
Bringing Haptic General-Purpose Controls
to Interactive Tabletops

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der RWTH Aachen University

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Dipl.-Inform. Malte Hanno Weiß
aus Köln, Deutschland

Berichter: Univ.-Prof. Dr.rer.nat. Jan Borchers
 Prof. James D. Hollan, Ph.D.

Tag der mündlichen Prüfung: 23. August 2012

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

iii

Contents

Abstract xxiii

Zusammenfassung xxv

Acknowledgements xxvii

Conventions xxix

1 Introduction 1

1.1 From Physical to Digital Controls 5

1.2 Contributions . 8

1.3 Structure . 10

2 Interactive Tabletops 11

2.1 Optical Tracking . 13

2.1.1 Frustrated Total Internal Reflection (FTIR) 13

2.1.2 Diffused Illumination (DI) 16

2.1.3 Diffused Surface Illumination (DSI) 17

2.1.4 Liquid Displacement 18

2.1.5 Thin Form Factor Tracking 18

2.1.6 Depth Cameras . 20

2.1.7 Digital Pens . 20

iv Contents

2.1.8 Combining Techniques 21

2.2 Input Techniques . 21

2.2.1 Triggering and Arranging Virtual Objects 21

2.2.2 Drawing and Gestures 23

2.2.3 Tangible User Interfaces 24

2.3 Non-Horizontal Surfaces . 26

2.4 Capturing Design Knowledge 27

2.5 Closing Remarks . 30

3 Translucent Controls on Tabletops: SLAP Widgets 31

3.1 Design Considerations . 32

3.2 Related Work . 33

3.2.1 Special-Purpose Tangibles 34

3.2.2 General-Purpose Tiles 35

3.2.3 Physical Controls for General Purposes 36

3.2.4 Typing . 39

3.3 System Design . 42

3.3.1 Tabletop Infrastructure 42

3.3.2 Widget Design . 43

3.3.3 Basic Widget Set . 45

3.3.3.1 Keyboard 45

3.3.3.2 Keypads 47

3.3.3.3 Slider . 48

3.3.3.4 Knob . 49

3.4 Interaction Design . 51

3.4.1 Pairing Gestures . 53

Contents v

3.5 Input Sensing . 54

3.5.1 Tracking Pipeline . 54

3.5.1.1 Camera to GUI Mapping 56

3.5.1.2 Camera Parameters 58

3.5.1.3 Receiving Touch Events 58

3.5.2 Widget Detection . 59

3.6 Software Architecture . 63

3.6.1 Writing SLAP Applications 64

3.6.2 Extending the Framework 67

3.6.2.1 Virtual Objects 67

3.6.2.2 SLAP Widgets 69

3.6.2.3 Inter-Object Communication 71

3.6.2.4 Gesture Detection 72

3.7 Usage Scenarios . 74

3.7.1 Video Ethnography 75

3.7.2 Collaborative Image Selection and Editing 76

3.8 User Studies . 78

3.8.1 Widget Performance 78

3.8.1.1 Task . 78

3.8.1.2 Experimental Design 79

3.8.1.3 Participants 81

3.8.1.4 Results . 81

3.8.1.5 Discussion 83

3.8.2 Qualitative Evaluation 84

3.8.2.1 Procedure 84

vi Contents

3.8.2.2 Participants 85

3.8.2.3 Results . 85

3.8.2.4 Discussion 85

3.8.3 Typing . 86

3.8.3.1 Rigid SLAP Keyboard with Pressure Point 86

3.8.3.2 Task . 88

3.8.3.3 Test Setup 88

3.8.3.4 Procedure 90

3.8.3.5 Participants 92

3.8.3.6 Quantitative Results 92

3.8.3.7 Qualitative Feedback 93

3.8.3.8 Discussion 94

3.8.3.9 Future Study Design 95

3.9 Closing Remarks . 95

4 Maintaining Consistency: Madgets 101

4.1 Unidirectional Interaction 102

4.2 Related Work . 104

4.2.1 Actuated Knobs and Sliders 105

4.2.2 Shape Displays . 106

4.2.3 Actuated Tangibles on Tabletops 108

4.2.3.1 Self-Actuating Tangibles 109

4.2.3.2 Indirect Actuation 110

4.3 Magnetic Widgets . 112

4.4 System Overview . 113

4.4.1 Surface . 114

Contents vii

4.4.2 Architecture . 115

4.4.3 Table Construction 117

4.5 Electromagnetic Actuation 118

4.5.1 Hardware Control 118

4.5.2 Conventions . 121

4.5.3 Calibration . 122

4.5.4 Actuation Algorithm 124

4.5.4.1 From Single Pucks to Multi-Element
Controls 124

4.5.4.2 Overview 127

4.5.4.3 Model . 128

4.5.4.4 Step 1: Compute Total Tangential Force
and Torque 134

4.5.4.5 Step 2: Assign Forces to Permanent
Magnets 135

4.5.4.6 Step 3: Distributing Forces to
Electromagnets 137

4.5.4.7 Generalization 142

4.5.5 Discussion . 144

4.6 Tracking . 144

4.6.1 Hardware Setup . 144

4.6.2 Tracking Algorithm 145

4.6.2.1 Gradient Fiducials 146

4.6.3 Calibration . 148

4.6.4 Image Processing Pipeline 150

4.6.5 Marker Placement 152

4.6.6 Discussion . 152

viii Contents

4.7 Visual Output . 153

4.8 Applications . 154

4.8.1 General-Purpose Widgets 154

4.8.1.1 Persistence 154

4.8.1.2 Remote Collaboration 155

4.8.1.3 Actuation by Gesture 156

4.8.2 Going 3D: Height . 156

4.8.2.1 Buttons . 156

4.8.2.2 Clutch . 157

4.8.2.3 Mechanical Audio Feedback 159

4.8.3 Force Feedback . 159

4.8.3.1 Vibration 160

4.8.3.2 Resistance 160

4.8.4 Water Wheel Madgets 160

4.8.4.1 Inductive Energy Transfer 160

4.8.4.2 Motors . 161

4.8.5 Prototyping Physical Properties 161

4.9 Implementation Challenges 162

4.10 Actuation versus User Control 164

4.10.1 Preliminary Study 164

4.11 Closing Remarks . 166

5 Rendering Physical Effects 169

5.1 Haptic Rendering in General-Purpose Devices 170

5.2 Using Magnetism to Induce Physical Effects 172

5.2.1 Perceived Weight . 172

Contents ix

5.2.2 Friction . 174

5.2.3 Spring Resistance . 176

5.2.4 Dynamic Notches . 177

5.3 User Studies . 179

5.3.1 Spring Resistance . 180

5.3.1.1 Methodology 180

5.3.1.2 Results . 181

5.3.1.3 Discussion 181

5.3.2 Dynamic Notches . 182

5.3.2.1 Methodology 182

5.3.2.2 Results . 182

5.3.2.3 Discussion 182

5.4 Closing Remarks . 183

6 Beyond Tangibles: FingerFlux 185

6.1 Haptic Feedback on and Above Surfaces 185

6.1.1 Contact-Based Feedback 186

6.1.2 Mediator-Based Feedback 187

6.1.3 Non-Equipped 3D Feedback 189

6.2 Near-Surface Haptic Feedback Using Electromagnetic Fields 190

6.3 Applications . 191

6.3.1 Feeling the Interface 191

6.3.1.1 A Priori Feedback 192

6.3.1.2 Rendering Objects 192

6.3.2 Directional Feedback 192

6.3.2.1 Reduce Drifting 193

x Contents

6.3.2.2 Guiding the User 194

6.3.2.3 Moderate Physical Constraints 195

6.4 User Studies . 195

6.4.1 Height . 195

6.4.1.1 Test Setup 196

6.4.1.2 Procedure 196

6.4.1.3 Participants 197

6.4.1.4 Results . 197

6.4.1.5 Discussion 197

6.4.2 Reduce Drifting . 198

6.4.2.1 Test Setup 198

6.4.2.2 Procedure 199

6.4.2.3 Participants 201

6.4.2.4 Results . 201

6.4.2.5 Discussion 202

6.5 Future Design Concepts . 203

6.6 Closing Remarks . 205

7 Conclusion 209

7.1 Contributions . 209

7.2 Future Work . 211

7.3 Closing Remarks . 212

Bibliography 215

Index 229

xi

List of Figures

1.1 Knob of a washing machine. 2

1.2 Interactive tabletops enable direct manipulation and
collocated collaborative work 4

1.3 Input device for media navigation 5

1.4 Screenshot of a fictional laser control application using
standard GUI elements of Mac OS X 10.7. 6

2.1 Snell’s Law . 14

2.2 Typical FTIR tracking setup 14

2.3 Sample raw camera images of FTIR and DI tracking 15

2.4 Typical DI tracking setup 16

2.5 Principle of DSI tracking . 17

2.6 Liquid displacement tracking 18

2.7 FiberBoard . 19

2.8 Tracking interactions on and above tabletops using depth
cameras . 20

2.9 Common direct manipulation techniques 22

2.10 Examples for gestures on the surface 24

2.11 Early projects involving Tangible User Interfaces on
interactive tabletops . 25

2.12 BendDesk is a curved multi-touch desk 27

2.13 Structure of our tabletop pattern language 29

xii List of Figures

3.1 reacTable . 34

3.2 Tangible Tiles . 35

3.3 VoodooIO . 37

3.4 VoodooSketch . 37

3.5 PhotoHelix . 39

3.6 SLAP Table concept . 42

3.7 Basic SLAP Widget Set . 44

3.8 Footprint design of a SLAP Knob as seen from below . . . 45

3.9 SLAP Keyboard in use . 46

3.10 Keystroke detection of SLAP Keyboard 46

3.11 Example applications of SLAP Keypads for text editing
and media control . 47

3.12 Button push detection of SLAP Keypad with three buttons 48

3.13 Position detection of SLAP Slider 48

3.14 A SLAP Slider in use for setting a continuous value 49

3.15 Angle and push state detection of SLAP Knob 50

3.16 Modes of SLAP Knob . 50

3.17 Detection feedback and pairing mechanism of SLAP
Widgets . 52

3.18 Main steps of image processing pipeline for detecting finger
touches and markers . 54

3.19 Mapping from camera to GUI space 57

3.20 Principal axis angle deviation check 60

3.21 Software architecture of SLAP Framework 63

3.22 Class hierarchy of table objects in SLAP Framework 67

3.23 Example interaction protocol between a virtual movie object
and a SLAP Keypad . 73

List of Figures xiii

3.24 Video annotation scenario 75

3.25 Collaborative image selection and editing by combining
direct manipulation and SLAP Widgets 77

3.26 Setup of user study on widget performance 79

3.27 Implementation of virtual knob in widget performance user
test . 80

3.28 Results of widget performance study 82

3.29 Key design of rigid SLAP Keyboard 86

3.30 Different prototypes of foil springs beneath keys 87

3.31 Different keyboards in typing performance study 87

3.32 Test setup of keyboard performance test 89

3.33 Words per minute and total error rate depending on
keyboard . 92

3.34 Average words per minute and total error rate over trials
depending on keyboard . 93

3.35 Tangible “Toxic Waste Cannon” 97

3.36 Tangibles with embedded fiber optics 98

3.37 The “Aachener Frieden” table with narrowed substructure . 100

4.1 Bidirectional interaction between user, interface, and
application in a touch-based GUI 102

4.2 Typical interaction with SLAP Widgets on interactive
tabletops . 102

4.3 Volume knobs of HiFi audio receivers 105

4.4 Hardware audio mixer with motorized sliders 106

4.5 Relief height map device . 107

4.6 Pneumatic height display 108

4.7 The Actuated Workbench 110

4.8 Mechanical constraints on actuated pucks 111

xiv List of Figures

4.9 Knob Madget containing permanent magnets for passive
actuation . 113

4.10 Principle behind Madgets 113

4.11 Schematic composition of Madgets Table surface 114

4.12 Architecture of Madgets . 116

4.13 Implementation of Madgets Table 117

4.14 Implementation of Madgets Table surface 118

4.15 Circuit that controls strengths and polarizations of
electromagnets . 119

4.16 Main hardware components that control the electromagnetic
array . 119

4.17 Pulse-width modulation (PWM) 120

4.18 Examples for different PWM duty cycles 120

4.19 Conventions of actuation algorithm 122

4.20 Magnet Array Controller application 123

4.21 Actuating a single magnetic puck via Manhattan Motion . . 125

4.22 Illustration of flux lines depending on magnet activation . . 125

4.23 Antialiasing mechanisms for smoothly actuating a puck into
a certain direction . 126

4.24 Control loop of actuation algorithm 127

4.25 Forces and torque that are applied to a Knob Madget and
its permanent magnets during an actuation step 128

4.26 Measurement of bounds for normal and tangential forces
using a reference magnet . 130

4.27 Damping of electromagnet’s force depending on distance . . 131

4.28 Adhesive force of an electromagnet from our array depending
on distance to core . 132

4.29 Force conflict while actuating a knob 138

List of Figures xv

4.30 Computing the tangential force for a single permanent
magnet using super position principle 138

4.31 Core temperature and adhesive force of an electromagnet
depending on turn on time 141

4.32 Relationship between static and dynamic markers during
actuation . 143

4.33 Alignment of fiber optical cables in Madgets Table 145

4.34 Input signal from the three cameras in the Madgets Table . 146

4.35 Principle of gradient fiducials 147

4.36 Main steps in the calibration process of fiber optical
tracking . 148

4.37 Image processing pipeline of fiber optical tracking 151

4.38 Effect of IR LED brightness on signal quality 153

4.39 Close-up on active EL foil beneath LCD panel 153

4.40 Actuation allows to save and restore the physical states of
Madgets . 155

4.41 Radio Button Madget . 157

4.42 Blockable Button Madget with clutch mechanism 158

4.43 Concept of Slider Madget with dynamic range limits 158

4.44 Bell Madget . 159

4.45 Induction Madget . 161

4.46 Gear Wheel Madget . 162

4.47 Different core materials . 163

4.48 Setup of preliminary study to explore conflicts between
actuation and user’s desire for control 165

5.1 Concept of haptic clutch for media navigation 171

5.2 Weight Madget . 173

xvi List of Figures

5.3 Normal force measured on Weight Madget depending on
duty cycle. 174

5.4 Friction Knob Madget . 175

5.5 Static friction force measured at knob with electromagnetic
brake mechanism. 175

5.6 Prototype of pushbuttons that provide varying spring
resistances through electromagnetic actuation 176

5.7 Physical notch mechanism 177

5.8 Prototype of slider with dynamic notches 178

5.9 Actuation scheme for simulation of dynamic notches in
slider . 179

5.10 Experimental setup for testing buttons with varying
resistances and slider with dynamic notches 179

6.1 Principle of MudPad . 187

6.2 Haptic Tabletop Puck . 188

6.3 Principle of Senseable Rays 188

6.4 Concept behind FingerFlux 190

6.5 Actuation concept to reduce drifting at two on-screen
buttons . 193

6.6 Actuation concept for guiding user to the right 194

6.7 Actuation concept of slider with moderate constraint 195

6.8 Experimental setup of height user study 196

6.9 Results of height user study. 198

6.10 Finger touch detection via Vicon tracking system 199

6.11 Experimental setup of drifting user study 200

6.12 Comparison of drifting between “Non-Haptic” and “Active
Feedback” condition . 201

6.13 Contact points from a sample user in drifting study 202

List of Figures xvii

6.14 Future FingerFlux design concepts 203

6.15 New FingerFlux table prototype 205

xix

List of Tables

3.1 Event delegates of SLAPUITKDelegate protocol 66

3.2 Rendering delegates of SLAPViewDelegate protocol 66

3.3 Test videos with time stamps of inserted target frames. . . 80

3.4 Results of widget performance study 81

3.5 Results of Shapiro-Wilk tests on measured data and
logarithmic transformations in widget performance study . 82

3.6 Results of two-tailed paired t-tests of widget performance
study . 82

3.7 Results of keyboard performance study 92

3.8 Results of pairwise Tukey-Kramer HSD test 93

xxi

Listings

3.1 MTTouching protocol. 59

3.2 SLAP “Hello world” program. 65

3.3 Sample SLAP program that uses delegates to react on events
and to render additional graphics. 66

3.4 Example implementation of a virtual object. 68

3.5 Touch event interpretation of a virtual slider. 69

3.6 Touch event interpretation of a physical slider. 70

3.7 Pairing protocol of simple movie object. 72

3.8 Protocols for receiving events from widgets. 72

3.9 Example program that reacts on a gesture. 75

xxiii

Abstract

Interactive tabletops are large horizontal displays that allow multiple users to simultaneously
and directly interact with digital content by touching the surface, manipulating physical
objects, or conducting gestures above the surface. In the last decade, these devices have aroused
much interest in the research community, and first commercial products have been released.
Interactive tabletops combine a dynamic graphical user interface, a natural way of input, and a
platform that is suitable for collocated collaboration. However, they provide only limited haptic
feedback. In contrast to physical controls that guide the users’ motion, visual on-screen controls
cannot be felt and require visual focus when being operated. Also, due to the large contact area
of fingers, input by touch is less precise than by conventional controls, such as mice or keyboards.

This thesis addresses the issue of limited haptic feedback on interactive tabletops, while fo-
cussing on precise input for productivity tasks. We introduce physical general-purpose controls
that combine the benefits of haptic feedback with the dynamic nature of interactive tabletops.
Our controls are passive, untethered, low-cost, and easy to prototype. Made of transparent
materials and using the table’s back projection, they can change their visual appearance on
the fly and become versatile controls for various applications. Furthermore, we describe how to
turn these controls into malleable user interfaces by employing an electromagnetic actuation
mechanism. This allows to move a control or parts of it, to maintain the consistency between its
physical and virtual state, and to change physical properties via software at run time. Finally,
we present an output method that creates haptic feedback near the surface and only requires a
minimal equipment worn by the user.

The thesis provides an introduction to the field of interactive tabletops and embeds our contri-
butions into the context of related work. We explain our design and interaction concepts, the
underlying hardware engineering, and software technologies. We evaluate our contributions in
user studies and measurements and provide evidence for the usefulness of our techniques. We
also describe potential applications with focus on productivity tasks. Finally, we illuminate im-
plementation challenges, discuss limitations, and provide a perspective on recent developments
as well as future trends in the field of haptic feedback on interactive tabletops.

xxiv Abstract

xxv

Zusammenfassung
(Abstract in German)

Interaktive Tische sind große horizontale Bildschirme, die es mehreren Personen ermöglichen,
gleichzeitig und direkt mit digitalen Inhalten zu interagieren, sei es durch Berührung der
Oberfläche, durch Manipulation physikalischer Objekte oder durch Gesten über dem Tisch. Im
letzten Jahrzehnt hat sich nicht nur die Forschungsgemeinschaft intensiv mit diesen Geräten
beschäftigt, auch erste kommerzielle Produkte wurden bereits veröffentlicht. Interaktive Tische
kombinieren eine dynamische grafische Benutzeroberfläche, eine natürliche Art der Eingabe und
eine Plattform, die sich für gemeinsames Arbeiten eignet. Allerdings bieten sie nur ein begrenztes
haptisches Feedback. Im Gegensatz zu physikalischen Eingabegeräten, die die Bewegung des
Benutzers führen, können graphische Eingabeelemente auf einem Bildschirm nicht ertastet
werden und erfordern einen visuellen Fokus während der Bedienung. Aufgrund der großen Kon-
taktfläche von Fingern ist eine Eingabe durch Berührung der Oberfläche außerdem unpräziser
als durch konventionelle Eingabegeräte wie Maus und Tastatur.

Diese Doktorarbeit befasst sich mit dem Problem des eingeschränkten haptischen Feedbacks
auf interaktiven Tischen, wobei wir das Hauptaugenmerk auf eine präsize Eingabe in Produk-
tivitätsaufgaben richten. Wir führen physikalische Allzweck-Eingabegeräte ein, die die Vorteile
von haptischem Feedback mit der dynamischen Natur von interaktiven Tischen verbinden.
Unsere Eingabegeräte sind passiv, preiswert, leicht zu bauen und dabei nicht kabelgebunden.
Da sie aus transparenten Materialien konstruiert sind, können sie die Rückprojektion von
Tischen verwenden, um ihre visuelle Repräsentation dynamisch anzupassen. Dies macht sie
zu wandelbaren Eingabegeräten, die in einer Vielzahl von Anwendungen eingesetzt werden
können. Des Weiteren beschreiben wir, wie diese Eingabegeräte über einen elektromagnetis-
chen Aktuierungsmechanismus zu formverändernden Benutzerschnittstellen erweitert werden
können. Dies erlaubt es, auf Software-Ebene ein Eingabegerät oder Teile davon zu bewegen,
die Konsistenz zwischen seinem physikalischen und visuellen Zustand aufrechtzuerhalten
und physikalische Eigenschaften zur Laufzeit zu verändern. Schließlich präsentieren wir eine
Ausgabemethode, die im Nahbereich der Tischoberfläche haptisches Feedback erzeugt und nur
eine geringe Ausrüstung des Benutzers erfordert.

Diese Arbeit bietet eine Einführung in das Forschungsgebiet der interaktiven Tische und bettet
unsere Beiträge in den Kontext bestehender Forschung ein. Wir beschreiben unsere Design- und
Interaktionskonzepte sowie die dahinter stehende Hardware und Software-Technologie. Wir
evaluieren unsere Beiträge mittels Benutzerstudien und Messungen und erbringen Nachweise
für die Nützlichkeit unserer Techniken. Wir beschreiben außerdem potentielle Anwendungen
mit einem Fokus auf Produktivitätsaufgaben. Schließlich beleuchten wir spezifische Heraus-
forderungen bei der Implementierung, diskutieren Einschränkungen und bieten eine Perspektive
auf jüngste Entwicklungen sowie zukünftige Trends im Gebiet des haptischen Feedbacks auf
interaktiven Tischen.

xxvii

Acknowledgements

Writing a PhD thesis is an immense amount of work, which would not have been feasible
without the contributions, support, and inspiration of many people.

I thank my supervisor, Jan Borchers, for giving me invaluable advice for my PhD thesis and
my projects, and for providing an environment that enables creative and keen research. He also
established an extraordinary infrastructure for building novel systems. Projects like Madgets
and FingerFlux would not have been feasible without his efforts to found the first FabLab
in Germany.

I also want to thank James D. Hollan for supporting my thesis as co-advisor. He gave valuable
feedback for the development of SLAP Widgets.

Thanks to all of the contributors to the SLAP Widgets project. Julie Wagner and Yvonne Jansen
from RWTH Aachen University, and Roger Jennings and Ramsin Khoshabeh from University of
California, San Diego, spent many days and nights to make SLAP Widgets a success. Yvonne
also constructed the first version of the SLAP Table, with the help of Roger, who arguably cast
the best FTIR compliant surface in the world. Stefan Hafeneger developed our first software
framework to distribute touch events to tabletop applications. Thorsten Karrer gave valuable
pointers to related work.

Madgets would not exist without the enormous support of Florian Schwarz. He developed
crucial parts of the table hardware and implemented the actuation algorithm. He successfully
mastered all administrative barriers to purchase custom-made electromagnets. In the last weeks
before the deadline, we contributed nearly all of our time awake to this project. Working with
him was an amazing experience.

I also want to thank everyone who helped to assemble the Madgets Table: Simon Jakubowski,
Lucas Braun, Christian Remy, Simon Voelker, and Helga Weiß. Sticking thousands of fiber
optical cables into ridiculously tiny holes was an inconvenient but highly important task for
developing a novel tracking method.

My students, Simon Jakubowski and Lucas Braun, supported me in all of my research projects
and considerably disburdened me. They built and iterated various prototypes. Simon helped
to take many of the photos in this thesis. Lucas is the creative engineer behind the improved
pressure point of the rigid SLAP Keyboard.

xxviii Acknowledgements

Simon Voelker helped to develop a new touch detection framework for multi-camera and
multi-screen systems. He also built the new small-scale electromagnetic array prototype for
our demo of FingerFlux at the UIST 2011 conference. Christian Remy supported the Madgets
project and gave valuable feedback for the paper. He is also the leading author of our HCI design
pattern language on interactive tabletops. Gero Herkenrath helped to design and to conduct
the typing performance study of the SLAP Keyboard. I esteem Christian, Simon, and Gero not
only as collaborators but also as friends that were always open for inspiring conversations.

Chat Wacharamanotham significantly contributed to FingerFlux. He also gave helpful advice
for the statistical evaluation of the user studies in this thesis. I also want to thank René Bohne
and David Peters for their help in the FabLab and for contributing their knowledge in the field
of electrical engineering. Thanks to Ronny Seidel for conducting the user study for exploring
the conflict between actuation and the users’ desire for control. I also want to acknowledge all
participants who joined the user studies and helped me to gain deeper insights into the design
concepts.

Thanks to Patrick Baudisch for these five intense and eye-opening days at Hasso-Plattner-
Institute. He tought me how important it is to get the story right.

I also thank all the proofreaders who provided indispensable feedback: Anja Schulz, Christian
Remy, Florian Schwarz, Simon Voelker, and Gero Herkenrath.

Last but not least, I want to thank my wife, Helga Weiß. She not only helped to assemble the
Madgets Table. During the entire time, she supported me emotionally and always gave me the
strength and joy to keep up with my research.

xxix

Conventions

The following conventions will be used throughout this thesis:

The thesis follows the American standard for spelling.

We use plural “we” in the entire thesis instead of “I” even if the work was
solely done by the author. Some of the materials in this thesis have been
published previously. These will be stated in the thesis.

Occasionally, we use gender-specific names and pronouns to provide con-
crete usage scenarios and to improve readability. However, all references to
fictional persons are not limited to a particular gender.

Names of concepts and physical prototypes are capitalized, e.g.,
“SLAP Widgets” or “Bell Madget”.

We show box plots to visualize quantitative results. Whiskers expand to
the lowest data point within 1.5 interquartile range of the lower quartile,
and to the highest data point within 1.5 interquartile range of the upper
quartile.

All code examples are written in Objective-C.

1

Chapter 1

Introduction

Human beings

combine multiple

senses to receive a

clear perception of

the environment.

Human beings are endowed with manifold senses that allow them to per-
ceive and process stimuli from the environment. Senses like sight, hearing,
taste, smell, and touch provide an information channel that is steadily in-
tegrated into world knowledge and allows humans to react appropriately
to external events. As all natural signals, these information channels are
subject to noise, e.g., when listening to a person in a crowded room, and
can lead to ambiguous interpretations, such as the various examples of op-
tical illusions. Human beings naturally weigh different senses and integrate
them into a clearer signal. For example, while talking, auditory and visual
stimuli are combined, whereas lip reading (visual channel) plays a greater
role in a crowded room with background noise. When walking in absolute
darkness, the senses of touch, hearing, and kinaesthesia can partly com-
pensate for the lack of visual input. The combination of senses leads to a
higher security in the perception of the world and in the process of decision
making.

Many successful

everyday devices are

designed to address

multiple senses in a

coherent way.

This principle of fusing senses plays an important role when designing in-
teractive systems. An experienced industrial designer composes a product
such that it addresses multiple senses in a coherent way. Let us have a look
at a simple everyday example: washing clothes. Many washing machines
have a mechanical rotary knob for selecting the washing program (Fig. 1.1).
Three different roles are involved in the design of this control. The user
follows the high-level goal to wash his clothes using a specific program. The
engineer of the machine requires a number from 1 to n that maps to one
of n possible programs stored in an internal microprocessor. Each program
triggers the various pumps, motors, and heaters in the machine in a specific
way. The interaction designer defines the interface between the user’s goal
and the required numeric input. Her task is to design a user experience that
is natural and fits the user’s mental model of the machine. Example: A washing

machine’s knob

addresses visual,

haptic, and auditive

sense.

She designs the
knob such that it addresses multiple senses: The program knob exposes an
imprinted arrow pointing towards the label of the current selection (visual
sense). The knob also contains a palpable embossed arrow and snaps to the
program positions when the user turns the knob (haptic sense). Finally,

2 1 Introduction

Figure 1.1: The knob of a washing machine addresses the visual, the
haptic, and the auditive sense. Photo taken by the author.

the user hears a clear “click” sound every time he turns the knob to the
next position (auditive sense).

Benefits of

mechanical knob:

1. Matches user’s

mental mode.

2. User feels in

control.

3. User employs

multiple senses and

associated

memories.

In the age of microprocessors, the programs of washing machines are not
controlled mechanically anymore. A solution involving two capacitive (non-
mechanical) buttons for program selection in combination with an LCD dis-
play that shows the user’s choice would be considerably cheaper, low-wear,
and easier to produce. Nevertheless, mechanical knobs have strong benefits:
First, they match the mental model of controlling a heavy mechanical ma-
chine. This model comes from a time when washing machines were indeed
controlled by “mechanical programs” stored as bumps on a plastic disc that
was connected to the program selection knob and processed by a motor.
Second, the strong audio-haptic feedback gives the user a feeling of being
in control. Third, the user can employ and fuse multiple senses. He can
choose a program without looking by making use of auditive and muscle
memory, and by just memorizing “two clicks to the right” for selecting his
favorite program.

Designers iterate the

“feel” of a product

many times before

release.

The way a product “feels” communicates its character. This is iterated
many times before releasing it to the market. Today’s car doors are another
prominent example: They are designed in such a way that the strength
required to close the door and the sound that it produces thereby commu-
nicates the brand and class of the car. Designers spend weeks to create a
“feel” that matches the target users. While the importance of haptic feed-
back is well understood in industrial design, we are currently encountering
a tendency of developers to remove the haptic feedback channel from our
everyday computing devices.

3

For over 30 years,

keyboard and mouse

were the main input

devices for most

computing tasks.

Since the introduction of home computers in the 1980s, a computer screen
in combination with a keyboard and a mouse has turned into the prevalent
user interface for most computing tasks. While hardware and design was
optimized over the years, and laptops and wireless internet nowadays allow
users to work with a computer (nearly) everywhere, this general input and
output concept has barely changed.

The DigitalDesk

enhanced a

conventional desk

with digital

documents. It was

the starting point

for research on

interactive

tabletops.

In his pioneer paper, Wellner [1993] presented an alternative to this setup
in order to combine the benefits of physical and digital documents. The
DigitalDesk was a conventional desk that was enhanced with a projector
and a camera above the surface. It supported paper-based office work but
also enabled users to interact with digital documents, which were projected
onto the surface. In contrast to the “desktop metaphor”, digital content
could now be manipulated directly using pens or bare fingers. This publi-
cation marks the starting point of the research field on interactive tabletops.
In the following, many papers have been published that deal with engineer-
ing, interaction techniques, and applications of interactive tabletops. We
refer to Müller-Tomfelde and Fjeld [2010] for a historic survey on the field.

The availability of a

low-cost multi-touch

tracking technology

accelerated the

research on

interactive tabletops

and the

development of

consumer products.

However, conventional setups involving keyboard and mouse remained the
prevalent setup, until two recent events triggered the evolution of touch-
devices for everyday tasks. First, Han [2005] published a tracking tech-
nique allowing practitioners to easily construct low-cost interactive table-
tops. Since no deep electrical engineering skills were required anymore,
building touch-based interfaces became feasible for everyone. The result
was not only a prospering do-it-yourself community, the feasible technology
also aroused the interest of many researchers. In 2006, the first Workshop
on Horizontal Interactive Human-Computer Systems (TABLETOP) pro-
vided a platform for tabletop researchers to exchange ideas and research
results. It eventually turned into an established international conference
on Interactive Tabletops and Surfaces (ITS) in 2009. Papers on interactive
tabletops are now being published on all major Human-Computer Inter-
action (HCI) conferences. Also, commercial tabletops, such as Microsoft
Surface1 or SMART Table2, have been released.

The release of the

Apple iPhone

established

multi-touch as a

default input

method on smart

phones.

The second event was the release of the Apple iPhone in 2007. The iPhone
is a phone and computing device with a multi-touch interface that lets users
directly interact with a graphical user interface (GUI) using their fingers.
From an interaction viewpoint, it represents a clear contrast to existing
smart phones of that time, which relied on physical keyboards and pen
or joystick input. Although touch-based smart phones have been released
years before (e.g., the IBM Simon in 1992), the iPhone can be considered
as the first touch-based phone that combines elaborate engineering with a
well-working user experience. In combination with an established brand, it
became the first successful touch phone and marked the commercial start-
ing point for multi-touch in everyday tasks. Since then, multi-touch is an
accepted input method, and many companies have released their own touch

1http://www.microsoft.com/surface
2http://smarttech.com/table

http://www.microsoft.com/surface
http://smarttech.com/table

4 1 Introduction

Figure 1.2: Interactive tabletops enable direct manipulation and collo-
cated collaborative work.

phones. This was also the starting point for the success of tablet computers
that were—until then—only niche products.

Interactive tabletops

provide a large

dynamic interactive

surface, a natural

input method with

low learning curve,

and a platform for

collocated

collaborative work.

Similar to tablet computers, interactive tabletops have the potential to re-
place traditional desktop computers for many tasks. They provide a large
interactive GUI, and since they can be approached from multiple sides, they
inherently afford collocated collaborative work (Fig. 1.2). Directly manipu-
lating objects with fingers rather than using an indirect input device, such
as a mouse, is a natural way of interaction and barely requires learning.
Also, instead of desktop computers, which are explicit computing devices
requiring their own dedicated place, a tabletop can be designed as an aes-
thetic piece of furniture that becomes an interactive surface in an ad hoc
manner. As an implicit computing device, it can be integrated into the ev-
eryday living and working environment of users. All underlying technology
is hidden from the user, which makes interactive tables more approachable
for persons who usually do not work with computers at all. Interactive
tabletops can be easily integrated into the users’ ecology of devices. For
example, instead of plugging a camera into a USB port and starting a photo
editing software, users might just put their smart phones on the surface and
“pour out” their digital photos onto the surface for presentation and shar-
ing. The GUI interface on the table can be modified in real-time and react
on external events.

Haptic feedback on

interactive tabletops

is limited.

However, in contrast to traditional computers, two issues impair the user
experience on interactive tabletops. First, purely touch-based surfaces only
provide the limited haptic feedback of touching a planar surface. Users
cannot feel the shape of on-screen objects, and they do not receive haptic

1.1 From Physical to Digital Controls 5

Figure 1.3: Input device for media navigation including two knobs and
five buttons. A jog wheel in the center is surrounded by a spring-loaded
knob that snaps back to its original position when released. Photo taken
by the author.

feedback when triggering actions. Lack of

general-purpose

controls limits

development of

productivity tasks.

Second, there is a lack of general-purpose
input tools. Current tabletop applications range from pure kiosk systems,
over music synthesizers [Jorda et al., 2007], games [Antle et al., 2011], edu-
cation, therapy applications [Giusti et al., 2011], to augmented laboratories
[Tabard et al., 2011], and visualizations of scientific data [Sultanum et al.,
2011]. Most of them employ specialized input techniques for their spe-
cific tasks. However, productivity applications, such as word processing,
spreadsheet analyses, or graphical design, are rare. Most tasks in these
applications require precise input of abstract parameters or extensive typ-
ing. For reasons of scalability, a small but efficient set of general-purpose
controls is required.

Goal: Haptic

general-purpose

controls on

interactive

tabletops.

The goal of this thesis is to introduce general-purpose controls that encour-
age the use in productivity tasks, and to bring haptic feedback known from
traditional physical controls, such as buttons, sliders, and knobs, back to
interactive tabletops.

1.1 From Physical to Digital Controls

Benefits of physical

controls: Strong

affordance, guide

users’ motions,

eyes-free interaction.

Physical controls are ubiquitous in our everyday life. We use buttons to
trigger all kinds of actions, e.g., to toggle light switches, to play the next
song on our music player, or to type the letters in a document. Knobs
provide continuous and discrete input, e.g., to set the audio volume in
a car, to step frame-by-frame through a video (Fig. 1.3), or to select a
program on a washing machine. Sliders allow us to set an absolute value in
a range, like the brightness of a lamp or the volume of a channel in an audio
mixer. Physical controls are the result of hundreds of years of iterations and
refinements, and all of them share the same benefits in terms of usability:
They provide strong affordances, they guide the users’ motions, and they
can be operated without looking. The latter is especially important when

6 1 Introduction

Figure 1.4: Screenshot of a fictional laser control application using stan-
dard GUI elements of Mac OS X 10.7. All GUI elements that are clickable
or draggable have a 3D appearance using subtle color gradients, highlights,
and shadows.

using controls while focussing on a different task, e.g., triggering the turn
signal while driving a car. In the absence of visual perception, users can
employ muscle memory and their full spectrum of motor skills. A crucial
reason why physical controls support eyes-free interaction so well is the
support of a rest state: Users can apply their hand to a control without
triggering it involuntarily. Accordingly, they can focus on their main task
and operate the control when needed without visually focussing on it.

GUI controls visually

mimic properties of

physical ones.

Since the introduction of GUIs in personal computers, designers tried to
transfer most of the physical benefits to virtual on-screen controls. Physical
affordances turned into visual ones: In modern desktop operating systems,
on-screen controls visually mimic their physical counterparts. For example,
active GUI widgets, such as buttons, checkboxes, or sliders, are designed
in a 3D look. Some graphical rotary knobs contain visual notches, afford-
ing rotation (Fig. 1.4). Although these affordances are “false” on desktop
applications—the controls cannot be pushed with fingers anymore—they
successfully support the metaphor that the mouse cursor represents a fin-
ger interacting with objects on a “desktop”. Nowadays, these affordances
gain more meaning in the context of touch devices.

On-screen controls

do not guide users’

motion, but

keyboard and mouse

still provide haptic

and auditive

feedback.

However, with the conventional desktop setup involving computer mouse
and keyboard, on-screen controls cannot guide the user’s motion anymore.
Although most controls impose software constraints (e.g., a scrollbar value
cannot be set outside its range), a mouse device can theoretically be moved
on a (infinitely large) planar surface and does not provide physical con-
straints that block the movement. Therefore, a user must monitor the
cursor’s trajectory on the screen when operating a virtual control. Nev-
ertheless, it should be mentioned that users still can rely on their haptic
sense when working with today’s desktop GUIs. The keyboard and mouse
buttons provide haptic feedback when being pushed; together with an im-
portant, albeit subtle, clicking sound. Every time a user clicks on a virtual
button using the mouse, the haptic and auditive experience is similar to
that of real pushbuttons.

1.1 From Physical to Digital Controls 7

Mouse provides rest

state: Users can

hover above

on-screen controls

without triggering

them.

If a computer mouse is involved, graphical buttons also provide a rest state:
Users can move the cursor onto a button, visually focus on a different task,
and click without looking when required. Just imagine a user fixating the
countdown of an online auction and clicking the “confirm bid” button in the
last second in order to buy a product for the best price. In these situations,
users rely on their haptic sense and on the fact that the hand is stable
when it rests on a physical device. Once the mouse cursor is placed on a
virtual control, the user can be sure that it stays there until he moves it
somewhere else. Some operating systems visually support this rest state
by highlighting the control that is currently positioned beneath the mouse
cursor.

Touch-based devices

allow to interact

with on-screen

objects directly

without external

input devices.

As mentioned above, touch screen devices are gaining much interest in
both industry and research. Rather than moving a mouse cursor first and
clicking, users can directly tap with a finger to trigger a virtual button.
These screens do not need any external input device, such as mouse or
keyboard, which makes them suitable for mobile devices. Furthermore, they
are appropriate for use in public spaces, e.g., in ticket machines, because the
touch detection technology can be secured behind glass. Bimanual input
and multi-touch gestures further enrich the interaction and allow users, e.g.,
to freely zoom and rotate a digital map.

A touch screen only

provides a limited

haptic experience.

However, touch devices only provide a limited haptic experience. Besides
the plain screen surface, users cannot feel on-screen controls when touching
them. A user does not experience a “click” feeling when tapping a virtual
button. Due to the large contact area of a finger, hitting tiny objects on
the screen is difficult, which is often referred to as the “fat finger problem”
[Mankoff et al., 2000; Siek et al., 2005]. The finger also occludes objects.
There are several approaches to increase touch accuracy, e.g., by averaging
the touch position of two fingers or by employing a virtual lens [Benko and
Wigdor, 2010]. However, these techniques also imply indirect input. Holz
and Baudisch [2010] show that a detection of the finger posture and a per-
user model can increase direct touch accuracy, but training a user model is
impractical in ad hoc usage scenarios.

Touch screens do

not provide a rest

state, and muscle

memory is barely

available.

When interacting with a touch screen, a user can barely employ muscle
memory and only exploits a small subset of the hand’s mechanical degrees
of freedom. Furthermore, as opposed to physical objects or traditional
GUIs, touch screens lack a rest state: By default, putting a finger down on
the screen triggers an input event. There is not a simple implementation
allowing users to rest their fingers on virtual controls and trigger them later
while focussing on different tasks. This is also confirmed by Benko and
Wigdor [2010], who declared the lack of a state that allows to preview an
action before triggering it as a main source for input error and frustration on
interactive surfaces. Yet, even if hovering above objects could be detected,
it would not support eyes-free input well, because hovering over a longer
period is exertive. To disambiguate a hand or finger resting on the surface
from an intended touch input, other input modalities can be employed, such
as double-tapping or, if technically available, a touch pressure threshold.

8 1 Introduction

However, this complicates the interaction, makes it less intuitive, and also
might demand per-user calibration.

Direct touch

interaction requires

visual focus. This

causes input errors,

drifting, and

disadvantages for

visually impaired

users.

Direct touch is an interaction technique that requires users to visually focus
on the controls they operate and not on the data they manipulate. Typing
with a virtual keyboard is slower and more error-prone than writing on a
conventional physical one [Barrett and Krueger, 1994]. Since users cannot
feel the keys, they occasionally have to look at the keyboard to realign their
hands after drifting. However, when looking at the keyboard, they lose the
visual focus on the text output and potentially miss events, such as typing
errors [Paek et al., 2010]. This lowers efficiency and limits the practicability
of touch screens for applications that require much, precise, or fast input,
such as most of our everyday productivity tasks. Besides the worse user
experience for most users, the need for visual attention means that visually
impaired users are considerably disadvantaged when using touch screens.
Audio feedback has proven useful to provide blind users access to touch-
based interfaces (e.g., [Kane et al., 2011]), but it can be disturbing in a
multi-user context.

1.2 Contributions

This thesis investigates how to improve haptic feedback on interactive table-
tops for productivity applications. We introduce a new class of physical
controls that combine the haptic qualities of conventional general-purpose
controls with the dynamic nature of graphical user interfaces. Specifically,
our contributions are as follows:

1.SLAP Widgets,

general-purpose

controls that

combine haptic

feedback with the

dynamic nature of

interactive tabletops

We address the issue of limited haptic feedback on tabletops by in-
troducing SLAP Widgets, a novel class of passive, tangible, general-
purpose tabletop controls that combine haptic feedback with dynamic
relabeling.

(a) We explain the design of SLAP Widgets and how they are used
to modify virtual objects on the surface.

(b) We describe a tracking algorithm that senses the position and
state of physical controls placed on the tabletop via passive
markers.

(c) We contribute a scalable software framework for developing ap-
plications on interactive tabletops that support direct mani-
pulation and ad hoc use of SLAP Widgets.

(d) We provide evidence that SLAP Widgets can outperform pure
on-screen controls in eyes-free tasks.

(e) We present a qualitative user study that reveals that the concept
of SLAP Widgets is intuitive and easy to learn.

(f) We present a study on typing that compares translucent physical
keyboards based on the SLAP Widgets concept with pure on-
screen and conventional keyboards.

1.2 Contributions 9

2. Madgets, physical

controls that

maintain

physical-virtual

consistency and

enable new

applications for

tabletop tangibles

SLAP Widgets cannot maintain the consistency between their physi-
cal and virtual states, which constraints their use in many productiv-
ity tasks. Therefore, we introduce Madgets, passive, magnetic widgets
that employ magnetic fields to change their physical alignment and
configuration.

(a) We present an interactive tabletop design that combines electro-
magnetic actuation, fiber optical tracking, and graphical output
in a compact design without the use of external cameras and
projectors.

(b) We introduce an electromagnetic actuation mechanism that al-
lows to move, align, and configure multi-element physical con-
trols on our tabletop.

(c) We explain a tracking algorithm that allows to detect objects
using low-resolution input and gradient markers.

(d) We describe novel applications for tangibles on tabletops that
make use of electromagnetic actuation.

3. Application of

electromagnetic

actuation to

simulate and

dynamically adapt

physical properties

of controls

Designing physical controls requires many iterations to tune specific
hardware parameters, and changing these parameters is barely pos-
sible after a control has been built. We show how electromagnetic
actuation supports prototyping and dynamic modification of physical
properties of tabletop controls.

(a) We contribute mechanisms to change physical effects in tangible
controls on the fly, such as friction, weight, spring resistance,
and the number of notches.

(b) We present studies that give evidence that these effects can be
created in a way such that user can reliably perceive them.

4. FingerFlux provides

haptic feedback

above tabletops

with minimal

equipment worn by

the user only.

Finally, we leave the scope of tangibles and show how haptic feedback
can be provided in cases where physical controls are difficult to apply.
We contribute FingerFlux, a novel output method that generates hap-
tic feedback above the surface requiring a minimum equipment worn
by the user only.

(a) We explain how electromagnetic fields can apply haptic sensa-
tions to fingers with attached permanent magnets.

(b) We prove that FingerFlux provides haptic feedback in the space
up to 35 mm above the surface.

(c) We show that FingerFlux can effectively reduce drifting when
operating on-screen buttons in an eyes-free fashion.

10 1 Introduction

1.3 Structure

The thesis is structured as follows:

• Chapter 2 gives an overview on interactive tabletops. It describes
the general concept and introduces input methods as well as track-
ing techniques. Alternative form factors and open research questions
are also discussed. Furthermore, we explain how to capture design
knowledge required to build interactive tabletops and applications.

• Chapter 3 introduces the concept of SLAP Widgets. It describes re-
lated work, our hardware design, and the underlying software frame-
work. It also presents a basic widget set and interaction techniques for
associating SLAP Widgets with virtual objects. Finally, the chapter
presents usage scenarios and user studies that evaluate the effective-
ness and the user experience of our controls.

• Chapter 4 explains Madgets and shows how to solve inconsistencies
between the physical state of controls and their inner virtual state. It
demonstrates how to actuate multi-element controls on tabletops us-
ing electromagnetic actuation. It also explains our specific hardware
and software design. Finally, the chapter shows how to transfer our
actuation technique to novel tangible applications.

• Chapter 5 demonstrates how to apply electromagnetic actuation to
simulate physical effects in tangible controls, such as perceived weight,
friction, spring resistance, and dynamic notches. We describe mea-
surements and proof of concept studies.

• Chapter 6 introduces the FingerFlux concept. It explains how electro-
magnetic fields can provide haptic feedback above the surface using
a permanent magnet attached to the user’s fingertip. We present
various applications and report on two user studies that demonstrate
the capabilities of this method.

• Chapter 7 concludes the thesis. We summarize our contributions and
provide an outlook on future work.

11

Chapter 2

Interactive Tabletops

Before we address the issue of haptic feedback, we give a brief introduction
to interactive tabletops. We describe the underlying concept and its inher-
ent challenges. Furthermore, we discuss optical tracking methods that are
used in many of today’s tabletops. We will also provide a brief overview
on established input methods and look at non-horizontal form factors. Fi-
nally, we will describe how to capture knowledge of designing interactive
tabletops.

An interactive

tabletop is a large

horizontal display

supporting input via

fingers, hands, styli,

or physical objects.

An interactive tabletop is a large horizontal display that is sensitive to
direct input via fingers, hands, styli, or physical objects placed on the
surface. The surface is usually positioned in a height that is convenient for
either standing or sitting at the table. The input and output concept of
interactive tabletops considerably differs from that of conventional desktop
computers involving a vertical screen, a mouse, and a keyboard. The key
characteristics of interactive tabletops are:

• Direct input and

output occur on the

same surface. Users

directly interact

with virtual or

physical objects.

