
goals of psychology as science are the description, expla-
nation, and prediction of behavior. Since psychology is an
empirical science, controlled experiments are of utmost im-
portance to verify the validity of theories. Popper| [1998]
developed seminal theories for the empirical research pro-
cess. He says that the correctness of scientific theories can
never be verified through scientific testing. He takes falsifi-
ability as the criterion of demarcation between what is and
is not genuinely scientific. A theory is scientific if and only
if it is falsifiable. The fundamental concept of empirical re-
search is thus the critical testing of theories with regard to
falsification. This implies that a well-tested theory must be
accepted as true until it is falsified.

2.1.1 Hypothesis Test and Variables

The primary goal of psychological experiments is to test
hypotheses for their truth content. A hypothesis is an as-
sumed answer to a solvable scientific problem that can be
tested. In particular, a hypothesis must be falsifiable. Hy-
potheses are propositions about correlations and causalities
of phenomena.

There are three types of variables in experiments: indepen-
dent variable (IV), dependent variable (DV), and extrane-
ous variable (EV). The IV is a variable that is varied actively
by the experimenter. IVs are deliberately manipulated to
invoke a change in the DVs. The DVs are the variables that
are observed to change in response to the IVs. The DV’s re-
action is the event that is predicted in a hypothesis. Finally,
EVs are variables that may probably also influence the DV.
Their effect must be neutralized, because they would inter-
fere with the IV’s effect. This leads to the following defini-
tion of an experiment: In an experiment the experimenter
varies systematically at least one IV and observes the effect
of this variation on at least one DV. At the same time, he
eliminates the effect of EVs.

2.1 Psychological Experiments

An example for a hypothesis is: Learning with breaks is
more effective than learning without breaks. In this case
the IV is the existence of a break and the DV is the learning
success in a subsequent test. EVs could be, for example, fa-
tigue, previous knowledge, and motivation of the subjects.

There are several methods for controlling EVs. The two
main strategies are keeping the values of the variables con-
stant for all subjects in the whole experiment and in con-
trast not keeping one level but combining randomly sev-
eral different levels of the EV with the values of the IV. To
control possible EVs of the subjects, the variables can be
measured for each subject. Then the subjects are divided in
different groups so that the average values of the groups are
as similar as possible (matching). Another strategy is to di-
vide the sample randomly into different groups. In order to
control variables of the experimental situation, one can try
to eliminate the variable completely, e. g. installing sound
insulation to eliminate distracting noises. Here again, the
EVs can be kept constant or can be randomized. Another
strategy to control influences of EVs, which mainly stem
from the selected group, is the inclusion of a control group,
which carries the EVs in a normally distributed extent.

It should be mentioned, if the subjects are exposed to multi-
ple experimental conditions, additional EVs emerge. They
result from the absolute or relative order of conditions.
Those EVs can be, for example, learning effects, increas-
ing fatigue or hunger in the course of an experiment that
influence the results of later experimental conditions.

2.1.2 Operationalization and Measuring

A hypothesis contains (theoretical) concepts. Concepts
cannot be directly observed. But the hypothesis should be
tested empirically. Therefore, the concepts have to be op-
erationalized. Operationalization denotes the assignment
of observable and measurable phenomena to concepts. The
operationalizability of hypotheses is a requirement for their
testability. Often there are multiple possibilities for opera-
tionalizing concepts. Therefore, the researcher has to pay
attention to find a operationalization of good quality that

Keep EVs constant
or vary randomly

Parallelized or

randomized groups

Eliminate variables

Control group

Multiple experimental
conditions cause
EVs

Operationalization
makes concepts
observable

10

2 Theory

Several methods of
data acquisition

Observation

Survey

Test

Measuring assigns
numbers to objects

Four levels of
measurement:
Nominal, ordinal,
interval, ratio

really measures the desired variable. For further discussion
see|Amelang and Zielinski [1994].

There are several operationalization techniques, also called
methods of data acquisition. The basic method is scientific
observation. Ultimately, only through observation data can
be acquired. In modern scientific observation complex de-
vices, such as computed tomography (CT), are often em-
ployed. Behavioral monitoring is a form of scientific obser-
vation that is very meaningful for psychology. For exam-
ple, the behavior during interactions between students and
teachers can be observed.

The next technique is the method of survey. Here the sub-
ject answers to questions. Surveys can be more or less struc-
tured. It can be a free interview or given answer categories
that have to be checked. Surveys can be conducted verbally
as interviews or written as questionnaires.

Finally, data can be acquired with tests. In a test, subjects
are given standardized stimuli, such as test pictures, test
exercises, or test questions, under standardized conditions.
The different operationalization techniques can, of course,
be combined in an empirical research. Special psycholog-
ical operationalization techniques can be used as well as
techniques from other disciplines in one experiment. For
instance, in neuropsychology the researchers employ neu-
rophysiological procedures to operationalize brain activity.

Variables can have many different values. A means to ex-
press the intensity of variables is measuring. A require-
ment for measuring variables is that they are operational-
ized. Measuring assigns numbers to measured objects in
such a way, that specific empirical relations between the
measured objects are represented as specific numerical re-
lations between numbers. There are four issues in measur-
ing. The representation problem is about whether an em-
pirical variable is measurable. The uniqueness problem is
about how the measurements can be transformed (e.g. in a
different unit); dependent on the level of measurement spe-
cific transformations are allowed or not. In psychology four
levels of measurement are used: Nominal allows the de-
termination of equality. Ordinal allows ordering of values.
Interval allows statements about the ratio of intervals be-

2.1 Psychological Experiments

11

tween measurements. Ratio allows in addition statements
about the ratio of measurement values. The third issue in
measuring is about which conclusions can be drawn on the
basis of measuring, i. e. which statements about the values
are meaningful. This also depends on the level of measure-
ment. Finally, when doing measurement the issue arises
how to scale the values concretely.

2.1.3 Experimental Design

The experimental design is the logical structure of an em-
pirical test with regard to the hypothesis test. The experi-
ment has to be planned in such a way that the intended hy-
pothesis test becomes possible. The design is very impor-
tant, in particular when the effect of multiple IVs is studied
simultaneously.

Basically, there are two ways of designing an experiment.
When choosing the between-groups method, each subject
only does one variant of the experiment. When choosing
the within-groups method, the subjects are exposed to mul-
tiple or all experimental conditions. In the easiest case, one
IV with two possible values is tested. Here, one experi-
mental design is to work with two groups of subjects, one
for each experimental condition. After the experiment, the
results of the two groups can be compared. The group that
is treated with the experimental condition that is of inter-
est to the researcher, is called treatment group. The con-
trol group allows the comparison and controls EVs. Analo-
gously, when testing one IV with more than two values,
more groups have to be established. In another possible
design, only one group of subjects is used that is exposed
to two or more conditions. Because of learning and other
position effects, this design is not generally acceptable for
experiments.

Often the phenomena that should be studied in an exper-
iment are more complex. This requires testing the effects
of multiple IVs at once. In an experiment, in which multi-
ple IVs are varied simultaneously, the different values of
the different IVs are combined with each other. For ex-
ample, if there are two IVs with two and three values re-

Logical structure of
experiments

Subjects can do one
or multiple
experiment variants

12

2 Theory

Experiments in the
field vs. experiments
in the lab

Samples should be
representative

Samples can be
chosen randomly or
deliberately

spectively, there are six possible combinations. Thus, there
are six experimental conditions which require six treatment
groups. Of course, here again it is possible, that subjects do
multiple variants. This has the advantages, that less sub-
jects are needed and that EVs of the individual subjects are
neutralized—unfortunately this is not always possible and
multiple conditions can cause additional EVs.

When designing an experiment, it has to be decided
whether the examination takes place in the lab or in the
field. Experiments in the field, i.e. in the subject’s natu-
ral environment, create more realistic situations and behav-
ior may be more natural. Therefore, the results can be eas-
ier utilized for the application in specific natural situations.
But the control of EVs and the operationalization of IV and
DV is much harder in the field.

Experiments in the lab, i. e. in a special examination room,
have the advantages that the experimenter has better con-
trol over EVs and over the operationalization of IV and DV.
On the contrary, it may be harder to generalize the results
on natural situations. In general, most experiments are con-
ducted in a lab, because only there the experimenter has
access to special equipment that is needed.

2.1.4 Samples

The researcher has to choose a sample of subjects after op-
erationalizing the hypothesis, constructing an experimental
design, and controlling the EVs. A sample is a subset of the
population being examined and is chosen for participating
in the experiment. It should be as representative for the
population as possible.

A sample can be chosen with random processes or delib-
erately. In practice, it is often a compromise between these
two methods as it is too expensive to choose an actual ran-
dom sample of the population in which every person has
the same chances to be chosen or simply impossible due to
confounding effects when searching for participants or due
to the experimental design. Researchers often take a very
limited random sample, e.g. consisting of students of the

2.1 Psychological Experiments

13

own university. But the better the sample, the better can
the results be generalized, because the random process ide-
ally leads to normally distributed EVs. A further method
is choosing a stratified sample that reflects the distribution
of the population with respect to a certain variables, such
as age or profession. Difficulties with stratified samples are
that many variables are hard to operationalize and that data
about the distribution in the population is required. Strati-
fication and randomization can be combined when search-
ing subjects, but as mentioned before, in practice samples
often are neither really stratified nor randomized.

2.1.5 Empirical Test

In order to test a hypothesis empirically, the researcher has
to formulate an empirical prediction based on the hypoth-
esis. This prediction has to be compared with the results of
the test. But the EVs can still interfere with the IV. Thus, the
systematic effect of the IV has to be distinguished from un-
systematic effects of the random EVs. This can be achieved
by the application of statistical theories. Consequently, the
researcher must derive a statistical hypothesis from the em-
pirical prediction. This statistical hypothesis will finally
be tested in the experiment. When analyzing the data ob-
tained in the empirical test, an appropriate statistical eval-
uation procedure has to be performed which will result in
accepting or rejecting the statistical hypothesis. Afterwards
the researcher can draw a conclusion about the hypothesis.

Thereby it is important to consider quality factors of the
experiment: The results must be reliable, i. e. different re-
searchers will always measure the same; the results must
be objective, i.e. independent of the concrete experiment
procedure; and the experiment must be valid, i. e. it must
be ensured that it was really tested what was meant to be
tested. Additionally, the quality of the operationalization,
the quality of the control of EVs, and the quality of the cho-
sen sample are important factors when interpreting the re-
sults of a psychological experiment [Amelang and Zielin-
skil [1994].

Samples can be
stratified

Formulation of
empirical prediction

Derivation and
testing of a statistical
hypothesis

Reliability, objectivity,
validity

14

2 Theory

Neuropsychology
explores
psychological
functions in the brain

fMRI measures
neural activity

Example study:
Neural correlates of
emotion

2.1.6 Neuropsychological Experiments

The department of psychiatry and psychotherapy of RWTH
Aachen University mainly conducts neuropsychological re-
search. Neuropsychology is a branch of psychology that
explores how the structure and function of the brain re-
late to specific psychological processes [Kolb and Whishaw,
2008]. Most commonly used measures are neuroimaging
techniques. Nevertheless, there are also paper and pen-
cil tests or psychophysiological measures which relate to
and describe brain functions and therefore are used in neu-
ropsychological research.

An important neuroimaging technique is functional mag-
netic resonance imaging (fMRI) . fMRI captures variations
in magnetic fields. It measures the hemodynamic response
supposedly related to neural activity in the brain. When
neurons become active, they consume oxygen carried by
hemoglobin. The local response is an increase in blood flow
and blood volume, occurring after a delay of a few seconds.
The hemodynamic response, which is analyzed in many
cases, rises to a peak over 4-5 seconds, before falling back to
baseline. These changes have effects on the magnetic field,
which can be measured with fMRI. The method for detect-
ing magnetic field variations due to differences in the oxy-
gen saturation of the blood is called blood-oxygen-level de-
pendency (BOLD). The BOLD signal indicates which brain
areas are active at a given time. When subjects repeat-
edly perform certain thought processes or actions, statis-
tical methods can be used to determine the areas of the
brain which reliably are more active during that process.
fMRI has a high spatial resolution in the range of millime-
ters. Due to the inertness of the hemodynamic response, the
temporal resolution is, however, only in the range of sec-
onds [Schneider and Fink) 2007, Miisseler and Prinz, 2002].

In the following I will give an example for a possible fMRI
research, that is motivated by an actual study. The exam-
ple study is about neural correlates of emotion. Therefore,
an experiment about mood induction is designed. This can
be done with presenting happy faces, texts, music, or pos-
itive odors to the subjects for specific intervals. In the ex-
periment, subjects are treated with different experimental
conditions. Besides a condition in which happy faces are

2.1 Psychological Experiments

15

shown to induce positive emotions, in one condition a neu-
tral stimulus, such as a “+”-sign, could be presented in or-
der to cause as little neural activation as possible (a low-
level baseline). Another treatment could consist of present-
ing “scrambled” faces that do not have a recognizable face
and thus, do not convey any emotion. In this way, there is
a high-level baseline since seeing faces causes neural activ-
ity. All the brain areas are activated that are responsible for
processing the perception of faces, but the brain areas that
are correlated to emotion are not activated. The contrast
between these measurements and the measurements taken
while showing emotional faces indicates which brain areas
are correlated to emotion.

For fMRI research, there are basically two kinds of ex-
perimental design: block design and event related design.
These are two different approaches to obtain the activa-
tion contrasts in fMRI measurements. In block design the
brain activation is usually contrasted during a time interval
longer than six seconds (the duration of one hemodynamic
response) with another interval that either is meaningful,
i.e. there are two tasks that differ in the element of interest,
or that causes little activation (low-level baseline). In event
related design only one hemodynamic response function
with a defined onset is observed after presenting a stimu-
lus. Thus, only the activation during one neural response is
contrasted with non-defined scans which are seen as base-
line. The response function can be shifted, stretched, or
compressed, but it suffices to scan for a maximum of about
seven seconds, which is shorter than in block design.

Block design has the advantage, that several scans are cu-
mulated to obtain stronger activation measures, e.g. for a
mood induction effect. Thus, it is suitable for measuring ef-
fects that are supposed to last for some time or whose time
of occurrence cannot be anticipated. The measuring over
longer time, however, captures also events that are not of
interest.

In event related designs, the onset of a function is clearly
determined, e.g. by a given stimulus. The activation can
be measured almost immediately. Event related design has
the disadvantage that many individual events are needed
to achieve significant results (see Horwitz et al.| [2000]).

Block design and
event related design

16

2 Theory

Decision trees are
graph
representations of
decision rule
systems

Decision trees are
natural for humans

Decisions are made
by performing a
sequence of tests

Decision trees
classify data

Decision trees can
be induced from
example sets in
machine learning

2.2 Decision Trees

The Presentation Visual Editor user interface will be an ap-
plication for designing psychological experiments. It in-
corporates time-based decision trees in order to explicitly
model time constraints and experiment structures visually.
Therefore, this section will briefly introduce decision trees
and time-based decision trees.

In general, decision trees are graph representations of hi-
erarchical systems of consecutive decision rules. They
are very common in domains such as stochastic, decision
analysis, and artificial intelligence. Decision trees are used
to facilitate decision making and to make less errors in the
process. Russell and Norvig [2003] emphasize that decision
tree representations seem to be very natural for humans
and refer to manuals that are written as decision trees. They
say that decision trees are used in a multitude of commer-
cial applications, for example for financial decision making,
and are the first classification method tried, when extract-
ing decisions from data sets.

Russell and Norvig| [2003] say in the context of decision
tree learning that “a decision tree takes as input an object
or situation described by a set of attributes and returns a
‘decision’—the predicted output value of the input.” De-
cisions are made by performing a sequence of tests. Deci-
sion trees start with a branching root. Each internal node
is a test of the value of one of the attributes. The outgoing
branches are labeled with the possible values of the test that
determine a decision, for example probabilities. Finally,
the leaves specify the decision value that will be returned.
These leaf nodes are reached through unique paths. In this
way, the sequence of decisions yields a rule that determines
a final decision. The rule can be easily read when traversing
the tree from the root to the particular leaf. Hence, decision
trees classify data into different groups that are each deter-
mined by a certain rule. An example for a decision tree can

be seen in figure

In machine learning, decision trees are usually generated
top down from a set of examples. In each step the attribute
is searched that discriminates the set best. The goal is to

2.2 Decision Trees

17

Patrons™

Mone Some Full
| [No | |Yes| | Wait Estimate? |
=60 30-60 10-30 0-10
| Mo | | Alternate? | | Hungry? | |Yes|
Mo ¥es Mo Yes
| Reszervation? || FrifSat? | | Yes| | Altemnate? |
Mo Yes Mo Yes Mo Yes
| Bar? | | Yesl | Mo | | fes | | es | | Raining? |
Mo Yes Mo Yes

Figure 2.1: A decision tree for deciding whether to wait for
a table in a restaurant (from [Russell and Norvig), 2003]).

classify the example data in such a way that the resulting
decision tree is the smallest one consistent with the exam-
ples. This is done by testing the attributes and choosing
the one that splits the set best. A split is good, if the re-
sulting classification is as pure as possible, i.e. it distin-
guishes the examples best with regard to their decision
goal. As a means information theory is applied. It allows
computing the attribute with the highest information gain.
This attribute then is chosen in the tree. The remaining at-
tributes are examined in the next step of the algorithm to
further classify the data. This is repeated until no further
split is possible and the leaves represent classifications and
the branches represent conjunctions of features that lead to
those classifications.

In conclusion, decision trees have the important property,
that it is possible for humans to understand the output
[Russell and Norvig, 2003]. This point of view is shared
by [Eisenstein and Puertal [2000]. They state that decision
trees are extremely readable and that their structure makes
it easy to predict their effects. This is a clear advantage over
other decision systems, such as knowledge-bases of rules
and neural networks, which do not share these properties.

Best attributes for
building the tree are
computed

Humans understand
decision trees: Great
readability

18

2 Theory

Extension of decision
trees: Regards time
flow and time
constraints

Timed automata
extend finite
automata with
including time
constraints

Synchronous clocks
are assigned to
automata

Clock constraints
restrict behavior

2.2.1 Time-Based Decision Trees

Traditional decision trees do not incorporate time for mak-
ing decisions. Time-based decision trees, however, extend
that notion of decision trees by including time. Decisions
made by the tree now depend, in addition to the traditional
tests, on time constraints and time flow. This increases
the discriminatory power in systems that depend on time.
Now the nodes can have an extra temporal label which
specifies when a condition should be checked in order to
select one of the branches or to make a decision. Addition-
ally it is possible that a time condition is the only attribute
that is tested in a node. Taking time constraints into account
leads to additional properties when applying decision trees
in software systems. For instance, the time needed by users
for making a decision could affect the resulting decision of
the tree. Furthermore, the tree must obey to the time flow.
This has the effect that certain decisions can only be made at
certain points in time as the system reaches different states
in the course of time.

2.3 Timed Automata

An alternative model to time-based decision trees for in-
cluding time constraints is the theoretical concept of timed
automata. A timed automaton is an extension of a finite
automaton. The state-transition graphs are annotated with
timing constraints using finitely many real-valued clocks to
model and analyze the behavior of real-time systems over
time. A timed automaton accepts timed words, infinite se-
quences in which a real-valued time is associated with each
symbol [Alur and Dill|, 1994].

Timed automata consist of states and discrete transitions
between them. Furthermore, clocks are assigned to the au-
tomata. The transitions correspond to events and take no
time. The clocks are initialized with zero when the system
starts and then increase synchronously at the same rate.
Clock constraints on state transitions are used to restrict
the behavior of the automaton. A transition, represented

2.3 Timed Automata

19

by an edge in the graph, can be taken when the clock val-
ues satisfy the constraint labeled on the edge. Clocks may
be reset to zero when a transition is taken. A configura-
tion of an automaton consists of the current state and the
current value assignments of the clocks. There exist two
kinds of state transitions: Timed steps after a time unit has
passed and discrete transitions after events. In the case of
a timed step, the state stays the same, but the clock values
are uniformly increased. In the case of a discrete transition,
the state changes accordingly to the edges in the graph. An
example for a timed automaton is shown in figure

a,r =0

x>1,0

Figure 2.2: Timed automaton with single clock z: The au-
tomaton starts in state [y and moves to [; when reading a.
The annotation x := 0 resets the clock when the edge is tra-
versed. An annotation of form x > 1 on an edge gives the
clock constraint associated with the edge. The transition
from [to [y is only taken, if the value of x is between 1 and
2. The time interval between the events a and b is always
between one and two time units (from uni-ulm.deﬂ)-

However, state automata are more formal than decision
trees as they are closely related to formal language the-
ory and are based on a mathematical model. So, timed
automata are studied most often from the perspective of
formal language theory to consider properties such as clo-
sure. Thus their focus is different from that of decision
trees. They concentrate on the classification of abstract
problems according to their theoretical solvability. Addi-
tionally, timed automata are more complex to read and
understand for humans than decision trees. These facts
make timed automata less suitable for the application in
this work and hence, time-based decision trees are pre-
ferred and used for the Presentation Visual Editor UL

Thttp:/ /www.informatik.uni-ulm.de /ki/Edu/ Vorlesungen/Modellierung.

und. Verifikation/SS07 / folienO6a.pdf

Automata are related
to formal language
theory

Different focus than
decision trees

http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/Modellierung.und.Verifikation/SS07/folien06a.pdf

20

2 Theory

Time is important in
the design of
interactive systems

Consider Ul time

Time is important
factor in human
behavior

CMN model: Human
cognition and
information
processing

Three human
deadlines

2.4 Time Constraints

Time aspects are an important element in the design of in-
teractive systems. However, the explicit consideration of
time issues and their effect on the interaction flow is often
neglected by software developers during the design pro-
cess due to the absence of appropriate tools. But a bad de-
signed time flow in the user interaction forms an obstacle
for the use of an application. The whole user experience
can suffer from that.

Here, time is not considered under performance issues, i. e.
for this work it is irrelevant how fast systems are or how
high their computing power is. Instead it is important to
consider the UI time: How does the system react to the user,
how far are time factors considered, and what is the tempo-
ral design of the interaction?

2.4.1 Time Constraints in Human Performance

Time is an important factor in human behavior. |Card et al.
[1983] introduce the basic concepts and times of human
cognition and information processing to the field of human-
computer interaction (HCI) with their “Model Human Pro-
cessor”. It should be mentioned that this is only a simpli-
fied psychological model that does not give a whole the-
ory of human cognition. This model, also called the CMN
model, is depicted in figure It presents a basic model
for perception, cognition, and motor system using three hu-
man processors and their associated memory. Its goal is
to estimate execution time, error rates, and training effects
for simple input/output events. The Model Human Pro-
cessor illustrates, that reaction times and time constraints
in human memory performance are of great importance
when designing interactive systems that should adhere to
human capabilities. Apart from pure performance issues,
these concepts also give valuable insights for general Ul
time constraints that should be respected throughout the
design.

The CMN model is, for example, the basis for the three hu-

2.4 Time Constraints

21

LONG-TERM MEMORY

Orm
MM)
Kirm = Semantic

WORKING MEMORY

o

Py = 3 [2.5~4.1] chunks
pww' =7 [5~9] chunks
- ; . : Sym = 7 [5~226] sec
Ays = 200 [70~1000] msee |5y = 1500 [900~3500) msec S (1 chunk) = 73 |73~226]
iyig = 17 [T~17] letters ppg = 5 [4.4~6.2| letlers Sy (3 chunks) = 7 |5~34 | sec
rewig = Physical wpg = Physical K = Acoustic or Visual

VISUAL IMAGE AUDITORY IMAGE

sec

Cognitive
Processor

re= 10 [25~170
Perceptual
Processor

p =100 [50~200
msec
Processor
Tw= 70 [30~100|
msec

Figure 2.3: The Model Human Processor (CMN model) il-
lustrating three human processors of information process-
ing and their associated memory (from [Card et al., 1983]).

man deadlines described by Johnson|[2007]]. The deadlines
identify human limits for attention spans (10 seconds), rec-
ommended times for giving feedback (1 second), and, di-
rectly derived from the CMN model, the time for causal-
ity breakdowns in the perception of cause and effect (0.1
seconds). These are some basic human time constraints
that must be regarded in the design of interactions. Thus,
the deadlines indicate how long one task step should last
at maximum or when progress indicators should be dis-
played.

Time constraints in
interaction design

22

2 Theory

Golden rule:
Minimize memory
load

Short storage time in
working memory

Time issues on web
pages

Initial state problem
for ubiquitous
computing devices

State problem in
interactive exhibits
pattern language

But the CMN model is also the foundation for many fur-
ther time constraints in human performance. For instance,
one of the golden rules of interface design, defined by
Nielsen| [1994], is to minimize memory load. Here, the
fact should be exploited that a user can remember approx-
imately seven chunks (information items) in short-term
memory. However, the storage time in working memory
for these chunks is short. Thus, there is a possible need for
reminders when a user has to remember several items over
time because of the short storage time. An even better so-
lution could be to design the interaction in such a way that
there is no need for the user to remember things over time.

2.4.2 Time Constraints in Interactive Systems

In order to show the importance of time, in this section, I
will give some examples for interactive systems in which
time issues arise. First, traditional web pages often have
interaction problems. These pages are usually static and
hence cannot provide appropriate feedback to the user. A
site can only react to user input by loading a whole new
page. The resulting reaction times can disturb the interac-
tion. In addition, a site cannot initiate actions, that would
be necessary for a good interaction, by itself. These are clear
disadvantages to the possibilities desktop applications can
offer. Modern web technologies, such as AJAX, can over-
come these limitations since they can provide functionality
comparable to common desktop applications. So, nowa-
days it is possible to design web pages with improved time
lapse.

