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Classic Mac



Mac
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Macintosh 128k & Macintosh System 1
• Introduced in 1984


• Based on Xerox PARC Smalltalk, Star, Tajo


• Few technical innovations (QuickDraw)


• But landmark in UI design and consistency policies


• First commercially successful machine


• Price of ~2500$
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Macintosh 128k & Macintosh System 1
• Saving hardware for an “affordable” product

• No hard disk

• 128k RAM

• 64k ROM containing the Macintosh Toolbox


• Single process, single address space

• No OS, the app is in charge

• No multitasking
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Macintosh Toolbox
• Event Manager  

Event loop core of any app 
Application polls for new events with a GetNextEvent( )


• Control Manager 
Create, manipulate, redraw buttons, checkboxes, scroll bars, …  
Respond to user actions


• Dialog Manager 
Create and manage dialogs and alerts
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Macintosh Toolbox
• Window Manager 

Creates, moves, updates windows


• Menu Manager 
Offers menu bar, pull-down and cascading menus


• Finder interface 
Defining icons for applications and documents  
Interacting with the Finder


• Many more 
Scrap Manager, Help Manager, Sound Manager, Memory Manager, …
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ResEdit
• Graphical Resource Editor (Apple)


• Overview of resources in resource 
fork of any file (app or doc), sorted 
by resource type


• Opening a type shows resources of 
that type sorted by their ID


• Editors for basic resource types built 
in (ICON,DLOG,...)
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Mac System 7
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Demo: Mac OS 9
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CHAPTER 12

Mac OS X – macOS



Mac OS X Roots: NeXT
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Mac OS X
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Darwin
• The open-source base operating system of macOS


• Mach kernel

• Preemptive multitasking

• Protected memory


• BSD

• Process model

• Threading

• Networking
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Cocoa
• The OO API for developing macOS Apps, evolved out of NeXTSTEP


• Three main frameworks

• Foundation

• AppKit

• Core Data


• Programming languages

• Objective-C

• Swift

Prof. Dr. Jan Borchers: Designing Interactive Systems 216



Carbon
• Encapsulates the functionality of the Mac Toolbox in one API


• Runs on top of the native OS X, i.e. not an emulator


• Large parts of Foundation had to be reimplemented in C


• Finally deprecated in 2012

Prof. Dr. Jan Borchers: Designing Interactive Systems 217



macOS: Architecture
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AppKit

Media
AVFoundation Core Animation Core Image Quartz

Core Services
Core Data Foundation Security WebKit

Core OS
Accelerate Open CL System Configuration

Kernel and Device Drivers
BSD File System Mach Networking

Carbon SwiftUI UIKit



macOS: Four Layer Model
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Event Handling
• Similar to our Reference Model


• Window Server distributes events to queues


• Single queues per process
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CHAPTER 13

Cocoa & Objective-C



Cocoa
• Foundation 

• Basic programming support

• NSObject, values, strings, collections, OS services, notifications


• AppKit 

• Interface, fonts, graphics, color, documents, printing, OS support, 
international support, InterfaceBuilder support


• CoreData 

• Object-graph management and persistence framework
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Objective-C
• Implementation language of the Cocoa framework


• Created in 1983 to combine OO principles with C


• Dynamic typing, binding, and loading


• Categories allow to extend classes without subclassing


• Protocols as alternative to multiple inheritance
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Objective-C: Syntax
NSImage *image = [self importImage:@"sheep.png" withScaleFactor:3];


• Square brackets make it clear which object receives a message

• Increases readability

• Method signature contains names for all parameters


• Prefixes determine the type of a declared method

• - for instance methods

• + for class methods
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Objective-C: Dynamic Typing
• Objective-C checks whether a method exists at runtime


• You can call known methods of a subclass without casting


• id is the type that matches any Objective-C object


• Example: 
id unknownThing = @5;  
if ([unknownThing isKindOfClass:[NSNumber class]]) { 
    NSLog(@"%ld", [unknownThing integerValue]); 
}
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This check is 
optional



Objective-C: Dynamic Binding
• A Method is a tuple of a selector (SEL) that defines the method signature,  

the type of the parameters, and an implementation pointer (IMP)


• Each object has a method list and executes a method when it receives a known 
selector message from another object


• Hence, the invoked method is resolved at runtime


• You can even change methods and method lists at runtime
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Objective-C: Dynamic Loading
• An NSBundle is a representation of code and resources on disk


• These bundles can arbitrarily be loaded and removed from memory during 
program execution


• After loading a bundle, its contents can be accessed as if they were present 
right from the start
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Demo
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Cocoa Class Hierarchy
• NSObject 
• NSEvent

• NSResponder

• NSWindow

• NSView

• NSControl

• NSButton etc.


