
Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

hci.rwth-aachen.de/dis2

Lecture 5: macOS

Designing Interactive Systems 2

Prof. Dr. Jan Borchers: Designing Interactive Systems 22

CHAPTER 11

Classic Mac

Mac

Prof. Dr. Jan Borchers: Designing Interactive Systems 23

Macintosh 128k & Macintosh System 1
• Introduced in 1984

• Based on Xerox PARC Smalltalk, Star, Tajo

• Few technical innovations (QuickDraw)

• But landmark in UI design and consistency policies

• First commercially successful machine

• Price of ~2500$

Prof. Dr. Jan Borchers: Designing Interactive Systems 24

Macintosh 128k & Macintosh System 1
• Saving hardware for an “affordable” product

• No hard disk

• 128k RAM

• 64k ROM containing the Macintosh Toolbox

• Single process, single address space

• No OS, the app is in charge

• No multitasking

Prof. Dr. Jan Borchers: Designing Interactive Systems 25

Hardware

Toolbox (ROM)

Graphics & Event Library

Base Window System

Window Manager

User Interface Toolkit

Apps

Macintosh Toolbox
• Event Manager  

Event loop core of any app 
Application polls for new events with a GetNextEvent()

• Control Manager 
Create, manipulate, redraw buttons, checkboxes, scroll bars, …  
Respond to user actions

• Dialog Manager 
Create and manage dialogs and alerts

Prof. Dr. Jan Borchers: Designing Interactive Systems 26

Macintosh Toolbox
• Window Manager 

Creates, moves, updates windows

• Menu Manager 
Offers menu bar, pull-down and cascading menus

• Finder interface 
Defining icons for applications and documents  
Interacting with the Finder

• Many more 
Scrap Manager, Help Manager, Sound Manager, Memory Manager, …

Prof. Dr. Jan Borchers: Designing Interactive Systems 27

ResEdit
• Graphical Resource Editor (Apple)

• Overview of resources in resource
fork of any file (app or doc), sorted
by resource type

• Opening a type shows resources of
that type sorted by their ID

• Editors for basic resource types built
in (ICON,DLOG,...)

Prof. Dr. Jan Borchers: Designing Interactive Systems 28

Mac System 7

Prof. Dr. Jan Borchers: Designing Interactive Systems 29

Demo: Mac OS 9

Prof. Dr. Jan Borchers: Designing Interactive Systems 210

Prof. Dr. Jan Borchers: Designing Interactive Systems 211

CHAPTER 12

Mac OS X – macOS

Mac OS X Roots: NeXT

Prof. Dr. Jan Borchers: Designing Interactive Systems 212

Prof. Dr. Jan Borchers: Designing Interactive Systems 213

Mac OS X

Prof. Dr. Jan Borchers: Designing Interactive Systems 214

Darwin
• The open-source base operating system of macOS

• Mach kernel

• Preemptive multitasking

• Protected memory

• BSD

• Process model

• Threading

• Networking

Prof. Dr. Jan Borchers: Designing Interactive Systems 215

Cocoa
• The OO API for developing macOS Apps, evolved out of NeXTSTEP

• Three main frameworks

• Foundation

• AppKit

• Core Data

• Programming languages

• Objective-C

• Swift

Prof. Dr. Jan Borchers: Designing Interactive Systems 216

Carbon
• Encapsulates the functionality of the Mac Toolbox in one API

• Runs on top of the native OS X, i.e. not an emulator

• Large parts of Foundation had to be reimplemented in C

• Finally deprecated in 2012

Prof. Dr. Jan Borchers: Designing Interactive Systems 217

macOS: Architecture

Prof. Dr. Jan Borchers: Designing Interactive Systems 218

Application
AppKit

Media
AVFoundation Core Animation Core Image Quartz

Core Services
Core Data Foundation Security WebKit

Core OS
Accelerate Open CL System Configuration

Kernel and Device Drivers
BSD File System Mach Networking

Carbon SwiftUI UIKit

macOS: Four Layer Model

Prof. Dr. Jan Borchers: Designing Interactive Systems 219

Quartz, I/O Kit

AppKit

Window Server

AppKit

Apps

Hardware

UITK

WM

BWS

GEL

Event Handling
• Similar to our Reference Model

• Window Server distributes events to queues

• Single queues per process

Prof. Dr. Jan Borchers: Designing Interactive Systems 220

Prof. Dr. Jan Borchers: Designing Interactive Systems 221

CHAPTER 13

Cocoa & Objective-C

Cocoa
• Foundation

• Basic programming support

• NSObject, values, strings, collections, OS services, notifications

• AppKit

• Interface, fonts, graphics, color, documents, printing, OS support,
international support, InterfaceBuilder support

