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Abstract

Tangibles are useful extensions of today’s commonly used touch interfaces. But
latency weakens the perception of tangibles being a seamless part of digital ap-
plications. When performing direct dragging tasks, latency is perceptible as the
detected position is lagging behind the actual object. Especially high motion ap-
plications like an air hockey game using tangibles as mallets suffer from limited
responsiveness.

Therefore we present a software approach to partly compensate system latency.
The idea is to analyze the trace of a tangible in real time and try to anticipate
its movement in short-scale. With prediction we can shift the detected position
closer towards the real position of the tangible. Different prediction models are im-
plemented: first simple short-term linear prediction as presented by Cattan et al.
[2015b] and second polynomial regression allowing to predict curves.

These models are compared to each other in various configurations to get to know
more about their strengths and weaknesses. Among others the euclidean distance
between predicted and actual position is measured in a benchmark. Finally a user
study is performed to validate theoretical results and see how participants perceive
the effects of touch prediction. By taking up the motivation of the thesis they have
to play air hockey with and without prediction. Overall 10 out of 14 participants
preferred the game with touch prediction. This shows that the approach has the
potential to be used in more applications and allows us to look ahead positively
regarding future work.
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Überblick

Tangibles stellen eine sinnvolle Erweiterung der heute weit verbreiteten Touch-
screen Benutzeroberflächen dar. Latenz jedoch schwächt die Wahrnehmung eines
einheitlichen Systems aus physischem Objekt und digitaler Umgebung. Werden
Tangibles über den Tisch bewegt, sind selbst geringe Latenzen wahrnehmbar, da
die erkannte Position der tatsächlichen hinterher hängt. Bewegungsintensive An-
wendungen, zum Beispiel ein Air Hockey Spiel, welches Tangibles als Schläger
nutzt, leiden unter eingeschränkter Reaktivität.

Daher präsentieren wir einen Softwareansatz zur teilweisen Latenzkompensa-
tion. Die Idee dahinter ist, den Pfad eines Tangibles permanent in Echtzeit
zu analysieren und dadurch dessen Bewegung für einen kurzen Zeitraum
vorherzusagen. Mittels unserer Vorhersage können wir die erkannte und
tatsächliche Tangible Position näher zusammenbringen. Wir haben hierfür ver-
schiedene Modelle implementiert: Erstens ein lineares Vorhersagemodell, wie bere-
its von Cattan et al. [2015b] präsentiert und zweitens ein Modell, welches mittels
polynomialer Regression versucht, auch Kurven zu antizipieren.

Diese beiden Modelle vergleichen wir in verschiedenen Konfigurationen, um mehr
über jeweilige Stärken und Schwächen herauszufinden. Unter anderem wird in
einem Benchmark die euklidische Distanz zwischen vorhergesagter und dann
tatsächlich erkannter Position berechnet. Abschließend führen wir eine Studie
durch, um unsere theoretischen Ergebnisse zu validieren und zu analysieren, wie
Nutzer die Effekte unserer Vorhersage wahrnehmen. Wir nehmen hierfür die ini-
tiale Motivation der Arbeit wieder auf und lassen die Teilnehmer mit und ohne
kompensierte Latenz Air Hockey spielen. Insgesamt bevorzugten 10 von 14 Teil-
nehmern das Spiel mit kompensierter Latenz. Somit hat der Ansatz Potential,
auch in weiteren Anwendungen genutzt zu werden, was uns positiv in Richtung
zukünftiger Arbeit in diesem Bereich blicken lässt.
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Conventions

Throughout this thesis we use the following conventions.

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

To increase readability when declaring functions their spe-
cific arguments are left out.

The whole thesis is written in American English. Although
the thesis is written by one person plural form is used.
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Chapter 1

Introduction

Touch screens in combination with tangibles should bring Touch screens and
tangibles: an already
perfect relationship?

the best of two worlds together. On the one hand we have
tangibles: they are physical objects which can be detected
by touch screens. Placed on them they can be moved ac-
tively or work as passive tokens. Their different shapes of-
fer all kind of affordances and haptic feedback providing
clues about how to use each object. By that, tangibles ex-
tend the two-dimensional plane surface of a touch screen,
adding an additional type of feedback besides acoustic and
visual. Furthermore, tangibles can be designed in a way
that they are clearly visible from varying positions and
greater distances, a potential advantage on larger tabletop
displays. That are reasons why digital environments ben-
efit from the extension with physical objects. On the other
hand tangibles have to be set into context a touch screen
can provide. Touch points can be detected and interpreted,
allowing for example gesture recognition. The whole inter-
face remains interactive by updating its displayed content
depended on the situation and input. As a result, tangibles
also strongly benefit from touch screens. The relationship
between tangibles and touch screens could therefore be de-
scribed as a symbiosis. But to perceive tangibles as objects
belonging to a digital application the overall system latency
has to be minimized.
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LATENCY:
The delay between input action and output response.
MacKenzie and Ware [1993]

Definition:
Latency

A computer needs time to recognize and process touch in-Latency creates gap
between physical
and virtual object

put as well as react to it accordingly through displaying a
response. Because of that, latency is unavoidable on com-
mon touch screens up to the present. Using tangibles this
leads to two usually different positions: first the actual po-
sition of the physical tangible on top of the display and
second its last detected position by the computer. During
movement this detected position is lagging behind the real
position. When performing solely slow movements they
are close together, but with fast movements the gap be-
tween physical and virtual object can become quite large
as illustrated in figure 1.1. Of course users expect the ac-
tual tangible position to be used, because it is their visual
and haptic reference point. In case the tangible is not addi-
tionally displayed virtually on the screen they do not even
know the lagging second position. In contrast, the com-
puter only has information about this second position and
that can cause problems.

Imagine playing a reactive game like air hockey with tan-Extreme case air
hockey gibles as mallets and a virtual puck and playing field. At

best, the virtual representation of a mallet should always
be exactly below the actual object as they are moving si-
multaneously. Due to the explained multiple sources of la-
tency which cannot all be erased completely, reducing the
latency to achieve this state is currently not possible with-
out restrictions. Because of that, the detected mallet posi-
tion is lagging behind the movement of the tangible. This
can cause errors and misunderstandings if for example the
user is not hitting the puck as intended. Resulting from
it the user could blame himself for being too slow when
in fact the system is too slow updating the tangible posi-
tion for collision detection. Appearing problems like that
are motivating the general aim of this thesis: to reduce the
perceived latency. With a predictive approach we rather are
compensating latency instead of actually reducing it, but if
it works the effect on users can be the same.
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(a) Initially static

(b) Slow movement

(c) Fast movement

Figure 1.1: Illustration of a physical tangible and its virtual
representation with increasing movement speed during ac-
celeration

The idea behind the predictive approach in general is to Predictive approach
to compensate
latency

continuously analyze the trace of a tangible in real time
and try to predict its movement for a certain short time
frame, called prediction length. If, for example, this predic-
tion length equals the system latency, it could be completely
counteracted with a perfect prediction. It goes without say-
ing that a prediction is always connected with uncertainty,
nevertheless we try to shift the detected position closer to-
wards the real position. For example, short-time linear pre-
diction as presented by Cattan et al. [2015b] uses the last
two detected positions to calculate the current direction of
movement and its speed and assumes that the tangible con-
tinues this movement. The distance that the object presum-
ably covers during the time we want to predict is added to
the detected position. Detailed explanations are following
in the main part of the thesis.
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There exist two main restrictions of this simple linearRestrictions of
current work

motivates extension
model: it assumes first that the movement continues with con-
stant speed and second that the movement follows a straight
line. With larger prediction lengths this leads to a jitter-
ing movement when dealing with curves and under- or
overshooting when dealing with speed changes. Because
of that, there is definitely room for improvement. There-
fore, it is worth testing if a polynomial regression on the
trace of a tangible is helpful. It would take multiple last
measured points and the speed between them into calcu-
lation to detect acceleration and deceleration phases. That
could help to prevent under- and overshooting. Most im-
portant, it could also be used to tackle the second limitation
and smoothen the movement during curves.