• NSApplication

• NSCell (lightweight controls)

• NSMenu

• NSMenuItem

• etc.
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MVC Paradigm
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Delegation
• A delegate is a class whose methods are called from another class that wants to 

plan for extending its functionality
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Example: NSTableView
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Example: NSTableView
• NSTableViewDataSource


• numberOfRowsInTableView: 

• tableView:objectValueForTableColumn:row:


• NSTableViewDelegate


• tableView:viewForTableColumn:row:


• tableView:heightOfRow:


• tableView:shouldEditTableColumn:row:


• tableViewColumnDidResize:


• selectionShouldChangeInTableView:
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Categories
• How could we extend the functionality of NSString?


• Could create a subclass, e.g. MyNSString 
but then we  have to change all code to use that new class


• Could change NSString itself 
but this requires access to the source code for that class


• Instead: Create a category  
@interface NSString (NSStringExtensions) 
- (NSString *)reversedSentence; 
@end
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Responder Chain
• Most UI objects are subclasses of NSResponder and can respond to events


• Sending an event up the chain:  
[NSApp sendAction:NSSelectorFromString(@"hello") to:nil from:self];


• The focused widget is called the first responder


• The framework takes care of responder chain and passes along an event 
until it can be handled by some object
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delegateNSWindowController



Demo
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CHAPTER 14

Swift



Swift
• Syntax very similar to scripting languages


• Compatibility to Objective-C code


• Designed for type-safety


• Introduces powerful tuples


• You can also implement functions in enums


• Open source
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Hello Swift
• Declaration of a constant (with an inferred type)  
let a = 5


• Declaration of a variable (with a specified type) 
var b: Double = 7


• Type safety forces us to have two matching types on both sides of a math 
operation 
b = Double(a) * b


• You can even use emoji as names for your variables or classes 
let ! = "That's mind-blowing."
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Optionals
• By default, variables and constants cannot be nil

• But Cocoa and Objective-C love putting nil into properties

• Hence, a more expressive way for nullable items is needed


• Optionals allow to express variable that can also be nil

• Enum that can either have a value Some(T)  

or no value None 

• Note: Different definitions of nil between Objective-C and Swift

• Optionals are identified by the ? in their type 
var someValue: Int?
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Optional Binding
var error: NSError? 
methodCallThatMightRaiseAnError(&error) 

if let err = error { 
    print(err.localizedDescription) 
} else { 
    print("No error occurred!") 
}
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Optional Chaining
• Often used in combination with delegates  
var delegate: MyDelegate?


• Optional chaining for elegant way to check for nil 
self.delegate?.numberOfItems(in: self)


• Explicitly unwrapping this variable if it is nil would result in an exception 
self.delegate!.numberOfItems(in: self)
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CHAPTER 15

Cocoa App Basics



Views & Controllers
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NSView
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NSWindow



Views & Controllers
• Window: NSWindow class


• NSWindowController manages a window

• E.g., load, show, close a window

• Useful if app has multiple windows, one NSWindowController for each NSWindow


• NSWindow has a contentView property of type NSView


• NSViewController manages an NSView (property: view)

• Methods, e.g., viewDidLoad, viewWillAppear, viewWDidDisappear, …

• Connect to Actions and Outlets
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Coordinates
• NSPoint, NSSize, NSRect


• A view has two ways to access its 
position:

• bounds 

in widget’s coordinate system

• frame 

in parent’s coordinate system 
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window: NSWindow

view: NSView



NSEvent
• Event objects are emitted for both mouse and keyboard events


• Contain the mouse’s position in the window’s coordinate system  
override func mouseDown(with event: NSEvent) { 
    self.mouseLocation = event.locationInWindow 
    let windowPoint = event.locationInWindow 
    let localPoint = self.convert(windowPoint, from: nil) 
    ... 