• CoreData

• Object-graph management and persistence framework

Prof. Dr. Jan Borchers: Designing Interactive Systems 222

Objective-C
• Implementation language of the Cocoa framework

• Created in 1983 to combine OO principles with C

• Dynamic typing, binding, and loading

• Categories allow to extend classes without subclassing

• Protocols as alternative to multiple inheritance

Prof. Dr. Jan Borchers: Designing Interactive Systems 223

Objective-C: Syntax
NSImage *image = [self importImage:@"sheep.png" withScaleFactor:3];

• Square brackets make it clear which object receives a message

• Increases readability

• Method signature contains names for all parameters

• Prefixes determine the type of a declared method

• - for instance methods

• + for class methods

Prof. Dr. Jan Borchers: Designing Interactive Systems 224

Objective-C: Dynamic Typing
• Objective-C checks whether a method exists at runtime

• You can call known methods of a subclass without casting

• id is the type that matches any Objective-C object

• Example: 
id unknownThing = @5;  
if ([unknownThing isKindOfClass:[NSNumber class]]) {
 NSLog(@"%ld", [unknownThing integerValue]);
}

Prof. Dr. Jan Borchers: Designing Interactive Systems 225

This check is
optional

Objective-C: Dynamic Binding
• A Method is a tuple of a selector (SEL) that defines the method signature,  

the type of the parameters, and an implementation pointer (IMP)

• Each object has a method list and executes a method when it receives a known
selector message from another object

• Hence, the invoked method is resolved at runtime

• You can even change methods and method lists at runtime

Prof. Dr. Jan Borchers: Designing Interactive Systems 226

Objective-C: Dynamic Loading
• An NSBundle is a representation of code and resources on disk

• These bundles can arbitrarily be loaded and removed from memory during
program execution

• After loading a bundle, its contents can be accessed as if they were present
right from the start

Prof. Dr. Jan Borchers: Designing Interactive Systems 227

Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 228

Cocoa Class Hierarchy
• NSObject
• NSEvent

• NSResponder

• NSWindow

• NSView

• NSControl

• NSButton etc.

• NSApplication

• NSCell (lightweight controls)

• NSMenu

• NSMenuItem

• etc.

Prof. Dr. Jan Borchers: Designing Interactive Systems 229

MVC Paradigm

Prof. Dr. Jan Borchers: Designing Interactive Systems 230

View

Controller

Model

User input Update

NotifyUpdate

Notify

Delegation
• A delegate is a class whose methods are called from another class that wants to

plan for extending its functionality

Prof. Dr. Jan Borchers: Designing Interactive Systems 231

Example: NSTableView

Prof. Dr. Jan Borchers: Designing Interactive Systems 232

Example: NSTableView
• NSTableViewDataSource

• numberOfRowsInTableView:

• tableView:objectValueForTableColumn:row:

• NSTableViewDelegate

• tableView:viewForTableColumn:row:

• tableView:heightOfRow:

• tableView:shouldEditTableColumn:row:

• tableViewColumnDidResize:

• selectionShouldChangeInTableView:

Prof. Dr. Jan Borchers: Designing Interactive Systems 233

Categories
• How could we extend the functionality of NSString?

• Could create a subclass, e.g. MyNSString
but then we have to change all code to use that new class

• Could change NSString itself 
but this requires access to the source code for that class

• Instead: Create a category  
@interface NSString (NSStringExtensions)
- (NSString *)reversedSentence;
@end

Prof. Dr. Jan Borchers: Designing Interactive Systems 234

Responder Chain
• Most UI objects are subclasses of NSResponder and can respond to events

• Sending an event up the chain:  
[NSApp sendAction:NSSelectorFromString(@"hello") to:nil from:self];

• The focused widget is called the first responder

• The framework takes care of responder chain and passes along an event 
until it can be handled by some object

Prof. Dr. Jan Borchers: Designing Interactive Systems 235

First
responder

View
hierarchy NSWindow NSWindow NSApp App

delegateNSWindowController

Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 236

Prof. Dr. Jan Borchers: Designing Interactive Systems 237

CHAPTER 14

Swift

Swift
• Syntax very similar to scripting languages

• Compatibility to Objective-C code

• Designed for type-safety

• Introduces powerful tuples

• You can also implement functions in enums

• Open source

Prof. Dr. Jan Borchers: Designing Interactive Systems 238

Hello Swift
• Declaration of a constant (with an inferred type)  
let a = 5

• Declaration of a variable (with a specified type) 
var b: Double = 7

• Type safety forces us to have two matching types on both sides of a math
operation 
b = Double(a) * b

• You can even use emoji as names for your variables or classes 
let ! = "That's mind-blowing."