Direct manipulation: The entire surface is interactive. Input and
output are performed in the same area. Users can directly interact
with virtual or physical objects on the surface using their fingers. For
example, virtual buttons are triggered by tapping on them. Direct
manipulation [Hutchins et al., 1985] is a natural input technique that
is easy to comprehend with a low learning curve. Finger input has
also proven to be faster for target selection tasks than mouse input
[Kin et al., 2009].

• Interface is

accessible from

multiple sides.

Omnidirectional interface: Following the natural affordance of tables,
users can approach interactive tabletops from multiple sides and in-
teract with digital objects from all directions.

• Interactive tables

are suitable for

collocated

collaborative work.

Collocated collaboration: Interactive tabletops are suitable for collo-
cated collaborative work. The interactive surface can be surrounded
by multiple users. As objects are directly manipulated, collaborators
are aware of each other’s actions. Also, social protocols are inherently

12 2 Interactive Tabletops

in place, e.g., for distributing the limited interactive space among
users.

•Underlying

technology is hidden

from the user.

Calm technology: In contrast to conventional desktop computers in-
volving keyboard and mouse, which are explicit computing devices,
interactive tabletops are pieces of furniture with an implicit capabil-
ity to interact with digital content. Following the spirit of Ubiquitous
Computing [Weiser, 1991], the underlying technology is hidden.

Example: Photo

sorting

A typical interactive tabletop is shown in Fig. 1.2 on page 4. In the shown
“photo sorting” application, multiple users can simultaneously drag, rotate,
and scale virtual photos using their fingers. Besides the active surface, no
further input devices are visible.

The nature of interactive tabletops imposes many design challenges on ap-
plication developers:

•Interface elements

on a tabletop must

be readable and

operable from

multiple sides.

Rotatability: Since the table can be operated from different sides, in-
terface elements must be readable and operable from all directions
that users can approach the surface from. That is, all elements must
be rotatable, either manually or (semi-)automatically (e.g., [Dragice-
vic and Shi, 2009]). This also implies that desktop GUIs with their
fixed orthogonal alignment of objects cannot be simply transferred to
interactive tabletops.

•Simultaneous input

from multiple users

must be

disambiguated.

Global states are

inappropriate.

Multi-focus input: Unlike desktop GUIs, interactive applications do
not have a single focus policy. Multiple users can interact with mul-
tiple fingers on the same or different objects simultaneously. As long
as objects are only manipulated by direct touch (e.g., photo sorting),
this is not an issue. However, if on-screen controls are used to change
other objects, e.g., when using a virtual knob to change the bright-
ness of a photo, or an on-screen keyboard to enter text, a policy must
be implemented that defines concurrent associations between input
controls and target objects. Furthermore, a designer cannot assume
global application modes, because multiple users might perform dif-
ferent tasks.

•Direct touch input

lacks precision.

Input precision: When using finger-based interaction, precision is an
issue in cases where the relatively large contact area of a finger tip
must be mapped to a single point of action, e.g., when pushing a
button.

•Haptic feedback is

limited when

interacting with

virtual objects.

Haptic feedback: As mentioned before, the haptic feedback provided
by interactive tabletops is usually limited to the sensation of a pla-
nar surface. Virtual elements cannot be felt, and no “rest state” is
available. This makes eyes-free interaction difficult.

•Tasks demanding

personal input or

output require user

identification.

Personalization and privacy: Thanks to the input awareness, inter-
active tabletops enable a democratic interaction in which all users
are equitable. However, there are applications where privacy is nec-
essary. For example, imagine users entering passwords and accessing

2.1 Optical Tracking 13

personal information. In this situation, they require an exclusive out-
put method, which hides their data from other users, and an exclusive
input technique to avoid others to manipulate their data. The latter
necessitates user identification for all input events.

• Users’ ecology of

everyday objects

must be regarded.

Ecology of objects: Besides input devices, users may also put everyday
objects like coffee mugs, keys, or papers on the table that are not
intended to trigger input. An interactive tabletop must regard the
users’ ecology of objects.

This thesis focusses on the issues of haptic feedback, input precision, and
multi-focus input, with the ultimate goal to provide general-purpose con-
trols for productivity tasks on interactive tabletops.

2.1 Optical Tracking

Precise detection of fingers touching the surface or objects placed on top
of it is essential for a fluent user experience. In the following, we describe
the most relevant optical tracking methods that have been implemented on
interactive surfaces. Other tracking technologies, such as resistance-based
or capacitive sensing, are not described, but we refer to Schöning et al.
[2010] for an overview on those methods.

2.1.1 Frustrated Total Internal Reflection (FTIR)

Frustrated Total Internal Reflection, or FTIR, was originally patented by
White [1965] for use in fingerprint scanners. Han [2005] applied this tech-
nique for touch detection on interactive tabletops.

Snell’s Law

describes refraction

and total reflection

of a light ray

passing through the

intersection of two

transparent

mediums.

If a light ray passes through the intersection of two transparent mediums,
it is refracted or reflected according to Snell’s Law (Fig. 2.1):

sin θ1

sin θ2
=
v1

v2
=
n2

n1

That is, the ratio between the incident angle θ1 and exiting angle θ2 equals
the ratio of phase velocities of the two materials and the inverse ratio of
their indices of refraction.

Setting θ2 = 90◦ (sin(θ2) = 1) yields the critical angle

θc = arcsin

(
n2

n1

)
.

Light rays exceeding

a critical angle are

totally reflected.

Note that the equation is only solvable if n2 < n1 (assuming n1, n2 > 0).
At the critical angle, the incident ray is orthogonally reflected alongside the
intersection. If the incident angle is smaller (θ1 < θc), the ray is refracted

14 2 Interactive Tabletops

air

acrylic

Figure 2.1: Snell’s Law. The images show the dependence of exiting from
incident angles of rays passing the intersection between two transparent
materials. At the critical angle θc, rays are reflected in parallel (green).
Below θc rays are refracted (blue). All light rays with an angle beyond θc are
totally reflected (red). The right image shows example light rays assuming
an index of refraction of 1.0 for air and 1.5 for acrylic, respectively.

projector
camera

IR LEDs

compliant

acrylic

diffusor

IR pass filter

surface

computer

Figure 2.2: Typical FTIR tracking setup. FTIR allows to detect binary
touches. Objects hovering above the surface do not reflect (much) IR light
to the camera.

into the other material. If it is larger than the critical angle (θ1 > θc), the
ray is reflected, a total internal reflection within the material occurs.

FTIR tracking:

Infrared light

bouncing within the

surface is scattered

on surface touch.

Based on this effect, Han proposes to build a touch-sensitive tabletop as
shown in Fig. 2.2. The tabletop mainly consists of a transparent acrylic
plate, a thin compliant surface placed above, and a thin diffusor layer on
the very top. The acrylic is edge-lit by infrared (IR) LEDs surrounding
the surface. The light, which is invisible to the user, enters the acrylic
and, due to total internal reflection at steep angles, “bounces” inside the

2.1 Optical Tracking 15

Figure 2.3: Sample raw camera images of FTIR and DI tracking. The
user touches the surface with five fingers, and a visual marker is placed on
the tabletop. Left: When using FTIR, finger touches are distinctly visible.
Everything else is nearly invisible. The minor appearance of the marker
results from scattered light inside the table. Right: The camera image
of DI captures the visual marker, finger touches, and the hovering palm.
However, differentiating touch from minor hover is difficult.

plate without leaving it. However, if a user touches the surface, the light
“frustrates” at the contact area, leaves the acrylic, and hits the finger. The
fingertip then diffusively reflects the IR light downwards into the table.

Computer interprets

spots in camera

image as input

events.

A camera beneath the surface captures these events as bright spots in the
camera image. An algorithm then interprets these spots as input and up-
dates the GUI accordingly. In section 3.5, we will explain the underlying
tracking algorithms in detail.

Compliant surface

improves detection

quality.

This technique only works robustly as long as the fingers are slightly wet,
due to natural oils or sweat. In order to detect touches from dry fingers or
physical objects, a compliant layer, usually made of silicone, is added (see
Han [2005] for are detailed explanation). The quality of this layer is crucial
for the quality of touch detection. For example, if the material is too sticky,
spots remain even if the user has released his finger from the surface. In
our prototypes, foamed silicone yielded the best results.

Projector displays

GUIs. Filters avoid

interferences

between infrared

and visible light.

A projector displays the GUI on a diffusor layer placed on top of the sur-
face. The projector can be either placed above (top projection) or inside
(back projection) the table, while the latter is preferable to avoid shadows
and occlusion issues. To avoid interferences between the touch detection
mechanism and the GUI, an IR pass filter is attached to the camera, and,
optionally, an IR block filter to the projector. This makes sure that the
camera only sees spots caused by surface contact.

+ Binary touches

+ Inexpensive setup

+ Easy to build

The main advantage of FTIR is that it produces binary touch events for
fingers, hands, or any other objects that exert enough pressure onto the
surface. If an object is only slightly hovering above the surface, it is nearly
invisible to the camera (Fig. 2.3, left). Accordingly, FTIR generates a good

16 2 Interactive Tabletops

projector
IR LEDs

acrylic
diffusor

camera
IR pass filter

computer

Figure 2.4: Typical DI tracking setup. DI allows to detect finger touches
as well as objects lying on or hovering above the surface.

signal-to-noise ratio. Simple Computer Vision algorithms can be employed
to convert a camera frame to a list of input events. To a certain degree,
the brightness of spot can also be mapped to the applied pressure on the
surface.

– No detection of

visual markers

FTIR is optimal for finger touch tracking. It is also relatively inexpensive
and easy to build, which is one reason for its success in the recent years. On
the downside, FTIR can only detect physical pressure points. Recognizing
visual patterns that are printed on paper is not possible.

FTIR can also be

detected with a

camera above the

table.

As shown by Echtler et al. [2009], FTIR can also be implemented with a
camera positioned above the table, as so-called Inverted FTIR. This allows
to replace the projector with an LCD panel and makes the space beneath
the surface available, e.g., for a user’s legs when sitting at the table.

2.1.2 Diffused Illumination (DI)

DI tracking: LEDs

inside the table emit

IR light that is

reflected by objects

on and above the

surface.

Diffused Illumination (DI), as introduced by Matsushita and Rekimoto
[1997], employs a simpler technical construction (Fig. 2.4). IR LEDs are
placed inside the table and emit light towards the surface. The light passes
the transparent plate and is reflected by objects near the surface. A camera
in the table then detects these reflections. Again, a projector renders the
GUI onto a diffusor layer.

The main benefit of this technique is that it allows to detect visual markers.
Attaching markers to physical objects allows to sense their position and

2.1 Optical Tracking 17

IR LEDs

compliant

acrylic

diffusor

surface

particle

Figure 2.5: Principle of DSI tracking. Particles inside the acrylic diffu-
sively reflect injected IR light.

orientation on the surface (e.g., Jorda et al. [2007]). + Detection of

visual markers

+ Inexpensive setup

Also, hovering of hands
or objects can be detected and interpreted as further input. Note though
that the more distant the reflections are from the surface, the stronger a
diffusor layer blurs them. That is, hovering can only be detected within
a limited range above the surface. A switchable diffusor, as presented by
Izadi et al. [2008], can solve this issue.

– Worse

signal-to-noise

ratio

– Uniform light

distribution is

difficult to achieve

DI is optimal for detecting visual markers on the surface. It also does not
require a compliant layer. However, touch events are more difficult to track
and demand a sophisticated visual differentiation between fingers close to
the surface and those touching it (Fig. 2.3, right). Also, the exact construc-
tion of a DI setup is tricky. Specular reflections of IR light at the surface
illuminate the components inside the table (projector, cables, etc.) that are
then visible in the camera image by back reflection via the surface. Thus,
the inside of the table should be isolated with light absorbing materials like
velour. This, however, hampers a uniform light distribution on the surface
via diffuse reflections. Usually, reflection artifacts are subtracted from the
signal by acquiring a background frame beforehand, but DI generally causes
a worse signal-to-noise ratio than FTIR when detecting finger touches only.

2.1.3 Diffused Surface Illumination (DSI)

DSI tracking: FTIR

setup with particles

inside acrylic. Part

of the light is

diffusively scattered

like in a DI setup.

Diffused Surface Illumination (DSI) is a combination of FTIR and DI. The
setup equals an FTIR setup, but the acrylic layer contains microscopic
particles (Fig. 2.5). Some of the IR light rays that are fed into the surface
bounce due to total internal reflection, some hit the microscopic particles
and are diffusively scattered into all directions. DSI does not require IR
light sources beneath the table surface. Note though that the particles
scatter a substantial portion of the IR light into the table, causing a worse
signal-to-noise ratio than FTIR.

18 2 Interactive Tabletops

Figure 2.6: Liquid displacement tracking. Finger touches displace light
absorbing ink and expose white spots to a camera. Image courtesy of
Hilliges et al. [2008].

2.1.4 Liquid Displacement

Liquid displacement

tracking: Touching

the surface displaces

light absorbing ink

and reflects light at

contact area.

Hilliges et al. [2008] introduce binary touch detection by sensing liquid dis-
placements. The surface consists of black ink liquid on top of a transparent
surface. White latex on top forms a pouch and encases the black ink so
that the user touches the latex when interacting with the surface. As shown
in Fig. 2.6, fluorescent lamps emit light onto the surface, while a camera
in the table captures all reflections from the surface. Without any finger
contacts, the camera only sees a black image. However, if a user touches the
surface, the liquid is pushed aside, and the white latex touches the glass at
the contact point. The latex reflects the light into the camera and creates
a noticeable touch.+ Very good

signal-to-noise ratio

– Difficult

construction

– Only works for

horizontal surfaces

The technique provides a very good signal-to-noise ratio. On the downside,
hovering cannot be detected, and top projection is required to display a
GUI. Also, the construction is not simple and only works for horizontal,
non-tilted surfaces.

2.1.5 Thin Form Factor Tracking

A common drawback of all previous approaches is the large volume of the
device due to the induced distance of the camera and the projector. Hodges
et al. [2007] addressed this issue with ThinSight. They mounted an array of

2.1 Optical Tracking 19

Figure 2.7: FiberBoard reduces the form factor of FTIR and DI tracking solutions using fiber
optical cables. Image courtesy of Jackson et al. [2009].

Photodiodes instead

of a camera allow

for a thinner form

factor but require

higher engineering

effort.

infrared emitters and detectors behind the backlighting of an LCD panel.
Similarly to DI, the IR LEDs emit IR light that is reflected by objects close
to the surface. IR photodiodes detect these reflections. Although the LCD
panel considerably attenuates IR light, the signal is still strong enough to
detect finger touches and markers. FLATIR is a similar system that uses
an FTIR surface instead of IR emitters [Hofer et al., 2009]. On the one
hand, these techniques allow thin form factors; e.g., these devices could
also be placed on a wall. On the other hand, the engineering efforts and
costs for achieving a reasonable resolution are relatively high.

FiberBoard uses

fiber optics to

reduce volume

beneath tabletop for

FTIR and DI setup.

FiberBoard by Jackson et al. [2009] combines FTIR or DI with an array
of fiber optics mounted behind an LCD panel. The fiber optics divert the
reflections from the surface to a nearby camera (Fig. 2.7) yielding a table
thickness of only 8 cm. This method effectively reduces the thickness of an
interactive tabletop but also involves a difficult construction process that
is only feasible for a relatively low resolution. The paper placed 40 × 30
fiber optical cables behind a 19” LCD screen achieves a resolution of 2.63
dpi. Spots are detected after bicubic upscaling the low resolution camera
image. According to the authors, this low resolution grid is sufficient to hit
targets with sub-finger-width. We will look at this tracking technology in
chapter 4 in more detail.

Sensor-in-pixel

displays integrate

pixel-sized emitters

and sensors into the

display for touch

detection.

A promising upcoming thin form factor tracking technology are sensor-
in-pixel (SIP) displays1, which will be part of the second version of the
commercial interactive tabletop Microsoft Surface. These displays contain
pixel-sized infrared emitters and sensors embedded into a high resolution
RGB LCD matrix. The underlying principle equals that of ThinSight but
is considerably smaller. The about 10 cm thick display can even scan text
on paper sheet.

1This technology is also referred to as Microsoft PixelSenseTM.

20 2 Interactive Tabletops

projector
depth camera

diffusor computer

Figure 2.8: Tracking interactions on and above tabletops using depth cameras. Left: Setup
involving top projection. Right: Example output of a depth camera placed above a table. Pixel
intensity encodes depth.

2.1.6 Depth Cameras

Depth cameras

allow to track hands

and objects above

the surface.

However, exact

detection of surface

touches is difficult.

Wilson demonstrated that depth cameras, such as Microsoft Kinect2, can
also be used as touch detectors on interactive surfaces [Wilson, 2010]. The
Kinect camera emits a random dot pattern via an IR laser projector. An in-
ternal IR camera generates a depth image by reprojecting local 2D patterns
using the known camera intrinsics and extrinsics. A depth camera placed
above a tabletop delivers a 2D depth map including the surface plane and all
objects in between (Fig. 2.8). With simple thresholding against the surface,
objects near the surface can be extracted and converted into touch events.
The major benefit of this method is that it can also track interactions above
the surface (e.g., [Hilliges et al., 2009; Marquardt et al., 2011]) or touches on
non-planar surfaces. On the downside, the detection using depth cameras
is not as accurate as previously mentioned approaches. Besides technical
limitations like sensor noise and resolution, in the aforementioned setup,
the camera only captures the backside of fingers and objects. This makes
differentiation between hover and touch difficult.

2.1.7 Digital Pens

Digital pens retrieve

their position by

scanning imprinted

micro patterns.

They allow precise

hand-drawn input.

An Anoto Pen is a commercial digital stylus allowing precise real-time
input on interactive surfaces3. It is based on a micro random dot pattern
printed on a sheet. The dots are so small that they can barely be noticed by
users. The stylus contains a small camera beneath the tip that captures the
local imprinted pattern when the tip touches the surface. The pattern is
designed so that the local pattern can be mapped to a unique position. The
stylus allows for both, actual writing with ink as well as digital capturing
the input and streaming it in real-time. Digital pens like the Anoto Pen

2http://www.xbox.com/en-US/kinect
3http://www.anoto.com/

http://www.xbox.com/en-US/kinect
http://www.anoto.com/

2.2 Input Techniques 21

are especially helpful for precise hand-drawn input like annotations or note
taking. We refer to Steimle [2012] for an overview.

2.1.8 Combining Techniques

Visual tracking

techniques can be

combined. Filters

avoid interferences.

Most visual tracking techniques can be combined. For example, if exact
binary touches and recognition of visual patterns are required, FTIR and DI
can be used simultaneously by employing different wavelengths and specific
band pass filters for each technique. FTIR and Anoto pens can be combined
by printing the dot pattern onto the diffusor [Leitner et al., 2009]. As long
as tracking signals do not interfere, combining a depth camera with an
FTIR or DI technique is also imaginable.

2.2 Input Techniques

Using the previously mentioned tracking methods, interactive tabletops
can provide a wide spectrum of input methods, from simple tapping, over
complex gestures, to interaction with physical objects. We discuss the most
common ones in this section.

2.2.1 Triggering and Arranging Virtual Objects

Virtual buttons are

activated by tapping

them.

The simplest way of interacting with a tabletop is activating on-screen
objects by just tapping them. For example, virtual buttons, as they are
wide spread on touch screens in public spaces, are triggered by tapping
them with a finger.

Nearly all multi-touch enabled tabletops provide the free arrangement of
virtual rectangular objects projected on the screen. This technique is often
referred to as “photo sorting”, because it is a popular demonstration for
direct manipulation. Virtual objects, such as images, videos, or text boxes,
are projected on the screen. They can be overlapped and virtually stacked.

Virtual objects can typically be arranged with the following basic opera-
tions:

1. Basic operations

include bringing an

object to the front

by tapping, dragging

it with a finger, or

transforming it with

multiple fingers.

Bring to front : Similar to clicking a window in a desktop GUI, tapping
an object brings it to the front.

2. Translation: Putting a finger onto an object at position p, moving it
to a new position p′, and releasing it again, translates the object by
∆p = p′ − p according to the finger’s trajectory (Fig. 2.9, left).

3. Fixed aspect ratio transform: Dragging two points of an object allows
to translate, rotate, or uniformly scale it. This operation is prevalent

22 2 Interactive Tabletops

Figure 2.9: Common direct manipulation techniques. Left: Translation with single finger.
Right: Translation, rotation, and scale using two fingers.

because it maintains the aspect ratio of objects, which is helpful when
scaling photos or maps.

By default, this is implemented by computing an affine transform for
the object so that start and end point of the dragging trajectories map
to the same point on the object (Fig. 2.9, right). Thus, the matrix
representing the affine transform in extended coordinates4 reads

M :=

 s · cos(α) −s · sin(α) tx
s · sin(α) s · cos(α) ty

0 0 1

 =

 a −b c
b a d
0 0 1


where s is uniform scale factor for x and y dimension, α is the angle
of rotation, and t = (tx ty)

T is the 2D translation.

Assuming that p, q are the starting positions of both trajectories and
p′, q′ are new positions, both in extended coordinates, the affine ma-
trix is computed by solving the linear system

p′ = M · p
∧ q′ = M · q.

Aspect ratio

preserving transform

is defined by two

finger draggings.

Least-squares fit is

used for dragging

with more than two

fingers.

Given only four unknowns (a, b, c, d), the affine transform M can
be uniquely determined by two different start and end points. Note
that a general 2D affine transform matrix contains six parameters,
but we exclude non-uniform scaling and shearing in this operation,
which removes two degrees of freedom.

If more than two fingers are used, the linear system is overdetermined
and can be solved using a least-squares fit. Let pi be the starting and
p′i be the ending points of n trajectories, with i ∈ {0, 1, ..., n−1}. We
then find M by solving

n−1∑
i=0

∥∥p′i −M · pi∥∥2 → min .

4Extended coordinates include an additional component for each vector, where 1 in-
dicates a point and 0 a direction. They allow to write affine transforms as matrices with
one dimension higher than their contained linear map.

2.2 Input Techniques 23

Use of fingertip

input only limits

expressiveness of

hand. Alternative

approaches employ

full hand shape as

input.

These basic operations are both easy to learn and easy to implement.
Nearly all multi-touch-based mobile devices support them. However, the
restriction to fingertip contact as only input considerably limits the expres-
siveness of the hand. ShapeTouch by Cao et al. [2008] addresses this issue.
Instead of converting spots to events consisting of 2D position and radius,
ShapeTouch interprets the entire contact shape as input and, e.g., allows
to use the palm or thenar for input. The authors introduce a virtual force
metaphor that maps the size of the contact shape to force exerted on ob-
jects. Using this metaphor, they created a pseudo 3D model that allows to
stack virtual objects or, e.g., to peel an object back to insert another one
beneath it. Hilliges et al. [2009] employ a 3D physics simulation to enable
interactions with 3D objects rendered on the surface. Users perform input
via gestures above the surface that are projected down to the tabletop. For
example, 3D objects can be grasped and moved via a pinch gesture. A
depth camera captures all interactions in the space above the table.

2.2.2 Drawing and Gestures

Interactive tabletop

is ideal for graphical

drawing tasks.

An interactive tabletop is an ideal platform for drawing digital images,
handwriting texts, or annotating documents using fingers or styli. This
kind of input is natural and must not be learned, because many real-world
analogies exist.

A major challenge of interaction beyond direct manipulation of objects is
the execution of actions. For example, imagine a function for deleting an
image object. Dragging objects to a dedicated deletion area, like a “trash
bin”, or using menu bars is not an option, because it might be out of reach
for some users. Multiple trash bins waste space on the surface, just like
attaching a delete icon to each image, which also impairs the visual design.
Gestures have been proven useful to trigger actions on interactive tabletops.

Gestures are helpful

to trigger actions

without the need for

icons or menus.

A gesture is a sequence of input events on a tabletop that is mapped to
a semantic meaning. In our example, an image could be deleted by just
striking it out, or more formally, by creating a dragging trajectory that
can be segmented into lines that are alternatively aligned into opposite
directions (Fig. 2.10, left). Gestures can be designed within a continuum
from abstract mappings, e.g., double-tap to copy object, down to those
with a geometric meaning, such as drawing a shape around objects to select
them. A common gesture that is implemented in many demonstrations Example: flicking

for moving objects

across long distance

is
flicking : Quickly dragging an object and releasing it without decelerating,
gives the object a certain amount of inertia; it keeps moving until it is
stopped by virtual friction (Fig. 2.10, right). This is helpful to move virtual
objects across large distances. Gesture input is not limited to the planar
surface but has also been implemented within the space above the surface
[Hilliges et al., 2009].

A common challenge when using gestures is the disambiguation of inputs.
A gesture can only be recognized as such after the input has been per-

24 2 Interactive Tabletops

Figure 2.10: Examples for gestures on the surface. Left: Striking out an object. Right: Flicking
an object. Continuous red lines represent touch trajectories. Dashed lines are projected finger
positions after releasing the table. Red dots denote constant time steps and illustrate local
velocity.

formed.Challenges:

disambiguation

between gestures

and direct

manipulation,

lack of visibility

Until the input is terminated, the system can, e.g., not differentiate
whether a user wants to quickly move an object or whether she is striking
it out for deletion (cf. Fig. 2.10, left, again). It is not predictable whether
an input belongs to a gesture or direct manipulation, an issue which can
only be solved using (quasi-)modes. Also, gestures are invisible and must
be learned by the users.

There is a whole body of research dealing with gesture input on interactive
tabletops. We refer to Wobbrock et al. [2009] for an overview on related
work and an exploration of tabletop gestures. In section 3.6.2.4, we will
describe the implementation of a 2D gesture detection engine.

2.2.3 Tangible User Interfaces

In their seminal paper about Graspable User Interfaces, Fitzmaurice et al.
[1995] propose to interact with digital data tabletops using physical objects.
They introduce a first hardware prototype involving a back projected dis-
play and cubes that are tracked via an Ascension Flock of Birds magnetic
tracking device. The authors present a drawing application, GraspDraw,
that allows users to create and manipulate simple shapes using physical
objects. Instead of using virtual GUI menus, users employed a physical
gesture to select a drawing tool; they had to “dunk a brick in a compart-
ment in [a] tray to select a particular tool” [Fitzmaurice et al., 1995, p. 446].
This paper marks the birth of the so-called Tangible User Interfaces [Ishii
and Ullmer, 1997].

A Tangible User Interface (TUI), short tangible, is a physical object that
represents and manipulates digital data [Ishii, 2008]. An early example is

2.2 Input Techniques 25

Figure 2.11: Early projects involving Tangible User Interfaces on inter-
active tabletops. Left: Illuminating Light provides tangibles that represent
optical elements, such as light sources and lenses. Users can arrange them
on the tabletop to conduct optical simulations. Right: Urp is an urban
planning application. Tangibles represent buildings that can be aligned on
the surface. Digital simulations of shadow, wind, and reflections enrich the
urban model. Image courtesy of Underkoffler and Ishii [1998, 1999].

Illuminating Light A tangible is a

physical object

representing and

manipulating digital

data.

, which allows users to simulate optical effects for ed-
ucational purposes [Underkoffler and Ishii, 1998]. Users can put physical
objects representing optical artifacts on a table, such as a laser light source,
a mirror, or a lens. The application then simulates a ray cast in the 2D
plane of the table, starting from the light sources passing through all opti-
cal tangibles (Fig. 2.11, left). In a similar fashion, Urp allows architects to
plan the layout of buildings and to investigate their environmental effects
[Underkoffler and Ishii, 1999]. Users can place wooden models of buildings
on an interactive table. A projector then renders, for example, the cast
shadow for that 3D model according to a variable sun position (Fig. 2.11,
right). This enables architects to physically assemble the layout of a city
and check at which time of day a certain region, e.g, a park, receives sun-
light. The same application can also simulate wind or the reflection of sun
due to glass windows. Urp also provides some physical objects to perform
measurements, such as the distance between two points.

Tangibles give data

a physical form and

enable intuitive

haptic interaction.

Tangibles give virtual data a physical form and enable direct physical mani-
pulation. In contrast to touch interaction with GUIs, they provide rich
haptic feedback and allow users to employ their full spectrum of haptic
skills:

“Tangible User Interfaces (TUIs) aim to take advantage of these haptic in-
teraction skills, which is a significantly different approach from GUI. The
key idea of TUIs is to give physical forms to digital information. The phy-
sical forms serve as both representations and controls for their digital coun-
terparts. TUI makes digital information directly manipulatable with our
hands, and perceptible through our peripheral senses by physically embody-
ing it.”

[Ishii, 2008, p. xvi]

26 2 Interactive Tabletops

Challenge: Maintain

physical-visual

consistency of

tangibles

Muscle memory is available, and objects can even be controlled eyes-free.
A particular design challenge is to maintain the illusion that the physical
object and the projected virtual data belong to the same object, i.e., to
maintain the visual-physical consistency of all tangibles:

“The success of a TUI often relies on a balance and strong perceptual cou-
pling between the tangible and intangible representations. It is critical
that both tangible and intangible representations be perceptually coupled
to achieve a seamless interface that actively mediates interaction with the
underlying digital information, and appropriately blurs the boundary be-
tween physical and digital. Coincidence of input and output spaces and
realtime response are important requirements to accomplish this goal.”

[Ishii, 2008, p. xvii–xviii]

For example, in the Urp project, the rendering of shadows must be consis-
tent with the positions of the physical objects. Otherwise, the illusion that
the physical object and the visual projection belong to the same tangible
breaks down.

Interactive tabletop

is a suitable

platform for tangible

interaction.

Interactive tabletops are a well suited platform to maintain physical-visual
consistency of tangibles: The positions and orientations of physical objects
on the surface can be easily tracked via attached visual markers, e.g., using
DI. The projector or display of the table can update the visual representa-
tion accordingly. However, real-time tracking and updates of the projection
are crucial.

In the following chapters, Tangible User Interfaces will play a crucial role
for providing haptic feedback on interface tabletops.

2.3 Non-Horizontal Surfaces

BendDesk is a

non-horizontal,

curved multi-touch

desk that allows

users to sit at the

device.

Besides horizontal tabletops, interactive surfaces using other angles and
shapes have been constructed. We created BendDesk, a curved multi-touch
table [Weiss et al., 2010c]. It was envisioned as an interactive desk that
is entirely touch-based and does not require conventional input devices,
such as keyboards and mice. It merges a vertical and horizontal interactive
surface with a curve (Fig. 2.12), using FTIR tracking on all surfaces. A
major feature of this system is that it mimics the ergonomics of a regular
work place. By using short throw projectors with aspheric mirrors and
cameras at steep angles, users can sit at the table and reach the entire
surface without occluding the projection or camera. While the underlying
technology is similar to conventional table setups, special care has to be
taken to compensate for the substantial geometric distortion induced by
the overlapping projectors and cameras. Curve is a similar system with a
vertical surface that is slightly tilted backwards [Wimmer et al., 2010].

FLUX is a tiltable

multi-touch table.

FLUX is a tiltable table by Leitner et al. [2009] that can be transformed
from a collaborative horizontal surface, over a single user tilted drafting

2.4 Capturing Design Knowledge 27

Figure 2.12: BendDesk is a curved multi-touch desk. Two short-throw
projectors generate the graphical output. Three cameras capture touches
on the surface. Image adopted from [Weiss et al., 2010c].

table, to a vertical presentation surface. It embeds a mirror into the con-
struction beneath the tabletop to provide leg space.

Multi-touch input is

also possible on

spheres using DI.

Also pure organic shapes have been implemented. Benko et al. [2008] in-
troduced an interactive multi-touch enabled sphere. It is based on DI and
uses a wide angle lens for projection and touch detection. A cold mirror
makes sure that both IR lights and camera share the same optical path.

2.4 Capturing Design Knowledge

Capturing tabletop

design knowledge

across disciplines

avoids repetition of

common mistakes.

Constructing interactive tabletops and developing applications for them
is tricky and requires many iterations if started from scratch. Capturing
design knowledge and experience into a form that can be efficiently read
and extended, can help researchers, engineers, and designers to access the
field of interactive tabletops, prevent them from “reinventing the wheel”,
and avoid repetition of common beginner’s mistakes.

Although the research field is relatively young, there has already been pub-
lications that capture design knowledge. Scott et al. [2003] present a set of
eight design guidelines for collocated collaboration on interactive tabletops:

1. Guidelines provide

general advice for

designing systems

and interaction

techniques.

Support Interpersonal Interaction

2. Support Fluid Transitions between Activities

3. Support Transitions between Personal and Group Work

4. Support Transitions between Tabletop Collaboration and External
Work

28 2 Interactive Tabletops

5. Support the Use of Physical Objects

6. Provide Shared Access to Physical and Digital Objects

7. Consideration for the Appropriate Arrangements of Users

8. Support Simultaneous User Actions

Taxonomies

categorize existing

systems and input

techniques. They

help to detect“blank

spots” in a field.

The paper, which is targeted on researchers, backs up these guidelines with
examples and various references to research papers. Wallace and Scott
[2008] describe contextual factors, such as social and cultural, activity,
temporal, ecological, and motivational factors, and how they influence the
design of the software interface, physical form, and connectedness. Another
way to capture design knowledge are taxonomies, which provide a space to
categorize existing systems and input technologies. Grossman and Wigdor
[2007] introduced a taxonomy for 3D interaction on tabletops.

Drawback of

guidelines and

taxonomies: no

concrete directions,

and limitation to

certain target

groups.

Guidelines provide general abstract advice for designing systems and inter-
action techniques, while taxonomy gives an overview on a field and helps
to find unexplored “blank spots”. However, a common drawback of both
approaches is that they do not provide concrete directions for specific prob-
lems that occur in a design process. They are also often limited to a certain
target group, which hinders a knowledge exchange between designers, prac-
titioners, and researchers.

HCI design patterns

capture solutions for

recurring problems

in HCI.

We addressed this issue by developing an HCI design pattern language for
interactive tabletops. An HCI design pattern is a document that captures
the solution for a recurring problem in HCI. A pattern language is a set of
interconnected patterns. Based on the concepts introduced by Alexander
et al. [1977] and Borchers [2001], a pattern language is characterized by the
following aspects:

•Patterns are

comprehensible for

an interdisciplinary

audience.

Lingua franca: Patterns are targeted at wide interdisciplinary au-
dience that involves researchers, designers, and practitioners. Thus,
patterns are written in a language that everyone, also non-experts,
understands.

•Solutions are

described in a

specific context.

Solutions in context: Instead of general advice, patterns provide solu-
tions within a specific context. Each pattern contains concrete exam-
ple scenarios in which a problem occurs and the solution is applicable.
Also, patterns provide links to other related patterns.

•Patterns are easy to

read.

Readability: Patterns are written in prose that is easy to understand
for non-experts. Furthermore, patterns follow a clear consistent for-
mat, which allows to read them in an efficient way.

•Pattern languages

are organized on

different abstraction

levels.

Different abstraction levels: Pattern languages can be arranged on
different scales, starting with general patterns on the highest level
down to very specific patterns. Using the links between patterns, a
reader can navigate within these abstraction levels.

2.4 Capturing Design Knowledge 29

(1-2) large
collaboration table

(1-1) tilted
table

(3-4) private
space

(1-3) round
table

(2-1) zoomable
interface

(4-3) physical
keyboard

(4-5) input
tangibles

(3-1) high
precision input

(5-1) dodge
obstacles

(3-5) balanced
participation

(3-3) replace
physical paperwork

(3-2) hand
gestures

(5-2) dynamic
keyboard relabeling

(4-2) on-screen
keyboard

(2-3) desktop
orientation

(1-4) narrow
substructure

(2-2) user
identification

(1-5) ergonomic
height

(4-1) embedding
electronic devices

(5-3) physical
object storage bin

(4-4) pen
input device

(5-4) extending
reachability

Er
go

no
m

ic
s

In
te

rfa
ce

U
sa

bi
lit

y
an

d
sp

ec
ifi

c
co

lla
bo

ra
tio

n
Ex

te
nd

in
g

in
pu

t
Sp

ec
ia

l
sc

en
ar

io

Figure 2.13: Structure of our tabletop pattern language. This version contains patterns in five
categories. Patterns are put into context to each other via links. Image adopted from [Remy
et al., 2010].

• Patterns inspire new

designs.

Generativity: Pattern languages provide a generative structure that
inspires to create new designs from the patterns.

• Patterns are helpful

for teaching.

Teaching: Pattern languages are helpful to introduce beginners to
a novel field. Recent studies show that they outperform traditional
guidelines in terms of learning success [Koukouletsos et al., 2009].

• Every pattern

contains concrete

examples.

Examples: All patterns contain concrete examples in which a solution
has been successfully applied.

Pattern languages

are always in a

process of iteration

and refinement.

Fig. 2.13 shows the structure of our pattern language. It provides patterns
for ergonomics, interface design, usability and collaboration, input, and
special scenarios. It should be mentioned that a pattern language is never
complete and always represents a snap-shot of current knowledge. This

30 2 Interactive Tabletops

applies especially to the field of interactive tabletops that is relatively new
and fast evolving due to new engineering and research results. Patterns
are added, refined, and removed over time. Authors add a ranking to each
pattern reflecting how confident they are in the maturity of the presented
solution.

We published the pattern language at the European Conference on Pattern
Languages of Programs (EuroPLoP 2010) [Remy et al., 2010] together with
Christian Remy, Martina Ziefle, and Jan Borchers. The development of the
language was also the topic of the diploma thesis by Remy [2010], supervised
by the author of this thesis.

2.5 Closing Remarks

In this chapter, we provided an introduction to the field of interactive table-
tops. We described key characteristics and challenges, optical tracking ap-
proaches, and input methods. We also looked at non-horizontal surfaces
and HCI design patterns as knowledge repositories for tabletop design.

One of the key benefits of interactive tabletops, which is often named in
literature, is direct manipulation. It is indeed a natural way for interacting
with virtual objects, such as photos distributed on the surface. However,
its usage is limited to spatial tasks. In productivity applications, text is
typed, abstract parameters are edited, and precise input is required. For
these tasks, general-purpose controls, such as buttons, knobs, sliders, and
keyboards, are indispensable. These controls are well known from conven-
tional desktop GUIs, but their transfer to tabletops is difficult. Operating
on-screen controls is imprecise and requires visual attention during opera-
tion. We will deal with this topic in the next chapter and introduce hap-
tic general-purpose controls that respect the specific nature of interactive
tabletops.

31

Chapter 3

Translucent Controls on
Tabletops: SLAP Widgets

In the last chapter, we introduced interactive tabletops. They are input
and output devices that provide a large interactive surface and enable di-
rect interaction with objects by multiple users. Direct finger input provides
an intuitive and convenient way to interact with on-screen objects on in-
teractive tabletops. Users can trigger buttons by just tapping on them,
move and transform pictures by dragging them, or just draw something
with their fingers. However, while direct manipulation is well suited for
spatial arrangements and drawing tasks, its application is restricted in the
domain of productivity tasks.

Direct manipulation

and gestures are not

appropriate to

substitute

general-purpose UI

controls.

Productivity tasks on conventional desktop computers, e.g., composing
texts, editing spreadsheets, or annotating videos, require a set of generic
input controls, such as a physical keyboard and on-screen UI elements like
sliders, knobs, and buttons that are controlled with a mouse. Direct mani-
pulation is not expressive enough to substitute those general-purpose con-
trols. Gestures enable more complex input, but they are invisible, hard to
learn, and do not map well to abstract parameters. For example, finding
two different intuitive gestures for setting the saturation of an image and
the volume of a video is difficult.

Publications
SLAP Widgets was developed in collaboration with the Department of Cognitive Science, University of Cali-

fornia, San Diego. This work has been first published as poster at the TABLETOP ’08 workshop [Weiss et al.,

2008] and then as full paper at the CHI ’09 conference [Weiss et al., 2009b]. It has been demonstrated at the

CHI ’09 [Weiss et al., 2009c] and the TEI ’09 conference [Weiss et al., 2009d]. SLAP Widgets was the topic

of the diploma thesis of Julie Wagner [Wagner, 2009], supervised by the author of this thesis. Parts of the

chapter, especially the related work, has been published as book chapter [Weiss et al., 2010a]. The user study

on keyboard performance was accepted as contribution to a workshop on text entry at the CHI ’12 conference

[Weiss et al., 2012].

32 3 Translucent Controls on Tabletops: SLAP Widgets

However, conventional desktop GUIs cannot be just transferred to interac-
tive tabletops, because they do not follow the nature of these devices:

•Tabletop UI

elements must be

moveable and

rotatable.

Unlike a desktop GUI, the UI configuration on a tabletop is in a steady
flow. Since multiple users can access the same data from different
sides, the arrangement of UI elements must be flexible. UI elements
must be moveable and rotatable.

•UI elements must be

disposable.

Space matters if multiple users are involved in a task. Accordingly,
attaching a full set of editing buttons to every element on the table is
not an option. UI elements must be disposable: They should be added
to the interface when needed, and removed if not required anymore.

•Tabletops require

multi-focus policy.

There is not a single focus policy, i.e., UI elements must be associated
with the data they manipulate.

•Productivity tasks

require efficient and

precise input.

And most importantly: Users demand efficient and precise input
methods in productivity applications. Due to the lack of haptic feed-
back, directly operating on-screen controls with the fingers is impre-
cise. Users cannot feel virtual controls when touching the surface.
They always require users to focus on the control they operate (e.g.,
a jog wheel), instead of the object they manipulate (e.g., a video).
Furthermore, the relatively large size of a fingertip limits input pre-
cision. These drawbacks lead to both higher error rates and higher
task completion times.

In this chapter, we introduce a novel class of general-purpose tabletop con-
trols: SLAP Widgets. They were envisioned and implemented as input
methods that support productivity tasks in an efficient way, while respect-
ing the nature of interactive tabletops. SLAP Widgets combine the flexi-
bility of on-screen UI elements with the haptic benefits of physical controls.

3.1 Design Considerations

Design

requirements:

The intention of our research was to develop general-purpose tangible con-
trols for interactive tabletops that are suitable to augment productivity
tasks. To support these tasks while making use of the specific nature of
tabletops, our controls had to fulfill a set of design requirements:

•- Physicality as

conventional

controls

Strong physicality: Our tangibles should provide the haptic quality
of conventional physical controls. They should give users rich haptic
feedback and strong affordances. Furthermore, they should guide the
users’ motion for eyes-free interaction.

•- Scalability Scalability: A control should be applicable and reusable for different
productivity tasks. An extension of the complexity of an application
should not imply the development of a new control.

3.2 Related Work 33

• - Usable and

removable during

run-time

Ad hoc use: Interactive tabletops are dynamic working environments.
The entire user interface can be changed quickly, especially when mul-
tiple users interact with the system simultaneously. An optimal con-
trol should be useable in an ad hoc manner: A user can put the control
anywhere on the table when she needs it, operate it as long as she
wants, and remove it from the surface afterwards. That is, tangible
controls should be integrated into the fluent interaction on tabletops
without consuming space when not needed. This also implies that
they should be lightweight and easy to move on the table.

• - Low space

consumption,

self-contained

design

Unobtrusive: A physical tabletop control should not interfere with
any direct touch interaction. Therefore, it should not consume more
space on a tabletop than required to operate the control. This im-
plies that it should be self-contained without using cables that could
potentially clutter the interface.

• - Consistent

physical-visual

feedback

Consistent feedback: The control should provide physical and visual
feedback to the user about its current state. As tangible user inter-
faces depend on the illusion that their physical and virtual represen-
tation are merged, the physical state of the control should always be
tightly coupled with its visual state.

• - Support of easy

prototyping

Easy to prototype: The underlying system should allow designers to
rapidly create and iterate new tabletop devices. This implies that
the process of building should not require an extensive engineering
background. The underlying technology should be mostly hidden
from both users and designers.

• - Robust

construction

Robust: The control should be sufficiently stable for everyday’s use.

3.2 Related Work

As explained in the previous chapter, tangibles are a synthesis of physical
objects and digital data. Users can perceive the state of tangibles from
its visual-physical configuration, and they can directly change the data by
physically manipulating the tangible. Tangibles were originally envisioned
as interactive objects for specific purposes:

“Tangible User Interface serves as a special purpose interface for a specific
application using explicit physical forms, while GUI serves as a general
purpose interface by emulating various tools using pixels on a screen.”

[Ishii, 2008, p. xvi]

Our research intends to develop general-purpose tangibles that can be em-
ployed in various productivity tasks. Many projects have been developed
that combine the benefits of haptic feedback and a dynamic graphical repre-
sentation. In the following, we describe crucial milestones in the continuum
from pure special-purpose to general-purpose applications.

34 3 Translucent Controls on Tabletops: SLAP Widgets

Figure 3.1: The reacTable is a musical instrument based on tangibles
arranged on an interactive tabletop. Photo taken by Xavier Sivecas. Image
courtesy of Jorda et al. [2007].

3.2.1 Special-Purpose Tangibles

Two early special-purpose tangibles have already been described in the pre-
vious chapter: Illuminating Light and Urp allow to place physical objects on
the tabletop and to conduct physical simulations. The power of these appli-
cations is their intuitive use and the absence of any indirect input methods
or modes. Again, this supports the idea of Ubiquitous Computing by hiding
the input technology [Weiser, 1991].Initial

special-purpose

tangibles were

limited in terms of

scalability.

However, their scalability is limited.
Each tangible type in these applications is represented by exactly one phy-
sical and visual representation. The application input is determined by the
placement of the tangibles. Enriching the application requires building new
tangibles for every single entity.

reacTable allows to

compose music by

arranging tangibles.

These represent

entities but can also

change values.

Later projects have addressed this issue by adding further degrees of free-
dom to the interaction. The reacTable is a table-based musical instrument
allowing users to synthesize music by placing tangible blocks on a table
[Jorda et al., 2007]. The system provides a variety of different blocks, e.g.,
for sound generation, effect generation, or sequencing of samples. Each
block is made of semi-translucent acrylic; the shape, color, and label im-
printed on top indicates the function of the tangible (Fig. 3.1). When a user
places one of the tangibles on the table, its current state is projected next to
it. Unlike the aforementioned projects, reacTable allows to configure each
tangible individually. For example, after placing a global volume control
onto the table, users can change the volume by rotating the tangible. They
can also use finger gestures and operate virtual sliders and buttons around
each object. Furthermore, reacTable lets users build connections between
the elements on the table. A basic example is an oscillator tangible that
transfers the generated sound to a band-pass filter. That band-pass filter
then pipes the filtered result to the output channel. Unlike Illuminating
Light and Urp, which incorporate tangibles as small-scale representations

3.2 Related Work 35

Figure 3.2: Tangible Tiles are physical general-purpose tiles for interac-
tion with virtual objects. Image courtesy of Waldner et al. [2006].

of objects, reacTable assigns modular functions to physical objects. Modular concept

and abstract design

of tangibles increase

scalability.

Users
can also control them like input devices that change intangible properties.
The modular concept and abstract design of the tangibles enables various
ways to synthesize complex sounds and to extend the set of tangibles.

Scratch synthesizes

programs by

composing tangible

building blocks.

This idea of modular tangibles has also been applied to the field of pro-
gramming. Scratch by Horn et al. [2009] is a tangible programming toolkit
that intends to teach basic programming concepts. The system is deployed
as a museum exhibit that lets users control a robot by assembling building
blocks to simple programs. In a user study, the author compared a version
with tangible blocks to a pure on-screen touch-based version. Although
the programs that visitors created were not significantly different between
both conditions, the study revealed that the tangible interface attracted
more visitors than the digital version and encouraged a more active collab-
oration of users, especially children.

3.2.2 General-Purpose Tiles

Lack of scalability is

a major issue of

special-purpose

tangibles.

