
Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

hci.rwth-aachen.de/dis2

Lecture 5: macOS

Designing Interactive Systems 2

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!2

CHAPTER 11

Classic Mac

Mac

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!3

Macintosh 128k & Macintosh System 1
• Introduced in 1984

• Based on Xerox PARC Smalltalk, Star, Tajo

• Few technical innovations (QuickDraw)

• But landmark in UI design and consistency policies

• First commercially successful machine

• Price of ~2500$

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!4

Macintosh 128k & Macintosh System 1
• Saving hardware for an “affordable” product

• No hard disk

• 128k RAM

• 64k ROM containing the Macintosh Toolbox

• Single process, single address space

• No OS, the app is in charge

• No multitasking

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!5

Macintosh Toolbox
• Event Manager  

Event loop core of any app 
Application polls for new events with a GetNextEvent()

• Control Manager 
Create, manipulate, redraw buttons, checkboxes, scroll bars, …  
Respond to user actions

• Dialog Manager 
Create and manage dialogs and alerts

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!6

Macintosh Toolbox
• Window Manager  

Creates, moves, updates windows

• Menu Manager 
Offers menu bar, pull-down and cascading menus

• Finder interface 
Defining icons for applications and documents  
Interacting with the Finder

• Many more 
Scrap Manager, Help Manager, Sound Manager, Memory Manager, …

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!7

ResEdit
• Graphical Resource Editor (Apple)

• Overview of resources in resource
fork of any file (app or doc), sorted
by resource type

• Opening a type shows resources of
that type sorted by their ID

• Editors for basic resource types built
in (ICON,DLOG,...)

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!8

Mac System 7

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!9

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!10

CHAPTER 12

Mac OS X — macOS

Mac OS X Roots: NeXT

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!11

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!12

Mac OS X

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!13

Darwin
• The open-source base operating system of macOS

• Mach kernel

• Preemptive multitasking

• Protected memory

• BSD

• Process model

• Threading

• Networking

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!14

Cocoa
• The OO API for developing macOS Apps, evolved out of NeXTSTEP

• Three main frameworks

• Foundation

• AppKit

• Core Data

• Programming languages

• Objective-C

• Swift

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!15

Carbon
• Encapsulates the functionality of the Mac Toolbox in one API

• Runs on top of the native OS X, i.e. not an emulator

• Large parts of Foundation had to be reimplemented in C

• Finally deprecated in 2012

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!16

macOS: Architecture

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!17

Cocoa Application
AppKit

Media
AVFoundation Core Animation Core Image Quartz

Core Services
Core Data Foundation Security WebKit

Core OS
Accelerate Open CL System Configuration

Kernel and Device Drivers
BSD File System Mach Networking

Carbon Java

macOS: Four Layer Model

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!18

Quartz, I/O Kit

AppKit

Window Server

AppKit

Apps

Hardware

UITK

WM

BWS

GEL

Event Handling
• Similar to our Reference Model

• Window Server distributes events to queues

• Single queues per process

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!19

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!20

CHAPTER 13

Cocoa & Objective-C

Cocoa
• Foundation

• Basic programming support

• NSObject, values, strings, collections, OS services, notifications

• AppKit

• Interface, fonts, graphics, color, documents, printing, OS support,
international support, InterfaceBuilder support

• CoreData

• Object-graph management and persistence framework

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!21

Objective-C
• Implementation language of the Cocoa framework

• Created in 1983 to combine OO principles with C

• Dynamic typing, binding, and loading

• Categories allow to extend classes without subclassing

• Protocols as alternative to multiple inheritance

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!22

Objective-C: Syntax
NSImage *image = [self importImage:@"sheep.png" withScaleFactor:3];

• Square brackets make it clear which object receives a message

• Increases readability

• Method signature contains names for all parameters

• Prefixes determine the type of a declared method

• - for instance methods

• + for class methods

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!23

Objective-C: Dynamic Typing
• Objective-C checks whether a method exists at runtime

• You can call known methods of a subclass without casting

• id is the type that matches any Objective-C object

• Example: 
if ([unknownThing isKindOfClass:[NSNumber class]]) { 
 NSLog(@"%ld", [unknownThing integerValue]); 
}

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!24

Objective-C: Dynamic Binding
• A Method is a tuple of a selector (SEL) that defines the method signature,  

the type of the parameters, and an implementation pointer (IMP)

• Each object has a method list and executes a method when it receives a known
selector message from another object

• Hence, the invoked method is resolved at runtime

• You can even change methods and method lists at runtime

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!25

Objective-C: Dynamic Loading
• An NSBundle is a representation of code and resources on disk

• These bundles can arbitrarily be loaded and removed from memory during
program execution

• After loading a bundle, its contents can be accessed as if they were present
right from the start

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!26

Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!27

Cocoa Class Hierarchy
• NSObject
• NSEvent

• NSResponder

• NSWindow

• NSView

• NSControl

• NSButton etc.