  }
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Drawing
• NSViews perform their drawing code in draw(_ dirtyRect: NSRect)


• Override this method and put all view-specific drawing instructions here


• If the view does not directly inherit from NSView, call super.drawRect(…)


• Calling setNeedsDisplay(_ invalidRect: NSRect ) or 
needsDisplay = true will force a redraw
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CHAPTER 14

Swift



Swift
• Syntax very similar to scripting languages


• Compatibility to Objective-C code


• Designed for type safety


• Introduces powerful tuples


• You can also implement functions in enums


• Open source


• Compact: No need to import standard libs, no main(), no semicolon ;)
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Hello Swift
• Declare a constant (with an inferred type)  
let a = 5


• Declare a variable (with a specified type) 
var b: Double = 7


• Type safety means types on both sides of a math operation must match  
b = Double(a) * b


• You can even use emoji as names for your variables or classes 
let ! = "That's mind-blowing."
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Optionals
• By default, variables and constants cannot be nil

• But Cocoa and Objective-C love putting nil into properties

• Hence, a more expressive way for nullable items is needed


• Optionals allow you to express variables that can also be nil

• Enum that can either have a value Some(T)  

or no value None 

• Note: Different definitions of nil between Objective-C and Swift

• Optionals are identified by the ? in their type 
var someValue: Int?
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Optional Binding
var error: NSError? 
methodCallThatMightRaiseAnError(&error) 

if let err = error { 
    print(err.localizedDescription) 
} else { 
    print("No error occurred!") 
}
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Optional Chaining
• Often used in combination with delegates  
var delegate: MyDelegate?


• Optional chaining for elegant way to check for nil 
self.delegate?.numberOfItems(in: self)


• Explicitly unwrapping this variable if it is nil would result in an exception 
self.delegate!.numberOfItems(in: self)
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CHAPTER 15

Cocoa App Basics



Views & Controllers
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Views & Controllers
• Window: NSWindow class


• NSWindowController manages a window

• E.g., load, show, close a window

• Useful if app has multiple windows, one NSWindowController for each NSWindow


• NSWindow has a contentView property of type NSView


• NSViewController manages an NSView (property: view)

• Methods, e.g., viewDidLoad, viewWillAppear, viewWDidDisappear, …

• Connect to Actions and Outlets
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Coordinates
• NSPoint, NSSize, NSRect


• A view has two ways to access its 
position:

• bounds 

in widget’s coordinate system

• frame 

in parent’s coordinate system 
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window: NSWindow

view: NSView



NSEvent
• Event objects are emitted for both mouse and keyboard events


• They contain the mouse position in the window coordinate system  
 
override func mouseDown(with event: NSEvent) { 
    let windowPoint = event.locationInWindow 
    let localPoint = self.convert(windowPoint, from: nil) 
    ... 

  }
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Drawing
• NSViews perform their drawing code in draw(_ dirtyRect: NSRect)


• Override this method and put all view-specific drawing instructions here


• If the view does not directly inherit from NSView, call super.drawRect(…)


• Calling setNeedsDisplay(_ invalidRect: NSRect ) or 
needsDisplay = true will force a redraw
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CHAPTER 16

Interface Builder Basics



Storyboard
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Widget Library
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Guides
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Temperature

• Interface Builder helps 
developer implement a 
macOS-consistent look 
by recommending 
positions for widgets


• Considers margins, 
centerlines and baselines



Segues
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• A transition from one screen to another in the storyboard

• Typically opened in new window, but other styles possible

Popover Sheet



Actions & Outlets
• Interface Builder lets you connect your Controller code 

with the UI you are designing by dragging connections


• In your code, properties with the @IBOutlet keyword are widgets that are 
defined in the Interface Builder, not in your source code