Projects as reacTable and Scratch are helpful to compose complex struc-
tures. However, as most first-generation tangible systems, they are special-
purpose applications. A reacTable control is designed for use in musical
applications, and due to its specific shape it could hardly be applied to a
different context. Rekimoto et al. state in their paper about DataTiles that
the “scalability challenge is one reason [special purpose] systems have not
yet seriously competed with mainstream graphical user interfaces” [Reki-
moto et al., 2001, p. 269]. Or with words of Shaer and Hornecker [2010]:

36 3 Translucent Controls on Tabletops: SLAP Widgets

“One of the biggest challenges for TUIs is scalability. Successful applications
for small problems or data sets often do not scale up to complex problems
involving many parameters and large data sets. With any application that
attempts to provide a tangible representation this will be an issue, as larger
representations take up more space.”

[Shaer and Hornecker, 2010, p. 106]

Productivity tasks require the input of abstract values. Special-purpose
tangibles do not have the expressiveness to achieve this and require design-
ers to extend the set of physical objects for every further application feature.
Tangible tiles, as presented in the following, provide a better scalability.

DataTiles is a set of

modular tangible

tiles that combine

haptic feedback with

dynamic relabeling

for general-purpose

controls.

With DataTiles, Rekimoto et al. [2001] intended to design a system that
combines the benefits of graphical and physical user interfaces. The au-
thors introduce DataTiles, a set of semi-transparent tangible tiles for use
on tabletops. Users can choose among a variety of graspable tiles, place
them into a grid on the table, and bring them into relation to each other.
Each tile is transparent and can display digital content beneath it. Users
interact with these tiles using a digital pen. The system is designed for
general-purpose applications and provides a variety of different tiles. An
Application tile is a tangible that provides a specific application, such as
a weather forecast or a video player. When put on the table, such a tile
immediately starts and shows content. Portal tiles link to external entities
and communicate their status, such as a printer, web-cam, or even a per-
son. Parameter tiles allow to modify values of other tiles. These tiles have
grooves to guide the motion of the user’s pen. For example, a parameter
tile with a circular groove can be used to continuously navigate through a
video. Furthermore, the system provides Container tiles to store data and
Remote tiles that provide a remote view to other tiles. The strength of
this system is the ability to compose different tiles in an ad hoc manner.
For example, if users want to control a video, they can place a parameter
tile onto the table for navigation and remove it if not needed anymore.
This enables dynamic general-purpose applications without the need for a
keyboard or mouse.

Tangible Tiles are

transparent tools to

manipulate virtual

images.

Tangible Tiles by Waldner et al. [2006] later extended the DataTiles con-
cept. Virtual objects are displayed on the tabletop, and tiles can be used
to modify them (Fig. 3.2). For example, a pick tile can be placed on top
of a digital image to virtually “pick it up”. When the physical tile is then
put down at a different location, the digital image also moves there. The
authors also introduce so-called Functions tiles, e.g., to magnify or erase
objects. Unlike DataTiles, Tangible Tiles allow for an arbitrary alignment
on the tabletop.

3.2.3 Physical Controls for General Purposes

However, although both projects provide graspable tangibles for general-
purpose applications, their haptic feedback is still very limited. VoodooIO
by Villar and Gellersen [2007] provides a toolkit that allows designers to

3.2 Related Work 37

Figure 3.3: VoodooIO. Left: Technical principle. A control stuck into the surface closes a
circuit and communicates its current state. Right: VoodooIO surfaces can extend a workspace
in various ways. Image courtesy of Villar and Gellersen [2007].

Figure 3.4: VoodooSketch provides flexible interactive palettes. Users can plug physical con-
trols into these palettes or draw controls using a digital pen. Left: VoodooSketch in the context
of an interactive tabletop application. Right: Sample palette combining physical and virtual
controls. Image courtesy of Block et al. [2008].

freely VoodooIO provides

fully reconfigurable

surfaces into which

users can stick

physical

general-purpose

controls.

place conventional physical controls on a “malleable control struc-
ture”. The system is based on a substrate that contains two parallel conduc-
tive layers that are embedded between layers of laminate. Each VoodooIO
control is mounted on a board with attached spikes. When sticking the
control into the surface the spikes not only ensure physical support, they
also close a circuit with the two conduction layers (Fig. 3.3, left). Via this
circuit, the control is powered and communicates its current state to a net-
work adapter. Users can choose from a set of standard controls (buttons,
sliders, knobs), place them at any position on the surface, and immedi-
ately start using them. When not required anymore, controls can simply
be removed from the surface; the use of laminate lets the remaining holes
“heal” quickly. Furthermore, the substrate is bendable, robust, and can be
cut into arbitrary shapes. Multiple surfaces can be combined and enrich
arbitrary surfaces with physical controls (Fig. 3.3, right).

38 3 Translucent Controls on Tabletops: SLAP Widgets

VoodooSketch

extends VoodooIO

with pen input for

operating

hand-drawn

controls.

Block et al. brought this concept to interactive tabletops and extended it
with digital pen interaction. VoodooSketch is based on VoodooIO with an
additional layer containing a tiny imprinted dot pattern on top [Block et al.,
2008]. In addition to placing physical controls on the substrate, users can
draw controls on this layer using an Anoto pen. A small camera in this dig-
ital pen tracks its current position on the paper by interpreting the unique
dot pattern beneath this pen’s tip. A recognition engine classifies the user’s
drawings and then instantly enables them as controls. The system enables
a very intuitive interaction: For example, users can stick physical buttons
into the substrate and write labels next to them, such as“Save file”or“Load
file”. The label’s text is detected using text recognition and is automati-
cally associated with a function in the current application. Alternatively,
users can draw a rectangle and label it. It is then triggered by tapping
the pen within the rectangle. Also, continuous controls can be sketched.
A rectangle labeled with “opacity” yields a slider that is set by moving the
pen tip within that rectangle (Fig. 3.4).Substrate can be

cut. Hand-drawn

interface can be

re-used. However,

static visual

appearance limits

flexibility for

interactive

tabletops.

In the same way as VoodooIO, the
substrate can be cut. Furthermore, the layer with the dot pattern can be
detached and reused, which can be considered as a physical save and load
function. A disadvantage of the sketching technique is that the controls’
shapes are filled with ink dots and strokes when they have been used for
a while. VoodooSketch was designed as an augmenting palette to support
tasks on interactive tabletops. However, the need for tethering and the
static visual appearance of the (sketched) controls limits their flexibility in
the context of interactive surfaces.

SenseSurface1 is a concept that intends to bring the idea of VoodooIO to
computer screens. Small magnetic physical controls can be stuck directly
onto the screen to augment applications with haptic input. Position and
status of these controls is communicated via a matrix that is attached
behind the screen. SenseSurface knobs could, for example, be placed on
top of the virtual knobs of a GUI based equalizer. A DJ could then control
them precisely without looking while concentrating on his performance.
However, the project has not been published in research or released as a
commercial product.

Devices with fixed

set of physical

controls increase

precision but are not

suitable for

general-purpose

applications

Fiebrink et al. [2009] provide a tangible tabletop device to address the
lack of precision and haptic feedback on multi-touch tables. The device
contains four physical buttons and sliders that can be linked to actions
and parameters in a musical tabletop application. When placed on the
table, the device is detected, and a graphical UI is displayed around it.
Besides the physical controls, the system provides virtual copies next to
the device. Thus, users can employ both physical controls for eyes-free and
precise operations, and on-screen controls. Using a set of touch gestures,
every control can be dynamically mapped to a continuous value or discrete
action in the tabletop application. The authors also provide methods to
load, save, and share mappings. Although the system improves precision
for specific tabletop tasks, its usefulness for general productivity tasks is
limited: The device contains a fixed, unchangeable set of controls, needs
a cable, and consumes a relatively large area on the tabletop. This makes

1http://www.girtonlabs.com/index.php/projects/sensesurface

http://www.girtonlabs.com/index.php/projects/sensesurface

3.2 Related Work 39

Figure 3.5: PhotoHelix allows to browse, sort, and share large collections
of digital images using a rotatable tangible and a pen. Image courtesy of
Hilliges et al. [2007].

it less flexible for use in general productivity applications where the UI is
dynamically changed.

PhotoHelix is a

physical knob in

combination with a

helix visualization

for browsing

through large photo

collections.

PhotoHelix is a physical knob that allows for browsing through a large
library of photos on an interactive tabletop [Hilliges et al., 2007]. When
placed on the table, a helix of photos, ordered by time, is displayed around
the control. A curved lens window at the outer part of the helix provides a
detailed view of the underlying photos (Fig. 3.5). By turning the knob, the
helix rotates, and the lens moves inward or outward. Using pen or finger as
input device, images can be scaled, rearranged, or shared with other users.
While the system was created for the special purpose of photo organization,
it could be generalized to other large data collections. Furthermore, it is
a good example for the synthesis between a rich haptic experience and
interaction with digital data.

3.2.4 Typing

Typing efficiency is

essential to perform

productivity tasks

on interactive

tabletops.

Typing is essential for most productivity tasks. All GUI programs that
deal with documents, e.g., word processors, spreadsheet programs, or e-
mail clients, require users to enter text frequently. Design applications,
such as drawing, 3D modeling, or video editing programs, often need the
specification of exact numbers or labels. Web browsers at least require
to enter URLs. The quality of typing on an interactive surface directly
influences how efficiently users can enter data in tabletop applications and,
thereby, how well productivity applications can be transferred to tabletops.
If users have to “paint” letters with their bare fingers using direct touch,
it’s unlikely that a group of collaborators will create satisfying results in
a reasonable amount of time. Ultimately, the convenience to type text

40 3 Translucent Controls on Tabletops: SLAP Widgets

determines whether productivity tasks will ever be transferred from the
conventional PC to interactive surfaces.

Tabletops

applications should

provide

simultaneous text

entry for different

objects.

Typing on interactive tabletops is still considered as an open problem. In-
teractive tabletops provide a highly dynamic user interface. Applications
can be aligned anywhere on the surface, and multiple users can approach
the table from any direction. Multiple typing devices are required that
allow users to enter strings at different locations at the same time. Accor-
dingly, application designers have to provide pairing techniques to associate
each device with the particular text that a user wants to edit.

On-screen keyboards

are easy to

implement but

slower and more

error prone than

conventional ones.

The standard solution for text input on touch screens are on-screen key-
boards. Most smart phones, tablets, but also touch-based ticket machines
overlay the interface with a QWERTY keyboard that can be operated by
tapping keys with fingers. Those virtual keyboards are easy to implement,
do not require any external devices, and can be dynamically relabeled.
However, as mentioned before, typing text on a flat surfaces is slow and
error prone. Users do not receive haptic feedback when pressing a key and
cannot feel the boundaries of the keys. This requires a frequent switch of
visual attention between the soft keyboard and the position where text is
entered. Barrett and Krueger [1994] compared touch performance of ca-
sual users and expert typists on a conventional and a piezo-electric soft
keyboard. In both subject groups, typing was significantly faster and less
error prone on the conventional than on the soft version. The authors
also report a significant learning effect over five sessions, but it was similar
among subjects and keyboard condition. Findlater et al. [2011] conducted
an in depth study in which expert typists had to enter text on a flat sur-
face using an on-screen QWERTY keyboard. They measured the effect
of keyboard visibility and visual feedback on typing performance and cap-
tured how well users hit the bounding boxes of keys. Even under an (sim-
ulated) ideal typing condition, in which every keystroke was presumably
correct, typing on the flat surface was 31% slower than on a conventional
keyboard.Modified keyboard

layout and per-user

model improve

efficiency, but

per-user models are

difficult to realize on

tabletops.

The authors recommend modifications to the default keyboard
layout, such as changing the size of certain keys, extending the space bar
area, and curving the keyboard shape. More importantly, the introduction
of an individual classification model per user significantly improves typing
accuracy. However, applying a typing model per user is difficult at an in-
teractive tabletop: It requires a dedicated calibration procedure for every
new user and an accurate assignment of touches to users. Furthermore, the
reported typing speed was still very low; about 28 words per minute in the
presence of visual typing feedback.

Difference between

visual and physical

typing is smaller

when interacting

with one hand.

Note that the difference between physical and virtual key entry is smaller
when typing on small mobile phones [Lee and Zhai, 2009]. The authors also
provide evidence that audio or haptic feedback can improve input perfor-
mance on these devices. However, the study results are difficult to transfer
to full on-screen keyboards on large surfaces. First, when typing with one
hand, the performance gain of the other hand targeting the next keys si-
multaneously is lost. Second, on mobile devices, the location of touch input
is close to the output location. Thus, the visual focus switch between typ-

3.2 Related Work 41

ing a string and verifying the input might be insignificant. On interactive
surfaces, input and output location can be distant.

Typing devices

should be efficient,

easy to learn, small,

collapsible,

rotatable, mobile,

and similar to other

input.

Hinrichs et al. [2007] estimate the usability of text-entry methods, which
are normally employed in PCs or mobile devices, in the context of large
interactive surfaces. Besides general criteria, like typing speed and ease of
learning, they evaluate text input techniques according to tabletop specific
requirement. A technique must not consume too much space and must be
easy to remove from the table (collapsibility). As interactive tables can be
operated from any side, an input device must be rotatable. Also mobility
and the integration in the direct-touch interface play an important role.

Physical keyboards

are efficient, but

usage on tabletops

is limited.

Physical keyboards are highly optimized and established input devices.
Thanks to their labeling, they are approachable by novel users, and ex-
pert users can achieve high typing speeds. However, they consume much
space on the table, and “switching back and forth between touch-typing
on an external keyboard and direct-touch interaction within the virtual
workspace can be disruptive” [Hinrichs et al., 2007, p. 107]. Also, to en-
sure collapsibility, storage space in or around the table is required. Using
physical keyboards on additional small mobile devices could solve this is-
sue. Furthermore, they can even provide privacy, e.g., to enter passwords,
if required. However, entering longer texts on small physical keyboards
is inconvenient. Speech recognition

is error-prone,

especially in a

multi-user context.

Speech recognition is an interesting alternative. Besides
microphones, it does not need any external device. However, their use on
tabletops is limited because they need calibration, and they are relatively
slow and error-prone, especially when multiple users interact at the same
time.

On-screen methods

are suitable for

shorter, slow input.

The authors also evaluate on-screen methods. Soft, stylus, or gesture based
keyboards can be easily created, removed, and relabeled. However, those
methods tend to be slow and, as aforementioned, soft keyboards are more
error prone than conventional ones. They are, therefore, only suitable for
shorter amounts of text. All methods that use external devices or on-screen
keyboards require an association with the position on the table, where the
text is required. Hence, handwriting recognition is a promising alternative,
because text can be written directly at the desired position. However,
handwriting is a relatively slow technique and requires a high resolution
input sensor.

No perfect input

technique exists for

tabletops. Choice of

technique depends

on task.

Hinrichs et al. conclude that there is no perfect technique for text input on
tabletops yet, and that the choice of the method depends on the specific
task. For an application that requires a lot of text input, a wireless key-
board as implemented by Hartmann et al. [2009] might be the right choice.
For annotations on documents or photos, direct pen interaction and hand-
writing recognition might be suitable. On-screen keyboards are probably
more appropriate for public exhibits where external devices tend to chafe
quickly.

42 3 Translucent Controls on Tabletops: SLAP Widgets

IR LEDs (FTIR)
foamed silcone

acrylic

diffusor

projector
IR LEDs

camera
IR pass filter

computer

Figure 3.6: The SLAP Table is an interactive tabletop that combines FTIR and DI tracking.
Modified image from [Weiss et al., 2010a].

3.3 System Design

The applicability of the aforementioned tangibles for productivity tasks on
interactive tabletops is limited. They are either too specific, not provid-
ing input for abstract parameters and not scaling well, or they only offer
restricted haptic feedback. Other projects contribute general-purpose con-
trols, but these are difficult to apply to applications with quickly changing
UIs.

In this section, we introduce haptic general-purpose controls for interactive
tabletops. Based on our design considerations and the related work, we de-
veloped a novel class of physical controls that provide rich haptic feedback
while regarding the dynamic nature of interactive tabletops. After describ-
ing our tabletop infrastructure, we will explain the design of our controls
in detail.

3.3.1 Tabletop Infrastructure

We employ a vision-based interactive tabletop as infrastructure for our
controls. We will refer to this setup, which is illustrated in Fig. 3.6, as the
SLAP Table. A clear 88.5× 112.5 cm acrylic plate forms the table surface
and the support for further input and output layers.

InputSLAP Table

combines FTIR and

DI tracking.

In order to detect finger touches as well as lightweight objects on
the tabletop, we combine FTIR and DI (section 2.1). A 0.63 mm layer of
foamed silicone serves as compliant layer for touch detection. We added
two LED light sources: For touch detection via FTIR, the acrylic layer

3.3 System Design 43

is surrounded by a 355 cm ribbon of 860 nm infrared LEDs. The ribbon
contains 277 LEDs with a space of 1.28 cm between each LED. To detect
lightweight objects on the tabletop, 10 flood lights (4 containing 15 LEDs
and 6 containing 7 LEDs) in the table produce a diffuse illumination of the
surface. A Point Grey DragonFly camera with a 4-8 mm zoom lens (f/1.4)
in the table captures all touches and objects on the surface. It delivers 8-bit
gray scale images in 640× 480 pixels and 120 fps.

Output An Optoma EX525ST short-throw projector beneath the table
renders the user interface in 1024 × 768 pixels on a 0.127 mm thick Dura-
Lar diffusor foil. The projected size of the GUI amounts to 92 cm × 68 cm,
that is, a single pixel covers about 0.09 cm × 0.09 cm (28.42 dpi). To
avoid interferences between output and input, we attached a B+W 093 IR
pass filter to the table’s camera. It ensures that all visible light from the
projector is blocked. As some projectors also emit IR light, it can also be
helpful to mount an IR block filter in front of the projector’s lens.

The table design also contains a raised non-interactive edge that surrounds
the table surface. This 8.5-13 cm wide strip provides space to put down
tangibles or everyday objects, such as pens or coffee mugs.

Our software runs on a MacBook Pro with a 2.66 GHz Intel Core 2 Duo
processor and 4 GB RAM.

3.3.2 Widget Design

SLAP Widgets were

envisioned as

lightweight,

general-purpose

controls for ad hoc

use.

We envisioned our controls as lightweight ad hoc input tools named
SLAP Widgets. Users should be able to literally “slap” a control on the
tabletop when needed, operate it for a while, and remove it as soon as it is
not needed anymore. In allusion to desktop GUIs, we consider these tangi-
bles as “widgets”, because they provide general-purpose building blocks to
setup a tabletop UI, as opposed to special-purpose tangibles.

SLAP Widgets are

general-purpose

controls made of

translucent acrylic

and silicone. They

combine haptic

feedback with

dynamic relabeling.

SLAP Widgets are general-purpose controls made of translucent acrylic and
silicone (Fig. 3.7). Acrylic provides a rigid structure, while the soft silicone
enables designers to incorporate deformable surfaces. Since all widgets are
translucent, we can use the table’s back projection to change their visual
appearance on the fly. This allows us, e.g., to change the icon of a button
or the range of a slider on the fly. Thus, although the feel of each physical
control is somewhat fixed, we can change its look on the fly. This opens
many interaction possibilities, as will be described below.

Position,

orientation, and

state of a widget are

communicated via

arrangement of

reflective markers.

Every widget is mounted on a set of reflective rectangular markers. Each
marker consists of bright white printing paper. These markers form a
unique footprint that is detected by the camera when the control is placed
on the table. The unique footprint is used to identify the widget and to
track its current position and orientation on the table. The latter is espe-
cially important to register the back projected graphics with the physical

44 3 Translucent Controls on Tabletops: SLAP Widgets

 a) b)

 c) d)

Figure 3.7: SLAP Widgets are general-purpose tangibles made of acrylic and silicone. Attached
paper markers enable tracking. The basic widget set contains (a) keyboard, (b) slider, (c) knob,
and (d) keypads with two and three buttons, respectively. Image adopted from [Weiss et al.,
2010a].

objects. As soon as a widget is recognized by the camera, a local coor-
dinate system is computed that acts a reference system for the widget’s
graphic representation. The footprint also contains a unique ID to distin-
guish multiple widgets of the same type, and state markers which represent
the current state of the control, e.g., the position of the knob in a slider or
the push state of a button. Fig. 3.8 illustrates the marker design of a SLAP
Knob. Footprints are designed in such a way that they minimize graphical
occlusion and create unambiguous patterns. Furthermore, every footprint
contains a single long marker that avoids finger touches to be interpreted
as widget markers. We also added translucent rubber pads beneath most
widgets to avoid them from drifting away during operation.

SLAP Widgets are

passive controls

without electronic

parts.

Note that SLAP Widgets are passive controls that are untethered and do
not contain any electronics. Input and output are handled by the table
hardware. If a user operates a widget, its physical state is represented
by the 2D arrangement of markers. Our system reads and interprets this
footprint using the internal camera and sends this information to the ap-
plication controller (see section 3.6 for more details). The avoidance of
electronic parts enables a low learning curve, because no knowledge about
electrical engineering is required. Furthermore, as long as a widget’s state
is communicated via its footprint, there are no physical limitations in terms
of widget design.

3.3 System Design 45

Type markers

Identification markers

State markers

TM1

TM0

TM2

SM0

SM1

ID0

ID1

10cm

Figure 3.8: Footprint design of a SLAP Knob as seen from below. The
arrangement of type markers (TMi) determines the widget type. The pre-
sence or absence of identification markers (IDj) encodes a unique ID among
multiple widgets of the same type. The state of a widget is derived from
its state markers (SMk).

3.3.3 Basic Widget Set

Basic widget set

contains keyboards,

keypads, sliders, and

knobs.

As shown in Fig. 3.7, we developed a basic set of SLAP Widgets, including
keyboards, button keypads, sliders, and knobs, to provide controls for a
broad spectrum of productivity tasks. In this section, we describe the
physical construction of each widget, its communication via the footprint,
and potential ways to use it in a tabletop application.

3.3.3.1 Keyboard

The SLAP Keyboard

is a flexible, silicone

keyboard with

flexible back

projected key

labeling.

The SLAP Keyboard is a flexible physical keyboard for typing tasks on
interactive tabletops (Fig. 3.9, left). It is based on an off-the-shelf iSkin2

silicone keyboard protection cover (Fig. 3.7a). This cover is designed for
QWERTY keyboards of MacBook Pro laptops. We glued thin 0.025 cm
PVC plates onto each key to improve its stiffness. Additional plastic rings
on top of these plates improve haptic feedback. As in physical keyboards, we
also placed small bumps onto the F and the J key to provide an orientation
for eyes-free typists. Two rigid acrylic bars are pasted to the short edges
of the keyboard. They contain the footprint of the keyboard and stabilize
the widget when being placed on the table.

2http://www.iskin.com

http://www.iskin.com

46 3 Translucent Controls on Tabletops: SLAP Widgets

Figure 3.9: SLAP Keyboard in use. Left: A user types text into a text field. Right: Example
relabeling. When holding the Command modifier key, certain keys show the icons of the functions
associated with the key combination.

1 2 3 4 5 6 7 8 9 0 del

tab Q W E R T Z U I O P

A S D F G H J K L

Y X C V B N M shift

space

caps

shift

enter

Figure 3.10: Keystroke detection of SLAP Keyboard. Top: Raw IR image with “H” key being
pressed. The arrangement of markers on the acrylic bars determine the widget type, ID, and its
local coordinate system (red arrows). Bottom: Keystrokes are detected by performing hit tests
of spots within the keyboard area against the bounding boxes of keys in local coordinates. A
keystroke event equals a spot (red circle) appearing and then disappearing in a bounding box.

3.3 System Design 47

Figure 3.11: Example applications of SLAP Keypads for text editing and
media control.

IR spots within the

keyboard’s area are

interpreted as

keystrokes.

When placed on the table, the system detects the widget’s footprint and
projects a virtual keyboard beneath the widget. The SLAP Keyboard is
so thin that the FTIR effect works through the material. That is, when a
user presses a key, he pushes the key plate into the complaint layer, and
a spot appears in the camera image. All spots within the rectangle of the
keyboard which do not belong to the footprint are considered as potential
key strokes. If a spot becomes visible within the rectangle of a key, we
send a key pressed event to the application, using the key ID as parameter.
Another event for the same key can only be sent if the spot disappears first.
The keystroke detection is illustrated in Fig. 3.10. The IR image is mirror
inverted as the camera is placed below the table. It is also radially distorted,
which is compensated by our tracking algorithm. Note that reliable typing
detection requires a high camera frame rate.

The SLAP Keyboard

is collapsable,

rotatable, and does

not require much

space.

The SLAP Keyboard fulfills many of the requirements stated by Hinrichs
et al. [2007] in their survey paper on text-entry methods. First, it is col-
lapsable. It can be easily slapped anywhere on the table without the risk of
damaging electronics, and thanks to the use of silicone it can be rolled-up
if not required anymore. Second, users can quickly rotate it or pass it to
other users. Third, while providing haptic feedback, the SLAP Keyboard
does not require significantly more space on the surface than its on-screen
counterpart. It can be used for all tasks that require text input, such as
writing or annotating documents. Leveraging the back projection, we can
change the label of each single key on the fly. Thus, the keyboard layout
can be easily remapped between different languages. Also, context-sensitive
relabeling is possible. If a user hits the control or command key, keys could
show the icons of the corresponding functions (Fig. 3.9, right), which makes
them easier to learn for beginners.

3.3.3.2 Keypads

SLAP Keypads are

groups of silicone

pushbuttons.

SLAP Keypads are small groups of pushbuttons that are aligned in a row.
We developed prototypes for two and three button keypads. They consist
of a rigid acrylic mount that contains the reflective markers for registra-
tion. Buttons are made of cast soft silicone (Fig. 3.7d). Just as the SLAP

48 3 Translucent Controls on Tabletops: SLAP Widgets

21 3

Figure 3.12: Button push detection of SLAP Keypad with three buttons.
Left: Raw IR image with middle button being pressed. Right: Touch
interpretation in local coordinates.

a b

Figure 3.13: Position detection of SLAP Slider. Left: Raw IR image
with identifying markers and center marker that determines slider posi-
tion. Right: Interpretation of sliding knob’s spot in local coordinates. The
relative position of the slider equals a

a+b ∈ [0, 1].

Keyboard, the keypads recognize a button push by interpreting spot events
in the bounding boxes beneath the keys (Fig. 3.12).

Keypads can be

used as tool palettes

to trigger frequent

actions.

Keypads can be used as small and quickly accessible tool palettes to trigger
frequent actions for specific applications. For example, in a video appli-
cation, a two button keypad could provide an interface to start or stop
the video. Or in a word processor, a three button keyboard could contain
functions to toggle bold, italic, or underlined text (Fig. 3.11). The abil-
ity to relabel widgets also allows users to quickly reconfigure the layout of
each keypad. Moreover, multiple SLAP Keypads can be composed if more
buttons are needed.

3.3.3.3 Slider

The SLAP Slider is

an acrylic control for

setting an absolute

continuous value.

The SLAP Slider allows to set absolute continuous values. It consists of a
rigid plate that contains the footprint and supports two acrylic rails. Users
can linearly move a sliding knob within these rails to set a value (Fig. 3.7b).
The sliding knob contains a reflective marker beneath its bottom that ex-
poses a spot to the camera. Using a simple affine transform, the offset to
the widget’s local coordinate systems can be mapped to the position value
of the slider (Fig. 3.13).

3.3 System Design 49

Figure 3.14: A SLAP Slider in use for setting a continuous value.

IR spot position of

sliding knob is

mapped to slider

value.

When a user places a SLAP Slider on the table, a virtual counterpart is
projected onto the surface. Every time the user moves the sliding knob, and
the position of the spot changes, the system sends the updated slider value
to the application. However, to avoid jittering due to camera noise, we
employ an offset threshold that must be exceeded before a “knob position
changed” event is sent out.

Range limits are displayed on the left and right side of the slider. These
labels can be changed according to a particular application. For example,
the slider can be used to navigate through a video; the table would then
display “0:00” on the left and the total video length on the right side. If
a user would use the slider to set a percentage parameter, such as the
saturation of an image, the slider could display “0” and “100” at its sides
(Fig. 3.14).

Input resolution of

continuous widget

depends on its size

and the table

configuration.

The input resolution of a continuous SLAP Widget depends on its size,
the table’s camera resolution and distortion, and on the distance between
camera and surface. The knob in our slider prototype can be dragged over a
distance of 8 cm. With the specific SLAP Table configuration, the tracking
algorithm can distinguish about 45 different positions. A high resolution
camera or the combination of multiple cameras would considerably increase
this number.

3.3.3.4 Knob

A SLAP Knob is a

pushable knob made

of acrylic to set a

continuous relative

value.

A SLAP Knob is a pushable knob to set continuous relative values. It
consists of a cylindric acrylic case with a spring-loaded turning knob on
top (Fig. 3.7c). In the first generation, we employed a bearing to decrease
friction. However, it turned out that the friction induced by the spring
provides a convenient resistance during rotation; thus, a bearing was not
used in later iterations. The footprint of the control is placed alongside the
outer circle of acrylic base. The turning knob is mounted onto a rotational
axis. This axis does not touch the surface but is connected to an arm inside
the acrylic case. A reflective marker glued to the end of this arm lies on the

50 3 Translucent Controls on Tabletops: SLAP Widgets

𝛼

Figure 3.15: Angle and push state detection of SLAP Knob. Left: Raw IR image with knob
being pressed and rotated by 38 degree counter-clockwise. Right: The absolute angle of the knob
equals the counter-clockwise angle between the positive x-axis and the vector from the center to
the spot of the arm’s marker. If a spot appears in the middle circle, the knob is considered as
pushed down.

Figure 3.16: Modes of SLAP Knob. From left to right: jog wheel, value, hue, and menu mode.

surface and exposes a spot to the camera.Angle of arm’s

marker is mapped to

relative angle.

The relative angle between the
x-axis of the local coordinate system and the vector from this spot to the
knob’s center determines the angle of the control (Fig. 3.15). This angle is
reported to the application on every turn. However, similar to the SLAP
Slider, we employed a threshold to compensate for jittering.

Visibility of center

marker is mapped to

push state.

We can also detect whether a control is pushed. A reflective marker is
mounted to the bottom of the rotation axis and slightly hovers over the
surface. When the user pushes the turning knob, the reflective marker hits
the surface, and the camera sees a spot in the center of the knob; like in the
keyboard case, the system sends a key pressed event. Note that the spot is
detected due to DI tracking. An alternative design is the use of a plastic
pad beneath the rotational axis that produces an FTIR spot when pushed
down. This, however, proved to be less reliable than a reflective marker.

The SLAP Knob

supports four several

modes for different

tasks.

The SLAP Knob can be used in a variety of contexts. In our prototype
system, we developed four different modes of the SLAP Knob (Fig. 3.16):

• Jog wheel mode: The knob can be used as a jog wheel to browse
frame-wise through a video. In this case, we project a circular stripe
pattern beneath the knob that gives visual feedback during navigation
by following the rotation of the handle.

3.4 Interaction Design 51

• Value mode: Like the slider, the knob can be used to set a continuous
value within a specified range. The table displays this range as a
circular scale around the control and highlights the current value.
Note though that the knob does not provide physical constraints as
the slider; it can be turned beyond the value ranges, and a software
constraint is required to maintain valid values.

• Hue mode: In this mode, the knob shows a color wheel for all hue val-
ues in the hue-saturation-value (HSV) model. The currently selected
color is highlighted by a white line. For example, users can use this
mode to change the tone of an image.

• Menu mode: The knob can also be used to navigate through hierar-
chical menus. In this mode, the table displays a pie-menu beneath
the knob, while the currently selected menu item is highlighted. By
turning the knob, other items can be selected. When the knob is
pushed, the item is activated. This can either trigger an action, load
a sub-menu, or bring the knob into a different mode. For example,
activating a “Change hue” item could switch the knob into the hue
mode. When pushing again, the value is applied, and the menu is
shown again.

3.4 Interaction Design

SLAP Widget

retrieves specific

function through

pairing with a

virtual object.

SLAP Widgets are general-purpose controls that gain their specific function
first when they are associated, or paired, with a virtual object, such as an
image, video, or text box. If a SLAP Widget is placed on the table for
the first time, a blue halo around the object indicates that it has been
recognized by the system, and that it is ready to be paired with an object
(Fig. 3.17a). As the widget has not differentiated into a specific control yet,
no graphics are displayed beneath the control.

Pairing gestures

trigger an

association between

a SLAP Widget and

a virtual object.

Halos indicate

detection and

pairing state.

If a user performs a pairing gesture between the physical widget and an
on-screen object, the system tries to associate these two. If the pairing was
successful, a green halo flashes around both objects, indicating the estab-
lished connection. As long as the objects are paired, they are connected
with a white line (Fig. 3.17b). Furthermore, the graphical representation
of the physical control is updated according to its specific task. For ex-
ample, if a SLAP Knob is paired with a video, it is switched to jog wheel
mode. When pairing it with an image, the menu mode offers several op-
tions to edit the picture, such as brightness, saturation, or hue. If a pairing
fails, two red halos flash around the objects (Fig. 3.17d). This happens
when two objects are incompatible or when a pairing is not defined, e.g.,
a SLAP Slider cannot be paired with a SLAP Knob. Users can release a
pairing by repeating the pairing gesture on two linked objects. Two cyan
halo flashes confirm the successful disconnection of the objects (Fig. 3.17c).
The connecting line and task-specific graphical representations disappear.

52 3 Translucent Controls on Tabletops: SLAP Widgets

 a) b)

 c) d)

Figure 3.17: Detection feedback and pairing mechanism of SLAP Widgets. a) A user places
a SLAP Knob on the surface. A pulsating blue halo around the control indicates that it is
detected by the table. In this moment, no specific function is assigned to the knob. b) The user
conducts a pairing gesture between the knob and a virtual movie object. For a short moment,
a green halo flashes around both objects, confirming the successful pairing. The knob is now
specialized to a jog wheel and updates its back projection. A line illustrates the connection
between knob and movie. The knob is ready for frame-by-frame browsing. c) By repeating
the gesture, both objects are “unpaired”. The connecting line and the knob’s back projection
disappear. A cyan halo flash confirms this action. d) The user tries to pair a knob with a
keypad. As this connection is not implemented, a red flash indicates the failed pairing.

Pairings between

same object types or

with multiple

objects are also

possible.

Besides simple 1 : 1 mappings, multiple widgets can be paired with a single
object (n : 1), and a single widget can be mapped to multiple objects
(1 : n). Also, pairings between virtual objects or between SLAP Widgets
are imaginable. This could be helpful for prototyping. For example, a
designer could create a virtual widget first and pair it with on-screen objects
before crafting a physical object. Also, a SLAP Widget could be used
to configure another one. For example, a two button keypad could be
associated with a knob in order to switch between jog wheel mode for
video navigation and menu mode for frame editing.

3.4 Interaction Design 53

3.4.1 Pairing Gestures

Pairing gestures

should be easy to

conduct and

reliable, without

interferences with

other tasks.

A suitable pairing gesture that interconnects physical widgets and on-screen
objects must fulfill several requirements. Since pairing is a frequent action,
it must be reliable and easy to conduct, but also unique enough that it
does not interfer with other interactions on the table. Furthermore, collo-
cated users could create multiple pairings simultaneously, which have to be
disambiguated. We implemented two different pairing gestures:

• Synchronous Double Tapping: Users double-tap next to a widget and
into the rectangle of the corresponding virtual object. Both taps
must be synchronous. A tap event is defined as a stationary finger
spot that lasts for a short time (< 0.2 s). Two taps are considered as
synchronous if they occur within 0.1 s.

• Synchronous Hold: Users concurrently hold down two fingers next
to a widget and within a virtual object. When both fingers are not
released for one second, pairing is triggered. The two hold gestures
are considered as synchronous if both touches begin within a time
interval of 0.1 s.

Both methods establish pairings without interfering much with other inter-
actions or pairings, because they require two synchronous gestures. How-
ever, during public demonstrations of the system, the Synchronous Hold
gesture turned out to be easier to conduct by users.

There are other potential pairing gestures that we did not implement. For
example:

• Dragging handles: All objects expose a set of pairing handles that
can be pulled out by dragging. Two objects are paired by dragging a
handle from one object to the other. The inverse gesture unpairs the
objects again.

• Pairing by proximity: If a SLAP Widget is moved close to a virtual
object, it is automatically paired. It remains paired until it is removed
from the table.

• Pie menu: If a SLAP Widget is placed on the surface, a pie menu
appears around the control, which shows all possible pairings with
other objects. Each pie item is spatially aligned into the direction
of the potential target object. Tapping a menu item establishes the
corresponding pairing. Tapping the resulting pairing line disconnects
the objects again.

Pairing and

unpairing could be

triggered by

different gestures.

In our implementation, a connection between two objects was disbanded by
just repeating the pairing gesture. Alternatively, a different gesture could
be employed for unpairing, e.g., by simply striking out the pairing line
(cf. Fig. 2.10 on page 24).

54 3 Translucent Controls on Tabletops: SLAP Widgets

0
1

23 4

5 67
8

9

a) b) c) d) e)

Figure 3.18: Main steps of image processing pipeline for detecting finger touches and markers.
A user placed five fingers and a knob on the surface. a) Background image. b) Raw source image.
c) Source image after background subtraction. d) Thresholding and connected components. e)
Final spot events. Axes of ellipses denote principal components.

3.5 Input Sensing

Finger touches and

markers expose

bright spots to the

table’s camera.

Video input is noisy

and distorted.

The camera in the table captures an infrared image of the table’s surface.
Finger touches and reflective markers—appearing as bright spots—are in-
terpreted as system input. The camera image is usually subject to noise,
and ambient IR light, such as indirect sunlight or other light sources, lowers
the contrast. Moveover, the camera’s lens induces radial distortion. This
section explains the tracking pipeline that extracts touch events from the
noisy input image, and how widgets and finger touches are recognized using
these events.

3.5.1 Tracking Pipeline

Background frame

cancels out ambient

light and reflections.

Our tracking pipeline is illustrated in Fig. 3.18. Before detecting objects
on the table, we capture a background frame Bg (Fig. 3.18a). This is an
image of the tabletop without any objects on the surface. It is used for
canceling out ambient light and reflections inside the table.

Tracking pipeline: Let I(Im,x) be the intensity value of an image Im at pixel position x =
(x, y). For each raw camera frame F (Fig. 3.18b), we detect spots by
applying the following steps:

1.Subtract

background

Subtract background to isolate input signal, yielding F′ (Fig. 3.18c):

I(F′,x) := I(F,x)− I(Bg,x).

2.Create thresholded

binary image

Create binary image F′′ by thresholding (Fig. 3.18d). All pixels
brighter than a certain value are considered as foreground (spots),
while all other pixels belong to the background:

I(F′′,x) :=

{
1 if I(F′,x) ≥ tB,

0 otherwise,

3.5 Input Sensing 55

where tB is a threshold specific to the setup.

3. Retrieve connected

components

Create a list of connected components in F′′ (Fig. 3.18d). Two pixels
belong to the same connected component if they are both foreground
pixels and 4-connected. Two pixels at (x, y) and (x′, y′), respectively,
are 4-connected if and only if

(x′, y′) ∈
{

(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)
}
.

4. Filter connected

components

Filter all connected components. If a component contains too few
(noise) or too many (large objects on the table, like user’s elbow)
pixels, remove it from list. Each remaining component is considered
as spot.

5. Compute principle

axes of all spots and

minimum oriented

bounding box

For all spots, compute the two principal axes. Assuming that the
spots are elliptical, this gives us the axes of these ellipses (Fig. 3.18e).
We retrieve these by conducting a Principal Component Analysis
(PCA) [Bishop, 2006, pp. 561–570] on all pixel positions in the re-
spective connected component. We compute a minimum oriented
bounding box along these axes that includes all pixels of the compo-
nent. Finally, we determine the axis length ratio, the ratio between
the length of the first and second principal axis. The oriented bound-
ing box is not necessarily optimal, but the resulting axis length ratio
helps to differentiate between spherical finger touches (≈ 1) and long
rectangular widget markers (� 1). This is crucial for the widget
detection (section 3.5.2).

GPU

implementation

could speed-up

detection and

increase robustness.

In order to detect fast movements on the surface, the implementation of
this algorithm must be as efficient as possible. Using our CPU-based imple-
mentation, we can detect spots with the frame rate of the camera (120 fps).
Yet, as the first steps of the algorithm are performed on a per-pixel level,
a GPU implementation using OpenCL3 or CUDA4 could speed-up the de-
tection and allow the incorporation of further filters that increase the ro-
bustness against noise. Note that if the ambient light changes drastically,
a new background frame must be acquired.

For each spot, we create a spot event that contains the following attributes:

• Location, equals the center of gravity (COG) of the corresponding
connected component. The location is expressed in GUI coordinate
space (see section 3.5.2).

• Radius, defined as half of the maximum diameter (x and y) of the
axis-aligned bounding box around the connected component.

• Main axis (x,y), the first principal axis resulting from the PCA. Note
that the second principal axis is perpendicular and is scaled version
of vector (-y, x).

3http://www.khronos.org/opencl/
4http://developer.nvidia.com/category/zone/cuda-zone

http://www.khronos.org/opencl/
http://developer.nvidia.com/category/zone/cuda-zone

56 3 Translucent Controls on Tabletops: SLAP Widgets

• Axis length ratio

• Type, if the axis length ratio is < 1.75, the spot is considered as
“default”, otherwise as “rectangle”.

Spot events are

tracked over time as

touch events.

If a user drags a virtual object across the table, we must be able to follow
the user’s trajectory even if other users interact simultaneously (and create
different spot events). Therefore, spots are converted to touch events that
are tracked over time. In addition to spot attributes, touch events contain
a timestamp, a phase type, and a unique ID that does not change until the
object (finger or marker) is released from the table. This necessitates that
we register spot events between two successive frames.

Predictive tracking

improves matching

of spots.

For a spot at position xi in the last frame, we first compute velocity
ẋi := ∇(xi) and acceleration ẍ := ∇(ẋi), where ∇ denotes the backward
difference over two frames. We then use these values to extrapolate a posi-
tion xi+1 for the current frame. If we find a spot event in this frame which
is close to the predicted position, it is associated with the previous touch
event. This is a very basic prediction. A predictive tracking filter using
a Kalman filter [Welch and Bishop, 1995] could be incorporated in future
iterations.

Touch events occur

in a began, moved

or ended phase.

In all, a touch event in the current frame i + 1 can exist in three different
phases:

• touchesBegan: This is a new touch on the tabletop. No spot in frame
i could be associated with this new spot.

• touchesMoved: The touch has been moved to a new position. There
is a corresponding spot in frame i.

• touchesEnded: The finger or object has been released from the table.
For a spot in the previous frame i, there is no corresponding spot in
the current frame i+ 1; the spot disappeared.

All non-footprint

touches are

considered as finger

input.

Within the set of touches, SLAP Widgets footprints are detected and
tracked. All touch events that are not associated with a widget are in-
terpreted as finger touches that allow users to interact with virtual objects
and to perform gestures.

3.5.1.1 Camera to GUI Mapping

Only subarea of

distorted camera

image is relevant.

The resolution that the camera captures the surface with (VGA, 640 ×
480) differs from the resolution of the projected GUI (XGA, 1024 × 768).
Furthermore, the camera lens induces radial distortion, and only a subarea
captures the surface. Designers create applications with a GUI coordinate

3.5 Input Sensing 57

Camera input space GUI spacea) b)

Figure 3.19: Mapping from camera to GUI space. a) The calibration process determines a
mapping from the radially distorted region of interest in the camera image to the rectangular
GUI. b) During calibration, the user subsequently touches points of a projected uniform grid.

system in mind, either in pixel or unified coordinates5. In order to map
camera coordinates to GUI space and to compensate for radial distortion
at the same time, we employ a We use homography

to map from camera

space to GUI space.

homography (Fig. 3.19a). This requires
the user to perform a one-time calibration process. Once calibrated, this
process need not be repeated until the camera configuration changes.

Camera calibration:

User touches

projected points to

define spline patch

control points for

GUI-to-camera

mapping.

The calibration procedure is shown in Fig. 3.19b. The software projects a
M × N uniform grid of dots onto the tabletop. In the beginning, the top
left dot is highlighted, and the user is asked to hold down his finger onto
this dot for 0.5 seconds. The software now stores the GUI position of the
dot and the corresponding position of the finger spot in camera coordinates.
This process is repeated for every dot in the grid. The result is a discrete
map

Γdiscrete : { 0

M − 1
· (GresX − 1),

1

M − 1
· (GresX − 1), ...,

M − 1

M − 1
· (GresX − 1)}

×{ 0

N − 1
· (GresY − 1),

1

N − 1
· (GresY − 1), ...,

N − 1

N − 1
· (GresY − 1)}

→ [0,CresX − 1]× [0,CresY − 1]

that maps a uniform set of GUI coordinates to camera coordinates, where
CresX × CresY is the camera resolution and GresX ×GresY denotes the GUI
resolution. To compute camera coordinates for GUI pixels between grid
points, we use a bicubic spline patch that interpolates Γdiscrete(i, j) ∀i ∈
{0, 1, ...,M − 1}, j ∈ {0, 1, ..., N − 1}. The resulting continuous function
that evaluates the spline patch is

Γ : [0,GresX − 1]× [0,GresY − 1] → [0,CresX − 1]× [0,CresY − 1].

Inverse mapping,

from camera to GUI,

is pre-computed and

stored in a look-up

map.

For every GUI pixel, we can now compute the corresponding position in
camera space. However, for mapping camera spots to GUI coordinates, we
need the inverse mapping

Γ−1 : [0,CresX − 1]× [0,CresY − 1] → [0,GresX − 1]× [0,GresY − 1].

5In unified coordinates, the 2D area of a GUI is addressed in a resolution-independent
coordinate space [0, 1]× [0, 1]. During rendering, these coordinates are mapped to actual
pixel positions.

58 3 Translucent Controls on Tabletops: SLAP Widgets

We create a discrete 2D look-up map that enables a fast mapping from
camera to GUI space:

Γ−1
discrete : {0, 1, ...,CresX − 1} × {0, 1, ...,CresY − 1}

→ [0,GresX − 1]× [0,GresY − 1].

This map is created as follows:

1. Initialize all pixels with (−1,−1).

2. Uniformly super-sample the spline patch Γ. For a single sample
Γ(x, y) = (x′, y′), store the original GUI coordinate (x, y) in the dis-
crete map at (bx′c, by′c).

The sampling density must be high enough so that no holes remain in the
inverse map. Note that this map is neither surjective nor injective. The
camera normally sees pixels outside the projection area; these pixels are
marked as (−1,−1) in the look-up table. Furthermore, multiple GUI coor-
dinates can map to a single camera pixel; especially, if the GUI resolution
is higher than the camera resolution.

Bilinear

interpolation in the

look-up map

improves accuracy.

After calibration, we can quickly map spot locations from camera to GUI

coordinates by a simple look-up in the Γ−1
discrete map. As touch locations are

computed as center of gravity of connected components, they can be placed
within pixels. Therefore, we employ bilinear interpolation when looking up
a GUI coordinate.

3.5.1.2 Camera Parameters

Camera parameters

must be chosen

carefully.

The camera parameters must be set to appropriate values that match the
specific table setup, ambient lighting, and application. For example, a long
exposure yields brighter and clearer spots, but it also increases motion blur
and decreases the maximum frame rate. Dim spots under short exposure
can be brightened with a higher gain, but this significantly increases camera
noise.

3.5.1.3 Receiving Touch Events

MultiTouch-

Framework provides

programming

interface for

multi-touch input.

Our touch detection is compiled into a framework, named MultiTouch-
Framework. Programmers who intend to process touch events from the
table hardware just have to include the framework in their project and im-
plement the MTTouching protocol6. According to the three touch phases,
the protocol contains three methods that the framework calls: When new
touches occur, when touches are moved, or when they disappear from the

6A protocol defines an interface to communicate with an unrelated class. In Java, this
concept is called interface.