• NSApplication

• NSCell (lightweight controls)

• NSMenu

• NSMenuItem

• etc.

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!28

MVC Paradigm

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!29

View

Controller

Model

User input Update

NotifyUpdate

Notify

Delegation
• A delegate is a class whose methods are called from another class that wants to

plan for extending its functionality

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!30

Example: NSTableView

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!31

Example: NSTableView
• NSTableViewDataSource

• numberOfRowsInTableView:

• tableView:objectValueForTableColumn:row:

• NSTableViewDelegate

• tableView:viewForTableColumn:row:

• tableView:heightOfRow:

• tableView:shouldEditTableColumn:row:

• tableViewColumnDidResize:

• selectionShouldChangeInTableView:

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!32

Categories
• How could we extend the functionality of NSString?

• Could create a subclass, e.g. MyNSString 
but then we have to change all code to use that new class

• Could change NSString itself 
but this requires access to the source code for that class

• Instead: Create a category  
@interface NSString (NSStringExtensions) 
- (NSString *)reversedSentence; 
@end

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!33

Responder Chain
• Most UI objects are subclasses of NSResponder and can respond to events

• Sending an event up the chain:  
[NSApp sendAction:NSSelectorFromString(@"hello") to:nil from:self];

• The focused widget is called the first responder

• The framework takes care of responder chain and passes along an event 
until it can be handled by some object

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!34

First
responder

View
hierarchy NSWindow NSWindow NSApp App

delegateNSWindowController

Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!35

Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

hci.rwth-aachen.de/dis2

Lecture 6: macOS

Designing Interactive Systems 2

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!2

CHAPTER 14

Swift

Swift
• Syntax very similar to scripting languages

• Compatibility to Objective-C code

• Designed for type-safety

• Introduces powerful tuples

• You can also implement functions in enums

• Open source

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!3

Hello Swift
• Declaration of a constant (with an inferred type)  
let a = 5

• Declaration of a variable (with a specified type) 
var b: Double = 7

• Type safety forces us to have two matching types on both sides of a math
operation 
b = Double(a) * b

• You can even use emoji as names for your variables or classes 
let ! = "That's mind-blowing."

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!4

Optionals
• By default, variables and constants cannot be nil

• But Cocoa and Objective-C love putting nil into properties

• Hence, a more expressive way for nullable items is needed

• Optionals allow to express variable that can also be nil

• Enum that can either have a value Some(T)  

or no value None

• Note: Different definitions of nil between Objective-C and Swift

• Optionals are identified by the ? in their type  
var someValue: Int?

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!5

Optional Binding
var error: NSError?
methodCallThatMightRaiseAnError(&error)

if let err = error {
 print(err.localizedDescription)
} else {
 print("No error occurred!")
}

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!6

Optional Chaining
• Often used in combination with delegates  
var delegate: MyDelegate?

• Optional chaining for elegant way to check for nil 
self.delegate?.numberOfItems(in: self)

• Explicitly unwrapping this variable if it is nil would result in an exception 
self.delegate!.numberOfItems(in: self)

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!7

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!8

CHAPTER 15

Cocoa App Basics

Views & Controllers

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!9

NSViewController

NSWindowController

AppDelegate

NSView

NSToolbar

NSWindow

Views & Controllers
• Window: NSWindow class

• NSWindowController manages a window

• E.g., load, show, close a window

• Useful if app has multiple windows, one NSWindowController for each NSWindow

• NSWindow has a contentView property of type NSView

• NSViewController manages an NSView (property: view)

• Methods, e.g., viewDidLoad, viewWillAppear, viewWDidDisappear, …

• Connect to Actions and Outlets

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!10

Coordinates
• NSPoint, NSSize, NSRect

• A view has two ways to access its
position:

• bounds 

in widget’s coordinate system

• frame 

in parent’s coordinate system

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!11

window: NSWindow

view: NSView

NSEvent
• Event objects are emitted for both mouse and keyboard events

• Contain the mouse’s position in the window’s coordinate system  
override func mouseDown(with event: NSEvent) { 
 self.mouseLocation = event.locationInWindow 
 let windowPoint = event.locationInWindow 
 let localPoint = self.convert(windowPoint, from: nil)  
 ...

