
iStuff Mobile: Rapidly Prototyping New Mobile Phone
Interfaces for Ubiquitous Computing

Rafael Ballagas, Faraz Memon, René Reiners, Jan Borchers
Media Computing Group

RWTH Aachen University
Aachen, Germany

{ballagas, borchers}@cs.rwth-aachen.de, {faraz.memon, rene.reiners}@rwth-aachen.de

ABSTRACT
iStuff Mobile is the first rapid prototyping framework that
helps explore new sensor-based interfaces with existing mo-
bile phones. It focuses on sensor-enhanced physical inter-
faces for ubiquitous computing scenarios. The framework
includes sensor network platforms, mobile phone software,
and a proven rapid prototyping framework. Interaction de-
signers can use iStuff Mobile to quickly create and test func-
tional prototypes of novel interfaces without making inter-
nal hardware or software modifications to the handset. A
visual programming paradigm provides a low threshold for
prototyping activities: the system is not difficult to learn. At
the same time, the range of examples built using the toolkit
demonstrates a high ceiling for prototyping activities: the
toolkit places few limits on prototype complexity. A user
study shows that the visual programming metaphor enables
prototypes to be built faster and encourages more iterations
than a previous approach.

Author Keywords
design, rapid prototyping, mobile phone, cell phone, sensor
networks, Quartz Composer, visual programming.

ACM Classification Keywords
H.5.2. [Information Interfaces]: User Interfaces – input de-
vices and strategies; interaction styles; prototyping; user-
centered design. D.2.2 [Software Engineering]: Design
Tools and Techniques.

INTRODUCTION
The mobile phone is the first truly pervasive computer, mak-
ing it an excellent interface for ubiquitous computing appli-
cations [2]. However, mobile phones are not built to suit
research needs, and the mobile phone hardware is difficult
to extend because of its commercial packaging. Kangas et
al. [17] describe experience with iterative user-centered de-
sign when developing mobile applications:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2007, April 28–May 3, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-593-9/07/0004...$5.00.

Figure 1. Back view of a mobile phone augmented with a Smart-Its
sensor board in iStuff Mobile. The sensors can be attached to the
phone in whatever position the designer finds most appropriate. The
pictured Smart-It contains a 3D accelerometer, microphone, and sen-
sors for light, pressure, temperature, and voltage.

The most important aspect of the design process is
to provide the user with the real usage context. For
mobile phones this means users need to be able to touch
the buttons and see software that feels like it is actually
working.

To address this need, iStuff Mobile focuses on building low-
cost functional prototypes. Interaction designers and re-
searchers can use this framework to create low-fidelity pro-
totypes of applications that combine sensor-enhanced mo-
bile phones and ubiquitous computing spaces. Testing func-
tional prototypes with users allows design flaws to be iden-
tified sooner, before significant cost is invested in develop-
ment. Additionally, the framework encourages exploration
of many design alternatives due to the ease with which proto-
types can be modified or interactive components exchanged.
By decreasing the amount of time, money, and effort to pro-
duce functional prototypes, the framework encourages more
iterations in the design process, which has been shown to
increase the quality of user interfaces [23].

Many promising mobile phone interactions in ubiquitous
computing require augmenting the mobile phone handset
with additional sensors (e.g., [10, 12, 26]). However, elec-
tronically integrating new hardware into existing mobile
phones is a large obstacle for most researchers and inter-
action designers. iStuff Mobile provides access to sensor-
enabled mobile phones to those that have little electronics
knowledge, by augmenting the mobile phone with exter-
nally attached hardware, such as Smart-Its [8] sensor net-

work modules (see Fig. 1). The loose collection of compo-
nents is then made to interoperate with an intuitive visual
programming environment. iStuff Mobile is intended for
prototyping activities. After the design has been explored
using iStuff Mobile, the final form factor can be refined for
production with integrated sensors and optimized applica-
tions.

The main contribution of iStuff Mobile is introducing the
first toolkit for rapid prototyping of new physical inter-
actions with existing mobile phones (requiring no internal
hardware changes). This radically simplifies prototyping
UIs combining mobile phones with ubiquitous computing
elements.

The primary parts of this contribution are concepts, not im-
plementations: (1) the idea to create a toolkit that enables
such prototyping with unmodified phone hardware and ap-
plications, (2) a software architecture that makes this possi-
ble, and (3) an appropriate feature set for such a toolkit.

The implementation-oriented parts of the contribution serve
as proof of the above concepts. They are:

• a background cell phone application that allows functional
prototypes to be built with any foreground application,
even those built in,

• an extension of Apple’s Quartz Composer1 that makes it
suitable for physical prototyping, and

• a sensor network proxy to configure sensors without hav-
ing to change their embedded software.

To ease dissemination, iStuff Mobile concentrates on soft-
ware and uses off-the-shelf hardware. With hardware tool-
kits becoming mature and commercialized, we propose
moving past building yet another one, and using them as
a layer to build software upon instead. This software, to
avoid reinventing the wheel, also builds on top of existing,
robust or even commercialized, software components such
as iStuff [3], the Event Heap [14], and Quartz Composer.
iStuff by itself did not support cell phones, visual program-
ming, or sensor networks.

RELATED WORK

How to Evaluate Toolkits
Myers et al. [22] identify several characteristics, or “themes”,
for evaluating toolkits. In particular, the threshold describes
how difficult it is to learn to use the system. The ceiling
describes how much can be accomplished using the system.