3.5 Input Sensing 59

1 @protocol MTTouching

2 @optional

3 -(void)touchesBegan:(NSSet*)touches withEvent:(MTEvent*)event;

4 -(void)touchesMoved:(NSSet*)touches withEvent:(MTEvent*)event;

5 -(void)touchesEnded:(NSSet*)touches withEvent:(MTEvent*)event;

6 @end

Listing 3.1: MTTouching protocol.

surface (Listing 3.1). A set of touch events and an event object, containing
the timestamp, are assigned to each method call. Note that all methods
in the protocol are optional; programmers can choose which methods they
implement.

3.5.2 Widget Detection

Every footprint contains three kinds of markers (Fig. 3.8 on page 45):

• Three different kinds

of markers encode

type, numeric ID,

and state of each

SLAP Widget.

Type markers TM0, ...,TMα−1 identify the kind of widget, e.g.,
whether it is a knob or slider. Per definition, TM0 is always a “rect-
angle” marker (axis length ratio > 1.75). Furthermore, the distances
between the first two markers is the largest of all type marker dis-
tances in the footprint, i.e.,

‖TM0 − TM1‖ ≥ ‖TMr − TMs‖ ∀r, s ∈ {0, ...α− 1}.

This requirement makes sure that the local coordinate system of the
footprint is as stable as possible (see below).

• Identification markers ID0, ..., IDβ−1 encode a unique numeric ID.

• State markers SM0, ...,SMγ−1 represent the current state, e.g., to
which degree a knob is turned or whether a button is pushed.

Type and ID

markers are static

and stored in file.

State markers are

dynamic and

interpreted in

software.

Type and ID markers are static and are specified when the physical widget
is constructed. They are stored in a configuration file which is loaded
at start-up of the tabletop application. State markers are dynamic; they
can move and appear or disappear at run-time. Their interpretation is
specified in software, i.e., each widget employs an own class to retrieve its
state from its dynamic markers (see section 3.6.2). All markers contain
the same properties as spot events (location, radius, main axis, axis length
ratio, and type). They are stored in a footprint coordinate system that the
graphical output refers to.

In the following, function p(·) denotes the position of a marker or touch
in its respective coordinate system. p(·)x and p(·)y represent the x and y
component, respectively.

60 3 Translucent Controls on Tabletops: SLAP Widgets

a) b)

TM0

TM1

c)

✔ 𐄂
Figure 3.20: Principal axis angle deviation check. a) Sample footprint of a widget. The angle
between the principal axis (green) of the first type marker TM0 and the vector p(TM1)−p(TM0)
(blue) is tested. b-c) Sample touch clouds that are checked against footprint. Again, the vector
between the assumed first two type markers p(Tj)−p(Ti) (red) form an angle with the principle
axis of Ti (green). If the difference between this angle and the footprint’s angle is below a certain
threshold, the test is passed (b). Otherwise, the touch cloud is not part of the widget and is
rejected by the detection algorithm (c).

Detection The identification of widgets that have been placed on the
tabletop equals the problem of finding n point clouds, the alignment of
type markers of all n widget footprints, in the point cloud of current touch
events T0, ..., Tδ. For every footprint, our algorithm proceeds as follows:

1.For each footprint,

project all marker

positions to local

coordinate system.

The static type markers are projected into a local coordinate system,
in which p(TM0) is the origin, p(TM1)− p(TM0) the x-axis, and the
y-axis is perpendicular. The affine transform matrix that maps from
local to footprint coordinates reads

A :=

 p(TM1)x − p(TM0)x −p(TM1)y + p(TM0)y p(TM0)x
p(TM1)y − p(TM0)y p(TM1)x − p(TM0)x p(TM0)y

0 0 1

 .

Each static marker position is then transformed to local coordinates
by

A−1 · p(TMi) ∀i ∈ {0, ..., α− 1}.

Note that this projection has to be performed only on start-up after
the static footprint for each widget has been loaded.

2.Find two touches

matching the first

two static markers

of footprint.

Within the point cloud of touches, the algorithm searches for a pair
(Ti, Tj) where Ti is a“rectangle”touch, and the distance between both
touches is close to the distance between TM0 and TM1, i.e.,∣∣∣ ‖p(Ti)− p(Tj)‖ − ‖p(TM0)− p(TM1)‖

∣∣∣ < εD

where εD is a distance threshold.

3.5 Input Sensing 61

To avoid recognition of incorrect widgets at an early stage, we perform
a quick check on the two pairs: The angle between the principle axis of
the “rectangle” marker TM0 and the vector p(TM1)− p(TM0) must
be close to the corresponding angle defined by marker Ti and the
vector p(Tj)− p(Ti) (Fig. 3.20).

3. Define local

coordinate system

from found touches.

Analogously to step 1, the two touches Ti and Tj span a local coor-
dinate system, where p(Ti) is the origin and p(Tj) − p(Ti) denotes
the x-axis, and the y-axis is orthogonal to the x-axis. This resulting
transform matrix reads

B :=

 p(Tj)x − p(Ti)x −p(Tj)y + p(Ti)y p(Ti)x
p(Tj)y − p(Ti)y p(Tj)x − p(Ti)x p(Ti)y

0 0 1

 .

4. Find corresponding

touches for

remaining static

markers.

For every type marker TMk, ∀k ≥ 2 in the footprint, the algorithm
now tries to find a corresponding touch Tl 6= Ti, Tj that matches the
marker’s position in local coordinates:

‖A−1 · p(TMk)−B−1 · p(Tl)‖ < εD.

We reject every pair (TMk, Tl) if type of marker and touch differ or if
their radii vary too much.

If a touch is found for each marker, the widget is detected. Other-
wise, the footprint does not match the set of touch events, and the
algorithm proceeds with the next footprint.

5. Compute (graphical)

mapping from local

footprint

coordinates to

global coordinates.

If the widget is detected, we compute the affine transform G that
maps from footprint coordinates to global tabletop coordinates. Ev-
ery graphical output of the widget is transformed using this map. We
determine G by computing an affine matrix that registers the ordered
point cloud of type markers (p(TM0),p(TM1), ...,p(TMα−1))) with
the point cloud of corresponding touches (p(Tk0),p(Tk1), ...,p(Tkα−1))
by minimizing the sum of squared distances

α−1∑
l=0

∥∥∥G · p(TMl)− p(Tkl)
∥∥∥2
→ min

where kl denotes the index of the touch that corresponds to marker
TMl with k0 := i (first touch) and k1 := j (second touch).

Equality tests are

relaxed spatially and

temporally to cope

with noise.

Note that, due to sensor noise and sampling issues, we never check for
equality of values like position or radius, but use a difference threshold
instead. Furthermore, it is unlikely that all markers of a widget become
visible in a single frame. Our algorithm, therefore, considers all touch events
for widget detection which were created within the last second.

Early culling of

irrelevant marks

improves run-time.

The detection algorithm has a complexity of O(f(t2 + mt)), where f is
the number of widgets or footprints, m denotes the maximum number of
markers in every footprint, and t is the number of detected touches. Early
culling of non-“rectangle” touches and those that are older than one second

62 3 Translucent Controls on Tabletops: SLAP Widgets

speeds up the algorithm in every frame.Spatial search

structure can reduce

complexity.

The complexity of the widget de-
tection can also be reduced toO(f(t·log(t)+m·log(t))) by employing spatial
search structures, such as quad trees or k-d trees. These would speed up
the search for surrounding marker correspondences (step 2 and 4). How-
ever, maintaining the search structure in every frame requires additional
memory and time.

IdentificationPresence and

absence of ID

markers maps to

bits in a widget ID.

When the widget is detected, we derive a numeric ID from
the identification markers ID0, ..., IDβ−1. In same way as step 4 of the
widget detection, we search for touch events that match the position of
ID0, ..., IDβ−1 in local coordinates. The identification number then reads

WidgetID :=

β−1∑
i=0

exist(IDi) · 2i

with

exist(IDi) =

{
1 if touch close to IDi exists,

0 if no corresponding touch event is found.

That is, each significant bit in the widget ID encodes whether the
corresponding identification marker was attached to the physical widget
or not. An example encoding the ID 2 (0 + 2) is shown in Fig. 3.8 on page
45. Note that n identification markers allow to distinguish 2n widgets of
the same type.

Since it is possible that a widget type is recognized before all identification
markers have appeared in the camera, we slightly delay the widget iden-
tification by a few frames. Once a widget is detected and identified, all
touches involved in this process are blocked; they will neither be used for
widget detection, nor can they be interpreted as finger input anymore. The
widget is now ready to use for interaction.

StateEvery widget uses

an individual

strategy to interpret

state.

All touch events that occur within the area of the SLAP Widget are
used to determine the internal state of the control. As described in section
3.3.3, every widget applies its own strategy to map touch positions in local
coordinates to a specific event or value. Therefore, this detection step is
implemented in individual classes for each widget (see section 3.6).

MovingWhen moving a

widget, coordinate

mappings are

updated.

If a user moves a detected SLAP Widget across the table, the
touches corresponding to type markers change their locations accordingly.
To keep the graphics of the widget aligned, our software computes an up-
dated affine transform by repeating step 5 of the detection algorithm. How-
ever, in order to avoid jittering, the transform G is only updated if the
position or rotation of the touches have changed significantly.

RemovingUpon removal,

widget graphics are

hidden. If detected

later, previous state

is restored.

In case the user removes a widget from the table, at least one
touch event associated with a type markers is converted into a touchesEnded
event. In this case, the widget and all connected pairing lines are hidden.
Furthermore, all touch events that are linked to the control are unblocked.
When the widget is detected again later, its internal state and graphics are

3.6 Software Architecture 63

MultiTouch
Framework

Display

Touch
Detection

Agent

Application

Gesture
Detection

Direct Manipulation
Processor

Rendering
Utility Library

creates visual
representation of
detected widgets

transforms

triggers pairings

sends touch
events

creates/removes
GUI objects

notifies about
detected widgets,
gestures, pairings,
touch events

OpenGL

SLAP UITK

IR Camera

Widget
Detection

sends
raw input frame

flick gesture

render
themselves

renders
table
background

sends
output frame

GUI
Objects

Hardware

Hardware
Abstraction

Toolkit

Application
Design

SLAP
Widgets

FirewireDVI

Figure 3.21: Software architecture of SLAP Framework.

restored. Note that the widget’s configuration, including all pairings, is
maintained even when the widget is removed. This allows users to quickly
remove a control if the space is temporarily required for a different task.
Afterwards, the control can be placed on the table again, and the previous
task can be continued without further effort.

3.6 Software Architecture

Our tabletop applications and the interaction with SLAP Widgets is han-
dled by the SLAP Framework. It provides a layered software architec-
ture that hides the underlying table hardware from the program designer.

64 3 Translucent Controls on Tabletops: SLAP Widgets

The SLAP Framework is written in Objective-C with support of the Cocoa
framework7. We employ OpenGL to render graphics on the tabletop.

SLAP Framework

provides layered

software architecture

that hides

underlying hardware.

Fig. 3.21 shows the different abstraction layers of the SLAP Framework.
The input and output hardware represents the lowest level (section 3.3.1).
The touch detection agent (section 3.5.1) converts the camera’s video
stream to touch events that are sent via the MultiTouchFramework to the
core of our framework, the SLAP User Interface Toolkit (SLAP UITK).
This toolkit provides a basic set of tabletop objects, such as images, videos,
and text boxes, as well as basic operations to manipulate them. Users can
translate, scale, move, or flick objects as described in section 2.2.

The SLAP UITK

detects widgets,

handles table

interaction, and

provides a

programming

interface.

The SLAP UITK also recognizes SLAP Widgets (section 3.5.2) and gestures
(section 3.6.2.4). It generates and maintains visual representations of all
detected SLAP Widgets. It also handles the pairing mechanism as well
as the communication between widgets and virtual objects. Finally, it is
responsible for rendering the graphical output. A Rendering Utility Library
provides a set of graphical operations, such as drawing shapes and images.
These operations are translated into OpenGL commands that are, in the
end, send to the graphics card and shown on the surface. An application
layer on top of the SLAP UITK provides a simple and extensible interface
for programmers to develop SLAP applications. The application creates
and controls the virtual objects that are displayed on the table. It can
also react on various notifications from the UITK, e.g., when widgets are
detected or objects are paired.

While a full documentation of the framework is beyond the scope of this
thesis, we will now describe the basic concepts that enable programmers to
write SLAP applications and to add new functionality.

3.6.1 Writing SLAP Applications

The SLAP Framework is compiled into a single framework that program-
mers can include in their project. Listing 3.2 shows a simple “Hello world!”
application.

Writing a SLAP program basically requires three steps:

• Include the framework header (line 1).

• Initialize the framework (line 6). createFullscreenInterface creates
a fullscreen view, reserves memory for all data structures, and initial-
izes the detection algorithms.

7http://developer.apple.com/technologies/mac/cocoa.html

http://developer.apple.com/technologies/mac/cocoa.html

3.6 Software Architecture 65

1 #import <SLAPFrameworkGL/SLAPUITK.h>

2

3 - (void) awakeFromNib // Called on start-up

4 {

5 // Create full-screen interface

6 SLAPUITK* uitk = [SLAPUITK createFullscreenInterface];

7

8 // Create text box

9 NSRect rect = NSMakeRect(100,100,400,200);

10 SGOTextBox* textBox =

11 [uitk addTextWithRect:rect rotation:45 inParent:nil];

12 [textBox setString:@"Hello world!"];

13 }

Listing 3.2: SLAP “Hello world” program.

• Create all required virtual on-screen objects, such as the text-box in
our sample (lines 9–12). For the creation of a virtual object, a target
rectangle, an initial rotation, and its parent object is required. The
latter parameter allows programmers to arrange virtual objects in a
hierarchy.

Programmer

specifies objects,

SLAP Framework

takes care of table

interaction.

Our sample program is already fully operational: It renders the graphics,
detects finger touches and widgets, recognizes gestures, and handles pair-
ings between objects. Users can place any of the standard widgets on the
tabletop and edit the text box.

Delegate methods

allow reaction to

events.

If developers want to react on user input on the table or influence the graph-
ical output, we allow them to implement delegate methods8. An example is
shown in Listing 3.3.

In lines 10 and 11, the programmer specifies that the application class
implements delegate methods which receive events from the UITK. An
example is the method object:hasBeenPairedWith: (lines 25–29). Every
time two objects are paired, the UITK calls this method, which, in this
case, only outputs this event to the console. Programmers can also receive
events from the view (line 10). In our sample, the method drawBackground

is implemented. It is called before the SLAP UITK renders objects and,
e.g., allows programmers to draw a “wallpaper” texture behind all other
graphics (lines 15–22).

Tables 3.1 and 3.2 list the methods of two protocols that programmers
can implement to react on events or to perform drawing, respectively. All
delegate methods are optional; the UITK verifies that a delegate method
is implemented before calling it. Note that a SLAP application can also
process raw touch events by using methods from the MTTouching protocol.

8An Objective-C delegate is an object containing methods that are called from differ-
ent objects to perform specific tasks. A delegate method can also be considered as the
object-oriented version of a callback.

66 3 Translucent Controls on Tabletops: SLAP Widgets

1 #import <SLAPFrameworkGL/SLAPUITK.h>

2

3 - (void) awakeFromNib

4 {

5 SLAPUITK* uitk = [SLAPUITK createFullscreenInterface];

6

7 // Create some virtual objects ...

8

9 // Set delegate

10 [uitk setDelegate:self];

11 [uitk.view setDelegate:self];

12 }

13

14 // Draw background

15 - (void) drawBackground

16 {

17 NSRect rect = [[SLAPUITK sharedUITK] canvasRect];

18

19 duSetColorRGB(1, 1, 1); // white color tone

20 duDrawRect(0, 0, rect.size.width, rect.size.height, Stretch, Stretch,

21 &backgroundTexture);

22 }

23

24 // React on pairing

25 - (void) object:(SLAPAlignableObject*) obj1

26 hasBeenPairedWith:(SLAPAlignableObject*) obj2

27 {

28 NSLog(@"Object %@ paired with object %@.", obj1, obj2);

29 }

Listing 3.3: Sample SLAP program that uses delegates to react on events and to render
additional graphics.

Delegate Description

widgetPutOnTable: Widget detected on table
widgetMoved: Widget moved on table
widgetRemovedFromTable: Widget removed from table
widgetsUpdated Status of widgets on table changed

object:willBePairedWith: One object will be paired with another object
object:willBeUnpairedFrom: One object will be unpaired from another object
object:hasBeenPairedWith: One object was paired with another object
object:hasBeenUnpairedFrom: Object was unpaired from another one
pairingDeniedBetweenObject:andObject: Pairing between two objects is denied

touchesBegan:withEvent: New set of touches on tabletop
touchesMoved:withEvent: Set of touches moved
touchesEnded:withEvent: Set of touch trajectories ended on tabletop

Table 3.1: Event delegates of SLAPUITKDelegate protocol.

Delegate Description

drawBackground Called before tabletop objects are drawn.
drawForeground Called after tabletop objects are drawn.

Table 3.2: Rendering delegates of SLAPViewDelegate protocol.

3.6 Software Architecture 67

SLAPAlignableObject

SGORect

SGOText

SGOImage

SGOMovie

SGOButton

SLAPKeyWidget

SLAPKeyboard

SLAPTwoKeypad

SLAPThreeKeypad

SLAPSlider

SLAPKnob

SLAPGUIObject SLAPWidget

Figure 3.22: Class hierarchy of table objects in SLAP Framework.

3.6.2 Extending the Framework

We implemented a basic set of SLAP Widgets and virtual objects to prove
our concept and to conduct user studies. However, more complex tasks
might require additional UI elements. We constructed the SLAP Frame-
work in a modular way so that it enables designers to create new controls
and on-screen objects.

Fig. 3.22 shows the class hierarchy of basic objects in the SLAP UITK.
The class SLAPAlignableObject provides functions to show 2D objects on
the tabletop. It contains basic attributes like position, size, and affine trans-
form, as well as function stubs for rendering and pairing. In the following,
we describe how to add new virtual objects and SLAP Widgets. Both are
represented by specializations of the class SLAPAlignableObject.

3.6.2.1 Virtual Objects

The SLAP UITK provides basic objects for table applications: Simple rect-
angles (SGORect), text fields (SGOText), images (SGOImage), movie players
(SGOMovie), and on-screen buttons (SGOButton). New virtual objects

are sub-classed from

SLAPGUIObject.

Every virtual object is im-
plemented in a sub-class from SLAPGUIObject. Thereby, the object provides
basic finger interaction; users can move, scale or rotate it, and even flick it

68 3 Translucent Controls on Tabletops: SLAP Widgets

1 // Init the object

2 -(id) initWithFrame:(NSRect)frame

3 onGUIObject:(SLAPGUIObject*) parent;

4 {

5 self = [super initWithFrame:frame onGUIObject:parent];

6 if(self)

7 self.color = [NSColor redColor]; // Red is default color

8

9 return self;

10 }

11

12 // Draw filled rectangle

13 - (void) draw

14 {

15 duSetColor(self.color);

16 duDrawRect(0, 0, self.size.width, self.size.height, Fill);

17 }

Listing 3.4: Example implementation of a virtual object.

around. To create an own object, SLAPGUIObject (or one of its sub-classes)
must be derived, and only few methods must be overwritten:

•Initialization,

drawing, and hit

tests (for

non-rectangular

objects) must be

overwritten.

initWithFrame:onGUIObject: initializes the object and custom at-
tributes. Listing 3.4 shows the initialization of a simple rectangular
object (lines 2-10).

• draw renders the content of the object (lines 13-17). Programmers can
employ OpenGL commands or functions from our Rendering Utility
Library (prefix “du”) to render simple shapes and textures. Note that
the object is rendered in local coordinates. The programmer does not
care how the object is transformed on the table surface, because this
is handled by framework.

• If the object does not have a rectangular shape, the methods isHit:

and isInPairingArea: should be overwritten. For a given global co-
ordinate, they determine whether or not this point is within the area
of the object and within the aura that is considered for pairing ges-
tures, respectively. This makes sure that touch events are only sent
to an object if they belong to its area.

SLAPGUIObject complies to the MTTouching protocol, which allows program-
mers to interpret touch events that occur inside the virtual object. The
SLAP UITK sends every touch, whose location passes the hit test (isHit:)
of an object, to the respective touch method of that object.

Listing 3.5 shows an example of a simple horizontal slider. Every time a
spot appears in the rectangle of the control (line 7), its location is mapped to
local coordinates, and a relative knob position between 0 and 1 is computed
(line 13). The method also captures all touch events that it receives (line

3.6 Software Architecture 69

1 // Touches appear

2 -(void) touchesBegan:(NSMutableSet*)touches

3 withEvent:(MTEvent *)event;

4 {

5 [self processTouchesByChildren:touches withEvent:event];

6

7 if([touches count] >= 1)

8 {

9 MTTouch* touch = [touches objectAtIndex:0];

10 NSPoint ptLocal =

11 [self pointInLocalCoordinates:touch.location];

12

13 self.sliderPos = ptLocal.x / self.size.width;

14

15 [[SLAPUITK sharedUITK] captureTouch:touch

16 forGUIObject:self];

17 [touches removeObject:touch];

18 }

19 }

20

21 // Touches disappear

22 -(void) touchesEnded:(NSMutableSet*)touches

23 withEvent:(MTEvent *)event;

24 {

25 [self processTouchesByChildren:touches withEvent:event];

26

27 for(MTTouch* touch in touches)

28 [[SLAPUITK sharedUITK] uncaptureTouch:touch];

29 [touches removeAllObjects];

30 }

Listing 3.5: Touch event interpretation of a virtual slider.

15–16). This makes sure that the button receives the touchesEnded event,
even if the user drags a touch outside the slider’s area.

Virtual objects

support nested

hierarchies.

SLAPGUIObject also supports nested hierarchies of virtual objects. By call-
ing method processTouchesByChildren:withEvent: (lines 5 and 25), touch
events are first sent to the topmost child object under the touch position.
If a child object uses a touch, it deletes it from the touches set (lines 17 and
29). Thus, only the remaining touches that belong to the parent object are
actually processed by it.

3.6.2.2 SLAP Widgets

Parts of SLAP

Widget are created

by laser cutting

acrylic or by casting

silicone.

The development of a new SLAP Widget usually begins in with a construc-
tion in a vector-based graphics program. When the design is complete, all
parts are cut out from an acrylic plate using a laser cutter. Soft components
like the key pads’ buttons are cast in silicone, using molds made of acrylic.
Other parts like bearings or springs are bought separately. Then, the con-
trol can be assembled, and footprint markers are glued to the bottom.

70 3 Translucent Controls on Tabletops: SLAP Widgets

1 -(void) touchesUpdated

2 {

3 if(CFArrayGetCount(self.touches) > 0)

4 {

5 // Retrieve first touch

6 MTTouch* touch = (MTTouch*) CFArrayGetValueAtIndex

7 (self.touches, 0);

8

9 // Compute slider position from first touch

10 NSPoint ptLocal =

11 [self pointInLocalCoordinates:touch.location];

12 self.sliderPos = ptLocal.x / self.size.width;

13 }

14 }

Listing 3.6: Touch event interpretation of a physical slider.

When specifying the footprint, special consideration is needed to generate
an unambiguous pattern that does not interfere with existing widgets. Af-
ter that, the widget is placed on the tabletop, and a special application,
SLAPFootprintGenerator, captures the footprint.

New widget classes

are sub-classed from

SLAPWidget.

Once a control is built and its footprint is acquired, a new class must
be derived from SLAPWidget. The class is responsible for rendering the
back projected graphics, to interpret and store the internal state from the
footprint, and to communicate with paired objects on the table. In a similar
way as virtual objects, only few methods have to be overwritten:

•Initialization,

drawing, and hit

tests (for widgets

with non-rectangular

bottom) must be

overwritten.

initWithPosition: initializes the object, the size of its graphical rep-
resentation, and custom attributes.

• draw renders the back projection of the object in local coordinates.

• Analogously to virtual objects, the two hit tests isHit: and isIn-

PairingArea: must be overwritten for non-rectangle widgets, such as
the knob.

A widget’s state depends on the arrangement of touches within the area it
covers. The SLAP UITK keeps track of all touches that belong to a certain
widget. As soon as touches appear, move, or disappear within the area
of the widget, the UITK updates the list of touches for that widget and
calls the method touchesUpdated. Each widget overwrites this function to
determine its current state. An example of a simple physical slider is shown
in Listing 3.6. We deliberately reduced a widget’s touch interpretation to
a single method, because widget designers are usually not interested in the
phase of touch events but only in its positions. Of course, the phase can be
accessed using the phase attribute of the touch event.

New widgets are

registered in UITK.

To ensure that a widget is detected by the UITK, it must be registered
using registerWidgetClass. For example,

3.6 Software Architecture 71

[[SLAPUITK sharedUITK] registerWidgetClass:[MySLAPSlider Class]]

registers the class MySLAPSlider. From now on, the UITK will detect the
widget when it is placed on the table.

If a widget contains keys only, like the keyboard or the keypads, it can be
derived from class SLAPKeyWidget. It provides basic functions to create and
update key layouts and to detect key strokes.

3.6.2.3 Inter-Object Communication

After pairing

gesture, each object

is requested whether

it is pairable with

the other one.

Every time a user tries to pair two objects on the surface, the UITK “asks”
each object whether it can be linked to the other one. It calls the method
canPairWith:, which is inherited from SLAPAlignableObject, for both ob-
jects with the respective other object as parameter. Only if both objects
return “yes”, the objects are connected.

After agreement to

pair, connected

objects configure

each other.

After pairing, the UITK calls method pairedWith: of both objects. Objects
can now configure each other. Most commonly, virtual objects configure the
SLAP Widgets that they are connected to. For example, remember that a
SLAP Knob can switch between multiple modes depending on the object it
is connected to. If two objects are unpaired, their methods unpairedFrom:

are called.

A simple example of a movie player is shown in Listing 3.7. The player can
be paired with sliders and knobs. If paired with a knob, the knob is switched
to jog wheel mode. When pairing it with a slider, the slider is initialized
to create values between 0 and 1. An object must always consider that the
target object might be paired with other ones already. For simplicity, our
example movie player only agrees to pair with objects that do not have any
associations yet (line 6).

When a SLAP Widget is operated, it sends events to all objects it is paired
with. Two event types are possible:

• A SLAP Widget can

either send

command or value

events.

Command events are produced when a button is pushed or an item
in a knob menu is selected. They usually trigger actions. Each event
contains a command ID.

• Value events set continuous values. SLAP Sliders and SLAP Knobs in
value mode send these kinds of events when they are moved or turned,
respectively. Value events contain an ID and a real number, which
is usually mapped from the control’s state to a programmer-defined
range.

A virtual object class must implement protocol SLAPCommandReceiver or
SLAPValueReceiver to be able to receive command or value events, respec-

72 3 Translucent Controls on Tabletops: SLAP Widgets

1 - (BOOL) canPairWith:(SLAPAlignableObject*) object

2 {

3 // Movie player can be paired with sliders and knobs

4 return ([object isKindOfClass:[SLAPSlider class]] ||

5 [object isKindOfClass:[SLAPKnob class]]) &&

6 [object.targets count] == 0;

7 }

8

9 - (void) pairedWith:(SLAPAlignableObject*) object

10 {

11 // If we pair with a knob, switch it to jog wheel mode

12 if([object isKindOfClass:[SLAPKnob class]])

13 {

14 SLAPKnob* knob = (SLAPKnob*) object;

15 knob.mode = [SLAPKnobModeJogWheel jogWheelMode];

16 }

17 // If it’s a alider, set its range

18 else if([object isKindOfClass:[SLAPSlider class]])

19 {

20 SLAPSlider* slider = (SLAPSlider*)object;

21 slider.sliderId = ID_SLIDER_MOVIE_POSITION;

22 slider.minValue = 0;

23 slider.maxValue = [self.movie length];

24 slider.value = 0;

25 }

26 }

Listing 3.7: Pairing protocol of simple movie object.

1 @protocol SLAPCommandReceiver

2 -(void) executeCommand:(int) commandName

3 fromSource:(id) source;

4 @end

5

6 @protocol SLAPValueReceiver

7 -(void) setValue:(float) value

8 withId:(int) id

9 fromSource:(SLAPWidget*) source;

10 @end

Listing 3.8: Protocols for receiving events from widgets.

tively. These protocols are shown in Listing 3.8. Every event method also
contains a parameter that points to the sending widget.

An example interaction protocol between a movie object and a SLAP Key-
pad is illustrated in Fig. 3.23.

3.6.2.4 Gesture Detection

Gestures provide a rich input channel that enables users to trigger actions
without the need for menu structures (cf. section 2.2.2 on page 23). The

3.6 Software Architecture 73

User conducts pairing gesture

 Can pair with SGOMovie?

 Can pair with SLAPThreeKeyPad?

 Yes.

 Yes.

 Set image for key 1

 Set image for key 2

 Set image for key 3

User pressed key

 Key 1 pressed

User pressed key

 Key 2 pressed

 Set image for key 2

Movie object
(SGOMovie)

Keypad with 3 buttons
(SLAPThreeKeypad)

Selects
next video

Starts video
playback

Agreement

Configuration

Interaction

Figure 3.23: Example interaction protocol between a virtual movie object
and a SLAP Keypad. Note that the movie dynamically updates the labels
of the keypad when playback has started.

74 3 Translucent Controls on Tabletops: SLAP Widgets

SLAP FrameworkSLAP Framework

contains extendable

gesture detection

engine.

contains a gesture detection engine that processes touch
events and matches them with a list of registered gestures. By default,
the framework supports the aforementioned pairing gestures (section 3.4.1)
and a flicking gesture for quickly moving objects to distant locations on
the table.

Gestures are derived

from Gesture class

and can receive

touch, path, or time

events.

To implement a new gesture, a programmer creates a class derived from
class Gesture. He then has to implement at least one of three handler
protocols:

• GestureTouchHandler receives regular touch events of the MTTouching

protocol (Listing 3.1).

• GesturePathHandler receives touch trajectories, i.e., the list of touch
positions between a touchesBegan event and its corresponding touch-
esEnded event. All gestures that involve strokes and paths use this
protocol.

• GestureTimerHandler receives a timing event every 10 ms. Gestures
that rely on timings, like the pairing gestures, implement this proto-
col.

Gesture handling is

separated into three

protocols due to

performance

reasons.

The gesture detection engine distributes touch events to each gesture accor-
ding to the protocols it implements. We intentionally chose to employ three
different protocols in order to optimize for time and space consumption.
For example, touch trajectories are only captured if at least a single ges-
ture conforms to the GesturePathHandler protocol. Furthermore, they are
only stored once for all gestures that use them. Within these handlers, the
gesture is detected according to certain heuristics. For example, a “closed
path” gesture is defined by a trajectory whose start and end point are close
to each other.

Detected gestures

call delegate

method.

To activate a new gesture, it is added to the observer list of the gesture
detector. Furthermore, the developer must specify a delegate that imple-
ments the GestureDelegate protocol. When a gesture is detected, it sends
an event to this delegate. Listing 3.9 shows an example. The program first
creates a gesture object that is able to detect circular strokes drawn on
the table (line 4). It is then added to the gesture detection engine (line 7).
All gesture events are processed by the handler gestureExecuted:withInfo:
(lines 12-24). It receives a pointer to the gesture object that was detected
as well as a dictionary with further information, such as start and end point
of the trajectory. Note that the handler pipes default events, e.g., pairing
gestures, to the SLAP UITK (lines 22).

3.7 Usage Scenarios

SLAP Widgets are helpful for all tabletop tasks that require eyes-free trig-
gering of actions or precise setting of continuous parameters. Thanks to

3.7 Usage Scenarios 75

1 - (void) initGestures

2 {

3 GestureDetector* gd = [[SLAPUITK sharedUITK] gestureDetector];

4 Gesture* circleGesture = [[CircleGesture alloc] init];

5

6 [gd setDelegate:self];

7 [gd observeGesture:circleGesture];

8

9 [circleGesture release];

10 }

11

12 - (void) gestureExecuted:(Gesture*) gesture withInfo:(NSDictionary*) info

13 {

14 if([gesture isKindOfClass:[CircleGesture class]])

15 {

16 // Circle gesture detected

17 NSLog(@"Circle drawn.")

18 }

19 else

20 {

21 // This seems to be a default gesture

22 [[SLAPUITK sharedUITK] handleDefaultGesture:gesture withInfo:info];

23 }

24 }

Listing 3.9: Example program that reacts on a gesture.

Figure 3.24: Video annotation scenario. Left: User browses and selects video via direct
manipulation. Right: User annotates a frame in a user test video using SLAP Widgets.

the use of back projection, the controls are versatile, and allow users to
apply our basic set of widgets to various applications. In the following,
we describe usage scenarios that combine direct manipulation of on-screen
objects with the ad hoc use of SLAP Widgets.

3.7.1 Video Ethnography

This scenario shows the use of SLAP Widgets in a video ethnography sce-
nario where a user annotates points of interest in a video (Fig. 3.24).

76 3 Translucent Controls on Tabletops: SLAP Widgets

In the video

ethnography

scenario, SLAP

Widgets support

video navigation and

frame annotation.

After conducting a user test, Alice wants to analyze and annotate the video
footage that she has captured about participants interacting with a novel
mobile application. She has captured the videos using a digital camera that
saved all files on an SD card. Alice approaches the table and plugs the SD
card into an embedded reader device. The table now loads all video files
from the card and displays previews of them in a horizontal dock. Alice
browses to the video of the latest user test by dragging the dock to the left.
She then double-taps the video she wants to annotate. The video browser
fades out, and the preview of the selected video scales up to a video player.
The table also shows a time-line that displays user-defined bookmarks. The
application is now in annotation mode.

Alice takes a SLAP Slider and a SLAP Knob from the rim of the table and
pairs them with a video object. She also pairs a two button keypad with the
video. The keypad shows buttons to start/pause and stop the video. Alice
remembers that the participant made a relevant observation in the middle
of the test. She drags the slider to the middle and presses “Play” on the
keypad to start the video. She watches the video until the participant says:
“It’s frustrating that I do not get haptic feedback here”. Alice presses “Stop”
on the keypad and uses the SLAP Knob in jog wheel mode to navigate back
to the moment the user started his statement. She then grabs a SLAP
Keyboard, pairs it with the video, and enters: “Participant: Lack of haptic
feedback frustating”. This annotation is now associated with the frame:
The text appears at the top of the frame, and a bookmark is shown in the
timeline. Also, an on-screen button appears next to the statement that
allows deleting the bookmark.

Alice continues her work until all relevant points in the video are annotated.
She later closes the annotation mode by double-tapping the video again and
processes other user test videos. When she is done, she removes all widgets
and unplugs the SD cards. The table’s surface turns black.

3.7.2 Collaborative Image Selection and Editing

In the collaborative

image selection and

editing scenario,

SLAP Widgets

augment parallel

subtasks.

Selecting and editing images for a daily newspaper is a crucial process that
must be conducted in very limited time. In the digital age, the selection and
cropping process is often still entirely paper-based. An employee usually
prints out all pictures that are related to a story and aligns them on a table.
In a quick meeting, an experienced editor culls the images, chooses the ones
that will be printed, and manually crops them by folding. After that, an
employee digitally crops the images and places them into the design. A
digital scenario could look as follows (Fig. 3.25).

Chris, editor of the “Daily HCI”, enters the room and approaches the SLAP
Table. Doreen, the graphical designer, stands at the opposite side of the
table. The five stories of the current issue are listed on the surface. Chris
clicks on “SLAP Widgets: The Future of Surface Computing?”. At his side
of the table, the application now shows all images related to the topic in a

3.7 Usage Scenarios 77

Figure 3.25: Collaborative image selection and editing by combining di-
rect manipulation and SLAP Widgets.

grid. As there are more photos than could be shown at once, the application
distributes the photos on multiple pages. Chris pairs a SLAP Knob with
the photo grid for scrolling the viewport of the photo grid. He browses
through the pictures and decides that a photo containing a user operating a
knob while smiling should be part of the front page. He taps on the photo.
A green frame appears around it, indicating that it is selected for further
editing. Then, it scales up and moves over to Doreen’s side. While Chris
continues searching for interesting photos, Doreen starts to edit the selected
one.

The selected photo is framed within a crop rectangle at Doreen’s side. Us-
ing direct manipulation, she can now scale, shift, and rotate the photo. The
crop rectangle is stationary; it denotes the area of the photo after cropping.
Doreen decides that the colors need some improvements. She pairs a three
button keypad with the photo and clicks on the icon for “Auto color”, trig-
gering a pre-adjustment of the colors. She then associates a SLAP Knob
with the image. The knob is in “menu mode” and shows various options to
change image properties. Doreen selects “Saturation” and pushes the knob.
She then adjusts this property with the knob, which is now in value mode.
She pushes the knob again to return to the menu. In the following, she
changes further parameters until she is contented with the image quality.
Doreen performs a flick gesture on the image, pointing into Chris’ direc-
tion. This indicates that the editing is done. The cropped and modified
image moves back to its position in the photo grid. The next photo that
Chris has selected appears in her area.

78 3 Translucent Controls on Tabletops: SLAP Widgets

In the meantime, Chris continues to select other photos. He also deletes
those that will not be part of the issue by using a strike out gesture. When
he is done, he tabs the “Layout” button. While Doreen edits further photos,
Chris starts to embed the finalized photos into the layout of the newspaper.

3.8 User Studies

We conducted three user studies to evaluate the efficiency and usability of
SLAP Widgets. These are described in the following.

3.8.1 Widget Performance

In our first study, we tested whether SLAP Widgets outperform on-screen
controls in tasks that require eyes-free interaction. We chose a video navi-
gation and annotation task as basis for a quantitative user test. In conven-
tional video navigation, users look at a video screen while operating a jog
wheel with their hand.Hypothesis: SLAP

Knob outperforms

virtual knob in terms

of task completion

time and accuracy.

We anticipated that a SLAP Knob outperforms its
virtual counterpart in terms of task completion time and accuracy. We as-
sumed that users can rely on their haptic sense, and—opposed to on-screen
controls—they do not have to look at the control to realign their hands
during operation.

3.8.1.1 Task

Participants’ task:

Find and mark

unicolored frames in

a video.

We instructed participants to find and mark specific frames in a video as
fast as possible. We modified a set of videos by inserting three tinted
target frames in each of them. The first target frame was uniformly filled
with red, the second with green, and the last one with blue color. In the
beginning of each trial, a video player showed the first frame of the video.
The participant then started the video using a “play” key and watched
the footage in the player until he recognized the tinted frame. As the
videos were captured with 25 frames per second, the target frame could
be perceived as a short flash during playback. Accordingly, the participant
pressed the “stop” key and used a jog wheel to navigate back to the target
frame. He finished the operation by pushing a button with the same color
as the target frame. Users had to perform all operations with the right
hand.

We implemented the task on the SLAP Table. Fig. 3.26 shows the test
setup as seen from the participant who standed at one of the long sides of
the table. In the far left corner, we showed a video player. Below that, a
keypad contained buttons for starting and stopping the video.

3.8 User Studies 79

Bookmark

keypad

Video

control

keypad

Knob for

fine video

navigation

Video

Figure 3.26: Setup of user study on widget performance. Left: GUI design. Modified image
from [Weiss et al., 2009b]. Right: Photo from user study.

Jog wheel was used

for frame-wise

navigation.

A jog wheel at the near right side allowed for frame-wise navigation through
the video: Turning the knob clockwise moved forward in the video, counter-
clockwise turns moved backward. A full 360◦ turn of the jog wheel skipped
about one second (24 frames) of video footage. Note that in this setting
the participant could not focus on the video and the knob simultaneously.

Right to the video, the participant found a keypad containing a red, green,
and blue button. These are buttons used to “annotate” the currently se-
lected target frame.

3.8.1.2 Experimental Design

Two conditions:

SLAP Widgets vs.

virtual on-screen

controls.

We tested two conditions (independent variable) that differ only by the
presence or absence of SLAP Widgets:

• Condition “SLAP”: The user interacts with physical SLAP Widgets.
The keypads are represented by SLAP Keypads that involve two
(start/stop) or three (annotation) buttons. A SLAP Knob acts as
jog wheel for frame wise navigation through the video.

• Condition “Virtual”: The physical controls are replaced by their vir-
tual counterparts. While the graphics of the control equals the back
projection of the SLAP Widgets, all widgets are now controlled by
direct finger manipulation. That is, keypad buttons are triggered
by tapping. The SLAP Knob is implemented like conventional GUI
knobs: Users touch the control and turn it by dragging. The dragging
continues until the finger is released, even if it is moved outside the
knob’s area (Fig. 3.27).

Within-subject

design

Each participant conducted four trials per condition, in which each condi-
tion contained three instances of a video frame that had to be annotated.

80 3 Translucent Controls on Tabletops: SLAP Widgets

Figure 3.27: Implementation of virtual knob in widget performance user
test. The signed angle between the vectors from the knob’s center to the
starting and ending point of the trajectory, respectively, yields the turn
offset ∆α. The knob also works if the finger is dragged outside the control’s
area.

Video content Length [s]
Target frames [s]
red green blue

1 Basketball game 47 9 24 33
2 Billard tricks 29 8 15 25
3 City traffic scene 23 6 9 14
4 Person demonstrating on street 21 3 10 16
5 Person sorting letter blocks 22 4 11 17
6 City intersection scene 1 41 4 17 33
7 City intersection scene 2 23 4 10 18
8 Person climbing 30 6 13 22

Table 3.3: Test videos with time stamps in seconds of inserted target
frames.

Therefore, 24 video frames were annotated per participant in total. Every
participant performed both conditions (within-subject study), but we ran-
domized the order of conditions to address potential learning effects. We
randomly distributed eight videos to all trials, four for each condition. Ta-
ble 3.3 lists the test videos and the time stamps of the target frames. Note
that we varied the positions of the target frames to reduce learning effects.

In each instance, we measured three dependent variables:

• Knob interaction time: The time interval between the first knob turn
after pausing the video to the last knob turn before correctly anno-
tating the frame.

• Time to push annotation button: The time interval between the last
knob interaction for finding the frame and pushing the annotation
button.

3.8 User Studies 81

SLAP Virtual
Dependent variable Mean SD Mean SD N

Knob interaction time [s] 4.463 1.480 6.697 3.076 22

Time to push annotation button [s] 1.538 0.224 1.419 0.179 22

Number of overshoots 2.094 0.463 3.117 0.831 22

Table 3.4: Results of widget performance study.

• Number of overshoots: The number of times the target frame was
selected but left again, between pausing the video and annotating the
frame. This value is 0 if the target was selected directly.

Regarding our dependent variables, we hypothesized:

• H1: Using the SLAP Knob for video navigation is faster than using
the virtual counterpart.

• H2: The time to push the annotation buttons is shorter with a SLAP
Keypad than with a virtual version.

• H3: The SLAP Knob produces less navigational overshoots than on-
screen controls.

Before the first trial, participants were introduced to the multi-touch table
and instructed about the task.

3.8.1.3 Participants

We tested 22 volunteer participants (2 female), between 22 and 36 years
old (M = 25.7, SD = 3.4). 19 participants were right-handed, three left-
handed. Nobody reported a color vision deficiency. We recruited all
participants from our university campus using a posting at the cafeteria,
and during public demonstrations of our multi-touch table.

3.8.1.4 Results

The results are shown in Table 3.4 and Fig. 3.28. Time values were

transformed with

logarithm to achieve

normality.

The results of our time
measurements where found to violate normality according to Shapiro-Wilk
test but were sufficiently normal after applying the logarithmic transfor-
mation y′ = loge(y) (Table 3.5). We conducted two-tailed paired t-tests to
test our hypotheses (Table 3.6).

Knob interaction

time & overshoots:

SLAP < Virtual

Fine navigation to the target frame via the knob was on average 2.234 s
faster in the“SLAP”condition than in“Virtual”condition (mean 4.463 s vs.
6.697 s). Also, participants made about one overshoot less when navigating

82 3 Translucent Controls on Tabletops: SLAP Widgets

SLAP Virtual
Dependent variable W p W p

Knob interaction time 0.97773 .87707 0.84518 .00279*
Time to push annotation button 0.95563 .40626 0.89514 .02380*
Number of overshoots 0.98788 .99168 0.92695 .10598

loge(Knob interaction time) 0.97690 .86129 0.91744 .06731
loge(Time to push annotation button) 0.96602 .61946 0.93044 .12536

Table 3.5: Results of Shapiro-Wilk tests on measured data and logarithmic transformations.
Asterisks denote significant results.

Dependent variable Transformation T df p

Knob interaction time loge(y) -4.2588 21 .00035 < .001

Time to push annotation button loge(y) 2.4266 21 .02433 < .05

Number of overshoots - -4.6296 21 .00014 < .001

Table 3.6: Results of two-tailed paired t-tests of widget performance study.

Condition

Ti
m

e
[s

]

0

2

4

6

8

10

12

14

SLAP Virtual
Condition

Ti
m

e
[s

]

0

0.5

1.0

1.5

SLAP Virtual

2.0

Condition

C
ou
nt

0

1

2

3

4

5

SLAP Virtual

Knob interaction time

Overshoots

Time to push annotation button

٭

٭

٭
٭

٭

٭

Overshoots

Figure 3.28: Results of widget performance study. In addition to the box plots, red asterisks
denote mean values.

3.8 User Studies 83

to the target frame when using a SLAP Knob instead of the virtual control
(mean 2.094 vs. 3.117). Both results are significant, supporting H1 and
H3. Time to push

annotation button:

SLAP > Virtual

However, participants spent significantly more time for pushing the
annotation button after fine navigation with the SLAP Keypad than with
pure on-screen controls (mean 1.538 s vs 1.419 s). This rejects H2.

3.8.1.5 Discussion

SLAP Widget can

decrease interaction

times and improve

input accuracy in

eyes-free tasks.

Our results show that SLAP Widgets can decrease interaction times and
improve input accuracy. We believe that the reason for this effect is that
SLAP Widgets provide haptic feedback and, thereby, a rest state. Once
users have placed their hands on the SLAP Knob, they can focus on the
video player and navigate through the footage without looking at the con-
trol. The physical knob guides the users’ motion while they turn it. The
visual and haptic channel are completely separated in the “SLAP” con-
dition. Pure on-screen

controls can yield

drifting if not

visually focussed.

In the “Virtual” condition, however, users easily drift away from
the on-screen knob when operating it without looking. The only haptic
feedback provided is the touch of one finger on the planar surface and the
shearing forces during dragging. The virtual knob cannot physically guide
the users’ motion. This occasionally requires them to look at the control
and to realign their fingers, which yields a longer interaction time. Homing on SLAP

Widgets is possible

without looking.

Also,
finding an on-screen control that is out of sight demands visual attention.
Contrariwise, a physical device can be located using the haptic sense only.
When using on-screen controls, the visual channel is busy with two tasks
at different locations, interpreting the current state of the video and main-
taining the interaction with the knob.

Albeit the difference of 0.119 s is small, the time interval between knob
interaction to pressing the annotation button was significantly longer with
the physical SLAP Keypad. Haptics of SLAP

Widgets like buttons

do not provide

performance

benefits when

visually focussed.

There are two potential reasons for this: First,
in the SLAP condition, participants have to change the input modality from
turning a physical knob to pushing down a silicone button. In the “Vir-
tual” condition, both actions are triggered by directly touching the surface,
which probably leads to a shorter movement trajectory. Second, there is
no concurrent visual task in this time interval. That is, users can trigger
the buttons while looking at them. For this simple task acquisition task,
the haptic feedback of SLAP Widget does not provide any benefit in terms
of accuracy or task completion time.

Sliding on surface is

inconvenient over

time.

Some participants reported that interaction with the virtual knob became
inconvenient after some time. The reason is that the natural lubrication
of the finger diminishes while sliding on the surface. After a while, the
fingertip becomes warmer due to the additional friction and even might
create a squeaky sound.

We found that users tend to drift when using a virtual knob in an eyes-
free manner. This drifting could be reduced by applying the technique by

84 3 Translucent Controls on Tabletops: SLAP Widgets

Schraefel et al. [2005], which lets the knob’s center follow the user’s drifting
direction.