In the emerging field of ubiquitous computing problems
concerning time lapse can occur. A fundamental problem
is, for example, the initial state that a user discovers when
using a device. Since ubiquitous devices should not be per-
sonal devices anymore but publicly available, the question
arises what will happen to the system state when a user
stops interacting with device. It is important to consider
whether the system can take actions over time to facilitate
access for the next user.

The state problem can be further explored when consider-

2.4 Time Constraints

23

ing the interactive exhibits pattern language described by
Borchers [2001]. The pattern “H4 Easy Handover” defines
this problem as follows: “Most interactive systems implic-
itly assume that each user begins using their system from a
start page or initial state. At interactive exhibits, however,
one user often takes over from the previous one, possibly in
the middle of the interaction, and without knowing the in-
teraction history of the previous user.” In the case that the
system was not returned to the initial state of interaction,
the suggested solution is: “Minimize the dialog history that
a new user needs to know to begin using an interactive ex-
hibit. Offer a simple means to return the system to its initial
state.”

In the aforementioned situation also issues concerning time
constraints need to be solved. If a user leaves the exhibit in
the middle of the interaction and no successor is already
waiting there, what will happen? Will the system stay in
the current state until the next user takes over? Will it re-
turn after some time to the initial state? The problem is that
it cannot generally be assumed that the user has already
knowledge of how to use the system and therefore he might
not be able to get back to the start page explaining the sys-
tem. This is especially true for exhibits with non-standard
input devices. In “Easy Handover” this is not regarded,
as it is stated: “The new user cannot be expected to have
seen the introductory screen explaining how the batons are
used. This knowledge, however, is something that the new
user has already gathered from watching his predecessor
using the exhibit before taking over.” If he has not obtained
this knowledge, good temporal design of the system can fa-
cilitate smooth interaction. These problems can arise with
many public systems.

Another issue in the context of public spaces are interactive
systems that should attract users. While trying to allure po-
tential users, the system must not annoy passers-by. Here
again, time constraints can be used as a valuable tool, for
example for sending time controlled stimuli.

In private systems also many interesting temporal interac-
tion questions can arise. For example, when considering
communication with instant messengers: If a user does not
respond to his conversational partner for some time, should

User can leave
exhibit in the middle
of interaction

Time constraints for
interactive exhibits

How to attract users

Time in
communication
systems

24

2 Theory

Focus is on spatial
layout; not on
temporal layout

Design interactions,
not just interfaces

Time only used for
visualization of
internal processes
and architecture

the system inform the other person that the user is busy?
Maybe the system has monitored no activities at all from
the user for some time and could even decide to inform the
other person that the user is away.

The last example is about general interaction. If a user tries
to do so some settings in a configuration system, but goes
back and forth without making progress, maybe it is too
confusing and he should be offered help by the system?

All examples in this section had the purpose to make clear
how important time considerations in interactive systems
are and that software development tools should support
the modeling of interaction time.

2.4.3 Time Constraints in Software Development

In order to be able to differentiate a design including time-
based decision trees from common techniques used today,
this section will look at current design and software devel-
opment processes, in particular at the visualization method
Unified Modeling Language (UML) [OMG, 2007].

The general focus of software development tools is mainly
on the spatial layout of Uls. Many integrated development
environments (IDEs) provide excellent support for visually
defining the spatial layout. Comparable means for speci-
tying the temporal layout do not exist. But when design-
ing interactive systems, not only interfaces have to be de-
signed, but also interactions. At most, prototyping tools
like Adobe Flas}ﬂ offer functionality for temporal design
as Flash implements a time line metaphor. This application
is, however, intended for creating animations and web con-
tent and is in general not suited for building whole applica-
tions. Current software modeling techniques, like UML di-
agrams, use time only for the visualization of internal pro-
cesses and system architecture. Thus, the focus is on system
time and those techniques all disregard UI time constraints.
Since there is no tool support for time constraints, they are
hardly considered by developers during the design process.

*http:/ /www.adobe.com/products/flash /

2.4 Time Constraints

25

In the following, UML will be covered as an example for
a software technique. UML contains 13 types of diagrams,
which can be divided into structure diagrams, e. g. class di-
agrams, and behavior diagrams, e. g. activity and use case
diagrams. Behavior diagrams illustrate the dynamic behav-
ior of a system by showing collaborations among objects
and changes to the internal states of objects. Interaction di-
agrams are a subtype of behavior diagrams and illustrate
the flow of control and data among objects in the system.

In the context of time, sequence and timing diagrams are
of most importance. These are specific types of interaction
diagrams with the focus on timing constraints. They spec-
ify temporal behavior more precisely than other UML dia-
grams and are therefore better suited for the design of real
time systems. Both diagrams show the dynamic behavior
of objects throughout time. Sequence diagrams show, as
parallel vertical lines, different processes or objects that live
simultaneously, and, as horizontal arrows, the messages ex-
changed between them, in the order in which they occur.
Time increases from top to bottom. An example can be
seen in figure Timing diagrams are a special form of se-
quence diagrams. They are two-dimensional, too, but with
time increasing from left to right and the ordinate showing
the object state.

| Order Input Window ‘ | Order | | Order Entr ‘ ‘ Order Entr

D — i
:
;
. .
. .
. .

* prepare()

check(l

[check==TRUE]
deleteq) isReorderleeded()
T I

I

[isReordemieeded==TRUE]

new

T Rearder
' '

. i i

| lcheckl=TRUE] i i

Mg H
i : Delivery
1

i ; j

Figure 2.4: Example for a UML sequence diagram.

UML contains 13
diagram types

Sequence and timing
diagrams have focus
on timing constraints

26

2 Theory

lllustrate system
time, not Ul time

Systems become
more usable when
users are involved in
the design process

Uls should be
designed iteratively

Impossible to create
perfect design in
single attempt

DIA cycle
characterizes
iterative design
process

As pointed out in this section, these diagrams show inter-
nal processes and system architecture rather than interac-
tion objects. They illustrate the system time, i.e. how the
processes behave over time, and do not show UI time con-
straints, i. e. they are not used for visualizing the interaction
flow.

2.5 Iterative User-Centered Design

User-centered design is a design process that aims at identi-
fying and meeting the requirements, wants, and limitations
of the end-users of a computer product or computer inter-
face at each stage of the development process. Therefore,
users have to be involved in the entire design process. The
goal is to create more successful systems with an enhanced
usability.

Nielsen| [1993]] extends this process with introducing iter-
ative user-centered design. He says that “user interfaces
should be designed iteratively in almost all cases because
it is virtually impossible to design a user interface that has
no usability problems from the start. Even the best usabil-
ity experts cannot design perfect user interfaces in a single
attempt, so a usability engineering lifecycle should be built
around the concept of iteration.”

This iterative design process is characterized by the design-
implement-analyze (DIA) cycle (see figure 2.5). In the de-
sign phase, a design is created from concepts and ideas and
possible prior analyses. If a prior iteration has preceded
this design phase, its findings from the analysis phase are
used for refining the existing design. In the implementa-
tion phase, this design then is implemented. This can re-
sult in early low-fidelity prototypes, that aim at fundamen-
tal high-level feedback, in subsequent high-fidelity proto-
types, that aim at detailed feedback, or in the final system.
Afterwards, in the analysis phase, the system is evaluated
in usability tests. Here feedback of potential users about
the system and the design is collected in different forms of
user tests and surveys. With each iteration of the DIA cy-
cle, the design becomes more concrete and precise and the

2.6 Designing for Domain-Expert Users

27

implementation becomes more usable and technically com-
plex. Thus, the user feedback in the analysis phase focuses
on smaller and smaller problems in the system.

Design

Analyze |« Implement

Figure 2.5: The DIA cycle.

Throughout this thesis, my work has adhered to the itera-
tive user-centered design process. Before I ran through the
first iteration, I began with an extra analysis phase where
I have conducted a Contextual Inquiry to identify current
work practices and problems and to get a deep understand-
ing of the psychological domain. Based on the obtained re-
sults I have designed, implemented, and evaluated three
prototypes, two paper prototypes and one interactive soft-
ware prototype. In the design phases I have applied the
analysis results of the previous cycle for further refining
my design. Some results, however, could not have been
incorporated in the designs, yet, and are treated in the fu-
ture work section. Finally, I have performed an additional
evaluation to test my system in more detail and to compare
it with the original Presentation interface. In this way, I
was able to obtain not only qualitative results, as in the DIA
evaluations, but also quantitative measures for the quality
of my interface.

2.6 Designing for Domain-Expert Users

When designing software for domain-expert users, such as
psychologists, special demands should be taken into con-
sideration. |Costabile et al. [2003] define domain-expert
users as a specific category of computer end-users who
are “experts in a specific domain, different from com-
puter science, who need to use computers to perform their

This work adheres to
the iterative
user-centered design
process

Domain-expert users
have special
demands

28

2 Theory

Domain-experts are
no computer
scientists

Co-evolution of users
and systems

Domain-experts
perform end-user
development

Programming to save
time and to add
features

daily work tasks”. The authors emphasize that these users
are not and do not want to become computer scientists.
The challenge for designers of computer systems more
accessible to their end-users is to develop programming
paradigms and software environments that are adequate
to the needs of end-users. Otherwise, Raskin’s laws of in-
terface design which say that a computer should neither
harm your work nor waste your time [Raskin, 2000] cannot
be observed as various problems will occur throughout the
domain-expert users’ daily work.

Nielsen| [1994] said that “using the system changes the
users, and as they change they will use the system in new
ways”. [Costabile et al. [2003] concluded that the designer
must in turn evolve the system to adapt it to its new us-
ages, which they called co-evolution of users and systems.
They identify user creativity, i. e. devising new ways to ex-
ploit the system to satisfy their needs, and user acquired
habits, i. e. accustomed interaction strategies that should be
facilitated, as the two main reasons for co-evolution.

Domain-experts often feel the need to perform various pro-
gramming activities—despite having little or no program-
ming knowledge. That may even lead to the creation or
modification of software artifacts, in order to get a better
support to their specific tasks, thus being considered activ-
ities of end-user development. The required kind of pro-
gramming is rather simple most of the time, but as existing
software does not usually provide any programming capa-
bility, users are confronted with difficulties.

The need for programming activities in end-user software
was also shown by Dorn and Guzdial| [2006]]. They showed
domain-expert users’ needs by the example of graphic de-
signers. The authors observed that the characteristics and
behaviors in this domain are similar to those in other end-
user domains. They found out that end-users, despite hav-
ing no or only little formal computer science education, are
taking part in significant programming activities. As end-
user programmers they make use of features like textual
scripting or automation. Programming serves as a means
to save time and add features to their applications. In or-
der to accomplish their tasks, the graphic designers borrow
code from examples and rely on documentation. They even

2.6 Designing for Domain-Expert Users

29

appear to be discovering knowledge that is common in for-
mal computer science learning environments.

Dorn and Guzdial [2006] discovered in their study that
learning to program is a natural progression for end-users
since the standard affordances of their tools become insuf-
ficient as users have more and more sophisticated needs.
Programming enables them to build enhanced graphic ef-
fects and to save a lot of manual work. Thus, there is a nat-
ural demand for programming capabilities in software ap-
plications when users want to achieve non-standard goals
that should be provided by the software. Otherwise, users
may become frustrated because they need much time or are
not able to fulfill their tasks.

Standard tools
become insufficient
for non-standard
goals

31

Chapter 3

Related Work

“Research is to see what everybody else has seen,
and to think what nobody else has thought.”

—Albert Szent-Gyorgyi

Time-based decision trees have not been applied in the con-
text of interaction design yet. However, there are several
software systems that take advantage of decision trees. In
this chapter, I will therefore present a small selection of two
examples that show how decision trees—with and without
time conditions—are used in software. Furthermore, I will
introduce alternative approaches to Presentation to present
stimuli and to design psychological experiments. I will ar-
gue their characteristics, their similarities and differences to
Presentation, and why the Presentation Visual Editor pro-
vides superior functionality.

3.1 Decision Trees in Automated User-
Interface Design

Eisenstein and Puertal [2000] use decision trees to support
automated Ul design by providing an adaptive algorithm
that recommends an ordered list of interactors to the de-
signer. They do not consider time conditions in their work.

Time-based decision
trees are not used in
interaction design

Decision trees used
to support automated
Ul design

32

3 Related Work

Design is hard to
automate since
success is based on
flexible standards

Adaptive automation
of Ul design

Automation must be
comprehensible

Selection of
interactors is
automated

Decision trees are
extremely readable

The application takes advantage of the flexibility and the
comprehensibility of decision trees. Since design problems
demand creative solution processes, human designers of-
ten proceed by intuition and are unaware of following any
strict rule-based procedures when they make design deci-
sions. Furthermore, design success is often very subjective
and depends on stylistic preference and flexible standards.
There is no objective scale of utility of a design, so that two
designers can make very different decisions without either
being wrong. While there is often not the one correct design,
some decisions will lead to bad designs. These properties
make design tasks especially difficult to automate. Eisen-
stein and Puertal [2000] propose adaptation as a means to
overcome these challenges.

They aim at automating user interface design adaptively,
so that the software takes the designer’s personal prefer-
ences into account and is able to learn fast how to handle
new Ul widgets and technical innovations. They point out
that interface researchers will also benefit. The results of us-
ing the adaptive algorithm allow discovering information
about the way designers make decisions.

It is of great importance to the authors that the automation
algorithm is comprehensible to the interface designer, i.e.
the user understands how and why automatic decisions are
made, and that the designer is able to influence decisions
explicitly and directly.

Eisenstein and Puerta|[2000] do not aim at creating the en-
tire UI automatically, but focus on automating those fea-
tures that reasonable benefit from automation. In their
work, they handle the selection of interactors, visual ele-
ments, such as buttons or sliders. Their automation algo-
rithm returns an ordered list of interactors from which the
interface designer then chooses while performing layout.
They hope to further increase the number of automatic de-
sign decisions with further research.

In order to perform those automatic mappings of interac-
tors and interface elements, a decision tree is used. The
authors chose decision trees, because they are extremely
readable and their structure makes it easy to predict their
effects.

3.1 Decision Trees in Automated User-Interface Design

33

In this system, the decision tree classifies objects that the
user of the interface will modify or view based on discrimi-
nants and assigns a set of possible interactors based on this
classification. Discriminants are features of the cases that
may be relevant to how they are sorted. The decision tree
specifies which discriminants to consider and in what or-
der. In essence, mappings are created between domain ob-
jects and interactors.

The application uses five discriminants. For example, one
discriminant is the type of a domain element. It would not
make sense to assign an edit field to a Boolean type. A bet-
ter choice would be a check box or a radio button. Another
discriminant uses the number of allowed values to decide
whether a set of radio buttons, a list box, or a drop-list is
the recommended interactor. An example decision tree for
these discriminants is depicted in figure3.1} Using these
principles, an ordered list of recommendations for the in-
terface designer is produced.

TYPE

Boolean String Integer
Leaf Leaf Allowed

Recommendations:

Check Box Recommendations:

Radio Buttons Edit Field Values

finite infinite
Leaf Leaf

Recommendations: Recommendations:
Spinner Edit Field
Slider
Drop-List

Figure 3.1: Example for a simple decision tree for interactor
selection.

The designer can always correct the automatic interactor
recommendations. Whenever the designer does so, the in-
teraction is recorded as an error, otherwise it is considered
successful. After each session an adaptive algorithm is ap-
plied to correct the decision tree, regarding the entire his-
tory of cases. Preliminary experiments showed that their
algorithm worked, i. e. the decision trees produced less er-

Designer gets
ordered list of
interactor

recommendations

Adapt decision tree

to designer’s
preferences

34

3 Related Work

Time-based decision
trees for on-board
diagnosis in dynamic
embedded systems

Embedded systems
must be monitored to
be reliable

Designing on-board
diagnostic software
is hard

rors after adaptation, and that the performance of the de-
signers was improved significantly.

This system is an example for how the characteristics of de-
cision trees, such as understandability, can be used to im-
prove a creative design task. Although the approach of this
work is completely different from the work in this thesis,
the advantages and the power of decision trees as a means
for design tasks in software become clear.

3.2 Time-based Decision Trees for the Di-
agnosis of Embedded Systems

The next work, I will present, considers time conditions in
the context of decision trees. (Console et al|[2003] intro-
duce the notion of time-based decision trees as a model for
on-board diagnosis in dynamic embedded systems. They
show that diagnostic decision trees are an efficient model
for reasoning about appropriate recovery actions in re-
sponse to system faults. Then the trees are extended to
time-based decision trees to exploit temporal information
about observations and to preserve time constraints.

The basis for this work is that the embedding of software
components inside physical systems is widespread today.
These systems must behave properly and fault-safe, and
they must guarantee a high availability. Furthermore, sys-
tems are often safety critical, e.g. a car braking system.
Thus, the monitoring of system behavior, the detection and
isolation of failures, and the performance of appropriate re-
covery actions is a critical task of control software.

The design of diagnostic software, however, is complex,
expensive, and time consuming. Problems get espe-
cially hard, when designing on-board diagnostic software,
since on-board resources, such as memory and computing
power, must be very limited to keep costs low. Neverthe-
less, near real time performance is needed. At the same
time, the costs for diagnosis must be kept acceptable, e. g. in
terms of the number of sensors to monitor the system. An
aggravating factor is that the devices often have dynamic

3.2 Time-based Decision Trees for the Diagnosis of Embedded Systems

35

and time-varying behavior and the whole system is com-
plex and interdependent.

Console et al.| [2003] improve the efficiency through au-
tomation with model-based reasoning. They choose deci-
sion trees as a model, because they are efficient in time and
space and they can be used as a comprehensive and com-
pact representation of the system behavior. Further, there
exist well established machine learning algorithms like ID3
[Quinlan, 1986] for generating decision trees automatically
from a set of examples. In this case, the examples to be
learned are pairs of diagnoses and recovery actions. The
decision trees can be used to implement classification prob-
lem solving and thus some form of diagnostic procedure.

Basic decision trees have the drawback that they cannot
properly handle the temporal behavior of the systems to be
diagnosed. They are not capable of making decisions on ac-
tions based on observations that were acquired across time.
Therefore, traditional decision trees are extended to time-
based decision trees. Now the nodes have a temporal label
which specifies when a condition should be checked in or-
der to select one of the branches or to make a decision. This
leads to an improved discriminatory power in the model of
a dynamic system. It can be taken into account that data
may be observable at different times and that temporal pat-
terns of data may be the only way of distinguishing differ-
ent faults. An example time-based decision tree for diagno-
sis can be seen in figure

Thus, neglecting the notion of time may limit the decision
process. In order to optimally discriminate errors tempo-
ral information has to be exploited. The strategies can be
versatile. “In some cases there is nothing better than wait-
ing” to get data for a good and distinct discrimination, but
this is not always possible as the safety and integrity of the
physical system must be maintained. It is important to have
deadlines for performing recovery actions that always have
to be met. This can be achieved by required time constraints
in the tree.

The resulting formal approach generates monotone trees
in which time labels do not decrease when moving from
the root to the leaves of the tree. The nodes consist of a

Decision trees as
efficient model for
reasoning

Time-based decision
trees for coping with
temporal system
behavior

Temporal information
has to be exploited

Nodes contain time
labels, leaves are
labeled with recovery
actions

36

3 Related Work

System depends on
time constraints

Huge differences to
the Presentation
Visual Editor

Both system benefit
from time-based
decision trees

so after 4

| v

sity sits

Figure 3.2: Example for a diagnostic time-based decision
tree: sits and sity are fault situations that need to be dis-
tinguished by sensor s;. Both can be detected by s2 show-
ing a low value that later turns into very low. The faults
can only be discriminated by their temporal pattern: sit3
reaches value v after 4 time units, sit4 after 6 units. Thus, a
decision tree incorporating time can make a decision 4 time
units after value 1 was detected.

test and a time label for choosing the next child to traverse.
The leaves are labeled with decisions, i. e. recovery actions.
Then these diagnostic trees have to be used when some ab-
normal value is detected for some sensor. With a variation
of the ID3-algorithm that, includes example sets with tem-
poral information, the temporal diagnostic decision trees
can be generated automatically.

The work of Console et al.|[2003]] gives an example for sys-
tems that really depend on time constraints and shows that
time-based decision trees have the capabilities to solve such
problems efficiently. The differences to the Presentation Vi-
sual Editor in the way of applying time-based decision trees
are huge, though. The trees are neither visible nor are they
an element of interaction as the whole system is not inter-
active at all. Further, machine learning algorithms generate
the trees automatically from example sets whereas in the
Presentation Visual Editor the trees are generated by users.
Even though there are fundamental differences between di-
agnostic procedures and creative tasks like experiment de-
sign, both systems benefit from the feature of representing
timed decision structures comprehensible and compact.

3.3 SMIL

37

3.3 SMIL

In Presentation, the Scenario Description Language (SDL)
is a descriptive language used to specify stimuli and se-
quences of stimuli and their associated timing and lay-
out properties. For more details, see chapter A lan-
guage that is related in some way to SDL, is the Syn-
chronized Multimedia Integration Language (SMIL) [W3C,
2005, which was first released in June 1998. SMIL is a
standard of the World Wide Web Consortium (W3C) for a
markup language for integrating and controlling multime-
dia contents in web pages that specifies timing, layout and
synchronization. It is based on the Extensible Markup Lan-
guage (XML).

SMIL is used to describe multimedia presentations in web
pages and provides more functionality than the Hyper-
text Markup Language (HTML). HTML provides support
for exactly defining the layout of web pages and is able
to integrate objects of different formats and to create both
static and dynamic presentations. But HTML cannot con-
trol the time flow of the transmission or of the presentation
of the individual objects. Multimedia presentations, how-
ever, need exact time control. For that purpose, SMIL was
developed. It can control the time flow of presentations as
well as their layout and serves to position, synchronize, and
present multiple multimedia objects, such as audio, video,
texts, and graphics.

SMIL can be linked with Java-applets. The presentations
can be adjusted to bandwidth, color depth, and screen res-
olution. SMIL is even implemented on mobile devices and
can be used for Multimedia Messaging Service (MMS).

Hence, SMIL is a powerful language for audiovisual pre-
sentations and has been described as the Internet answer to
Microsoft PowerPoint. It is rather easy to learn reading and
writing SMIL documents as they are based on XML and
use its syntax. An example for SMIL can be seen in listing
The structure of SMIL and SDL documents is similar in
some points as “stimuli” are defined together with their po-
sition and timing parameters. However, their intended use
is very different what makes a direct comparison difficult.

SMIL is an
XML-based markup
language

SMIL describes
multimedia
presentations on web
pages

Controls timing and
layout

Internet answer to
PowerPoint

38 3 Related Work

<smil>
<head>
<layout>
<root-layout width="300" height="200"
background-color="white" />
<region id="pic" left="75" top="50"
width="116" height="81" fit="fill1"/>
</layout>
</head>
<body>
<img src="pic.jpg" alt="Pic" region="pic"
dur="3s" begin="2s" />
</body>
</smil>

Listing 3.1: SMIL example: Two seconds after starting the
presentation a graphic file is displayed for three seconds
(from hdm-stuttgart.deﬂ)-

SMIL not suitable for SMIL is not as powerful as SDL, as it is intended for design-

experiments ing slide shows and Internet presentations that are merely
linear. It would not be possible to implement simple psy-
chological experiments with SMIL because experiments re-
quire much stricter and more precise timing conditions.
Additionally, SMIL provides no means for data recording
and analysis.

3.4 SuperLab

SuperLab is The company Cedrus| [2008] developed SuperLab 4.0, a
GUl-based stimulus stimulus presentation software, that provides support for
presentation playing movies as well as for various graphic file types. Su-
software perLab is a competing software to Presentation for realizing

psychological experiments. The application has a GUI and
the developers stress that no programming is needed at any
point when designing experiments. This is a strong con-
trast to Presentation, where everything is based on script-

ing languages (see chapter [4.1).

'http:/ /www.hdm-stuttgart.de/streamingmedia/SMILTextbuch / Zeitvierhtm

http://www.hdm-stuttgart.de/streamingmedia/SMILTextbuch/Zeitvier.htm

3.4 SuperLab

39

-
@ Superlab 4.0

File Edit Experiment View Window Help

OO ®GO®E® O

h —

T/

Trials

instruction [l instruction O instruction
blockl M word-non-word trial cue
slimulus

Registered To: Sascha Beckers, RWTH Aachen University
SuperLab 4 Demo {29 days remaining)

Figure 3.3: Screenshot of SuperLab showing the main screen with an experiment

Figure(3.3|displays the main screen of SuperLab containing
a small experiment. Experiments are structured into blocks,
trials, and events. In each section the user can define ele-
ments, e. g. an event, that will display a picture. Then the
user can link blocks, trials, and events with check boxes in
order to specify which events are contained in which trial
and which trials are contained in which block. This has the
advantage that events and trials can be reused very easily
in other parts of the experiments. But at any time it is only
possible to overview one trial or one block. There is no pos-
sibility to overview the entire experiment structure at once.

There are some drawbacks in the operation of SuperLab.
For example, there is a high number of nested editor win-
dows: an event editor, a trial editor, and a block editor.
Each dialog window has a couple of tabs which might in-
voke additional windows. In this way, there is no at a
glance overview of the settings for experiment elements
and events. At any time only parts of the structure are visi-

Nested dialog
windows

40

3 Related Work

Unnecessary
complicated
functions

Abstract time
management

Conditional
experiment
branching possible

No visual
representation of
structures

Less powerful than
Presentation

Lack of programming
capabilities limits
users

ble what makes it difficult to get an idea of the structure. In
addition, some standard functions seem to be unnecessar-
ily complicated. For instance, simply displaying four pic-
tures simultaneously requires creating four picture events.
The first three pictures must be kept invisible, the last three
must not erase the screen and then making the last one vis-
ible causes all four to appear at the same time—after they
have all been linked to one trial.