With the upcoming related work we are going to moti-Structure of the
thesis vate the use of tangibles and go into detail about differ-

ent types of them. The impact of latency in various areas
is pointed out along with possible approaches to reduce it
by hardware or software. After that, the theoretical foun-
dations of our work concerning linear prediction and its
extension by polynomial regression are explained. Follow-
ing, a short overview about relevant parts of the already
existing framework is presented. How our own prediction
is then embedded into it will be explained afterwards. To
evaluate, first a benchmark is developed and used to get an
idea about the influence of different parameter combina-
tions, for example the polynomial degree and the amount
of included previous positions. The prediction is tested
and visualized on multiple example traces to get to know
more about strengths and weaknesses of the models. Fur-
thermore, we come back to the already mentioned extreme
case of playing air hockey, performing a user study to find
out how the prediction is perceived in real world by the
participants. Finally, all the results are discussed and in-
terpreted. Possible future work including new prediction
models, different hardware and potential implementation
improvements is mentioned as well.
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Chapter 2

Related work

My thesis is going to connect the research areas tangibles, la- Research overview
tency and prediction. With the recent development of PERCs
by Voelker et al. [2015] the next step of tangibles becoming
a useful part of digital applications is achieved. But latency
is still a problem. Various studies for example by Anderson
et al. [2011] and Ng et al. [2012] have been made examining
the impact of latency while using mouse, stylus or direct
touch. Depending on the task users can perceive latencies
even in the single digits. Achieving latency free hardware
comes with restrictions as Leigh et al. [2014] demonstrate.
Furthermore, a software approach is mostly independent
of underlying hardware, so it can be used on different de-
vices without complex adjustments. Among others Asano
et al. [2005] study the movement trajectory of mouse input
for endpoint prediction in WIMP environments with the
purpose of using it on larger displays. Tangibles are often
used on large tabletop display but not (yet) motorized, so
this is not applicable to our current work environment. Fo-
cusing on shorter prediction intervals, LaValle et al. [2014]
implement a software approach to reduce head movement
latency of the virtual reality headset Oculus Rift. To com-
pensate latency of touch input, short-term linear prediction
is the most promising approach. With the model of Cattan
et al. [2015b] the user can retain control, while the perceived
latency is reduced.
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2.1 Tangibles

Figure 2.1: iPhone as tangible can display information on
third axis as shown by Li and Kobbelt [2015]

Tuddenham et al. [2010] compare the input via mouse,Why to use
tangibles? multi-touch and tangible performing manipulation and ac-

quisition tasks. They conclude that users overall prefer tan-
gibles as they are easy to use and enable precise adjust-
ments. Another recent study by Cincuegrani et al. [2016]
analyzes the influence of tangibles on the motivation of
users. Participants had to perform a musical task either
using tangibles or not. Resulting, their motivation was
higher when interacting with a tangible user interface than
a gesture-only interface. Shaer and Hornecker [2010] pro-
vide history, possible use cases and implementation meth-
ods of tangibles. Tangibles could be used in several ap-
plication domains. Especially in education they can ease
the initial contact with topics like programming, because
they invite people to play around and help to visualize ab-
stract concepts. The development of Li and Kobbelt [2015]
suggests that tangibles themselves could also display addi-
tional information or provide an alternative view by being
equipped with a display. As an example figure 2.1 shows
an iPhone used as a tangible.
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Figure 2.2: PUC creating three touch points developed by
Voelker et al. [2013]

A passive untouched capacitive widget (PUC, Voelker et al. PUCs and PERCs
[2013]) is a passive tangible creating three touch points as
shown in figure 2.2. Capacitive touch screens procedurally
scan for touch input detected by changes in capacitance,
but untouched PUCs are not grounded. Therefore, the three
touch markers have to be arranged in a certain pattern to
assure that only one of them is in a currently checked area
at a time, then the other two can ground the tangible. Addi-
tionally, the exact orientation of the object can be detected
having three positions. Unfortunately, when using PUCs
the touch screen filters out their touch input after some time
without movement. This can be avoided by establishing a
connection via Bluetooth to transfer the status of the tangi-
ble to the device. This additional information channel helps
to distinguish if the tangible position is lost due to missing
movement or due to lifting it from the table. Voelker et al.
[2015] describe and explain persistent capacitive tangibles
(PERCs) which establish this connection and therefore pro-
vide a reliant detection of tangibles on touch screens even
if they are not moved. Cherek et al. [2015] present different
use cases for PERCs like a multiplayer air hockey game and
a space invaders clone. As these are some exemplary input
scenarios, they ideally should benefit from reduced latency
through prediction. Because of my focus on latency, whose
negative effects only occur with movement, in my work it
is not important whether PUCs or PERCs are used.
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2.2 Latency

One of the first papers that focuses on analyzing the corre-Perception of latency
lation between user performance with a mouse and input
lag is the one by MacKenzie and Ware [1993]. The results
are not simply transferable to tangibles, because of the in-
direct input method, but they show that latency has been
a well known problem for a long time. Anderson et al.
[2011] analyze the users’ tolerance towards latency while
performing everyday tasks on a touch screen. As a result,
the participants accepted high latencies up to 580ms. This
could be explained by the novel interaction with the used
tablet computer screen at that time (transferable to initial
contact with the input method tangibles) and the exam-
ined slow tasks (comparable to some tasks with tangibles
like playing a strategy table top game). But other studies
show that latency reductions way below 580ms can be per-
ceived during more reactive tasks and result in a better user
performance. One of these is a basic study that examines
the possible lower bound of latency perception with direct
touch input performed by Ng et al. [2012]. They highlight
that differences can be noticeable down to 2ms. But it is too
simple to be fixed to one number, as Jota et al. [2013] get
different slightly higher results. Nevertheless, these pub-
lications support the importance of reducing perceived la-
tency.

Deber et al. [2015] examine the users’ perceptions of la-Influence of latency
depending on task tency for indirect and direct interaction, performing drag-

ging and tapping tasks. Resultantly, they find out that drag-
ging tasks with direct interaction are the most latency sen-
sitive tasks. That leads to the assumption that tangible user
interfaces would highly benefit from a reduced perceived
latency. Jota et al. [2013] present the influence of latency
on pointing tasks. The smaller and further away the target
is (larger Fitts’ ID), the greater becomes the negative im-
pact of latency. As tangibles are often used on large sur-
faces with potentially small targets the influence of latency
is supported.
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Most studies concentrate on mouse or direct touch input, Latency while using
a stylusthe question remains how latency is perceived using tangi-

bles. As such studies are rare investigations about using a
stylus are of interest, because the stylus is a transfer object
to make an input right on the display just like tangibles do.
Participants had to sketch and write using a stylus under
different latency conditions in a study realized by Annett
et al. [2014]. The lower bound of perceived latency is found
out to be at around 50ms when drawing a line or writing
and at around 60ms when drawing more complex shapes.
Overall, this is considerably higher than the 2ms while per-
forming direct touch tasks as observed by Ng et al. [2012].
Additionally the latency perception highly depends on the
visual environment. With eye-tracking they emphasize that
participants used larger objects like their own hands or the
used stylus as a reference point for latency estimation. They
did not focus on the specific gap between the actual nib of
the stylus and its displayed virtual ink. In another study
by Ng et al. [2014] participants should perform dragging
and scribbling tasks with a digital pen. They were able to
distinguish between very low latencies in the single digits
when dragging a box and a median latency of 40ms while
scribbling.