Prof. Dr. Jan Borchers: Designing Interactive Systems 239

Optionals
• By default, variables and constants cannot be nil

• But Cocoa and Objective-C love putting nil into properties

• Hence, a more expressive way for nullable items is needed

• Optionals allow to express variable that can also be nil

• Enum that can either have a value Some(T)  

or no value None

• Note: Different definitions of nil between Objective-C and Swift

• Optionals are identified by the ? in their type 
var someValue: Int?

Prof. Dr. Jan Borchers: Designing Interactive Systems 240

Optional Binding
var error: NSError?
methodCallThatMightRaiseAnError(&error)

if let err = error {
 print(err.localizedDescription)
} else {
 print("No error occurred!")
}

Prof. Dr. Jan Borchers: Designing Interactive Systems 241

Optional Chaining
• Often used in combination with delegates  
var delegate: MyDelegate?

• Optional chaining for elegant way to check for nil 
self.delegate?.numberOfItems(in: self)

• Explicitly unwrapping this variable if it is nil would result in an exception 
self.delegate!.numberOfItems(in: self)

Prof. Dr. Jan Borchers: Designing Interactive Systems 242

Prof. Dr. Jan Borchers: Designing Interactive Systems 243

CHAPTER 15

Cocoa App Basics

Views & Controllers

Prof. Dr. Jan Borchers: Designing Interactive Systems 244

NSViewController

NSWindowController

AppDelegate

NSView

NSToolbar

NSWindow

Views & Controllers
• Window: NSWindow class

• NSWindowController manages a window

• E.g., load, show, close a window

• Useful if app has multiple windows, one NSWindowController for each NSWindow

• NSWindow has a contentView property of type NSView

• NSViewController manages an NSView (property: view)

• Methods, e.g., viewDidLoad, viewWillAppear, viewWDidDisappear, …

• Connect to Actions and Outlets

Prof. Dr. Jan Borchers: Designing Interactive Systems 245

Coordinates
• NSPoint, NSSize, NSRect

• A view has two ways to access its
position:

• bounds 

in widget’s coordinate system

• frame 

in parent’s coordinate system

Prof. Dr. Jan Borchers: Designing Interactive Systems 246

window: NSWindow

view: NSView

NSEvent
• Event objects are emitted for both mouse and keyboard events

• Contain the mouse’s position in the window’s coordinate system  
override func mouseDown(with event: NSEvent) {
 self.mouseLocation = event.locationInWindow
 let windowPoint = event.locationInWindow
 let localPoint = self.convert(windowPoint, from: nil)
 ...

 }

Prof. Dr. Jan Borchers: Designing Interactive Systems 247

Drawing
• NSViews perform their drawing code in draw(_ dirtyRect: NSRect)

• Override this method and put all view-specific drawing instructions here

• If the view does not directly inherit from NSView, call super.drawRect(…)

• Calling setNeedsDisplay(_ invalidRect: NSRect) or 
needsDisplay = true will force a redraw

Prof. Dr. Jan Borchers: Designing Interactive Systems 248

Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

hci.rwth-aachen.de/dis2

Lecture 6: macOS

Designing Interactive Systems 2

Prof. Dr. Jan Borchers: Designing Interactive Systems 22

CHAPTER 14

Swift

Swift
• Syntax very similar to scripting languages

• Compatibility to Objective-C code

• Designed for type safety

• Introduces powerful tuples

• You can also implement functions in enums

• Open source

• Compact: No need to import standard libs, no main(), no semicolon ;)

Prof. Dr. Jan Borchers: Designing Interactive Systems 23

Hello Swift
• Declare a constant (with an inferred type)  
let a = 5

• Declare a variable (with a specified type) 
var b: Double = 7

• Type safety means types on both sides of a math operation must match  
b = Double(a) * b

• You can even use emoji as names for your variables or classes 
let ! = "That's mind-blowing."

Prof. Dr. Jan Borchers: Designing Interactive Systems 24

Optionals
• By default, variables and constants cannot be nil

• But Cocoa and Objective-C love putting nil into properties

• Hence, a more expressive way for nullable items is needed

• Optionals allow you to express variables that can also be nil

• Enum that can either have a value Some(T)  

or no value None

• Note: Different definitions of nil between Objective-C and Swift

• Optionals are identified by the ? in their type 
var someValue: Int?