3.8.2 Qualitative Evaluation

With our second study, we intended to gather qualitative feedback on the
interaction with SLAP Widgets, the pairing mechanism, and the overall
user experience.

3.8.2.1 Procedure

The user study was conducted at the same multi-touch table as the previous
study. In the beginning of the session, the instructor presented the SLAP
Widgets to the participants. Then, every participant was asked to play
with the controls and to reflect about possible uses of SLAP Widgets. The
widget detection was disabled, and no further explanation was given. We
intended to elicit existing associations with real-world controls that could
be transferred to SLAP applications.

Participants

performed series of

pairing and

interaction tasks

and gave qualitative

feedback.

After that, the instructor briefly demonstrated how a SLAP Widget is
detected by the table and how it is paired with a virtual object using
synchronous double-tapping. After that, the tabletop showed three virtual
objects: an image, a movie object, and a text box. Then the participant,
standing at the long side of the table, was asked to execute a series of tasks
that involved interaction with SLAP Widgets and pairing of controls for
different purposes:

1. Play/stop video: Place a SLAP Keypad on the tabletop, pair it with
video player, and start and stop the video using the respective key-
pad’s buttons.

2. Navigate within video: Take a SLAP Slider and a SLAP Knob and
pair it with the video player. Use the slider to set the player to the
middle of the video. Then, use the knob (in jog wheel mode) to
navigate to a specific point in time (e.g., “now navigate to 1:24”).

3. Image editing: Unpair SLAP Slider and SLAP Knob from video
player and associate it with the image object. Use the slider to change
the brightness of an image to 50% and adjust the saturation to 50%
using the knob, which is now in menu mode.

4. Labeling: Pair a SLAP Keyboard with the text field and type your
name. After that, reassociate the knob with the text field and select
a new color for the text from the menu.

All SLAP Widgets that were required for this test were placed within
reach of the participants on the border of the tabletop. Participants could

3.8 User Studies 85

freely report their thoughts during the test. A video camera captured the
participants and the tabletop for later evaluation. The test ended with an
interview.

3.8.2.2 Participants

10 participants, who

were experienced

with GUIs

10 participants (3 female) between 21 and 28 years old (M = 23.1,
SD = 3.3) volunteered for our user study. We recruited them from our
department and the university campus. All participants stated to use com-
puters every day and to be experienced with desktop GUIs.

3.8.2.3 Results

Participants

reported that

interaction with

SLAP Widgets was

intuitive and

self-evident.

Pairings were easily

understood.

Most participants (9) of our study found the interaction with SLAP Widgets
intuitive and self-evident. The association between widgets and on-screen
objects was easily understood and could be applied by all participants.
Some of them (4) proposed alternative pairing gestures, such as placing a
widget on the target virtual object and then sliding it to a position where it
does not cause occlusion (“grasp and drag”). However, synchronous double-
tapping was reported as especially suitable for the SLAP Keyboard. One
person stated that SLAP Widgets provide a good mapping from real-world
physical controls to their on-screen representation, which could help users
who are not familiar with conventional GUI controls. Another participant
emphasized that, in contrast to virtual controls, SLAP Widgets provide a
rest state; users could rest their hands on the controls without operating
them (cf. section 1.1). Some participants (4) stated that SLAP Widgets
are quiet, and the addition of auditive feedback could be helpful, especially
for keystrokes on the SLAP Keyboard. Feedback on the SLAP Keyboard
was mixed. While the idea of a flexible, back projected keyboard was
appreciated, most participants felt more comfortable with the on-screen
keyboard.

3.8.2.4 Discussion

The participants’ feedback on SLAP Widgets was generally positive. They
quickly understood the concept and were able to complete basic tasks. The
qualitative feedback was helpful for all further iterations of our physical
widgets.

Limitation of study:

Participants were

inexperienced with

multi-touch

interfaces.

One limitation of this study was that all participants were not experienced
with multi-touch interfaces. At the time of the study, in September 2008,
multi-touch smart phones or tablets were not prevalent yet. Many users had
never experienced direct finger manipulation on interactive surfaces. Hence,
many users were fascinated by this feature and commented that they did not
understand why further physical widgets are required for interaction. In a

86 3 Translucent Controls on Tabletops: SLAP Widgets

rigid
acrylic

foil spring
thin foil FTIR spot at

contact point

released pushed alternative design
(pushed)

Figure 3.29: Key design of rigid SLAP Keyboard. A spring foil holds each key up. When the
key is pushed, the foil collapses and creates an FTIR spot in the camera image. An alternative
design contains a knob beneath each key that penetrates the foil and hits the surface at every
keystroke.

future study, the qualitative feedback should be retrieved in two conditions,
involving only pure virtual or physical controls, respectively.

The idea of having a keyboard that can just be“slapped”on the table for ad
hoc use was appreciated by many participants. However, most participants
preferred the on-screen keyboard over the physical SLAP Keyboard.Mixed feedback on

SLAP Keyboard due

to insufficient

pressure point and

detection errors

One
reason was that our detection based on DI occasionally produced false pos-
itives and repetitive key strokes, leading to input errors. Furthermore, the
haptic feedback of the SLAP Keyboard was still not good enough to com-
pete with the conventional physical keyboard. Some participants stated
that the edges of keys and the keycaps could be improved. Also the pres-
sure point of keys was not clear enough; some participants reported that it
was difficult to determine how keys had to be pressed. We will deal with
this issue in the next section.

3.8.3 Typing

In our third user study, we have a closer look at the SLAP Keyboard.
We first present a new keyboard design that incorporates previous quali-
tative feedback. In a controlled experiment, we then evaluate how efficient
participants can type using SLAP Keyboards in comparison to conventional
ones and pure on-screen versions.

3.8.3.1 Rigid SLAP Keyboard with Pressure Point

Rigid SLAP

Keyboard is made of

acrylic and

transparent foils.

Participants of our qualitative study reported that the pressure point of
the flexible SLAP Keyboard was unclear. To address this problem, we
developed a second SLAP Keyboard. The keyboard is rigid and entirely
made of transparent acrylic. Each key is spring-loaded on a thin foil. The

3.8 User Studies 87

15
 m

m

a) b)

Figure 3.30: Different prototypes of foil springs beneath keys. a) Prototype with leaf spring
that is penetrated by knob. When pressed, the knob touches the surface and creates an FTIR
spot. b) Prototypes with stellar and cross spring, respectively. When pressed, the spring foil
collapses and creates a spot. The stellar form of the spring ensures that a spot appears even if
a key is pushed at its boundary. Multiple cross springs are combined for larger keys like Space.

a) b)

c) d)

Figure 3.31: Different keyboards in typing performance study. a) Conventional Apple key-
board. Image brightened for better perception. b) On-screen keyboard. c) Flexible SLAP
Keyboard. d) Rigid SLAP Keyboard.

foil raises a rigid key body and lets it hover above the surface. Foil springs provide

an improved

pressure point and

auditive click

feedback.

If a user
presses the button, the spring is compressed and collapses beyond a certain
pressure-point. The collapsing spring creates a noticeable “click” sound. It
also presses the bottom foil against the surface and creates a short FTIR
spot in the camera image (Fig. 3.29). An alternative design uses a small
knob that is attached to the bottom of each key and penetrates the foil.

88 3 Translucent Controls on Tabletops: SLAP Widgets

When the key is pressed, the knob touches the bottom foil and, thereby,
the surface, creating a spot.

The spring design is crucial to ensure a convenient haptic feedback. Our
original design is shown in Fig. 3.30a. We used a leaf foil penetrated by a
cylindric knob. The keys created a bright spot when being pushed down
in the center. However, when pressed at the boundary, the foil did not
collapse properly. Also, the keys varied in haptic feedback and tended to
jam.Stellar foil springs

allow detection of

keystrokes at

boundaries.

The result of further iterations is a button with an embedded stellar
foil button (Fig. 3.30b). It works well when being pushed down at the
boundaries. Keys with rounded corners avoid jamming. Large keys like
Space require multiple springs. To ensure that a similar force is required
to push those, cross springs with lower resistance are employed. We also
improved the manufacturing process to ensure nearly the same pressure
point for all keys. Our prototype containing keys A to Z as well as Space,
Enter, and Backspace is shown in Fig. 3.31d.

We believe that the rigid keyboard provides a better haptic sensation. Note
though that this costs the flexibility of the silicone design of the original
version.

3.8.3.2 Task

We asked participants to subsequently copy presented strings using each of
the following four keyboards (Fig. 3.31):

1. Conventional keyboard: an off-the-shelf tethered Apple keyboard.

2. On-screen keyboard: a back projected virtual keyboard.

3. Flexible SLAP Keyboard: the original SLAP Keyboard based on a
silicone protection layer (section 3.3.3.1).

4. Rigid SLAP Keyboard: the rigid keyboard with improved pressure
point as described in the previous section.

We instructed all participants to type all strings as fast and as accurate as
possible.

3.8.3.3 Test Setup

User study takes

place at curved

BendDesk table

using vertical

surface to display

strings.

Our test setup is shown in Fig. 3.32. We used the BendDesk table as infras-
tructure that was described in section 2.3. It consists of three interactive
areas that are merged together: a vertical board (100 cm × 43 cm), a hori-
zontal tabletop (100 cm × 40 cm) and a connecting curve (100 cm × 16 cm,
radius 10 cm). A 8.5 cm non-interactive raised rim in front of the horizon-
tal surface allows to rest hands. The tabletop is mounted in an ergonomic

3.8 User Studies 89

Figure 3.32: Test setup of keyboard performance test. Participants copy
strings that are shown on the vertical surface. Room lighting is brightened
up in the photo for better illustration.

height of 72 cm. We refer to [Weiss et al., 2010c] for a detailed description
of the table. We chose this particular setup, because it mimics a common
desk situation: Participants can sit at the table and can interact with a
horizontal and a vertical surface.

The test took place in a dim room with constant lighting conditions.
Participants were sitting at the BendDesk table during the entire test. We
chose a setup with two foci of attention: Following Bi et al. [2011], the
keyboard of the current condition is centered in front of the participant, 17
cm away from the edge of the table. The string that participants had to
enter was displayed on the vertical surface in the height of the eyes. An
edit field beneath this string displayed the currently entered string. Setup encourages

user to avoid visual

focus switches.

Due to
the distance between input and output, we assumed that this setup would
penalize focus switches between the keyboard and the output in terms of
task completion time. We chose this design to encourage users to look at
the screen and rely on haptic feedback.

QWERTY layout

with Space, Enter,

and Backspace

All keyboards showed a QWERTY layout. Users could press the keys “A”
to “Z”, Space, Enter for confirming input, and Backspace for deleting the
last entered character. To repeat letters, the respective keys had to be
pushed multiple times, i.e., holding keys did not repeat letter input. The
size and layout of keys was kept constant among all conditions.

English test strings

are taken from

standard set.

The strings in the test were chosen from the phrase set by MacKenzie and
Soukoreff [2003]. It contains 500 English sentences with a length of 16 to
43 characters (average length is 28.6). Every sentence contained letters

90 3 Translucent Controls on Tabletops: SLAP Widgets

“A” to “Z” and spaces. Users were instructed to enter sentences in lower-
case although the test set contained very few capital letters (e.g., “I” or
“Saturn”).

SLAP Keyboards are

fixed with weights.

To avoid accidental moving, the SLAP Keyboards were fixed using addi-
tional weights. These weights were attached in a way that they did not
disturb typing or the perception of key labels.

FTIR tracking via

single camera in

table.

Detecting Keystrokes As opposed to the SLAP Table, BendDesk only
uses FTIR to track touches. For highest tracking performance, we mounted
a single camera in the table to capture a close-up of the bottom of the
keyboard. The camera pointed to the surface in a steep angle to avoid
that the participants’ legs occluded the camera image (see bottom camera
in Fig. 2.12 on page 27). We used a homography as described in section
3.5.1.1 on page 56 to compensate for the radial and perspective distortion.

Spots in key

boundaries generate

spot events. SLAP

Keyboards discard

areas outside key

centers to avoid

false detections.

Keystrokes of the on-screen and back projected keyboards were detected by
checking for touch events within the rectangles beneath keys (section 3.3.3.1
on page 45). In the absence of DI, the tracking of the SLAP Keyboards
had to be modified. A keystroke on these keyboards also pushes the key
boundaries into the surface, producing spot events that potentially merge
with spots in the keys’ center and causing false positives. To avoid this, we
masked the background frame of the tracker so that only a small pixel area
beneath the center of each key was considered in the spot detection.

Delay is required

between repetitive

keystrokes.

To avoid false positives due to camera noise, we considered two spot events
within a key’s boundary as repetitive if they occurred at least with a delay
of 150 ms. Otherwise, the second spot event was ignored.

3.8.3.4 Procedure

Procedure:

Participants type

test strings using all

four keyboards.

After reception, participants sat down in front of BendDesk. After that,
we informed them about the procedure of the user study in detail. We also
instructed them that time is measured from the first keystroke in each trial.
Accordingly, they had time to read each sentence before starting to type.
We also acquired basic background information.

Participants subsequently conducted all four keyboard conditions (indepen-
dent variable), while we randomized the order. Every condition contained
2 training trials that allowed subjects to become familiar with each key-
board and to learn how much pressure was required for a keystroke. After
that, participants conducted 15 measured trials in which we measured the
typing speed and accuracy. In each trial, a test string was displayed, and
participants typed this string in the edit field. Once done, they confirmed
their input by pressing Enter, which finished the trial. Note that a trial
was over even if the entered string contained typing mistakes.

3.8 User Studies 91

As dependent variables, we used standard metrices according to
Wobbrock [2007]:

• Words per minute (WPM) defined as

WPM :=
|Tentered| − 1

S
· 60 · 1

5

where Tentered is the entered string with | · | representing the number
of characters. S is the duration in seconds from the first to the last
letter in this trial.

• Total error rate (TER) is a ratio defined as

TER :=
IF+ INF

C+ IF+ INF
. (3.1)

Let Tentered and Tcorrect be the entered and the expected correct string.
Also, let MSD(·, ·) be the function computing the Levenshtein dis-
tance between both strings, i.e., the minimum number of insertion,
deletion, and substitutions operations to transform one string into
another. The variables in the total error rate are defined as

C := max{|Tentered|, |Tcorrect|} −MSD(Tentered, Tcorrect),

IF := number of backspaces,

INF := MSD(Tentered, Tcorrect).

Informally speaking, the three variables decompose the entered string
into three disjunct sets: the correct characters (C), the corrected
errors (IF), and the uncorrected errors (INF).

• Adjusted words per minute (WPMadj) penalizes typing mistakes in
the WPM value

WPMadj := WPM · (1− TER)a

where we set a to 1.

Users were encouraged to give qualitative feedback between measurements.
After the test, we also asked them to order all four keyboards according to
the (subjective) typing efficieny that they enabled, starting with the fastest
keyboard.

Hypotheses for task

completion time and

typing correctness:

Our main hypotheses were:

• H1 : The conventional keyboard significantly outperforms all other
keyboards in terms of speed and error rate. Conventional

� Rigid SLAP

> Flexible SLAP

> On-screen

• H2 : The two SLAP Keyboards outperform the on-screen keyboard
in terms of speed and error rate.

• H3 : The rigid SLAP Keyboard enables a higher typing speed than
the flexible version.

An average user test lasted about 21 minutes. In total, we measured and
analyzed the input of 600 phrases typed with 21,171 keystrokes.

92 3 Translucent Controls on Tabletops: SLAP Widgets

Dependent Conventional On-screen Flexible SLAP Rigid SLAP
variable Mean SD Mean SD Mean SD Mean SD N

WPM 59.2 18.6 37.8 15.7 33.4 12.3 32.1 13.5 150

WPMadj 58.8 18.5 36.7 14.9 32.6 11.8 31.3 12.8 150

TER[%] 7.1 7.5 10.7 9.4 12.6 9.0 12.8 8.3 150

Table 3.7: Results of keyboard performance study.

0

10

20

30

40

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

conventional on−screen flexible SLAP rigid SLAP

0

20

40

60

80

100

●●

●

●

●●
●

●

●

●

●

●

●

conventional on−screen flexible SLAP rigid SLAP

100

80

60

40

20

 0

40

30

20

10

 0

 Keyboard Keyboard

W
PM

TE
R

 [%
]

 conventional on-
screen

flexible
SLAP

rigid
SLAP

 conventional on-
screen

flexible
SLAP

rigid
SLAP

٭

٭ ٭ ٭

٭
٭

٭ ٭

Figure 3.33: Words per minute (WPM) and total error rate (TER) depending on keyboard.
In addition to the box plots, red asterisks denote mean values.

3.8.3.5 Participants

10 participants, who

were experienced

with typing

We tested 10 participants between 23 and 31 years old (M = 26.0,
SD = 2.4), 1 was female. They were students recruited from our depart-
ment, and all were experienced with typing, using a keyboard “multiple
times a day”. On a scale from 1 to 10, where 10 is the highest skill in typing,
participants assessed their keyboard skills with 6.8 on average (SD = 0.8).
We intentionally selected experts, because haptic feedback is more relevant
if users interact in an eyes-free manner. Half of the participants (5) had for-
merly learned touch typing with ten fingers. All subjects were non-native
English speakers. After the test, we raffled a 10 Euro gift coupon among
the participants.

3.8.3.6 Quantitative Results

Results:

Conventional

� On-screen

≮ Flexible SLAP

≈ Rigid SLAP

Our results are shown in Table 3.7 and Fig. 3.33. Fig. 3.34 shows the
average words per minute and total error rate depending on time. The
penalized adjusted words per minute values do not significantly differ from
the WPM values and will not be discussed in the following.

Mixed-effects model analysis of variance shows main effect of condition
in terms of WPM (F3,531 = 150.65, p < .0001) and TER (F3,531 = 15.41,

3.8 User Studies 93
W

PM

0

20

40

60

80

100

2 4 6 8 10 12 14

100

80

60

40

20

 0
2 4 6 8 10 12 14

0

10

20

30

40

2 4 6 8 10 12 14

Trial Trial

40

30

20

10

 0
2 4 6 8 10 12 14

 conventional on-screen flexible SLAP rigid SLAP

TE
R

 [%
]

Keyboard

Figure 3.34: Average words per minute (WPM) and total error rate (TER) over trials depend-
ing on keyboard.

Condition pair p(WPM) p(TER)

conventional vs. rigid SLAP <.0001* <.0001*
conventional vs. flexible SLAP <.0001* <.0001*
conventional vs. on-screen <.0001* .0019*
on-screen vs. rigid SLAP .0067* .1237
on-screen vs. flexible SLAP .0580 .2020
rigid vs. flexible SLAP .8847 .9954

Table 3.8: Results of pairwise Tukey-Kramer HSD test. Asterisks denote significant results.

p < .0001). There was no significant main effect in trial and no significant
interaction between trial and condition for WMP and TER. Participant
was modeled as nominal random effect.

The results of a pairwise comparison using Tukey-Kramer HSD are shown
in Table 3.8. The conventional keyboard outperforms all other keyboards
in terms of words per minute and total error rate (supports H1). The
differences among the virtual and the SLAP Keyboards are not significant,
with the exception of the on-screen keyboard yielding a significantly higher
typing speed than the rigid SLAP Keyboard (rejects H2 and H3).

3.8.3.7 Qualitative Feedback

Despite lack of

haptic feedback,

on-screen keyboard

was ranked on

second place, after

conventional one.

Nearly all participants (9) considered the conventional keyboard as the most
efficient one. Despite the limited haptic feedback, most subjects (6) placed
the on-screen keyboard on the second rank. Two participants perceived
the detection of keystrokes as more accurate as on the SLAP Keyboards.
However, two different participants criticized that quickly repeating letters
was difficult on the on-screen version. This was a result of our filter requir-
ing 150 ms beneath repetitive keystrokes. Two participants emphasized the

94 3 Translucent Controls on Tabletops: SLAP Widgets

need to look at the keys while typing. This also matches our impression
that some participants memorized strings before typing them with focus on
the keyboard.

Mixed feedback on

SLAP Keyboard.

Tracking accuracy

and missing

orientation points

were critized.

The SLAP Keyboards yielded mixed feedback. While the haptic feedback
was appreciated, specific design issues impaired the user experience. Five
participants stated that the labels of the SLAP Keyboards were difficult to
read, which seemed to be even worse on the rigid version (2). Four of the
five subjects who had learned touch typing before, criticized the missing ori-
entation marks on the F and the J key on the rigid SLAP Keyboard. They
also said that the lack of keys to the right of P and L made it hard to ori-
entate the hands. For both keyboards, some participants (4-6) complained
about false positives and false negatives in the keystroke detection. The
preference of participants between the two SLAP Keyboards was mixed,
and there is no clear favorite in terms of haptic feedback. One subject
liked the definite pressure point of the rigid keyboard, while another one
appreciated that the flexible version feels “smooth” and not so binary. Two
participants found a “typewriter technique” with short, strong impulses to
be most efficient for writing on the rigid SLAP Keyboard, while noting that
these cause more exertion over time.

3.8.3.8 Discussion

Conventional

keyboard performs

best, because it is a

well optimized

device.

It is no surprise that the conventional keyboard outperformed all other
versions (H1). Striking the key of a conventional keyboard means pressing
on many decades of research and optimization. The haptic feedback of
every key is iterated many times before a keyboard is released. Also, all
users were well familiarized with this keyboard type.

SLAP Keyboard did

not outperform

on-screen keyboard

but differences are

small. Engineering

issues should be

solved.

Opposed to our hypothesis H2, the SLAP Keyboard did not outperform the
on-screen keyboard. There is also a tendency that writing on on-screen key-
boards is still faster than writing on our physical prototypes. However, the
difference is small and only significant between the on-screen and the rigid
keyboard. Given that a SLAP Keyboard can be easily handed over to other
users, it remains a promising alternative to pure virtual keyboards. Most
of the problems reported by participants are engineering issues: Tracking
must be improved, and the keys should be produced in such a way that
they are more translucent. The resolution of the BendDesk system was
another limitation worsening the readability of the key labels.

The result that the SLAP Keyboards did not differ significantly in terms
of WPM and TER was unexpected. Although the rigid SLAP Keyboard
provides a clear pressure point, it does not outperform the flexible version.
One reason could be the stiffness of the keys and the additional force re-
quired for typing. This should be improved in a future iteration. Also,
the missing keys and orientation marks should be added. And, again, an
improved tracking could reduce false detections, and maybe the difference
due to haptics would be more significant.

3.9 Closing Remarks 95

3.8.3.9 Future Study Design

Four main factors influence the differences in input performance in this
study:

• The haptic feedback of each keyboard

• The accuracy of keystroke detection

• The cognitive load due to focus switches between keyboard and text
display

• The experience of the user to type on conventional and on-screen
keyboards

Future study should

isolate effects of

haptic feedback,

tracking accuracy,

focus switches, and

user experience.

In a future study, these variables should be isolated to understand their
individual effects. A precise ground truth tracking method, e.g., a Vicon
optical tracking system, should be used to isolate the impact of haptic feed-
back and to evaluate the accuracy of our spot-based tracking. Our study
did not reveal how well participants type eyes-free with each keyboard. We
observed a tendency of participants to look at the keys while using the on-
screen keyboard. A gaze tracker should be employed to measure in which
condition participants memorize strings and look mostly at the keyboard
and in which they rely on haptic feedback. Alternatively, the string set
could be replaced with random strings that make memorizing more diffi-
cult and require more focus on the input field. A detailed classification
of users concerning their previous experiences with conventional and touch
screens could reveal to which extent experience is a confounding variable.

Engineering issues

should be solved.

The above mentioned engineering issues should be solved for a future study,
including some modifications on the table infrastructure: The output reso-
lution should be increased, and the non-interactive rim should be removed
because two participants reported fatigue due to the slightly raised wrist.

Future study should

test dynamic table

setting.

Finally, it is worth testing typing performance in a dynamic interactive
table setting involving multiple users, where ad hoc use, realigning, and
handing over keyboards play a greater role.

3.9 Closing Remarks

SLAP Widgets are

general-purpose

controls that

combine rich haptic

feedback with a

flexible visual

appearance.

In this chapter, we presented SLAP Widgets, general-purpose tangibles for
interactive tabletops. SLAP Widgets combine the rich haptic feedback of
physical controls with the visual flexibility of GUI controls. After discussing
related work, we explained the table and widget design, the underlying
software framework as well as the mechanisms to detect widgets and to
communicate their state to an application. We described a basic widget set,
potential usage scenarios, and pairing techniques to associate widgets with

96 3 Translucent Controls on Tabletops: SLAP Widgets

on-screen objects. The chapter also showed how to extend the framework
with further widgets and virtual objects. User studies demonstrated the
potential of SLAP Widgets as alternatives to pure on-screen controls in
terms of efficiency and learnability.

SLAP Widgets

respect the nature

of interactive

tabletops.

Our design respects the specific dynamic nature of tabletops: SLAP Wid-
gets can be placed on the surface ad hoc and removed again when not
needed anymore. They coexist with direct manipulation input without in-
terfering with it. The users’ interaction with these controls happens above
the surface without touching the surface directly. We designed the foot-
prints and pairing gestures in such a way that false positives caused by
finger touches are unlikely.They coexist with

other input methods

without interfering

with them.

That is, the input channel for interacting with
SLAP Widgets is independent from normal direct touch input. This is a
crucial benefit over dynamically arranging on-screen controls on a tabletop
that would require a special modality to distinguish between input for in-
teracting with controls and input for arranging UI elements.SLAP Widgets

support social

protocols.

Furthermore,
SLAP Widgets inherently support natural social protocols for exchanging
controls. A physical SLAP Widget can be easily handed to another user. A
user can also keep hold of a control to avoid other users grabbing it. Con-
trariwise, efficiently handing another user a pure virtual control requires
special handoff techniques like those presented by Jun et al. [2008].

SLAP Widgets are

low-cost,

lightweight, flexible,

and easy to build.

The underlying

technology is

hidden.

The strength of SLAP Widgets is their lightweight design. Consisting
of materials such as silicone and acrylic, SLAP Widgets are low-cost,
lightweight, and easy to build. Damaged parts can easily be replaced. Due
to the absence of electronic parts, designers do not need deep engineering
knowledge to craft widgets that are both useful and aesthetically pleasing.
As passive devices, SLAP Widgets also do not contain cables that could
possibly clutter the design. Following the spirit of Ubiquitous Computing
[Weiser, 1991], the technology behind SLAP Widgets is hidden from the
users.

SLAP Widgets are

scalable interfaces.

SLAP Widgets fulfill the demand for scalable controls in several respects:
First, SLAP Widgets can change their visual appearance on the fly and,
therefore, they can be reconfigured for various purposes. Second, they can
change abstract parameters. Therefore, an increase in the complexity of a
table application does not necessarily imply an increase in the complexity
of the tangibles. The ability to use SLAP Widgets ad hoc and remove them
when not required anymore, also alleviates the issue of physical clutter that
is often named as a limitation of tangibles (cf. [Shaer and Hornecker, 2010,
p. 106]). The SLAP Framework follows this spirit and was implemented to
support scalability: The creation and integration of new widgets is straight-
forward. Also, programming new virtual objects is easy. Thanks to the
hierarchical structure, they can also be composed from existing ones. For
example, a business card object could be designed as a SGORect containing
one SGOImage and several SGOText objects.

Both input and output technology are integrated into the table’s hardware
below the surface. Touches and widgets footprints are seen by the table’s
camera, and the projector updates the graphics accordingly. Such an optical

3.9 Closing Remarks 97

z
x

y

y

x

Figure 3.35: Tangible “Toxic Waste Cannon” designed by Norbert Dumont. Left: Physical
prototype. Right: View on footprint from below. The tangible maps a rotation in the x/y plane
to a rotation in the x/z plane, and communicates the turning angle to the footprint using a
rotation in the x/y plane.

tracking setup is Design constraint:

State must be

communicated via

footprint

(flattened).

easy to construct and can also be employed to indirectly
communicate physical properties, such as temperature or the filling level of
liquid in a pot [Dietz and Eidelson, 2009]. On the downside, this method
introduces design limitations. A SLAP Widget must be constructed in
a way that its current state can be communicated through its footprint.
Designers, therefore, must be able to flatten the three-dimensional state
of a widget into a 2D unambiguous representation that is unique among
all widgets. While this is easy for our basic widget set, it becomes more
difficult if an object is high or involves mechanics that cannot be mapped
directly to a surface position.

In order to gain a deeper insight, how designers create complex tabletop
tangibles, we conducted a seminar, the “Media Computing Project”, at our
department in 2010. 11 students were asked to develop a tangible tabletop
game of the type “Tower defense”. Students were instructed to create a
cooperative multiplayer game that combines direct touch interaction with
tangibles. The goal of the players is to defend a base by placing defensive
towers at the path of the attacking opponents. In the resulting game, the
playing field as well as the invaders are projected on the screen. Users
can grab tangible towers and place them on the field. Most towers can be
modified or triggered by touching adjacent virtual controls. Large tangibles

might require

complex mechanics

to communicate

states to the

footprint.

A remarkable
tangible developed by the students is the so-called “Toxic Waste Cannon”
that is illustrated in Fig. 3.35. A user can turn a physical knob on top of
the tower to change the vertical angle of a muzzle. The tangible contains
a complex mechanism that maps the horizontal rotation of the knob to
a vertical rotation of the muzzle. Simultaneously, it horizontally turns a
marker at the bottom of the tangible that communicates the angle to the
camera in the table. However, due to the complex mechanics, this tangible

98 3 Translucent Controls on Tabletops: SLAP Widgets

silicone
pads

fiber
optics

Figure 3.36: Tangibles with embedded fiber optics. Left: Principle of FlyEye. Fiber optics
direct IR light to the finger and reflections back to a camera that captures touches. Image
courtesy of Wimmer [2010]. Right: Application of this principle to a SLAP Widget. The control
communicates the push state of two silicone buttons over a distance. Fiber optical cables connect
two silicon pads with the bottom of the tangible. When using DI, IR light emitted from the
table surface is injected into the fiber optics and leaves the cables beneath the pads. If the
user pushes one of the pads, the IR light is reflected downwards through the fiber optics to the
surface. This creates a visible IR spot in the camera. This tracking approach requires a good
coupling between table surface and fiber optics.

is opaque. This limits the ability to change the widget’s visual appearance
via the table’s back projection.

Alternative way:

Fiber optics transfer

marker states to the

surface.

A promising alternative to transfer a widget’s 3D state down to the table-
top without making it opaque are fiber optics. FlyEye by Wimmer [2010]
embeds fiber optics into a tangible to communicate touches from the surface
into a camera (Fig. 3.36, left). IR light is fed into a bundle of fiber optics
that lead to the surface. When the user touches the surface, the IR light is
reflected back into an additional set of fibers that direct to a camera. The
camera captures the end of the fiber optics and derives touch states from
them. Fig. 3.36 (right) shows an example that applies this principle to a
SLAP Widget.

Fiber optics also

allow to stack and

compose tangibles.

Lumino by Baudisch et al. [2010] shows that fiber optics embedded into
tangibles can also support the modular composition of physical objects.
Lumino are stackable tangible blocks on tabletops whose z-order and ori-
entation can be detected by the tabletop. Every block owns an individual
marker at its bottom surface. Furthermore, it contains a bundle of fiber
optics that transfers incoming light from its top to the bottom surface
and composes it with an own marker. Thereby, a stack of blocks exposes
a unique marker to the table’s camera, encoding block IDs, orientations,
and order. This principle could allow to construct SLAP Widgets that are
composed of building blocks.

3.9 Closing Remarks 99

Concept of SLAP

Widgets has been

transferred to

non-optical

technologies.

The concept of SLAP Widgets has also been transferred to non-optical
tracking technologies that allow a thinner form factor. Yu et al. [2011]
developed Clip-on Gadgets, passive physical controls that users can clip on
mobile capacitive touch screens. They use a footprint concept similar to
SLAP Widgets but communicate the widget’s state by a capacitive link
between the user’s finger, conductive markers beneath the widget, and the
electrodes in the touch screen. When the user touches a conductive part
of the control, the capacity of the finger is transferred to the conductive
markers, and spots appear in the sensor input image. With a sufficiently
large surface of the conductive material, capacitive markers also create
spots without being touched by the user. This technique works with most
capacitive multi-touch screens, and can, therefore, be applied to mobile
devices. Also, first commercial products have recently been released that
use this technology, such as the Fling joystick9. More recently, Chan et al.
[2012] introduced physical tangible widgets for capacitive screens, including
sliders and knobs. Magnetic connectors between modular blocks also allow
to stack and compose tangibles. The benefit of this technology is that
transferring a state down to the footprint is easier, because conducting
paths can be directed arbitrarily (as opposed to fiber optics). Using an
improved manufacturing process, the cables can also be made so thin that
they are barely visible. On the downside, constructing capacitive widgets
is more difficult than building SLAP Widgets with optical markers.

Vertical SLAP

Widgets are

imaginable using

magnets and IFSR

sensor.

An alternative approach are widgets that use a pressure footprint on a re-
sistive multi-touch screen to communicate their state. The Geckos project
[Leitner and Haller, 2011] employs an Interpolating Force-Sensing Resis-
tance (IFSR) sensor [Rosenberg and Perlin, 2009] on top of a magnetic
grid. Circular permanent magnets at the bottom of the widgets provide
a unique pressure footprint in the sensor that indicates type and state of
the control. As opposed to previous approaches, Geckos can be attached to
vertical (magnetic) surfaces as well. However, the system currently relies on
top projection only. An integrated solution, involving a transparent IFSR
sensor in combination with a magnetic plate behind a backlit LCD panel,
could be feasible in future.

Table construction

limits practicability.

Narrowed

substructure would

allow standing at

table.

While our SLAP Table prototype is relatively easy to build, its construction
is also a limiting factor in terms of practicability. Both the projector and
the camera demand a large volume beneath the surface and a fixed height.
Due to its cubic frame, users tend to hit the table’s sides with their knees.
The Narrow Substructure design pattern proposes to narrow the frame
to make standing close to the table more convenient [Remy, 2010]. We
implemented this pattern in the “Aachener Friedenstisch”, an interactive
exhibit in the city hall of Aachen. Visitors learn historic details about the
Treaty of Aix-la-Chapelle (1748) by interacting with tangible blocks. The
table surface is mounted on a structure that narrows down, allowing users
to stand close to the table while interacting (Fig. 3.37).

Typing on interactive tabletops remains an open issue. The SLAP Key-
board is still a prototype whose haptic feedback does not measure up with

9http://tenonedesign.com/fling.php

http://tenonedesign.com/fling.php

100 3 Translucent Controls on Tabletops: SLAP Widgets

Figure 3.37: The “Aachener Frieden” table is an interactive table that
enables interaction with tangible blocks. The narrowed substructure allows
users to conveniently stand at the table.

conventional physical keyboards.Typing on

interactive tabletops

screen is still an

open issue.

For intensive typing tasks on tabletops,
augmentation of conventional keyboards could be a valid solution. The
Optimus Maximus10 is a physical keyboard with a 48 × 48 OLED display
embedded in every key. Like the SLAP Keyboard, it can be dynamically
relabeled according to the current application context. However, this key-
board is relatively expensive and tethered, which limits its applicability to
touch screens. Block et al. [2010] use top projection on a conventional key-
board to relabel every key with a resolution of about 48× 48 pixels. They
also added touch sensors to detect whether users currently rest their fingers
on one or multiple keys. The keyboard combines the well optimized haptic
feedback of conventional keyboards with dynamic relabeling. Yet, it is still
uncertain how well those keyboards integrate into a dynamic tabletop ap-
plication where collapsibility plays an important role. Also, the need for a
power supply either demands batteries, which have to be charged, or cables
that consume space and potentially hinder quick hand-overs of controls.

Physical-visual

consistency of SLAP

Widgets might

break down due to

external events or

remote input.

We mentioned consistent feedback as one of our requirements when design-
ing SLAP Widgets. However, the physical-visual consistency easily breaks
down when the software changes a widget’s value. For example, imag-
ine a SLAP Slider for controlling the volume of background music in a
public place. At 6 pm, the system automatically reduces the volume to
consider the neighborhood. While the back projection of the slider could
be updated, the physical state would remain the same, breaking the tight
coupling between the physical object and its dynamic visual appearance.
An external event can also break this consistency, for example, in a remote
collaboration application where two distant users work on a shared task.
If both users have paired a slider with the same shared virtual object, the
physical-visual state of one user becomes inconsistent as soon as the other
one shifts the slider. In the next chapter, we will deal with this issue and
provide a solution that maintains our design requirements.

10http://www.artlebedev.com/everything/optimus/

http://www.artlebedev.com/everything/optimus/

101

Chapter 4

Maintaining Consistency:
Madgets

SLAP Widgets are

one-directional:

System reacts on

physical input but

cannot change

physical

configuration.

In the previous chapter, we introduced SLAP Widgets, general-purpose
controls that combine haptic feedback with a dynamic visual appearance
via back projection. The strength of SLAP Widgets is their lightness. As
passive controls, they are low-cost, easy to build, and do not require any
electronics. However, the benefits of haptic feedback come at the expense
of interface consistency. The physical interaction between users and SLAP
Widgets is one-directional: The table’s software reacts on physical widget
manipulation, but it cannot change the physical state itself; this back-
direction is missing. In some situations,

physical-visual

consistency of SLAP

Widgets easily

breaks down.

This easily causes situations in which the consistency
between a control’s physical configuration and its back projected graphics
breaks down. This not only destroys the illusion of a coherent tangible, it
also causes ambiguous states in the user interface and, finally, limits the
applicability of SLAP Widgets to productivity tasks.

This chapter addresses this issue and introduces a new class of tangible
tabletop controls: Madgets. While maintaining the benefits of passive con-
trols, Madgets preserve the physical-virtual consistency of tangibles and
allow to transfer a variety of concepts known from conventional GUIs to
tabletops. The key component of Madgets is electromagnetic actuation
(section 4.5) in combination with fiber optical tracking (section 4.6). After
motivating the issue and presenting related work, we will explain the hard-

Publications
Madgets was developed in collaboration with Florian Schwarz, who significantly contributed to the hardware

design of the table and the actuation algorithm. Part of this work was first published as poster at the ITS

’09 [Weiss et al., 2009a] and then as full paper at the UIST ’11 conference [Weiss et al., 2010b]. It was also

topic of the diploma thesis of Florian Schwarz [Schwarz, 2010], supervised by the author of this thesis. The

preliminary study to explore the conflict between actuation and user control was designed together with Ronny

Seidel. He conducted the study as part of his diploma thesis [Seidel, 2011] that was also supervised by the

author of this thesis.

102 4 Maintaining Consistency: Madgets

ApplicationUser Interactive
Surface

touches screen

displays UI

sends touch events

renders
UI elements

external
events

Figure 4.1: Bidirectional interaction between user, interface, and application in a touch-based
GUI.

ApplicationUser

operates control

displays UI

sends touch events

renders visual part
of controls

exposes footprint

haptic
feedfack

actuation

Interactive
Surface

external
events

Physical
Widgets

Figure 4.2: Typical interaction with SLAP Widgets on interactive tabletops. If an external
event changes a widget’s internal state, the table can update its visual back projection but not
its physical state. This breaks the consistency between the visual and physical state of the
control. An actuation mechanism, indicated by a red dashed arrow, is required for a complete
bidirectional communication between user, interface, and application.

ware setup and the employed algorithms in detail. Finally, we will describe
a variety of applications.

4.1 Unidirectional Interaction

GUIs inherently

support bidirectional

interaction.

A major reason for the success of touch-based GUIs in today’s computing
devices is their flexibility. The user interface can dynamically adapt to the
current application context. There is no need to hardwire physical controls
into a device anymore. Users can trigger actions and change values by
tapping on-screen buttons or dragging virtual sliders or knobs with their
fingers.GUI applications can

modify user

interface.

Also, the underlying application can modify the UI, e.g., gray
out a button to disable it, set the angle of a virtual knob, or adjust the
range of a slider. The interaction between user, interface, and application
is bidirectional (Fig. 4.1).

Applications cannot

change physical

state of SLAP

Widgets. This can

lead to

physical-visual

inconsistencies.

Albeit SLAP Widgets provide richer haptic feedback than plain on-screen
controls, the physicality of the tangibles also induces a gap in the com-
munication process. When a user operates a widget on the tabletop, the
tracking algorithm detects the changing footprint in the camera image, and
the system modifies the widget’s internal state accordingly. After that, the
application updates the graphical representation of the control. However,
the visual back projection is the only available back channel. The sys-

4.1 Unidirectional Interaction 103

tem cannot change the physical state of the control, it cannot influence
the physical part of the user interface (Fig. 4.2). This can easily cause
inconsistencies in the user interface, as the following scenarios illustrate:

Object Update Inconsistency SLAP Widget is

associated with an

object’s parameter

that changes

autonomously.

Physical position of

slider is not

updated.

Bob intends to watch a video on the
table. He pairs a SLAP Keypad with a video object for playback control, as
well as a SLAP Slider for timeline navigation. He presses “Play” on the
SLAP Keypad to start playback. After watching for a while, Bob decides to
skip a part of the video. He drags the slider’s handle to right but the video
unexpectedly jumps backwards in the timeline.

During playback the internal state of the video, the playback position,
changed over time. However, as the slider’s handle cannot be physically
moved via software, it remained at its original position when playback was
started. This yields an inconsistency between the object’s state and the
associated physical control. Such an inconsistency always occurs, if a SLAP
Widget is associated with a parameter that changes autonomously or due
to external events.

Inter-widget Inconsistency Multiple widgets

associated with the

same value.

Operating one

control does not

physically update

the others.

Alice wants to navigate through a video
that is displayed on the tabletop. She pairs a SLAP Slider with the video
for timeline navigation and a SLAP Knob for frame-wise stepping (cf. video
ethnography usage scenario in section 3.7.1). She shifts the slider’s handle
to the center in order to navigate to the middle of the video. She then con-
tinues working with the SLAP Knob for a while. Suddenly, she reaches the
end of the video although the slider’s handle is still centered, indicating the
middle position of the video.

Again, the physical state of the SLAP Slider (“middle position”) was not up-
dated and became inconsistent with the system state (“end of the video”).
This issue could be mitigated by updating the graphical representation of
the slider according to the position in the movie. However, in this case, the
physical position would differ from the visual one. This not only breaks
the illusion of a coherent tangible, it even impairs the user’s mental model
of the slider: If Alice now shifted the slider slightly to the right in order to
move forward in the video, the video player would actually jump back to a
position near the middle of the video. In general, if more than two conti-
nuous input widgets are paired with a single virtual object, inconsistencies
are likely to occur.

Obtrusive Physical State A widget paired

with an object

immediately

overwrites the

existing value

through its physical

state.

Bob intends to slightly increase the brightness
of an image. He places a SLAP Slider on the tabletop. In the moment
he pairs the slider with an image, the brightness jumps to a certain value
although he has not moved the slider’s handle at all.

Since the physical state of a control cannot be changed software-wise, a
widget obtrudes its physical state at the stage of pairing. Thus, when the
user pairs a widget with an on-screen object, the physical state immediately
sends a value to the object. Otherwise, the widget and the virtual object
would be in an inconsistent state. A better solution would first adapt the

104 4 Maintaining Consistency: Madgets

physical state of the SLAP Widget just after it is paired with an object,
and release it for interaction afterwards.

Remote InconsistencyRemotely shared

widgets are

physically not kept

in sync.

Alice and Bob conduct a remote simulation of a
jet engine on two distant interactive tables. All virtual objects, including
a visualization of a particle simulation, are mirrored on both tables via
network connection. Both users pair a SLAP Knob to control the speed
of the engine, and a set of SLAP Sliders to modify material parameters.
Alice initially sets some experimental values for the material by using the
sliders. Bob then gradually increases the speed. The simulation suddenly
fails although—from Bob’s perspective—all parameters seem to be within
the engine’s specification.

What happened? Since Bob’s SLAP Sliders have not physically moved after
Alice’s modifications, he was not aware of the modified material parameters.
Thus, he accidentally used a speed that did not fit those parameters. Many
controls, such as sliders, knobs, and toggle buttons, are both input and
output devices. SLAP Widgets, however, can only provide consistent haptic
output if they are exclusively applied by one user to a single virtual object,
and if no external events change the object’s state. This is a clear limitation
for collaborative applications.

One-directional

interaction hinders

transfer of GUI

features.

Finally, the table’s inability to move and configure physical widgets avoids
to transfer many GUI functions that are required for productivity tasks,
including undo and redo, storing and loading a system state, or adapting
the interface to the current application context.

SLAP Widgets signify a first step towards haptic feedback on tabletops, but
the current design inherently hinders their use in productivity applications.

Bidirectional

interaction between

user, interface, and

application requires

actuation.

For a bidirectional interaction between user, interface, and application, we
need an actuation algorithm that ensures a malleable interface (Fig. 4.2):
an interactive tabletop that can change its physical configuration on the fly,
i.e., a system that can physically move and configure SLAP Widgets on the
surface. In the following, we describe the body of related work that deals
with this issue. Afterwards, we explain how we turned SLAP Widgets into
actuated bidirectional controls.

4.2 Related Work

This section gives an overview on actuated physical controls that keep up a
consistent mapping between their virtual and physical state. Furthermore,
we estimate their usefulness for interactive tabletop applications.

4.2 Related Work 105

Figure 4.3: Volume knobs of HiFi audio receivers. Left: Infinite knob that changes volume
relatively to the current value. It does not block at volume ranges and is easy to implement.
However, an extra display is required to show the current volume. Right: Absolute knob with
embedded analog volume indicator. Users can employ haptic memory to set a value. However,
a motor is required to maintain digital-physical consistency when changing volume via remote
control. Photos taken by the author.

4.2.1 Actuated Knobs and Sliders

Everyday example:

Actuated volume

knobs in HiFi audio

systems

The issue of maintaing a virtual-physical consistency is already addressed
in everyday devices. For example, most HiFi audio systems provide two
ways to set the volume: a physical dial on the device and a remote control
with pushbuttons that step-wise increase or decrease the loudness. Sim-
pler systems avoid inconsistencies between the physical knob position and
the actual volume value by using an infinite dial without physical range
constraints. The current volume is only shown in the display (Fig. 4.3,
left). The SLAP Knob is implemented in this way. More sophisticated
systems use a knob that blocks at the minimum or maximum volume set-
ting. A mark on the knob shows the current volume (Fig. 4.3, right). This
design gives the audio volume a spatial meaning (angle) and, therefore,
enables users to Volume knobs with

attached indicators

embed motors to

maintain

consistency.

employ spatial memory when setting the volume in an
eyes-free fashion. However, when a user changes the volume remotely, the
system must turn the knob autonomously in order to match the new in-
ternal value. This requires at least a motor and an adequate driver inside
the knob. While providing a richer haptic experience, such active controls
always involve additional hardware, a higher implementation effort, and,
eventually, higher production cost than passive ones.

Actuated sliders in

mixers allow to

quickly save, load,

and switch

configurations.

Professional audio mixers often contain actuated sliders (Fig. 4.4). These
physical sliders provide all benefits of physical controls and can be operated
without looking. This is particularly important if a user has to concentrate
on a different task. Furthermore, motors embedded in the sliders allow
to load audio settings that have been created in advance. For example,
imagine a sound engineer during a live music performance. He usually has
to look at the stage while operating the controls. Just before the next song
is performed, the engineer can change the volume of all instruments by
loading a prepared configuration.

106 4 Maintaining Consistency: Madgets

Figure 4.4: Hardware audio mixer. Motorized sliders allow to quickly save, load, and switch
configurations. Photo taken by the author.

Motorized sliders

have been explored

as input and force

feedback devices in

HCI research.