Latency has a high impact on performance when playing Gaming and latency
first person shooters including fast movements as Ivkovic
et al. [2015] show. This could be transferred to high mo-
tion games on tabletops like air hockey. Additionally, Mee-
han et al. [2003] have an interesting approach to connect
latency with the feeling of presence by measuring the heart
frequency in virtual reality. As a result, with lower laten-
cies the participants heart frequency was higher, signaling
a more distinct feeling of presence even with the relatively
poor graphics at that time. This indicates a connection be-
tween these two factors and could also occur in attenuated
form using tangibles.
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To analyze the impact of latency it first has to be measuredMeasure latency with
and without

additional hardware
to find out the status quo. This can be done with or with-
out additional hardware as shown by Bérard and Blanch
[2013]. In every case the actual input position has to be
monitored continuously to compare it to the recognized po-
sition at each time frame. Using a high speed camera this
position can be captured most precisely. Another approach
to obtain the actual position without additional hardware is
to strictly predefine the input movement. Through moving
a finger with a given constant speed in a circle it is assumed
to know the real finger position at every time frame. This
position then can be compared to the acquired input to de-
rive the overall latency by the gap between the two. The
procedure leads to an estimation approximately 4ms away
from the more precise one gained by using a camera. Cat-
tan et al. [2015a] address the problem that following a circle
with a given speed is not that easy to perform. They intro-
duce an easy-to-perform approach for latency estimation
that could potentially be used on our tabletop screen and
additionally shows us a use case for the prediction model.
Users have to move a finger at any desired but constant
speed on a straight line. The detected position is visualized
on the screen, with latency it is constantly lagging behind
the finger. The overall latency is now measured by tweak-
ing the prediction length until prediction fully compensates
the displayed lag. This is indicated by a match of visual-
ized and actual finger position. Validated by a user experi-
ment, this method is more precise than the one introduced
by Bérard and Blanch [2013] while being easy to perform.
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2.3 Prediction

By documenting the construction of a 1ms latency sys- Why to use
prediction?tem, Ng et al. [2012] show that building an almost latency-

free system is possible but complex. The work of Leigh
et al. [2014] supports that assumption. A lot of parts
like the touch recognition, its processing and the display
have to be optimized. Currently their system comes with
restrictions. A projector has to be used to display con-
tent on the touch surface and multi-finger gestures are not
supported. Overall a software approach is preferred, be-
cause it can be widely used on today’s common hardware.
Vaidyanathan [2008] gives fundamental information about
prediction, the formula of Cattan et al. [2015b] can be de-
rived by the approaches here. In general, with prediction
comes uncertainty and false predictions could cause jitter-
ing movement. Pavlovych and Stuerzlinger [2009] examine
the trade off between spatial jitter and overall latency. A
high amount of jitter can strongly increase the error rate
whereas latency has a stronger effect on human perfor-
mance than a small amount of jitter.

This thesis will focus on continuous short-term prediction Different predictive
approachesas already pointed out in the introduction. Nevertheless,

there exist other types of prediction. Xia et al. [2014] aim
to reduce the overall interaction latency with touch screens
by predicting the location and time of a tap. But Deber
et al. [2015] conclude that tapping tasks are not as latency
sensitive as dragging tasks. Another type of prediction is
endpoint prediction. While also analyzing the trajectory of
a touch it aims for a much longer prediction length. This
could of course help to cover large distances on tabletops,
but without motorized tangibles an implementation would
not be useful. Asano et al. [2005] show the Delphian desk-
top which predicts mouse movements in WIMP environ-
ments by analyzing cursor trajectories. Described knowl-
edge about the hand movement phases could be of interest,
because acceleration and adjustment phases are difficult to
deal with using prediction. Lank et al. [2007] share the aim
to predict user input for performance improvements with a
longterm approach. Biswas et al. [2013] further develop dif-
ferent endpoint prediction methods by using a neural net-
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work or a Kalman filter taking into account velocity, bear-
ing, distance and acceleration. Kalman filters have already
been tested on our system, they are not capable to make
appropriate position corrections in our tangible system as
they deal best with noisy data. But they could be used to
filter out glitches of the display’s touch recognition. To pre-
dict the endpoint of a mouse movement by comparing the
initial movements to already known personal patterns is
another approach by Pasqual and Wobbrock [2014]. This
algorithm needs some data before it can be accomplished.
For a personal device this is acceptable, but a larger table-
top display especially in public could be used by different
people with different movement patterns every day.

One type of prediction we also want to implement hasEffects of continuous
prediction already been evaluated with direct touch. Cattan et al.

[2015b] use continuous linear prediction to entirely coun-
teract the latency in a range of 25ms to 75ms. They exam-
ine test users’ performance and subjective preferences. First
participants had to perform dragging tasks with varying
difficulty and a system latency of 25 to 75ms. This latency
was then either completely counteracted using prediction
or not. Above a compensated latency of 42ms user perfor-
mance was not increased through prediction. This could be
explained by the rising prediction error that especially in-
terferes with the needed precise adjustments during target
acquisition. Nevertheless, counteracting 25ms of latency
led to an improved performance for every task difficulty.
In another task users should perform moves as they liked
with and without prediction and choose their preference.
Only when compensating 25ms, participants preferred an
enabled prediction as some otherwise felt a loss of control.
As highlighted by Pavlovych and Stuerzlinger [2009] jitter
can increase the error rate and seems to occur when com-
pensating higher latencies. It is important to keep that in
mind and carefully analyze the impact of greater prediction
lengths on the movement trajectory.
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Figure 2.3: iOS9 includes touch prediction as presented by
Tsoi and Xiao [2015]

In practice a form of touch prediction has already been Applied approaches
to deal with latencyimplemented by Apple since the release of iOS9. The ap-

proach is presented by Tsoi and Xiao [2015], but implemen-
tation details are not given. When looking at figure 2.3 you
get the impression that Apple has extended the prediction
beyond linear, because the predicted dashed line slightly
follows the curve. Lags are also tackled in the area of re-
mote shape displays: Leithinger et al. [2014] provide a sce-
nario where shape displays are used to work together in a
shared space from different locations. They have problems
with latency during their projected environment changes.
To handle this they have to control the object movement,
synchronizing original and projected movement. LaValle
et al. [2014] show that virtual reality is another latency sen-
sitive area where latency has to be minimized to enable a
realistic experience and prevent motion sickness. They also
use a predictive approach to reduce the perceived latency
between head movement and screen change on the Oculus
Rift.
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Chapter 3

Touch Prediction

3.1 Theory

With prediction in general we try to make an educated
guess about what will happen in future. Hints about any
progression can be obtained from relevant data if available.
In our case we want to predict movement on a small-scale
to partly compensate latency. Let us define

pi =

(
xi
yi

)
(3.1)

as the two-dimensional position a touch is detected at
frame i ∈ N. To predict any future value pi+n with n ∈ N
we can try to gather information out of already recorded
touch points pi, pi−1, pi−2 etc.

With short-term linear prediction as used by Cattan et al. Linear short-term
prediction[2015b] only the last two detected positions are taken into

consideration for prediction. We proceed as following: at
the time a touch point is detected we calculate the current
speed of movement

si =
pi − pi−1

∆t
(3.2)

with ∆t being the time between two frames. With 60 frames
per second occurring in our environment we can calculate
for example ∆t = 1000/60 ≈ 16.67ms. Now we have the
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speed vector which as a side effect is already pointing at the
current direction of movement. With the assumption that
maintaining the speed and the direction of movement leads
to a good estimation we can define our predicted position

p̂i = pi + l · si (3.3)

with l being the amount of latency we want to compensate.

Another option is to take multiple last detected touchPolynomial
regression points into calculation. With that approach polynomial re-

gression can be used. The idea behind regression is to find a
function of a certain polynomial degree that approximates
the correlation between an independent variable x and a
dependent variable y best. Therefore we perform polyno-
mial regression twice: with xi always being the time frame
and yi being first the x and second the y component of a
original position pi. For degree m ∈ N we structure the data
of n ∈ N given pi

y1
y2
...
yn

 =


1 x1 x21 . . . xm1
1 x2 x22 . . . xm2
...

...
...