Conducting a formal evaluation of a toolkit or software
framework is an extremely difficult task. The qualities that
are important for toolkits, such as development effort, are
difficult to measure directly. Evaluating a software frame-
work has issues similar to evaluating middleware. Edwards
et al. [7] point out that although we have good techniques
1http://developer.apple.com/documentation/GraphicsImaging/
Conceptual/QuartzComposer/qc intro/chapter 1 section 1.html

for designing and evaluating interactive applications, we are
lacking well formed techniques for designing and evaluat-
ing the infrastructure to support application development.
Klemmer et al. [18] provide a detailed discussion of this
topic, and describe their various approaches to evaluate the
Papier-Mâché toolkit. One approach is to measure the effi-
ciency (e.g., development time, or lines of code) of devel-
opers while using a toolkit, but efficiency is also related to
the quality of the resulting prototype, making these metrics
difficult to isolate.

Physical Hardware Toolkits
As traditional paper prototypes for desktop GUIs prove less
adequate for the ubicomp domain [21], a variety of hardware
toolkits have emerged in recent years to help prototype phys-
ical interactions. BOXES [13] provides a prototyping solu-
tion using common household items, to simplify early stage
exploration of form factor. Toolkits like Phidgets [9], Teleo2,
Calder [19], VoodooIO [27] and Smart-Its3 [8] provide a set
of reusable hardware components with accessible APIs to re-
duce the barriers of physical device prototyping. d.tools [11]
provides a set of software tools in addition to hardware com-
ponents to support the full range of design, testing, and anal-
ysis activities in an iterative design cycle. Like iStuff [3],
d.tools [11] also provides an extensible software framework
that allows for multiple hardware platforms to be combined
during prototyping activities. iStuff Mobile builds on top of
this previous work; it provides a prototyping solution that
simplifies exploring new interactions that combine existing
mobile phones with many of the above hardware component
toolkits in ubiquitous computing application scenarios.

Software prototyping environments
iStuff Mobile is built on top of the iStuff [3] framework.
A key component of the iStuff framework is the Patch
Panel [5]. It intercepts and rewrites messages to allow other-
wise incompatible components to communicate over a net-
work. Its strength is that mappings between inputs and out-
puts can be specified dynamically at run-time, making it eas-
ier to modify a design on-the-fly. To date, the mappings in
the Patch Panel are primarily specified through a light script-
ing language introduced in [5].

This work introduces a new interface for physical proto-
typing by extending Apple’s Quartz Composer visual pro-
gramming environment. Quartz Composer provides a cable
patching metaphor to lower the threshold for prototype con-
struction. It is very similar to Max/MSP4 and LabVIEW5

in that it targets developers, researchers, and interaction de-
signers. They differ in that Max/MSP’s strength is audio pro-
cessing, LabVIEW is geared towards electrical signal analy-
sis, and Quartz Composer focuses on interactive multimedia
and 3D rendering. Quartz Composer is a live editor, whereas
Max/MSP and LabVIEW have separate edit and run modes.
d.tools [11] supports visual programming through a visual

2http://www.makingthings.com/teleo.htm
3For Smart-Its hardware, see http://www.particle-computer.net
4http://www.cycling74.com/products/maxmsp
5http://www.ni.com/labview/

Smart-Its
Events

iStuffMobile
Events

Smart-Its
Events

Bluetooth

Mobile
Phone Proxy

Event Heap

Smart-Its
Proxy

Quartz
Composer

External
Proxies

Background
Application

Patch Panel
Plugins

Smart-Its Custom
RF Communication

iStuffMobile
Events

TCP
TCP

TCP

TCP

TCP

A

B

C

D

UDP

X-bridge

Technical Contributions of iStuff Mobile
Existing SoftwareSmart-Its

APIs

Figure 2. The iStuff Mobile architecture. (A) When the phone is moved, for example, the Smart-Its sensor board transmits the resulting sensor
data wirelessly to the Smart-Its X-bridge. Our Smart-Its Proxy collects that data from the X-bridge over ethernet, and encapsulates it into Smart-Its
events. (B) Mobile phone input events (such as key presses) are intercepted by the background application and passed to the Mobile Phone Proxy
over a Bluetooth connection, and the proxy encapsulates the data into iStuffMobile events. (C) The Quartz Composer GUI is extended with special
plugins for the Patch Panel to transform input events into desired output events. (D) For mobile phone output, the Mobile Phone Proxy listens for
iStuffMobile events, and passes the resulting commands to the mobile phone background application over the Bluetooth connection. The background
application then either executes the command directly, or forwards it to the foreground application as appropriate.

statechart editor; the Calder toolkit [19] supports the Macro-
media Director6 development environment; Phidgets [9] and
Teleo provide hooks to work with Max/MSP and Adobe
Flash7 as development environments.

Mobile phone interface prototypes
The TEA project [26] uses a predecessor of the Smart-Its
platform to demonstrate mobile phone context interactions.
Harrison [10] and Hinckley [12] built custom PDAs and mo-
bile phones with integrated sensor hardware. These projects
broke new ground and demonstrated a broad vision for what
types of interfaces are possible for mobile phones, but the fo-
cus was the interfaces, not the development process. iStuff
Mobile focuses on providing a reusable prototyping frame-
work for research and design scenarios like these.