Prof. Dr. Jan Borchers: Designing Interactive Systems 25

Optional Binding
var error: NSError?
methodCallThatMightRaiseAnError(&error)

if let err = error {
 print(err.localizedDescription)
} else {
 print("No error occurred!")
}

Prof. Dr. Jan Borchers: Designing Interactive Systems 26

Optional Chaining
• Often used in combination with delegates  
var delegate: MyDelegate?

• Optional chaining for elegant way to check for nil 
self.delegate?.numberOfItems(in: self)

• Explicitly unwrapping this variable if it is nil would result in an exception 
self.delegate!.numberOfItems(in: self)

Prof. Dr. Jan Borchers: Designing Interactive Systems 27

Prof. Dr. Jan Borchers: Designing Interactive Systems 28

CHAPTER 15

Cocoa App Basics

Views & Controllers

Prof. Dr. Jan Borchers: Designing Interactive Systems 29

NSViewController

NSWindowController

AppDelegate

NSView

NSToolbar

NSWindow

Views & Controllers
• Window: NSWindow class

• NSWindowController manages a window

• E.g., load, show, close a window

• Useful if app has multiple windows, one NSWindowController for each NSWindow

• NSWindow has a contentView property of type NSView

• NSViewController manages an NSView (property: view)

• Methods, e.g., viewDidLoad, viewWillAppear, viewWDidDisappear, …

• Connect to Actions and Outlets

Prof. Dr. Jan Borchers: Designing Interactive Systems 210

Coordinates
• NSPoint, NSSize, NSRect

• A view has two ways to access its
position:

• bounds 

in widget’s coordinate system

• frame 

in parent’s coordinate system

Prof. Dr. Jan Borchers: Designing Interactive Systems 211

window: NSWindow

view: NSView

NSEvent
• Event objects are emitted for both mouse and keyboard events

• They contain the mouse position in the window coordinate system  
 
override func mouseDown(with event: NSEvent) {
 let windowPoint = event.locationInWindow
 let localPoint = self.convert(windowPoint, from: nil)
 ...

 }

Prof. Dr. Jan Borchers: Designing Interactive Systems 212

Drawing
• NSViews perform their drawing code in draw(_ dirtyRect: NSRect)

• Override this method and put all view-specific drawing instructions here

• If the view does not directly inherit from NSView, call super.drawRect(…)

• Calling setNeedsDisplay(_ invalidRect: NSRect) or 
needsDisplay = true will force a redraw

Prof. Dr. Jan Borchers: Designing Interactive Systems 213

Prof. Dr. Jan Borchers: Designing Interactive Systems 214

CHAPTER 16

Interface Builder Basics

Storyboard

Prof. Dr. Jan Borchers: Designing Interactive Systems 215

Widget Library

Prof. Dr. Jan Borchers: Designing Interactive Systems 216

Guides

Prof. Dr. Jan Borchers: Designing Interactive Systems 217

Temperature

• Interface Builder helps
developer implement a
macOS-consistent look
by recommending
positions for widgets

• Considers margins,
centerlines and baselines

Segues

Prof. Dr. Jan Borchers: Designing Interactive Systems 218

• A transition from one screen to another in the storyboard

• Typically opened in new window, but other styles possible

Popover Sheet

Actions & Outlets
• Interface Builder lets you connect your Controller code 

with the UI you are designing by dragging connections

• In your code, properties with the @IBOutlet keyword are widgets that are 
defined in the Interface Builder, not in your source code

• Methods with the @IBAction keyword are instance methods that Interfacte
Builder can find, and thus can be called from widgets (connect by dragging)

Prof. Dr. Jan Borchers: Designing Interactive Systems 219

Designables & Inspectables for Custom Widgets
• Widget implementations with the @IBDesignable keyword 

will render a preview in Interface Builder

• Properties with the @IBInspectable keyword can be set  
from the Attribute Inspector UI in Interface Builder

Prof. Dr. Jan Borchers: Designing Interactive Systems 220

Prof. Dr. Jan Borchers: Designing Interactive Systems 221

Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 222

CHAPTER 17

Auto Layout

Auto Layout
• Constraint based UI layout engine

• Tries to fulfill a set of equations when UI appears

• Support for internationalization

Prof. Dr. Jan Borchers: Designing Interactive Systems 223

Frame-based Layout

Prof. Dr. Jan Borchers: Designing Interactive Systems 224

View

Point

Width

H
ei

gh
t

Point

Σ 2 pieces of
information needed

per direction

Layout is Dynamic...