...
1 xn x2n . . . xmn



a0
a1
...
am

+


ε1
ε2
...
εm

 (3.4)

with one data pair per row. Now we search for coefficients
a that minimize the residuals ε using the method of ordi-
nary least squares. Illustrating the steps to resolve for the
coefficients vector we use the short form:

−→y = X−→a (3.5)

To solve for−→a we could invertX , but that is not preferable,
because it takes much computation time. Therefore better
multiply on both sides with the transposed matrix XT of X
to assure a square matrix in order to use LU decomposition:

XT−→y = XTX−→a (3.6)

Next split up XTX to easier to solve lower and upper ma-
trices along with the permutation matrix P :

PXTX = LU (3.7)
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With that done, first substitute XTX−→a in 3.6 to calculate
the unknown vector −→z with forward substitution

PXT−→y = L−→z (3.8)

and finally solve with backward substitution

−→z = U−→a (3.9)

to get values for −→a . As a result, with these values we get
two approximated functions fx, fy separately describing
the movement of a touch on the x-axis and the y-axis over
time. Compensating a latency l at time t we can take the
values from fx(t+ l), fy(t+ l) for the predicted position.

To measure the quality of prediction an obvious method Measurement of
prediction qualityis to compare the predicted position with the then actual

detected position. This is, for example, also done by LaValle
et al. [2014] evaluating their predictive tracking. We use
the mean absolute error (MAE) given in pixels to process
this difference between predicted and actual value. If we
want to predict m ∈ N frames we compare n ∈ N actually
detected positions pi with the prediction we madem frames
ago p̂i−m. The error is then defined as:

MAE =
1

n

n∑
i=m

‖p̂i−m − pi‖2 (3.10)

With that we get an overall estimation about the quality of
certain prediction models and can compare them to each
other. For further analysis every single absolute error can
be checked to get information about outliers.
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Prediction in general is based on two components: the dis-Separate distance
and direction error tance to cover and the direction the movement should con-

tinue on. For a detailed analysis it can make sense to split
up the error calculation looking at each of these mean com-
ponent errors (MCE) for predicting m ∈ N frames sepa-
rately. In case of the mean distance error given in pixels
we want to indicate how well a prediction model handles
speed. We are taking the distance between the predicted
position m frames ago and the original position m frames
ago as well as the distance between the current actual posi-
tion and the original position m frames ago and then take
the difference between them:

MCEdis =
1

n

n∑
i=m

(|‖p̂i−m − pi−m‖2 − ‖pi − pi−m‖2|) (3.11)

For the mean direction error given in degrees we first have
to specify how the direction angle is measured at all. With
the given coordinate system of the display as reference a
straight move to the right should have a direction angle of
0◦, to the top 90◦, to the left 180◦ and to the bottom −90◦.
Taking two positions pi and pj we can get the direction an-
gle of a movement from pi to pj :

α(pi, pj) = atan2(yj − yi, xj − xi)
180

π
(3.12)

Now that we can calculate movement direction angles, we
further need the difference between two of them. To cor-
rectly get it we define:

β(α1, α2) = |(α1 − α2 + 180) mod 360− 180| (3.13)

The function is built up in a way to always ensure getting
the shortest circular difference between the two given an-
gles. With these definitions in mind we can finally calculate
the overall mean direction error, which indicates how well
a prediction model anticipates direction:

MCEdir =
1

n

n∑
i=m

β(α(pi−m, p̂i−m), α(pi−m, pi)) (3.14)

The definition of these specific error measurements enables
a more precise analysis of the performance of different pre-
diction models. In combination with the later introduced
visualization of original and predicted traces we have pow-
erful tools for evaluation.
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3.2 Software Framework

One motivation using a software approach for latency com- Multitouchkit
pensation is its flexibility and independence concerning un-
derlying hardware. To enable an easy inclusion of touch
prediction into the already existing environment, it is fully
compatible with the Multitouchkit (MTK). The MTK pro-
vides a framework for working with tangibles on multi-
touch-displays. Written in Objective-C it supports Mac OS
and iOS out of the box. It is developed by Simon Voelker
and fully reworked by Linden [2015], in future it is planned
to rewrite it using Swift. For our work it is important to first
get to know how the MTK is structured with a special focus
on its touch processing.

Figure 3.1: Rendering loop of SpriteKit taken from the
SpriteKit programming guide by Apple 1

In general the MTK is based on SpriteKit by Apple, it also Rendering loop
uses its rendering loop shown in figure 3.1. Before any-
thing on the scene is rendered, at first with update: touch
processing is performed. In the MTK several steps are exe-
cuted every time this method is called. Most important for
touch prediction is, that after all touches are recognized,
preProcess: is called. This global delegate allows a

1https://developer.apple.com/library/content/documentation/
GraphicsAnimation/Conceptual/SpriteKit PG/Introduction/
Introduction.html

https://developer.apple.com/library/content/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/Introduction.html
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MTKScene to manipulate touches before anything else is
done with them. So this is the appropriate point in the ren-
dering loop to execute the prediction. After this call, among
others, the position of tangibles is updated and can there-
fore just adapt the predicted position.

The continuous movement of a touch over time is calledRepresentation of
touches a trace and saved in an instance of MTKTrace. In order

to a clear assignment, every trace gets an unique identi-
fier provided by the MTK. Touch input can be obtained
from different sources: supported are mouse and UITouch
as well as TUIO and JSON via network. Therefore, the in-
put source can provide optional information about its name
and type, which can be stored in the trace, too. To help han-
dling traces, each one has a current state expressed through
Begin, Move or End. MTKEntry is responsible for saving
a single touch of a trace. Single touch entries have to be
specified by a timestamp and position and can contain in-
formation about size and orientation useful for a possible
cursor. Concerning memory management whole traces can
be compressed, deleting their touch entries while keeping
the other information.

With their markers tangibles create three touch points forTangibles in the MTK
an exact detection of their position and rotation. Their
marker distances and angles in relation to each other can be
specified creating a tangible model to associate certain pat-
terns with certain tangibles. For a correct detection all three
created traces have to be found. During movement, it can
be possible that traces are lost and reappear after a while.
Once the pattern has been detected properly, two detected
markers are sufficient to calculate its position and rotation.
Additionally, the MTK continuously scans for new traces
to associate them with a matching tangible again. Further-
more and very useful for visualizing the problem of latency,
a tangible can have a customizable virtual representation of
its last detected position on the screen.
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3.3 Implementation

Figure 3.2: Basic scene to show effects of prediction

Touch prediction is implemented providing multiple fea-
tures which will be explained in detail in this section:

• Full compatibility with the MTK for comfortable in-
clusion into the already existing environment, work-
ing with Mac and iOS

• Example scene including UI elements to enable pre-
diction, set prediction length and optionally activate
real time visualization, screenshot in figure 3.2

• Manipulation of touches based on a chosen prediction
model

– Framework administrates prediction relevant
information of traces like original position,
speed and direction angle

– Already implemented models are short-term lin-
ear prediction as presented by Cattan et al.
[2015b] and polynomial regression with variable
buffer length

• Persistently save trace information to file

• Run benchmark on saved trace comparing different
models and parameters as well as visualize original
and predicted trace
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3.3.1 Class Structure

Figure 3.3: Overview on touch prediction classes including
their instance variables and provided functions

The new classes for touch prediction are ordered sim-
ilar to the already established classes handling touches
in general. PredictionInfoSet is a set contain-
ing all necessary information about current traces re-
garding prediction. This information is stored in one
PredictionInfoBuffer instance for each trace. Among
others, the buffer includes an array filled with elements of
the type PredictionInfoEntry, which handle data de-
scribing single touches.
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Starting with the lowest class in hierarchy, a PredictionInfoEntry
PredictionInfoEntry instance is created for every
touch registered by the MTK. Most important, it has to
store the detected touch position. This is done, because the
prediction always relies on information about past original
positions before any manipulation. As these positions in
the correlating MTKEntry have to be overwritten with
the predicted positions to be globally recognized they
are saved here separately. Along with this, other useful
information like predicted position, speed and direction
angle of movement are stored in this class. The two latter
values are used for short-term linear prediction while
the predicted position is saved for an easy comparison
to the original position during benchmark. Of course the
class can hold additional properties if needed for different
prediction models.