Mobile phone toolkits
d.tools [11] allows designers to rapidly prototype handheld
devices including mobile phones. Its strength is the abil-
ity to explore different mobile phone form factors and sen-
sor placements. However, its lack of support for critical
phone functionality, such as voice calls, and its wired sensors
currently limit the toolkit’s ceiling for many mobile phone
application scenarios. Topiary [20] is a toolkit for build-
ing Wizard of Oz prototypes of location-based applications
on existing handheld devices. While valuable for location-
based scenarios, it does not address other types of physical
6http://www.adobe.com/products/director/
7http://www.adobe.com/products/flash/flashpro/

sensors, and does not simplify the construction of functional
prototypes. iStuff Mobile is the first toolkit to allow rapid
prototyping of functional physical sensor-based interactions
with existing mobile phones.

ISTUFF MOBILE ARCHITECTURE
iStuff Mobile is designed as a compound prototype archi-
tecture [1] where part of the software is distributed across
separate computers. This compound architecture, shown in
Fig. 2, allows interface designers to prototype interactions
that may be beyond the capabilities of current mobile phone
hardware. In addition, this architecture provides communi-
cation capabilities necessary for ubiquitous computing ap-
plication scenarios. The disadvantage of the compound ar-
chitecture is that it spatially restricts experiments. While a
direct communications channel between the sensors and the
phone (e.g., through a Bluetooth connection) may be more
efficient and less spatially restrictive, this would eliminate
the prototyping benefits gained from using the Quartz Com-
poser visual interface, which allows the relationships be-
tween user activity and application feedback to be changed
at run-time using a comfortable desktop GUI. The delay be-
tween user action and application feedback is small enough
to easily maintain causality [6] and support a wide range of
tasks including continuous pointing tasks which require a la-
tency much less than 100ms.

iStuff Mobile is built on top of the iStuff [3] framework.
The benefit of this decision is that iStuff, designed for ubiq-

uitous computing scenarios, already supports a variety of
hardware component toolkits such as Phidgets and Teleo.
The relevant components in the system can be distributed
on different computers across a room, and they commu-
nicate through the Event Heap infrastructure, a tuplespace
with publish-subscribe semantics [14]. This indirect com-
munications model allows clients to communicate without
an explicit rendezvous. As an illustration, consider a presen-
tation controller that sends events to the Event Heap. The
presentation software subscribing to the event can be seam-
lessly moved to a different machine, or a second instance of
the presentation software can be used without making any
changes to the way the presentation controller posts events.
For components that are not designed to communicate with
the Event Heap, such as Smart-Its and the mobile phone,
iStuff employs a proxy strategy, where an external process
communicates directly (e.g., through custom wireless proto-
cols or application hooks) with the devices and sends or re-
ceives events on their behalf. This proxy strategy promotes
extensibility and simplifies incorporating additional hard-
ware components to the library of reusable building blocks.

Mobile Phone application support
The iStuff Mobile architecture divides the mobile phone ap-
plication into two parts. The foreground application is what
the user interacts with during testing. The background ap-
plication, provided by iStuff Mobile, is designed to simplify
the work of the interaction designer creating the functional
prototype. It is not directly visible to the user.

Designers can remotely execute commands on the phone
by sending iStuffMobile events to the desktop-based Mo-
bile Phone proxy, which relays the commands to the back-
ground application on the phone via a Bluetooth connection
(see Fig. 2). The background application relays the com-
mands to the foreground application or the operating sys-
tem as appropriate. The background application can also
intercept user actions, such as key presses, from the fore-
ground application, which are relayed to the proxy over the
Bluetooth connection and subsequently posted as events on
the Event Heap. The prototype implementation of the back-
ground application on the mobile phone was designed to in-
clude the following feature set. It does not cover the entire
design space of interaction possibilities, but it does enable
a wide range of interesting interactions, and the architecture
encourages expansion to include more features.

1. Bluetooth Communication: communicate with the proxy
through a low-latency wireless communications channel.

2. Sound Playback: trigger available sounds to be played and
stopped.

3. Vibrator Control: trigger the vibrator to start and stop.

4. Key Capture: intercept key events from the foreground
application and relay them to the proxy for processing.

5. Foreground Application Key Simulation: pass key events
to the foreground application.

6. Launch External Application: launch any application on
the mobile phone.

7. Profile Control: programmatically change the ring profile
of the mobile phone.

8. Backlight: control the backlight programmatically.

9. Run Application in Background: send the current fore-
ground application to the background.

10. Camera Control: use the camera on the mobile phone for
taking pictures, videos, or interactions using motion esti-
mation such as the Sweep technique [4].

We have built a prototype implementation of the background
application using the Symbian Series 60 operating system.
Our analysis shows that Windows Mobile 5.0 SmartPhone
Edition would be a good candidate for porting the iStuff
Mobile background application because it shares many of
the same capabilities as Symbian Series 60. Java 2 Micro
Edition, on the other hand, is currently not a candidate plat-
form as the background application would be lacking critical
functionality. We believe that it is possible to port the back-
ground application to Linux-based mobile phone platforms
such as the Motorola E680i, but open source development
efforts on these phones are still in their early stages.

The foreground application is the application the user sees
and interacts with. iStuff Mobile is designed to be used
with any foreground application and communicates primar-
ily through system events (e.g., key presses). Designers
are expected to prototype their own mobile phone applica-
tion using rapid prototyping solutions such as static images,
Flash Lite, or a scripting language like Python. Alterna-
tively, designers have the option to program their own ap-
plication using Java8 or native code. Lastly, designers can
prototype interactions with existing foreground applications
that come with the mobile phone, such as its Address Book
or Calendar, despite the fact that these applications were not
explicitly designed to accommodate new interaction tech-
niques.