The principles of defining time structures are similar to Pre-
sentation. Thus, time management is rather abstract. As
displayed in figure the settings are quite hidden al-
though timing is of great importance in experiments.

SuperLab has capabilities for designing experiments with
conditional branching. Since this can be achieved with-
out programming, branched experiments can be imple-
mented easier than with Presentation—with the restriction
that branched structures are not directly visible but hidden
in the editor dialogs, too. Hence, some problems in exper-
iment design and management persist although having a
graphical interface that would allow for more clarity and
visibility.

As in the Presentation Visual Editor the whole interaction
is visual. But SuperLab neither supports direct manipula-
tion of stimuli and layouts nor is the experiment structure
displayed visually. There are no functions for represent-
ing time visually. Instead there are only abstract settings
for stimulus event durations and response dependent du-
rations; the course of events cannot be seen directly.

All in all, SuperLab is less powerful than Presentation.
There are less features, less supported file types, less stim-
ulus types, and less supported devices. This application is
not suitable for the kind of research the Department of Psy-
chiatry and Psychotherapy conducts as there is only con-
strained fMRI support and because timing is not as precise
as needed.

SuperLab has the great advantage of visual interaction
without programming, but users are constrained in com-
parison to Presentation. Presentation allows programming
complex experiment conditions. This offers more possibili-

3.4 SuperLab 41
9
@) Superlab 4.0 =[] = |
File Edit Experiment View Window Help
DO @ | ®| @
=
[4] TestExperiment (===
Blocks Trials Events
instruction instruction instruction
blockl || word-non-word trial L cue
Event Editor -

EventName: cue

| stimulus | Tnput | Correct Response | Feedback | Code Values | Notes |

End This Event and Move to the Next One:

[1mmediately after the event is presented

[after any response from the participant

[after a correct response from the participant
Only after a time limit. The time limit is:

/ Regists 500 millseconds

Record and save response

(Mote: SuperLab will always reset the timer on the onset of the first eventin a trial.)

[Reset RT timer (all future reaction times will be measured relative to the onset of this event)

<< OK, Prev | [canel | [ok | [O, Next >

Figure 3.4: Screenshot of SuperLab showing the event editor tab for setting time

parameters.

ties and flexibility. Throughout the evaluations of my pro-
totypes, I asked the participants whether they had gained
experience with SuperLab. One researcher stated, that he
was not able to realize a complex experiment with Super-
Lab because of the lack of programming capabilities. One
solution to this problem would be to introduce—in addi-
tion to the graphical interface—end-user programming for
adjusting the software to advanced needs.

Chapter already described that such constraints are
likely to occur when there is no possibility for domain-
experts to do end-user programming. Consequently, it
seems important that the Presentation Visual Editor is not

Presentation Visual

Editor offers
programming
capabilities

42

3 Related Work

merely a graphical experiment interface but is built on
top of Presentation’s scripting languages and is designed
to output Presentation scripts. Thus, it is ensured that
users are not constrained as they can use Presentation’s
languages to add enhanced functionality for specific non-
standard tasks. These optional programming capabilities
will prevent that the Presentation Visual Editor will experi-
ence the same problems as SuperLab in the design of com-
plex experiments.

Finally, in another interview about SuperLab, one re-
searcher said that he misses clear visual overview of exper-
iments and time management after having seen the Presen-
tation Visual Editor in comparison.

43

Chapter 4

Current Work Methods

“Pleasure in the job puts perfection in the
work.”

—Aristotle

In order to test the idea of applying time-based decision
trees in interaction design, we chose the highly special-
ized domain of psychological research. The reason for this
choice was that time aspects are of great importance in psy-
chological experiments. Thus, this domain could be an ex-
cellent application area for taking advantage of time-based
decision trees and demonstrating their benefits in interac-
tion design. Before being able to start with designing a new
experiment interface, first the current situation and the cur-
rent used software have to be examined.

In this chapter, I will describe the current work conditions
in the Department of Psychiatry and Psychotherapy when
designing experiments. Therefore, I will describe the ap-
plication Presentation which is used for implementing ex-
periments and which will be the basis for my new user in-
terface. Besides gathering theoretical knowledge about the
functionality of Presentation, I conducted a Contextual In-
quiry with users who were actively working with Presen-
tation. The inquiry serves the purpose of learning what the
users do with the software and how they do it. I wanted to
find out about why something is done—or not done—and

Test time-based
decision trees in
psychological
domain

Time is important in
psychological
experiments

Investigate current
software and work
conditions

44

4 Current Work Methods

Stimulus delivery and
experimental control
software system

Great functionality

Textual specification
of experiments

what problems occur in the process, i.e. why does it make
sense to improve the program. In addition, the Contextual
Inquiry serves as means to get an understanding of the do-
main.

4.1 The Software System “Presentation”

The program Presentation is developed by the company
Neurobehavioral |Systems [2008]. A screenshot of the pro-
gram is shown in figure Presentation is a stimulus de-
livery and experimental control software system for neuro-
science used for designing, performing, and analyzing psy-
chological and neurological experiments. This software is
not only common in the University Hospital Aachen, but,
as I found out in interviews with local researchers, it is also
the standard experiment software in many psychological
research facilities in Europe and America.

Presentation can deliver auditory, visual, and multi-modal
stimuli with sub-millisecond temporal precision on stan-
dard hardware. Visual stimuli can be graphic files as well as
animations, video files, and 2D /3D stimuli. It is possible to
present multiple stimuli simultaneously. Presentation can
monitor and record I/O ports and responses, such as but-
ton presses from mouses, keyboards, or joysticks, with high
accuracy. Log files report the times of any event of interest.
An interface allows controlling and triggering many exter-
nal devices. For instance, it is possible to present stimuli
on an olfactometer. Presentation was designed for behav-
ioral and physiological experiments and provides support
for fMRI scanners and other imaging techniques. It can re-
ceive fMRI pulses so that a scanner is able to trigger Pre-
sentation on a specific pulse. Its stimulus presentations can
be controlled to be in time with the scanner pulses.

4.1.1 Scenario Specification

Presentation uses a text description to specify both the stim-
uli to present and how to present them. Experiment units

4.1 The Software System “Presentation”

45

§P Prezentation

= E

Experiment Run Files Editor Tools Help

& paradigma3_GESICH

& paradigna3 GESICH paradigma3_GESICHTERVERSIOM sce]

= = file= " = fle=y 34 F i L b S sce b
= = = = &S &= e B s 5
£ FINAL_P3 vis.exp Expelimanl} Dileclmias} InputDevices} HardwareSettings] Logfiles Editar I

& Humor.exp header

- 3d_demo.exp
@ 2d_demn exp scenaric = "paradigma3 GESICHTERVERSICH";
#----buttons & bu
active buttons = 2
button codes = 1, 2;

target button codes = 11, 1Z;

stimunlus properties = scolor, string, guadrant, number;
event code delimiter = ";";

3t

n-codes definieren =>

#--—-defaults fixr text, farbs (R,5,B), hintergrund setzen =>
default font = "Helvetica";

22 defaunlt_font size = 30;
default text color = 0,0,0;

default background color = 155,155,1535;

#----trial type und duration =>

default trial duration = 2000; #trial lA=uft

default trial duration=forever; #trial Id=uft

#default trial type = fixed:

default_trial_;.}rpe = first_response; #end trials at

—-——-diverse =>
no_logfile = false;

#vrite code = true

>

4 diese datei benennen (z.B.

Figure 4.1: Screenshot of Presentation showing the built-in editor

are called scenarios. A scenario is a sequence of actions that
Presentation performs. An experiment can consist of one or
more scenarios whereas a scenario may correspond to one
experimental condition or many. For specifying a scenario
two languages are used. The Scenario Description Lan-
guage (SDL) is a descriptive language used to specify stim-
uli and sequences of stimuli and their associated properties.
The Presentation Control Language (PCL) is an interpreted
programming language used to implement custom control
of scenarios. SDL is required for writing a scenario, but it is
not necessary to apply PCL.

The Presentation developers compare scenario specifica-
tions with recipes that Presentation uses to cook an exper-
iment. A recipe usually has two distinct sections: a list of
ingredients, and a set of instructions. The former lists the
things that will be used, but the latter actually tells what
to do with those things. In this analogy, SDL is the list of
ingredients, while PCL is the list of instructions.

A scenario specification is stored in a scenario file that has
three distinct parts. It starts with the scenario file header

Two languages: SDL
and PCL

Cooking recipe
analogy

Structure of scenario
files

46

4 Current Work Methods

Scenario objects
represent aspects of
the stimulus delivery

Stimulus events
describe particular
presentations of
stimuli

Trials represent
stimulus sequences

Template files useful
for repeated
structures

which contains definitions of various parameters that af-
fect the scenario as a whole or that are used as defaults for
parameters in the scenario. Next is the SDL part, which de-
scribes the stimuli and stimulus sequences that will be used
in the scenario. The last (optional) part is the PCL program.
It is also possible to separate one scenario description into
multiple files. The PCL part can be in its own file and sec-
tions of SDL can be placed into separate template files that
are referenced in the scenario file.

SDL

The SDL part of a scenario consists of a series of statements
that define the components of the stimuli to be used by
the scenario. The whole section is constructed by using
scenario objects. A scenario object represents some aspect
of the stimulus delivery. There are, for example, picture,
bitmap, sound, trial, and stimulus event scenario objects.
They all have associated parameters. Scenario objects can
be nested. For example, a picture object, which represents
one full screen of graphics, can contain one or more picture
part objects, such as bitmap or text objects.

Most scenario objects are related to stimuli. So, bitmap
objects contain graphic data and wavefile objects contain
sound data. The most important exceptions are trial objects
and stimulus event objects. A stimulus event is one par-
ticular stimulus with associated parameters that describe
one particular presentation of that stimulus. A trial object
contains a list of stimulus events. Therefore, a trial repre-
sents a sequence of stimuli. An example of an SDL section
is shown in listing [4.1}

The SDL code in a template file can be processed multiple
times in a scenario. A template table in the scenario file
specifies the number of iterations and the values that are
passed to the template for each iteration. Since variables are
often used in templates, the resulting code can vary each
time it is processed. Thus, template files are useful for re-
peated structures with minor modifications. But the code
could be placed as well one or more times in the scenario
file. They are used to make writing a scenario easier. By the

4.1 The Software System “Presentation”

47

trial {
trial_type = first_response;
trial_duration = 5000;

picture {
text {caption = "Press correct key"; };
x=0; yv=0;

bi

time = 0;

picture {

bitmap {filename = "pic.jpg"; } pic;
x = =-90; y = 100;

} picz;

time = 2000;

code = "pic2";

target_button = 1;
} example_trial;

Listing 4.1: SDL example: Definition of a trial object con-
taining two stimulus events. The trial lasts for five seconds
or until a button is pressed. Immediately after starting the
trial a picture containing a text is shown. After two seconds
a graphic file is displayed and the event is reported in the
log file (using the code parameter).

time of execution the files are already merged, anyway. The
same is true for SDL variables and features like loops and
if-conditions. They are not actual programming structures,
but text replacements and are preprocessed before the sce-
nario is run. SDL variables, for example, are replaced with
their values as the scenario is read. They serve for conve-
nience and are no run-time variables.

The preceding paragraph and already the recipe analogy
made clear that SDL is not a programming language. Its
statements are no run-time instructions and are processed
previously to the scenario start. SDL just specifies the set
of scenario objects that will be used during the scenario
and produces a trial order list for the trial objects defined
in SDL. If there is no PCL program, all trial objects will be
automatically presented in accordance with the trial order
list. Since a trial object contains a list of stimuli and as-
sociated timing parameters, presenting a trial means, that

No programming
structures but
convenience
functions in SDL

SDL is not a
programming
language

Without PCL:
Automatic display of
trials in specific order

48

4 Current Work Methods

PCLis a
programming
language

PCL has access to
run-time information
and scenario objects

PCL supports
response-dependent
experiments

Presentation displays the stimulus sequences contained in
the trial. Although the automatic presentation of trials in
a specific order has some feedback capabilities, in general
it is impossible to implement response-dependent behavior
in a scenario without using PCL.

PCL

In contrast to SDL, PCL is a real programming language. It
allows to provide a scenario with enhanced custom behav-
ior and offers great flexibility in the design of experiments.
In scenarios containing PCL, Presentation does not auto-
matically display the trials as determined in the trial order
list in SDL. Instead, the PCL program is executed and con-
trols the scenario. It is compiled into an intermediate form
and then the instructions are interpreted at run-time.

PCL has access to all scenario objects described in SDL and
can manipulate them. Additionally, the PCL program has
access to run-time information provided by Presentation,
such as button presses, classifications of responses, or tem-
poral data.

In PCL real programming structures exist, e.g. loops, if-
statements, arrays, and run-time variables (e.g. the ba-
sic types int, bool, double, string). PCL provides tools
for incorporating randomized stimulus variation and of-
fers tools, such as subroutines, that allow efficient program-
ming. Thus, in contrast to SDL, it is possible to define and
to call methods. Many predefined parameterized meth-
ods of Presentation for all different kinds of objects can
also be used. Furthermore, PCL can support virtually any
response-dependent experimental paradigm. An example
for PCL can be seen in listing

Criticisms

The use of two languages may have the advantage that
specifications and instructions are clearer separated. One
language is for the easy part, one for the complex part and

4

4.1 The Software System “Presentation”

49

begin_pcl;
loop
int 1 =1
until
i > trials.count ()
begin
trials[i].present();
i=1i+1
end;

Listing 4.2: PCL example: Program that turns a non-PCL
scenario into one that uses PCL to do exactly the same
thing. The trials are presented in accordance with SDL’s
trial order list, but explicitly and not automatically.

the complex part is not needed in every case. But two lan-
guages have also clear disadvantages.

First of all, as soon as PCL is used, the whole scenario
structure has to be defined again. If a user has almost fin-
ished an experiment and discovers then that he needs some
PCL functionality, all ordering of trials in SDL is meaning-
less. Instead, the PCL program has to remodel the previous
structure. It would be much easier, if SDL and PCL can also
be mixed in some other way. Now, users have the problem
that SDL meets its limits relatively fast, while PCL forms
big obstacles for the reorganization of their existing work.

PCL has also some structural shortcomings. It provides
many functions that can be called for writing into scenario
objects to modify them, but there are only very limited pos-
sibilities for reading scenario object contents. For example,
it is not possible to read out the name of a bitmap that is
contained in a picture object. This can make simple things
very complicated.

The Contextual Inquiry, described in the next section, was
also conducted to see the effects of these deficiencies.

PCL requires
complete redefinition
of scenario structure

PCL has structural
shortcomings

50

4 Current Work Methods

Graphical interface is
planned

Users have problems
with Presentation

Designer is not a
typical user

Contextual Inquiry
includes interviewing
and observing users
in their normal
context

4.1.2 Future Developments

Finally, it should be mentioned that Neurobehavioral Sys-
tems has recently announced that they are currently devel-
oping some new features for Presentation. Their goal is to
improve the ease-of-use of Presentation. Therefore, they
plan to release a graphical interface for experiment creation
within the next year. This tool should allow to graphically
edit stimulus objects, trials, and their associated parame-
ters.

4.2 Contextual Inquiry

Presentation is a powerful application and has capabilities
to fully support the implementation of psychological exper-
iments. However, users stated that working with Presenta-
tion is hard and that they meet many problems in its op-
eration. As the designer of the new interface for Presenta-
tion, I cannot regard myself as a typical user of this system,
though. I have an entire different technical background
and I am used to programming. The typical psychologist,
in contrast, has no or only little programming knowledge.
Thus, I am not able to identify the problems that the real
users of Presentation encounter in their daily work solely
by myself.

Therefore, there is a clear need to investigate current work
practices with Presentation. For this initial user study I con-
duct a Contextual Inquiry which includes interviewing and
observing users in their normal work context. With this
technique I want to learn how the actual users work with
Presentation and what they do with the system. Further I
want to find out what problems they encounter, whether
the system hinders their work, and how they try to over-
come their difficulties. I expect from this study to under-
stand the users” work and needs—so that I can design an
interface on the basis of a deep understanding of the appli-
cation domain.

4.2 Contextual Inquiry

51

4.2.1 Method

Contextual Inquiry is a user-centered design method, part
of the contextual design methodology introduced by |Beyer
and Holtzblatt| [1998]. They describe their idea as follows:
“The core premise of Contextual Inquiry is very simple: go
where the customer works, observe the customer as he or
she works, and talk to the customer about the work. Do
that, and you can’t help but gain a better understanding
of your customer.” Contextual Inquiry “is a field data-
gathering technique that studies a few carefully selected in-
dividuals in depth to arrive at a fuller understanding of the
work practice across all customers.” The designer has to at-
tend the users, because only they know their work practice.

A Contextual Inquiry is usually performed using a contex-
tual interview: a one-on-one interaction in which the user
does his own work and discusses it with the interviewer.
The interview should be built on natural human ways of
interacting. Giving the interviewer a list of rules, that says
which things he should do, does not work well as he has to
concentrate so much on following the rules that he cannot
concentrate on the customer. It is more natural to act out
of a simple, familiar model of relationship. Furthermore,
keeping with a relationship model is much easier for the
participants than following rules.

For Contextual Inquiry a relationship between master
craftsman and apprentice is chosen as an effective model
for collecting detailed data. This model naturally creates
appropriate behaviors for both participants. Just as an ap-
prentice learns skills from a master, the designer wants to
learn about the users” work from its users and thus he acts
as the apprentice. The master craftsman teaches by doing
the work and explaining it while working. The apprentice
learns by observing the master’s activities.

It must be clear that in this model the user is the expert, not
the designer. The designer is not there to help with prob-
lems or answer questions, though he might be able to. The
only exception to this rule is, if the user is so stuck that he
will not be able to do any more of the work the designer
wants to observe.

User-centered
design method

Field data-gathering
technique to
understand work
practice

Perform a contextual
interview

Natural to act out of
simple relationship
model

Master/apprentice
model chosen for
Contextual Inquiry

User is the expert in
relationship model

52

4 Current Work Methods

Structure and details
of work are revealed

Master/apprentice
model extended by
four principles

Go to the users’
workplace

Talk and discuss with
the users about their
work

Develop a shared
understanding with
the user

Direct the inquiry
with a clear focus

Teaching in the context of doing work has the advantage
that the master does not have to think in advance about
the structure of the work or how to present it. The implicit
work structure becomes apparent while working and talk-
ing about the work, since both participants pay attention to
it. Learning in the context of ongoing work is effective for
the apprentice, because he can ask questions at anytime in
the process. Additionally, seeing the work reveals its details
and its structure and talking about the work while perform-
ing it, prevents generalization as all details are right there.
In this way, even those actions and motivations become ap-
parent, that the master is not aware of.

The designer learns about the users” work in order to sup-
port it with technology. The users can shape the designer’s
understanding of how to achieve that right from the begin-
ning. To learn about the users” work, the designer cannot
afford the time an apprentice would spend and often he
has to study not only one user’s work but a widely vary-
ing work practice of many users in many different projects.
Therefore, the master/apprentice model is only a starting
point. To conduct successful interviews under these cir-
cumstances, an adaptation of the technique is necessary.
For this, Beyer and Holtzblatt define four principles:

e Context: Go to the users” workplace and watch them
doing their own work. Avoid to disturb the workflow
to stay in the users” context. In this way, details and
structure of the work can be exposed.

o Partnership: Talk to the users about their work and
engage them in uncovering unarticulated aspects of
work. Ask the users to explain certain actions and
discuss the structure of work.

o Interpretation: Interpret findings immediately. De-
velop a shared understanding with the user about the
aspects of work that are important by discussing the
interpretations.

e Focus: Direct the inquiry from a clear understanding
of your own purpose. That means, focus on the as-
pects of work that are relevant to the design.

4.2 Contextual Inquiry

53

4.2.2 Participants

For my Contextual Inquiry I observed five users on their
workplace. Three of them are psychologists: Two are PhD
students/research assistants; one studies psychology and
philosophy and works as student assistant. Among the
other two users is one computer mathematics student and
one computer science student. Both work as student assis-
tants. Two of the five participants are female; ages range
from 22 to 33. All participants are experienced computer
users, three have programming experiences apart from Pre-
sentation.

Three of the users are Presentation novices learning Presen-
tation just for a couple of weeks. The other two users have
used Presentation for several years. They regard them-
selves not as experts, though, since they have still deficien-
cies in the programming of experiments. Especially PCL
causes problems.

The participants were recruited from the Department of
Psychiatry and Psychotherapy and from the Interdisci-
plinary Center for Clinical Research (IZKF) at University
Hospital Aachen. They were selected according to the fol-
lowing criteria. The users should have reached different
levels of Presentation expertise. Beginners should be inter-
viewed as well as advanced users. In addition, I wanted the
users to come from different disciplines to see whether this
makes differences in the use of Presentation. Finally, it was
required that the participants are currently programming
experiments, i.e. they are actively working with Presenta-
tion during the inquiry.

4.2.3 Set-Up

The interviews lasted between three and four hours. They
started with explaining the method, in particular the mas-
ter/apprentice model and that the users take the role of the
expert. Further, I told the users the goals of my study and
explained what is important for me. In one study, two users
participated together. This does not conform exactly to the

Novices and
advanced
Presentation users

54

4 Current Work Methods

Avoided to help the
subjects

Participants were
encouraged to think
aloud

Participants
expressed own ideas
for improvement

After the inquiry |
offered help

method, as it is actually based on one-on-one interactions.
Nevertheless it seemed necessary to do so, because it was
their natural context to work together with Presentation.
The remaining three interviews were conducted with one
participant each.

I have familiarized myself with Presentation before con-
ducting the interviews to be able to better understand the
findings. Except for a few situations, I did not, however, as-
sist the participants during the interview. The only excep-
tions were, when the users were so stuck in their work that
they would not have been able to continue in reasonable
time. In such situations I gave some small hints, mostly
in interrogative form, to enable them to find a solution. In
other cases, when the participants repeatedly applied un-
necessary laborious strategies, I inquired whether there are
better ways of doing that action. I hoped, in this way, the
users would question their habitual work structures and
may be able to find more sophisticated strategies.

To observe the natural context, the normal workflow had
to be kept. Therefore, I paid attention to avoid interfer-
ing with the users” work throughout the entire interview.
I encouraged them to think-aloud while doing their work
and to talk freely about the actions they were performing. I
tried to understand the users’ actions and their motivation.
Occasionally, this demanded inquiring about particular ac-
tions and strategies and the reasons for them.

At the end of the observation the findings were summa-
rized and briefly discussed with the users to verify their
correctness. Then I asked the users what improvements
they would expect to their work from an improved inter-
face. Finally, they were given the opportunity to state their
own ideas how the system should be changed.

After the inquiry, I was available to the users to answer
questions about problems that have occurred in the course
of the observation or about Presentation in general. In ad-
dition, I gave some hints and advices to help the users with
their work.

4.2 Contextual Inquiry

55

4.2.4 Findings

This section presents the findings of the Contextual Inquiry.
First, findings about Presentation and its operation in gen-
eral are described. This is followed by user comments
about more specific properties of Presentation. Next are
findings concerning decision and time structures, which are
of great importance for my work. Afterwards, I will present
the users” expectations for an improved system and their
own ideas for changing the system.

General Observations

e Presentation has excellent functionalities for doing
psychological experiments. But the Presentation UlI,
consisting of SDL and PCL, causes hard operation.

e Many functions are not used. Even an advanced user
estimated that he uses less than half of the possible
functions, because he is frustrated and not motivated
to familiarize himself with unknown functions.

e Some activities are done unnecessarily manually.
Users rather accept manual work instead of trying to
figure out the elegant way of doing it, which they be-
lieve exists. For example, because the stimulus varia-
tion function is possibly complex, a manual pseudo
randomization is performed. Even paper and pen
were used in this process that soon led to little er-
rors. Instead of trying to find a PCL function, the user
rather neglects some aspects of the randomization.

e Users showed anxious behavior when changing
something in the code, because afterwards problems
without obvious reasons often occurred which led to
tedious error searches. They complain, that for this
reason changes to scripts cannot be done quickly.

e Users complain about laborious debugging. Some-
times long manual trial-and-error phases are neces-
sary. It takes long time to find little syntax errors or
typos in template tables.

e Users are discontent with specifying stimuli as each

Presentation has
excellent
functionalities

Many functions are
not used

Users do much
manual work,
probably
unnecessarily

Users were anxious
when changing code

Laborious debugging

Users are discontent
with specifying
stimuli

56

4 Current Work Methods

Long, unclear files

Copy/paste errors

Users make rare use
of variables

Negative emotions
arise

Users have syntax
problems

Problems with
scenario structure
and programming

SDL is quite simple
and can be learned
quickly

has to be defined individually with all its parameters:
Thousands of almost identical lines of code are gener-
ated which takes a long time. Even though this results
in a repetitive structure with only minor differences,
shortening is hard and users did not find a comfort-
able approach. Thus, scenario files soon become un-
clear and long.

Users are apt to make errors because they use copy
and paste abundantly when defining stimuli.

Users make only rare use of SDL variables. Thus:
They fill out large template tables line for line with
a couple of different values without considering an
eventual later value change which would cause edit-
ing every single line. Using variables instead would
make the filling in and changing faster and more com-
fortable.