In HCI research, motorized sliders have been explored for educational and
musical purposes. The Force Feedback Slider is a motorized slider that takes
force and position as input and as output channel [Shahrokni et al., 2006].
An application named FeelTheBeat uses a slider to physically output and
input a time-based parameter in an audio sequencer. Through the actuated
slider, users can see and feel the amplitude of a so-called sound envelope over
time. They can also modify this parameter by moving the slider position
during playback. Using a similar concept, BounceSlider provides multiple of
these sliders to compose music from different samples. The purpose of this
research is to“provide a tool for exploring perceived physical characteristics
of sound as an object” [Gabriel et al., 2008, p. 128].

Embedding

motorized sliders

and knobs in

interactive tabletops

is difficult.

Motorized sliders and knobs are suitable for embedding in larger devices.
However, their use on interactive tabletops is difficult. The need for a mo-
tor, controllers, tethering, or batteries induces a minimum size and weight
factor, which makes it hard to integrate these controls into a dynamic table-
top application. Furthermore, they are complex and difficult to prototype.

4.2.2 Shape Displays

Superior goal of

shape displays:

Surfaces that can

morph into arbitrary

3D shapes.

While most of today’s interactive surfaces are planar, researchers envision
interfaces that can change their shape arbitrarily; malleable physical devices
that morph into any 3D physical interface, so-called Shape displays. The
Claytronics project1 plans to achieve this vision using “programmable mat-
ter”, small scale nano robots that can build up arbitrary 3D structures in
a modular way by creating and releasing interconnections [Goldstein et al.,
2009]. The project is currently in the phase of simulation studies and large
scaled robotic prototypes. Although first manufacturing processes for small
robots have been published [Karagozler et al., 2009], it will probably require
many years until a nano scale is achieved.

1http://www.cs.cmu.edu/∼claytronics/

http://www.cs.cmu.edu/~claytronics/

4.2 Related Work 107

Figure 4.5: Relief contains 120 motorized pins that can generate height
maps. Top projection on a Lycra surface provides a visual overlay. Users
can perform input by pulling or pushing pins, by using external controllers,
or via gestures above the surface by employing depth camera tracking.
Image courtesy of Leithinger et al. [2011].

Yet, shape displays have been successfully implemented in form of dynamic
2D height map displays. Those displays consist of a 2D array of pixels
whose height can be changed.

Shape displays have

been implemented

as malleable 2D

height maps.

Already in 1966, Linvill and Bliss [1966] created a display that could output
monochrome images in a tactile way. The device consisted of an array of
small rods that could vibrate individually. Vibrating rods then formed a
tactile binary 2D image which could be felt by blind users when putting
their fingers on the surface. A practical application of such a technology
are Braille displays. Practical example:

Braille displays

They allow visually impaired users to read and type
at a computer via a dot-based haptic text representation (e.g., [Prescher
et al., 2010]).

FEELEX is a continuous terrain display that consists of a 2D array of
rods with linear actuators. Each each rod can be set to an individual
height [Iwata et al., 2001]. A deformable screen on top of the discrete rod
array provides a continuous surface. Example

implementations:

2D array of rods

with linear actuators

and Shape Memory

Alloys

To provide surface details, a projector
renders a 2D texture onto this surface. Recently, Leithinger et al. [2011]
published Relief, a more scalable version of this technique, and explored
various interaction techniques (Fig. 4.5). Lumen employs Shape Memory
Alloys (SMA) to move rods in a 2D array [Poupyrev et al., 2004]. They
also added color lights in each rod yielding a coarse RGB display with an
additional height channel. Furthermore, capacitive sensors allow users to
interact with each rod.

Pneumatic

actuation can be

used to inflate or

deflate buttons.

Harrison and Hudson [2009b] presented a pneumatic height display that can
raise or emboss 3D buttons on a planar surface. The system is based on a
flexible latex layer. The latex sheet is adhesively connected with an acrylic
backing with cut-outs. These cut-outs determine areas that can be raised
or lowered. A base under the backing closes the construction to a pressure
chamber. An attached pneumatic pump allows to vary the pressure. With

108 4 Maintaining Consistency: Madgets

Figure 4.6: Pneumatic height display. Buttons are dynamically created by
inflating the underlying chamber. The increased air pressure extends and
raises the flexible surface in the button areas. Left: Technical concepts.
Right: Example of an ATM keypad with back projection. Image courtesy
of Harrison and Hudson [2009b].

default pressure, the latex sheet and, therefore, the interactive surface is
flat. However, high pressure in the chamber raises the latex above the cut-
outs (Fig. 4.6). Under lower pressure, the latex is embossed. The authors
propose to use this technology to dynamically create or delete physical
3D buttons. Back projection and a camera behind the surface provide
graphical output and multi-touch input, respectively. This system combines
the flexibility of GUIs with dynamic 3D objects in a clever way. However,
the haptic feedback created by a latex sheet is very limited. Furthermore, all
possible height maps are predefined by the cut-outs in the acrylic backings.

Shape displays only

create “2.5D”

objects, not complex

controls.

Shape displays provide dynamic malleable surfaces. However, all currently
feasible implementations only create “2.5D” height maps. They cannot
form complex controls with rich haptic feedback, such as sliders or knobs.
Furthermore, shape displays are difficult to construct and limited in terms
of resolution.

4.2.3 Actuated Tangibles on Tabletops

Several projects have introduced actuated tangibles for interactive table-
tops to provide a bidirectional interaction between users and table objects,
as well as to maintain physical-visual consistency. In the following, we de-

4.2 Related Work 109

scribe these projects differentiating between active self-actuating objects
and passive objects that are actuated indirectly.

4.2.3.1 Self-Actuating Tangibles

Self-actuating

tangibles use

embedded motors to

freely move and

align on a tabletop.

The Planar Manipulator Display by Rosenfeld et al. [2004] supports bidi-
rectional interaction with active physical objects on a tabletop. Each object
is based on a small motorized vehicle that can drive to any position on the
table. The vehicles themselves do not perform complex computation but
execute movement commands received from the underlying control system.
A lateral-effect photodiode beneath the table senses the position and ori-
entation of two pulsed photodiodes under each vehicle. This information
is then sent to the control system. By mounting a physical cap on top of
each vehicle, the device gains a semantic meaning. The authors present a
sample application for interior architects. A room layout is projected from
above. Every vehicle represents a piece of furniture that users can place
everywhere on the table. When selecting a layout method, all other pieces
rearrange themselves according to a particular configuration. Vehicles are
moved simultaneously, and multiple users can interact at the same time.
Also, physical arrangements can be saved and reloaded later.

The Augmented Coliseum is a similar project involving small physical
robots on an interactive tabletop [Kojima et al., 2006]. The authors de-
veloped an augmented reality game that employs top projection to render
a virtual game environment on the table surface. Furthermore, users can
place actuated physical robots on the tabletop to interact with the virtual
environment. Vice versa, a game logic and a physics simulation running in
the background allow robots to interact with virtual objects. The vehicles
in Augmented Coliseum track themselves and seemingly make autonomous
decisions within the constraints of the game logic.

A more recent project called Tangible Bots combines a DSI multi-touch
table setup with tangible robots [Pedersen and Hornbæk, 2011]. A Tangible
Bot is a puck-like tangible mounted on two motorized wheels that allow for
translation and rotation. A computer in the table tracks the tangibles and
controls them by wirelessly transmitting actuation commands. Users can
turn these tangibles like rotary knobs. Furthermore, a Tangible Bot can be
rearranged by the system and, e.g., resist a user’s turn by rotating into the
opposite direction. This can be helpful to implement physical constraints.

Self-actuated

tangibles allow quick

movements but

require large and

heavy components

that restrain use on

tabletops.

Actuated vehicles and robots can move quickly and smoothly across a table-
top. However, they also involve electronics, such as motors and controller
boards, which have to be powered. The Planar Manipulator Display and
Tangible Bots require batteries in all tangibles that have to be recharged
on a regular basis; the robots in the Augmented Coliseum are tethered.
This restrains the flexibility of these devices when being used ad hoc with
multiple users. Furthermore, actuated vehicles are relatively heavy, large,

110 4 Maintaining Consistency: Madgets

Figure 4.7: The Actuated Workbench. Left: The system bases on an array
of electromagnets. The polarization and strength of each electromagnet can
be changed individually to attract or repel magnetic pucks on the surface.
Right: A magnetic puck contains a permanent magnet and an IR LED for
tracking. A felt pad reduces friction during actuation. Image courtesy of
Pangaro et al. [2002].

and difficult to prototype for designers without electrical engineering back-
ground.

4.2.3.2 Indirect Actuation

Indirect actuation

embeds actuation

hardware into the

tabletop.

Some approaches incorporate the actuation mechanism into the tabletop
hardware to move passive objects that do not contain electronic components
for autonomous actuation.

The Universal Planar Manipulator (UPM) by Reznik and Canny [2001] is
a horizontal vibrating plate that can move rigid objects on top of it.Vibrating plates can

move and align

passive objects, but

device is noisy and

hard to combine

with touch

interaction.

The
friction of a rigid horizontal rotation of the plate creates a displacement
field that moves all objects to certain directions. A set of distinct rotations
creates a basis of displacement fields. These can be linearly combined to
achieve an arbitrary horizontal translation for individual objects. That
is, multiple objects can be moved at once in a round robin fashion, i.e.,
by successive distinct rotations of the single horizontal plate. Although
most objects shown in the paper are circular, the authors state that the
approach works for arbitrarily shaped rigid objects. The major benefit of
this approach is that it does not require any electronics and, therefore, no
batteries or power supplies in the tabletop objects. Designers can create
tangibles without caring much about the actuation process. However, it
remains arguable whether the UPM can be used for interactive tabletop
applications: Due to the vibration patterns, the device is very noisy, and
objects move rather slowly. Moreover, a direct touch interaction on the
plate would be inconvenient during actuation.

The Actuated Workbench by Pangaro et al. [2002] employs a 2D array of
electromagnets beneath an acrylic plate to move magnetic pucks across
the surface (Fig. 4.7). A controller board can control the polarization and,

4.2 Related Work 111

Figure 4.8: Mechanical constraints on actuated pucks that influence optimization. Left: A
rubber band around two pucks enforces a maximum distance between them. Right: A disc
around a puck ensures a minimum distance to other pucks. Image courtesy of Patten and Ishii
[2007].

via pulse-width modulation, the strength of each electromagnet. Magnetic pucks can

be actuated via an

array of

electromagnets.

Attracting and

repelling fields yield

horizontal

movement.

A tabletop
puck is an acrylic cylinder containing a strong neodymium permanent mag-
net as well as an IR LED mounted on top. The LED is used for tracking;
it exposes its position as a spot seen by a camera mounted above the table.
A felt pad beneath the puck reduces friction. The actuation principle is
based on magnetism: An electromagnet near a puck can apply an attract-
ing or repelling electromagnetic field to the embedded permanent magnet.
The puck then moves towards or—in the opposite direction—away from
the electromagnet, respectively. A combination of multiple electromag-
netic fields allows to translate the puck continuously to any position on the
table. Note that the strengths for all electromagnets have to be adapted
in each step, according to the current position of the puck. The authors
propose applications that transfer GUI mechanisms to physical pucks, such
as load and save, undo, or search and retrieve of pucks. On a higher level,
remote collaboration and interactive scientific visualizations of simulations
are suggested.

In a later project, Patten and Ishii [2007] add tangible constraints to the
concept of passively actuated pucks. They introduce an application that
intends to optimize the positions of Mechanical

constraints can

augment actuated

pucks in spatial

optimization tasks.

cellular telephone towers on a map
(Fig. 4.8, left). Each tower is represented by a physical puck. The applica-
tion senses the positions of all pucks and computes a better arrangement
according to certain criteria, e.g., a desired minimum distance between tow-
ers. It then tries to move the pucks to new positions via actuation, before
repeating the tracking and computation step. The authors also introduce
a set of physical constraints: A weight placed on a puck hinders it from
being moved while all other pucks will still be translated in each step. A
ring placed around a puck ensures a minimum distance between it and
other objects. Contrariwise, a rubber band around two pucks determines a
maximum distance (Fig. 4.8, right). These constraints allow users to phys-
ically intervene with the simulation and impose constraints in a tangible
and intuitive way. The key benefit of this concept is that there is no need to
actually track the tangible constraints. They are implicitly considered by

112 4 Maintaining Consistency: Madgets

the control loop: In every step, new puck positions are recomputed based
on the current ones. If a puck does not move as predicted, e.g., because it
is held in place by a weight, its deviant position is used for the next step.

Electromagnetic

actuation is calm

and smooth. Pucks

are easy to build,

but use for

productivity tasks is

limited.

The use of electromagnetic actuation allows a very calm and smooth actu-
ation. Furthermore, tangible pucks are relatively simple to build, although
they still require a battery to power the IR LED for tracking. However,
pucks also provide rather limited haptic feedback. While being appropriate
for spatial simulations and optimizations, their use for productivity tasks is
limited. Complex tangible controls that contain moveable parts, such as a
knob or a slider, cannot be actuated with the algorithms presented in this
section.

4.3 Magnetic Widgets

Using our experience with SLAP Widgets and the findings from related
work, we developed a new class of physical tabletop controls.

Design decision: no

embedded batteries,

motors, or cables as

design constraints

The main goal in the concept phase was to create bidirectional controls
that preserve the benefits of SLAP Widgets. Batteries, motors, and cables
impose considerable constraints upon the designer; they introduce a mini-
mum weight and distinct form factor, limit the mobility of the device, and,
as mentioned before, they require a certain skill set of electrical engineer-
ing. Therefore, all kinds of motorized controls were not an option. The
new controls should be lightweight, low-cost, and easy to build. We also
wanted to keep the ability to dynamically change the visual appearance of
the controls, because this property allows users to employ the same control
for many purposes. Finally, inspired by the idea of Ubiquitous Computing,
we aimed at a design that hides the underlying technology from the table.

Madgets are SLAP

Widgets with

attached permanent

magnets for

electromagnetic

actuation.

Encouraged by the Actuated Workbench, we chose electromagnetism as
base technology for actuating controls on the tabletop. It is a calm techno-
logy that does not require electronics parts in the tangibles. Furthermore,
as it works over a distance, it can be hidden beneath the surface. To ac-
tuate controls across the surface, we extended SLAP Widgets by adding
permanent magnets to its base, yielding a new class of actuated tabletop
widgets: magnetic widgets, or Madgets.

A sample Madget is shown in Fig. 4.9. As SLAP Widgets, Madgets are
made of transparent materials, such as acrylic, which allows for back pro-
jection and low-cost construction. Similarly to the Actuated Workbench, we
actuate our controls by applying attracting and repelling electromagnetic
forces. Permanent magnets are attached to the base of each Madget so that
their poles are aligned orthogonally to the surface. By applying different
force fields to these magnets, our system can move and configure physical
controls on the tabletop (Fig. 4.10). Furthermore, we can actuate into the
third dimension. For example, after attaching a permanent, we can raise a
button’s plate by creating a repelling magnetic field (section 4.8.2.1). Each

4.4 System Overview 113

Figure 4.9: Madgets contain permanent magnets that enable passive actuation. Left: Proto-
type of the Knob Madget. Right: View from below. The footprint consists of gradient markers.

Figure 4.10: Principle behind Madgets. Madgets are actuated across the
tabletop by applying electromagnetic forces to permanent magnets attached
to the controls. The image shows a Knob Madget and the hardware beneath
the table surface. Image adopted from [Weiss et al., 2010b].

Madget is tracked via circular markers in its base. Although the marker
design is different and requires a novel tracking algorithm (section 4.6), the
widget detection mechanism remains the same as was described in section
3.5.2.

4.4 System Overview

In order to track and actuate passive tangibles while changing their visual
appearance on the fly, we developed a novel interactive table that merges

114 4 Maintaining Consistency: Madgets

d)

a)

b)
c)

f)
g)

e)

h)

Figure 4.11: Schematic composition of Madgets Table surface. a) End-
lighten acrylic. b) LCD panel. c) Electroluminescent foil. d) Infrared LED.
e) Magnet core. f) Electromagnet. g) Fiber optical cable. h) Camera with
attached IR pass filter. Image adopted from [Weiss et al., 2010b].

these abilities into a compact design.Madgets require a

novel tabletop

hardware.

In this section, we describe the con-
ceptual design of our table. Sections 4.5 to 4.7 contain detailed explanations
of the hardware and the underlying algorithms.

4.4.1 Surface

DSI is used for

visual marker

tracking.

As shown in Fig. 4.11, our table surface consists of multiple layers, adding
up to a total thickness of 52 mm. The topmost layer is an Endlighten plate
(Fig. 4.11a). It appears almost transparent to humans but contains micro
particles that diffusively reflect light within the surface. LEDs (Fig. 4.11d)
emit IR light into the plate that bounces within the Endlighten but also
leaves the material to the top and the bottom. This enables DSI tracking:
If a marker is placed on the surface, or if a user puts down a finger, it
reflects outgoing infrared light downwards, where it can be detected by IR
cameras in the table (Fig. 4.11h). The area of our table surface that is
sensitive to input amounts to 40 cm × 25 cm.

LCD panel with EL

foil creates visual

output.

Directly beneath the Endlighten layer, an LCD panel (Fig. 4.11b) dis-
plays the graphical user interface, including the back projected visuals for
each Madget that is placed on the table. An electroluminescent (EL) foil

4.4 System Overview 115

(Fig. 4.11c) provides backlighting for the panel. We chose this material,
because it can be cut and punched easily without loosing functionality.

Electromagnetic

display applies forces

to magnetic objects

on the tabletop.

The core of our actuation method is an electromagnetic display, an array
of electromagnets beneath the display layer (Fig. 4.11e-f). We can control
the polarization and strength of every single magnet, and, therefore, apply
attracting or repelling forces to the permanent magnets in each Madget.
The magnetic fields reach beyond the other layers and can drag a Madget
to a certain position, rotate it, or change its physical configuration.

Fiber optics pierce

EL foil and allow to

look past the

electromagnets for

tracking IR spots.

Since electromagnets are opaque, we cannot just place a camera beneath
the surface for tracking IR spots. Instead, we employ a method similar to
FiberBoard [Jackson et al., 2009]. A grid of polymer fiber optical cables
(Fig. 4.11g) is placed between the magnets and inside their cores. All
infrared light reflected from the surface is transmitted to cameras inside
the table. Unlike the LCD panel, the EL foil is opaque in the IR spectrum.
Therefore, we drilled holes into the foil. Each fiber optical cable begins
beneath the LCD panel, penetrates the EL foil, passes the magnets, and
ends just beneath the lowest surface layer. Using fiber optics, cameras in the
table can “see” past the actuation hardware. Note though that due to the
spacing of the fiber optics, the input resolution is significantly lower than
in the SLAP Table. This is addressed by our tracking algorithm (section
4.6).

4.4.2 Architecture

Input concept and

software architecture

build upon the

SLAP Framework.

Fig. 4.12 illustrates the architecture of Madgets. The input processing
is similar to our SLAP Table. Cameras with IR pass filters monitor the
surface, and deliver raw video footage to a Touch Detection Agent. This
agent is a self-contained application that processes the camera input and
searches for spots indicating finger touches or markers (section 4.6). It
converts these spots into touch events and broadcasts them to all running
table applications. The widget detection within the SLAP UITK finds
footprints within the set of events (section 3.5.2). The SLAP UITK then
handles the communication between widgets and virtual objects. It also
renders the graphical user interface and outputs it to the LCD panel in
the surface. The application layer sets up the virtual objects and reacts on
system events. In addition, programmers can specify where and how the
table shall actuate physical widgets.

Actuation

Framework

computes

electromagnetic

configuration for

Madget actuation in

closed loop control.

The Actuation Framework computes updates of the electromagnetic display
depending on the current positions, orientations, and states of Madgets and
on the desired target configuration. An actuation process always starts with
a high-level command from the application layer to change the physical
configuration of the table, e.g., “move the knob to position (x,y) and turn
it to 30◦”. The Actuation Framework then initiates a closed loop control.
In each frame, the table retrieves the Madget’s current position, rotation,
and configuration from the widget detection, and computes the required

116 4 Maintaining Consistency: Madgets

MultiTouch
Framework

Touch
Detection

Agent

Actuation
Framework

Hardware

Hardware
Abstraction

Toolkit

Application
Design

Rendering
Utility Library

OpenGL

triggers
Madget

actuation

notifies about
detected widgets,
gestures, pairings,
touch events

sends touch
events

renders
objects and
background

sends new
magnet array
configuration

(strengths and
polarization)

sends calibrated
array

configuration
Ethernet

DVI
sends
output
frame

sends
raw input

frames
Firewire

shifts strength
values

shifts
polarization
bits

sends PWM
signals

powers and
polarizes all
magnets

SLAP UITK
provides tabletop interface,

detects widgets

mbed
controller

PWM
shields

driver boards

Madgets
positions

and states

creates/removes
GUI objects

Application

Magnet Array
Control

Interface

Figure 4.12: Architecture of Madgets. Blue texts indicate new communication channels in
comparison to SLAP Framework (cf. Fig. 3.21 on page 63).

strengths and polarizations of every single electromagnet in the surface, in
order to proceed the Madget closer to the target configuration. The close
loop ends as soon as the Madget has reached its target.

In every frame, the Actuation Framework sends the desired power and
polarization for all magnets to a Magnet Array Control Interface. This in-
terface maps the 2D array configuration to calibrated indices (section 4.5.3),

4.4 System Overview 117

Figure 4.13: Implementation of Madgets Table. Left: The hardware is embedded into a
wooden frame. Right: Cameras inside the table monitor the ends of fiber optical cables.

and sends this to an external hardware controller via Ethernet. The Magnet Array

Control Interface

maps 2D array

configuration to

hardware indices.

This con-
troller sends the strengths and polarization to driver boards, which power
and polarize the electromagnets in the surface. The technical details of this
process will be described in section 4.5.

During development, our software, i.e., the top three layers of the architec-
ture, ran on a Mac Pro with two 2.26 GHz Quad-Core Intel Xeon processors
and 6 GB RAM.

4.4.3 Table Construction

The table is embedded in a wooden frame (Fig. 4.13, left). Metal rails
spanned across the top provide support for the surface modules. All track-
ing cameras are mounted on a wooden board in the lower part of the frame
(Fig. 4.13, right). Power supplies and controllers are placed in the bottom
of the frame.

Modular design of

surface ensures

scalability.

We designed the surface in a modular way to ensure the scalability of the
system. Our surface is composed of three independent modules. Each con-
tains a subset of electromagnets and fiber optical cables, an EL foil, and a
dedicated IR camera for tracking (Fig. 4.14, left). All electromagnets are
supported by a 6 mm acrylic layer that is penetrated by the magnet’s con-
necting cables and the fiber optics. Further acrylic layers hold the magnets
in place horizontally. The connecting cables are glued to conductor boards
that direct to pin headers at the sides. These headers are used to conve-
niently connect the electromagnets to the controller hardware. Fig. 4.14

118 4 Maintaining Consistency: Madgets

25 cm

40
 c

m

a)

b)
c)
d)

Figure 4.14: Implementation of Madgets Table surface. Left: Surface is com-
posed of three modules. Modified image from [Weiss et al., 2010b]. Right:
Electromagnets are mounted on an acrylic plate (b). Further acrylic layers (a)
provide lateral support. Electromagnets are soldered to circuit boards (c) that
provide pin headers for connection to controller hardware. Image courtesy by
Schwarz [2010].

(right) shows the exact arrangement of layers. Note that the fiber optics
also penetrate the conductor boards.

4.5 Electromagnetic Actuation

This section describes our electromagnetic actuation technique. After illu-
minating the hardware control and the preceding calibration process, we
will explain the algorithm that computes the force fields to move, arrange,
and configure our physical controls.

4.5.1 Hardware Control

Surface contains

19 × 12

electromagnets for

actuation.

The overall surface contains 19×12 electromagnets. Each magnet amounts
to a diameter of 19.5 mm and a length of 34.5 mm. It is wound around a
plastic coil bobbin with 3500 turns of enameled 0.16 mm thick copper wire.
The magnets are specified with a voltage up to 45 V DC, which yields a
current of 0.32 A. However, we usually drive them at voltages between 30-
40 V. Iron rods with a diameter of 8 mm and a height of 35 mm function
as magnetic cores (Fig. 4.11e). We also worked with other core materials,
such as manganese-zinc ferrite, as will be explained in section 4.9. We left
a small 0.75 mm gap between the core and plastic cylinder to provide space
for fiber optical cables. Every magnet is soldered to a thin conductor board
beneath all surface layers. It contains pin headers to connect magnets from
the sides of the surface.

4.5 Electromagnetic Actuation 119

PWM IC
TLC5941

Motor driver
IC L6219D

Motor driver IC
Shift register

IC

Shift
register IC
74HCT595

PWM IC
TLC5941

H
bridge

H
bridge

mbed
controller PWM shield

dr
iv

er
 b

oa
rd

further PWM
shields ...

further power boards ...

LAN

polarization bits

strengths
values

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Motor driver IC

Shift register
IC

Shift register
IC

Figure 4.15: Circuit that controls strengths and polarizations of electromagnets.

mbed
controller

stacked
PWM shields

driver board

driver IC shift register

5V DC max.
43V DC5V DC

Ethernet

PWM
connector

polarization
connector

magnet
connector

Figure 4.16: Main hardware components that control the electromagnetic array.

120 4 Maintaining Consistency: Madgets

pulse-width
period

average

Figure 4.17: Pulse-width modulation (PWM). PWM generates an analog variable using a
rectangular waveform containing “on” and “off” states. The effective voltage equals the average
(blue dashed line) of the signal.

25% 50% 75% 100%

Figure 4.18: Examples for different PWM duty cycles.

Motor drivers

control

electromagnets.

The control circuit of the magnetic array is illustrated in Fig. 4.15, and
the main hardware components are shown in Fig. 4.16. Two magnets are
driven by a single L6219D motor driver integrated circuit (IC). Each driver
runs at 5 V DC and requires a maximum of 43 V DC to power the attached
magnets.

Strengths of

electromagnets are

varied via

pulse-width

modulation.

The strength of a magnet is varied via pulse-width modulation (PWM).
PWM is a method to generate an analog variable using a rectangular wave-
form (Fig. 4.17). Informally spoken, an analog value is created by switching
a voltage “on” and “off”. The period of the signal is usually constant. The
“on time” within a period is called pulse-width. The percental duty cycle is
the proportion of the “on time” in the period. If applied to electromagnets
with a sufficiently high frequency, the effect of PWM is about the same as
if the average voltage of the signal would be applied analogously. Sample
duty cycles are shown in Fig. 4.18. The benefit of PWM is that it allows
for a simple digital control of the electromagnets. An analog control of
each individual electromagnet would considerably complicate the hardware
design.

Motor drivers

combine polarization

bits and PWM

signals via H-bridge

to control

electromagnets.

For each magnet, the driver needs two binary input signals. One to switch
the magnet on or off according to the PWM signal, and one to specify the
polarization of the output current. The motor driver switches the polari-
zation of the output using two internal H-bridges. PWM generator ICs of
type TLC5941 create PWM signals to vary the magnets’ strengths. Each
controller creates 12-bit (4096 steps) PWM signals for up to 16 independent

4.5 Electromagnetic Actuation 121

channels. We daisy-chained 20 of these controllers in a stack to simulta-
neously control up to 320 magnets. The polarization bits for each motor
driver are provided by 40 daisy-chained 74HC595 8-bit shift register ICs.

Electrical

components are

grouped in driver

boards for better

handling.

For better maintenance and handling, we grouped the above mentioned
controllers into driver boards. Each board contains up to 16 motor drivers,
4 shift registers, and a connector for 32 parallel PWM signals. They also
contain connectors for 5 V and up to 43 V DC for the electromagnets. We
used 10 of these modules to control the 228 magnets. Note that with this
configuration we can control up to 320 magnets.

Suppressor diodes

and fuses protect

motor drivers and

electromagnets.

We protect the motor drivers with suppressor diodes connected in parallel
with the attached magnets. It eliminates voltage peaks that occur when
magnets are switched off or when their polarization is flipped. Furthermore,
input current for each driver board is secured by 6.3 A fuses (T6.3L250V).

mbed controller is

interface between

software and

actuation hardware.

An mbed NXP LPC1768 microcontroller2 represents the interface between
the software and the actuation hardware. It runs at 100 Mhz and contains
an built-in Ethernet chip supporting fast communication between computer
and controller. The software on the controller can be programmed using
a web-based C++ compiler. At start-up, the framework connects to the
controller via Ethernet and sends an authorization string. The controller
then replies with a specific authorization confirmation including the soft-
ware version. We employed this simple authorization procedure to identify
version conflicts between framework and controller. Once the connection
is established, the framework sends magnet array configurations via a 640
byte buffer for each frame. The buffer contains 16-bit integers for up to 320
magnets. The first bit in each integer encodes the polarization of a magnet,
while the last 12 bits determine its PWM strength. Bits 2 to 4 are unused.

While polling the network, the run-loop of the mbed controller indepen-
dently updates the magnets in every cycle and clocks the PWM generators.
The mbed controller shifts PWM strengths into the PWM generators and
polarizations into the shift registers via its digital outputs. A rising edge
in the latch pin of both ICs assigns all PWM values and polarizations to
the motor drivers in parallel.

4.5.2 Conventions

To ensure a correct actuation, the polarization of permanent magnets that
are actuated on the tabletop must be consistent. Without loss of genera-
lity, we refer to the permanent magnet’s pole that is attracted due to a
positive electromagnetic polarization as the negative pole. Analogously, the
other pole is called positive pole3. By convention, permanent magnets are

2http://mbed.org
3More common terms for poles of permanent magnets are “North” or “South”. We use

“positive” and “negative” for consistency with our mathematical actuation model.

http://mbed.org

122 4 Maintaining Consistency: Madgets

–+–
–

–
+
—

a) b)
– –

– –

+

Figure 4.19: Conventions of actuation algorithm. a) The negative pole of a Madget’s per-
manent magnet, which is attracted due to positive electromagnetic polarization, always faces
downwards. Red arrow denotes force vector. b) Example array configuration diagram illustrat-
ing an attracting electromagnet in the center, surrounded by four repelling ones. Circle size
represents strength of electromagnet.

always attached to Madgets so that their negative pole points downwards
(Fig. 4.19a).

In the following, we will illustrate various configurations of electromagnetic
subarrays. We show them as a matrix of circles, where each circle represents
an electromagnet (Fig. 4.19b). Inactive magnets are shown as white circles.
Positively polarized electromagnets are red circles containing a “+” sign.
Negatively polarized electromagnets are denoted with a “−” sign in a green
circle. The size of the cycle denotes illustrates the duty cycle, i.e., the
strength of the electromagnet.

4.5.3 Calibration

Magnet Array

Controller

application provides

interface for

calibration process.

The mbed controller can access up to 320 indices, but only a subset of
them points to electromagnets. Once the hardware is assembled, a one-
time calibration step is necessary to map indices to distinct electromagnets
in the array. The Magnet Array Controller application allows to specify
this mapping (Fig. 4.20). The calibration requires a reference permanent
magnet whose poles are designated.

Calibration: Indices

are triggered, and

user finds activated

electromagnet and

polarization by

hovering reference

permanent magnet.

After the user has started the calibration procedure, the system subse-
quently triggers all indices from 0 to 319 with a positive polarization. For
every index, the user first checks whether an electromagnet is activated. An
active magnet increases the power consumption, which is displayed on the
power supply, and produces a subtle high-frequency sound. If an electro-
magnet is active, the user has to find its position by hovering the reference
magnet above the array. After that he can click on the corresponding mag-
net represented in our software and assign the index to this magnet. Due
to variations in manufacturing, the polarization of the electromagnet might
be flipped. If the user detects that the negative pole of the reference mag-
net is not attracted, he can click on the magnet in our software and flip its
polarization via a menu item. The result of the calibration is an array with

4.5 Electromagnetic Actuation 123

Figure 4.20: The Magnet Array Controller application provides a direct interface with the
mbed controller. Left part: In default mode, the user can set the polarization and strength of
each electromagnet using simple mouse or menu commands. Right part: In calibration mode,
the user assigns PWM indices to electromagnets and flips incorrect polarizations.

19 × 12 entries corresponding to electromagnets in row-wise order. Each
entry contains the index that accesses the magnet (or -1 if the magnet is not
available) and a Boolean flag whether the polarization must be switched.

Calibration process

extensive but needs

to be performed

only once.

This calibration process is time consuming and requires about 30–45 min-
utes for the entire table. It is easier if two persons perform it collaboratively:
One person controls the calibration software, the other one searches for ac-
tivated electromagnets. However, the table must only be calibrated a single
time after assembly. Furthermore, we added a few features to simplify and
speed up the process. First, an overlay can be displayed on the LCD panel
of the table. It shows which magnets are already calibrated and helps to
identify the row and column of the electromagnet that is currently active.
As all driver boards are often wired and populated in the same way, the
index schemes often repeat among boards in steps of 32 indices. Copy & Paste

functions speed-up

process.

Therefore,
we added a “copy & paste scheme” function: A user can mark a rectangle
of electromagnets, copy the scheme, and paste it with an offset at another
position. We also provide a feature to quickly swap two indices. This can
be helpful, if a scheme is pasted for a driver board that is slightly modified.

To test the calibration, the user places the reference magnet with the down-
facing negative pole above an electromagnet in a predefined corner. Then

124 4 Maintaining Consistency: Madgets

he starts the “Successive rectangle test”.Calibration test:

Single permanent

magnet is actuated

along entire surface.

This test subsequently drags the
magnet to every electromagnet on the table, triggering a single electromag-
net in each step. The test starts in the corner of the table and proceeds
every second to the next magnet in the row. Once a full row is tested,
it continues with the next row in the opposite direction. If the reference
magnet reaches the opposite corner, the table is correctly calibrated. If it
stops in the meantime, the next electromagnet is probably not calibrated
correctly. A reference magnet that jumps away from a position indicates
that the polarization of an electromagnet is not adjusted correctly.

Magnet Array

Controller provides

interface to control

electromagnets.

Once the table is calibrated, the Magnet Array Controller provides a simple
GUI that allows users to activate single or multiple electromagnets and to
change their polarization. They can also store and load array configura-
tions. The program also provides functionality to conduct user tests that
will be introduced in the next chapter.

4.5.4 Actuation Algorithm

Actuation bases on

attracting and

repelling

electromagnetic

forces.

Our algorithm actuates Madgets on the surface by applying magnetic fields
to their attached permanent magnets. The actuation is based on two atomic
forces: Attracting fields drag a Madget or parts of it into a certain direction,
and repelling fields push it away. This section explains the algorithm that
actuates a Madget on the tabletop. We begin with explaining existing
approaches in literature and their limitations, followed by an overview and
a detailed mathematical description of our technique.

4.5.4.1 From Single Pucks to Multi-Element Controls

The actuation of single small magnetic objects using electromagnetic arrays
has been well investigated by related literature. The Actuated Workbench
describes a variety of approaches to move magnetic pucks across the surface
[Pangaro et al., 2002].

Manhattan Motion

moves a magnetic

puck to adjacent

electromagnets in x-

or y-direction,

consecutively.

The simplest mechanism is the so-called Manhattan Motion. To move a
magnetic puck to a discrete position on the surface, the puck is always
attracted with full power to the closest electromagnet in x- or y-direction
that decreases the distance to the target position (Fig. 4.21b). If the puck
moves on top of an electromagnet, the next electromagnet is triggered. The
name of the technique is derived from the behavior to attract the magnet
either in horizontal or vertical direction until it reaches the destination. If
only a single puck is placed on the table, a similar technique even works
without tracking: By subsequently activating rows and columns of magnets
from the boundaries towards the target position, the puck approaches that
position (Fig. 4.21c). Manhattan Motion is a fast technique that is easy
to implement. However, the achieved movement is jerky, and destinations
between magnets cannot be reached.

4.5 Electromagnetic Actuation 125

–
–
–
–
–
–

–
–
–
–
–
–

–
–
–
–
–
–

–
–
–
–
–
–

– – – – – – –

– – – – – – –

– – – – – – –

– – – – – – –

+
+

b)

c)

a)

Figure 4.21: Actuating a single magnetic puck via Manhattan Motion. a) The puck shall
be moved to a new position (blue arrow). b) If the initial position of the puck is known, it is
actuated to the destination position by consecutively attracting it to the closest magnet in x-
or y-direction towards the final position. c) A puck can also be moved by converging vertical
and horizontal repelling lines of electromagnets. No tracking is required, but this approach only
works for a single puck on the table.

a) b) c) d)

Figure 4.22: Illustration of flux lines depending on magnet activation. Red frames denote
active, gray frames disabled magnets. a-b) If only a single magnet is activated, flux lines are
centered at the magnet’s core. c-d) If multiple magnets are activated, the flux lines move to
the interpolated position. Image generated using ViziMag software [Beeteson, 2001]. Adapted
version from [Pangaro et al., 2002].

Principle of

electromagnetic

superposition allows

continuous

actuation.

For a continuous movement Pangaro et al. [2002] employ the principle of
superposition. If multiple electromagnets are activated, the resulting force
upon a permanent magnet equals the sum of forces that individually ac-
tivated electromagnets would apply to that magnet. Although the inter-
action between electromagnets in the array is more complex, and this as-
sumption is not absolutely correct, it is a valid approximation as shown in
Fig. 4.22. Attraction into

directions different

than target direction

smoothens the

movement.

By combining the forces of multiple electromagnets, the puck can
be smoothly dragged into arbitrary directions and to“sub-magnet”positions
on the surface. Inspired from antialiasing techniques in the field of Com-
puter Graphics, the authors provide two smooth actuation mechanisms:
“Jet”-based antialiasing combines attracting forces of many electromagnets

126 4 Maintaining Consistency: Madgets

b)a)

Figure 4.23: Antialiasing mechanisms for smoothly actuating a puck into a certain direction
(blue arrow) according to Pangaro et al. [2002]. a) When using “Jet”-based antialiasing, all elec-
tromagnets in the direction of movement are activated but scaled according to the projection
onto the movement vector. b) When using “Dot”-based antialiasing, electromagnets in the oppo-
site direction are activated as well. All active electromagnets in the images produce attracting
fields.

in the target direction of the puck (Fig. 4.23a). “Dot”-based antialiasing
adds small attracting forces in the opposite direction (Fig. 4.23b). Albeit
slower, the movement of the latter technique is smoother.

Linear Induction

Motors move

objects alongside a

traveling magnetic

field.

Another technique to move simple objects is presented by Yoshida et al.
[2006]. The authors combine the principle of two Linear Induction Motors
(LIM) [Noma et al., 2004] to create traveling magnetic fields on the surface.
In contrast to the before mentioned approaches, a Linear Induction Motor
powers the electromagnets with alternating current (instead of PWM) and
a constant phase difference between coils in the desired direction. This
induces current to a conductive non-magnetic object and creates force into
the traveling direction. Figuratively speaking, the objects move on the bow
wave of the magnetic fields.

Existing approaches

work for pucks but

cannot actuate

complex controls.

All these approaches are suitable to smoothly translate rigid pucks on the
tabletop. However, they do not allow to rotate objects, and arranging
complex controls like Madgets, which are not circular and contain multiple
elements, is not feasible with these techniques.

A Madget can consist of multiple rigid bodies that are connected by joints.
For example, a slider consists of a base that is connected to a sliding knob
via a linear joint. A knob combines a rigid base with a turnable arm
via a rotational joint. Every rigid body is mounted on one or multiple
permanent magnets. The base of a Madget contains at least two magnets to
allow for rotational actuation; however, usually more magnets are attached
to distribute the required actuation force to multiple magnets. Moving
parts inside a Madget require as many magnets as they have degrees of
freedom. Therefore, a sliding knob or a turning arm needs a single magnet
for actuation.

4.5 Electromagnetic Actuation 127

+
–+

+
–

+
– –

–+

+

–

TM0 TM1

TM2

SM0

Retrieve marker
positions

Compute total
force and torque
to approach
target configuration

Assign forces to
all permanent
magnets of the
Madget

Compute
polarization and
strength for each
electromagnet
and activate array

1. 2.

3.

4.

Figure 4.24: Control loop of actuation algorithm. The process is executed until the Madget
reaches its target position and orientation.

Permanent magnets

of a Madget depend

on each other.

All permanent magnets of a Madget inherently depend on each other, be-
cause they are connected to the same body. If we actuate a single permanent
magnet, all other magnets on that body move as well (but not necessarily
into the same direction). Also, every activated electromagnet influences
every permanent magnet on the table. Our actuation algorithm must take
the exact physical configuration of each control into account and consider
the interdependencies of permanent magnets.

Even though actuating complex controls is difficult, it enables a new actu-
ation dimension: height. Parts of a Madget can be raised from the table
using a repelling magnetic field. This is only stable if the part is embedded
into a control that constraints the horizontal motion. Our algorithm must
take this into account.

4.5.4.2 Overview

Actuation starts

with request to

move and configure

Madget.

Our actuation algorithm begins with the request to actuate a Madget to a
new position and/or to rotate it to a certain target angle. Depending on
the Madget, the user can optionally specify a new inner state, e.g., a new
rotation of the knob’s arm.

128 4 Maintaining Consistency: Madgets

Figure 4.25: Forces and torque that are applied to a Knob Madget and its permanent magnets
during an actuation step. Note that the center of gravity Cgrav rotates around the geometric
center Cgeom depending on the angle of the knob’s arm.

Our closed loop actuation algorithm now repeats the following steps, until
the Madget reaches the target configuration (Fig. 4.24):

1. Retrieve the exact position of all permanent magnets from the track-
ing algorithm (section 4.6). Compute the current velocity and angular
velocity of the Madget.

2. Compute the total force and torque that is required to actuate the
Madget to the next position, orientation, and state (section 4.5.4.4).

3. Compute force vectors for all permanent magnets to achieve the total
force and torque (section 4.5.4.5).

4. For each electromagnet in the array, compute the polarization and
strength that is required to generate these forces (section 4.5.4.6).

4.5.4.3 Model

In this section, we derive the model of our actuation algorithm, after intro-
ducing the terminology and variables. We refer to Fig. 4.25 for an illustra-
tion of the force and torque values that will be discussed in the following.

Model is based on

rigid body dynamics.

Our model is based on rigid body dynamics. Accordingly, multiple forces
and torques that are applied to various points of the rigid body can be com-
bined to a single force and torque applied to the center of gravity (COG).

4.5 Electromagnetic Actuation 129

Madget’s position is

defined with respect

to geometric center,

rotation with

respect to y-axis

vector.

The position of a Madget is defined by its projected 2D geometric cen-
ter Cgeom, i.e., the center of its 2D bounding box, because this is usually
constant over time. The projected 2D center of gravity Cgrav may vary
according to a Madget’s physical configuration. For example, the COG of
a knob in Fig. 4.25 depends on the position of the rotating arm due to the
changing weight distribution. The absolute rotation angle of a Madget in
the horizontal plane is measured clock-wise against the y-axis vector (0, 1).

Array is updated

with 30 fps.

We update the electromagnetic array with about 30 actuation frames per
second (fps). In each frame, the Actuation Framework computes polariza-
tions and strengths for all electromagnets. Then, the array triggers the
electromagnets with this configuration for the entire frame length until the
new configuration from the next frame is available. We denote the duration
of a frame with taf ≈ 0.033 s.

We denote electromagnets in the array with Ei with i ∈ {0, 1, ..., 227}.
Without loss of generality, we assume that the indices are ordered line
by line. For simplicity, we assume that a single Madget is actuated.
Generalizing to multiple Madgets is straight forward, as will be explained
later. We denote permanent magnets on that Madget with Pj with
j ∈ {0, 1, ..., nP − 1} and nP representing the total number of permanent
magnets on the Madget. Static magnets

belong to rigid base;

dynamic magnets

have at least one

degree of freedom

with respect to base.

For further simplification, we assume that a Mad-
get contains two types of permanent magnets: Static magnets belong to the
rigid base of the Madget, dynamic magnets denominate all other magnets
with at least one degree of freedom in respect to the base. Pos(Ei) and
Pos(Pj) denote the 2D position of an electromagnet or permanent magnet
on the surface, respectively. It is measured in cm and assumed as the pro-
jection of the magnet’s center onto the local coordinate system of the table
surface that is, without loss of generality, defined by the bottom left corner
of the surface.

For simplification, we only consider a Madget’s static magnets for actuating
it a new position in the following. Electromagnets Ei apply forces to these
permanent magnets to actuate the Madget to a new position and absolute
rotation angle.

We differentiate

between tangential

and normal forces.

We differentiate between tangential and normal forces. Tangential forces
pull objects in horizontal direction across the surface plane. Analogously,
normal forces push towards or away from the surface.

Forces are expressed

with respect to

reference permanent

magnet.

We first use a reference permanent magnet PRef with fixed properties to
introduce all variables and later generalize to arbitrary magnets. Following
our convention, the reference magnet’s negative pole always faces down-
wards.

With FT -max(PRef) we denote the measured amount of tangential force that
is required to drag the reference magnet PRef horizontally away from the
position centered above a fully powered electromagnet (Fig. 4.26). Anal-
ogously, FN -max(PRef) is the amount of normal required force required to

130 4 Maintaining Consistency: Madgets

+
—

reference
magnet

+

Figure 4.26: Measurement of bounds for normal and tangential forces
using a reference magnet.

lift that magnet away from a fully activated electromagnet. Note that both
values are scalars. All forces are declared in Newton.

FT (Ej) and FN (Ej) is the amount of tangential and normal force, respec-
tively, that an electromagnet Ej with variable polarization and strength
exerts on the reference permanent magnet PRef centered above Ej . The
tangential force is bounded by

Bounds of

tangential force
− FT -max(PRef) ≤ FT (Ej) ≤ FT -max(PRef). (4.1)

Note that FT (Ej) is a one-dimensional variable, whose sign indicates the
polarization. A negative value denotes a repelling, a positive one an at-
tracting force. The normal force FN (Ej) exerted by an electromagnet is
approximately proportional to the tangential one. Thus, we write the nor-
mal force of an electromagnet as

Normal force is

proportional to

tangential one.

FN (Ej) = θ · FT (Ej)

where

θ :=
FN -max(PRef)

FT -max(PRef)

describes the ratio between the maximum normal and tangential force ap-
plied by an electromagnet to the reference magnet. To consider permanent
magnets with different properties than the reference magnet, we introduce
two further ratios:

Scale factors map

from reference to

different permanent

magnets.

σT (Pi) :=
FT -max(Pi)

FT -max(PRef)
,

σN (Pi) :=
FN -max(Pi)

FN -max(PRef)
.

These factors describe how the required tangential and normal forces are
scaled when a different permanent magnet Pi is used. Due to the conven-
tion that magnetic poles attracted by positive polarizations always point
downwards (section 4.5.2), these factors are always positive. Note that
we must distinguish between a tangential and normal factor, because the

4.5 Electromagnetic Actuation 131

distance

damping
factor

1

dmax

εmin

Figure 4.27: Damping of electromagnet’s force depending on distance.
Beyond the maximal relevant distance dmax, the damping factor is clamped
to 0 (no influence).

size, form, and material properties of permanent magnets cause a different
distribution of forces in both directions.

From a far distance, a magnet can be approximated as a magnetic dipole,
whose field strength attenuates with the cube of the distance. Near the
magnet, the fall off is more complicated: According to Biot-Sarvart law, it
requires the evaluation of a line integral over the entire wire. Basically, this
sums up the influence of every point on the wire to the distinct position. We
discovered that a quadratic attenuation is appropriate to model attenuation
near the magnet, an approximation that is also used by Pangaro et al.
[2002]. Let

Distance between

electromagnetic and

permanent magnet

d(Ej , Pi) := ‖Pos(Ej)− Pos(Pi)‖

be the Euclidian distance between an electromagnet Ej and a permanent
magnet Pi. For performance reasons, we assume that the influence of an
electromagnet beyond a maximum distance dmax > 0 is so small that it can
be neglected. Assuming that the relative influence of an electromagnet at
dmax equals εmin, we define the damping function ε(x) : [0,∞)→ [0, 1] with

Quadratic damping

function
ε(x) :=


1(

1 + x
dmax

· (
√
ε−1
min − 1)

)2 x ≤ dmax,

0 otherwise.