Sensor network support
Sensor network modules have been shown to be valu-
able tools in rapid prototyping scenarios [8]. Sensor net-
work applications require low-cost, low-power, wireless sen-
sors. These requirements are pushing devices to be cheaper,
smaller, and more widely available commercially, all of
which are advantageous for a reusable prototyping frame-
work.

For the initial version of iStuff Mobile, we chose to support
the Smart-Its [8] sensor network platform. Smart-Its pro-
vides a remote procedure call interface that allows reconfig-
uration of sensors without modifying the code on the embed-
ded “particle” sensor boards. In iStuff Mobile, we leveraged
this capability to develop a cross-platform GUI that com-
bines configuration of sensors, reception of sensor data, and
posting of sensor data onto the Event Heap. Each Smart-
Its module comes with an array of sensors (3D accelerome-
ter, microphone, and sensors for light, pressure, temperature
and voltage). The GUI allows designers to rapidly configure
8http://java.sun.com/j2me/

The library is used to
select which compo-
nents are used in the
composition.

The workspace is
where components
are linked together to
form a composition.

The preview window is
live. The 3D animation
immediately shows the
impact of the designer’s
changes.

The inspector window
allows the designer to
adjust parameters and
settings of the
different library com-
ponents used in the
composition.

Figure 3. Apple’s Quartz Composer is a visual programming environment designed to support rapid creation of 3D interactive visualizations. We
have extended it to support prototyping physical user interfaces. This screenshot shows the development of a weather application for a large public
display in a train station. The user can navigate through the different regions of the map by waving their phone through the air using the Sweep [4]
technique, and the corresponding weather data is updated live through RSS feeds.

Smart-Its to activate the appropriate sensors to work with the
iStuff framework in a particular prototyping scenario.

Rapid Prototyping through Visual Programming
Quartz Composer is a visual programming environment (see
Figure 3) that is part of Apple’s freely available Xcode devel-
opment environment. It was introduced with Mac OS X 10.4
“Tiger”. It uses a cable patching metaphor to establish data
and control flow between different components, establishing
a composition. The editor is live, and changes made in the
workspace are immediately functional without any compila-
tion steps. In iStuff Mobile, we have extended the Quartz
Composer environment to enable prototyping of physical in-
terfaces. We added library components for each of the iStuff
proxies and new data processing modules that are particu-
larly useful in physical prototyping scenarios.

iStuff Mobile is designed so that other sensor network plat-
forms can be easily substituted in place of Smart-Its. In order
to incorporate a different sensor network platform, all that
needs to be implemented is a new Event Heap proxy to send
and receive events on the sensor module’s behalf, and a new
Quartz Composer plugin to enable control of the information
flow in the visual programming environment.

RECREATING SEMINAL MOBILE PHONE INTERACTIONS
To demonstrate the utility of the framework, we have used it
to recreate several mobile phone interactions discussed in
previous literature. Harrison et al. [10] introduced a tilt-
scrolling interaction for mobile devices. The implementa-
tion consisted of a PDA augmented with an accelerome-
ter and pressure sensors. To activate tilt-scrolling, the user
squeezes the sides of the device with her thumb and forefin-
ger. The more the user tilts, the faster the device scrolls.

Working with iStuff Mobile
To give the reader a feel for what it is like to work with the
iStuff Mobile framework, we present a typical work session
scenario based on the tilt-scroll example above:

Tom is a UI designer who wants to experiment
with the tilt-scroll interaction introduced by Harrison
et al. [10]. To set up his prototyping environment, Tom
runs the Proxy Manager on his desktop computer that
is part of the iStuff framework. It provides a front end
to quickly launch specific proxies on his desktop com-
puter. The Proxy Manager discovers an Event Heap
running on the local network upon launch. Using the
Proxy Manager, Tom launches the Smart-Its Particle
Framework proxy and the iStuff Mobile phone proxy
that mediates communication between the phone and
the Event Heap.

Tom then grabs a Smart-Its Particle sensor board
from a charging station, and uses the Particle Frame-
work proxy to discover the particle, activate its X/Y/Z
accelerometer sensors, and then start posting events
from the sensor board to the Event Heap. He tapes
the Smart-It to the back of the mobile phone. Then he
launches the iStuff Mobile background application on
the mobile phone and uses it to establish a Bluetooth
connection to the iStuff Mobile phone proxy on his
desktop computer. Next, he launches the native Con-
tacts application on the phone so that he has a lot of
data to scroll through.

Now Tom is ready to map the tilting motion to con-
trol scrolling. He launches Apple’s Quartz Composer
with the iStuff extensions installed. He types “Sensor”
in the library search window and selects the “Smart-
ItsSensor” module to import it into his workspace. He
then types “Phone” into the library search window and

Tilt To Key - JavaScript

Enable

Tilt

KeyCode

Repeat Period

Multiplexer

Source Index

Source #0

Source #1

Output

LFO

Type

Period

Phase

Amplitude

O!set

PWM Ratio

Result

Key Press - Conditional

First value

Condition

Second Value

Tolerance

Result

SmartItsSensor_1

SourceID

Gravity-X

Gravity-Y

Gravity-Z

Light Level

Force

Temperature

Switch Value

Audio

Voltage

Threshold - Conditional

First value

Condition

Second Value

Tolerance

Result

MobilePhoneController_1

Enable

Threshold

Turn Backlight On

Turn Backlight O!