Users sometimes feel “harassed” by Presentation, be-
cause it does not do what they want it to do.

Users have problems with the syntax. They do not
know for sure when to set curly braces and semi-
colons or what the correct sequence of symbols and
statements is.

One novice user has great difficulties with under-
standing Presentation’s scenario structure. Functions
and characteristics of certain scenario objects are not
clear. Further, the time management of stimulus
events is not understood. He has not realized that
always explicit time structures have to be defined.
Moreover, common programming structures are un-
familiar; for example, the concepts of defining and
using variables and of naming objects for reuse. Nei-
ther the sense of variables nor their advantages are
realized.

User Comments

SDL is a quite simple scripting language. It can be
learned quickly: It is possible to have successes in a
short time with trial and error.

4.2 Contextual Inquiry

57

e Templates are very useful, because not everything has
to be written out in full.

e They learned Presentation with the aid of the docu-
mentation and by looking at existing projects. Be-
sides, the users’ opinions about the documentation
differ between being very helpful and being confus-
ing because of missing details and missing explana-
tions of programming concepts.

e Learning PCL is much more difficult. It is hard to un-
derstand its operation methods and the meaning of
variables and instructions is partly not known.

e Users avoid using PCL and even do not feel confident
enough to learn it, although they regard it as more
powerful, efficient, and comfortable. They expect the
time of learning PCL to be too long and so they rather
try to implement something in SDL, which can be in-
sufficient and incomplete.

e Instead of writing each script from scratch, most
times existing files are adapted to the current project
which can be become time-consuming, too.

e Users still have to read a lot in the documentation for
figuring out details and syntax.

e There are no problems with terms in the program:
The common user language of the domain is used ex-
cept for some computer science notions in the pro-
gramming structures.

e It can be time-consuming to extend standard exper-
iments to be executable with fMRI. It is not known
in advance whether scripts can be kept or have to
be changed and whether everything will work as in-
tended in the scanner.

Decision and Time Structures

Users avoid the creation of complex experiment structures
because of the Ul Although it is possible and desirable
to have experiments that can take varying courses depen-
dent on the subject’s responses, most of the experiments are

Templates are useful

Users used
documentation for
learning

Learning PCL is
difficult

Users avoid PCL

Users adapt existing
scripts

Users consult the
documentation a lot

Presentation speaks
users’ language

Adaptation to fMRI
problematic

Users avoid complex
experiment
structures

58

4 Current Work Methods

Implementation of
complex structures
too difficult

Users want a GUI for
Presentation

Easier stimulus
creation

WYSIWYG layouts
for stimuli

Direct color choosing

strictly linear or merely have capabilities for giving simple
feedback. The reason for this is that linearity can be eas-
ily realized in SDL whereas response-dependence requires
PCL.

Users do not know how complex decision structures and
extended feedback could be implemented. They say that
experiments are often not response-dependent, because the
implementation would be too difficult. Thus, the design
and planning of experiments is accommodated to fit Pre-
sentation! The users” work is restrained as experiments
cannot be planned totally free. However, Presentation is
absolutely necessary.

User Ideas and Expectations

Finally, it was interesting to hear the users” own ideas about
how the system should be changed. The users suggested a
graphical interface for extending Presentation that would
allow displaying time visually. They gave several ideas for
how this could improve the system:

e Stimulus creation could be simplified. There could
be dialogs for creating text stimuli directly with their
parameters. Another dialog could be responsible for
creating trials. It should have functions for importing
texts and pictures and for choosing existing stimulus
events.

e Experiments could be designed visually in “what you
see is what you get” (WYSIWYG) manner like slides
in Microsoft PowerPoint without having to use pro-
gramming languages. The layout of stimuli could be
directly designed. This would eliminate the need for
executing a scenario in order to see whether a picture
is on its intended position. Changes in the visual lay-
out should cause changes in the SDL code and vice
versa.

e Colors could be directly selected from a color palette
instead of looking up and typing RGB values.

4.2 Contextual Inquiry

59

e A visual time line could support fMRI pulse control.
The scanner pulses could be depicted in the time line
and there could be functions for aligning stimuli to
pulses and for specifying jitter times.

Furthermore, it was said that dragging and dropping of
stimulus files into the program with automatic further pro-
cessing, instead of specifying each one manually, would
ease stimulus creation.

Users would appreciate to have a test mode which pro-
vides a time line for running back and forth through ex-
periments at different speeds and that would allow to halt
experiments. At the moment it is not possible to correct
particular points directly and return to the experiment or
to run experiments only partially. Instead the real-time test
run has to be aborted and restarted in the beginning after
detecting errors.

Users expect from an improved experiment interface that
the construction of scripts is faster so that they could save
lots of time. In particular, they want to spend more of their
time for reasonable activities and not for repetitive and
manual tasks. They hope that realizing their ideas will be
easier and that the experiments will better conform to their
planning. Furthermore, they wish that experiment specifi-
cations become clearer so that it would be less confusing to
edit experiments. These features would reduce their frus-
tration and in consequence increase their motivation. In
summary, they want to concentrate on the task instead of
struggling with Presentation.

Results Discussion

The results show that a new Ul is desirable. There are is-
sues that make designing and implementing experiments
unnecessarily laborious and error-prone. Since the users
are frustrated, they avoid trying unknown features and ad-
just their design to the shortcomings. Especially the avoid-
ance of creating complex structures implies that Presenta-
tion restrains their work. Temporal decision structures are

Visualization of fMRI

Users want to drag
stimuli directly into
the program

Users want a
dynamic test mode

Users expect to save
time and to become
more motivated

A new Ul is desirable

60

4 Current Work Methods

Differences between
users with technical
and psychological
background

Needs of domain
users are not met

often not included, because the realization would be hard,
complex, and expensive and they do not know how to im-
plement it. Therefore, experiments are redesigned because
of the hard design process in Presentation.

The two users with technical background had a completely
different working manner than the users with psycho-
logical background. They benefit much from their pro-
gramming experience and can transfer the knowledge in
common programming languages to the Presentation lan-
guages. Thus, they were able to familiarize themselves
more easily with Presentation. In a short training period
they have acquired much more skills than the novice from
psychology. They may be more proficient in dealing with
PCL than the two users with long Presentation experi-
ence. They are willing to try the more complex, difficult
constructs without being anxious or having reservations.
Thereby they are directly looking for elegant and efficient
solutions and are not afraid to use PCL—in contrast to the
psychologists.

Obviously, the needs of the users of this application domain
are not met in Presentation. The target group of Presen-
tation are psychologists and not computer scientists. But
computer scientists have clear advantages over the domain
experts in operating the Ul and specifying experiments.

61

Chapter 5

First Prototype: Paper

4

“First, solve the problem. Then, write the code.

—]John Johnson

Paper prototyping is a variation of usability testing for eval-
uating designs in an early stage of the design process. “Its
purpose is to get quick feedback from users while the de-
sign is still (literally) ‘on the drawing board.” ” [Snyder,
2003]].

Since paper prototypes usually cannot reflect all aspects
and features of the intended system, the scope of the pro-
totype has to be limited. Therefore, first typical example
tasks, that users of the system are expected to perform,
must be defined. The prototype is created by drawing
rough, even hand-sketched, drafts of the interface on paper.
All interface elements that are necessary for performing the
tasks, such as windows and dialogs, must be included in
the prototype. Then, the paper prototype is evaluated with
representative users who interact directly with its paper in-
terface. The users do not get explanations for how the in-
terface is intended to work in advance. The designer “plays
computer” and simulates the reactions of the application to
the user input by manipulating the prototype.

Paper prototypes can be implemented quickly with low
costs and aim at obtaining fundamental, high-level feed-

Paper prototyping for
early usability testing

Typical tasks have to

be defined

Interface is sketched
on paper

Representative users
test the interface

Paper prototyping is
cheap and fast

62

5 First Prototype: Paper

Fundamental,
high-level feedback

Design bases on
Presentation

Goal is to generate
Presentation code

Only visual stimuli
and no fMRI support

No variables

back. This makes them an excellent means for realizing
and testing first designs. The lack of details and the rough,
unfinished look have the effects that users concentrate on
general aspects of the design and that they are not inhib-
ited to express negative feedback. In this way, fundamen-
tal results about the understanding of the system’s concept
can be obtained and the interface elements that work well
or that cause problems can be easily identified.

In order to find out if the concept of time-based decision
trees is understood by the users, I chose paper prototyping
for the first iteration of the iterative user-centered design
process. Further, I wanted to test my initial design ideas
for the Presentation Visual Editor before implementing an
interactive prototype.

5.1 Design

The Presentation Visual Editor interface is designed on the
basis of the two languages SDL and PCL. That means,
that all functions base on Presentation’s functions, and the
structure of scenario objects in Presentation is reflected in
this interface. This system is not intended to be an inde-
pendent experimental design and control program—it is
a graphical extension to Presentation. The final system is
planned to be capable of exporting the experiments to Pre-
sentation, i.e. it will generate SDL and PCL code, that can
be executed by Presentation to run the experiments.

The design of this prototype concentrates solely on exper-
iments containing visual stimuli and omits other stimulus
types. This was motivated by the Contextual Inquiry, in
which I learned that experiments consist predominately of
visual stimuli. Furthermore, the interface does not provide
functions for fMRI experiments.

I decided to construct the prototype without offering the
possibility to use variables in order to keep the interface
simple. This can be considered unproblematic, because the
users make rare use of variables in Presentation anyway,
and partly do not even understand its sense.

5.1 Design 63

Presentation Visual Editor []=[X]
File Edit

Dma @@ X

Trial endl _Q
2sef
oF =
s\>°“$a
Trial picGood [(gst @
Trial pictures 3
of ’Sec
@ \636 [asy p,
Trial instruction sec o Q@«s" va"’h‘e 2 Trial end2 _@
sef
Trial Fixation O hsec
first @
response e dbs,
hipSe o
Se7 Trial picsBad @
Trial end S
bsec 2)
V)
6sec @
All correct, 3sec
feedback
Trial feedback
= e])

Figure 5.1: Main screen of the prototype showing an example experiment. The
toolbar contains buttons for creating, loading, and saving scenarios. The magnifier
icons zoom the tree structure and the cross deletes elements. Further, dialogs for
editing the header and creating trials can be opened. Trial Library shows a library
that allows to reuse existing trials in the scenario. The next button is responsible
for repeating trial sequences. Generate Code converts the scenario to Presentation.

Throughout the design, I chose terms from the users” do- Notations from the
main and from Presentation to denote functions and ob- domain and from
jects. This ensures understandability and enables an easy Presentation

transition from Presentation. For example, no notions from
graph theory are used, when referring to decision trees.

In the main screen, shown in figure the experiment Time-based decision
structure is constructed visually by using time-based de- trees used for visual
cision trees. Scenario structures become less abstract as the experiment
temporal and logical arrangement of trials can be directly construction

seen. A toolbar button opens a dialog for creating a new
trial with its associated parameters. Trials are displayed in
the main area and can be rearranged freely. Their visual
size gives a hint for their duration.

64

5 First Prototype: Paper

Edges labeled with
conditions and time
constraints

Repeated structures
visualized as one
block

Dialog allows to
specify the scenario
header

Trials are connected by directed edges which are labeled
with time constraints and conditions. Transitions that de-
pend solely on time constraints are displayed as green ar-
rows whereas edges with response-dependent conditions
are yellow. The prototype leaves open how these connec-
tions and their conditions are exactly defined.

Repeating template structures can be realized by selecting
a sequence of trials and forming a trial compound. This
template structure is visualized as one big repeating block,
instead of displaying all repetitions in a row, to keep the
structure compact.

Figure|5.2|shows the dialog for editing the scenario header.
This dialog, divided into three tabs, allows to specify
header parameters, such as the scenario name or the num-
ber of response buttons. Furthermore, default values for
appearance, trial, and stimulus parameters can be defined,
e. g. for font size or for the trial duration. In contrast to Pre-
sentation, users can directly see and select parameters and
define their values. I limited the header parameters to a
selection which is meaningful for the prototype. The pa-
rameters are preset with Presentation’s default values.

Scenario File Header X

General Scenario Parameters [Default Appearance | Trial and Stimulus Event Parameters

Default trial duration: m@ Response logging: @ log_all

Default trial type: (fixed] O log_active
Default trial start delay: D Response matching: @ simple_matching
Default all responses: [E] O legacy_matching

Default deltat: D
Default delta time: D
Default picture duration:
Default stimulus time in: E
Default stimulus time out:

EOK _lDuncel _[

Figure 5.2: Header dialog for specifying trial and stimulus
event parameters. Other tabs can be found in appendix[A]

5.1 Design

65

Trial Properties

Create Create
Text Picture
Object

Stimulus Event parameters: () Load Stimulus Files (&)
i : (®)Existing Stimulus Objects
Picturename: (P2 B Oniscrs
Time: c’ (®)Bitmap Stimuli
Delta time: C— @ Text Stimuli
instructionl
Deltat: :’ instruction2 o
ion T I— foxatien
Duration: 3000 Textl
Event Code: ‘:I Text2
L Text3
Stimulus time in: : q p f
. Sie sehen gleich 2 Bilder. Text4 i
Stimulus timeout: (] Text5
. Texté
L —] Texe
Text8
Text9
Text10
Feedback trials @ Textll
Text12
Text13
v
1+ + + t +—t + J
0 750 l1500 2250 3000 3750 4500 5250 6000
Pic3 first_response

Figure 5.3: Trial properties window. This trial contains two consecutive stimulus
events. The first one, Pic2, is currently displayed in the layout area.

The editing of trials is done in the trial window (figure
5.3). In its center area the layout of picture objects, which
can contain several texts and bitmaps, can be designed in
WYSIWYG manner. The stimulus parts can directly be ma-
nipulated, i. e. sizes and positions can be adjusted. Buttons
are used for creating new picture objects and text stimuli.
A library panel on the right side allows loading of stimulus
files as well as reusing existing objects. Stimuli are inserted
into the picture by drag and drop. In addition, stimulus
files can be dragged directly from the Windows Explorer
into this screen.

On the left-hand side, event parameters, associated with
the current picture stimulus, can be specified. Beneath the
layout area is a time line, displaying the total trial duration
and the sequence of stimulus events. Their length can be
changed just by moving the endpoints on the time line—or
by typing values in the appropriate parameter field. Users
can switch to a specific stimulus event by selecting its seg-
ment on the time line.

Direct manipulation
of stimulus layouts

Time line visualizes
the course of events
and allows direct
manipulation of times

66

5 First Prototype: Paper

Dialog for further
picture properties

Direct color choosing

Dialog for precise
scaling of bitmaps

Dialog for text
stimulus creation

Double-clicking the layout area opens a picture properties
dialog, which offers further picture editing functions. Be-
sides functions, that are already contained in the trial win-
dow, like creating text stimuli, it is possible to define the
background color and to see exact coordinates of the cur-
rent picture part positions. As it was suggested during the
Contextual Inquiry in chapter colors can be chosen
from a color palette that offers 18 predefined colors. Users
do not have to type RGB-values anymore.

Double-clicking a bitmap object leads to a dialog for setting
its parameters. The window displays the current image and
allows naming the bitmap. In addition, it is possible to scale
the image. This is useful, if the scaling via direct manipu-
lation is too imprecise. The size can be changed using a
fixed aspect ratio. Users can specify exact values for height
or width or use a scale factor. They can also set arbitrary
values for stretching the image.

The text stimulus window, shown in figure is responsi-
ble for creating and modifying texts. Users can set a text’s
content, its name, and their favored font and its size. The
text’s font and background colors can be selected from a
color palette.

Text Stimulus X
Caption: Font color:
DDD.’D
S8gsge
2 B0

Font: (Helvetica [v] Background color:
]

Font Size: ‘?.‘_—_)
S S e

Text name: (Text1

F OK —l {—Cancel—]

Figure 5.4: Text stimulus dialog for editing text stimuli.

Repeated Trials Compound [
Name: (Templatel Table controllec Trial properties e ><
varying Stimuli: fixed in repetitions: | paum,
Stimulus Event parameters: (®)Load Stimulus Files
(¥ Existing Stimulus Objects
Picture name: (] %Plc'ure Objects
Bitmap Stimuli
Time: 500 An
gryl
Delta time: — Angry2
. Angry3 L
P — s
trial Duration: 3500 Happyl Next
Event Code: C— Happy2 trial
y in: Happy3
Stimulus timein: (] Happra 1

Stimulus timeout: (]
O

Feedback trials @
\ — — : —
0 500 1000 1500 2000 ' 2500 3000 3500 4000
Connect columns with N
farget objects or pic 1 pic2 problemt b ’ E‘é'*:.“b'a
target parameters ntries

Neutrall
Neutral2
Neutral3
Neutral4
Sadl
Sad2
Sad3
Sad4

() Text Stimuli

L 4

Figure 5.5: The window for editing repeated trial compounds.

All bitmap stimuli

contained in the picl column of the template table are consecutively shown in the

left varying bitmap field in the specified order; the ones in the
right field.

Finally, there is a window for editing the trials contained
in repeated trial compounds (see figure [5.5). This win-
dow integrates the normal trial window and thus provides
all of its functions, but it also includes functions for the
template-like structure. Buttons for navigating to the previ-
ous and subsequent trial of the compound are located on its
sides. In addition to standard stimulus objects, that will not
change throughout the iterations, stimulus objects can be
created, that will vary in each iteration. For example, there
is button for adding varying bitmaps to the layout area.
This results in displaying a bitmap placeholder graphic that
can be manipulated just as normal bitmaps. Users have to
drag all images, that they want to present on this position,
into this field.

In repeated structures, it is important to define the order in
which the varying stimuli are shown. Furthermore, as soon
as there are multiple varying stimuli, it is crucial to deter-
mine certain combinations of stimuli. This is achieved by

pic2 column in the

Repeated trial
compound window
allows to vary
stimulus presentation
throughout the
iterations

Stimulus order and
certain combinations
are crucial

68

5 First Prototype: Paper

Visual specification
of stimulus variation

Computer-aided
prototype drawing

using template tables that are similar to the ones that Pre-
sentation applies. The column names of such a table are dis-
played at the bottom of the window. These columns then
have to be connected visually with the fields that contain
varying elements by dragging lines between them. In the
case of varying bitmaps, the names of all images, that have
been dragged into one bitmap placeholder, will appear in
the selected column. Columns can be connected with mul-
tiple fields. In particular, it is possible to connect them with
stimulus event parameter fields. For example, if the bitmap
column is additionally connected to the event code param-
eter, the log file will have an entry with the image that was
shown in the iteration.

The whole table can be viewed and modified through
pressing a button next to it. Each line of the table corre-
sponds to one iteration of the template. In this way, the
stimulus order and combinations of stimuli are determined.
It is possible to change the order by moving entries within a
column or by moving entire lines. This dialog also provides
a function for randomizing the lines of the table.

Some additional example screens from this paper prototype
can be found in appendix [A]

5.2 Implementation

The interface was not directly hand-sketched on paper. In-
stead it was realized using a Wacom graphics tablet which
allows drawing directly on its screen. The software Adobe
lustrator CS3 for Mac OS X was used for designing and
editing the prototype. In comparison to hand painting this
has the advantage, that modifications can be made easier.
In addition, it is easy to show combinations of different lay-
ers. Each combination displays one state of the application.
At the end, all interface elements were printed and cut out.
Some windows were printed in multiple versions for show-
ing different states.

5.3 Evaluation

69

5.3 Evaluation

5.3.1 Participants

I have evaluated the paper prototype with six users, who
are all psychologists: four PhD students, one postdoctoral
researcher, and one psychology student. Ages range from
25 to 35, and half of the participants are female.

The participants were recruited from the Department
of Psychiatry and Psychotherapy and represent possible
users. They cover a wide range of Presentation experience:
A novice participated just as advanced users.

5.3.2 Set-Up

In the beginning of the study, the users were told that
they will get a paper prototype of an alternative Presen-
tation interface. I only told them that it is a graphical inter-
face which allows building experiments visually. Further,
I briefly explained the basic idea of paper prototyping. I
encouraged the participants to think aloud while perform-
ing their tasks, and I asked them for each window to say
what they think they can do and what the meaning of the
elements and functions is. I emphasized that they should
not hesitate to tell me about functions and notations that
are not clear to them. This allowed me to find out when
users have problems and do not know what to do or how
to doit.

Since the concept of using time-based decision trees for in-
teraction is innovative and unfamiliar, it was necessary to
explain shortly that trials have to be connected by condi-
tional arrows, which determine the course of the experi-
ment, as soon as two trials were created.

The test started for each subject on the empty main screen.
All interface elements, that would be needed during the
study, were prepared in advance. After a user had accom-
plished his tasks, a few retrospective questions about his
impressions were asked. In total, a test took up to an hour.

No explanation of the
system

Subjects were
encouraged to think
aloud

Brief description of
visual construction
was necessary

70

5 First Prototype: Paper

Three typical tasks
should be
accomplished

5.3.3 Tasks

Each participant was asked to fulfill three tasks. They rep-
resent typical tasks, that users would perform for their real
work, and are inspired by actual experiments that could be
observed during the Contextual Inquiry.

1. Linear experiment: Create a simple experiment that
starts with an instruction trial. The trial should con-
tain two consecutive screens which greet the subject
and explain him that he has to press one of two keys
when two pictures are shown. The trial should last
for six seconds or until a key is pressed. Then create
a trial, that shows a fixation cross for half a second.
Next is a trial, that should present the subject two im-
ages of faces simultaneously for four seconds or until
a key is pressed. Finally, a last trial should thank the
subject for participation.

2. Repeated structures: Create a second experiment. The
structure is quite similar to the first one. It should
start with an instruction, followed by a fixation cross
and two pictures. But prior to the end trial, an ad-
ditional trial should request a rating for the pictures,
e.g. about the emotion shown on the images. This
trial should last until the subject has given a rating.
Furthermore, the middle part of the scenario, consist-
ing of the fixation, the picture, and the rating trial,
should be repeated several times before proceeding
with the end trial. In each iteration, a different combi-
nation of pictures should be presented and the rating
question should be adjusted accordingly.

3. Complex non-linear experiment: In the last experiment
create a branching scenario structure. The experiment
is response-dependent and changes its course in ac-
cordance to the subject’s responses. (The scenario,
that the users were asked to construct, is depicted in
figure[5.1} The participants were not supposed to con-
struct the interior trial structures, only the high-level
experiment structure. I briefly described them possi-
ble events in the trials and the users’ task was to create
the branchings with the appropriate conditions.)

5.4 Results

71

The scenarios in the tasks have an increasing complexity.
They were chosen to cover nearly all features of the inter-
face. The third task’s superordinate target is to examine
whether the users had fully understood the tree structure
at the end of the study. Of course, the task serves also the
purpose of testing the construction of complex structures
and showing the users what can be achieved with the sys-
tem.

5.4 Results

The observations and the direct user feedback during the
evaluation of the paper prototype delivered very useful
qualitative results about the design. These results are the
basis for developing a refined prototype in the next itera-
tion of the DIA cycle in chapter 6]

All participants enjoyed working with the prototype and
stated that the design is pleasant and provides meaningful
improvements for designing experiments. They found the
operation intuitive and understandable. After a short train-
ing period, the system would allow a fast and easy realiza-
tion of experiments without being obliged to have much
Presentation knowledge.

Two users said, that the visual construction feels better than
code writing. They emphasized that many of their col-
leagues have no programming knowledge and are not in-
terested in acquiring some. For those people this system
would be a great relief as no programming is needed.

Users said, that this interface is also easier than Presenta-
tion’s, because the structure of experiments is visible. In
comparison to SDL/PCL-code, the structure becomes more
concrete. The participant’s opinions on the time-based de-
cision trees were consistently positive. They found the vi-
sualization clear and understood the concept quickly. Two
users initially questioned the need for a branching tree
structure as they have never done branching experiments
before. But they recognized shortly the new possibilities
and the potential for simple realization of adaptive experi-

Tasks were chosen
to cover all features
of the interface

Evaluation delivered
valuable qualitative
results

Interface improves
designing
experiments

Visual construction
better than
programming

Visible experiment
structure was
appreciated

Users quickly
understood the
concept of
time-based decision
trees

72

5 First Prototype: Paper

Visualization of
repeated structures
was liked

Many functions were
immediately
understood

Users liked visibility
of parameter names
and absence of
syntax rules

Omission of variables
was approved

Also usability issues

Trial duration should
be displayed inside
the blocks

ments, which will be of increasing importance in the future.

Combining repeated template structures into one visual
block in the tree structure, instead of bloating the structure
by showing all iterations in sequence, was regarded as a
good idea. This visualization as one unit reflects the se-
mantics of the experiment section well.

The participants were able to use many features correct
intuitively. They built a correct mental model of the sys-
tem. They had no problems with entering the trial window
and creating stimuli. They immediately wanted to drag
and drop stimulus files into the program and into the lay-
out area respectively and were pleased that this was possi-
ble. They enjoyed that they could directly manipulate the
stimulus layout in WYSIWYG manner. All users instantly
recognized the function of the time line in the trial win-
dow and manipulated it to change the timing parameters
of stimulus events. It was stated that the time line makes
time management less abstract as the durations and the or-
der of stimulus events are visible.

Users generally liked about the graphical interface that they
did not have to remember and type the names of all param-
eters. Specifying the values of parameters that they could
see was very pleasing. This held true especially for the sce-
nario header, because there are many different parameters
that mostly are used only seldom. In this context, it was
also considered as comfortable that they did not have to
care about any syntax.

