
iStuff Mobile: prototyping interactions for
mobile phones in interactive spaces

Rafael Ballagas, Faraz Memon, René Reiners, and Jan Borchers

RWTH Aachen University, 52056 Aachen, Germany,
{ballagas,borchers}@cs.rwth-aachen.de

{Faraz.Memon,Rene.Reiners}@rwth-aachen.de

Abstract. iStuff Mobile is a rapid prototyping platform that helps ex-
plore novel interactions that combine sensor enhanced mobile phones and
interactive spaces. The toolkit includes sensor network platforms, mobile
phone software, and a proven rapid prototyping framework. Interaction
designers can use iStuff Mobile to quickly create and test novel interac-
tions without making internal hardware modifications to the handset. In
this paper, we present the toolkit architecture and provide examples to
demonstrate its use.

1 Introduction

Including sensors and actuators in mobile phones enables a variety of new in-
teraction techniques. Interaction designers and researchers need to rapidly build
functional interactive prototypes to test these concepts with users early in the de-
sign process. However, hardware limitations of current mobile phones may hinder
the ability to explore these novel interactions in a cost-effective manner. By low-
ering the time and financial costs of prototyping such enhanced mobile phone
interactions, the number of iterations in the design process can be increased,
which has been shown to increase the quality of user interface designs. [14]

iStuff Mobile extends the iStuff toolkit [3] to support rapid prototyping of
mobile phone interactions. It allows interaction designers to augment mobile
phones with externally attached hardware, such as Smart-Its [6] sensor network
modules (See Fig. 1). The framework leverages many of the technologies proven
useful in earlier versions of iStuff, such as the Event Heap [10] infrastructure to
support distributed application control and the Patch Panel [4] intermediary to
promote extensibility and support rapid configuration. Using the iStuff Mobile
toolkit, designers can prototype novel sensor-enabled interactions for applica-
tions running on the phone such as those described in [8, 17]. Additionally, the
toolkit can be used to prototype ubiquitous computing application scenarios such
as mobile phone interactions with interactive spaces [16] or public displays [5].
The new contributions of iStuff Mobile are:

– an application that runs as a background service on the mobile phone to ex-
pose critical interactive functions, allowing remote control of the foreground
application on the phone,



Fig. 1. (Left) A user testing a tilt scrolling interaction with the mobile phone as de-
scribed in [8]. (Center & Right) back and side views of the mobile phone augmented
with the Smart-Its particle board and sensor module. The module can be attached to
the phone in whatever position the designer finds most appropriate.

– a new Patch Panel graphical user interface that extends Apple’s Quartz Com-
poser [2] and provides an intuitive visual interface to establish relationships
between user actions and application feedback on the phone.

– a new graphical front-end for Smart-Its that simplifies configuration of the
sensor nodes and integrates Smart-Its to the iStuff framework through a
proxy strategy.

The iStuff project has matured from its roots as a toolkit of physical com-
ponents to an extensible and reusable software framework. As a software frame-
work, iStuff allows third party hardware and software to be rapidly integrated
in a ubiquitous computing space and interoperate with existing iStuff-enabled
components.

2 Related Work

There have been a variety of hardware toolkits in recent years that help proto-
type interactions with physical devices. Toolkits like Phidgets [7], Teleo [13], the
Calder Toolkit [11], and Smart-Its [6] provide a reusable hardware platform with
accessible programming APIs to reduce the barriers of physical device prototyp-
ing. However, they do not provide explicit support for prototyping mobile phone
interactions. As a software framework, iStuff is conceptually a layer above these
toolkits and relies on them to provide the hardware foundation for the mobile
phone prototyping solution.

Many of these toolkits have been used to prototype interactions with mobile
phones. In the TEA project [17], for example, a predecessor to the Smart-Its
platform was used to demonstrate mobile phone context interactions. However,



this project fails to abstract the interface to the mobile phone in a reusable
and generic way. Each mobile phone application that used sensor enabled inter-
actions was explicitly programmed to communicate with the sensor board. In
iStuff Mobile, the mobile phone applications do not deal directly with the sen-
sor data. Instead, the sensor data is interpreted at the level of the Patch Panel,
which in turn issues high-level commands to the mobile phone applications. This
abstraction is important to facilitate modification of the relationships between
user activity and application feedback without recompiling the mobile phone
application. The iStuff Mobile architecture provides an end-to-end prototyping
solution that can be used with any mobile phone platform or physical toolkit
to support interactions on the phone or using the phone to interact with the
surrounding environment.

The d.tools [9] toolkit allows designers to rapidly prototype handheld devices
including mobile phones. The d.tools system includes pluggable hardware com-
ponents and a visual statechart editor to specify interactions. iStuff Mobile is a
wireless prototyping solution providing greater freedom of motion in interaction
scenarios. The use of real mobile phones makes iStuff Mobile less flexible than
d.tools for experimentation with form factor, but the scale of the prototypes
is more realisitic. In addition, real devices afford more sophisticated UI design
using the Nokia Series 60 [15] software development kit (SDK) or Macromedia
Flash Lite [12]. The iStuff graphical programming environment is not restricted
to state machines, although the framework does allow them [4]. Finally, d.tools
focuses on localized interactions, while iStuff Mobile also supports distributed
interactions in ubicomp environments.