Play Sound

Stop Playing Sound

Launch Application

Path

Close Application

Key Code

Repeat Port

Scancode Port

Profile #

Capture Key Presses

1

Figure 4. The Quartz Composer implementation of the tilt-scrolling interaction from [10]. Squeezing input is measured by the “Force” node from the
SmartItsSensor 1 and is tested with a simple threshold. The result is passed to the Tilt To Key - JavaScript, which maps various tilts in the Z-direction
of the gravity sensor to different key codes and key repeat rates. The outputs from that JavaScript node include “KeyCode”, which represents the
appropriate key (up or down arrow) depending on the current tilt, and “Repeat Period”, which specifies how fast the LFO (low frequency oscillator)
node should operate. For this scenario, larger tilt is mapped to faster repeat rates. The Key Press - Conditional changes the oscillator to function like
a binary clock, regularly switching between 0 and 1. “Source #0” (which defaults to 0) represents no key pressed, and “Source #1” represents the key
specified from the JavaScript node. The key is then passed to the MobilePhoneController 1 to forward to the mobile phone. The naming convention
of the iStuff Mobile related nodes corresponds to the name of the device being controlled. (1 helps distinguish multiple devices of the same type.)

TiltType - JavaScript

KeyCode

Tilt State

Modified KeyCode

MobilePhoneKeyListener_1

Key Code

KeyPressed
SmartItsSensor_1

SourceID

Gravity-X

Gravity-Y

Gravity-Z

Light Level

Force

Temperature

Switch Value

Audio

Voltage

MobilePhoneController_1

Enable

Threshold

Turn Backlight On

Turn Backlight O!

Play Sound

Stop Playing Sound

Launch Application

Path

Close Application

Key Code

Repeat Port

Scancode Port

Profile #

Capture Key Presses

1

Tilt State - JavaScript

Tilt X

Tilt Y

State

Figure 5. The TiltText [28] technique maps numeric keys to different characters based on the tilt of the device.

selects the “Mobile Phone” module. He can’t link
the accelerometer directly to the mobile phone because
there needs to be some simple interpretation of the sen-
sor data to map sensor data thresholds to individual key
presses. He decides to use the built-in JavaScript mod-
ule to accomplish this task.

Tom doesn’t know exactly what sensor values to use
for the thresholds so he uses native Quartz Composer
modules to display his sensor readings directly to the
live preview window. He observes the sensor data as he
tests different tilt positions with the phone. He settles
on some sensor thresholds and writes a small JavaScript
that reacts to sensor thresholds by sending directional
arrow key presses to the phone. He links the output
of the JavaScript module to the Mobile Phone module.
Now, tilting the phone triggers a single key press. He’s
pleased with his progress, but he wants the scrolling to
continue as long as the phone is tilted and the rate of
scrolling should change based on the degree of tilting.
He does this by adding LFO and Multiplexer modules
(as shown in Fig. 4), finishing his prototype.

We were also able to recreate some context-aware interac-
tions described in the literature. Schmidt et al. [26] and
Hinckley et al. [12] describe a scenario where the mobile
phone ring tone profile is automatically switched to vibrator-
only when the mobile phone is in the user’s hand, since an
audio notification is unnecessary in that situation. This inter-
action was recreated using the Smart-Its pressure sensor to

detect when the user was holding the phone. Pressure sensor
activity triggers a command to the mobile phone proxy to
switch the ring tone profile, and inactivity triggers the com-
mand to switch the ring tone back.

As another example, the TiltText [28] technique simplifies
text entry using a numeric keypad by adding tilting. Tilt-
ing the phone to the left activates the first letter, tilting up-
ward activates the second letter, tilting to the right activates
the third letter, tilting downward activates the fourth letter
(applicable for keys ‘7’ and ‘9’) and no tilt activates the
standard numeric character. This technique has been shown
to be faster than MultiTap and comparable to dictionary-
based techniques. Again, we were able to quickly recre-
ate this interaction using the iStuff Mobile framework (see
Fig. 5). This example is a good illustration of how capa-
ble Quartz Composer is of expressing state-based interfaces.
In the implementation, the tilt state is determined through
the Tilt State - JavaScript node and passed to the TiltType -
JavaScript node, which modifies the key presses based on
the current state. Note that since there are 5 different states
for 12 different phone keys, this would be cumbersome to
model as a state machine, but it is fairly easily modeled us-
ing Quartz Composer.

UBIQUITOUS COMPUTING PROTOTYPING SCENARIOS
To show how the framework goes beyond the localized
sensor-based interactions described so far, we will now

SmartItsSensor_1

SourceID

Gravity-X

Gravity-Y

Gravity-Z

Light Level

Force

Temperature

Switch Value

Audio

Voltage

Billboard

Enable

Image

Mask Image

X Position

Y Position

Rotation

Width

Color

Blending

1Image Importer

Image

SweepController_1

dX

dY

drZ

Select

Sensor Fusion - JavaScript

Tilt X

Tilt Y

Tilt Z

Motion X

Motion Y

X

Y

Figure 6. The Quartz Composer implementation for combining accelerometer data with camera-based motion detection to improve motion detection
accuracy. The Sensor Fusion - JavaScript node implements the algorithm to combine the sensor values in a meaningful way. The JavaScript logic
can be modified at run-time to test and refine the sensor fusion strategy. The standard Billboard node of Quartz Composer displays an image to the
screen (e.g., a cursor). The output of the sensor fusion algorithm in the JavaScript node controls the position of the billboard on the screen.

MobilePhoneKeyListener_1

Key Code

KeyPressed

Counter

Increasing Signal

Decreasing Signal

Reset Signal

Count

Is Next Key?

First value

Condition

Second Value

Tolerance

Result

Is Prev Key?