My decision to omit variables was approved by the test par-
ticipants. They said, that variables would unnecessarily in-
crease the complexity of the interface and confuse users.

Besides these fundamental results, further results showed
that there are also usability issues with the interface which
should be improved in the next prototype. The encoun-
tered problems were discussed with the participants, which
led to some valuable design suggestions:

o The tree structure would be clearer, if the edges were
not labeled with time constraints. Some users thought

5.4 Results

73

at first, the time would indicate a pause between the
trials. Displaying the time inside a trial block seemed
to be more intuitive for the users as the duration is a
property of the trial. Only after the time has elapsed
in a trial, the temporal transition is taken.

Some terms used in the prototype are not intuitive.
Users were for replacing picture (a whole screen of
graphics) and bitmap (a single image) by layout and
image, because the original Presentation notions can
be easily confused. Though this might in turn con-
fuse advanced Presentation users, they argued that
the benefits for beginners would justify the change.
For similar reasons, users also suggested to drop the
trial duration value forever and the term caption, that
denotes the content of a text stimulus. All in all, the
chosen notations were clear, though.

Some buttons should be revised. In the main screen,
the icon for loading a scenario was interpreted once
as closing symbol. Two users did not understand
the meaning of the Generate Code button. In addi-
tion, the need for magnifying/demagnifying buttons
was queried. Using the scroll wheel of the mouse in-
stead, was considered more comfortable. In the Re-
peated Trial Compound window, users criticized the in-
conspicuous buttons for navigating through the tri-
als and missed a button for adding further columns
to the template table. In general, however, the users
were content with the accessibility and comprehensi-
bility of the buttons.

Users pointed out, that I forgot to display the name of
the current trial in the trial window.

In the trial window (fig. , users were confused
by the stimulus event parameters section on the left
side. This section is always shown, even if no stimu-
lus event has been defined, yet. In this case, the pa-
rameter fields falsely afford to be edited, and they at-
tracted all users” attention when entering the window
for the first time. Thus, if there is no stimulus event,
the parameter fields should not be editable. Since it
is not always necessary to use the parameters at all
(e.g. timing can be specified using the time line), it

Some terms in the
prototype are not
intuitive

Some buttons
caused problems

Name of a trial is not
displayed

Stimulus event
parameters section
confused users

74

5 First Prototype: Paper

Picture properties
dialog is distracting
and redundant

Users demanded tool
tips for parameter
meanings

Library panels were
considered useful,
but can be improved

Text alignment
function is missing

A function for
managing multiple
scenarios would be
useful

No user immediately
understood the visual
connection technique
in the trial compound
window

After a
demonstration the
concept was liked

might be meaningful to hide the fields by default and
to show them only by request.

The dialog window for editing picture properties
seemed to be distracting in the interaction and some-
how redundant. Since it provides not much func-
tionality, it might be a good idea to integrate those
functions into other interface parts and drop this win-
dow. An image of the window can be found in the

appendix (figure[A.7).

Almost all users stated that tool tips, for instantly giv-
ing a brief description of the parameter meanings,
would be of great value in the final system.

The library panels, that serve for reusing existing ob-
jects and loading files, were accepted and considered
as being useful. It was suggested to indicate which
objects have already been used in the scenario and
to introduce a function for importing libraries from
other scenarios to allow faster stimulus creation.

One user missed a function for defining text align-
ments for multiline text stimuli.

It was suggested to introduce a project function for
managing multiple scenarios, since an experiment
could possibly comprise several scenarios. This
would eliminate the need for repeated closing and
loading of scenarios, and it would combine several
scenarios to a meaningful unit.

Since the visual connection technique, chosen for cre-
ating template structures, is quite uncommon, no
user did immediately understand the whole concept.
Most users recognized quickly that they have to drag
multiple images into fields for varying bitmaps to
vary the stimulus presentation during the iterations.
They also perceived the needs for establishing partic-
ular presentation orders and combinations of stimuli,
but they did not figure out how do to it. They said,
that it is necessary to see the visual connection func-
tion once to learn it, but then it is very understandable
and easy to do. After overcoming the initial prob-
lems, they liked the concept. However, there could

5.4 Results

75

be better visual cues for how this function works. Af-
terwards, they had no problems with handling the ta-
ble, though they suggested to add more sophisticated
randomization functions for it.

Just as in the Contextual Inquiry, users desired a
test mode for controlling the experiment at different
speeds. In this context, they also suggested to in-
troduce a function for “disabling” trials, i.e. a func-
tion for choosing whether a trial will be translated to
the Presentation code. This would allow to execute
only certain sections of scenarios. Furthermore, they
pointed out that it would be great to be able to design
directly fMRI-capable scenarios and to have visual-
izations for fMRI features. I will treat these issues in
chapter 9]

Users desired a test
mode and fMRI
visualization

77

Chapter 6

Second Prototype: Paper

“The function of good software is to make the
complex appear to be simple.”

—Grady Booch

For the second iteration of the iterative user-centered de-
sign process, I decided to design another paper prototype
that refines the first one. In this second prototype, I use the
findings of the evaluation of the first prototype to modify
the design. Further, I want to test some design ideas that
came to my mind when observing the users. The goal is to
simplify the prototype and to make its structure clearer.

I decided against implementing a working interactive pro-
totype at this point, because users are apt to focus on the
details of functions and visual appearance when a system
is already a working software application. But I want the
users again to focus on the basic interactions and funda-
mental characteristics of the interface. From that I expect
to obtain valuable high-level feedback about the changes in
the system. I found this intermediate step necessary in or-
der to be sure, how certain things should be realized in the
software prototype. Furthermore, a paper prototype was
chosen, because it allows testing the ideas faster and with
less effort.

Second, more
refined, paper
prototype

78

6 Second Prototype: Paper

Clarity of the layout
was increased

Trial durations are
shown inside the
blocks

Colors of the edges
were changed

Multiple scenarios
can be managed

6.1 Design

The general layout of the interface has not been changed.
However, several modifications of the design changed the
look to some degree. I aimed at making it “cleaner” and
tried to reduce the amount of information that is shown at
once. My motivation was to improve the ease-of-use and to
increase clarity.

Besides many analysis results of the previous DIA cycle,
also some new design ideas are applied in the design of this
prototype. Not all evaluation findings are incorporated,
though. Some findings are postponed to the next design
cycle, in which an interactive prototype is designed, others
are discussed in the future work section in chapter [}

In this prototype, the layout of the time-based decision trees
was modified. I added a start node as root for the trees to
give them a clear beginning. Furthermore, trial durations
are no longer displayed as time constraints of the edges.
Instead the durations are shown inside the trial blocks.

I also changed the colors of the edges to give them more
meaning. Green edges are the standard edges, and they are
taken, if the time has elapsed completely inside a trial. A
green edge without any label thus means that this transi-
tion is taken automatically after the trial has ended on time
and if no conditions of other edges are satisfied. An ad-
ditional label means that the edge is taken, if the time has
passed and the condition is satisfied. In contrast, red edges
stand for premature endings of trials, for example, when a
subject stops a trial by pressing a button. I chose the colors
red and green, because their meanings of stop and proceed
are well known in our culture. Thus, the new color coding
may be understood at once.

The system is now able to manage more than one sce-
nario. Users have to define experiments, which can include
multiple scenarios. The existing experiments and the con-
tained scenarios are displayed in the main screen. Users
can switch between different scenarios by clicking the de-
sired scenario. The new main screen with the modified tree
structure is shown in figure

6.1 Design

79

Presentation Visual Editor

File Edit

ERE

(¥ Test Experiment
Scenario simple
Scenario repeat

» Scenario complex

pictures

picGood

@ 3sec

Start, Fixation
o O

first

response

/
o
instruction #

/7/;6, picsBad
.
k4

@ bsec

Y
®
a

All correct,
feedback

feedback

@ 3sec

= o]

)

Figure 6.1: Main screen of the refined paper prototype showing the same experi-

ment as in figure[5.1]in the last chapter.

In the main screen, the toolbar was revised, too. There
are distinct buttons for creating experiments and scenar-
ios. The buttons for loading and saving now refer to exper-
iments instead of scenarios. Some of the purely text-based
buttons were replaced or extended by icons. The buttons
for zooming in and out were removed. It is planned to real-
ize zooming with the mouse scroll wheel in the software
prototype. The delete-button was also removed. Users
should be able to delete tree elements using a context menu.
Finally, the label of the button for generating Presentation
code was changed to Export to Presentation.

Several notations in the design were exchanged. Motivated
by the previous evaluation, I decided to use intuitive terms
more consistently. The system calls visual stimuli now lay-
out and image and talks no longer of picture and bitmap ob-
jects. The trial duration parameter value forever was re-
placed by unlimited. Further, the field for entering the con-
tent of text stimuli is simply denoted Text instead of Caption.

Main screen toolbar
was modified

More intuitive terms

80 6 Second Prototype: Paper

(Trial Properties: instruction

Feedback
Trials

Stimulus Event Parameters:

Loyout rame:

Time: (O
I S
Duration: 3000

S —
stimlus timein: (]
Stimulus time out: :

Target Button:

Background color: % ﬂ '-I)
.I'lll'igif!!gilpaig

Sie sehen gleich 2 Bilder.

e t f 7 — + {
0 750 11500 2250 3000 3750 l 45b0 5250 6000
Pic3 first_response

ok (G]

L

Figure 6.2: Trial window from the second paper prototype with the same content
as in figure[5.3]in the last chapter.

Trial name visible The trial editing window, shown in ﬁgure now displays
the name of the trial. Its toolbar was also slightly reworked.
Next to the button for editing the trial parameters is now

Event parameters a button for showing and hiding the stimulus event pa-

can be hidden rameters section. As it was considered in chapter the
event parameters are hidden by default and can be shown,
if needed.

Feedback trials The parameters for specifying so-called feedback trials, that

relocated can be inserted after the current trial under specific condi-

tions, were removed from this window. They were relo-
cated in an extra dialog window, which can be called by a
toolbar button, because it is a rarely used function.

Better button label The button for creating picture objects was replaced with a
button for adding visual stimulus events, since this reflects
its function more precisely. It inserts a new event into the

6.2 Implementation

81

trial, preset with the values defined in the header dialog.
An associated empty layout is automatically created with
default settings. Further, a button for opening a standard
tile dialog was added that allows loading stimulus files into
the layout. If the trial contains no stimulus events and a
stimulus file is loaded or dragged from the Windows Ex-
plorer, a stimulus event and a layout are automatically cre-
ated.

The window, that was responsible for editing layouts, was
removed from the design. Its functions were integrated into
the trial window: A layout’s background color can be cho-
sen from a color palette in the event parameters section;
the coordinates of selected stimulus parts are displayed; a
button for aligning stimuli automatically was added to the
toolbar.

The window for managing repeated template structures
was only slightly modified. The changes done in the nor-
mal trial window were adopted and the toolbar elements
rearranged. Further, a button for adding a column to the
template table was inserted into the window. In order to
make them more conspicuously, the buttons for navigating
through the trials were enlarged. The modified version of
this window and an associated template table is shown in

appendix

Finally, I decided to remove all libraries from the interface.
That means that existing trials, layouts, images, and texts
cannot be reused anymore. In my opinion, stimuli can be
created quite easily in this system, so that the libraries are
not essential. I did this to simplify and clear the interface.
The windows now should appear tidier and less crowded.
I made this decision, although the users were content with
the libraries. Therefore, I am curious how the test users will
react to this change.

6.2 Implementation

The implementation process of this prototype was identical
to the first paper prototype (described in chapter[5.2).

New file dialog button

Picture properties
window removed

Repeated trial
compound window
slightly reworked

All libraries were
removed from the
interface

82

6 Second Prototype: Paper

Four subjects tested
first prototype before

Second-time testers
got no fixed tasks

Changes were
discussed afterwards

6.3 Evaluation

6.3.1 Participants

The paper prototype was evaluated with six users, who are
all psychologists: five PhD students and one psychology
student. Ages range from 25 to 34, and four of the partici-
pants are female.

The participants were recruited from the Department of
Psychiatry and Psychotherapy and represent potential
users. They cover a wide range of Presentation experience:
Two novices participated just as advanced users.

Four of the participants have already taken part in the eval-
uation of the first prototype. I chose them to direct the focus
of the feedback on the changes that had been made since
the first version. The remaining two users, however, were
unfamiliar with the system and its concept and were able
to test it unbiased.

6.3.2 Set-Up

The test participants, that were familiar with the first pro-
totype, got a short reminder of the concept and were again
encouraged to think aloud and to talk freely. These sub-
jects were not asked to accomplish fixed tasks. They were
supposed to explore the system on their own and to de-
sign some arbitrary experiment. Of course, they were con-
strained by the paper elements I had prepared. When it
seemed advisable, I spontaneously gave them specific tasks
to induce the use of certain functions. The users were asked
to express their opinion on changes, if they noticed some.
From time to time, I also pointed to some modifications.

When they used most of the functions and faced all
changes, I ended the test run. Subsequently, I discussed
the modifications with the users to hear whether they con-
sidered all changes an improvement. I also wanted to hear
their overall impressions of how the system has evolved.

6.4 Results

83

The two subjects, that had no experience with the Presen-
tation Visual Editor before, were tested in the same way
as the participants in the previous design cycle. The eval-
uation set-up was identical to the one described in chap-
ter 5.3.2) and they were asked to perform the tasks from
chapter [5.3.3] Only at the end, I deviated from that proce-
dure and showed them additionally some windows from
the first paper prototype. I found it interesting to hear how
they evaluated the changes in the design.

6.4 Results

The results from the first evaluation were confirmed in this
study. Also the new test users quickly understood the con-
cept and said that experiment design is much easier using
the Presentation Visual Editor. The tree structure caused
no problems; the connection arrows and their conditions
were understood and applied correctly. At the end of the
test, they were familiar with the time-based decision trees
so that the complex tree of the last task could be constructed
without any mentionable problems. They emphasized that
the visibility of the structure was of great value.

Similar to the first subjects, they understood many features
of the interface immediately, e. g. they directly used the trial
time line for specifying stimulus event durations. They
enjoyed the direct manipulation of text and image stimuli
in layouts and really liked the method to include stimulus
files by drag and drop.

The two new users said that everything in the system can
be intuitively understood without further explanation—
except for the visual connections in repeated template
structures. However, this was understood quickly as well
after demonstrating it once. Then it was considered as a
convenient and easy technique and they were able to apply
it correctly. It was suggested to show the connections not
all the time, because too many lines would make the screen
confusing. A proposal therefor was to display the lines only
when the mouse cursor is over a connected object.

First-time testers
were treated like the
subjects in the first
evaluation

Concept was
understood quickly

Visibility of the
structure is of great
value

Direct manipulation
and drag & drop
were enjoyed

Visual connections
had to be
demonstrated

Convenient, easy
technique

84

6 Second Prototype: Paper

Interface was
simplified; seems
clearer now

Tree layout was
improved

Users were content
with the new terms

Removal of zoom
buttons was
accepted

Header icon caused
problems

Multiple scenarios
useful

Trial window seems
easier and clearer

Freely definable color
palette is missing

The modifications, that were incorporated into the design,
were mostly approved. Only the removal of the libraries
was disputed. The participants” general conclusion was
that the interface was improved and simplified by the
changes and that it seems clearer and more compact.

It was said that displaying the trial durations inside the
trial blocks is better than the first variant as the trees ap-
pear clearer now. This is also supported by the new color
coding of the edges. The colors’ temporal meaning is easily
comprehensible.

The users were content with the new terms, I chose for
some functions and objects. For instance, unlimited was re-
garded as a better parameter value than forever for a trial
duration that is possibly unlimited (the trial can only be
ended by a subject’s response).

The subjects accepted the removal of the zoom buttons in
the main screen. In the paper prototype, however, it is not
possible to zoom the trees at all. Thus, meaningful state-
ments about zoom interactions cannot really be made at
this stage.

The icon that represents the scenario header was not iden-
tified as such by all participants. While it cannot be ruled
out that this is due to the rough sketch, I will consider ad-
ditional labels and tool tips for the buttons in the next pro-
totype.

Users found the new function for managing experiments
with multiple scenarios useful.

All participants stated that the trial window seems to be
easier to operate and that it appears clearer, because less
content is shown and the stimulus event parameters can
be hidden. One subject said that “emptier, tidier windows
with optional content are better”.

While it was liked that colors for layouts can be directly
chosen, one user missed a freely definable color palette. He
said that it would be better to be able to select any possible
color and to have the possibility to work additionally with
RGB-values.

6.4 Results

85

One participant missed a full-screen preview mode for lay-
outs. He argued that this would allow to get a better im-
pression of the stimulus presentation.

No subject missed the removed window for editing lay-
outs. They preferred to have its functions in the trial win-
dow.

In the window for repeated trial structures, all users found
the navigation buttons better than before. In contrast to the
first evaluation, the first-time users of the system had no
problems to notice them.

Two users said, that a trial library in the main screen is
not necessary. In order to reuse trials, it would be sim-
pler to copy and paste them. Two other subjects stated,
that it could make sense to reintroduce it. It could ease the
overview of large scenarios. They suggested to offer a func-
tion for showing it on request.

Opinions are less divided in the case of the stimulus li-
braries. All participants, who have known the first proto-
type before, argued for reintroducing it. Some wanted it
back to the place where it was before, i.e. as regular win-
dow component, others were for optionally showing it on
request or as some kind of own window. They argued that
the reusing of objects can possibly accelerate the work. It
is worth mentioning that the two new users, who saw the
library not until the end of the test, said that the library
is not necessary. But they as well, suggested that this fea-
ture could be included as optional content. However, that
confirmed my opinion that it is not essential to include the
library directly in the interactive prototype in the next de-
sign cycle. I definitely should consider it for a final system,
though.

Finally, one user stated that it can be hard and time-
consuming to understand unknown scenario structures in
Presentation files and that the Presentation Visual Editor
would really relieve such work.

Full-screen preview
should be added

Picture properties
window not needed

Navigation in
repeated trial
structures easier

Trial library is not
necessary

Users want stimulus
libraries back

Libraries not
essential

87

Chapter 7

Third Prototype: Java

“There are two ways of constructing a software
design. One way is to make it so simple that there
are obviously no deficiencies. And the other way is
to make it so complicated that there are no obvious
deficiencies.”

—C. A. R. Hoare

In the design cycles so far, I have evaluated two paper pro-
totypes and collected valuable high-level feedback about
the basic interactions and fundamental characteristics of
the system, which I could apply to improve my initial de-
sign. As next step, I want to evaluate my design and its
interactions in more detail with a working system. Thus,
for the third iteration of the user-centered design process, I
implemented an interactive software prototype.

Software prototypes aim at low-level feedback about the
details of the interface and its look and feel. They already
look like a full application. However, they focus on the user
interface and its interactions and are usually limited in their
functionality. That means that not all functions, appearing
in the interface, are necessarily implemented. Compared
to paper prototypes, software prototypes look more pol-
ished and precise so that users get the impression that the
interface is finished. Thus, they take the overall concept for
granted and focus on the details of design and interactions.

Working system for
more detailed
evaluation

Software prototypes
aim at low-level
feedback

88

7 Third Prototype: Java

Interactive prototype
needed for testing
the performance of
the design

Paper layout was
adopted and
polished

Functionality limited
to most important
features

Buttons have refined
icons, labels, and
tool tips

Load/save not
functional

At this stage of the design process, a working prototype is
also needed to be able to test the performance of the design.
Besides qualitative results, an interactive prototype allows
acquiring quantitative results about the quality of the in-
teractions. After a pilot study, described in this chapter, I
therefore conducted a further evaluation that compares the
prototype with Presentation’s original interface. This final
evaluation is presented in chapter

7.1 Design

The visual appearance of the software prototype is very
similar to the previous paper prototype. I adopted the lay-
out and used more polished graphics for icons and the tree
structure. In addition, some of the purely text-based but-
tons were enhanced with icons. Apart from that, I changed
some elements of the design in accordance with the evalu-
ation results of the last design cycle.

I decided to limit the prototype’s functionality to the most
important features. Besides reasons of time, it was impor-
tant to me to concentrate on the user interface and its in-
teractions. The scope was to realize all interactions that are
directly related to the experiment design, such as the tree
structure or the stimulus layouts. In other words, I wanted
to make everything functional that is necessary for prov-
ing the concept of the design. For this reason, I have not
implemented the function for converting scenarios to Pre-
sentation code, yet.

A screenshot of the main screen is shown in figure All
icons were refined to improve the look and to make the
functions clearer. To ensure that all meanings are under-
stood at once, all buttons contain a short text label and have
a tool tip, that explains briefly the function. The button
for converting the scenarios to Presentation now shows the
logo of Presentation.

The load and save functions for experiments are not imple-
mented in this prototype. Clicking the buttons only calls a
file dialog without further functionality. Further, this proto-

7.1 Design

89

% Presentation Visual Editor

=Jo/Ed

File Help

-~ ~ ~ -~ -~
Expetiment Scenario Load Save Header Trial

: L
Repeat

selected Trials Export:

|50 Experiments
= J Test Experiment
*- # beenariol

Instruction Stimuli

__» Fixation

+ - unlimited

.Stan o
}) 8OO0 mset irstrzsponss T) so0msac - 10000 msec

- |

<

Figure 7.1: Main screen of the software prototype. There exists one experiment with
one scenario included. This scenario is displayed as example experiment structure.

type can only handle one scenario. Users are able to add ex-
periments and scenarios to the project overview panel and
to rename them, but it is merely a mock-up. It is not pos-
sible to switch between different scenarios. Finally, the last
function, that was ignored during the implementation, is
the correspondent to Presentation’s template files, the func-
tion for repeating selected trial sequences. I decided to omit
this feature, because the effort of implementing it would
have clearly exceeded its benefit in terms of gaining new
insights.

The general layout of the time-based decision trees was
left unchanged. I added alignment guidelines that appear
when trials are moved. This allows to align the trials with
each other to get a nicer arrangement. Trials are connected
by dragging an edge from one to the other. Each trial block
has three anchor points for being connected on its left side:
on the top, on the bottom, and in the middle.

Correct feedhack
|

Positive Feedhack

/- 4000 msec

Experiment projects
and template
structures not
implemented

General layout of
time-based decision
trees was left
unchanged

>

90

7 Third Prototype: Java

Trials and
connections now
have context menus

Connection
conditions interaction
now fully specified

Mouse wheel used
for zooming

Trial window offers
full-screen preview

Time line is fully
functional

I introduced context menus to the trials and to the connec-
tions. In this way, the trial window can be entered (in ad-
dition to double-clicking a trial), and it is possible to mod-
ify trial parameters, like the name or the duration, without
having to enter the trial window. Further, the menu allows
deleting a trial. The connection’s context menu provides
functions for deleting it and for calling the dialog window
for configuring the associated conditions. The latter can be
done by simply clicking the connection, too.

The connection conditions window allows only the defini-
tion of conditions that are meaningful for the connected
trials. Options for other conditions are hidden. If no re-
sponse button is defined and the trial duration is fixed, only
standard transitions without any label are allowed. If the
trial can be prematurely ended by subject response, a cor-
responding box can be checked for this connection. If the
user has defined response buttons in the header dialog, he
can choose all kinds of response-dependent conditions. He
does so by selecting condition types from a drop down list
and specifying the desired value. A screenshot of such a
window is displayed in figure

As it was planned, it is now possible to zoom the decision
tree by scrolling the mouse wheel and pressing the control
key. This is a common method for zooming in many other
applications.

The trial window is shown in figure Now almost all of
its buttons have icons. One button was added to the toolbar
in response to user feedback in the last DIA cycle. It allows
a full-screen preview of the currently displayed layout.

The time line in this window is fully functional. Its scale
is automatically adjusted to the trial duration. When it is
used to change the duration or the start time of a stimulus
event, the parameters on the left side of the window are ad-
justed appropriately, and vice versa. When these changes
affect other events, the values and the visual representa-
tions are automatically updated for those events. This can
happen, for example, when an event should last until the
next one begins. The appearance of the time line segments
was slightly modified. The name of the layout, that is asso-
ciated with the event, is shown inside the segment.

7.1 Design

91

Connection Conditions

() Default transition after ending the trial
() Conditional transition
Conditions For trial transition

Transition after premature end of trial with first_response

last response W

Condition Names: Condition:

[ok |[Cancel]

Figure 7.2: Screenshot of a connection conditions dialog
showing all possible condition options.

After inserting image files into a layout, by dragging from
the Windows Explorer or loading with the file dialog, they
can be freely rearranged. Just as in the tree structure, align-
ment guidelines are shown. When the mouse cursor is over
an image or text stimulus, corner points are shown, that al-
low resizing the object by dragging them. The stimuli can
be removed by using a context menu. Double-clicking an
object leads to the image properties and text properties di-
alog respectively.

The image properties dialog, shown in figure was ex-
tended by a function for restoring the original image size
with one click, because such a standard function should be
easily accessible. Therewith it is avoided that users have
to click on the button for showing the scaling parameters
and to set the scale factor to 1. When a picture is freely re-
sized (without keeping the aspect ratio), a preview of the
distortion is displayed directly in the window.

Direct manipulation
of stimulus layouts
was realized

Image properties
dialog shows preview
of distorted image
and can easily
restore image

92 7 Third Prototype: Java

rial Properties: uli w
— = :
/! e - J Stimuli
Trial Parameters Feedback Trials Event Parameaters Add Visual Event Load Stim. Files Text Stimulus Fullscrean automatically

Stimulus Event Parameters:
Layout name: Facesl
Time:
Delta time:
Event code: acesl
Duration;

Stimulus time in:

Il

Stimulus time out:

Di
IE

Target button:

Select other color

Background color:

Faces2

1 1 1 | 1 | 1 1 | 1]
I T T T T T T T T T 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 7.3: Screenshot of the trial window. The trial contains two consecutive stim-
ulus events. The first event, Facesl, is currently displayed in the layout area. The
layout presents two image stimuli and one text stimulus.