εmin must be > 0, because the influence of an electromagnet to a distant
magnet is theoretically never 0. Note that this damping function is just a
clamped reparametrization of f(x) = 1

x2
, so that ε(0) = 1 and ε(dmax) =

εmin.

132 4 Maintaining Consistency: Madgets

5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Distance [mm]

F
or

ce
[N

]

Measurements
Model

Figure 4.28: Adhesive force of an electromagnet from our array depending
on distance to core. Single freely suspended electromagnet with iron core
was driven at 40 V. Adhesive force equals the force that was required to
detach a Neodymium permanent magnet (� 10 mm, height 2 mm) from
the top of the core. A 5 mm acrylic plate was placed between core and
permanent magnet. Force was measured with a spring scale. The red curve
fits our quadratic damping model with the measurements, i.e., f(x) =
0.8 · (1 + (x− 5) · 0.16968)−2 with f(5) = 0.8 and f(15) = 0.11.

Fig. 4.27 illustrates the damping function. Fig. 4.28 shows actual force
measurement plots compared to our damping model.

Finally, we can compose the amount of normal force that a single electro-
magnet Ej with variable strength and polarization applies to a permanent
magnet Pi in arbitrary distance:

Normal force of an

electromagnet on a

permanent magnet

F ∗N (Ej , Pi) = FN (Ej)︸ ︷︷ ︸
normal force of electromagnet

depending on strength

and polarization

· σN (Pi)︸ ︷︷ ︸
factor depending

on specific
permanent magnet

· ε(d(Ej , Pi))︸ ︷︷ ︸
distance
damping

Assuming the principle of superposition, the total normal force of multiple
electromagnets affecting a single permanent magnet readsNormal force of

multiple

electromagnets on

permanent magnet FN (Pi) =
∑
j

F ∗N (Ej , Pi) =
∑
j

FN (Ej) · σN (Pi) · ε(d(Ej , Pi)). (4.2)

4.5 Electromagnetic Actuation 133

Without considering friction, the total tangential force applied by multiple
electromagnets reads (cf. Fig. 4.30 on page 138)

Tangential force of

multiple

electromagnets on

permanent magnet

FT (Pi) =
∑
j

FT (Ej)︸ ︷︷ ︸
tangential force

of electromagnet

· σT (Pi)︸ ︷︷ ︸
factor depending

on specific
permanent magnet

· ε(d(Ej , Pi))︸ ︷︷ ︸
distance
damping

· Pos(Ej)− Pos(Pi)

d(Ej , Pi)︸ ︷︷ ︸
normalized

direction vector

.

(4.3)
Note that FT (Pi) is a two-dimensional force vector in the plane of the
tabletop.

The friction between a Madget and the acrylic surface decreases the tan-
gential force that an electromagnet applies to each permanent magnet. In
general, two kinds of friction forces are distinguished. The static friction
force

Static frictionFst = µst · FN (4.4)

is the force that must be exceeded to bring an object A on top of a surface
B into motion. FN denotes the normal force pointing downwards onto the
surface. µst is a empirically determined friction coefficient between the two
materials A and B. Once an object is in motion, the force

Dynamic frictionFdyn = µdyn · FN (4.5)

is the minimum force required to keep the object moving.

In case of a permanent magnet Pi, the normal force depends on the weight
and the magnetic normal force FN (Pi). Although the mass of a Madget
is constant, the distribution of this mass for each permanent magnet is
different and depends on the physical state of the Madget. Let m(Pi) be
the mass in gram distributed to the permanent magnet Pi. The static and
dynamic friction force at this permanent magnet reads

Static/dynamic

friction force at

permanent magnet

Fst/dyn(Pi) := max
{

0, µst/dyn · (m(Pi) · g︸ ︷︷ ︸
weight force

+ FN (Pi)︸ ︷︷ ︸
magnetic
attraction

force

)
}
,

with g = 9.81 m
s2

denoting the standard gravity. Remember that FN (Pi)
can also be negative. Assuming that the tangential force overcomes friction
force, the final tangential force function including friction reads

Tangential force of

multiple

electromagnets on

permanent magnet

including friction

FTF (Pi) =
(
‖FT (Pi)‖ − Fst/dyn(Pi)

)︸ ︷︷ ︸
amount of magnetic force

reduced by friction

· FT (Pi)

‖FT (Pi)‖︸ ︷︷ ︸
normalized
force vector

. (4.6)

Our algorithm switches from Fst(Pi) to Fdyn(Pi) as soon as an object starts
moving.

Finally, the total tangential force applied to the Madget’s center of gravity
Cgrav reads (Fig. 4.25)

Total tangential

force at COG
FTC =

∑
i

FTF (Pi). (4.7)

134 4 Maintaining Consistency: Madgets

The total tangential torque M applied to the Madgets equals the sum of
the z-components of the vector cross products between the tangential forces
and levers of all permanent magnets. As we only consider motion in the
plane, we retrieve the torque around the z-axis (cf. Fig. 4.25 again)

Total tangential

torque
M =

∑
i

L(Pi)x · FTF (Pi)y − L(Pi)y · FTF (Pi)x (4.8)

where

Lever at permanent

magnet
L(Pi) = Pos(Pi)− Cgrav

is the 2D lever of permanent magnet Pi in the surface plane, and the sub-
scripts x and y denote the x- and y-component of the vector, respectively.

4.5.4.4 Step 1: Compute Total Tangential Force and Torque

Programmer

specifies target

center position and

angle.

Let us assume that a Madget is centered at Cgeom with an absolute angle of
αcur. To actuate a Madget to a new position and orientation, the program-
mer specifies the Madget’s target center position C ′geom and target angle
αtar. He also adjusts the actuation velocity of translation vtar and rotation
ωtar. In a single frame of length taf, the object is translated by

Offset of geometric

center ...
∆Cgeom =

C ′geom − Cgeom

‖C ′geom − Cgeom‖
· vtar · taf

and rotated by... and angle change

depending on

velocity and time. ∆α = sgn(αtar − αcur) · ωtar · taf.

Geometric center

must be converted

to COG in every

frame.

Note that our physical model bases on the center of gravity. Therefore,
∆Cgeom is transformed into the offset center of gravity ∆Cgrav in every
frame.

In the first step of an actuation cycle, our algorithm assigns target force
vectors to all permanent magnets that actuate the Madget to the next
position and orientation in taf seconds. Now assume that the magnet is
currently moving with 2D velocity vcur and angular velocity ωcur. If we
now apply the 2D tangential force FTC , the Madget is accelerated with
FTC
m where m is the measured mass of the widget. A torque of M yields a

angular acceleration of M
J with J as the Madget’s mass moment of inertia.

After an actuation frame of taf seconds, the new velocity reads

Updated velocity

and angular velocity

depending on

tangential force and

measured mass

vnew = vcur +
FTC
m
· taf (4.9)

and the new angular velocity amounts to

ωnew = ωcur +
M

J
· taf. (4.10)

The configuration of the electromagnetic array is determined in the be-
ginning of the actuation frame and then stays fixed until the next frame.

4.5 Electromagnetic Actuation 135

Accordingly, both acceleration values are constant during the time interval
taf. Thus, we can assume that the velocity of a Madget changes linearly
during the frame.

Thus, the Madget’s center of gravity has moved by Velocity and

angular velocity

change linearly

during frame.
∆Cgrav =

vcur + vnew

2
· taf (4.11)

and rotated by

∆α =
ωcur + ωnew

2
· taf (4.12)

after the actuation frame.

To compute the required force and torque, we must regard the current
velocity vcur and angular velocity ωcur. By combining equations 4.9 and
4.11, we compute the total tangential force for this frame:

Total tangential

force and torque for

single frame

depending on

velocity and time

FTC = 2 ·m ·
(

∆Cgrav

t2af

− vcur

taf

)
.

Analogously, we retrieve the total torque by combining equations 4.10 and
4.12:

M = 2 · J ·
(

∆α

t2af

− ωcur

taf

)
.

4.5.4.5 Step 2: Assign Forces to Permanent Magnets

We now have to assign forces to permanent magnets so that the total tan-
gential force and torque are achieved. More precisely, we are searching for
FTF (Pi) for all Linear system of

equations for forces

applied to

permanent magnets

depending on total

tangential force and

torque

permanent magnets Pi so that equations 4.7 and 4.8 are
fulfilled:

FTC =
∑
i

FTF (Pi)

∧ M =
∑
i

L(Pi)x · FTF (Pi)y − L(Pi)y · FTF (Pi)x.

System is

under-determined.

These equations yield a linear system of equations that is usually under-
determined. Therefore, we apply further constraints to retrieve an optimal
solution. Optimal solution is

non-linear.

To reduce power consumption, the ideal solution would minimize
the sum of forces applied to permanent magnets:∑

i

‖FTF (Pi)‖ → min.

However, this introduces a non-linear term which is difficult to optimize.
Instead, we provide three constraints that allow for an efficient optimiza-
tion:

136 4 Maintaining Consistency: Madgets

1. Optimize for translation.Force vectors scaled

versions of total

tangential force

All force vectors at permanent magnets
point into the direction of the total tangential force FTC

FTF (Pi) = ρi · FTC

with ρi ∈ R.

2. Optimize for rotation.Force vectors

orthogonal to their

lever

All force vectors point into the direction
orthogonal to their lever

FTF (Pi) = ρi ·
⊥L(Pi)

‖⊥L(Pi)‖

with ⊥L(Pi) = (−L(Pi)y, L(Pi)x) and ρi ∈ R.

Both constraints can be solved with linear programming using∑
i

|ρi| → min

as objective function and equations 4.7 and 4.8 as side conditions. The
objective function minimizes the sum of absolute forces. However, due to
the restriction of the solution space, only a local minimum is found that can
involve peak forces at single electromagnets. As an alternative, we propose
our third constraint:

3. Optimize for least-squares forces.Minimize squared

lengths of tangential

force vectors

Minimizes the sum of squared
forces at all permanent magnets:∑

i

(
FTF (Pi)

2
x + FTF (Pi)

2
y

)
→ min. (4.13)

Penalty of high

forces on single

electromagnets

prevents overheat.

Due to the squaring of force, this constraint penalizes high forces at sin-
gle permanent magnets. This is essential to prevent overheating of single
electromagnets (see next section).

Lagrange multipliers

yield linear system

of equations.

We convert equation 4.13 into a linear system of equations by adding La-
grange multipliers, using equations 4.7 and 4.8 as side conditions:

Λ =
∑
i

(
FTF (Pi)

2
x + FTF (Pi)

2
y

)
+ ψ1 ·

(
FTCx −

∑
i

FTF (Pi)x

)
+ ψ2 ·

(
FTCy −

∑
i

FTF (Pi)y

)
+ ψ3 ·

(
M −

∑
i

(
L(Pi)x · FTF (Pi)y − L(Pi)y · FTF (Pi)x

))
.

4.5 Electromagnetic Actuation 137

Partial derivatives yield the linear system of equations

δΛ

δFTF (Pi)x
= 2 · FTF (Pi)x − ψ1 + ψ3 · L(Pi)y = 0 ∀i

δΛ

δFTF (Pi)y
= 2 · FTF (Pi)y − ψ2 − ψ3 · L(Pi)x = 0 ∀i

δΛ

δψ1
= FTCx −

∑
i

FTF (Pi)x = 0

δΛ

δψ2
= FTCy −

∑
i

FTF (Pi)y = 0

δΛ

δψ3
= M −

∑
i

(
L(Pi)x · FTF (Pi)y − L(Pi)y · FTF (Pi)x

)
= 0.

Solve system using

linear programming.

We solve this underdetermined system of equations using linear program-
ming, using the objective function∑

i

|FTF (Pi)x|+ |FTF (Pi)y| → min.

Friction is

compensated by

zeroing normal

forces and by scaling

up tangential forces.

When moving a Madget across the table, we want to avoid friction that
slows down the actuation. Therefore, we set all normal forces of static per-
manent magnets to zero, i.e., FN (Pi) = 0. Furthermore, we scale up the
tangential forces FT (Pi) to compensate for friction by weight force (equa-
tion 4.6).

4.5.4.6 Step 3: Distributing Forces to Electromagnets

The last step of the algorithm determines the strength of all electromag-
nets to create the previously computed tangential and normal forces for
every permanent magnet. Every electromagnet

influences every

permanent magnet.

Systems of

equations necessary.

Since every electromagnet influences all perma-
nent magnets, we cannot just trigger electromagnets next to permanent
magnets. As shown in Fig. 4.29, this can easily lead to conflicts: E0 is
triggered to actuate P0 for turning the knob. However, E0 also attracts P1

unintentionally, which would move the control. This movement must be
compensated by triggering further electromagnets. Therefore, we have to
solve a linear system of equations that regards the dependencies between
electromagnets and permanent magnets, and whose solution makes sure
that all permanent magnets retrieve the correct force vectors.

Following equations 4.2 and 4.3, we define force factors:

Force factors for

tangential and

normal direction

fx(Ej , Pi) := σT (Pi) · ε(d(Ej , Pi)) ·
Pos(Ej)x − Pos(Pi)x

d(Ej , Pi)
,

fy(Ej , Pi) := σT (Pi) · ε(d(Ej , Pi)) ·
Pos(Ej)y − Pos(Pi)y

d(Ej , Pi)
,

fz(Ej , Pi) := σN (Pi) · ε(d(Ej , Pi)) · θ.

138 4 Maintaining Consistency: Madgets

+

Figure 4.29: Force conflict while actuating a knob. E0 is triggered to move
P0 for turning the arm, but P1 is affected as well. Further electromagnets
must now be activated to cancel out the Madget’s motion while maintaining
the desired force on P1.

–

–

–

+

+

–

–

–

Figure 4.30: Computing the tangential force for a single permanent mag-
net using super position principle. Both cases result in the same vector but
employ different electromagnetic configurations.

The first two force factors represent the amount of force with which an
electromagnet Ej affects a permanent magnet Pi in tangential direction,
separated for x and y component. fz(Ej , Pi) denotes the amount in normal
direction. These factors only depend on the positions of the permanent
magnets and are precomputed for every actuation frame.

The linear system of equations now reads

Linear system to

find tangential

forces for

electromagnets

 FT (Pi)x
FT (Pi)y
FN (Pi)

 =
∑
j

FT (Ej) ·

 fx(Ej , Pi)
fy(Ej , Pi)
fz(Ej , Pi)

 ∀i (4.14)

System is usually

under-determined.

where FT (Ej) are the unknown variables which are bounded by the
maximum possible tangential force (equation 4.1). If solvable, this sys-
tem of equations is usually under-determined, because forces exerted by

4.5 Electromagnetic Actuation 139

distinct electromagnets can be substituted by other ones (cf. Fig. 4.30).
Therefore, we add an objective function

Objective function

minimizes absolute

forces.

∑
j

λj · |FT (Ej)| → min

to minimize the absolute force applied by electromagnets. With Linear Pro-
gramming, we can solve equation 4.14 under the maximum force constraint
(equation 4.1) with this objective function.

Solved via Coin-CLP

library

We use the Coin-or linear programming library4 (Coin-CLP) to find the
solution. It is designed to solve optimization problems in the form of

cT · x → min

with

rlower ≤ Ax ≤ rupper

clower ≤ x ≤ cupper.

Let m be the number of permanent magnets and n the number of electro-
magnets. As will be explained in the following, in our case A is a 3m× 2n
matrix, c, x, clower, cupper ∈ R2n and rlower, rupper ∈ R3m.

Absolute

electromagnetic

forces are separated

into positive and

negative ones.

Since the Coin-CLP solver does not allow absolute values in the objective
function, we reformulate our problem. Electromagnets Ej are divided into
electromagnets with positive polarizations, E+

j , and those with negative

polarizations, E−j . The respective tangential forces can now be expressed
with positive numbers bounded by FT -max(PRef):

0 ≤ FT (E+
j) ≤ FT -max(PRef)

∧ 0 ≤ FT (E−j) ≤ FT -max(PRef). (4.15)

Accordingly, the final system of equations reads

Final linear system

of equations for

positively and

negatively polarized

electromagnets

 FT (Pi)x
FT (Pi)y
FN (Pi)

 =
∑
j

FT (E+
j) ·

 fx(E+
j , Pi)

fy(E
+
j , Pi)

fz(E
+
j , Pi)


+

∑
j

FT (E−j) ·

 −fx(E−j , Pi)

−fy(E−j , Pi)
−fz(E−j , Pi)

 ∀i (4.16)

where FT (E+
j) and FT (E−j) are the unknown variables. Note that the

force factors for negative polarized electromagnets are inverted. Finally,
the updated objective function reads

Updated objective

function

∑
j

λj · FT (E+
j) +

∑
j

λj · FT (E−j) → min. (4.17)

4https://projects.coin-or.org/Clp

https://projects.coin-or.org/Clp

140 4 Maintaining Consistency: Madgets

Accordingly, we set

c :=



λ1
...
λn
λ1
...
λn


, x :=



FT (E+
1)

...
FT (E+

n)
FT (E−1)

...
FT (E−n)


for the Coin-CLP solver. According to equation 4.15, x is bounded by

clower :=

 0
...
0

 and cupper :=

 FT -max(PRef)
...

FT -max(PRef)

 .

We relax the

precision of the

solution to improve

solvability and

run-time.

We further define

Γlower(x) := x− γ · |x|
Γupper(x) := x+ γ · |x|

with γ ≥ 0 to relax the precision of the solution. A lower precision can
improve solvability and run-time. The lower and upper bound of the solu-
tion now equals the target forces FT (Pi) and FN (Pi) within the precision
bounds

rlower :=



Γlower(FT (P1)x)
Γlower(FT (P1)y)
Γlower(FN (P1))

...
Γlower(FT (Pm)x)
Γlower(FT (Pm)y)
Γlower(FN (Pm))


, rupper :=



Γupper(FT (P1)x)
Γupper(FT (P1)y)
Γupper(FN (P1))

...
Γupper(FT (Pm)x)
Γupper(FT (Pm)y)
Γupper(FN (Pm))


.

Finally, matrix A contains the force factors:

A :=



fx(E+
1 , P1) · · · fx(E+

n , P1) −fx(E−1 , P1) · · · −fx(E−n , P1)
fy(E

+
1 , P1) · · · fy(E

+
n , P1) −fy(E−1 , P1) · · · −fy(E−n , P1)

fz(E
+
1 , P1) · · · fz(E

+
n , P1) −fz(E−1 , P1) · · · −fz(E−n , P1)

...
...

...
...

...
...

fx(E+
1 , Pm) · · · fx(E+

n , Pm) −fx(E−1 , Pm) · · · −fx(E−n , Pm)
fy(E

+
1 , Pm) · · · fy(E

+
n , Pm) −fy(E−1 , Pm) · · · −fy(E−n , Pm)

fz(E
+
1 , Pm) · · · fz(E

+
n , Pm) −fz(E−1 , Pm) · · · −fz(E−n , Pm)


.

Note that every electromagnet introduces two columns (2·n in total) due to
the separation of positively and negatively polarized electromagnets. Every
permanent magnet is represented by three rows (3 ·m in total) as equation
4.16 introduces three equations per permanent magnet.

After solution,

signed electro-

magnetic forces can

be computed.

Once the solution is computed, the signed force for each electromagnet can
be computed as follows:

FT (Ej) = FT (E+
j)− FT (E−j).

4.5 Electromagnetic Actuation 141

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

1 2 3 4

Turn on time [minutes]

C
or

e
te

m
p

er
at

u
re

[◦
C

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
or

ce
[N

]

23◦

46.6◦

64.6◦
72.4◦
80.7◦
87.5◦
94.8◦
100.2◦

Figure 4.31: Core temperature and adhesive force of an electromagnet
taken from our array depending on turn on time. Single freely suspended
electromagnet with manganese-zinc ferrite core was driven at 40 V. Tem-
perature was measured using optical IR thermometer pointed at the bottom
of the core. Adhesive force equals the force that was required to detach a
Neodymium permanent magnet (� 10 mm, height 2 mm) from the top of
the core. A 5 mm acrylic plate was placed between core and permanent
magnet. Force was measured with a spring scale.

Either FT (E+
j) or FT (E−j) is null. Otherwise, the solution would not be

optimal in terms of the objective function.

Finally, force is

mapped to

polarization bit and

PWM duty cycle.

Finally, the resulting force is mapped to the polarization bit and PWM
duty cycle of the electromagnet. The polarization bit equals the sign of the
tangential force, i.e., sgn(FT (Ej)). The PWM duty cycle is computed by
linearly mapping |FT (Ej)| from [0, FT -max(PRef)] to [0%, 100%].

Weights The weights λj in equation 4.17 influence the probability that
an electromagnet is considered in the solution. In the simplest case, all
weights are set to 1, which yields a solution that minimizes the sum of
absolute forces exerted by electromagnets. However, more sophisticated
weights can be helpful to protect the table’s hardware or to smoothen the
actuation.

Electromagnets heat

up over time. This

can reduce

maximum force and

damage hardware.

The longer an electromagnet is activated, the more heat it produces. This
decreases the magnet’s permeability and, thereby, reduces the maximum
force it can apply (Fig. 4.31). We also noticed that, if magnets are steadily
active for a long period, the fiber optical cables in the table begin to melt,
damaging the tracking hardware in an irreversible way. Therefore, avoiding

142 4 Maintaining Consistency: Madgets

electromagnets to reach high temperatures is essential. Fortunately, the
weights λj allow us to control the consideration of an electromagnet in
the solution. By default, all weights could be set to 1.Weights of hot

electromagnets can

be increased to

reduce their

probability of being

selected for solution.

Once a magnet’s
sensor detects a temperature beyond 60◦ centigrade, its weight could be
increased, making it less likely that this electromagnet is chosen for the
solution. As our prototype table does not contain temperature sensors, we
accumulate the activation time of an electromagnet instead. If a magnet’s
activation time exceeds an empirically determined threshold, λj is gradually
increased. When the electromagnet is deactivated again, the activation time
is decreased, and, therefore, the weight is lowered until it reaches 1 again.

Usually, a default weight (λj := 1) prefers to actuate electromagnets that
are close to permanents magnets. This can lead to jerky actuation. Dur-
ing a single actuation frame, the electromagnetic configuration is constant.
However, since electromagnetic force strongly attenuates with increasing
distance, a permanent magnet is not moving linearly but on a curve. This
effect is the more considerable, the closer the activated electromagnets
are to the permanent magnets, because the distance damping function
ε(d(Ej , Pi)) varies stronger during an actuation frame. By using electro-
magnets which are farer away, the actuation could be smoothed.Weighting close

electromagnets

stronger than

distant ones

smoothens actuation

but also increases

power consumption.

To achieve
this, the weight of an electromagnet could be set as follows:

λj :=

(
dmax

davg(Ej)

)κ
where davg(Ej) is the average distance of the electromagnet Ej to all per-
manent magnets on the table, and κ ≥ 1 is a damping factor. Now, close
electromagnets would retrieve a higher weight than those which are more
distant. However, note that this technique also increases the power con-
sumption and heat of each electromagnet.

4.5.4.7 Generalization

Multiple Madgets

can be integrated

into a single system

of equations or

actuated

independently when

sufficiently distant

from each other.

Our algorithm can be easily extended to actuate multiple Madgets. First,
the force distribution is computed for every single control (step 1 and 2).
Then, the linear system of equations 4.16 is extended to consider the forces
of all permanent magnets on the table (step 3). However, if too many Mad-
gets are integrated into a single system, the performance of the Coin-CLP
solver drops down. We can address this by subdividing the actuation into
independent areas: If two Madgets are so far away that their electromag-
nets barely influence each other’s permanent magnets, equation 4.16 can
be solved for each Madget independently and in parallel. Currently, our
algorithm actuates Madgets on a straight line from source to target posi-
tions. If multiple controls are actuated in parallel, they potentially collide
on their paths. Theses events could by avoided by path finding algorithms,
which have not been incorporated into our framework, yet.

Until now, we have only covered static magnets for moving and aligning
Madgets. Dynamic magnets are used to change the physical state of control,
such as the push state of a button, or the position of a slider.

4.5 Electromagnetic Actuation 143

Figure 4.32: Relationship between static and dynamic markers during
actuation. A Slider Madget is moved to the right while its handle is relati-
vely moved to the left. Assuming zero friction, no force would be required
to move the handle because its global position stays the same. However,
the static friction force between sliding handle and base causes the handle
to move as well. Therefore, a force in the opposite direction, canceling out
friction, must be applied to the knob.

Dynamic magnets

must be integrated

into the equations

for every Madget

individually.

If a Madget contains dynamic magnets that have to be moved into tangen-
tial directions, like a knob’s arm or a slider, the specific physical mechanism
must be incorporated into the actuation model for every single Madget.
Imagine an actuated slider with a handle that can be translated along one
dimension (Fig. 4.32). If the Madget shall be translated to a new position
while the dynamic magnet beneath the handle shall be moved to a new
position simultaneously, the actuation algorithm must regard the physi-
cal dependency between the Madget’s rigid base and the one-dimensional
sliding handle.

Separating actuation

of base and dynamic

magnets is easier

than model

adaption.

In practice, it is easier to separate the actuation of the base magnets and the
dynamic magnets into two subsequent steps. First, the Madget is moved
and aligned to a new position and rotation. Then, all static magnets Pi
are fixed (FN (Pi) = 0 and FT (Pi) = 0 for all i). Finally, the dynamic
magnets Pd can be actuated without the dependency on the rigid base.
In the example of the slider handle, the problem is reduced to finding an
appropriate tangential force vector, i.e., FT (Pd) = v and FN (Pd) = 0 where
v points into the desired sliding direction.

Vertical actuation

can raise parts of a

Madget.

Vertical actuation can be used to raise parts of a Madget, e.g., the plate of
button (see section 4.8 for more examples). By setting FN (Pd) = fr with
fr < 0 to a dynamic magnet Pd that is attached to a vertically supported
element, this element can be raised from the table. Contrariwise, a positive
force fr > 0 can be employed to attract a spring loaded magnet to the
table.

144 4 Maintaining Consistency: Madgets

4.5.5 Discussion

There is potential to

improve actuation

model with more

accurate

assumptions.

We have successfully applied the actuation algorithm described in this sec-
tion to move and align multi-element controls on a tabletop. We chose this
particular model, because it provides linear systems of equations that can
be solved in real-time. However, some of the assumptions in the model are
approximations that lower the accuracy of the solution. For example, we
noticed that an electromagnet only creates a measurable magnetic field up
from a minimum PWM. Also, electromagnets influence each other, which
is not reflected in the model. In future work, this model should be enriched
with the particular properties of the hardware design to generate a smooth,
predictable actuation. Yet, additional non-linear parameters could impair
the run-time of the algorithm.

4.6 Tracking

Precise tracking of

Madgets is crucial

for accurate

actuation.

A precise tracking of Madgets on the surface is crucial to ensure an accurate
close loop actuation. We employ DSI tracking to detect widget footprints,
because visual tracking does not interfere with electromagnetic actuation.
DSI is, furthermore, suitable to detect footprint markers as well as finger
touches. Opposed to the SLAP Table, we cannot employ FTIR, because
it would considerably blur the LCD panel due to the involved compliant
layer.

4.6.1 Hardware Setup

DSI setup serves for

tracking.

A ribbon of 108 LEDs radiates 850 nm IR light into the 6 mm Endlighten
layer. An object touching the Endlighten layer reflects IR light downwards.
An array of fiber optical cables transfers this light from the surface into the
table. Each cable amounts to a diameter of 0.5 mm and a length of about
45 mm. It starts beneath the panel, penetrates the EL foil, passes the
magnets, and pierces the conductor boards, which it is glued to. Finally, it
ends about 2-3 mm beneath the conductor boards.

Fiber optics are

placed around

magnets and cores.

Fig. 4.33 shows the arrangement of cables: Four cables are placed between
the magnetic cores and their coils, 12 around each magnet. The horizontal
and vertical distance between cables varies between 6 mm in the core and
7.5 mm between inner and outer cables. In total, 58×37 fiber optical cables
provide a low input resolution of 3.6 dpi. Similar to FlyEye by Wimmer
[2010], we melted the ends of all cables using a laser cutter. This transforms
them into small micro-lenses that improve the numerical aperture of the
cable.

Three cameras

capture surface.

Three Point Grey Firefly MV cameras, one for each module, with 3.5 mm
lenses (f/1.4) inside the table capture the bottom caps of the fiber optical

4.6 Tracking 145

a)

b)

c)

7.5 7.5 7.5 7.56.0

7.5

7.5

7.5

7.5

6.0

Figure 4.33: Alignment of fiber optical cables inside and between electro-
magnets as seen from above. Red light has been placed beneath the surface
for the purpose of illustration. Numbers denote spaces in millimeter. a)
Coil bobbin. b) Magnet core. c) Fiber optical cable. Modified image from
[Weiss et al., 2010b].

cables. They produce gray scale frames at 30 fps in 640 × 480 pixels.
Attached B+W 093 IR pass filters avoid interferences with visible light.

4.6.2 Tracking Algorithm

Issues of tracking

signal:

The tracking algorithm detects spots on the surface from the dot matrix
of the fiber optical cables. This imposes three challenges to the tracking
server:

1. - Low resolutionThe input signal is low resolution. It is a strongly subsampled view
of objects reflecting IR light into the table. This also affects marker
design: A circular marker, always covering at least two dots, must
have a diameter of about 15 mm.

2. - NoiseThe input signal is noisy. The LCD panel considerably attenuates
the reflected IR light, which worsens the signal-to-noise ratio in the
camera image.

3. - Varying quality of

fiber optics

Every fiber optical cable is different. All 2146 cables are hand-made,
which implies that they slightly vary in light conductibility, curvature,
and length. Furthermore, individual cables can be damaged yielding
dead dots. Depending on the position, a dead dot causes the camera
to be blind for a surface area of 1.82 to 2.25 cm2. This must be
compensated.

146 4 Maintaining Consistency: Madgets

 a) b)

 c) d)

Figure 4.34: Input signal from the three cameras in the table. It is generated from the IR
light that is emitted from the ends of the fiber optics. a) No objects are placed on the surface.
The signal is noisy. b) Two fingers touching the surface. c) Footprint of a Knob Madget with
gradient markers. d) Corresponding control with back projection as seen from above.

Sample input signals that illustrate these issues are shown in Fig. 4.34.
Despite these challenges, the determination of marker positions must be
accurate to maintain a correct control of the electromagnets during actu-
ation. Note that the Figure does not show the raw camera input but the
post-processed signal, as will be described in the following.

4.6.2.1 Gradient Fiducials

Resolution of fiber

optics too low for

unicolored markers.

The resolution of the dot grid is too low to just search for connected com-
ponents in a binary image, as we described in section 3.5.1. A unicolored
white footprint marker could not be mapped to an unambiguous position
(Fig. 4.35a). We cannot increase the grid resolution, because the spacing
between the fiber optics cannot be downsized. Instead, we increase the
resolution of marker signal from a binary to a continuous scale. Inspired
by the displayed-based measurement system to track tabletop robots by
Kojima et al. [2006], we developed a novel marker design: circular gradient
fiducials.

4.6 Tracking 147

b)

0 12.512.5

.19 .15

.36 .30

a) c) d) e)

Figure 4.35: Principle of gradient fiducials. a) A unicolored marker placed on the fiber optical
grid would yield an ambiguous localization. Alternative interpretations of the marker position
are shown in green. b) A gradient fiducial is a circular marker with an imprinted gradient.
Brightness maps to a radius between 0 mm and 12.5 mm. c) A gradient marker placed on the
grid yields brightness values representing distances to the marker center. d) Each brightness
value determines a circle on which the center of the marker can be. The actual position is on the
intersection of all circles. e) We approximate the center position with an affine combination of
the brightness values. Numbers denote normalized weights. Modified image from [Weiss et al.,
2010b].

Solution: Imprinted

brightness gradients

on circular markers.

Brightness encodes

distance to center.

Our new markers are circles with a diameter of 25 mm. We imprinted a
radial gradient, starting with white in the center, and linearly fading to
dark-gray at the border (Fig. 4.35b). Thereby, the brightness of a pixel
in the circle encodes the distance to the center. A gradient marker placed
on the tabletop reflects the IR light according to the gradient. This yields
a set of dots in the camera image, where the brightness value of each dot
determines a circle on which the potential marker center lies (Fig. 4.35c-d).
Accordingly, the actual center is located at the intersection of all circles.
Thus, in theory, only three brightness dots are required to find the marker
position.

In practice, the input signal is noisy (cf. Fig. 4.34a-c), and the circles do not
meet in a single point. Instead, we have to find a position that minimizes
the squared distance to all circles. Let pi be the position of a dot and ri its
encoded distance to the marker’s center. Then, the center c of the marker
fulfills

Least-squares

solution

∑
i

(‖c− pi‖ − ri)2 → min .

As this is a non-linear problem, we approximate the solution with the affine
combination

Linear

approximation
c ≈ 1∑

i ωi
·
∑
i

ωi · pi (4.18)

where the weight

ωi := rmarker − ri (4.19)

encodes the distance to the boundary of the marker, with rmarker denoting
the marker’s radius (Fig. 4.35e). Thus, dots in the center (brighter) are
weighted stronger than dots at the periphery (darker).

148 4 Maintaining Consistency: Madgets

a) b)

c) d)

Figure 4.36: Main steps in the calibration process. a) User takes a foreground and a background
image. The Figure shows the raw camera input when a white sheet is placed on the surface
(foreground image). b) Active pixels (green) are determined by thresholding the difference
between foreground and background pixels. The user then aligns a grid of cells onto the active
pixels. c) Visualization of grid cells. The area of active pixels in every grid cell is alternatively
colored with green and red color. If a dot is bicolored, or if subsequent dots are colored in the
same way, the grid must be realigned. d) User specifies the position and rotation of the sub grid
in the global grid.

We printed the gradients on bright paper using a laser printer, and employed
a laser cutter to cut out circular markers. We chose the gradient so that the
center reflects as much IR light as possible, while the periphery is as dark as
possible but still bright enough to be distinguishable from the background.

4.6.3 Calibration

Before tracking objects on the surface, the three cameras in the table must
be calibrated. Although this is an elaborate process, it has to be conducted
only once. For every camera, the user has to conduct the following steps:

1.Configure camera so

that all fiber optics

are in focus and

signal-to-noise ratio

is maximized.

Set camera parameters. The aperture and zoom of the camera
must work together so that the camera sensor receives as much light
as possible with a depth of field that recovers all fiber optical caps.
Remember that, due to variations in fabrication and assembly, the
fiber optics have different lengths beneath the surfaces. Gain, bright-
ness, shutter time, exposure time, and gamma must be specified in
software to achieve the best signal-to-noise ratio.

4.6 Tracking 149

2. Determine which

camera pixels belong

to fiber optics.

Active pixels. Only specific pixels in the camera image belong to
fiber optics, while the others are part of the background. These active
pixels are found in this calibration step. First, the user removes all
objects on the surface and lets the camera capture the background
image. This image contains the minimum brightness for each pixel.
Then, he places a white paper sheet on the table and captures a
foreground image (Fig. 4.36a). As the paper sheet reflects most of
the IR light downwards, this image contains the maximum possible
brightness for each fiber optical cable. This equals the intensity that
is reflected from the white center of a gradient fiducial. We retrieve
the foreground and background image by averaging 50 camera frames
to reduce noise.

Both images define the possible brightness range for each pixel. We
now consider a pixel as active, if the range exceeds a certain user-
defined threshold tap > 0 (Fig. 4.36b). Let Bg and Fg be the back-
ground and foreground image, respectively. We define the active pixel
property of a pixel at position x = (x, y) as follows:

ap(x) :=

{
1, if I(Fg,x)− I(Bg,x) ≥ tap

0, otherwise.

Remember that I(Im,x) denotes the intensity function that returns
the pixel brightness at position x in an image Im.

3. Align grid so that

every cell covers

exactly one fiber

optical cable.

Grid alignment. The input image is radially distorted, and only a
part of it covers fiber optics. The low input resolution does not allow
a touch-based calibration as the SLAP Table. Instead, the user manu-
ally drags a grid onto the image so that every cell contains exactly one
cable (Fig. 4.36b). After specifying the grid resolution gridX×gridY ,
i.e., the number of fiber optical cables in horizontal and vertical di-
rection for this camera, he initially aligns the quadrangular grid by
dragging its corners. To compensate for radial distortion, he can
subdivide the grid by clicking a “+” button. In this case, the grid
is transformed to a bicubic spline patch, whose interpolation points
the user can drag. Every time the user subdivides the grid, he gains
further degrees of freedom to align the patch. However, in practice,
two subdivisions are sufficient to cover every fiber optical cable with
a grid cell.

We index cells in a grid using a discrete number i with i ∈
{0, 1, ..., gridX · gridY − 1}. Without loss of generality, we assume
that the cells are ordered row by row. Once the grid is specified,
we precompute a set Celli for each cell. It contains all pixel posi-
tions covered by cell i. A color-coding of the fiber optics according to
their grid index allows the user to validate the alignment of the grid
(Fig. 4.36c).

For each cell, the

brightness of the

fiber optical cable is

computed.

Now we can determine the brightness of each single fiber optical cable
by computing a representative value of each cell in the grid. This
value is computed by averaging the brightness of all active pixels.
For a given camera frame F, we compute the representative of every

150 4 Maintaining Consistency: Madgets

cell i as follows:

Grid?cam(F, i) :=
1∑

x∈Celli
ap(x)

∑
x∈Celli

ap(x) · I(F,x). (4.20)

Dead dots are

removed by

averaging neighbors.

Few fiber optical cables might be damaged due to the manufacturing
process. Only a small break in a cable suffices to eliminate its light
conductivity, causing a dead dot. Replacing cables is difficult once the
table is assembled (see discussion below). However, a dead dot causes
a division by zero in equation 4.20, because no pixel in the cell is
active. To avoid this case and to provide a reasonable approximation
for the brightness in each dead dot, we define a new cell representative

Gridcam(F, i) :=

{
Grid?cam(F, i) if {x|x ∈ Celli ∧ ap(x) = 1} 6= ∅,
GridAvg(F, i) otherwise.

where GridAvg(F, i) denotes the average of all non-dead dots in the
3 × 3 window around the cell. In the unlikely case that all dots in
the neighborhood are invalid, we set GridAvg(F, i) to 0. However,
a sub-matrix of 3 × 3 dead dots is unlikely and should be repaired.
In practice, we first compute all cell representatives and detect dead
dots. In a second pass, the dead dots are filled by averaging the
neighbors.

4.Retrieve brightness

range for cell

representatives.

Cell thresholds. We precompute Gridcam(Bg, i) and Gridcam(Fg, i)
from the background and the foreground image, respectively. Remem-
ber that the latter represents the brightness that is reflected from the
center of a gradient fiducial marker (radius = 0).

Furthermore, the user has to place a gray sheet of paper on the
table that is colored with the darkest brightness of the gradient
fiducial. The camera captures this marker threshold image Gr.
Then, we compute cell representatives Gridcam(Gr, i) that encode the
brightness level of IR light reflected from the periphery of a marker
(radius = rmarker).

5.Specify global

integration of grid.

Global integration. As each camera only covers the fiber optics of
a single module, the grid must be integrated into the global grid that
contains all 58×37 fiber optical cables. In this step, the user specifies
the position and alignment of the sub-grid in global grid coordinates
(Fig. 4.36d).

When all cameras are calibrated, the foreground, background, and marker
threshold image of all cameras are combined into a global grid according
to step 5 in the calibration. We denote these grids as GridBg, GridFg, and
GridGr, respectively.

4.6.4 Image Processing Pipeline

Image processing

pipeline:

With a calibrated system, we detect markers and finger touches in each
frame as follows:

4.6 Tracking 151

Camera 1

Camera 2

C
am

era 3

Figure 4.37: Image processing pipeline of fiber optical tracking. Left: Representatives are
computed for every camera and composed into a global grid. Right: Marker detection.

1. Retrieve global grid

from three cameras.

Global representatives. For each frame F of the three cameras,
we compute representatives Gridcam(F, i) for all grid cells. Then, we
combine all sub-grids into a single global grid GridF according to
calibration step 5 (Fig. 4.37, left).

2. Detect markers and

compute center by

weighting

normalized

brightness values.

Detect markers. We now search for all pixels that are potentially
covered by a gradient fiducial (Fig. 4.37, right). We create a binary
grid as follows:

T (i) :=

{
1, if GridF(i) > GridGr(i)

0, otherwise.

That is, all 1s in this grid correspond to dots in GridF that are brighter
than the IR reflection from the border of a Madget marker. We now
search for connected components in T .

Each component that contains at least 7 dots is considered as Madget
marker. We compute its center using equation 4.18 with weights

ω′i :=


GridF(i)−GridGr(i)

GridFg(i)−GridGr(i)
if GridFg(i)−GridGr(i) > 0,

0 otherwise.

These weights are equivalent to those in equation 4.19, because they
are normalized in equation 4.18. In the center of a marker, the
weights amount to 1 (GridF(i) = GridFg(i)) and 0 at the bound-
ary (GridF(i) = GridGr(i)). From the boundary to the center, the
weights increase linearly.

Note that the arrangement of fiber optics is not a perfectly uniform
grid (cf. Fig. 4.33). Thus, we have to compute the individual positions
pi in equation 4.18 depending on whether a fiber optical cable belongs
to a core, or whether it is placed between magnets.

3. Finger detection. For finger touch detection, we first cancel out
differences in light conductivity among individual fiber optical cables.

152 4 Maintaining Consistency: Madgets

Detect finger

touches from local

maxima in

remaining grid cells.

We compute a normalized version of the global grid:

Gridnorm(i) :=


GridF(i)−GridBg(i)

GridFg(i)−GridBg(i)
if GridFg(i)−GridBg(i) > 0,

0 otherwise.

Therefore, Gridnorm(i) maps grid dots to a scale from 0 to 1. We now
search for local maxima that exceed a user-defined threshold tft > 0.
That is, for grid cells i that fulfill

Gridnorm(i) ≥ tft

∧ Gridnorm(i) ≥ Gridnorm(j) ∀j ∈ N1(i)

where N1(i) denotes the up to nine cells in the 1-neighborhood of cell
i. All grid cells that fulfill this equation and are not covered by a
Madget marker (step 2), are considered as finger touches. For sub-
dot accuracy, we compute an affine combination of the grid positions
in the 1-neighborhood using the normalized brightnesses as weights.
The position of the finger touch for a local maximum at i finally reads

pft(i) =
1∑

j∈N1(i)

Gridnorm(j)
·
∑

j∈N1(i)

Gridnorm(j) · pj .

4.6.5 Marker Placement

Markers must be

placed in sufficient

distance with

respect to fiber

optical grid

configuration.

The marker design of Madgets is similar to that of SLAP Widgets. Markers
must form a unique pattern that distinguishes the control from others, and
communicates its ID and state. Due to the low resolution tracking, the
distance between two markers must be large enough so that they are not
merged by the tracking algorithm. That is, considering the fiber optical
grid resolution and potential dead dots, designers should place adjacent
markers with a space of at least 2 cm.

Permanent magnets can be directly mounted on circular markers to avoid
further occlusion. Alternatively, their positions can be computed in rela-
tion to gradient markers, e.g., in the local coordinate system of the static
markers (cf. section 3.5.2).

4.6.6 Discussion

Tracking is robust

for marker

detection. Simple

touch interaction

can be detected.

Despite the low resolution of the fiber optical grid, the tracking algorithm
is able to reliably and robustly detect gradient markers for actuating Mad-
gets on the surface. It can also detect finger touches and simple dragging
gestures for transforming images. However, finger input accuracy beyond
“photo sorting” would require a further refinement of the algorithm.

Due to the attenuation through the LCD panel, our first prototype of the
table provided a very small signal-to-noise ratio. In the beginning, this

4.7 Visual Output 153

Figure 4.38: Effect of IR LED brightness on signal quality. Left: Normalized signal using
LEDs in original prototype. Two fingers are touching the surface (extract from Fig. 4.34b).
Right: Signal resulting from brighter LEDs. Five fingers (right) and two gradient markers (left)
are placed on the surface.

Figure 4.39: Close-up on active EL foil beneath LCD panel. No back-
lighting is provided where fiber optics penetrate the foil.

made it impossible to use the table in regular room lighting, because the
(indirect) sunlight contains a lot of IR light. One way to address this issue
is to use a thicker Endlighten surface. This would gather more IR light
from the LEDs Brighter LEDs

improve

signal-to-noise ratio.

but considerably decrease the electromagnetic force that
can be applied to Madgets. Instead, we improved the signal-to-noise ratio
by embedding a new generation of brighter IR LEDs (Fig. 4.38).

Unicolored markers

also create gradient

pattern.

We noticed that, up from a certain thickness of the Endlighten surface,
marker tracking even works with unicolored circular markers. The reason
is that fiber optics beneath the marker’s center receive reflected IR light
from all incident directions of the micro-lenses, while fiber optics in the
periphery of the marker receive a smaller ratio. The result is a gradient-
like IR reflection pattern. Using the same weighting as in the tracking
algorithm described above, the center of the marker remains stable.

4.7 Visual Output

LCD panel with EL

foil backlighting

displays interface.

We render the visuals of all Madgets and the GUI of the tabletop on a
24” TFT panel that we dismounted from a Samsung SyncMaster 2494LW
monitor. We display the interface in a resolution of 1920× 1080 pixels. In

154 4 Maintaining Consistency: Madgets

contrast to the input channel (3.6 dpi), our panel produces high resolution
output at 93 dpi (Fig. 4.34d on page 146). An EL foil, powered by an
inverter (Epicenter E220U-972-A2), provides the backlighting of the panel.
We used a mill to drill 1.3 mm holes into that foil to let all fiber optical
cables pass this layer.

EL foil is easy to

process but darker

than other

approaches.

The EL foil is rather thin (0.5 mm), and it is easy to process. Conventional
backlighting, like fluorescent tubes or LEDs, needs more space and a diffu-
sor layer. This would increase the space between magnets and surface and
considerably limit the magnetic forces. However, the EL foil is darker than
other approaches and its luminance decreases during its lifetime. Also, the
holes cause small dark circles in the graphical output, because no backlight-
ing is provided there (Fig. 4.39).Holes could be filled

with visible light

from light source

inside table.

This could be corrected with a calibrated
white light source inside the table. The fiber optical cables would transmit
this light to the surface and backlight the drilled dots. An IR block fil-
ter in front of the light source would avoid interferences with the tracking
algorithm.

4.8 Applications

The ability to actuate multi-element controls and to hold Madgets in place
while moving parts of it, enables a variety of applications and allows to
transfer traditional GUI techniques to tangible controls. These applications
are described in this section.

4.8.1 General-Purpose Widgets

Madgets enable

bidirectional

communication

between user,

interface, and

system for

general-purpose

controls.

Madgets provide a bidirectional communication between user, interface,
and system. Users can interact with Madgets as with SLAP Widgets. When
placed on the tabletop, our system detects a control, updates its graphi-
cal representation, and reacts on user input through the marker footprint.
Beyond that, the system can change the physical state of each Madget.
For example, a user can place a slider on the tabletop and pair it with
an on-screen video player. Once the video is started, the slider’s physical
handle follows the position in the video, maintaining a consistent mapping
between the virtual playback state and the physical slider. If desired, the
user can navigate to a different time by dragging the handle to a new po-
sition. Inter-widget inconsistencies, as described in section 4.1, can also be
avoided.

4.8.1.1 Persistence

Loading and saving configurations is a standard feature of conventional
applications that is usually not feasible for tangible interfaces. Our actu-

4.8 Applications 155

Figure 4.40: Actuation allows to save and restore the physical states of
Madgets.

ation algorithm brings this GUI concept to tangible tabletop applications
(Fig. 4.40). This is especially helpful if multiple persons work at the same
table subsequently.

Actuation allows to

load and save

physical

configurations.