First value

Condition

Second Value

Tolerance

Result

SlideNum - 1

Initial Value

Operation #1

Operand #1

Resulting Value

PresentationController_1

Enable

Next Slide

Previous Slide

GotoSlide #

1

PresentationController_2

Enable

Next Slide

Previous Slide

GotoSlide #

2

Figure 7. The Quartz Composer implementation for a multi-screen presentation application. On the far left, the MobilePhoneKeyListener 1 node
receives the key presses from the iStuff Mobile Proxy. The two nodes on the far right are iStuff modules to control two instances of the same
PowerPoint presentation, each running on a different computer in an interactive workspace. No JavaScript nodes are required for this composition.

demonstrate how it simplifies prototyping entire ubiquitous
computing scenarios.

The mobile phone as a ubiquitous input device
The idea of using the mobile phone as an input device for
ubiquitous computing application scenarios is very com-
pelling because the phone is almost always with us [24]. One
technique that has demonstrated some potential for this use
is the Sweep [4] interaction technique, which uses camera-
based motion estimation to allow the phone to be used as
a relative pointing device for public displays. The motion
estimation algorithm on the low power mobile processor is
not perfect and suffers from some estimation errors. We
used the iStuff Mobile framework to combine accelerom-
eter data with the camera information to improve the mo-
tion estimation, as shown in Fig. 6. This allows the mobile
phone to serve as a more accurate pointing device, for ex-
ample when interacting with public displays. The synergies
of choosing Quartz Composer as a visual programming en-
vironment are demonstrated in this scenario because Quartz
Composer makes authoring visually compelling interactive
graphics very simple. This means that the iStuff Mobile in-
put techniques can directly drive these 3D visualizations and
the framework provides end-to-end prototyping assistance.

Mobile phones have also emerged as popular presentation
remote controls, due in part to the success of tools like
Salling Clicker9. But ubicomp environments like interac-
tive workspaces [15] have multiple screens that can be taken
advantage of to enhance the presentation. As a proof of con-
cept, we developed a multi-screen presentation interface (see
9http://www.salling.com/Clicker/

Fig. 7). In this scenario, one screen is showing the current
slide of the presentation, while the second screen is show-
ing the presentation history. By pressing a key on the mo-
bile phone, the user is remotely controlling a series of Pow-
erPoint applications to create this effect. These presenta-
tions are controlled through simple proxies running on dif-
ferent machines in the interactive workspace. Each proxy
listens for events with different names (e.g. Presentation-
Controller 1) so that they can be individually controlled.

Using ubiquitous resources as an interface to the phone
Ubiquitous computing environments such as interactive work-
spaces [15] are rich in input and output capabilities, includ-
ing touch sensitive wall-sized displays, and interactive table-
top displays. PointRight [16] demonstrates a system that lets
users redirect the mouse and keyboard input to the different
computers in the room. We wanted to demonstrate a system
that would also let users redirect their keyboard input to a
mobile phone. The resulting prototype is shown in Fig. 8.

Using an almost identical configuration, we were able to pro-
totype a scenario where the user could dictate text to the
phone using continuous speech recognition. Mobile phones
are years away from having the processing ability to sup-
port such continuous speech recognition, but iStuff Mobile
enabled us to create a functional prototype today.

EVALUATION
New toolkits are typically validated by the breadth of cov-
erage in the designs they support [3, 9, 18] and their ability
to recreate important interactions from the literature more
easily [18]. Similarly, the high ceiling of iStuff Mobile is
demonstrated by the range of prototypes it enables.

CharacterGenerator_1

KeyCode

Permanent KeyCode

MobilePhoneController_1

Enable

Threshold

Turn Backlight On

Turn Backlight O!

Play Sound

Stop Playing Sound

Launch Application

Path

Close Application

Key Code

Repeat Port

Scancode Port

Profile #

Capture Key Presses

1Event
Heap

Figure 8. (Left) Our Text Event Engine is a Java application that produces Character events for each key entered in the textbox. The window floating
above it belongs to iListen, a commercial application that supports continuous speech recognition (dictation) on Mac OS X. In this example, the user
is dictating an SMS message. (Right) System key events are recognized by the CharacterGenerator 1 and transferred to MobilePhoneController 1.
This composition can alternatively be used to allow users to type messages onto their mobile phone using a standard keyboard on their desk.

The rest of the evaluation is designed to show that iStuff Mo-
bile has a low prototyping threshold. In this evaluation, we
examine the efficiency of prototyping with the iStuff Mobile
toolkit using development time and number of prototype it-
erations as the primary metrics. In the case of Quartz Com-
poser, the lines of code metric is less relevant since only a
small part of the modeling is done textually in JavaScripts.

In order to experimentally evaluate iStuff Mobile, we chose
to compare the effectiveness of the new visual programming
paradigm to the established Patch Panel scripting language
introduced in [5]. This comparison was chosen to reduce
the risk of task bias inherent in the comparison of different
toolkits: in our evaluation, the underlying toolkits and hard-
ware are the same.

To further reduce task bias, we chose to examine four differ-
ent design problems, each making use of different hardware
components.

1. Multi-screen presentation. Participants were asked to
prototype a presentation interface that used the mobile
phone to control a presentation across several different
screens. The station was equipped with a mobile phone
and two remote machines connected to large LCD dis-
plays. The remote machines were running PowerPoint
presentation software and connected to the design station
via ethernet.

2. Tilt-to-scroll. Participants were asked to prototype a mo-
bile phone interface that allows scrolling through large
lists of data by tilting the phone similar to [10]. The sta-
tion was equipped with a mobile phone and several Smart-
Its sensors.