Text properties dialog The text properties dialog stayed pretty much the same.

offers text alignments However, I added a feature that was demanded in the eval-
uation of the first prototype in chapter 5.4, Now text align-
ments can be assigned to multiline texts. Hence, the header
dialog was extended by default text alignments. A screen-
shot of the text stimulus dialog is presented in figure[7.5|

Users can freely The method for choosing colors for layouts and text stim-

choose colors uli was improved. Users are no longer restricted to a pre-
defined set of colors. Now a small field displays the cur-
rently selected color. Next to it is a button for calling a color
chooser dialog. It provides support for choosing a prede-
fined color from a palette, for choosing an arbitrary color
from the color space, and for specifying RGB-values.

A sample run of this prototype is presented in appendix B}

7.2 Implementation

93

: —
Image Properties
Filename: 021_EMH.jpg
Image name: 021_EMH
| Scalings | [Restare original image size]
Height: 400
Width: 296
Scale factar: 1.1204481792717087
Aspect ratio: @ Keep aspeck ratio
() Free resizing
() Scale to height
() Scale to width

Figure 7.4: Screenshot of the image properties dialog show-
ing one of the image stimuli contained in the layout in fig-
ure|7.3|and its scalings.

Text Properties

Fant color:

|:| Select other color

Bachkground color:

|:| Select ather color

Text: Which face shows happiness?|

EEE

Fonk: |Lucida Sans M

Font Size:

Mame: Textl

Figure 7.5: Screenshot of the text properties dialog showing
the text stimulus contained in the layout in figure

7.2 Implementation

The interactive prototype was implemented entirely in Java
(version 1.6.0). I chose this programming language, be-
cause I was already familiar with it and because it allows
cross-platform compatibility. Although Presentation itself
is limited to the Windows platform, there was no reason to

Software prototype
was implemented in
Java

94

7 Third Prototype: Java

Prototype was
developed with the
NetBeans 6 IDE

NetBeans suitable
for interactive
prototyping

Visual Library API
supports
graph-oriented
modeling

Visual Library API
realizes visualization
and behavior of the
tree structure

Tree elements are
widgets

limit the prototype to one particular system, too. The pro-
totype was developed and tested in Microsoft Windows XP
and Windows Vista.

In order to implement the prototype, I chose the software
development tool NetBeans 6 developed by Sun Microsys-
tem NetBeans is a free, open-source Integrated Devel-
opment Environment (IDE) that supports Java and differ-
ent other programming and scripting languages. NetBeans
supports the development of full desktop, web, and mobile
applications. An integrated Java Swing GUI builder allows
an easy and quick creation of graphical user interfaces con-
sisting of standard Windows components. Thus, NetBeans
can also be used as rapid development environment, which
makes it suitable for interactive software prototyping.

7.2.1 Visualization

I preferred NetBeans to other Java IDEs, because it comes
with the NetBeans Visual Library application program-
ming interface (API). This is a powerful visualization API
that supports graph-oriented modeling. It allows flexible
implementations of graph structures and provides many
methods of realizing dynamic behavior. This makes this
API ideally suited for implementing the time-based deci-
sion tree view in the Presentation Visual Editor prototype.

The tree visualization is realized by creating a Visual Li-
brary scene. The scene consists of three different layers that
are responsible for displaying and managing the trials, the
connections, and the actions assigned to the components.
The API provides functions for adding actions to the whole
scene and to the contained widgets. I used these actions, for
example, to create hover effects, zooming capabilities, and
the possibility of connecting trials by dragging. These ac-
tions made it also possible to call the trial window by dou-
ble click and to show the context menus.

Trial blocks are implemented as Visual Library widgets.
They are composed of several widgets to realize their dif-

'http:/ /www.netbeans.org/

7.2 Implementation

95

ferent parts. Connection widgets were used to create the
edges in the tree. The API provides support for customiz-
ing the visual appearance and the behavior of the widgets.

The Visual Library API was also applied to realize the lay-
out area in the trial window. The layout area is also a scene
and all displayed stimulus objects are realized with wid-
gets. The action functions of the library were used to im-
plement the direct manipulation of stimuli.

All visual representations of trials, edges, and stimuli are
associated with data objects that determine what is shown.

7.2.2 Data Structure

The data structure of the program is adapted to Presenta-
tion’s structure of scenario objects. This structure makes
sense for the data modeling of experiments. A completely
different structure would unnecessarily complicate the gen-
eration of SDL and PCL code. In short, that means that a
scenario contains trials. Each trial includes stimulus events,
and each stimulus event includes a layout. Finally, each
layout can contain different types of stimulus objects.

The PresentationVisualEditorView class creates the main
screen of the interface and is in charge of creating the tree
view and of painting the widgets. The class manages the
set of trial objects (instances of the Trial class) and the set
of connection objects (instances of the Connection class) that
are contained in the experiment structure. Thus, this class
represents a scenario. In order to extend the application to
manage multiple scenarios, this part of the data structure
has to be changed. In this case, a clearer distinction be-
tween the main screen view and the scenario data model is
needed. It was sufficient for this prototype, though.

A Trial object stores all information that is necessary for a
trial window and for painting the corresponding trial wid-
get. In particular, it stores all the stimulus events (instances
of the class visStimEve) that are presented in the trial. A
Connection object contains the conditions that are associated
with the corresponding edge.

Visual Library API
was used for
realizing the direct
manipulation of
stimuli

Data structure is
adapted to
Presentation

PresentationVisualEditorView

class represents a
scenario

Trial objects store the
set of contained
stimulus events

Connection objects
store their conditions

96

7 Third Prototype: Java

VisStimEve objects
store the contained
layout and the
therein contained
stimulus objects

imageStim objects
store images;
textStim objects
store text stimuli

Pilot study is
conducted to find
unexpected
problems

Pretest new
interactions and
detect bugs

VisStimEve objects store the values of the associated stim-
ulus event parameters. Further, each object stores a Visual
Library scene that visualizes the contained layout object.
These scenes are each shown in the layout area in the trial
window, when the content of a stimulus event is displayed.
All stimulus objects contained in a layout are also stored in
an object of this class. That can be image stimuli (objects
of the class imageStim) and text stimuli (objects of the class
textStim).

An object of the class imageStim includes an image that is
used as stimulus. It is stored in two versions: in its cur-
rent size (after possible resizing), and in its original form.
The original image is stored to retain the best possible qual-
ity when the image is resized. Further, parameter values
needed in the image properties dialog are stored. An ob-
ject of the class textStim stores a text stimulus with all its
properties.

7.3 Evaluation: Pilot Study

This evaluation of the software prototype is a pilot study. It
is not supposed to evaluate the quality of the prototype ex-
haustively. Before conducting the full evaluation, that will
also include a direct comparison to Presentation, I want to
ensure that no unexpected problems in the operation of the
prototype occur. For instance some interaction problems,
that were hidden in the paper version could become evi-
dent. Users may perceive certain actions different, when
they are performed in a real program instead of being sim-
ulated on paper. Since software prototypes afford low-level
feedback and are more detailed, subjects may discover de-
sign issues that were not apparent or even nonexistent in
the previous designs.

This prototype also includes some new interactions, e.g.
the definition of conditions for connections in the tree struc-
ture. Those functions should be pretested before doing the
final study. Further, I want to ensure that the system does
not contain any serious bugs.

7.3 Evaluation: Pilot Study

97

Finally, I will use the impressions of the study to plan the
final evaluation.

7.3.1 Participants

The software prototype was evaluated with three users,
who are all psychologists: one PhD student, one postdoc-
toral researcher, and one psychology student. Ages range
from 27 to 35, and all participants are male.

The participants were recruited from the Department of
Psychiatry and Psychotherapy and represent potential
users. All of them are experienced Presentation users.

7.3.2 Set-Up

The pilot study lasted about 40 minutes. The interactive
prototype was installed on a notebook running Microsoft
Windows XP, which was brought to the users” workplace.

The subjects were told that they will work with a software
prototype for an alternative Presentation interface. I briefly
explained to them, that it is a graphical interface that allows
building experiments visually. I pointed out to them that it
is a prototype, that can still have bugs, and that not every
function they see is fully implemented.

Similar to the previous evaluations, I encouraged them to
talk freely about their impressions and to think aloud while
testing. This allowed me to find out when users had prob-
lems and did not know what to do or how. I emphasized
that they should not hesitate to tell me about functions that
are not clear to them and that they can make suggestions
for improvement at any time.

I avoided to explain them how the interface works. I
made an exception for explaining the basic concept of using
the time-based decision trees for experiment construction.
Apart from that, I gave only small hints, e. g. that the con-
trol key has to be pressed for connecting trials or that stim-

No explanation of the
system

Users were
encouraged to think
aloud

98

7 Third Prototype: Java

Users explored the
system on their own
without fixed tasks

Extreme positive
feedback

Design is intuitive;
system could be
learned quickly

Users liked the
visibility of the
experiment structure

System useful for
unexperienced
Presentation users

ulus parts, trials, and trial connections have context menus
for further functionality.

The subjects were not supposed to accomplish fixed tasks.
They started the test on the empty main screen and were
asked to explore the system on their own initiative. From
time to time, I specified tasks that were tailored to the par-
ticipant and the current situation. I also gave them some
ideas for things that they could do. At the end, they ide-
ally had used as many different functions and interactions
as possible.

Afterwards, I discussed my observations and notes with
the users, and I gave them a last opportunity to comment
the prototype.

7.4 Results

The user feedback was extraordinarily positive. All par-
ticipants said that there are no real problems in the opera-
tion of the system. One user explicitly praised its usability.
They said that they like the Presentation Visual Editor and
even expressed enthusiasm about it. Working with this sys-
tem would increase their motivation when designing ex-
periments.

The participants stated about the general design that it is
self-explanatory and intuitive and much clearer than Pre-
sentation. Although the interaction with time-based de-
cision trees is an unfamiliar concept, which would cause
great changes in the way of working, the initial training and
the work with it would be easy.

The subjects commented about the time-based decision tree
concept, that it is very good, that the entire experiment
structure can be seen directly. Thus, coherences become
clear more quickly.

Two of the subjects emphasized, that the Presentation Vi-
sual Editor is particularly useful for unexperienced Pre-
sentation users, because one is able to build experiments

7.4 Results

99

fast without needing to know much about Presentation.
The Presentation Visual Editor would provide “immediate
functionality without long preliminary work.”

One user told me that he has enjoyed trying the different
functions; he liked especially the direct manipulation of
stimuli. I also observed, that the users were keen to ex-
periment with the functions and parameter values.

None of the participants had problems with understand-
ing the interaction with the tree. They stated that the tree
construction is convenient and intuitive. They quickly dis-
covered the possibility to arrange the trials freely and liked
it.

The interaction with layouts and the creation and manipu-
lation of stimuli were shortly understood. There are prob-
lems in the implementation of the direct manipulation,
though. The direct adjustment of stimulus sizes by drag-
ging their corners does not always work as intended. When
it is done too fast or the “wrong” corner is used, errors oc-
cur.

The handling of the time line in the trial window caused no
problems. One user criticized that it is not possible to real-
ize overlapping, simultaneous stimulus events. This makes
sense, when a stimulus event can be aborted by a subject’s
response. In this case, it should be possible to define an-
other temporally overlapping stimulus event that will be
shown as soon as the first one was ended.

The subjects had no problems with specifying parameter
values. They used the intended input format for entry
fields that require some kind of syntax, e.g. times in mil-
liseconds or comma separated lists.

Using the mouse scroll wheel to zoom the experiment struc-
tures was considered as good interaction. The participants
said that the zoom function is very useful. When scenarios
become big, it eases the overview. There was, however, one
issue with its functionality. The zoom always focuses the
same screen region so that users have to navigate a lot via
the scroll bars to reach a certain area after having enlarged
the view.

Users were keen to
experiment with the
functions

No problems with
tree interaction

Direct manipulation
understood quickly;
problems in the
implementation

Time line handling
caused no problems;
overlapping events
are missing

No problems with
specification of
parameter values

Zoom function useful
but causes
unnecessary
navigations

100

7 Third Prototype: Java

Copy function for
trials is missing

The participants missed a function for copying trials. If
they want to present a trial multiple times at different
points in one scenario, they have to specify it each time
again. It would be less laborious, if trials could simply be
copied.

101

Chapter 8

Evaluation

“Enough research will tend to support your
conclusions.”

—Arthur Bloch

As last step of the iterative user-centered design process I
conducted a final evaluation of the system. I wanted to
test the interface and its usability in more detail to prove
my design and its concept. This final evaluation goes be-
yond the previous user studies as the goal is not to capture
mere qualitative but also quantitative results. Therefore, I
conducted a comparative study that directly contrasts the
Presentation Visual Editor with Presentation’s original in-
terface.

The subjects were asked to design an identical experiment
with both systems. Therewith it was possible to measure
the performance of the Presentation Visual Editor and its
interactions. In addition, I prepared a questionnaire to col-
lect the users’ opinions about the system in a standardized
form.

The goal of this evaluation is to find out whether the
concept of time-based decision trees is understood and
whether its application in interaction design is beneficial
for the design and implementation of psychological exper-
iments.

Comparative study to
evaluate design in
more detail

Measures the design
performance

Find out whether
time-based decision
trees are beneficial

102

8 Evaluation

Debugged time line

Added overlapping
stimulus events

Indication of trial
start delays

Better zoom function

Trials can be copied

8.1 Changes to the Design

Before 1 started with the final evaluation, I made some
changes to the design. These modifications concern spe-
cific functions and were motivated by the pilot study for
the software prototype:

e Some bugs in the implementation of the trial time line
were fixed. Mutual influences of different stimulus
event time conditions are realized more consistently.

e Overlapping stimulus events were introduced and
are correctly visualized in the time line. There are two
cases in which overlapping is possible: The event du-
ration has either the value response or the value target.
The former allows a subject to stop the event presen-
tation by pressing any response button; for the latter
a specific target button is needed. If such an event
is interrupted, a possible overlapping event that was
running in the background is presented. Overlapping
makes no sense for other event timings, because those
events have fixed durations and overlapping would
never become apparent in an experiment.

e Start delays of trials are indicated more obviously
next to the time line.

e The zoom function was improved. Users can now de-
termine which screen area is focused, when they are
zooming in. There is always the area enlarged that
the mouse cursor is currently pointing at.

e lintroduced a copy function for trials to enable reuse.
The context menu of trial blocks was extended by an
appropriate entry that clones the respective trial.

8.2 Participants

Nine subjects participated in the final evaluation. Eight
of them were psychologists: three postdoctoral researchers
and five PhD students. One participant was a physician,

8.3 Set-Up

103

but he also takes part in psychological research. Ages range
from 24 to 36, and five of the participants are female. All
participants were recruited from the Department of Psychi-
atry and Psychotherapy and represent potential users.

All of the subjects are experienced computer users working
with computers for a minimum of ten years. Three of them
had programming experience before using Presentation.

They all have Presentation experience to a varying degree.
Their Presentation usage time ranges between a couple of
weeks and five years with an average of 2.4 years. Their
Presentation skills differ much. This was an important cri-
terion when choosing the subjects. Except for one user, all
have reworked existing scripts before. Five of them have
implemented complete experiments on their own. But only
three of them declared that they have used PCL in their
work with Presentation. It is particularly noticeable that
they generally assess their Presentation skills as poor. Five
of them said that they are not capable of using Presentation
to the full extent, two subjects were undecided, and only
two users said that they are rather capable of using it com-
pletely.

Seven participants were completely unfamiliar with the
system and the concept and did not participate in any of
the previous evaluations. Two of the subjects had already
knowledge of one of the paper prototypes as they partici-
pated in one evaluation two months before.

8.3 Set-Up

The final evaluation took between 60 and 90 minutes each.
Similar to the pilot study, the interactive prototype was
installed on a notebook running Microsoft Windows XP,
which was brought to the users” workplace.

At the beginning of each study, I told the participant that I
have developed an alternative interface for Presentation. I
explained that it is a graphical extension that allows build-
ing experiments visually and that it is planned to create ex-

Experienced
computer users

Varying Presentation
experience

Self-assessment of
their skills is bad

Short introduction

104

8 Evaluation

Experiment creation
in both systems

Introductory task with
the prototype

Times were
measured

Thinking aloud was
encouraged

Explanations were
avoided

Complex example
tree had to be
understood

ecutable Presentation scripts. I emphasized that it is still a
prototype that does not include all features a final system
should have and briefly described the scope of my design.
At this point, I gave no further explanations.

I then outlined the structure of the study and told the sub-
ject that he is supposed to design an experiment with both
the prototype and Presentation. While I prepared the sys-
tem, the subject was asked to fill out the first three sections
of a questionnaire.

Since the subjects were all familiar with Presentation, but
did not know my interface, I gave them a small introduc-
tory task that had to be accomplished with the prototype.
In this way, the subjects got a first impression of the system
and learned some of the interactions before the compara-
tive study began. This approach enabled a more realistic
and fair comparison.

After the introductory task, I explained the experiment that
had to be realized and started the test. The time needed to
perform the task was measured for both systems. Thereby,
the test duration was limited to 30 minutes each. The or-
der of the interfaces was varied throughout the subjects to
neutralize learning effects.

Similar to all previous evaluations, I encouraged the par-
ticipants to talk freely about their impressions and to think
aloud while testing. However, this was not required, be-
cause too much speaking could influence their task perfor-
mance.

I assisted the subjects as little as possible and avoided ex-
planations. The same exceptions were made as described in
chapter for the pilot study. In addition, in some cases
I explained the meanings of parameters to save the users
from searching in the documentation. However, I paid at-
tention to help them in equal measure in both systems.

After they had worked on the tasks, they were asked to
complete the questionnaire. In between I showed them an
example for a complex experiment structure in my interface
to test their understanding of the time-based decision tree
concept. They were supposed to explain the experiment

8.3 Set-Up 105

% Presentation Visual Editor L=

ek

5
- o) o o
s s Repeat
Experiment Seenario Load Save Header Trial selectad Trisls Export

BestEndTria

T /10000
first_response
last response =1
HappyPicture e
Fixation -
b first_response
4 () so0msec /3000 mssc = Tast response =2

—— GoodEndTri

+ 10000

it >3 ol
PictureTrial

__» Fixtion

e fastyssponss T sogimsee | /15000 msee
T
N\
hits 2=3
. SadPictures BadEndTrial

Fixation

b S S)
J - 500 msec /o osoomsec | 4 () 100001

All comrect fee dback

SadCorrectFeedback

- 3000 msec

Figure 8.1: Example of a complex experiment structure that was shown to the users
during the final evaluation.

to me. Additionally, some questions in the questionnaire
referred to this example. A screenshot of the experiment
structure can be seen in figure

8.3.1 Questionnaire

To obtain standardized and more detailed results about the Questionnaire for
users’ impressions and opinions, I prepared a question- standardized and
naire. The questionnaire is divided into ten sections. The detailed results

first two collect profile data of the subject and information
about their computer and Presentation experience. Then
they were asked to assess their Presentation and computer
skills, and I wanted to know their attitude to GUIs in the
context of Presentation.

The fourth section inquires about their general impressions
of the Presentation Visual Editor design and its perfor-

106

8 Evaluation

Simple introductory
task

Main task was mood
induction experiment

mance. This is followed by questions about the time-based
decision trees and the interaction with them. Then I asked
them about the pros and cons of the GUI and of the com-
bination of the Presentation Visual Editor and Presentation
to realize experiments.

The next two sections are about the stimulus creation and
manipulation in the prototype and about the trial time line.
After that, I asked questions about their understanding of
the complex tree example and about their confidence to
build such an experiment on their own with my program
and with Presentation.

While almost all of the preceding questions use a five-level
Likert scale to obtain answers, the questionnaire concludes
with five open questions, e. g. about missed functions and
general comments. The entire questionnaire can be found

in appendix

8.4 Tasks

The introductory task, the participants were asked to ac-
complish with the prototype, was quite simple. They had
to create a trial that presents an image for a certain time.
In addition, they had to determine a target button for the
stimulus event.

The main experiment, that had to be realized with both
systems, is a simple mood induction experiment. It starts
with a trial for presenting an instruction. The instruction
explains that the subject will see five pictures and that
he has to rate his mood afterwards. The instruction can
be aborted by subject response. After the instruction has
ended, the next trial consecutively presents five pictures of
happy faces. The trial duration is fixed and the images are
shown two seconds each. In the following trial, the subject
is asked how happy he is now. An image of a scale requests
him to rate his happiness using the number keys 1-5. The
rating input ends the trial. If the subject has declared that
he is happy, that means he has pressed 4 or 5, he will see an
end trial that appreciates his participation. Otherwise, the

8.5 Results

107

image trial and the rating trial are shown again.

In order to establish a realistic work situation, the partic-
ipants were allowed to use an existing script from a real
experiment for their work with Presentation. This scenario
contains some structures that could be directly applied in
their task. This is more realistic, because most often they
do not start from scratch when writing scenarios but rather
reuse existing scripts.

Several criteria were decisive for the design of the task.
First of all, the experiment realization must be practica-
ble within 30 minutes. Therefore, the experiment must be
comparatively short and must not include too many differ-
ent or difficult features. Further, the experiment should be
a typical task that could be designed similarly for actual
work. That means, the tasks within the experiment realiza-
tion should be common to the users. In addition, the ex-
periment creation must not be too hard. Every participant
should have a real chance of succeeding in both systems.
This is why the scenario is linear and simple for the most
part as basically just a couple of text and bitmap stimuli
have to be included into trials.

Finally, I decided to add some complexity to the scenario
as there is one branching. In Presentation, this can only be
achieved with PCL and I am aware that participants might
fail for this reason. However, this branching is the last step
in the implementation with Presentation and I will keep
track of the time the participants need for the simple part of
the experiment, too. In this way, I will be able to measure
the performance of the prototype for simple, linear struc-
tures as well as for complex structures.

8.5 Results

The Presentation Visual Editor clearly outperformed Pre-
sentation in the realization of the task experiment. The
participants needed on average 21 minutes (standard devi-
ation 4 minutes) for accomplishing the task in the Presenta-
tion Visual Editor. In contrast, only one of the nine subjects

Users were allowed
to reuse existing
script

Task should be short,
typical, not too hard

Some complexity

Prototype clearly
outperformed
Presentation

108

8 Evaluation

Users failed in
Presentation

Needed much more
time for simple part

One succeeded:
Branching clearly
took more time

Several problems
with Presentation:
Shortcomings in
structure, syntax,
parameters, PCL,
etc.

succeeded in creating the experiment in Presentation in the
given 30 minutes. Two users failed completely, at most they
created one of the trials. Four of the other subjects devel-
oped all trials and realized the simple linear structure. This
took them on average 40 % of the time longer than creat-
ing the whole experiment in the prototype. In the end,
they failed at creating the branching because PCL had to
be used. Two more participants wrote in addition a ba-
sic approach in PCL, but the given time was far too short
for both to finish the task. These two needed 30 % more
time for programming the simple part than in the proto-
type. Finally, one user managed to accomplish the whole
experiment with PCL. He was also the only one who de-
veloped the simple scenario part in shorter time than the
whole experiment in the prototype (20 % less). However,
for implementing the whole task in Presentation he needed
20 % more time.

The reasons Presentation did poorly are manifold:

e Most users had great difficulties with the structure of
Presentation. They did not know where which pa-
rameters had to be used. Partly, they even had prob-
lems with the general concept of scenario objects, e. g.
that bitmaps are parts of pictures or how trials are
constructed.

e The names and meanings of parameters were un-
known in many cases and had to be looked up. Often
the possible parameter values were not known, too.

e It was laborious to type every statement on their own
instead of clicking it.

e The users had many syntax problems.

e Some users implemented the scenario unsystemati-
cally. This led to loss of time.

e Users spent much time with reading in the documen-
tation.

o It was difficult to design the layout of the stimulus
objects as it is not directly visible.

e Most users had great deficiencies in PCL.

8.5 Results

109

The realization in Presentation was hard, although every-
one used the existing script that was provided to them. It
would have been simple just to copy some of the structures,
but for some users it was difficult to understand the content
at all.

The fulfilling of the task in the Presentation Visual Editor
was much more comfortable for the users and they had less
problems in the process. Just the problems that made Pre-
sentation difficult, did not occur with the prototype. For
instance, no syntax errors are possible, the visual structure
is more intuitive, stimulus layouts can be directly designed,
and users had to consult hardly ever the documentation.

During the introductory and the main task, the users han-
dled the prototype well. They found all functions they
needed in short time. None of them had problems with
the creation of stimuli and they liked the direct manip-
ulation and the drag and drop functionality. They were
able to build the image trial quickly and enjoyed design-
ing its layouts, e.g. they tried different colors and image
sizes. The trial construction and the time line interactions
also worked well. In the main screen, they made positive
comments about the visibility of the structure and enjoyed
the interaction with the tree. In particular, they appreci-
ated that the trials can be freely arranged and that align-
ment guidelines are shown meanwhile. The users under-
stood the creation of connections and their conditions quite
fast and most of them also understood the general concept
immediately. Only a few users had to think about how to
create the branching at the end, but they found the solution
on their own.

Usability issues and suggestions for improvement that I
noted down during the test or that were stated in the ques-
tionnaire, are treated later in this section.

