
Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

hci.rwth-aachen.de/dis2

Lecture 4: The X Window System, Smalltalk

Designing Interactive Systems 2

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!2

CHAPTER 8

The X Window System

The X Window System
• Origin: W window system for V OS

• W moved BWS&GEL to remote machine

• Simplified porting to new architectures, but slow under
Unix

• MIT: X improvement over W

• Asynchronous calls: much-improved performance

• Application = client

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!3

X: Architecture

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!4

Application

Xlib

Xt Intrinsics

Widget Set

Hardware

Kernel (OS)

X Server

Xlib

Window Manager

Network

UITK & WM

BWS & GEL

X Server

• Responsible for one keyboard (one EL)

• Can manage multiple physical screens (GLs)

• Provides base windows as canvas for clients (BWS)

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!5

Hardware

Kernel (OS)

X Server

Device-Dependent X

Device-Independent X

X: Protocol

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!6

Client Server
First packet

Accept / Refuse

Request

Reply

Request

Error

Event

Xlib

• Implements X protocol client

• Checks for events from server & creates queue on client

• Xlib offers functions to create, delete, and modify server
resources

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!7

Application

Xlib

Xt Intrinsics

Widget Set

Typical Xlib application
#include Xlib.h, Xutil.h
Display *d; int screen; GC gc; Window w; XEvent e;
main () {
 d = XOpenDisplay(171.64.77.1:0);
 screen = DefaultScreen(d);
 w = XCreateSimpleWindow(d, DefaultRootWindow(d), x,y,w,h,
 border, BlackPixel(d), WhitePixel(d)); //fore- & background
 XMapWindow(d, w);
 // Graphics Context setup left out here
 gc = XCreateGC(d, w, mask, attributes);
 XSelectInput(d, w, ExposureMask|ButtonPressMask);
 while (TRUE) {
 XNextEvent(d, &e);
 switch (e.type) {
 case Expose: XDrawLine (d, w, gc, x,y, w,h); break;
 case ButtonPress: exit(0);
 }
 }
}

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!8

X Toolkit Intrinsics

• Xt Functions are generic to work with all widget classes

• At runtime widgets have four states: 
Created, managed, realized, mapped

• Dispatches events

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!9

Application

Xlib

Xt Intrinsics

Widget Set

X Toolkit Intrinsics

• Xt Functions are generic to work with all widget classes

• At runtime widgets have four states: 
Created, managed, realized, mapped

• Dispatches events

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!10

Application

Xlib

Xt Intrinsics

Widget Set

X Toolkit Intrinsics

• Xt Functions are generic to work with all widget classes

• At runtime widgets have four states: 
Created, managed, realized, mapped

• Dispatches events

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!11

Application

Xlib

Xt Intrinsics

Widget Set

Widget Set

• Programming model already given in intrinsics

• Collection of several different user interface components

• Defines the look & feel of the system 
together with the WM

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!12

Application

Xlib

Xt Intrinsics

Widget Set

Athena Widget Set

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!13

• Simple — Base class for all other Athena widgets

• Does nothing, but adds new resources such as cursor and border pixmap

• Standard widgets

• Special widgets

Motif: More than a Widget Set
• Style Guide (book) 

for application developer

• Widget set 
implementing style guide

• Window Manager (mwm)

• UIDL

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!14

Motif: Widget Set

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!15

Programming in X
#include <X11/Intrinsic.h> 
#include <X11/StringDefs.h> 
#include <X11/Xlib.h> 
#include <Xm/Xm.h> 
#include <Xm/PushB.h> 
 
void ExitCB (Widget w, caddr_t client_data, XmAnyCallbackStruct *call_data) 
{  
 XtCloseDisplay (XtDisplay (w)); 
 exit (0);  
}  
 
void main(int argc, char *argv[]) 
{  
 Widget toplevel, pushbutton; 
 
 toplevel = XtInitialize (argv [0], "Hello", NULL, 0, &argc, argv); 
 
 pushbutton = XmCreatePushButton (toplevel, "pushbutton", NULL, 0);  
 XtManageChild (pushbutton); 
 