 }

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!12

Drawing
• NSViews perform their drawing code in draw(_ dirtyRect: NSRect)

• Override this method and put all view-specific drawing instructions here

• If the view does not directly inherit from NSView, call super.drawRect first!

• Calling setNeedsDisplay(_ invalidRect: NSRect) or 
needsDisplay = true will force a redraw

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!13

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!14

CHAPTER 16

Interface Builder Basics

Storyboard

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!15

Widget Library

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!16

Guides

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!17

Temperature

• Interface Builder helps
developer implement a
consistent Mac look by
recommending positions
for widgets

• Considers margins,
centerlines and baselines

Segues

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!18

• A transition from one screen to another in the storyboard

• Typically opened in new window, but other styles possible

Popover Sheet

Actions & Outlets
• Interface Builder allows to connect Controller code 

with the designed UI by dragging

• Properties with the @IBOutlet keyword are widgets that are 
defined in the Interface Builder

• Methods with the @IBAction keyword are called from widgets 
defined in the Interface Builder

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!19

Designables & Inspectables
• Widget implementations with the @IBDesignable keyword 

will render a preview in Interface Builder

• Properties with the @IBInspectable keyword can be set  
from the Attribute Inspector UI in Interface Builder

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!20

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!21

Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!22

CHAPTER 17

Auto Layout

Auto Layout
• Constraint based UI layout engine

• Tries to fulfill a set of equations when UI appears

• Support for internationalization

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!23

Frame-based Layout

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!24

View

Point

Width

H
ei

gh
t

Point

Σ 2 pieces of
information needed

per direction

Layout is Dynamic...

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!25

Internal Changes
Displayed content changes

Language is changed 

External Changes
Window is resized

Support different screen sizes 

More Measures

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!26

Top

Bottom

Leading Trailing

Width

Height

Center Y

Baseline

Center X

Constraints

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!27

NSLayoutConstraint *constraint = 
 [blue.trailingAnchor constraintEqualToAnchor:red.leadingAnchor
 constant:-8];
[constraint setActive:YES];

Blue Red
8

red.leading = 1.0 × blue.trailing + 8.0
Item 1 Attribute 1 Item 2 Attribute 2

Relationship

Multiplier

Constant

Goal
• Provide a series of equations 

that have one and only one possible solution

• Ambiguous constraints 
have more than one solution

• Unsatisfiable constrains 
do not have valid solutions.

• In general, the constrains must define both  
the size and the position of each view

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!28

Three Similar Designs?

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!29

Intrinsic Size
• Some views have a natural size given their current content

• E.g., a button’s intrinsic content size is the size of its title  
plus a small margin

• Views that have an intrinsic content size can be defined by two
constraints alone

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!30

Point

Priorities
• When creating a UI that suits multiple screens, we sometimes have more than

one requirement on the position of a view

• Example 
A view that ideally takes 25% of the screen’s width  
but is always at least 40pt wide

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!31

ParentYellow

yellow.width = 0.25 × parent.width + 0 
yellow.width ≥ 1 × NotAnAttribute + 40

(Priority 250) 
(Priority 1000)

Combining Widgets

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!32

Label Textfield

Hugging Priority & Compression Resistance

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!33

View

I don’t want to grow!

View

I don’t want to shrink!
Content Hugging

Compression Resistance

Hugging Priority & Compression Resistance

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!34

View View

I did not shrink, 
and I did not care about stretching.

Hugging: 100Hugging: 300 Hugging: 250

Hugging: 250 Hugging: 250

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!35

Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!36

CHAPTER 18

Cocoa Bindings & 
Core Data

Cocoa Bindings
• Cocoa Bindings are an approach to keep Model and View (as in MVC)

synchronized without having to write a lot of glue code

• Example: Keeping a displayed table of sheep (View) synchronized with the
corresponding array (Model) of data in memory, and provide a label informing
the user about the count of selected sheep (another View)

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!37

Core Data
• Object-graph management and persistence framework

• To define application data model graphically

• Provides common functionality

• Undo, Redo

• Persistence (save to disk, read from disk in XML or SQLite format)

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!38

Cocoa Bindings: MVC

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!39

View

Controller

Model 
 
Interface 
Builder 
File

 
 
CoreData 
Managed 
Store

Cocoa Bindings 
ArrayController

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!40

Demo