The PredictionInfoBuffer holds an array containing PredictionInfoBuffer
the recent touch prediction entries. The amount of stored
entries can be influenced by changing the buffer length.
The buffer length sets at which amount of entries the old-
est entry of the array is overwritten to not affect predic-
tion anymore. With the purpose of saving the whole trace,
overwriting is not activated during trace recording. Fur-
thermore, the buffer has an unique identifier and state,
which equal the ones used for the associated MTKTrace.
For visualizing a trace, our buffer saves information about
the current frame count since the beginning of the trace.
Nodes displaying the original and predicted trace on a
scene are saved here, too. Concerning methods, the actual
predictionAnalysis: is part of this class as it is per-
formed on the buffer data. In order to predict, speed and
direction of movement are calculated using two supporting
functions. First the direction angle of movement in degrees
given two points can be obtained. Second a movement an-
gle, a starting point and the expected distance to cover are
sufficient to derive a new position. The possibility to save
an array of entries is included in this class as well.

All active PredictionInfoBuffer are part of the PredictionInfoSet
PredictionInfoSet. The class enables to search for a
buffer with a given identifier and provides functions to
benchmark and visualize it. visualizeTrace: has to be
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provided with the trace to visualize, the requested size and
the scene it should be displayed on. With this information
it can display every single detected touch as a small cir-
cle filled with an ascending number of the frame the touch
was recognized in. All the circles are connected to visual-
ize the trace. Because this can be done similarly for pre-
dicted and original position just using different colors, you
can quickly compare their positions. benchmarkTrace:
is executed with a given file name providing the raw data.
Additionally, all relevant parameters can be set: How many
frames should be predicted? Which model should be used
with which buffer length? If the model uses polynomial re-
gression its degree can be specified. If the trace should be
visualized a scene to visualize on is needed. With all these
pieces of information the trace can be reconstructed again
part by part to perform prediction like on real time data.
The benchmark can return the mean absolute error (defini-
tion 3.10), the mean distance error (definition 3.11) or the
mean direction error (definition 3.14).

Objective-C itself provides no standard library for perform-Polynomial
regression ing polynomial regression. Therefore, an implementation

developed by Gilles Lesire 2 and published under GNU
General Public License is first tested and then embedded
into the project. Basically it follows the steps described in
the theory section. Given two arrays with x and y values
as well as the wanted polynomial degree it outputs an ar-
ray with the coefficients of the approximated function. To
be capable of that a representation of a matrix containing
Double elements is developed by him as well. Included
are necessary supporting functions to expand, multiply and
transpose these matrices.

3.3.2 General Process

Let us have a process-oriented look at what is done with in-
coming original positions to derive any prediction. All new
touch points are gathered in the preProcess:. Depend-
ing on the state of a trace the following procedure differs.

2https://github.com/KingIsulgard/iOS-Polynomial-Regression

https://github.com/KingIsulgard/iOS-Polynomial-Regression
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In case of a beginning trace, no prediction is executed be- Beginning Trace
cause at this point obviously not enough data is available.
Instead the prediction framework for this particular trace
is initialized. The first position and the identifier of the
trace are copied to a new PredictionInfoBuffer. If ac-
tivated, the visualization is also initialized and adds a small
circle at the first position to indicate the touch.

When handling a moving trace things differ: the prediction Moving Trace
buffer of the trace already exists and can be updated with a
new original position detected at this frame. Furthermore,
prediction analysis is executed. Here depending on the
chosen model different calculations are performed. If linear
short-term prediction is used, the prediction is based only
on the last and current position. To predict, the direction
angle of movement and its current speed are calculated, so
that a new corrected position can be derived. Otherwise,
polynomial regression including the whole buffer history
is executed. In any case the predictionAnalysis: re-
turns a predicted position which is then set in the original
MTKEntry to be globally used now. Visualization addition-
ally draws a path from the last to the current position and
indicates the new touch with a circle and frame count. This
is done with the original and predicted positions in parallel
using different colors enabling an easy comparison of the
two on screen.

Dealing with an ending trace, it optionally can be saved Ending Trace
first. Afterwards, if no visualization is active all prediction
information concerning the particular trace is erased. Oth-
erwise, the data stays in storage as the trace visualization
remains on the screen to be visible even after the touch has
ended. Only at the time a new trace begins it will be erased
with all its information to have a clear start with enough
space on the display for a new trace visualization.

A benchmark cannot use preProcess: itself as it is per- Benchmark
formed on prerecorded data read from a file instead of ac-
tually detected positions on a display in real time. This
file contains an array of PredictionInfoEntry instances
including among others their captured original positions
and timestamps in chronological order. To execute predic-
tion as on real time data, this array works as a template
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for procedurally rebuilding the trace just as it would be
detected in preProcess:. It is first initialized and then
step by step for each recorded frame the associated already
recorded entry is added, so predictionAnalysis: and
visualizeTrace: can work with the data without mod-
ifications. Simultaneously, the desired error measurements
are executed and at the end returned to estimate the quality
of prediction.
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Chapter 4

Evaluation

Evaluation of touch prediction is performed in two steps. Overview
Initially four captured exemplary traces are used to test
the developed models and their parameter configurations.
This is done to get a first idea about how they behave in
certain scenarios and point out their strengths and weak-
nesses. Additionally, captured input of air hockey game
play is used to test how prediction models perform on it.
This bridges the gap to the second evaluation step consist-
ing of a user study. By taking up the motivation given in
the introduction, participants should play two games of air
hockey with tangibles as mallets: one game without pre-
diction, the other one with the model that performed best
during benchmark on the air hockey trace. Users are asked
which game they overall prefer along with more detailed
questions on how they perceive the connection between
physical mallet and virtual puck. This should give an idea
whether prediction leads to an improvement in this chal-
lenging application or not.
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4.1 Benchmarks

(a) Smooth circling (b) Sharp direction changes

(c) Straight line (d) Curves

Figure 4.1: Characteristic traces to benchmark on

As presented in the last chapter, the implementation ofBenchmark on
captured traces touch prediction enables customization by offering differ-

ent models with variable parameters. A first look at the
prediction quality is taken by analyzing how these param-
eters influence the mean absolute error (MAE) calculated
as defined in equation 3.10. In our case the MAE is given
in pixels and can also be described as the mean euclidean
distance between predicted and actual position, overall a
lower score means better performance. Independent vari-
ables we want to analyze are prediction length and predic-
tion model with further configurations on polynomial de-
gree and buffer length. All tests are based on prerecorded
data sets and therefore can be easily reproduced and ex-
tended. The traces are captured on a 55 inch Full HD capac-
itive multi-touch-display. With its 40 pixel per inch there-
fore 10px equal 6.35mm on this particular screen.
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4.1.1 Prediction Length

Figure 4.2: Development of MAE over all example traces in
dependence of prediction length

Before we start any detailed benchmarks one important MAE grows beyond
linear with increasing
prediction length

question is which prediction length to choose. It goes with-
out saying that the longer you look into future the more
uncertain your prediction becomes, so a linear scaling is not
expected. In order to verify this assumption we use the lin-
ear model as well as a quadratic model with a buffer length
of five to predict one to five frames (with 60 Hz detection
rate resulting in a prediction time of roughly 17ms to 83ms).
The calculated errors of both models are averaged over all
example traces seen in figure 4.1. Results are displayed in
figure 4.2 and show that the error in both cases is not only
increasing linearly with a greater prediction length. For ex-
ample going from one to two frames of linear prediction,
the MAE increases by a factor of 2.62, doubling the predic-
tion length from two to four frames increases the error by
a factor of 3.12. This confirms that doubling the prediction
length not only doubles the overall error as uncertainty in-
creases. When frequent changes of movement speed and
direction are expected a shorter prediction length should
be preferred. In that case the prediction error in general is
expected to be higher and the beyond linear scaling makes
longer predictions even worse. In contrast to this, an ap-
plication with mostly smooth movements and a therefore
expected smaller prediction error could allow for an in-
creased prediction length. Overall the prediction length
should only carefully be increased while always taking the
actual use case into account.
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4.1.2 Degree and Buffer Length of Polynomial Re-
gression