 XtAddCallback (pushbutton, XmNactivateCallback, (void *) ExitCB, NULL); 
  
 XtRealizeWidget (toplevel); 
 
 XtMainLoop (); 
}

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!16

X: Window Manager
• Ordinary client to the BWS

• Communicates with apps via hints in X Server

• Look&Feel mechanisms are separated from Look&Feel policy

• Late refinement

• Exchangeable at runtime

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!17

X: Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!18

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!19

CHAPTER 9

Wayland

Wayland: Motivation
• X rendering pipeline designed in the 1980s

• Modern clients use libraries instead of referring to X

• Hence, the X Server has lost one of its core functionalities

• Communication overhead

• X was designed as a distributed system

• 3D effects

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!20

Wayland: Motivation

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!21

x

y

• Where is the mouse cursor?

• In screen coordinates: 
(0.5, 0.5)

• In desktop coordinates: 
(0.2, 0.5)

• The WS does not know

0.5

0.5

X: Communication

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!22

App (X Client)

Hardware

Kernel (OS)

X Server

WM (Compositor)

Network

Wayland
• Wayland is…

• A communication protocol between the compositor 
and its clients (similar to Xlib)

• An implementation of that protocol as a C library

• No network transparency 
Clients and compositor talk to each other via IPC

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!23

 Client

Hardware

Kernel (OS)

 Compositor

Wayland: Direct Rendering
• Graphics memory shared between clients and compositor

• Applications render directly into a memory buffer

• Compositor uses buffers from all clients and recomposites the screen

• Saves communication overhead

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!24

X as Wayland Client
• Provide backwards compatibility to 

X clients

• XWayland is an X Server
implementation with changes that
allow to run X on Wayland

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!25

 Client

Hardware

Kernel (OS)

 Compositor

X Server

X Client

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!26

CHAPTER 10

Smalltalk

Smalltalk
• The common ancestor of all

window systems

• Operating system, 
window system,  
OO programming language

• Introduced the MVC Pattern

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!27

Smalltalk
• The common ancestor of all

window systems

• Operating system, 
window system,  
OO programming language

• Introduced the MVC Pattern

• UITK with modeless editor

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!28

Smalltalk
• The common ancestor of all

window systems

• Operating system, 
window system,  
OO programming language

• Introduced the MVC Pattern

• UITK with modeless editor

• Inspect and modify the system’s
code while it is running

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!29

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!30

Smalltalk: Architecture
• Single process, single address space

• Machine-dependent virtual machine  
(byte-code interpreter)

• Machine-independent virtual image  
(Smalltalk classes)

• Initially OS & WS merged, 
later WS on top of OS

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!31

Model-View-Controller

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!32

Controller

View

ModelUser

SEES

USES MANIPULATES

UPDATES

Problem Domain Application

Morphic
• UI construction environment for Smalltalk

• Key concepts: 
Directness and liveness

• Widgets are called morphs

• Every morph can be a container for other morphs

• Used for reification of widget structure and layout

• Morphs can have autonomous behavior, usually appearing as animation

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!33

Squeak: Demo

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!34

Morphic: Implementing Layout
Exercise 
Algorithm to determine the layout of a morph that includes a tree of submorphs?

• 1st pass: Compute minimum size of all submorphs bottom-up

• 2nd pass: Distribute available space between submorphs top-down

• Optimizations?

• Deferred layout

• Pruning

• Site selection

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!35

Morphic: Managing Redraws
• Damage List

• Add bounding box of each changed morph to list

• Each frame, redraw all morphs intersecting 
each bounding box in damage list

• Double buffering prevents the user from seeing 
the construction of an animation

• Improvements?

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!36

History

Prof. Dr. Jan Borchers: Designing Interactive Systems 2!37

1970 
Smalltalk

1983 
Andrew

1981 
Viewers

1980 
Docs

1986 
NeWS

1981 
Star

1977 
Tajo

1977 
Dlisp

1985 
Windows

1981 
NU

1984 
Macintosh

1984 
X