8.5.1 Questionnaire: General Impressions

All participants enjoyed working with the prototype. Ev-
eryone fully agreed, that they like the Presentation Visual
Editor and that they would prefer it to Presentation (me-
dian of 5 for both in the Likert scale).

Work with Visual
Editor much more
comfortable

Users were able to
handle the prototype
well

Users preferred
Visual Editor to
Presentation

110

8 Evaluation

Clearer, simpler,
more user-friendly,
and easier
comprehensible

Saves time

More suitable for
beginners

Less errors and
problems

Quick
comprehension of
time-based decision
trees

No interaction
problems with the
tree

They enjoyed the general design of the Presentation Visual
Editor (median 5). They said that they would change to a fi-
nal system (median 5) and stated as reasons that it is easier
comprehensible, clearer, simpler, and more user-friendly.
Further advantages are that the parameter names are vis-
ible and that no syntax and programming is needed. They
were convinced that the system would save lots of time
and strongly agreed that it could make their work more
efficient and faster (median 5). In particular, they strongly
agreed that the editing time for creating experiments would
be shorter than with Presentation (median 5).

The users expressed that a switch to the Presentation Vi-
sual Editor would not be too laborious as they strongly
disagreed that the time needed for familiarizing with it af-
ter a change from Presentation would be too long (median
1). All of the subjects also found that the system is more
suitable for beginners, because the time for familiarization
would be shorter than with Presentation (median 5).

The participants expected that they would make less mis-
takes when working with the Presentation Visual Editor
(median 4) and that they would meet less problems when
creating experiments (median 5).

8.5.2 Questionnaire: Time-Based Decision Trees

Half of the subjects were undecided whether they had
problems to understand the visual tree structure immedi-
ately (median 3). This is most likely due to the fact that de-
cision trees were unfamiliar to them, and thus, some users
initially had slight problems. However, no one stated that
he did not understand them and the initial problems could
be overcome soon as they said that they were able to com-
prehend quickly how the tree structure works (median 4).

No subject stated interaction problems with the trees in
general; almost all disagreed with the corresponding state-
ment (median 2). They also dissented that they had inter-
action problems with the connection arrows or with setting
their conditions (median 2). However, four users either
were undecided or admitted problems. They criticized that

8.5 Results

111

it was hard to perceive where trials can be connected and
therefore they needed multiple tries. The majority of users
did not have this problem.

The participants” opinions about the tree structure were
positive. They enjoyed constructing experiments visually
and said that the visual tree structure helps with under-
standing the experiment’s function and that it increases the
clarity of experiments compared to Presentation scripts (all
three statements have median 5).

8.5.3 Questionnaire: GUI

Except for one user all agreed with the statement that they
would prefer a GUI for their work with Presentation (me-
dian 4) and hence disagreed with preferring text-based in-
teraction (median 2). These questions were asked before
they had seen the prototype. Afterwards, they said that
Presentation generally benefits from graphical interaction
(median 5). The deviant from before was neutral in this
question. Most subjects saw no disadvantages when using
a GUI (median 2). Four of them, however, were undecided
and questioned whether a GUI can provide equal possibili-
ties in comparison with the text editor and were concerned
about losing control about some scenario details.

The participant who contradicted the others said that he
prefers code-writing in general. But even he admitted that
he was pleasantly surprised, because the Visual Editor has
clear advantages when something should be tried quickly
and because users do not have to struggle with syntax.

Since the Visual Editor is not intended to be an indepen-
dent experiment interface, it was interesting to learn that
the subjects think that the combination of the Visual Edi-
tor and Presentation for the creation of experiments would
neutralize possible drawbacks of textual and graphical in-
teraction, and instead it would combine their advantages
(median 5). In this context, the subjects were contrary to the
statement that the Visual Editor would increase the com-
plexity of work as two programs have to be used (median
1).

Trees increase clarity
of experiments

General preference
for GUI

Use of both
programs neutralizes
their drawbacks

112

8 Evaluation

Users enjoyed
stimulus creation and
manipulation

Users enjoyed the
time line

Users understood
complex tree

Would dare to
construct similar
experiment with
Visual Editor

Would not dare with
Presentation

Would take longer in
Presentation

8.5.4 Questionnaire: Trial Window

The results concerning stimuli are also very clear. The par-
ticipants liked the creation of visual stimuli in the proto-
type (median 5). Creating and editing the stimuli was intu-
itive and natural to them (median 4). They liked that they
were able to drag and drop images directly into the pro-
gram (median 4). And they also really liked the possibility
of direct manipulation of visual stimuli (median 5). Finally,
they almost unanimously agreed to the full extent to the
statement that they liked that all changes to visual stimuli
were directly visible (median 5).

All participants really enjoyed the time line in the trials
(median 5). The time line facilitated to get an overview of
the course of events within a trial (median 5), and no one
had mentionable interaction problems with it (median 4).

8.5.5 Questionnaire: Complex Tree

At the end, everyone had fully understood the concept of
time-based decision trees. All subjects were able to explain
the complex example scenario correctly to me and stated in
the questionnaire that they have understood it quickly and
without any problems (median 5). In the meantime, they
also felt confident with the prototype’s operation. They
said that they would dare to construct a similar experiment
with the Visual Editor on their own (median 5).

This was completely different with Presentation. Almost all
disagreed that they feel confident to be able to construct a
similar experiment with Presentation (median 2). Only the
three participants that had some PCL experience felt confi-
dent (median 4). However, these three, like everybody else,
strongly disagreed that constructing the experiment with
Presentation would not take longer than with the Visual
Editor (median 1). Finally, all subjects contradicted that it
would not be more complex to comprehend a similar time
structure in a Presentation-script (median 1).

8.5 Results 113

8.5.6 Suggestions for Improvement

Several problems with the system became apparent, too.
The users made various suggestions for improvement.

e To some users it was not entirely clear from where to Connection anchor

where connection arrows can be dragged and where
on the trial blocks they have to be fixed. At the mo-
ment, the arrows snap to possible connection points
that are near. To solve the problem, the anchor points
should be visualized in addition.

One user had reservations to the tree concept, because
it is non-standard to common Windows applications.

Some of the users were bothered by the need to press
the enter key sometimes to process their input. For
instance, when entering image scale values, the users
have to press enter afterwards to initiate the compu-
tation of the other image values. Only then, clicking
OK leads to a changed image size. In the header di-
alog problems with the enter key occurred, too, be-
cause it was not obvious to some users. They sug-
gested that the typing of values already initiates fur-
ther processes.

One user suggested to add tool tips to input fields that
should display the possible parameter values.

Two users mentioned that the initial arrangement of
stimulus objects could be more sophisticated.

The prototype lacks a coordinates display for precise
stimulus positioning or some kind of rulers.

Direct enlargement and downsizing of stimuli still
have some bugs.

It should be possible to move multiple stimuli at once.

Two users suggested to add a function for defining
simple graphical, geometrical stimuli (boxes, cylin-
ders, etc.). This would be a Presentation function that
would clearly benefit from visual interaction.

points should be
visualized

Need for enter was
bothering

Tool tips for input
fields

Coordinates are not
displayed

Editor for geometrical
shapes

114

8 Evaluation

Tool tips for time line

Time line too
sensitive

Events cannot be
deleted

Study reached its
goal

o The time line would benefit from tool tips that display
the exact duration of an event.

e The time line appeared to be too sensitive in some
cases, which caused accidental value changes.

o A function for deleting stimulus events is missing.

e Several users emphasized that auditory stimuli are
second to visual stimuli in their experiments and
need to be implemented next.

All in all, the Presentation Visual Editor performed better
than Presentation in direct comparison. The participants
understood its concept quickly and clearly preferred the
whole interface to Presentation. The prototype enabled the
users to create the experiment in less time and with less
problems. The users already needed much less time for re-
alizing the simple part of the scenario. But the superior-
ity and the benefits of the time-based decision trees became
particularly apparent as soon as some complexity had to be
overcome. While all participants successfully created the
branching within short time in the prototype, only one user
succeeded at all in Presentation—with more effort. Most
users did not even come close to the solution.

115

Chapter 9

Conclusion

“The mind is never satisfied with the objects
immediately before it, but is always breaking away
from the present moment, and losing itself in
schemes of future felicity... The natural flights of the
human mind are not from pleasure to pleasure, but
from hope to hope.”

—Samuel Johnson

This work described the design process of the Presentation
Visual Editor, an alternative interface for the software sys-
tem Presentation. In contrast to the original interface, the
whole interaction is visual. It is a development tool for
the creation of psychological experiments without the need
for programming. Time-based decision trees were incorpo-
rated into the interaction design to model the structure of
experiments visually. The creation and the design of stim-
ulus presentations were facilitated with visual interactions
that enable users to directly manipulate stimulus layouts.

I started the design process with a Contextual Inquiry,
which was conducted to get an understanding of the psy-
chological domain and to identify problems in the opera-
tion of Presentation. Thereafter, the design evolved in three
cycles of an iterative user-centered design process. The fi-
nal prototype was evaluated in an additional user study
that compared it with Presentation to verify the design.

116

9 Conclusion

Prototype not
suitable for
productive use

Several open issues

Extend to more
stimulus types

Similar interactions
for other stimulus

types

The end product of this work is still a prototype. Though
it is an evaluated working system, it is not suitable for pro-
ductive use, yet. While it already includes many important
features, other crucial elements are only simulated or are
completely omitted. The fundamental design has proven
to be intuitive and effective so that the interface and the in-
teractions should not change considerably anymore. How-
ever, many functions have to be added in the future to com-
plete the system.

During the various evaluations of the prototypes, several
issues arose and suggestions were made by users that are
still open problems. I omitted these issues for reasons of
time or because they were out of the scope of this work and
would not have contributed much to the results. These is-
sues will be covered in this chapter and I will discuss them
for future work. Furthermore, I will discuss the significance
of this work for general interaction design. This chapter
concludes with a summary of the most important points of
this work.

9.1 Future Work

9.1.1 Extension to Full Experiment System

The prototypes of the Presentation Visual Editor were lim-
ited to the creation of experiments consisting of visual stim-
uli. To become a fully productive system, the interface must
be extended to support all stimulus types Presentation sup-
ports. The main focus should be on auditory and video
stimuli, since they are used in many experiments.

The interactions for creating and managing those stimuli
should not differ too much from the existing ones. For
example, drag and drop of stimulus files should be pos-
sible for all kinds of stimuli. The basic interaction with the
time line should not differ for different kinds of events any-
way. However, the time line will become more complex
with more stimulus types, since more overlapping stimu-
lus events are possible. For instance, auditory and visual

9.1 Future Work

117

stimuli can be presented independent of each other within
a trial with possible overlapping. While preview functions
are more complex for other stimulus types, the general way
of interacting with the stimuli should be adopted from the
current design.

Besides more stimulus types, another issue of great impor-
tance is the realization of fMRI-capable scenarios directly
in the Visual Editor. The users suggested several times that
the interface should support fMRI features visually, too.

Those scanner experiments have more complex require-
ments for time. The stimulus presentation must be coor-
dinated with the scanner pulse tacts. Further, it is neces-
sary to define so-called jitter times. This is due to the BOLD
response curve the fMRI measures (see chapter 2.1.6). It is
not possible to predict the exact time of this response, and it
is important to scan different regions of the BOLD response
curve in the experiments. Therefore, it is necessary to apply
varying delays, the jitters, for the scans. This jitter control
for the scanner is difficult and is mostly done manually in
Presentation.

To support fMR]I, the interface should provide functions for
computing all factors. It would be necessary to take the du-
rations of stimulus blocks, the pulse tacts, and the time the
fMRI needs for scanning the brain (called TR) to calculate
jitter times.

The existing time line could support the visualization of
fMRI pulse control. The scanner pulses could be depicted
in the time line and there could be functions for aligning
stimuli to pulses and for specifying jitter times. Users also
suggested to define tables of jitter values with time inter-
vals and minimum intervals. These jitter tables could then
apply jitters randomized to the trials. This would eliminate
much manual work.

All in all, incorporating fMRI support into the Presentation
Visual Editor is a complex issue that must involve own user
studies to ensure usability.

More overlapping
events

Realize
fMRI-capable
scenarios

Complex time
requirements for
fMRI

Visualize fMRI
pulses

Complex
incorporation of fMRI

118

9 Conclusion

Implement
conversion into
SDL/PCL code

Implement load/save

Implement multiple
scenario
management

Template function is
important

9.1.2 Realization of All Displayed Functions

To further complete the system, it is necessary to implement
all functions that are visible in the interface but that do not
have real functionality. I will consider the most important
ones here.

First, a fully functional system definitely must be capable
of converting the scenarios to executable SDL/PCL code.
Since Presentation’s structure was adopted in the system,
the conversion into scenario objects will not be that hard.
The construction of the scenario header will be even sim-
ple. More difficult is the conversion of the tree structures as
soon as there are branchings, because then PCL code has to
be generated. However, it is important to consider that not
always PCL code should be generated. When SDL is suf-
ficient, solely SDL should be generated, because otherwise
the users would have unnecessary difficulties with under-
standing the scripts.

Furthermore, for obvious reasons it is important to imple-
ment the load and save functions. It should be considered
to use some database management system for making the
objects persistent.

Finally, the data structure has to be changed in some point
to allow managing multiple scenarios. Therewith, the ex-
periment project function, which is displayed in the main
screen, could be realized.

9.1.3 Repeated Template Structures

A function for repeating trial sequences was included in
the paper prototype, but it was not realized in the inter-
active software prototype. During the Contextual Inquiry
and in several comments made by users during the evalua-
tions, it became clear that the users appreciate the template
function and that they find it indispensable for the Visual
Editor, too. Experiments often contain large sections of re-
peated structures in which many stimuli and/or tasks are
shown. Therefore, this part of the paper prototype should

9.1 Future Work

119

definitely be realized in future designs.

Some aspects of the design need to be improved, though.
While the concept of specifying stimulus orders and com-
binations by dragging visual lines between the varying el-
ements and a template table was liked by the users, all
had initial problems to discover the function. In a future
system, there must be better visual cues that lines can be
dragged. I would consider to add some mouse over ef-
fects to the varying elements and to the columns of the table
that show starting points of the lines. In addition, the lines
should not be visible all the time. Maybe the visibility of
lines should be controlled by mouse over functions as well.

Further, the template table should be extended by more so-
phisticated randomization functions. The paper prototypes
provided only for simple randomization of all table lines.
Users suggested to add conditional randomization, e. g. de-
pendent on the values of one column.

Finally, in the main screen, the button for creating the re-
peated structures must be provided with functionality. The
visualization of repeated structures in the decision tree
should be simply adopted from the second paper proto-
type. For this feature it is necessary to introduce a function
for selecting multiple trials at once. This should be done
with common methods. Selecting multiple trials has also
benefits for the normal tree interaction as this would allow
to move them all at once. Thus, arranging the tree would
become more comfortable.

9.1.4 Stimulus Libraries

The evaluation of the second paper prototype (see chapter
made clear that the users were for reintroducing the
stimulus libraries. The need for a trial library in the main
screen is not given anymore as the system includes a trial
copy function. Stimulus libraries, however, could make ex-
periment construction more efficient as they allow to reuse
existing objects. In large scenarios with recurring stimuli,
such as text objects for task specifications, this would elim-
inate the need to define the stimuli each time again.

Better visual cues for
line dragging

More sophisticated
randomization

Adopt visualization

Selection of multiple
trials

Reintroduce stimulus
libraries

120

9 Conclusion

Add import function

Improve help system

More tool tips

Tool tips for input
fields and to display
information

Incomplete error
prevention

The libraries should be shown on request instead of occu-
pying screen space all the time. A good solution might be
to realize them in the form of a panel that is independent of
a particular window. In addition, it is useful to add an im-
port function for libraries from other experiments to fully
exploit the possibilities of such a library.

9.1.5 Help and Error Prevention

In order to save users from frustration because of errors
and wrong inputs and in order to save them the effort of
reading in the Presentation documentation because they do
not understand the meaning of functions or parameters, the
help system of the Presentation Visual Editor should be im-
proved. Besides a manual, that could be written, it is im-
portant to extend the use of tool tips, since they provide
immediate help.

In the final prototype exist only few tool tips. Most of them
explain the meaning of a button. However, users insisted
already in the evaluations of the paper prototypes on more
tool tips. There should be a tool tip for every parameter
in the system that briefly explains the meaning of the pa-
rameter and maybe its possible values. This might not be
sufficient for novices, but tool tips are ideally suitable as
reminders and for quick overview.

In the final evaluation it was suggested to add tool tips
to the input fields of parameters, too. This would allow
users to learn what kind of values are expected for a par-
ticular parameter. Tool tips could also serve as information
medium. In the time line they could be used to show the
exact values of events, and in the layout area they could
display properties like the name or the measurements of an
image stimulus.

In addition, the error prevention in the system is incom-
plete, too. Parameters and input fields that would not make
sense to be used are greyed out, but nothing is done so far to
prevent users from entering invalid values. In future ver-
sions of the program the users should be advised of their
mistakes.

9.1 Future Work

121

9.1.6 Test Mode

The users stated several times that they would like to have
a test mode which provides a time line for running back
and forth through experiments at different speeds and that
would allow to halt experiments. Presentation itself allows
only to run the experiments in real-time from the begin-
ning. The debugging of experiments thus is complicated
and time-consuming,.

However, I do not believe that it is possible to add such a
test mode to the Presentation Visual Editor. In order to re-
alize the function, it would be inevitable to access Presen-
tation’s compiler. This is not possible, though. A simulated
test run in an own system would not help, since the execu-
tion in Presentation is crucial.

During the evaluations another idea was expressed how to
facilitate testing. The idea was to exclude certain trials from
a scenario in order to be able to execute only parts of it. This
test mode should be considered for implementation in a fu-
ture system. Trials could be marked as disabled with the
effect that they are ignored in the conversion of the scenario
to Presentation code.

9.1.7 Significance for Interaction Design

This work has successfully shown that time-based deci-
sion trees are beneficial in the interaction design of psycho-
logical experiments in comparison with Presentation. The
greater goal, this work pursues, is to show that time-based
decision trees are generally beneficial in interaction design,
since they efficiently allow to model time in interactions.
The specialization on the psychological domain was cho-
sen to test the concept in practice. The question now arises
to what extent the positive results of the specialized case
can be generalized to interaction design on the whole, i.e.
how significant are the results for interaction design.

Basically, the results cannot simply be transferred to gen-
eral interaction design for various reasons. Firstly, the de-

Users want test
mode

Realization seems
impossible

Disabling of trials to
facilitate testing

How significant are
the results for
general interaction
design?

Results cannot be
transferred

122

9 Conclusion

Very specialized
case of interaction
design

Success of Visual
Editor was not
caused solely by
time-based decision
trees

Results motivate
further research

Concept proved to
be efficient, easily
readable, and easily
comprehensible

sign of psychological experiments is a very specialized case
of interaction design. It can be questioned whether this re-
ally reflects a typical case of interaction design—in particu-
lar, because the interaction designers, the psychologists, are
no programmers or software engineers and do not want to
become some.

There is also the fact that the Presentation Visual Editor out-
performed Presentation not solely due to time-based deci-
sion trees and their capability of concrete visual modeling
of time structures. The Visual Editor took also advantage
of its pure visual interaction. It performed better, because
no programming is needed in experiment construction and
because stimulus creation and editing with direct manipu-
lation is much simpler and more comfortable than in Pre-
sentation. Furthermore, the user interface of the reference
system Presentation has many usability problems and is
disliked by its users.

Thus, it can be debated whether the results would have
been similar clear, if the reference system were good (with-
out modeling of time, though) and the users were pro-
grammers who do not have fundamental problems with
the structure of the program. All those reasons make direct
generalization of the findings impossible.

However, the impressions of the work with time-based de-
cision trees are very positive and give motivation to further
research the concept. Nothing in the results suggests neg-
ative aspects of the tree concept, instead all results were so
clearly positive that the concept should definitely be pur-
sued in further projects.

First of all, the results showed that time-based decision
trees are capable of modeling time structures of interactions
efficiently. At the same time, they are easily readable by
humans. Throughout the evaluations, no participant had
problems to comprehend the structure of experiments or
the general structure of the graphs. The concept of time-
based decision trees in the experiment/interaction design
was always understood quickly.

All in all, this work cannot draw a conclusion for the
benefits of time-based decision trees in general interaction

9.2 Summary

123

design. But this project delivered promising results that
should motivate future projects.

9.2 Summary

The goal of this work was to overcome the limitations in
current software development in the design of the tempo-
ral layout of interactive systems. I proposed a solution for
modeling time in interactions that can be integrated in the
design process of interactive systems: time-based decision
trees. I wanted to show that this concept is beneficial in
interaction design.

The approach was proved by designing a visual develop-
ment system for the creation of psychological experiments.
In three iterations of user-centered design I developed an
innovative and working system based on time-based deci-
sion trees. The final prototype allows to construct exper-
iment structures and all experiment components with vi-
sual interactions. Thereby it facilitates the design of time
structures in experiments by providing efficient interac-
tions with time-based decision trees.

The final evaluation of the system delivered qualitative and
quantitative results that show that the design of the Presen-
tation Visual Editor is superior to a conventional system. I
was able to verify the benefits of time-based decision trees
in the design of psychological experiments. The users un-
derstood the concept and applied it effectively.

It was not possible to prove the usefulness of the concept in
general interaction design, since the examined application
domain is very specialized. This is an open issue left for
future research.

125

Appendix A

Additional Paper
Prototype Screens

Presentation Visual Editor =X

File Edit

= o N 9 Export

Repaat
bEa &
@Tesf Experiment
Scenario simple
» Scenario repeat
Scenario complex
16x first
response
Repeated Trial Compound
"
task
instruction N
.STurTa ngaﬂun pictures - w | first end
0.5sec @ 4 = response » @ 4;
bsec sec - P sel
@ first @ unlimited
response

«Ee= m = >

Figure A.1: Main screen of the second prototype showing an example experiment,
which was used in the evaluations. It contains a repeated trial compound visual-
ized as one block. The middle three trials are repeated 16 times.

126

A Additional Paper Prototype Screens

Repeated Trials Compound: task

Name: (templatel

Table controlled
varying Stimuli:

Previous
trial

Connect columns with
target objects or
target parameters

Stimulus Event parameters:
Layout name:
Time:
Delta time:
Duration:
Event Code: 2p
Stimulus timein: (||]
Stimulus timeout: (|||]
Target Button: .
il

O
Background color: C ﬂD

C e

I?.IE' (@]

I

]

Next
trial

—t

unlimited
first_response

e

pic2

probleml

Edit Table
Entries
|

Figure A.2: Repeated trial compound window from the second prototype for man-
aging trials contained in template structures. In the shown stimulus event, a dif-
ferent text stimulus is presented in every iteration. The event code parameter is
connected with three columns. This has the effect that the names of all stimuli, that
were presented in an iteration, are written to the log file. Finally, the target button
parameter is connected with a column to define a different correct response button

for the stimulus event in every iteration.

Table for repeated Trial Compound

[

Add
Column

Insert
Stimulus
s

Randomize lines: O

pic1 pic2 problem? tb
Angryl Sad3 Textl 1 =
Happy1 Neutrall Textl 2 F
Happy3 Sad4 Text3 2
Neutral4 Happy1 Tt 2
Sad2 Happy2 Text3 1
Sad3 Angry3 Text2 2
Angry3 Happy4 Text3 1 E
Neutrall Sad2 Text2 1 7
Angry4 Neutral4 Text2 2
Angry2 Happy3 Text4 1
Happy4 Angry4 Textl 2
Sad4 Angryl Text4 3
Neutral3 Sadl Text3 1
Neutral2 Angry2 Textl 1 1)
Sadl Neutral3 Text2 1
\J

Figure A.3: This window from the second prototype shows
an example template table for a repeated trial compound.

127

Scenario File Header <]

@ener‘al Scenario Parameters ﬁefuulf Appearance | Trial and Stimulus Event Par‘ameTera

Scenario name: Scenario type: @ trials
peL ie: E— O ks

O fMRI_emulation

Active buttons: D

Stimulus properties: (|
Event code delimiter: [|

No logfile: [m]

oK Cancel

Figure A.4: Header dialog for specifying general scenario
parameters.

Scenario File Header

General Scenario Parameters | Default Appearance | Trial and Stimulus Event Parameters |

Default font: ‘ﬂ

Default font size:

Default text color: DO.
DHS
Default background color:
S8:58e
®

l OK l Cancel

Figure A.5: Header dialog for specifying parameters con-
cerning the default appearance of stimuli.

128 A Additional Paper Prototype Screens

Image Properties X

Filename: Facel.jpg

Image Name: (Facel]

Scalings @

Height: (400 |
Width: (250]
Scale factor: 1 |

Aspect ratio: @ Keep aspect ratio
O Free resizing
O Scale to Height
O Scale to Width

[ok |[cancel]

Figure A.6: Image properties dialog from the second proto-
type showing an image and its measurements.

Picture Properties X

Picture name:

Background color:

(])
DEEEIE
(]

Automatic stimulus alignment: (@) m m

Stimulus Librar'y@
(®Load Stimulus Files

[Face examples ﬂ

Facel.jpg
Face2.jpg o
Face3.jpg
Face4.jpg
}Ezzzzjlgg Bitmap name: Sadl X-Position:
Face7.jpg Y-Position:
Face8.jpg
Face9.jpg
Facel0.jpg
Facell.jpg

mm D)

—

@Exisﬁ-ng Stimulus Objects

T

l oK l Cancel

Figure A.7: Picture properties dialog from the first proto-
type. It displays a picture object with two bitmap stim-
uli. Since it was quite redundant, it was withdrawn and
its functions were integrated into the trial window.