3. Handheld music player. Participants were asked to pro-
totype a new handheld music player, including song se-
lection and volume control functionality. The station
was equipped with a variety of Phidgets sensors, and
the iTunes software music player. This task was cho-

sen to provide some level of comparability to d.tools and
BOXES, where the portable music player serves as a
prominent example.

4. Remote steering. Participants were asked to design a re-
mote control mechanism for a model boat, where phys-
ical input would control an electronic motor to steer a
boat rudder. The station was equipped with Phidgets sen-
sors for input and Phidgets servo-motors and cardboard to
build a low-fidelity boat prototype.

The test consisted of 16 participants (10 male, 6 female)
from a computer science course. On average, the students
were in their 4th year of university studies. All students
had completed lectures on Human Computer Interaction and
were familiar with the fundamentals of interaction design,
prototyping, and iterative design.

The test was structured such that the group of participants
received training before the design exercises with the fol-
lowing time schedule:

0:00 – 0:30: Introduction to iStuff prototyping principles
0:30 – 1:00: Training for Prototyping Environment 1
1:00 – 1:30: Design Task 1
1:30 – 2:00: Design Task 2
2:00 – 2:30: Training for Prototyping Environment 2
2:30 – 3:00: Design Task 3
3:00 – 3:30: Design Task 4

The test was designed as a within group study, with special
care taken to avoid learning effects both in terms of the tasks
completed and the prototyping environments used. The 16
participants were split up into 2 shifts of 8 and further split
into 4 teams of 2 participants. During each shift, there was
one team at each test station attempting one of the 4 design
tasks described earlier. After each task, the teams rotated to
a different station such that each team performed the design
tasks in a different order. The first shift of 4 teams completed
their first 2 design tasks using the Quartz Composer GUI,

Figure 9. Results show that Quartz Composer is significantly faster and enables significantly more iterations than the Patch Panel scripting language.

then their last 2 tasks with the Patch Panel script. The second
shift of 4 teams used the prototyping environments in the
opposite order. Participants were instructed to stop after 30
minutes, regardless of whether or not they had a functional
prototype ready.

We measured the time it took for the participants to build
their first functional prototype, and the number of iterations
completed in the time allotted. For this study, we define
functional prototype as an artifact that successfully imple-
ments at least a portion of the functionality described in the
design task. We define a design iteration as a full DIA cycle
(design, implement, analyze). Every time the participants
created a functional prototype, analyzed the problems, and
made changes to the design we counted it to be a design it-
eration.

RESULTS
Results from the experiment are shown using box-plots in
Fig. 9. In the time measurement plot, if a group was un-
able to complete a prototype in the allotted 30 min., we as-
signed a time of 31 minutes to maintain the visual integrity
of the box-plots, but omitted these data points during sta-
tistical analysis. The average time for the first functional
prototype was 19.6 minutes for the Quartz Composer GUI,
and 27.6 minutes for the Patch Panel script. However, we are
unable to show that this difference is statistically significant
because of the large number of incomplete first iterations for
the Patch Panel script. Participants were able to complete
at least one iteration of the test in the time alloted 81% of
the time with Quartz Composer, compared to only 31% with
the Patch Panel script (p < 0.05, Fisher’s test). Participants
were also able to complete an average of 2.5 iterations us-
ing the Quartz Composer GUI compared to 0.9 iterations us-
ing the Patch Panel scripting language (p < 0.05, Student’s
t-test). The combined results show that the Quartz Com-
poser GUI is significantly faster than the Patch Panel script
in building prototype iterations. Qualitative results from the
study can be found in [25].

Clearly, there are disadvantages to this experimental design
since the comparison is limited and doesn’t reflect the range
of prototyping approaches that exist today. The main take-
away is that the study demonstrates a low prototyping thresh-
old: with very little training, users could often build early
prototypes in less than 30 minutes. The Patch Panel scripting
language serves as a familiar point of reference to interpret
the results.

CONCLUSIONS
The quality of a user interface tends to increase with more it-
erations in the design process, motivating the need for rapid
prototyping solutions. The iStuff Mobile framework is the
first to simplify the exploration of new mobile phone in-
teractions in ubiquitous computing environments. We have
demonstrated how it can be used to easily recreate semi-
nal sensor-enabled mobile phone applications, and to signif-
icantly simplify the integration of mobile phone interactions
into ubiquitous computing scenarios. Our evaluation shows
that the visual programming environment allows prototypes
to be built faster and encourages more design iterations to be
performed. By making this tool available as open source10

to the interaction design and research community, we hope
to advance the pace of innovation and improve the quality of
interface designs in ubiquitous computing.

REFERENCES
1. Abowd, G. D., Hayes, G. R., Iachello, G., Kientz, J. A.,

Patel, S. N., Stevens, M. M., and Truong, K. N.
Prototypes and paratypes: Designing mobile and
ubiquitous computing applications. IEEE Pervasive
Computing (2005), 67–73.

2. Abowd, G. D., Iftode, L., and Mitchell, H. Guest
editors’ introduction: The smart phone–a first platform
for pervasive computing. IEEE Pervasive Computing 4,
2 (2005), 18–19.

10http://istuff.berlios.de

3. Ballagas, R., Ringel, M., Stone, M., and Borchers, J.
iStuff: A Physical User Interface Toolkit for Ubiquitous
Computing Environments. Proc. CHI ’03. ACM Press
(New York, NY, USA, 2003), 537–544.