Now we compare the MAE for different buffer lengths andProcedure
polynomial degrees predicting 50ms (three frames with a
60 Hz detection rate) using again the captured exemplary
traces shown in figure 4.1. The buffer length specifies how
many past values are taken into calculation for the approx-
imated function describing the trace. The general form of
this function is specified by the polynomial degree. Be-
cause a function of degree n needs at least n + 1 points
to be defined, the lowest buffer length is fixed for each of
the three polynomial degrees. At maximum we want to
include data of 30 frames, so for every configuration the
benchmark starts after 30 detected positions as from this
point on every configuration has enough data available for
prediction. Notice that we cannot compare to the actual
tangible position and therefore only compare the models to
each other, because we do not know the exact overall sys-
tem latency. But it can be said that concerning the MAE a
good prediction leads to a much lower error than no predic-
tion at all. If we just compare every position with the one
three frames ago we get a MAE of 74.16px between both,
significantly higher than the results we achieve with a good
prediction.

Figure 4.3: MAE of prediction executed on all example
traces using quadratic, cubic and quartic regression with
variable buffer length
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The results displayed in figure 4.3 show the averaged MAE Results and
discussionon all four traces with the different configurations. Over-

all quadratic regression with a buffer length of four per-
formed best resulting in a MAE of 11.69px. For cubic re-
gression a buffer length of eight is needed for a result of
14.33px, quartic regression already needs twelve detected
positions for a MAE of 19.60px. It can be seen that with in-
creasing polynomial degree more values are needed to find
a good approximated function. However, in general cubic
and quartic perform worse than quadratic regression, not
reaching its lowest MAE. An additional look into the de-
tailed test results for each particular trace show that using
cubic and quartic regression do not lead to a lower predic-
tion error on any single trace. Concluding the movement
can be described best by a quadratic model, cubic models
and anything beyond are not appropriate to approximate
these short movement intervals. Therefore the upcoming
benchmarks will solely focus on quadratic regression.

4.1.3 Quadratic Prediction vs Linear Prediction

Figure 4.4: MAE of prediction comparing short-term linear
model against quadratic model on each trace

Next we directly compare short-term linear prediction Procedure
against the best quadratic prediction again predicting three
frames on each particular trace. The linear model always
only takes the current and the previous position into calcu-
lation whereas with the quadratic model the optimal buffer
length differs.
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The results can be seen in figure 4.4. For the first exampleResults and
Discussion containing steady circular movement quadratic regression

with a buffer length of five performs best. The sharp di-
rection changes of the second example trace are predicted
best with quadratic regression and a shorter buffer length
of four. On the third trace following a straight line short-
term linear prediction works best, over-performing the best
quadratic model. Finally the curve movement of the last ex-
ample trace can be anticipated best by quadratic regression
again with a buffer length of four. All in all, the best model
seems to be dependent on the characteristics of the trace, a
universal solution does not exist. Therefore a more detailed
analysis is worth the effort.

(a) Linear prediction (b) Quadratic prediction

Figure 4.5: Visualization of prediction models handling
curves showing the white original trace and the green pre-
dicted trace

Figure 4.5 shows how linear and quadratic prediction antic-Curve handling
characteristics ipate curves. The linear model produces a steady offset as it

always assumes a straight movement. The quadratic model
on the other hand can predict the smooth curve almost per-
fectly allowing the predicted green trace to closely follow
the original white trace. If we take a closer look at the mean
distance error (see equation 3.11) and the mean direction
error (see equation 3.14), they support what can be seen on
the visualization. On the first example trace quadratic pre-
diction overall works best although it produces a mean dis-
tance error of 10.53px which is higher than the 6.20px pro-
duced with linear prediction. But in contrast the mean di-
rection error with the quadratic model is significantly lower
than with the linear model, 2.94◦ instead of 12.50◦. This
proves that the better overall result of the quadratic model
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on the first example trace is solely caused by its anticipation
of the curve not the speed. By that a strong recommenda-
tion for the quadratic model can be made in case the input
is expected to contain of mostly smooth curves.

Nevertheless, the linear approach has its advantages on Speed handling
characteristicsstraight lines and is a bit more reactive when dealing with

sudden changes. This could be explained by the amount of
last positions the models take into account. The short-term
linear model always only takes the last two positions, there-
fore every new position with its speed and direction has a
high impact on the prediction. If multiple last positions are
used, every new position is only partly influencing the new
prediction. This has a regularizing effect but it also could
make the system less reactive. If we look at the anticipa-
tion of speed changes the simple but more reactive linear
model can handle the abrupt stop in the third trace better
having a slightly smaller mean distance error of 6.41px ver-
sus 7.70px.

Figure 4.6: Absolute error over time with the linear model
predicting three frames on the second example trace

Besides characteristic strengths and weaknesses of the Where prediction has
problemsmodels it generally can be said that the more extreme

changes occur in short time the harder it becomes to predict
the movement. This can also be seen in figure 4.6 show-
ing the peaks of the absolute error at every sharp direction
change of the second example trace using linear prediction.
In contrast the error is almost zero during the short move-
ment parts with constant speed on a straight line.
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4.1.4 Application Air Hockey

In this section we compare the best models on traces cap-Analyze air hockey
game play tured while playing air hockey with tangibles as mallets

under the same condition the later user study will be ex-
ecuted on. Figure 4.7 visualizes the captured movement
of a player. Typical straight moves from the center to the
puck can be detected as well as curvy backwards move-
ments. The movement pattern here already shows that
the use case is challenging including sharp direction and
speed changes. Therefore and supported by our own expe-
rience during test matches, we decide to set the prediction
length to 33ms (two frames with 60 Hz detection rate) as
this seems to be the sweet spot between not causing any
recognizable change with a very short prediction length
and causing false predictions and jitter with a too long pre-
diction length. For the benchmark we use captured traces
with a total of more than 12,000 positions to analyze. For
comparison the linear as well as the quadratic model with a
buffer length of four to seven are chosen as they performed
best on the exemplary traces before.

Figure 4.7: Captured air hockey trace

Results show that the short-term linear model with a MAEResults
of 6.57px performed best. Following is the quadratic model
with a buffer length of five and a result of 7.22px. Therefore
we are choosing the linear model for our user study.



4.1 Benchmarks 35

(a) Glitch mixes up detection order of original input

(b) Unmodified prediction extrapolates the error

Figure 4.8: Excerpt of trace captured on multi-touch-
display including glitch

Playing over a longer period on the display that will be Dealing with glitches
used in the study highlights some problems to be tackled
before the study. Seldom input of one frame is first skipped
and then only detected delayed or traces are temporally
lost. Skipping a frame can be seen in figure 4.8. Glitches
like that are very harmful to the users’ perception of game
play as they are extrapolated by prediction and lead to un-
expected extreme behavior of the mallet especially concern-
ing collision detection. Therefore they have to be detected
and filtered out. To be capable of that, speed and direction
of movement are permanently observed. If their changes
from one frame to another are above a defined threshold,
prediction is stopped for the next three frames. This avoids
the extrapolation of these glitches. Unfortunately, defining
the threshold is always a trade off between stopping pre-
diction unnecessarily often and not detecting all extreme
glitches. For the upcoming user study the filter is set in a
way to ensure filtering out most extreme behavior, even if it
overall leads to a slightly higher MAE because of stopping
prediction a bit too often.
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4.2 User Study

Figure 4.9: Two people playing air hockey, picture taken by
Cherek et al. [2015]

The user study is performed to find out how people per-
ceive the impact of touch prediction while playing air
hockey as shown in figure 4.9. The specific application is
chosen because latency is highly noticeable while playing
this game due to the required fast movements to hit the
puck. This is also supported by the already shown move-
ment pattern in figure 4.7. Consequently there exists a large
potential benefit with compensated latency in this scenario
while the prediction model also faces a major challenge be-
cause of the frequent speed and direction changes. Because
of that it is very interesting to analyze this particular appli-
cation.

