Designing Interactive Systems 2

Lecture 1: Introduction, History, Design Space of Input Devices

Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

hci.rwth-aachen.de/dis2
Video Conferencing Etiquette

- We would like to have an interactive class
 - Please **turn on your video** so we can see each other
 - Your video will **not** be in the lecture recording
- Please **ask questions** (only your voice will be in the recording)
 - Use Zoom’s ‘**Raise Hand**’ function so we don’t talk over each other
 - Otherwise, please **Mute** yourself to avoid echos (we may do this for you if you forget)
 - In Audio settings, turn on “press **Space** to temporarily unmute”
- Turn on your **lights** so you don’t look like a zombie :(
Class Syllabus

• Part 1
 Key Concepts

• Part 2
 Usage and Design of UI Toolkits and Design Systems

• Part 3
 UIs Beyond the Desktop

• Part 4
 Prototyping Process
Administrivia

• Format: V3/Ü2

• 6 Credit points

• Class times
 • **Lecture** on Wednesdays (9:30 — 12:00), Room 2222
 • **Lab** on Mondays (14:30 — 16:00), Room 2222

Zoom Meetings until further notice!
Team

Prof. Dr. Jan Borchers

Sebastian Hueber

hueber@cs.rwth-aachen.de
E-Mail Subject: [DIS 2]
Your Final Grade

35% Final Exam (60 min)
July, 22nd
or August, 15th

25% Midterm Exam (60 min)
June, 9th

40% Weekly Assignments

35%
Weekly Assignments

- We have a strict grading policy:
 - **Late submissions** will be graded 5.0 without feedback
 - **Team size** is 2 students (other only by permission). If you hand in a solution without a team partner: 5.0 without feedback
 - If your code does **not compile**: 5.0 without feedback

- For some assignments you will need a **Mac**
 - No Mac? Visit http://www-rbi.informatik.rwth-aachen.de/Pool+Helpdesk/

- Submission via **Moodle**
Website

• All information about this course can be found online

• hci.rwth-aachen.de/dis2
How DIS1 and DIS2 Cover HCI

DIS 1

Use and Context

U1 Social Organization and Work
U2 Application Areas
U3 Human-Machine Fit and Adaptation

Human

H1 Human Information Processing
H2 Language, Communication and Interaction
H3 Ergonomics

Computer

C1 Input and Output Devices
C2 Dialogue Techniques
C3 Dialogue Genre
C4 Computer Graphics
C5 Dialogue Architecture

D1 Design Approaches
D2 Implementation Techniques and Tools
D3 Evaluation Techniques
D4 Example Systems and Case Studies

DIS 2

Prof. Dr. Jan Borchers: Designing Interactive Systems 2
DIA Cycle

Design

Implement

Analyze
CHAPTER 1

History of User Interface Programming Paradigms
Batch Processing

• Prepare data on punch cards

• Wait for result as printout offline
Time-sharing Systems

• Command-line based interaction
• Shorter turnaround (per-line)
Full-screen textual UIs

- Turnaround per character
- Interaction starts to feel “real-time”
Menu-based Systems

- Discover functionalities instead of memorizing them
- Threading becomes important
Graphical User Interface

- Event-based program structure
- Pointing devices in addition to keyboard
CHAPTER 2

Design Space of Input Devices
Design Space of Input Devices

• Card, Mackinlay, Robertson 1991

• Categorization of input devices according to physical, mechanical and spatial properties

• Why?
 • Compare input devices
 • Identify new input modalities
Movement Primitives

Input device \(\equiv <M, \text{In}, S, R, \text{Out}, W> \)

- Manipulation operator
- Device state
- Output domain
- Input domain
- Resolution function
- Work properties
Example
Compositions

- Merge
- Layout
- Connect
In-Class Exercise

• Plot out the input capabilities of the Ferrari Racing Controller on the Card Design Space of Input Devices.

• The controller consists of a **steering wheel** with 8 **buttons** and a **rotary switch** with 5 states, as well as 2 **pedals**.

• Assume that the steering wheel can only have one full rotation.
In-Class Exercise

<table>
<thead>
<tr>
<th></th>
<th>Linear</th>
<th></th>
<th>Rotar</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>rX</td>
</tr>
<tr>
<td>P</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dF</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Inf</td>
<td>1</td>
<td>Inf</td>
</tr>
</tbody>
</table>

- 8 buttons
- 2 pedals with an infinite number of states each
- 1 switch with 5 states
- 1 steering wheel with an infinite number of states
- Institute for Applied Computer Science
- RWTH Aachen University

Layout:
- steering wheel
- rotary switch (5 states)
- buttons (8 in total)
- pedals
Is This Space Complete?
Testing Points

- **Expressiveness** describes how precisely the meaning is conveyed.

- For input devices, expressiveness suffers if $|In| \neq |Out|$
 - $|In| < |Out|$: Cannot specify all legal values
 - $|In| > |Out|$: Can specify illegal values
Testing Points

- **Effectiveness** describes how well the intention can be communicated.

<table>
<thead>
<tr>
<th></th>
<th>Linear</th>
<th>Rotary</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Light Pen</td>
<td>Absolute Joystick</td>
</tr>
<tr>
<td>Y</td>
<td>Touch Panel</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Tablet</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Mouse</td>
<td>Trackball</td>
</tr>
<tr>
<td>dP</td>
<td>dF</td>
<td>Headmouse</td>
</tr>
<tr>
<td>dF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linear</th>
<th>Rotary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Prof. Dr. Jan Borchers: Designing Interactive Systems 2
CHAPTER 3
Window System Architecture
Window Systems: Basic Tasks

• **Input handling**
 Pass user input to appropriate application

• **Output handling**
 Visualize application output in windows

• **Window management**
 Manage and provide user controls for windows
Window Systems: Requirements

- **Independent** of hardware and operating system
- No noticeable **delays** (few ms) for basic operations, e.g. moving window, redrawing cursor
- **Customizable** look&feel for user preferences
- Input & Output in **parallel**
- **Multimedia** support: Graphics, audio, …
- Support for various **input devices** and modalities
Window Systems: Evaluation Criteria

- **Availability**
 Platforms supported

- **Productivity**
 For application development

- **Parallelism**
 External and internal

- **Performance**
 Usage of resources and latency

- **Graphics model**
 RasterOp vs. vector

- **Appearance**
 Look & Feel, exchangeable?
Window Systems: Evaluation Criteria

• **Extensibility**
 In source code or at runtime

• **Adaptability**
 Localization and customization at runtime

• **Resource sharing**
 E.g., fonts

• **Distribution**
 Over network

• **API**
 Structure and comfort

• **Independence**
 Of application and interaction logic inside programs written for the WS

• **Inter-Application Communication**
 Copy & Paste, Drag & Drop
Window Systems: Conflict

App developer

WS developer

User
Window System Architecture

- Apps
- User Interface Toolkit
- Window Manager
- Base Window System
- Graphics & Event Library
- Hardware

More abstract, user-oriented