4. Ballagas, R., Rohs, M., Sheridan, J. G., and Borchers,
J. Sweep and Point & Shoot: Phonecam-based
interactions for large public displays. Extendend
abstracts of CHI ’05. ACM Press (New York, NY,
USA, 2005), 1200–1203.

5. Ballagas, R., Szybalski, A., and Fox, A. Patch Panel:
Enabling Control-Flow Interoperability in Ubicomp
Environments. PerCom ’04. Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and
Communications. IEEE (Orlando, FL, USA, 2004).

6. Card, S. K., Newell, A., and Moran, T. P. The
Psychology of Human-Computer Interaction. Lawrence
Erlbaum Associates, Inc., 1983.

7. Edwards, W. K., Bellotti, V., Dey, A. K., and Newman,
M. W. The challenges of user-centered design and
evaluation for infrastructure. Proc. CHI ’03. ACM
Press (New York, NY, USA, 2003), 297–304.

8. Gellersen, H., Kortuem, G., Schmidt, A., and Beigl, M.
Physical Prototyping with Smart-Its. IEEE Pervasive
Computing 3, 3 (2004), 74–82.

9. Greenberg, S., and Fitchett, C. Phidgets: Easy
development of physical interfaces through physical
widgets. Proc. UIST ’01. ACM Press (New York, NY,
USA, 2001), 209–218.

10. Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C.,
and Want, R. Squeeze me, hold me, tilt me! An
exploration of manipulative user interfaces. Proc. CHI
’98. ACM Press/Addison-Wesley Publishing Co. (New
York, NY, USA, 1998), 17–24.

11. Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla,
L., Burr, B., Robinson-Mosher, A. L., and Gee, J.
Reflective physical prototyping through integrated
design, test, and analysis. Proc. UIST ’06. ACM Press
(2006), 299–308.

12. Hinckley, K., and Horvitz, E. Toward more sensitive
mobile phones. Proc. UIST ’01. ACM Press (New
York, NY, USA, 2001), 191–192.

13. Hudson, S. E., and Mankoff, J. Rapid Construction of
Functioning Physical Interfaces from Cardboard,
Thumbtacks, Tin Foil and Masking Tape . Proc. UIST
’06. ACM Press (2006), 289–297.

14. Johanson, B., and Fox, A. The Event Heap: A
Coordination Infrastructure for Interactive Workspaces.
WMCSA ’02: Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and
Applications. IEEE (2002), 83.

15. Johanson, B., Fox, A., and Winograd, T. The interactive
workspaces project: experiences with ubiquitous
computing rooms. IEEE Pervasive Computing 1
(2002), 67–74.

16. Johanson, B., Hutchins, G., Winograd, T., and Stone,
M. PointRight: experience with flexible input
redirection in interactive workspaces. Proc. UIST ’02.
ACM (2002), 227–234.

17. Kangas, E., and Kinnunen, T. Applying user-centered
design to mobile application development. Commun.
ACM 48, 7 (2005), 55–59.

18. Klemmer, S. R., Li, J., Lin, J., and Landay, J. A.
Papier-mâché: toolkit support for tangible input. Proc.
CHI ’04. ACM Press (New York, NY, USA, 2004),
399–406.

19. Lee, J. C., Avrahami, D., Hudson, S. E., Forlizzi, J.,
Dietz, P. H., and Leigh, D. The Calder toolkit: wired
and wireless components for rapidly prototyping
interactive devices. DIS ’04: Proceedings of the 2004
Conference on designing interactive systems. ACM
Press (New York, NY, USA, 2004), 167–175.

20. Li, Y., Hong, J. I., and Landay, J. A. Topiary: a tool for
prototyping location-enhanced applications. Proc. UIST
’04. ACM Press (New York, NY, USA, 2004),
217–226.

21. Liu, L., and Khooshabeh, P. Paper or interactive?: a
study of prototyping techniques for ubiquitous
computing environments. Proc. CHI ’03. ACM Press
(New York, NY, USA, 2003), 1030–1031.

22. Myers, B., Hudson, S. E., and Pausch, R. Past, present,
and future of user interface software tools. ACM Trans.
Comput.-Hum. Interact. 7, 1 (2000), 3–28.

23. Nielsen, J. Iterative user-interface design. Computer 26,
11 (1993), 32–41.

24. Patel, S. N., Kientz, J. A., Hayes, G. R., Bhat, S., and
Abowd, G. D. Farther than you may think: An
empirical investigation of the proximity of users to
their mobile phones. Proc. Ubicomp ’06. Springer
(2006), 123–140.

25. Reiners, R. The Patch Panel GUI: A Graphical
Development Environment For Rapid Prototyping
Interfaces For Ubicomp Environments. Master’s thesis,
RWTH Aachen University, Aachen, Germany, 2006.

26. Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela,
U., Laerhoven, K. V., and de Velde, W. V. Advanced
interaction in context. HUC ’99: Proceedings of the 1st
international Symposium on Handheld and Ubiquitous
Computing. Springer-Verlag (London, UK, 1999),
89–101.

27. Villar, N., Gilleade, K., Raymundy-Ellis, D., and
Gellersen., H. The VoodooIO gaming kit: a real-time
adaptable gaming controller. ACE ’06: Advances in
Computer Entertainment. ACM Press (New York, NY,
USA, 2006).

28. Wigdor, D., and Balakrishnan, R. TiltText: using tilt for
text input to mobile phones. Proc. UIST ’03. ACM
Press (New York, NY, USA, 2003), 81–90.