129

Appendix B

Software Prototype:
Sample Run

eeeeeeee

Figure B.1: After starting the application, the user sees the
empty main screen. The current scenario is called scenariol
and is contained in Test Experiment. These are created by
default.

130 B Software Prototype: Sample Run

f 1

Trial Properties

Trial name: Triall

|' T . |
Trial bype: | First_response lv:
Trial duration: () stimuli_length

() unlimited

{*) |5000|
Sktart time:
Start delay: 0
All responses:

[oK] [Cancel]

Figure B.2: After pressing the button for creating a new
trial, this dialog appears. All trial parameters can be spec-
ified in here. The trial name is set to Triall (default name).
The trial can be ended by subject response with any button
by selecting first_response. The (maximum) duration is set
to 5 seconds. The other parameters” defaults are kept.

% Presentation Visual Editor g@

Fie Help

Figure B.3: The new trial was created by pressing OK and
appears in the main screen. The trial block shows its name
and duration. It is the starting trial in this scenario.

131

& Presentation Visual Editor

Fle Help

.stan
/-1 5000 msec

: @
o~
S o o © S Repet
Experiment Scenario Load Save Header Trial selected Trisls Export
Experiments
=23 Test Experment
" » geanarif i
Trial2
Triall

/- 10000 msec

Figure B.4: In the same way, a second trial, Trial2, is cre-
ated that lasts for 10 seconds. Its longer duration is also
indicated by its bigger size.

Trial

.Star\
) 5000 msee

Presentation Visual Editor ==}
)
o - ®
]] © (]] Repeat
Experiment Scenario Load Save Header Trial selected Trials Export
Sbpermerts |
53 Test Experiment
"o canariol
Trial2

1 10000 msee

Figure B.5: A connection is dragged from Triall to Trial2.
To initiate the connection process, the user has to click any-
where in a trial while pressing the control key.

132 B Software Prototype: Sample Run

® . [OJEs
Fie Help
i | [L - ®
'8 o o o o
) Repeat
Experiment Scenario Load | Connection Conditions selected Tridls Expart
(O Defau transition after ending the trial
|2 Experiments ® Esndiiaraltanstion
-3 Test Experiment.
® scenariol Condtions for trial transiion
Transiion after premature znd of trial with first_response
_» THal2
Tiialt e
Start, < -
L J so00msec == J* 10000 msec
T

Figure B.6: Two connections were successfully created.
One is kept as standard transition that is taken if the trial
ends regularly after 5 seconds. After clicking the other one,
a dialog appears. This connection is set to be taken after the
subject has prematurely ended the trial.

% Presentation Visual Editor o
Fie Help
. @
Repeat
l:

-~ o) 2~ -
Experiment: Scenario Load Save Header Trial Export

& Experiments
= (£ Test Experiment:
® scenariol

selected Trials

e Tral2
Trial —

Start T
e) sooomses /) 10000 msee
first.esponss

.

Figure B.7: The two connections are now fully defined.
The conditional transition is displayed in red and is labeled
with its condition.

133

& Presentation Visual Editor

BEX]

o g
/. 5000 msec
fistrespanse

- 10000 msec

Fle Hep
- @
o o o e o Repeat

Experiment Scenario Load save Header Tril selected Trigs Export
=]
Y

) Trial2 Trial3
Trialt S
-) 500 msee

Figure B.8: A third trial was inserted. When its position
is changed, alignment guidelines appear that allow a nice

arrangement.

% Presentation Visual Editor

=)<

Fie Hep

)

] 4] © (<] L Repeat g
Experment Seznaria Load save Header Trial selected Tridls Export
Experiments o

©-E Test Experiment: -
» Geeratiod
Trial2 Trial3d
Trial1
Stert / /1 500 msec
. /- 5000 msec #/ 10000 msec
first~esponse

Figure B.9: The scroll wheel of the mouse (in combination
with the control key) was used to zoom in the tree structure.

134

B Software Prototype: Sample Run

Scenario File Header @

| General Scenario Parameters | Default Appearance | Trial and Stimulus Event Parameters

Scenario name: scenariol Scenario type: @ Trials
PCL file: () FMRT
() FMRT emulation
Active buttons: 2
Button codes: 1,2

Target button codes:
Stimulus properties:

Event code delimiter: |,

o logfile: []

Figure B.10: After pressing the header button, a dialog for
specifying the scenario header appears. It is used to define
two response keys for the subject with the Active buttons
parameter. The buttons are assigned the codes 1 and 2.

Trial Properties: Trial1
P = ‘:’ p-d x Align
4 -D i J P Stimi
Trial Paramekers Feedback Trisls Event Paramsters Add Visusl Event Load Stim. Files Text Stimulus automatically
i ! ! . |
k | } t } t f t t t !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
first_response

Figure B.11: After double-clicking Triall in the main screen,
this Trial Properties window opens. The trial contains no
stimulus event, yet. Thus, the layout area is empty and
nothing is displayed in the time line.

135

Faont color:

Text: Hzllo!
|:| | Select other color |

Background colar:

D Select ather colar

EEE

Font: |Times Mew Roman

Font Size:

MName: |Text1

Figure B.12: After pressing the Text Stimulus button, this
dialog opens. A text is entered and its font type, font size,
and font color are specified.

7

Text Stimulus

Add Visual Evert: J l Load stim. Fies

=

Trial Parameters Feadback Trils l Event Parameters

- Align
Stimui

Fulscrasn automaticaly

I I ! I I I I I I | |
I T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

first_response

Figure B.13: A stimulus event (with default duration from
header) and an associated layout were created automati-
cally. The text stimulus is displayed in the layout. An im-
age stimulus was created by dragging an image file from
the Windows Explorer into the layout.

136

B Software Prototype: Sample Run

M

ﬂ - Align
2z d 2
Trisl Parameters Feedback Trisls Euem Paramaters Add Vsua{ Evert Load Stim. Files Text Stimulus FMstreen automatically

I ! i I I I ! I i I |
I T T T T T T T T T 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

first_response

Figure B.14: The image was moved to the center. It is cur-
rently resized by dragging its lower-right corner. The bor-
ders are displayed when the cursor is over the object.

) 3 L= L7 R
Trial Parameters Feedback Trisls Event Parameters Add Visual Event Load Stim. Files Text Stimulus Fullscreen autematically
Stimulus Event Parameters:
e
e
Stimuus tme out:
Target button:

Background color: || [select other color_]

I T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

first_response

Figure B.15: The text was also moved and resized. In addi-
tion, the stimulus event parameters are now shown on the
left. The event duration is currently changed by dragging
the time line segment’s endpoint to the right. The corre-
sponding parameter value is updated appropriately.

137

L% B/ gk = 4 Align
. s : = - St
Trisl Parsmeters Feedback Trisls Event Parsmeters Add Visusl Event Lozd Stim. Fies Text Stimulus Fulscrasn automaticaly

Stimulus Event Parameters:
o
bette
R —
bt
Skt
g sn
padgroundaoor: 0S|

R

T T T T T T T 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

first_response

Figure B.16: By pressing the Add Visual Event button, two
more events were added to the trial. The layout of the last
event is shown. For this event a target button is specified.
This is the correct button a subject has to press for the event.
It can be chosen from the two previously defined buttons.

ﬁ}

e -4 -~ A Aign
; 3 | = 1 | =
Trisl Parsmeters Fesdback Trisls Event Farameters Add Visusl Event Load Stim. Files Text Stimulus Fulscresn i)

Stimulus Event Parameters:
Layout name: Layout3
Time: 3000

Dot
e —
bt
L —
kst
S
dgardcie: 1

T T T T T T 1
0 500 1000 1500 2000 2500 3000 3800 4000 4500 5000

first_response

Figure B.17: The duration of the second event was made
response-dependent. Therefore, it can overlap with the
third event.

139

Appendix C

Final Evaluation:
Questionnaire

140 C Final Evaluation: Questionnaire

Fragebogen: Presentation Visual Editor

1) Alter: Jahre
Geschlecht: (m) (w) (zutreffendes ankreuzen)
Hochster Schulabschluss / Titel:

Beruf:
Arbeite mit Computern seit, Jahren
Arbeite mit ,Presentation” seit Jahren

2) Erfahrung mit Presentation/Computern: Bitte zutreffendes unterstreichen oder eindeutig ankreuzen:

Haben Sie bereits mit der Software ,Presentation’ gearbeitet? JA NEIN
Wenn ja,
haben Sie Experimente nach Vorgabe erstellt? JA NEIN
haben Sie vorhandene Skripte umgearbeitet? JA NEIN
haben Sie selbststindig Skripte erstellt? JA NEIN
haben Sie PCL benutzt? JA NEIN
haben Sie bei der Arbeit in ,Presentation’ den integrierten Editor verwendet? JA NEIN
haben Sie einen externen Editor verwendet JA NEIN
Haben Sie Erfahrung mit Textverarbeitung (z.B. MS-Word, Open Office)? JA NEIN
Haben Sie bereits vor der Arbeit mit Presentation iiber Programmierkenntnisse verfigt? JA NEIN

3) Bitte bewerten Sie in den folgenden Tabellen die jeweiligen Aussagen und geben Thre Zustimmung an. Gehen Sie von
ihrem personlichen Empfinden aus. Kreuzen Sie die entsprechenden Zahlen in der jeweiligen Zeile an:

Trifft Trifft Neutral Trifft Trifft
gar eher eher zu absolut

nicht zu nicht zu zu
Ich kann ,Presentation’ in vollem Umfang nutzen/anwenden. [€)] 2) 3) “4) 5)
Ich wiirde mich als erfahrenen Computernutzer bezeichnen. [€)] 2) 3) “))
Ich wiirde, wenn ich die Wahl hitte, bei der Arbeit mit
,Presentation’ eine grafische Oberfliche bevorzugen. (1) (2) 3) “4) (5)
Ich wiirde, wenn ich die Wahl hitte, bei der Arbeit mit
,Presentation’ einen Texteditor bevorzugen. (€8] 2 3) “) [©)

4) Gesamteindruck: Wie wiirden Sie das Programm ,Presentation Visual Editor’ bewerten?

Das Programm (Visual Editor) gefallt mir gut. (1) 2) 3) “4) 4)
Ich wiirde dieses Programm (Visual Editor) zur Erstellung von

Experimenten ,Presentation’ vorziehen. (1) (2) 3) “4) [Q)
Ich glaube, die Umgewohnungszeit auf den Visual Editor wire zu

lange. @ (@) 3) (€] (©)]

Ich wiirde von Presentation zu diesem Programm wechseln, wenn
es fertig wire, d.h. es giibe z.B. Unterstiitzung fiir alle Stimuli-

Arten und Templates und eine visuelle Unterstiitzung fiir fMRI. (€3] 2) 3) “4) 5)
Was wire Ihr Hauptgrund fiir oder gegen einen Wechsel?

Ich glaube, dass der Visual Editor meine Arbeit effizienter und
schneller machen konnte. (1) 2) 3) 4) (5)

Figure C.1: The questionnaire (page 1) which the subjects were asked to fill out
in the final evaluation of the interactive software prototype. The testers filled out
1)-3) in advance, the remainder at the end after doing the experiment.

141

Trifft Trifft Neutral Trifft Trifft
gar eher eher zu absolut

nicht zu | nicht zu zu
Ich glaube, die Bearbeitungszeit zur Erstellung von Experimenten
wire mit dem Visual Editor kiirzer als mit Presentation. (1) (2) 3) “) (5)
Ich wiirde mit dem Visual Editor weniger Fehler machen. (1) 2) 3) “4))
Ich wiirde mit dem Visual Editor auf weniger Probleme bei der
Umsetzung von Experimenten stofen. (1) (2) 3) “4) (5)
Die Einarbeitungszeit fiir Anfanger in dieses Programm ist kiirzer
als bei Presentation. (1) 2) 3) “4) (5
Mir gefillt der generelle Autbau des Programms. (1) 2) 3) “) (5)

5) Fragen zur visuellen Baumstruktur im Hauptfenster
Ich hatte Verstandnisprobleme bei der visuellen Baumstruktur im
Hauptfenster. [€)) 2) 3) “4) (5)
Ich konnte schnell nachvollziehen, wie die Baumstruktur
funktioniert. @) ?2) 3) “ 5)
Ich hatte Probleme bei der Interaktion mit den Baumen. (1) 2) 3) “) (5)
Wenn zutreffend, welche Probleme?
Ich hatte Probleme bei der Interaktion mit den Verbindungs- (1) (2) 3) “) 5)
pfeilen oder der Einstellung der Pfeilbedingungen.
Wenn zutreffend, welche Probleme?
Das visuelle Autbauen der Experimente hat mir gefallen. (1) 2) 3) “4) 5)
Die Baumstruktur hat mir geholfen zu verstehen, was in einem
Experiment passiert. (1) 2) 3) “4) (5)
Die visuelle Baumstruktur erhoht die Ubersichtlichkeit von
Experimenten im Vergleich zu Presentation-Skripten. (1) (2) 3) “) (5)
6) Fragen zur graphischen Oberfldche

Eine graphische Oberflache bietet generell Vorteile gegeniiber der
textbasierten Interaktion bei Presentation. (1) 2) 3) “4) (5
Es gibt Nachteile bei einer graphischen Oberflache. (1) (2) 3) “) (5)

Wenn zutreffend, welche?

Figure C.2: The questionnaire (page 2) which the subjects were asked to fill out
in the final evaluation of the interactive software prototype after doing the experi-

ment.

142 C Final Evaluation: Questionnaire

Trifft Trifft Neutral Trifft Trifft
gar eher eher zu absolut
nicht zu | nicht zu zu

Die Kombination aus dem Visual Editor (zur Erstellung eines
Experiments und anschlieBenden Erzeugung von Presentation-
Skripten) und Presentation (zur weiteren Bearbeitung dieser
Skripte) wiirde evtl. Nachteile des Textuellen oder Graphischen
aufheben, d.h. es wiirde das Beste aus beiden ,,Welten“ vereinen. (1) (2) 3) “4) [©)
Der Einsatz des Visual Editor zur Erzeugung von Skripten, die
nachher mit Presentation evtl. noch weiter bearbeitet werden
miissten, erleichtert die Arbeit nicht, sondern erhéht nur die
Komplexitit, da zwei Programme benutzt werden. [€)) (2) 3) “4) [Q)

7) Fragen zur Stimuluserstellung

Das Erstellen der visuellen Stimuli im Programm hat mir gefallen. [€)] 2) 3) “4))
Ich fand die Erstellung und Bearbeitung intuitiv/natiirlich. [€)] 2) 3) “4) 5)
Das direkte Einfiigen von Bildern per Drag & Drop hat mir

gefallen. [€))] 2) 3) “4) Q)
Die Moglichkeit der direkten Manipulation des Layouts und der

GroBen der visuellen Stimuli hat mir gefallen. (1) (2) 3) 4) [Q)
Ich fand es gut, alle Anderungen an den visuellen Stimuli sofort

zu sehen. €8] 2 3) “) [®)

8) Fragen zum Zeitmanagement in Trials

Die Zeitleiste in den Trials hat mir gefallen. (1) 2) 3) “4) (5)
Die Zeitleiste hat es erleichtert, einen Uberblick iiber den Ablauf

der Ereignisse innerhalb eines Trials zu bekommen. (1) 2) 3) 4))
Ich hatte keine Probleme bei der Interaktion mit der Zeitleiste. (1) 2) 3) “4) 3)

Wenn nicht zutreffend, welche Probleme traten auf?

9) Lassen Sie sich von mir fiir den néchsten Aussagenblock noch ein Beispiel fiir ein komplexes Experiment zeigen!

Ich habe schnell und problemlos verstanden, was in diesem

Experiment passiert. (1) (2) 3) 4) [Q)
Ich wiirde mir zutrauen ein dhnliches Experiment mit dem

Programm (Visual Editor) selbst aufzubauen. [€)) 2 3) “) [®)
Ich wiirde mir zutrauen ein dhnliches Experiment mit

,Presentation’ selbst aufzubauen. [€)) (2) 3) 4) 5)
Ich wiirde mit ,Presentation’ nicht langer brauchen als mit dem

Visual Editor. [€)) ?2) 3) 4 (5)
Ich denke, es ist nicht aufwendiger eine dhnliche Zeitstruktur in

einer Presentation—Datei zu begreifen. () 2 3) “) [®)

Figure C.3: The questionnaire (page 3) which the subjects were asked to fill out
in the final evaluation of the interactive software prototype after doing the exper-
iment. Before answering section 9) the subjects saw an example for a complex ex-
periment in the Visual Editor which they tried to understand.

143

10) Hatten Sie Probleme sich im Programm zu Recht zu finden? Wenn ja, wo?

11) Gab es ein Programmelement, dessen Funktion Sie nicht voraussagen konnten oder dessen Funktion anders war
als Sie erwartet hitten?

12) Gibt es eine Funktion, die vereinfacht werden konnte oder sollte? Wenn ja, welche?

13) Haben Sie eine Programmfunktion vermisst? Gab es etwas, was Sie gerne tun wollten, aber Sie glaubten, es geht
nicht?

14) Haben Sie sonstige Kommentare zum Programm, z.B. zur Stimuluserstellung, zum Trialfenster, zum
Zeitmanagement, zur Baumstruktur/Experimentvisualisierung oder zu besonders guten bzw. schlechten Eigenschaften
des Programms/ Programmaufbaus?

Figure C.4: The questionnaire (page 4) which the subjects were asked to fill out
in the final evaluation of the interactive software prototype after doing the experi-
ment.

145

Bibliography

Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science Journal, 126(2):183-235, 1994.

Manfred Amelang and Werner Zielinski. Psychologische Di-
agnostik und Intervention. Springer-Verlag GmbH, 4 edi-
tion, 1994.

Hugh Beyer and Karen Holtzblatt. Contextual Design: Defin-
ing Customer-Centered Systems. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1998.

Jan Borchers. A Pattern Approach to Interaction Design. John
Wiley & Sons, Ltd, Chichester, UK, 2001.

Stuart K. Card, Thomas P. Moran, and Allen Newell. The
Psychology of Human-Computer Interaction. Lawrence Erl-
baum Associates, Inc., Mahwah, NJ, USA, 1983.

Cedrus. Superlab 4, 2008. URL http://www.superlab.
com.

Luca Console, Claudia Picardi, and Daniele Theseider
Dupré. Temporal decision trees: Model-based diagnosis
of dynamic systems on-board. Journal of Artificial Intelli-
gence Research, 19 (2003):469-512, October 2003.

M.F. Costabile, D. Fogli, C. Letondal, P. Mussio, and A. Pic-
cinno. Domain-expert users and their needs of soft-
ware development. In The 1st International Conference on
Universal Access in Human-Computer Interaction (UAHCI),
pages 232-236, Crete, Greece, June 2003.

Brian Dorn and Mark Guzdial. Graphic designers who pro-
gram as informal computer science learners. The Sec-
ond International Computing Education Research Workshop,
ICER’06, September 2006.

http://www.superlab.com
http://www.superlab.com

146

Bibliography

Jacob Eisenstein and Angel R. Puerta. Adaptation in auto-
mated user-interface design. In Proceedings of the Inter-
national Conference on Intelligent User Interfaces (IUI) 2000,
pages 74-81, New Orleans, LA, USA, 2000. ACM Press.

B. Horwitz, K. J. Friston, and J. G. Taylor. Neural model-
ing and functional brain imaging: An overview. Neural
Networks, 13(8-9):829-846, November 2000.

Oswald Huber. Das psychologische Experiment: Eine
Einfiihrung. Verlag Hans Huber, 4 edition, 2005.

Jeff Johnson. GUI Bloopers 2.0: Common User Interface Design
Don’ts and Dos. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2 edition, 2007.

Bryan Kolb and Ian Q. Whishaw. Fundamentals of Human
Neuropsychology. Worth Publishers, 6 edition, 2008.

Jochen Miisseler and Wolfgang Prinz. Allgemeine Psycholo-
gie. Spektrum Akademischer Verlag, 1 edition, 2002.

Jakob Nielsen. Iterative user interface design. IEEE Com-
puter, 26(11):32—41, November 1993. URL http: //www.
useit.com/papers/iterative_design/.

Jakob Nielsen. Usability Engineering. Academic Press, San
Diego, CA, USA, 1994.

OMG. Unified modeling language: Superstructure - ver-
sion 2.1.2, 2007. URL http://www.omg.org/spec/
UML/2.1.2/Infrastructure/PDF/.

Karl R. Popper. Logik der Forschung. Mohr Siebeck, 10 edi-
tion, 1998.

John R. Quinlan. Induction of decision trees. Machine Learn-
ing, 1:81-106, 1986.

Jef Raskin. The Humane Interface - New Directions for Design-
ing Interactive Systems. Addison-Wesley Professional, 1
edition, 2000.

Stuart Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall Series in Artificial Intelli-
gence, second edition, 2003.

http://www.useit.com/papers/iterative_design/
http://www.useit.com/papers/iterative_design/
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/

Bibliography

147

Frank Schneider and Gereon R. Fink. Funktionelle MRT in
Psychiatrie und Neurologie. Springer-Verlag GmbH, Berlin,
Germany, 2007.

Carolyn Snyder. Paper Prototyping: The Fast and Easy Way
to Design and Refine User Interfaces. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003.

NBS Neurobehavioral Systems. Presentation 12, 2008. URL

http://www.neurobs.com/.

W3C. Synchronized multimedia integration language (smil
2.1), December 2005. URL http://www.w3.0rg/TR/
2005/REC-SMIL2-20051213/.

Philip G. Zimbardo and Richard J. Gerrig. Psychologie.
Springer-Verlag, 7 edition, 1999.

http://www.neurobs.com/
http://www.w3.org/TR/2005/REC-SMIL2-20051213/
http://www.w3.org/TR/2005/REC-SMIL2-20051213/

149

Index

automated user-interface design,
block design,

CMN model, see Model Human Processor
Contextual Inquiry, 43| 50-60

- findings, [551H60)
decision tree, 16-18,

- time-based, 36

decision tree learning, 16,

DIA cycle,
domain-expert users,

DV, see variable, dependent

empirical research,
end-user development,
EV, see variable, extraneous

evaluation
- first paper prototype, |69|
- second paper prototy
- software prototype

final evaluation, [L01H114

functional magnetic resonance imaging (fMRI),
future work,

hypothesis,

interactive exhibits,

interactive prototype, see software prototype
iterative user-centered design,

IV, see variable, independent

machine learning, see decision tree learning
master craftsman/apprentice relationship model,
Model Human Processor,

150 Index

neuropsychological experiments,

operationalization, [9]

- second prototype,
PCL, see Presentation

Presentation,
- PCL (Presentation Control Language),
- scenario, 45|
- scenario file header,
- scenario object,

- SDL (Scenario Description Language),
- stimulus event, [46]

- template file, [46

- trial object,
prototyping, 26,61} [/7}[87]
psychological experiments,

- definition,
psychology,

research question,

samples,

scenario, see Presentation

SDL, see Presentation

SMIL, B7H38|

software prototype, [87H100
stimulus event, see Presentation

SuperLab, 38142

Synchronized Multimedia Integration Language , see SMIL

time constraints, 20H26]

- in human performance, 20|

- in interactive systems, 22

- in software development,
time-based decision tree,
timed automaton,
trial, see Presentation

UML (Unified Modeling Language),

user study, 96] 101-114
- participants, [53} [69] [82} 97} [102]
- results, [55] 98

user-centered design,

variable
- dependent,
- extraneous,
- independent,

Typeset July 27, 2008

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Chapter Overview

	Theory
	Psychological Experiments
	Hypothesis Test and Variables
	Operationalization and Measuring
	Experimental Design
	Samples
	Empirical Test
	Neuropsychological Experiments

	Decision Trees
	Time-Based Decision Trees

	Timed Automata
	Time Constraints
	Time Constraints in Human Performance
	Time Constraints in Interactive Systems
	Time Constraints in Software Development

	Iterative User-Centered Design
	Designing for Domain-Expert Users

	Related Work
	Decision Trees in Automated User-Interface Design
	Time-based Decision Trees for the Diagnosis of Embedded Systems
	SMIL
	SuperLab

	Current Work Methods
	The Software System ``Presentation''
	Scenario Specification
	SDL
	PCL
	Criticisms

	Future Developments

	Contextual Inquiry
	Method
	Participants
	Set-Up
	Findings
	General Observations
	User Comments
	Decision and Time Structures
	User Ideas and Expectations
	Results Discussion

	First Prototype: Paper
	Design
	Implementation
	Evaluation
	Participants
	Set-Up
	Tasks

	Results

	Second Prototype: Paper
	Design
	Implementation
	Evaluation
	Participants
	Set-Up

	Results

	Third Prototype: Java
	Design
	Implementation
	Visualization
	Data Structure

	Evaluation: Pilot Study
	Participants
	Set-Up

	Results

	Evaluation
	Changes to the Design
	Participants
	Set-Up
	Questionnaire

	Tasks
	Results
	Questionnaire: General Impressions
	Questionnaire: Time-Based Decision Trees
	Questionnaire: GUI
	Questionnaire: Trial Window
	Questionnaire: Complex Tree
	Suggestions for Improvement

	Conclusion
	Future Work
	Extension to Full Experiment System
	Realization of All Displayed Functions
	Repeated Template Structures
	Stimulus Libraries
	Help and Error Prevention
	Test Mode
	Significance for Interaction Design

	Summary

	Additional Paper Prototype Screens
	Software Prototype: Sample Run
	Final Evaluation: Questionnaire
	Bibliography
	Index