4.2.1 Method

With touch prediction we are aiming at reducing the per-Hypothesis
ceived latency to increase the overall responsiveness of the
application. Therefore we are expecting to validate the fol-
lowing hypothesis with our user study: Users prefer playing
with touch prediction
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14 people (2 female) between 20 and 31 with a mean age of Participants
24 take part in the study. All participants come from an aca-
demic background. Exactly half of the people have played
air hockey before.

Two PERCs as mallets are used. The game is executed Hardware
on an iMac (Intel Core i7, NVIDIA GeForce GTX 780M,
24GB RAM) and displayed on a 55 inch capacitive multi-
touch-display by Microsoft. The display has a resolution of
1920×1080 and a touch detection and display refresh rate
of 60 Hz.

Participants are asked to play two matches of air hockey, Procedure
one with and one without touch prediction. In order to
predict 33ms of movement the short-term linear model is
used with an additional filter to detect glitches. Before par-
ticipants start their first match they are shortly instructed
to keep an eye on their perception of mallet control, the
reactivity of the game and the collision detection between
mallet and puck. Besides that, no additional information
is given, especially not that the perceived latency between
the games will differ. Any virtual representation of the de-
tected tangibles is completely disabled. Every match has
a duration of five minutes, participants are given the pos-
sibility to pause the game at any time if they want to. To
avoid possible influences half of the participants start with
activated touch prediction, the other half with deactivated
touch prediction.

After each match the participants have to fill out a short Questionnaire
questionnaire containing five statements. These include
their perception of mallet control (1), immediate movement
detection (2), accurate collision detection (3), missing the
puck even with a quick enough reaction (4) and an appro-
priate impact of the mallet’s speed and movement on the
puck (5). The level of agreement to each statement can be
expressed on a Likert scale offering five options. Addition-
ally, a comment section is provided. After finishing both
matches participants should declare which game they pre-
ferred. The original questionnaire can be seen in the ap-
pendix.
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4.2.2 Results and Discussion

Figure 4.10: Proportional distribution of participants’ game
preference

Average Median SD
Statement Org Pred Org Pred Org Pred

1 3.64 3.64 4 4 1.11 1.29
2 3.14 3.64 3.5 4 1.12 1.23
3 3 3.07 3 3 1 1.22
4 3.93 3.43 4 3.5 0.80 1.29
5 3.79 3.57 4 4 0.94 1.29

Table 4.1: Results of detail questions including all partici-
pants

The distribution of game preferences is visualized in figureOverall preference
4.10. Ten participants totally or slightly preferred the game
with prediction, one had no preference and three totally or
slightly preferred the game without prediction.

Results of the detail questionnaires are presented in tableApproval concerning
statements 4.1. Concerning arithmetic mean and median a value of 1

stands for total disagreement, whereas a value of 5 repre-
sents total agreement regarding the given statement. Ad-
ditionally the standard deviation of the answers is given to
indicate the amount of variation. With prediction its value
is higher on all five statements. If we take answers of all
participants into account only small tendencies concerning
their answers on questions 2, 3, 4 and 5 are detected. With
prediction participants expressed a stronger approval con-
cerning the statements of an immediate movement detec-
tion and an accurate collision detection and a weaker ap-
proval concerning the statements of not hitting the puck
even when having reacted quickly enough and an appro-
priate transfer of mallet speed and direction to the puck.
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The raw data with additional bar charts can be found in the
appendix. There can also be seen that the tendencies con-
cerning statements 2,3 and 4 are increased when only tak-
ing the participants into account that overall favored touch
prediction.

In the comments people mention that especially side move- Comments of
participantsments were not detected in time when playing the original

game and that they felt an improvement in the game with
prediction. Without prediction the increased lag was recog-
nized. With prediction some people complained that weak
hits of the puck were interpreted as strong ones.

The increased standard deviation indicates that the an- Discussion of detail
questionsswers are more spread with prediction and not represented

well by the arithmetic mean value. This could explain
why we only detect small tendencies concerning the de-
tailed questions while a larger majority overall preferred
prediction. Participants’ perception of touch prediction
was strongly connected to their playing style. We observed
matches between two participants where at the end one
person preferred prediction while the other person pre-
ferred the original game play. People that tended to play
more extreme most of the time just trying to hit the puck
with as much speed as possible were the ones favoring orig-
inal game play because prediction had problems handling
these extreme changes of speed. This potentially weakened
their experience and caused a strong approval towards the
original game play reflected in their answers. Maybe a de-
crease of the puck bounciness or an overall cap of its speed
could help here. The results of the people that preferred
touch prediction show that they favored it because they felt
a more immediate movement detection as well as a more
accurate collision detection. Additionally for these partici-
pants the occurrences of not hitting the puck were reduced,
which is also supported by some comments.
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The mentioned lag during side movements was a problemDiscussion of
comments with latency as the exact position here made a difference

if the puck was hit at all or completely missed, so com-
pensated latency made a perceptible difference. Hitting the
puck during forward movement was not that latency sensi-
tive as the puck was just sliding under the tangible but still
was hit.

To come to a conclusion, a significant majority of peopleConclusion
preferred the match with reduced perceived latency. There-
fore our hypothesis is validated. Nevertheless, prediction
in combination with air hockey can be further improved to
handle even more playing styles.
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Chapter 5

Summary and Future
Work

5.1 Summary and Contributions

The thesis was located in the area of tangibles tackling the Summary
problem of latency with a software approach. By refer-
ring to related work we pointed out that latency can have
a strong influence on performance. Especially with drag-
ging tasks as performed with tangibles a lagging detection
harms the system responsiveness and applications like air
hockey suffer from that. To address the problem first the ex-
isting environment provided by the MTK had to be under-
stood to then fully integrate touch prediction into it. With
that done we evaluated our prediction considering the ab-
solute euclidean distance between predicted and actual po-
sition as well as detailed distance and direction errors. The
ability to capture traces was required to afterwards run dif-
ferent models on the same data for an accurate compari-
son. Furthermore, original and predicted traces were visu-
alized to illustrate the behavior of different prediction mod-
els. Finally we took up the initial thesis motivation and
performed a user study to get to know how participants
perceive the effects of touch prediction while playing air
hockey.
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Our developed touch prediction gathers the original touchContributions
input to execute different prediction models on the data in
real time. The software does not require additional hard-
ware tweaks and is designed to be compatible with iOS and
Mac. Reducing the perceived latency it works with tangi-
bles as well as direct touch. It includes the linear approach
by Cattan et al. [2015a] continuously calculating speed and
direction out of the last two positions and extrapolating
this movement for prediction. Additionally, the framework
is extended using polynomial regression with a variable
degree and buffer length. Our detailed evaluation allows
us to give recommendations on which prediction model
to choose under what circumstances. Quadratic prediction
works best with a short buffer length of four on input con-
taining smooth curves. Using cubic or quartic regression
overall causes a higher prediction error and is therefore
not recommended. Short-term linear prediction handles
straight lines with abrupt speed changes best. Independent
of the chosen model an increased prediction length causes a
beyond linear increase of the prediction error, so we advise
to only carefully increase the prediction length. The results
of our user study indicate that touch prediction is a promis-
ing approach, because ten out of 14 participants favored the
air hockey game with activated touch prediction.

5.2 Future Work

With the spread of displays with higher refresh rates likeNew displays
the Microsoft Surface Hub significant hardware improve-
ments are made. With its 4K resolution and most impor-
tantly a 120 Hz refresh rate touch prediction on this display
can potentially be more precise. This assumption can be
made, because with the increased refresh rate we can get
twice as much values in the same time to improve quadratic
prediction or shorten our time intervals even more with the
short-term linear model to react faster to sudden changes.