Prof. Dr. Jan Borchers: Designing Interactive Systems 225

Internal Changes
Displayed content changes

Language is changed 

External Changes
Window is resized

Support different screen sizes 

More Measures

Prof. Dr. Jan Borchers: Designing Interactive Systems 226

Top

Bottom

Leading Trailing

Width

Height

Center Y

Baseline

Center X

Constraints

Prof. Dr. Jan Borchers: Designing Interactive Systems 227

NSLayoutConstraint *constraint =
 [red.leadingAnchor constraintEqualToAnchor:blue.trailingAnchor
 constant:+8];
[constraint setActive:YES];

Blue Red
8

red.leading = 1.0 × blue.trailing + 8.0
Item 1 Attribute 1 Item 2 Attribute 2

Relationship

Multiplier

Constant

Goal
• Provide a series of equations 

that have one and only one possible solution

• Ambiguous constraints 
have more than one solution

• Unsatisfiable constraints 
do not have valid solutions.

• In general, the constraints must define both  
the size and the position of each view

Prof. Dr. Jan Borchers: Designing Interactive Systems 228

Three Similar Designs?

Prof. Dr. Jan Borchers: Designing Interactive Systems 229

Intrinsic Size
• Some views have a natural size given their current content

• E.g., a button’s intrinsic content size is the size of its title  
plus a small margin

• Views that have an intrinsic content size can be defined by two
constraints alone

Prof. Dr. Jan Borchers: Designing Interactive Systems 230

Point

Priorities
• When creating a UI that suits multiple screens, we sometimes have more than

one requirement on the position of a view

• Example 
A view that ideally takes 25% of the screen’s width  
but is always at least 40pt wide

Prof. Dr. Jan Borchers: Designing Interactive Systems 231

ParentYellow

yellow.width = 0.25 × parent.width + 0  
yellow.width ≥ 1 × NotAnAttribute + 40

(Priority 250) 
(Priority 1000)

Combining Widgets

Prof. Dr. Jan Borchers: Designing Interactive Systems 232

Label Textfield

Hugging Priority & Compression Resistance

Prof. Dr. Jan Borchers: Designing Interactive Systems 233

View

I don’t want to grow!

View

I don’t want to shrink!
Content Hugging

Compression Resistance

=0 =0 =0 =0

Hugging Priority & Compression Resistance

Prof. Dr. Jan Borchers: Designing Interactive Systems 234

View View

I did not shrink,
and I am fine with being stretched.

Hugging: 100Hugging: 300 Hugging: 250

Hugging: 250 Hugging: 250

Prof. Dr. Jan Borchers: Designing Interactive Systems 235

Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 236

CHAPTER 18

Cocoa Bindings &
Core Data

Cocoa Bindings
• Keep MVC Model and View synchronized without writing lots of glue code

• ⇒ Define (simple) MVC controllers graphically

• Example: Keeping a displayed table of sheep (View) synchronized with the
corresponding array (Model) of sheep data in memory, and also with a label
showing the number of selected sheep (another View)

Prof. Dr. Jan Borchers: Designing Interactive Systems 237

Core Data
• Object-graph management and persistence framework

• ⇒ Define (simple) MVC models graphically

• Provides common functionality

• Undo, Redo

• Persistence (save to disk, read from disk in XML or SQLite format)

Prof. Dr. Jan Borchers: Designing Interactive Systems 238

MVC with Interface Builder + Cocoa Bindings + CoreData

Prof. Dr. Jan Borchers: Designing Interactive Systems 239

View

Controller

Model 
 
Interface 
Builder 
File

 
 
CoreData 
Managed 
Store

Cocoa Bindings 
ArrayController

Prof. Dr. Jan Borchers: Designing Interactive Systems 240

Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 241

SNEAK PREVIEW

SwiftUI

42

SwiftUI
• Unified framework across all Apple platforms

• Only a subset of the API is available on all platforms

• Results in generated UI code using the platform-specific toolkit

• Declarative instead of imperative code

• SwiftUI decides what a suitable presentation is on that platform

• Developer loses some control, limited customization

• A SwiftUI view is a structs, therefore immutable once created. 
Different programming paradigm: A view is a construction recipe. 
(As structs are lightweight, discarding them for a view update is fine)

Prof. Dr. Jan Borchers: Designing Interactive Systems 243

SwiftUI: Teaser
struct ContentView : View {
 var rooms: [Room] = []

 var body: some View {
 NavigationLinkView {
 List(rooms) { room in
 NavigationLink(destination: DetailView(room)) {
 Image(room.thumbnailName)
 .cornerRadius(8)

 VStack(alignment: .leading) {
 Text(room.name)
 Text("\(room.capacity) people")
 .font(.subheadline)
 .foregroundColor(.secondary)
 }
 }
 }
 .navigationBarTitle(Text("Rooms"))
 }
 }
}

Prof. Dr. Jan Borchers: Designing Interactive Systems 244