3 iStuff Mobile Architecture

iStuff Mobile is designed as a compound prototype architecture (as defined by
Abowd et. al [1]) where part of the software is executed on a separate computer
as shown in Fig. 2. This compound architecture allows interface designers to
prototype interactions that may be beyond the capabilities of current mobile
phone hardware. In addition, the compound architecture provides communica-
tion capabilities necessary for ubiquitous computing application scenarios. One
might argue that a direct communications channel between the sensors and the
phone would be more ideal (e.g. through a bluetooth connection). However, this
would eliminate the prototyping benefits gained from using the Patch Panel,
which allows the relationships between user activity and application feedback to
be configured and changed at run-time. It should be emphasized that this toolkit
is designed for prototyping and iterative design. Once the design is perfected, it
can be reimplemented as an integrated commercial platform.

The relevant components in the system can be distributed across a room,
and they communicate through the Event Heap infrastructure. The Event Heap
works like a tuplespace with publish-subscribe semantics. This indirect commu-
nications model allows clients to communicate without an explicit rendezvous.
For components that are not designed to communicate with the Event Heap,



Fig. 2. An illustration with the iStuff Mobile architecture showing the Smart-Its par-
ticle framework proxy and the mobile phone proxy. Note that an arbitrary number
of diverse hardware and software entities can be used with the Event Heap through
proxies and may be connected to each other using the Patch Panel, enabling a broad
range of interaction possibilities.

such as Smart-Its and the mobile phone, a proxy strategy can be employed
where an external process communicates directly (e.g., through serial ports or
application hooks) with the devices to send or receive events on its behalf. This
proxy strategy promotes extensibility of the toolkit and simplifies incorporating
additional hardware components to the library of reusable building blocks.

In the iStuff architecture, components are not required to share a single
event format. Instead, the Patch Panel addresses interoperability by providing
an intermediation service. Designers use the Patch Panel to set up relationships
between user input and application feedback. These mappings can be set up
even if the devices and services were not designed to work together. One of
the strengths of the intermediation approach is that these mappings can be
specified at run-time without modifying source code of the different interface
components involved. To provide a visual front-end to specify these mappings,
we have extended Apple’s Quartz Composer visual programming environment
to include modules that represent the different proxies available for use.



The Smart-Its sensor network platform provides a remote procedure call
interface that allows reconfiguration of sensors without modifying the code on
the embedded particle boards. In iStuff Mobile, we leverage this capability to
develop a cross-platform GUI that combines configuration of sensors, reception
of sensor data, and posting of sensor data onto the Event Heap. This GUI allows
designers to rapidly configure Smart-Its to work with the iStuff framework.

Designers can remotely execute commands on the phone by sending iStuff-
Mobile events to the Mobile Phone proxy, which relays the commands to an
application on the phone via a Bluetooth connection. The mobile phone appli-
cation runs as a background service and relays the commands to the foreground
application or the operating system as appropriate (see Fig. 2). The mobile phone
application is also capable of sensing user activity, such as key presses, which
are relayed to the proxy over the bluetooth connection and subsequently posted
as events on the Event Heap. Currently this application is only implemented for
the Nokia Series 60 platform, but it can be ported to any modern smartphone
platform. This architecture enables interaction designers to prototype interac-
tions with existing applications, or with new ones created with the Series 60
SDK or Macromedia Flash Lite.

4 Prototyping Scenarios

To demonstrate the utility of the iStuff Mobile toolkit, we have used it to proto-
type a few pervasive computing interactions. For example, we have used the
toolkit to prototype improvements to the Sweep interaction [5], which uses
camera-based motion estimation to allow the phone to be used as a relative
pointing device. The motion estimation algorithm on the low power mobile pro-
cessor isn’t perfect and suffers from some estimation errors. We used the iStuff
Mobile toolkit to combine accelerometer data with the camera information to
improve the motion estimation as shown in Fig. 3.

Additionally, we have used the toolkit to prototype a multiscreen presentation
interaction, as seen in Fig. 4. By pressing a key on the mobile phone, the user is
remotely controlling a series of PowerPoint applications that show the current
slide as well as the presentation history to the audience. These presentations
are controlled through proxies running on different machines in the interactive
workspace. Each proxy listens for events with different machine names so that
they can be individually controlled.