At the moment every recognized trace on the scene is pro-Performance
improvements cessed. If a tangible is used it creates three traces. There-

fore the amount of traces to be analyzed can become quite
large. The current implementation has been tested with
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maximum two tangibles simultaneously while playing air
hockey. For better performance the implementation of pre-
diction could be changed to just take the center point of a
tangible for prediction. This would decrease the processing
effort significantly, but would need additional changes to
handle for example tangible rotation.

Prediction quality could be improved through prevent- New prediction
modelsing extreme predictions. These extreme predictions could

be recognized by setting a maximum prediction distance
based on the cap of executable speed by humans. The
movement speed while conducting has been analyzed by
Koster [2008] and could motivate such an analysis for tan-
gible interaction. All in all reducing latency by software is a
promising approach where research continues. Henze et al.
[2016], for example, have a paper to release that is dealing
with software-reduced touch screen latency comparing lin-
ear and polynomial prediction to an approach using neural
networks. When new approaches or prediction models like
that are explored, the current implementation is open for
further extensions.
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Appendix A

User Study
Questionnaire and
Results



ID: __________
First Match

Gender      _____ 
Age      _____
Air Hockey Experience?  _____

1. I have full control over my mallet

2. My movements are detected immediately

3. The collision detection between mallet and puck is accurate

4. Sometimes I do not hit the puck even if it feels like having reacted quickly enough

5. Speed and direction of movement of the mallet have an appropriate impact on the puck 
movement

Comments?

Totally disagree Neither nor Totally agree

⃝ ⃝ ⃝ ⃝ ⃝

Totally disagree Neither nor Totally agree

⃝ ⃝ ⃝ ⃝ ⃝

Totally disagree Neither nor Totally agree

⃝ ⃝ ⃝ ⃝ ⃝

Totally disagree Neither nor Totally agree

⃝ ⃝ ⃝ ⃝ ⃝

Totally disagree Neither nor Totally agree

⃝ ⃝ ⃝ ⃝ ⃝
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ID: __________
Second Match

1. I have full control over the mallet

2. My movements are detected immediately

3. The collision detection between mallet and puck is accurate

4. Sometimes I do not hit the puck even if it feels like having reacted quickly enough

5. Speed and direction of movement of the mallet have an appropriate impact on the puck 
movement

Comments?

Concluding: Regarding the asked aspects, which match did you prefer?

Totally disagree Neither nor Totally agree

⃝ ⃝ ⃝ ⃝ ⃝

Totally disagree Neither nor Totally agree

⃝ ⃝ ⃝ ⃝ ⃝

Totally disagree Neither nor Totally agree

⃝ ⃝ ⃝ ⃝ ⃝

Totally disagree Neither nor Totally agree

⃝ ⃝ ⃝ ⃝ ⃝

Totally disagree Neither nor Totally agree

⃝ ⃝ ⃝ ⃝ ⃝

The first match No differences The second match

⃝ ⃝ ⃝ ⃝ ⃝
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ID Gender Age AH 
Experience

Statement 1 Statement 2 Statement 3 Statement 4 Statement 5 Prediction 
prefered?Org Pred Org Pred Org Pred Org Pred Org Pred

42 M 20 No 5 5 4 5 4 4 5 5 5 5 5
43 M 31 Yes 4 5 4 4 4 5 3 4 4 4 4
44 F 28 Yes 4 2 4 2 4 2 4 2 5 4 1
45 M 23 Yes 5 5 4 4 3 4 4 2 3 1 4
46 M 28 No 4 4 2 3 2 3 5 4 3 3 5
47 M 23 No 3 2 3 1 4 2 2 5 4 2 1
48 M 23 Yes 4 4 2 5 3 2 4 3 3 4 4
141 M 22 Yes 3 5 2 4 2 2 4 2 4 4 5
142 M 22 No 4 4 4 4 3 3 4 3 3 4 4
143 M 21 Yes 4 4 5 5 2 4 3 3 3 4 5
144 M 24 No 5 5 4 5 4 5 5 1 5 5 5
145 M 25 Yes 1 2 3 3 1 2 4 5 2 5 5
146 F 26 No 2 2 2 4 4 4 4 4 5 4 2
147 M 22 No 3 2 1 2 2 1 4 5 4 1 3

Overall average 3.64 3.64 3.14 3.64 3.00 3.07 3.93 3.43 3.79 3.57 3.79
Average of participants who 

prefered prediction 3.90 4.30 3.40 4.20 2.80 3.40 4.10 3.20 3.50 3.90

Overall Median 4.00 4.00 3.50 4.00 3.00 3.00 4.00 3.50 4.00 4.00
Median of participants who 

prefered prediction 4.00 4.50 4.00 4.00 3.00 3.50 4.00 3.00 3.00 4.00

Overall standard deviation 1.11 1.29 1.12 1.23 1.00 1.22 0.80 1.29 0.94 1.29

Statement 1

0

1

2
3

4

5
6

7
8

9

10
11

12
13

14

Original Predicted

Disagree Partly Disagree Neutral Partly Agree Agree

Statement 2

Original Predicted

Statement 3

Original Predicted

Statement 5

Original Predicted

Statement 4

Original Predicted

�1

48 A User Study Questionnaire and Results



49

Bibliography

Glen Anderson, Rina Doherty, and Subhashini Ganapathy.
Design, User Experience, and Usability. Theory, Methods,
Tools and Practice: First International Conference, DUXU
2011, Held as Part of HCI International 2011, Orlando, FL,
USA, July 9-14, 2011, Proceedings, Part I, chapter User Per-
ception of Touch Screen Latency, pages 195–202. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-
3-642-21675-6. doi: 10.1007/978-3-642-21675-6 23. URL
http://dx.doi.org/10.1007/978-3-642-21675-6 23.

Michelle Annett, Albert Ng, Paul Dietz, Walter F. Bischof,
and Anoop Gupta. How low should we go?: Under-
standing the perception of latency while inking. In Pro-
ceedings of Graphics Interface 2014, GI ’14, pages 167–174,
Toronto, Ont., Canada, Canada, 2014. Canadian Informa-
tion Processing Society. ISBN 978-1-4822-6003-8. URL
http://dl.acm.org/citation.cfm?id=2619648.2619677.

Takeshi Asano, Ehud Sharlin, Yoshifumi Kitamura, Kazuki
Takashima, and Fumio Kishino. Predictive interac-
tion using the delphian desktop. In Proceedings of
the 18th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’05, pages 133–141, New
York, NY, USA, 2005. ACM. ISBN 1-59593-271-2. doi:
10.1145/1095034.1095058. URL http://doi.acm.org/10.
1145/1095034.1095058.

François Bérard and Renaud Blanch. Two touch system la-
tency estimators: High accuracy and low overhead. In
Proceedings of the 2013 ACM International Conference on
Interactive Tabletops and Surfaces, ITS ’13, pages 241–250,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2271-
3. doi: 10.1145/2512349.2512796. URL http://doi.acm.
org/10.1145/2512349.2512796.

http://dx.doi.org/10.1007/978-3-642-21675-6_23
http://dl.acm.org/citation.cfm?id=2619648.2619677
http://doi.acm.org/10.1145/1095034.1095058
http://doi.acm.org/10.1145/1095034.1095058
http://doi.acm.org/10.1145/2512349.2512796
http://doi.acm.org/10.1145/2512349.2512796


50 Bibliography

Pradipta Biswas, Gokcen Aslan Aydemir, Pat Langdon, and
Simon Godsill. Human-Computer Interaction and Knowl-
edge Discovery in Complex, Unstructured, Big Data: Third
International Workshop, HCI-KDD 2013, Held at SouthCHI
2013, Maribor, Slovenia, July 1-3, 2013. Proceedings, chapter
Intent Recognition Using Neural Networks and Kalman
Filters, pages 112–123. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013. ISBN 978-3-642-39146-0. doi:
10.1007/978-3-642-39146-0 11. URL http://dx.doi.org/
10.1007/978-3-642-39146-0 11.
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