• Methods with the @IBAction keyword are instance methods that Interfacte 
Builder can find, and thus can be called from widgets (connect by dragging)
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Designables & Inspectables for Custom Widgets
• Widget implementations with the @IBDesignable keyword 

will render a preview in Interface Builder


• Properties with the @IBInspectable keyword can be set  
from the Attribute Inspector UI in Interface Builder
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Demo
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CHAPTER 17

Auto Layout



Auto Layout
• Constraint based UI layout engine


• Tries to fulfill a set of equations when UI appears


• Support for internationalization
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Frame-based Layout
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Layout is Dynamic...
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Internal Changes 
Displayed content changes


Language is changed 

External Changes 
Window is resized


Support different screen sizes 



More Measures
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Bottom
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Center X 



Constraints
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NSLayoutConstraint *constraint = 
                [red.leadingAnchor constraintEqualToAnchor:blue.trailingAnchor 
                                                    constant:+8]; 
[constraint setActive:YES];

Blue Red
8

red.leading = 1.0 × blue.trailing + 8.0  
Item 1 Attribute 1 Item 2 Attribute 2

Relationship

Multiplier

Constant



Goal
• Provide a series of equations 

that have one and only one possible solution


• Ambiguous constraints 
have more than one solution


• Unsatisfiable constraints 
do not have valid solutions.


• In general, the constraints must define both  
the size and the position of each view
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Three Similar Designs?
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Intrinsic Size
• Some views have a natural size given their current content


• E.g., a button’s intrinsic content size is the size of its title  
plus a small margin


• Views that have an intrinsic content size can be defined by two 
constraints alone
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Priorities
• When creating a UI that suits multiple screens, we sometimes have more than 

one requirement on the position of a view


• Example 
A view that ideally takes 25% of the screen’s width  
but is always at least 40pt wide
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ParentYellow

yellow.width  =  0.25 × parent.width      + 0  
yellow.width  ≥       1 × NotAnAttribute  + 40 

(Priority 250) 
(Priority 1000)



Combining Widgets
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Label Textfield



Hugging Priority & Compression Resistance
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View

I don’t want to grow!

View

I don’t want to shrink!
Content Hugging

Compression Resistance

=0 =0 =0 =0



Hugging Priority & Compression Resistance
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View View

I did not shrink, 
and I am fine with being stretched.

Hugging: 100Hugging: 300 Hugging: 250

Hugging: 250 Hugging: 250
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Demo
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CHAPTER 18

Cocoa Bindings & 
Core Data



Cocoa Bindings
• Keep MVC Model and View synchronized without writing lots of glue code


• ⇒ Define (simple) MVC controllers graphically


• Example: Keeping a displayed table of sheep (View) synchronized with the 
corresponding array (Model) of sheep data in memory, and also with a label 
showing the number of selected sheep (another View)
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Core Data
• Object-graph management and persistence framework


• ⇒ Define (simple) MVC models graphically


• Provides common functionality

• Undo, Redo

• Persistence (save to disk, read from disk in XML or SQLite format)
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MVC with Interface Builder + Cocoa Bindings + CoreData
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File
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Store

Cocoa Bindings 
ArrayController
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Demo
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SNEAK PREVIEW

SwiftUI
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SwiftUI
• Unified framework across all Apple platforms

• Only a subset of the API is available on all platforms

• Results in generated UI code using the platform-specific toolkit


• Declarative instead of imperative code

• SwiftUI decides what a suitable presentation is on that platform

• Developer loses some control, limited customization


• A SwiftUI view is a structs, therefore immutable once created. 
Different programming paradigm: A view is a construction recipe. 
(As structs are lightweight, discarding them for a view update is fine)
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SwiftUI: Teaser
struct ContentView : View { 
    var rooms: [Room] = [] 
     
    var body: some View { 
        NavigationLinkView { 
                List(rooms) { room in 
                    NavigationLink(destination: DetailView(room)) { 
                        Image(room.thumbnailName) 
                            .cornerRadius(8) 
                             
                        VStack(alignment: .leading) { 
                            Text(room.name) 
                            Text("\(room.capacity) people") 
                                .font(.subheadline) 
                                .foregroundColor(.secondary) 
                        } 
                    } 
                } 
                .navigationBarTitle(Text("Rooms")) 
        } 
    } 
}
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