5 Workshop Goals and Future Work

Our goal for the workshop is to share our experience with this prototyping toolkit
and make it available to the PERMID research community. The iStuff Mobile
software framework is open source and available at http://istuff.berlios.de. We
also hope to learn more about the prototyping techniques of other researchers
and create connections between our various research groups for future work. We
will work to continue to improve the capabilities of iStuff Mobile, and begin



Fig. 3. The Patch Panel GUI implementation for combining accelorometer data with
camera-based motion detection to improve the motion detection accuracy. The “Sensor
Fusion JavaScript” node implements the algorithm to combine the sensor values in a
meaningful way. The JavaScript logic can be modified at run-time to test and refine
the sensor fusion strategy. The “Billboard” node displays an image to the screen (e.g.
a cursor arrow). The output of the sensor fusion algorithm in the JavaScript node
controls the position of the billboard on the screen.

Fig. 4. The Patch Panel GUI implementation for a multiscreen presentation appli-
cation. On the far left, the “MobilePhoneKeyListener” node receives the key presses
from the iStuff Mobile proxy. The two nodes on the far right are iStuff modules to
control two instances of the same PowerPoint presentation, each running on a different
computer in an interactive workspace.

porting the mobile phone application to different smartphone platforms. We
will also continue to refine the Patch Panel user interface. We are considering
different approaches to evaluate the toolkit to understand how it impacts the
design process.

References

1. Gregory D. Abowd, Gillian R. Hayes, Giovanni Iachello, Julie A. Kientz, Shwe-
tak N. Patel, Molly M. Stevens, and Khai N. Truong. Prototypes and paratypes:
Designing mobile and ubiquitous computing applications. Pervasive Computing,
IEEE, pages 67–73, 2005.

2. Apple Quartz Composer. http://developer.apple.com/documentation/
graphicsimaging/conceptual/quartzcomposer/qc intro/chapter 1 section 1.html.

3. R. Ballagas, M. Ringel, M. Stone, and J. Borchers. iStuff: A Physical User Interface
Toolkit for Ubiquitous Computing Environments. In Proceedings CHI, pages 537–
544, Ft. Lauderdale, FL, USA, April 2003. ACM.



4. R. Ballagas, A. Szybalski, and A. Fox. Patch Panel: Enabling Control-Flow In-
teroperability in Ubicomp Environments. In Proceedings PerCom, Orlando, FL,
USA, March 2004. IEEE.

5. Rafael Ballagas, Michael Rohs, Jennifer G. Sheridan, and Jan Borchers. Sweep and
Point & Shoot: Phonecam-Based Interactions for Large Public Displays. In CHI
’05: Extended abstracts of the 2005 conference on human factors and computing
systems. ACM Press, April 2005.

6. H.-W. Gellersen, G. Kortuem, M. Beigl, and A. Schmidt. Physical Prototyping
with Smart-Its. IEEE Pervasive Computing Magazine, 3(3):74–82, July–September
2004.

7. Saul Greenberg and Chester Fitchett. Phidgets: easy development of physical
interfaces through physical widgets. In UIST ’01: Proceedings of the 14th annual
ACM symposium on User interface software and technology, pages 209–218, New
York, NY, USA, 2001. ACM Press.

8. Beverly L. Harrison, Kenneth P. Fishkin, Anuj Gujar, Carlos Mochon, and Roy
Want. Squeeze me, hold me, tilt me! an exploration of manipulative user interfaces.
In CHI ’98: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 17–24, New York, NY, USA, 1998. ACM Press/Addison-Wesley
Publishing Co.

9. Bjoern Hartmann, Scott R. Klemmer, Michael Bernstein, and Nirav Mehta. d.tools:
Visually prototyping physical uis through statecharts. In Extended Abstracts of
UIST 2005. ACM, 2005.

10. B. Johanson and A. Fox. The Event Heap: A Coordination Infrastructure for
Interactive Workspaces. In Proceedings WMCSA, page 83. IEEE, 2002.

11. Johnny C. Lee, Daniel Avrahami, Scott E. Hudson, Jodi Forlizzi, Paul H. Dietz,
and Darren Leigh. The calder toolkit: wired and wireless components for rapidly
prototyping interactive devices. In DIS ’04: Proceedings of the 2004 conference on
Designing interactive systems, pages 167–175, New York, NY, USA, 2004. ACM
Press.

12. Macromedia Flash Lite. http://www.macromedia.com/software/flashlite/.
13. Making Things, Teleo. www.makingthings.com/teleo.htm.
14. Jakob Nielsen. Iterative user-interface design. Computer, 26(11):32–41, 1993.
15. Nokia Series 60 SDK. http://www.symbian.com/developer/sdks series60.asp.
16. Trevor Pering, Rafael Ballagas, and Roy Want. Spontaneous marriages of mobile

devices and interactive spaces. Commun. ACM, 48(9):53–59, 2005.
17. Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo Tuomela,

Kristof Van Laerhoven, and Walter Van de Velde. Advanced interaction in con-
text. In HUC ’99: Proceedings of the 1st international symposium on Handheld
and Ubiquitous Computing, pages 89–101, London, UK, 1999. Springer-Verlag.


