Designing Interactive Systems 2

Lecture 1: Introduction, History, Design Space of Input Devices

Prof. Dr. Jan Borchers Media Computing Group RWTH Aachen University

RWITHAGHEN UNIVERSITY

Class Syllabus

- Part 1Key Concepts
- Part 2
 Usage and Design of UI Toolkits and Design Systems
- Part 3
 Uls Beyond the Desktop
- Part 4
 Prototyping Process

Administrivia

- Format: V3/Ü2
- 6 Credit points
- Class times
 - Lecture on Wednesdays (8:30 11:00),
 Room 2222
 - Lab on Mondays (14:30 16:00),
 Room 2222

Team

Prof. Dr. Jan Borchers

Sebastian Hueber

hueber@cs.rwth-aachen.de E-Mail Subject: [DIS2]

Anke Brocker

brocker@cs.rwth-aachen.de E-Mail Subject: [DIS2]

Your Final Grade

Weekly Assignments

- We have a strict grading policy:
 - Late submissions will be graded 5.0 without feedback
 - **Team size** is 2 students (3 only by permission). If you hand in a solution without a team partner: 5.0 without feedback
 - If your code does **not compile**: 5.0 without feedback
- For some assignments you will need a Mac
 - No Mac? Visit http://www-rbi.informatik.rwth-aachen.de/Pool+Helpdesk/
- Submission via Moodle

Website

- All information about this course can be found online
- hci.rwth-aachen.de/dis2

How DIS1 and DIS2 Cover HCI

DIA Cycle

CHAPTER 1

History of User Interface Programming Paradigms

Batch Processing

- Prepare data on punch cards
- Wait for result as printout offline

Time-sharing Systems

- Command-line based interaction
- Shorter turnaround (per-line)

Full-screen textual UIs

- Turnaround per character
- Interaction starts to feel "real-time"

Menu-based Systems

- Discover functionalities instead of memorizing them
- Threading becomes important

Graphical User Interface

- Event-based program structure
- Pointing devices in addition to keyboard

CHAPTER 2 Design Space of Input Devices

Design Space of Input Devices

- Card, Mackinlay, Robertson 1991
- Categorization of input devices according to physical, mechanical and spatial properties
- Why?
 - Compare input devices
 - Identify new input modalities

Movement Primitives

Example

Compositions

Merge

Layout

Connect

In-Class Exercise

- Plot out the input capabilities of the Ferrari Racing Controller on the Card Design Space of Input Devices.
- The controller consists of a **steering wheel** with **8 buttons** and a **rotary switch** with 5 states, as well as **2 pedals**.
- Assume that the steering wheel can only have one full rotation.

Is This Space Complete?

Testing Points

- Expressiveness describes how precisely the meaning is conveyed
- For input devices, expressiveness suffers if $|In| \neq |Out|$
 - |In| < |Out|: Cannot specify all legal values
 - |In| > |Out|: Can specify illegal values

Testing Points

Effectiveness describes how well the intention can be communicated

"Will I Get a Seat in This Class?"

Window System Architecture

Window Systems: Basic Tasks

- Input handling
 Pass user input to appropriate application
- Output handling
 Visualize application output in windows
- Window management
 Manage and provide user controls for windows

Window Systems: Requirements

- Independent of hardware and operating system
- No noticeable delays (few ms) for basic operations,
 e.g. moving window, redrawing cursor
- Customizable look&feel for user preferences
- Input & Output in parallel
- Multimedia support: Graphics, audio, ...
- Support for various input devices and modalities

Window Systems: Evaluation Criteria

- Availability
 Platforms supported
- Productivity
 For application development
- Parallelism
 External and internal
- Performance
 Usage of resources and latency

- Graphics model
 RasterOp vs. vector
- Appearance
 Look & Feel, exchangeable?

Window Systems: Evaluation Criteria

- Extensibility
 In source code or at runtime
- Adaptability
 Localization and customization at runtime
- Resource sharing E.g., fonts
- DistributionOver network

- API
 Structure and comfort
- Independence
 Of application and interaction logic inside programs written for the WS
- Inter-Application Communication
 Copy & Paste, Drag & Drop

Window Systems: Conflict

Window System Architecture

Apps

User Interface Toolkit

Window Manager

Base Window System

Graphics & Event Library

Hardware

More abstract, user-oriented