Imagine a user, Alice, who employs several Madgets for a certain task.
After a while, she decides to postpone the remaining work and presses an
on-screen “Save” button before leaving the table. On the next day, she wants
to continue the task but notices that someone else used the table in her
absence and rearranged the controls. Thus, she presses “Load” and selects
her previous configuration from a list. Accordingly, the application requests
Alice to place some missing controls on the surface. Once she has done
that, the application restores the visual interface and actuates all Madgets
so that they match the physical configuration from the moment Alice saved
the setup.

GUI concepts like

undo and redo can

be brought to the

table.

Also well-known concepts like undo and redo can now be transferred to
physical tabletop controls. For example, a user could draw a counterclock-
wise circle gesture next to a Madget to “reverse the time” and undo the last
user’s physical action. This would then move a Madget or a part of it to
its previous position, respectively. Contrariwise, a clockwise circle gesture
could trigger redo.

4.8.1.2 Remote Collaboration

Madgets are

synchronized and

enable telepresence

when collaborating

remotely.

As proposed for actuated pucks [Pangaro et al., 2002], remote collaboration
can now be implemented without facing remote inconsistencies. Let us have
another look at our initial example in section 4.1.

Alice and Bob share a knob to control the speed of a simulated engine and
several sliders to set specific parameters. This time, both users employ

156 4 Maintaining Consistency: Madgets

Madgets instead of SLAP Widgets. When Alice changes parameters, these
are immediately send via network to Bob. The actuation algorithm now
physically updates Bob’s set of sliders. Thus, he can see the changes when
the sliders’ handles move to new positions. Bob can adjust the engine speed
accordingly, and avoid a failure of the simulation.

The actuation of Madgets triggered from distant users enables tangible pre-
sence as described by Brave et al. [1998]. It makes users more aware of
each other’s actions and enables a more immersive collaboration.

4.8.1.3 Actuation by Gesture

Tangibles can be

moved via gestures.

Reaching distant virtual objects on interactive tabletops and across multiple
devices is a topic that has received much attention (e.g., [Nacenta et al.,
2005]). Using actuation, some of these concepts can be transferred to reach
distant physical controls. Imagine a knob is not within a user’s grasp. By
drawing a circle, using a tabletop gesture like the I-Grabber [Abednego
et al., 2009], or by executing a 3D pointing gesture using a depth camera
like the Kinect, the system could move the control to the user. Contrariwise,
a wipe gesture could move it out of the way to provide interaction space.
Techniques like this could make physical controls as flexible as their virtual
counterparts.

4.8.2 Going 3D: Height

Madgets enable

height as novel

actuation dimension.

In related work, electromagnetic actuation was limited to tangential move-
ment of pucks. A key feature of our technique is the actuation into the
vertical direction. By holding a Madget in place while applying a normal
force on a subpart of it, objects can be raised from the table.

4.8.2.1 Buttons

Buttons can be

realized by vertically

actuating plates

with embedded

magnets.

A simple but powerful example is our Radio Button Madget (Fig. 4.41).
Like all Madgets, it consists of a rigid base with attached permanent mag-
nets for positioning and alignment on the surface. The essential parts of
the control are three magnetic buttons. Each button contains an acrylic
plate with a permanent magnet glued to its center. It is embedded in a
vertical box that avoids tangential motion. By default, gravity drags the
plate to the bottom. When applying repelling electromagnetic fields to its
permanent magnet, the plate is raised. Each box contains a hole at the top
that lets users feel the plate. It is slightly narrowed to retain the plate in
the box. Users can easily push down an actuated plate against the mag-
netic force; a repelled plate provides a spring-like resistance. Similar to a
SLAP Keypad (section 3.3.3.2), a push down event is communicated via a
spot to the table’s cameras.

4.8 Applications 157

—
+

—
+

+
–

–+ + – – – + +
+
–

4 cm

Figure 4.41: Radio Button Madget. Top: Actuation concept. The Mad-
get is held in place with attracting electromagnetic fields. The active but-
ton is not actuated and pushed down by gravity. Inactive buttons are
raised with repelling fields. Bottom: Working prototype with three but-
tons. Modified image from [Weiss et al., 2010b].

This Madget provides a simple way to implement a three-state radio button:
The actuation is inactive for the selected button (down), while all other
button plates are repelled (up). When the user presses a different button,
the tracking algorithm detects this change, updates the internal state and
the back projection. Then, the system disables the actuation for this button
while raising all other “unchecked” buttons. It can also be used as a keypad
with simple push or toggle buttons. Note that the Madget provides a
richer haptic feedback than the SLAP Keypads. Users cannot just feel the
boundaries of each key but also their push state (up or down). Furthermore,
the magnetic resistance in combination with an acrylic plate provides a
natural “click” sound and a better pressure point than a silicone layer.

4.8.2.2 Clutch

Subsequent

actuations allow

more complex

mechanisms, like

physically disabling

a button.

Vertical and tangential actuations can be executed subsequently to im-
plement dynamic physical constraints. In analogy to GUI buttons that
are unavailable or “grayed out”, our Blockabel Button Madget represents
a pushbutton that can be locked (Fig. 4.42). Primarily, it consists of a
pushbutton that is raised with repelling electromagnetic fields. By default,
user can easily push it to trigger actions. Beyond that, it provides a clutch
mechanism. The button can be locked by first raising the plate with nor-

158 4 Maintaining Consistency: Madgets

—
+

—
+

+ + + + + +– – – – ––
+
–

+
–

Figure 4.42: Blockable Button Madget with clutch mechanism. Top:
Actuation concept. In default mode, the button’s plate is raised using
magnetic forces and can be pushed down. By raising the button’s plate,
and then translating the blocking bar beneath the plate, the button is
locked. It cannot be pushed anymore. Actuation in reverse order unlocks
the button again. Bottom: Prototype. Modified image from [Weiss et al.,
2010b].

– +

—
+

—
+

—
+

– +

Figure 4.43: Concept of Slider Madget with dynamic range limits. Range
limits stick in notches of the sliding bar. They can be raised and placed to
new positions using magnetic actuation.

mal forces and then horizontally moving an acrylic bar beneath the plate.
Now the button cannot be pushed down; it is locked. The inverse actuation
sequence releases the button again.

This concept can be applied to many other controls. For example, a slider
with dynamic physical range limits is imaginable. Imagine a slider that im-
plements these limits with acrylic blocks fixed in a notch bar. Each block
contains a permanent magnet. The position of a limiting block can be

4.8 Applications 159

+ – +

—
+

—
+

—
+

—
+

—
+

Figure 4.44: Bell Madget with vertically actuated beater. Left: Actuation concept. While the
Madget is held in place, the beater is pushed against the bell with a strong repelling electro-
magnetic impulse. Right: Working prototype. Modified image from [Weiss et al., 2010b].

changed by first raising it via a normal force, then moving it to a new po-
sition, and, finally, releasing it again by deactivating actuation (Fig. 4.43).

4.8.2.3 Mechanical Audio Feedback

Vertical actuation

can create localized

audio feedback.

Vertical actuation can also be employed to create mechanical audio output.
Fig. 4.44 shows our Bell Madget. It consists of a rigid base with a small
acrylic mount that centers an off-the-shelf bicycle bell above the base. A
cylindric magnet (� 4 mm, height 12.5 mm), the beater, is embedded into
the base so that it leaves a gap of 5.8 mm to the bell’s sounding box when
actuation is disabled. A strong repelling electromagnetic impulse lets the
beater bump the bell and produce a ping sound. The volume can be varied
via the duty cycle of each impulse.

The Bell Madget can be used to create a localized audio feedback on the sur-
face. Placed next to a virtual object, it can notify the user about events.
For example, a single ping could inform about a new message in a chat
window, while a high-frequent repetitive ringing could communicate cri-
tical errors, such as connection loss during a remote collaboration. It is
also imaginable to use Bell Madgets with different tones for different ap-
plications. Note that this local feedback can barely be accomplished with
speakers arranged around or inside the table.

4.8.3 Force Feedback

Actuation can enrich the pure physicality of multi-element controls with
active force feedback.

160 4 Maintaining Consistency: Madgets

4.8.3.1 Vibration

Programmers can simply let a Madget vibrate by repeatedly assigning small
tangential or normal forces. They just have to make sure that the control
remains close to its current position.

Small repeated force

impulses let a

Madget vibrate for

user feedback.

This can be useful to call the user’s attention to a Madget. For example,
a shared control could vibrate if a remote user starts operating it. Or
a continuous control like a knob or slider could vibrate while a user sets
its associated value within a critical range. Vibration patterns could also
communicate more complex information.

Vibration feedback can also indicate discrete steps in continuous controls,
for example, semantic marks in a video timeline. A designer could imple-
ment a simple beat feedback, similar to the Bell Madget, by attaching a
closed vertical acrylic pipe to a control. Every time a mark in the conti-
nuous scale is reached, a permanent magnet in the pipe is repelled, hits the
ceiling, and lets the control vibrate shortly. The control via software allows
to dynamically adapt the “haptic marks”.

4.8.3.2 Resistance

Resistance of

controls can be

varied using

different

electromagnetic

forces.

The resistance of a control can indicate its importance and act as a further
output channel. A button causing an irreversible action, such as “Close
without save”, could be harder to press. A volume slider shifted beyond
a certain threshold could be harder to move. Those effects can be im-
plemented by changing the strengths of electromagnetic fields. Varying
the duty cycle of the electromagnets raising a button’s plate changes the
perceived resistance of a button. Attracting a knob’s arm to the surface
makes it harder to move. We will present concrete techniques to change
the resistance of controls in the next chapter.

4.8.4 Water Wheel Madgets

Electromagnetism

allows to transfer

electrical and

mechanical power.

Madgets are passive objects that do not employ any batteries or tethered
power supplies. Yet, electromagnetic fields can be used to transfer energy
to them. In analogy to the ancient mechanical drives, we call these controls
Water Wheel Madgets.

4.8.4.1 Inductive Energy Transfer

In the same way as electrical tooth brushes are charged, we can create
electric current inside a Madget via electromagnetic induction. An example
is shown in Fig. 4.45. The so-called Induction Madget consists of a rigid
base with an embedded coil. This coil is connected to a low power LED. If

4.8 Applications 161

t

attract

0

+1

�1

induction attract

t

—
+

—
+

—
+

—
+

Figure 4.45: Madget with LED powered by induction. Left: Actuation concept with
corresponding PWM signal. Permanent magnets at the corners hold the Madget in place. A
sinusoid PWM signal applied to the electromagnets beneath the middle induces current to the
circuit. Right: Working prototype. Modified image from [Weiss et al., 2010b].

we apply a A sinusoidal PWM

signal can induce

current in a coil that

is embedded in a

Madget.

sinusoidal PWM signal at the electromagnets beneath the coil,
current is induced to the coil, which lets the LED blink. This technique
allows us to add low power electronic parts to a Madget, such as LEDs or
simple sensors, without imposing a large form factor or weight to the design.
A more complex example is a Madget containing a coil, a proximity sensor,
and an IR LED that is directed to the table surface. As soon as a user’s
hand approaches the sensor, the LED could create an IR spot that would
be detected by the tracking algorithm. Therefore, proximity could be used
as further input modality. Also, memory chips or radio transmitters could
be embedded.

4.8.4.2 Motors

Actuation can turn

a wheel in a

Madget, which then

acts as a mechanical

building block.

Electromagnetic force also allows for mechanical power transfer. The Gear
Wheel Madget in Fig. 4.46 consists of a pivot-mounted gear wheel with
permanent magnets attached to opposite sites of the wheel. Our actuation
algorithm can spin this wheel by dynamically applying tangential forces.
Assuming an accurate tracking, we can even vary the speed of the rotation.
This Madget could be a base building block for more complex controls, such
as small robots.

4.8.5 Prototyping Physical Properties

Electromagnetic actuation allows designers to simulate physical properties
of controls and to change them on the fly. This can be especially helpful
for prototyping. We will describe and evaluate this concept in the next
chapter.

162 4 Maintaining Consistency: Madgets

—
+

—
+

—
+

—
+

Figure 4.46: Gear Wheel Madget. Top: Prototype concept. The pivot-mounted gear is
rotated by applying tangential forces to its attached permanent magnets. Forces are directed
orthogonally to the pivot point. Bottom: Building block prototype. The bottom wheel is rotated
by electromagnetism. The top wheel could be used to drive attached mechanics. Modified image
from [Weiss et al., 2010b].

4.9 Implementation Challenges

When implementing the Madgets Table, we faced engineering challenges
that had to be solved to achieve a reliable actuation. The most important
ones are described in this section.

Actuation algorithm

bases on a set of

approximations to

achieve high frame

rate.

A Madget should be actuated as smooth as possible. However, as mentioned
in section 4.5.5, our actuation algorithm includes a set of approximations
that reduce the non-linear problem of finding a correct electromagnetic con-
figuration to linear systems of equations. One assumption is that during
an actuation frame, the strength and polarization of every electromagnet
remains constant. This is only true if the duration of an actuation frame taf

converges to 0 ms; that is, the shorter an actuation frame, the smoother the
actuation. While the tracking and actuation algorithms require a minimum
timespan to compute the next frame, the communication between the soft-
ware and the hardware controller turned out to be the major bottleneck.
In our original prototype, we used an Arduino Mega with an ATMega1280
microcontroller to trigger the electromagnets. It was connected to the com-
puter via USB. However, the bandwidth between the Mac computer and
the controller limited our frame rate to 30 fps. Furthermore, driver incom-
patibilities required us to add a further computer withmbed controller

improved actuation

frame rate

compared to original

Arduino controller.

Microsoft Windows
as a mediator between the Mac and the Arduino. The later introduced
mbed controller solved these issues and removed the additional computer
from the system design. The mbed controller contains an on-board Ether-
net chip that can be accessed by simply soldering a RJ45 plug to distinct

4.9 Implementation Challenges 163

Figure 4.47: Different core materials. Left: Iron core. Right: Manganese-
zinc ferrite core with recesses to avoid eddy currents.

pins on the controller. Via Ethernet, we can update the electromagnetic
array with 60 fps, yielding a frame length of taf ≈ 0.0166 s. Furthermore,
based on a web compiler, the mbed controller can be programmed in a
platform independent way.

Manganese-zinc

ferrite cores are less

prone to eddy

currents than iron

cores.

The choice of the electromagnets’ core material is crucial for the perfor-
mance of the actuation. The original Madgets Table uses cylindric iron
rods, because they yield a high permeability. However, iron cores are highly
prone to eddy currents, which causes them to heat up and to considerably
lose power over time. They also tend to saturate such that the core’s mag-
netization becomes irreversible. In a later iteration of the table, we use
manganese-zinc ferrite cores (Fig. 4.47). Usually applied for welding, these
cores provide an electromagnetic field strength similar to iron rods but
contain recesses that minimize eddy currents. We refer to Scherz [2007]
(p. 134–138) for a detailed explanation of various core materials.

Active cooling

should be embedded

into actuation

hardware.

The Madgets Table does not contain a heat sink or an active cooling mech-
anism like a fan. Although single electromagnets can be switched off if
they become too hot, the surface had to be passively cooled down after we
actuated controls for about 30 minutes. This phase can be accelerated by
placing cooling pads onto the surface. However, in a future prototype, a
cooling mechanism should be integrated into the hardware. Note though
that our compact integration of actuation and tracking makes it hard to
add further components into the surface. A smaller actively cooled proto-
type of the table, which relies on tracking from above, will be presented in
section 6.5.

Assembly process of

table is very

extensive. Future

design should

support more

efficient

maintenance.

The entire table is assembled by hand. All fiber optics have to be placed
carefully into the grid. To speed up this process, we developed and iterated
a set of tools, e.g., to cut fiber optics in pieces of constant length, to arrange
fiber optics around a core, or to hold a module in place. We also defined
processes to test the system and to detect errors. However, the maintenance
of the hardware can be tricky and time demanding. While controllers can be
replaced easily, modifying the surface after assembly is difficult. It usually
requires to detach all layers and remove the single modules from the table’s

164 4 Maintaining Consistency: Madgets

frame. For example, replacing a fiber optical cable necessitates to remove
the old one with a cordless screwdriver and then glue a new one to the
bottom board of the module. If a cable is placed inside an electromagnet,
all four inner fiber optics have to be replaced as they are taped to the core.
Replacing an electromagnet is even more difficult, because it is soldered to
the bottom board. A future iteration of the system should be constructed
in such a way that it supports a more efficient maintenance.

4.10 Actuation versus User Control

Some users perceive

autonomously

actuated objects as

living beings.

When actuating controls two psychologic aspects have to be considered.
First, there is a tendency of users to perceive actuated controls as living
beings. When watching a demonstration video of an actuated button that
was translated across the table in a jerky way, several users independently
made statements like: “Oh, look it walks like a beetle.” The so-called Media
Equation [Reeves and Nass, 1996], which claims that users treat computers
as real people, certainly also applies to actuated controls. They appear
as autonomous objects, which gives users a living impression. A similar
observation has been stated by Rosenfeld et al. [2004] in the context of the
Planar Manipulator Display:

“We also noted a strong tendency for users to anthropomorphize the be-
havior of moving physical objects, even when those objects were seemingly
personality-free furniture models. For example, a bug in the control sys-
tems code sometimes caused objects to perform small random motions near
their target location before coming to stop. We were surprised how many
observers gave descriptions of this behavior such as “he was nervous until
he found his spot”. While this tendency may not be particularly relevant
for this application, it suggests that active physical presentation might be
especially suited to simulations involving human behaviors and social rela-
tionships.”

[Rosenfeld et al., 2004, p. 6]

Designers must

balance importance

of actuation with

users’ desire for

control.

The second aspect that must be considered by application designers is the
user’s potential loss of control. While actuation is certainly reasonable to
maintain the physical-visual consistency, it also implies that the user is not
in control when a Madget moves. This can yield a feeling of uncertainty
when operating physical controls.

4.10.1 Preliminary Study

Preliminary study:

Collaborative

ordering task with a

pretended remote

user

In order to retrieve a better understanding of the potential conflict between
actuation and user control, we conducted a pilot user study. Participants
performed a simple remote collaboration task. Four numbered actuated
pucks were placed on the surface that had to be brought into a certain
order (Fig. 4.48). As a second table was not available, the remote user was
simulated using a Wizard-of-Oz approach: The test examiner intervened

4.10 Actuation versus User Control 165

Figure 4.48: Setup of preliminary study to explore conflicts between actu-
ation and user’s desire for control. The user’s task was to order numbered
pucks in collaboration with a pretended remote user. Image courtesy of
[Seidel, 2011].

with the interaction by dragging pucks with a mouse on a separate con-
ventional desktop GUI. While users could directly move the physical pucks
on the surface, the examiner employed electromagnetic actuation to do the
same. He pretended to be a remote user, who supported the ordering task
but made mistakes occasionally. The intention of this study was to find
out which feedback methods were suitable if actuation was triggered by
external events.

The main findings of this preliminary study are:

• Starting actuations distract users. Every time an actuation of a puck
started that users did not anticipate, they tended to interrupt their
task, and watch what happened. In some cases, this distraction even
caused users to forget their current operation.

• Visual feedback improves user experience and collaboration. We con-
ducted the study with and without a visualization of the actuation
path. Users appreciated to be able to see where an actuation puck was
moving. In these situations, some users even supported the actuation:
For instance, if they saw that an actuation trajectory would likely pass
through another physical object, users tended to move this one out
of the way. Predictability of actuation turned out to be an important
ingredient to a feeling of being in control. The sole announcement
of an upcoming actuation via a flashing halo around a puck or the
display of the already passed trajectory was not considered important
by most users.

• In the absence of direct contact to the remote person, users tended
to communicate via physical pucks. Participants requested a direct
contact to a remote user, e.g., via audio or video, to coordinate col-
laborative actions. In the absence of this connection, they used the

166 4 Maintaining Consistency: Madgets

tangibles for communication. If a puck was actuated, e.g., into the
wrong direction, some participants moved it repeatedly into the op-
posite direction, in order to “convince” the remote person.

• Having control is essential. In one condition, we provided participants
a switch to disable the influence of the remote user. This switch
basically turned off electromagnetic actuation. Many participants
appreciated this control, especially if the simulated remote user made
mistakes. Yet, they also agreed that such a “kill switch” can strongly
impair remote collaboration and lead to deadlocks in the interaction
if both users mutually exclude each other’s influence.

Future work: Study

with two tables and

two collaborating

users.

In future work, the study should be iterated and conducted using two actu-
ation tables with two real users. The Wizard-of-Oz prototype only allows
a limited generalization. However, this pilot study already shows the im-
portance of predictability and the need for designers to regard the user’s
desire for control when using actuation.

4.11 Closing Remarks

In this chapter, we introduced Madgets, tangible general-purpose controls
that extend the concept of SLAP Widgets with actuation, ensuring a bilate-
ral interaction between user, interface, and tabletop. We discussed related
work and explained the table hardware and control flow of the Madgets
Table. We showed how to track Madgets using low-resolution fiber optical
tracking, and how to actuate complex controls using electromagnetic ac-
tuation. We also explored the design space of potential applications that
make use of horizontal and vertical actuation mechanisms. Finally, we il-
luminated crucial design challenges that we had encountered.

Madgets embody

the same benefits as

SLAP Widgets and

maintain

physical-visual

consistency.

The Madgets Table maintains the consistency between the physical and the
virtual state of tangible controls. Yet, Madgets embody the same benefits
as SLAP Widgets. They are lightweight and use the table’s back projection
for dynamically changing the controls’ appearances. In addition, they are
passive; they neither require heavy batteries nor cables that could clutter
the interface. They are easy to construct and do not necessitate an electrical
engineering background. Finally, Madgets are low cost and robust. Even
if a Madget breaks, it is easy and cheap to replace. Using the actuation
algorithm described in section 4.5, many concepts known from GUIs can
now be integrated into tangible tabletop applications. The actuation itself
is calm and unobtrusive.

Lightness of

Madgets comes to

the cost of complex

table design.

The lightness of passive actuated controls comes to the cost of a rather
complex table design. Our table prototype was difficult to construct, hard
to maintain, and, compared to the SLAP Table, rather costly. Further-
more, the power consumption of the electromagnetic array is quite high. It
is likely, though, that after further iterations of the prototype, production
costs and power consumption could be significantly reduced. The main

4.11 Closing Remarks 167

factor that complicates the table construction is the fiber optical tracking.
Besides the maintenance and assembly effort, the algorithm needs larger
footprint markers (� 25 mm) than SLAP Widgets, and the use of cam-
eras increases the depth of the table construction, making it less flexible.

In future, tracking

could be replaced

with thin form

factor techniques.

A resistive tracking technology like the already mentioned Interpolating
Force-Sensing Resistance (IFSR) sensor [Rosenberg and Perlin, 2009] could
improve tracking and, thereby, increase actuation accuracy. Also, it would
considerably reduce the size of the base frame. An alternative is the use of
sensor coils, as described by Hook et al. [2009], or Hall effect sensors. This
could detect the position of permanent magnets and, thereby, supersede
the relatively large paper-based markers. However, special consideration
must be taken to avoid interferences between the tracking and the electro-
magnetic actuation technology.

Applicable

electromagnetic

force is limited,

which imposes

design constraints.

The forces that the electromagnets can exert are limited. In practice, users
can normally overcome the force fields of electromagnets, e.g., if a Madget
is attracted to the surface with maximum force. The restricted force also
imposes constraints to the designer: Madgets must not be too heavy, and
moving parts should be supported on bearings to avoid friction. Stronger
electromagnets could alleviate this issue. Note though that these would
also increase the power consumption.

Range for effective

actuation above the

surface is small.

As aforementioned, the synthesized force strongly attenuates depending on
the distance to the electromagnet. In our prototype setup, this implies that
most actuation mechanisms must be realized within a short range above
the surface. Permanent magnets placed beyond that distance only receive
minor forces. Similar to the flattened 2D representation of a Madget’s
state (cf. section 3.9), complex 3D actuations must be implemented so that
the permanent magnets are close to the surface; maybe using concepts as
Gear Wheel Madgets (section 4.8.4.2). However, for free 3D actuation of
controls, like hovering objects, a different setup would be inevitable. The
recently published ZeroN device by Lee et al. [2011] represents a promising
starting point for this kind of actuation: It can translate magnetic spheres
through a 3D space using a magnetic levitator.

In this chapter, we showed how to move and configure tangible controls and
how to maintain their physical-visual consistency. In the next chapter, we
go a step further and apply electromagnetic actuation to simulate physical
effects like friction and resistance in general-purpose controls.

169

Chapter 5

Rendering Physical Effects

The previous chapter explained how electromagnetic actuation enables bidi-
rectional general-purpose tangible controls that can be arranged on the
surface by the software. This actuation technique also maintains the con-
sistency between the physical control and its graphical representation. In
this chapter, we apply the concept of electromagnetism to the design pro-
cess of physical controls.

Developing physical

controls requires

many design-

implementation-

evaluation

cycles.

Iterative design is a useful and successful method for designing user inter-
faces [Nielsen, 1993; Buxton and Sniderman, 1980]. The development of
physical controls is a matter of many development cycles, comprising de-
sign, implementation, and evaluation phases [Baecker et al., 1995]. Early
low fidelity prototypes include storyboards, sketches, or 3D models. They
are useful to gain high level user feedback that reveals rough and conceptual
design issues. Medium fidelity prototypes introduce first physical objects
made of cardboard, wood, foam, or 3D printed ABS plastic. They allow
users to experience the form factor of the prospective device and to provide
feedback about ergonomics. They can already contain simple mechanical
elements, like attached buttons. High fidelity prototypes look similar to the
final product. Also, the physical feel of the device is mostly implemented,
e.g., the resistance of a button, or the way it feels to drag a slider handle.
Such a prototype can also include basic electronics to communicate the
control’s state. In each development cycle, a prototype is evaluated, and
the feedback is incorporated into the next cycle.

Iterative design is

time and cost

efficient.

The benefits of iterative design are time and cost efficiency. Early proto-
types are cheap and simple to build. In this phase, revising the concept
is unproblematic, while undetected conceptual mistakes produce high cost
in later phases when the product design has already evolved. During the
process, prototypes become more and more refined while the feedback from

Publication
Part of the work in this chapter was published as short paper at the CHI ’11 conference [Weiss et al., 2011a].

170 5 Rendering Physical Effects

users is more and more detailed after each iteration. The more iterations
are conducted, the more elaborate and expensive prototypes become. Iter-
ative design can be considered as a hierarchical design technique, with few
high level decisions in the beginning and many precise refinements in the
end.

Building tabletop

controls is easy.

However, while look

is dynamic, feel is

fixed after assembly.

Building physical controls for interactive tabletops like SLAP Widgets or
Madgets is relatively easy. Using tools like a laser cutter, they can be
quickly crafted from low-cost materials, such as wood, acrylic, or silicone. A
control’s position, orientation, and status can be communicated via optical
markers without the need for electrical sensors. Furthermore, the table’s
back projection allows for quick visual relabeling and feedback. However,
while the look of such tangibles can be changed dynamically, its feel is
usually fixed and cannot be changed once a tangible is assembled. If a
user study reveals that a knob is too smooth-running, or a button is too
lightweight to press, the mechanics must be reconstructed.Iterating the feel is

usually costly but

electromagnetic

actuation can

change feel

dynamically.

This can be an
extensive and costly process, because new user studies have to be arranged
to evaluate further design iterations. However, some of a control’s physical
properties can be changed dynamically using electromagnetic actuation.
Thereby, a user could test multiple haptic configurations within a single test
session. An adaptive feel is also a powerful non-visual feedback channel.

In this chapter, we explain how electromagnetic actuation can be used to
render certain physical properties in tangible controls. These are perceived
weight, spring resistance, friction, and notches. We can change these prop-
erties on the fly via adaptive electromagnetic force fields. Our techniques
not only save effort and costs when iterating general-purpose controls. They
also enable dynamic physical properties as a further feedback channel.

5.1 Haptic Rendering in General-Purpose
Devices

Haptic Rendering

deals with the

synthesis of haptic

effects.

Synthesizing haptic effects is the main focus of the field of Haptic Rendering.
We refer to Salisbury et al. [2004] for an overview. The field has originated
many haptic devices that were used in Virtual Reality applications, as well
as commercial force feedback mice and joysticks, that found their way into
the gaming industry.

3D force feedback

devices have been

used to enrich 2D

GUI widgets with

force feedback.

A common device used for haptic rendering is the PHANTOM [Massie and
Salisbury, 1994]. It is a conventional 6DOF force feedback pen for haptic
rendering of 3D objects in virtual reality environments. The exact position
and orientation is tracked. Internal brakes and actuators provide force
feedback and can, e.g., hinder the user to penetrate a virtual object. The
PHANTOM provides very accurate 3D force feedback within a certain force
range. Besides haptic rendering of 3D objects and surfaces (e.g., [Walker
and Tan, 2004]), it has been used to enrich virtual 2D GUI elements with
force feedback [Miller and Zeleznik, 1998, 1999]. However, the pen only

5.1 Haptic Rendering in General-Purpose Devices 171

Figure 5.1: Concept of haptic clutch for media navigation as described
by Snibbe et al. [2001]. Navigation is modeled as shoving a virtual inner
wheel by firmly grasping and turning an outer one. Upon release of the
control, the inner wheel keeps turning according to an inertia model.

provides indirect feedback. Beyond that, the PHANTOM device is a heavy
stationary device, which makes it unsuitable for interactive tabletops.

Adjustable haptic

properties of

general-purpose

controls can be used

as feedback for

navigation through

media.

Snibbe et al. [2001] suggest to use dynamically adjustable haptic properties
of general-purpose controls as an output channel when navigating through
media. They present a set of single axis actuated displays equipped with
motors, pressure sensors, and brakes. Using their prototype devices, they
can simulate different frictions, inertia, and resistances in knobs and sliders.
The authors demonstrate various applications in the field of media brows-
ing. An example is a physical knob with an underlying Haptic Clutch model.
It consists of a virtual outer wheel on top of an inner one (Fig. 5.1). The
speed and direction of the inner wheel controls the frame rate and play-
back direction of a video. If the user grasps the physical knob firmly and
rotates it, he virtually shoves the inner wheel. The video plays in the given
pace. If the user releases the knob, the virtual inner wheel keeps moving,
and the video continues. A user can stop the video by firmly grasping the
knob without turning it, or further shove the inner wheel. When turning
a knob in Haptic Fisheye mode for navigation to a data set, the strength
of the user’s grasp influences the resolution of browsing. Another example
is Foreshadowing that uses an increasing haptic texture feedback applied
to the knob to indicate the user that he is near a tick marks in a data
collection.

Physical effects in

general-purpose

controls can

influence affective

responses.

Swindells et al. [2007] investigated the effect of various physical parameters,
like the friction, inertia, or detents of a knob, on task completion time
and emotional responses of users. In example application contexts, they
propose to vary the “feel” of a control as a communication channel. For
example, a knob setting critical values in a power plant could feel “unpleas-
ant” if an operator sets risky values, while feeling smooth within normal

172 5 Rendering Physical Effects

ranges. The authors conducted a user study measuring task completion
time and affective response when operating several active or passive haptic
controls, and show that “physical control renderings of position-, velocity-,
and acceleration-based effects can significantly influence affective responses”
[Swindells et al., 2007, p. 941].

Example:

compressible

tangible that can

simulate various

internal springs

Changing physical properties has also been applied to the field of actuated
tangibles. For example, SqueezeBlock by Gupta et al. [2010] is a compress-
ible tangible that simulates different internal springs. It uses an internal
motor attached to a mechanic to render dynamic spring constants and to
change them on the fly. This allows, e.g., to provide a haptic “click” re-
sponse if the user squeezes the tangible beyond a certain level. Hemmert
et al. [2010] designed a mobile phone prototype that is able to change its
center of gravity by using two orthogonally aligned actuated sliders with
an attached weight.

Haptic rendering

usually requires

hardware that limits

applicability on

interactive

tabletops.

General-purpose controls with varying physical properties have barely been
implemented for interactive tabletops. A main reason for this is that haptic
rendering often requires extensive hardware, such as motors and brakes. In
the following, we show how electromagnetic actuation allows changing phy-
sical properties of passive tabletop controls while maintaining their charac-
ter as lightweight and low-cost tangibles.

5.2 Using Magnetism to Induce Physical Effects

We render physical

effects by applying

dynamic

electromagnetic

normal forces to

permanent magnets

in tangible tabletop

controls.

We can render physical effects by applying dynamic electromagnetic normal
forces to permanent magnets in tangible tabletop controls or parts of it.
For our prototypes and proof of concept studies, we used a single module
of the Madgets Table and fastened our controls on the surface. The module
contains 12× 6 electromagnets with iron cores that span a total interactive
area of 25.2 cm × 12.6 cm. Since no tracking was required, and in order to
maximize the electromagnetic forces, we detached the LCD panel and EL
foil, and replaced the Endlighten layer with a 5 mm acrylic plate. We ran
each electromagnet at 35 V. Using the Madgets Table, the strength of each
electromagnet is varied over the PWM duty cycle. Values linearly scale
between 0% (disabled magnet) and 100% (fully powered electromagnet).

5.2.1 Perceived Weight

Weight of tangible

is determined by its

mass.

The weight of a tangible is determined by its mass, that is, by the kind and
amount of materials involved in its construction. This is a fixed quantity
that cannot be changed once the object is built. Yet, using electromagnetic
actuation, we can influence the perceived weight.

When dragging an object across the tabletop, the user perceives the friction
force of the object, that is, the product of friction coefficient and normal

5.2 Using Magnetism to Induce Physical Effects 173

40 mm

46
.5

 m
m

40 mm

Figure 5.2: Weight Madget. The perceived weight can be varied by
applying normal forces to the embedded permanent magnet.

force (cf. equations 4.4 and 4.5). Perceived weight

can be increased by

dynamically

attracting

permanent magnet

in tangible.

To raise it from the table, she has to
overcome the normal force. Naturally, the normal force of an object de-
pends on its mass and the earth gravity. Yet, according to section 4.5.4, we
can apply further normal forces to permanent magnets that are attached
to a control. By attracting these magnets to the surface, we increase their
normal force and, thereby, the normal force of the entire tangible. Con-
sequently, the control is harder to move or detach from the surface; the
perceived weight is increased. Contrariwise, repelling fields can decrease
the perceived weight.

Weight can inform

about state of

tangible, e.g.,

amount of virtual

content.

The ability to dynamically change the perceived weight with varying elec-
tromagnetic fields opens a new feedback channel for tabletop tangibles.
Weight can inform the user about the state of an object. For example,
assume a file management application involving tangibles to represent fol-
ders. In analogy to Auditory Icons [Gaver, 1986], the weight of a tangible
could encode the size of a file or the number of files in a folder; full folders
are harder to move than empty ones. By this, the virtual content of folders
would gain a physical manifestation.

Weight Madget =

acrylic box +

embedded

permanent magnet

Our Weight Madget prototype is shown in Fig. 5.2. It consists of a simple
acrylic box (base area 40 mm × 40 mm, height 46.5 mm) with an embedded
circular permanent magnet (� 20 mm, height 2 mm) that is glued on top of
the 5 mm base plate. To reduce tangential friction, we mounted a felt pad
(thickness 0.25 mm) beneath the box. We measured the varying normal
force required to detach the tangible in dependence of the duty cycle using a
spring scale. Normal force can be

increased linearly.

As shown in Fig. 5.3, we can linearly increase the normal force
of the tangible. If the electromagnets are disabled, the normal force only
consists of the weight force. Note that below 40% no increase in normal
force was measurable. Since the permanent magnet polarizes the iron cores
in the electromagnets, a minimum threshold must be overcome to create
pulling forces.

174 5 Rendering Physical Effects

30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Duty cycle [%]

N
or

m
al

fo
rc

e
[N

]

Figure 5.3: Normal force measured on Weight Madget depending on duty
cycle. A minimum threshold of about 40% must be overcome to create a
force towards the surface.

Effect only works

reliably if tangible is

touching the

surface.

Note the illusion of varying weight only works if the tangible touches the
surface. Due to the strong attenuation of force with increasing distance to
the electromagnets, the applied normal forces derate as soon as the object
is detached from the surface. Considerably stronger electromagnets and
accurate tracking of height would be necessary to compensate for this.

5.2.2 Friction

Friction of controls

communicates

properties and

triggers emotions.

The required force to operate a continuous control can communicate prop-
erties about the value that is manipulated. For example, a knob that af-
fects crucial parameters of a large machine is harder to turn (which also
avoids accidental input), while a knob controlling a less important value
is smooth-running. However, also emotional aspects are important in the
so-called affective design. For example, despite the trend of moving a ma-
jority of functions to a remote control and on-screen displays, expensive hi-fi
systems always provide a heavy knob that feels “valuable”, as opposed to
low-end compact systems. Another already mentioned example are washing
machines that provide heavy knobs giving the user a feeling of mechanical
control, although the knob merely triggers a micro controller.

Example: increase

knob’s friction in

critical value ranges

Dynamically changing a control’s friction could be used as a state indicator
of target objects. A slider Madget could change its stiffness according to
the virtual object it is paired with. Or a knob controlling a machine could
produce a higher resistance if a user tries to set risky values.

In continuous controls, the friction force denotes the resistance of the move-
able part against linear or rotational movement. We developed a prototype
knob, the Friction Knob Madget, whose resistance can be modified in real-

5.2 Using Magnetism to Induce Physical Effects 175

++
− −

− −

10 cm

Figure 5.4: Friction Knob Madget. Left: Actuation concept. Brake pads (yellow) are pushed
against the turnable disc using electromagnetic forces. Right: Physical prototype used in our
measurement. The control can contain up to four disc brakes beneath the disc. In the picture,
one brake is embedded (top right).

4 cm

base

turnable
disc

disc
brake

(⌀ 0.8 cm)

3 cm

30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Duty cycle [%]

S
ta

ti
c

fr
ic

ti
on

fo
rc

e
[N

]

Figure 5.5: Static friction force measured at knob with electromagnetic brake mechanism.
Left: Measurement method. Force was measured 4 cm away from the center, orthogonally to
the lever. Right: Resulting force depending on duty cycle. The minimum required duty cycle
to lift the brake block is about 60%.

time via electromagnetic fields. Friction Knob

Madget = knob +

vertically actuated

disc brakes

Our control is shown in Fig. 5.4. It consists
of a solid circular acrylic base with a pivot-mounted handle on top. The
handle consists of a small disc at the top for convenient turning, and a
large disc with the same size as the base. Four disc brakes are embedded
in cylindric holes in the base. Each cylindric brake consists of a permanent
magnet, an acrylic layer, and a thin brake pad at the top.

Friction force is

varied by adapting

normal force applied

to disk brakes.

If all electromagnets are disabled, the knob can be rotated easily due to
a ball bearing between base and handle. By applying a repelling field to
a permanent magnet, the respective brake rises and the pad touches the
handle disc. Now friction forces resist the rotation. The friction coefficients
depend on the material of the pad and the acrylic as well as on the normal
forces. By varying the duty cycle, the normal force can be regulated. Fur-

176 5 Rendering Physical Effects

28 mm

Figure 5.6: Prototype of pushbuttons that provide varying spring resistances through electro-
magnetic actuation.

thermore, brake pads can be easily replaced and equipped with different
materials to control the friction coefficients. Our prototype contains four
brakes. This provides a wider friction range and allows to combine different
friction coefficients.

Static friction force

can be changed

linearly via

electromagnetic

actuation.

We measured the static friction force against duty cycle at our prototype,
containing one circular brake pad (� 0.8 cm) with sandpaper coating. We
measured the force with a spring scale that was attached to a lever 4 cm
away from the center into the direction of rotation (Fig. 5.5, left). As
illustrated in Fig. 5.5 (right), we can nearly linearly influence the knob’s
static friction force via the duty cycle. Note that a minimum of 60% was
required to raise the disc brake so that it touches the disc.

5.2.3 Spring Resistance

Buttons with

varying resistance

are difficult to

implement but can,

e.g., reduce typing

errors.

The resistance of pushbuttons is usually realized with an embedded spring.
Buttons with altering resistances are rare, because they are difficult to
implement. Yet, a recent study proves the usefulness of this feature. Hoff-
mann et al. [2009] introduced TypeRight, a tactile feedback that can vary
the stiffness of every key. Their study reveals that typing is less error-prone
if unlikely keys are harder to press than likely ones. The likelihood of a
key is derived from dictionary look-ups of the currently entered substring.
While adapting a button’s resistance usually requires elaborate mechan-
ics, electromagnetic actuation allows to simulate changing resistance via
varying normal forces.

Button prototype

contains four plates

with embedded

permanent magnets.

Fig. 5.6 shows prototype buttons supporting dynamic resistances. The
construction resembles the Radio Button Madget (section 4.8.2.1). Each
button amounts to a size of 28 mm × 28 mm. To increase magnetic forces,
we placed four flat permanent magnets in the corners of the button’s plate.
Again the plate is raised by applying repelling electromagnetic fields to
permanent magnets. Users can push down the plate 5 mm against the
magnetic force. As the force rises with increasing proximity to the electro-

5.2 Using Magnetism to Induce Physical Effects 177

Figure 5.7: Physical notch mechanism. Left: Pitch fader in a turntable with a snapping notch
at zero level. Photo taken by the author. Right: Possible implementation of a notch mechanism
in a physical slider. If the sliding knob reaches a notch position, an embedded spike snaps into
an indentation. To move the knob further, the user must overcome the spring force of the spike.

magnets, this simulates an embedded progressive spring. We can vary the
resistance of this spring by applying duty cycles between Rmin and 100%,
where Rmin is the minimum duty cycle that is required to raise the plate
to the top.

5.2.4 Dynamic Notches

Notches mark

discrete positions in

continuous controls.

Notches mark discrete positions in continuous controls. If a user moves,
e.g., a slider or knob to such a mark, the handle snaps, and a certain force
must be overcome to move the handle to a different position. This is a
common feature for many everyday devices and usually fulfills one of these
purposes:

1. Notches can physically limit the number of allowed states to a discrete
set, e.g., when choosing the program at a washing machine’s knob
(Fig. 1.1 on page 2). Intermediate states cannot be chosen, because
the knob automatically snaps to the nearest notch.

2. Notches can produce haptic feedback every time the user performs a
discrete step. For example, most jog wheels use notches to indicate
frame-by-frame navigation (Fig. 1.3 on page 5).

3. Important points in a scale can be marked by notches. For example,
the pitch fader of the turntable in Fig. 5.7 (left) lets the handle snap
at the zero level, because this is the default position.

The positions of notches are usually statically implemented by a mecha-
nism like that in Fig. 5.7 (right). However, dynamic notches could provide
a variety of applications. For example, a time-line slider used for video

178 5 Rendering Physical Effects

Figure 5.8: Prototype of slider with dynamic notches. The acrylic handle
is mounted on top of a permanent magnet.

navigation could activate notches at scene marks on demand. Besides the
usual browsing by dragging the slider handle, a quasi-mode could activate
these notches for quick scene-to-scene navigation. Another example are
physical knobs for navigation through hierarchical circular menus (cf. sec-
tion 3.3.3.4). The knob would update the number of notches depending on
the number of entries in the current submenu.

Notches can be

implemented via

electromagnetic

fields.

While embedding dynamic notches in conventional controls is difficult and
requires powered components such as brakes or motors, they can easily be
implemented via electromagnetic fields. Fig. 5.8 shows our slider prototype
that supports dynamic notches.

Slider prototype

contains handle

mounted on

permanent magnet.

Similarly to the SLAP Slider (section 3.3.3.3), it is made of acrylic and
contains a handle that can be shifted to set a distinct value. The handle
consists of a permanent magnet at the bottom and an acrylic cylinder on
top, connected via a small acrylic block. It can be horizontally slid across
the thin base layer over a distance of about 17 cm. To minimize friction,
we roughened this layer and coated it with graphite powder from a pencil.
The slider is aligned on top of nine electromagnets.

Dynamic notch is an

attracting magnetic

field next to two

repelling ones.

We simulate dynamic notches by creating attracting electromagnetic fields
beneath the notch positions. These fields attract the permanent magnet
that is attached to the handle. Accordingly, if a handle is shifted near
a notch position, the user feels a force towards the notch; and when re-
leased, the handle snaps to that position. This effect can be increased with
repelling magnetic fields between the notches. Fig. 5.9 illustrates the ac-
tuation scheme for different numbers of notches. Note that notches can
be removed easily by switching off all magnets. In that case, the slider
transforms back to a purely continuous control.

5.3 User Studies 179

+

+ – + – + – + – +

– + – + – + – + –

+ + +

+ – + –

5

4

3

2

–

0

–

– – – – – –

– – – –

Figure 5.9: Actuation scheme for simulation of two, three, four, and five
notches in slider. Circle size represents duty cycles (large = 100%, small =
60%). If all electromagnets are turned off, the slider is continuous (lowest
row). Modified image from [Weiss et al., 2011a].

Figure 5.10: Experimental setup for testing buttons with varying resis-
tances (bottom) and slider with dynamic notches (top). Image adopted
from [Weiss et al., 2011a].

5.3 User Studies

User tests were

conducted for

proof-of-concept.

We evaluated our actuation concepts in two user studies. The goal of
these studies was to prove the concept that electromagnetic actuation can
simulate different physical effects so that they can be reliably perceived by
users.

180 5 Rendering Physical Effects

11 participants (3 female) between 23 and 30 years old (M = 26.3,
SD = 2.5) performed two tests in a single session. The user tests involved
recognition tasks that were conducted in a double-blind way. Neither the
participant nor the instructor could see the current condition. Participants
had to rely on their haptic sense, while the instructor only initiated the
random trials and recorded results. The test setup that the participants
faced is shown in Fig. 5.10.

We used the Magnet Array Controller application, which was introduced in
section 4.5.3, to control the user test. It provides functionality to choose the
user test, store the participant’s gender and age, and to enter results into
a database for later evaluation. The configuration of the electromagnetic
array is invisible to the instructor during the entire user test.

5.3.1 Spring Resistance

We first tested whether participants can reliably distinguish different button
resistances synthesized by our electromagnetic array. We also intended to
gain insight into the output resolution for spring resistances of our specific
prototype.

5.3.1.1 Methodology

Four equal buttons were placed on the electromagnetic array in front of the
participant. All buttons were made of the same materials and constructed
in the same way using a laser cutter. In each trial, all buttons were raised
with different normal forces exerted from the 2× 2 electromagnets beneath
each plate.Task: Push four

actuated buttons

and order them

according to

resistances.

Participants could push all buttons as many times as they
wanted. They were then asked to sort the buttons by strength in descending
order and report the sequence according to the IDs printed in front of the
buttons (Fig. 5.10). The instructor then entered the result into our software.
Since stronger buttons rise faster than weaker ones, participants had to
focus a sign (a smiley printed on paper) at the wall behind the setup before
the buttons were raised. This avoids that visual clues aid the participant’s
decision process. A break of 10 seconds between two subsequent trials was
added to cool down the surface.

Three conditions

involved two, three,

and four buttons.

We tested three conditions: The strengths of two, three, or four buttons had
to be distinguished, respectively. In every condition, we used the smallest
duty cycle required to raise a plate, 60%, for the weakest button and 100%
for the strongest button. The weakest button requires about 0.040 N to
be pushed down, the strongest one about 0.160 N.Relative increase of

resistance was

constant.

Following the non-linear
relation between strength of stimulus and perception (Weber-Fechner law),
we made sure that the relative increase between buttons was constant. That
is, for the three button condition, we used the duty cycles 60%, 77.5%, and
100%, four buttons were actuated with 60%, 71.1%, 84.3%, and 100%. Note

5.3 User Studies 181

that the plates of all active buttons were pushed against the top; they were
always at the same level in the beginning of each trial.

Ten trials per

condition with

randomized

strengths

After reception and instructions about the test procedure, each participant
performed ten trials per condition. The test started with two buttons,
followed by three and then four buttons. The order of strengths was ran-
domized in each trial. We measured the number of incorrectly reported se-
quences per condition and participant. We hypothesized that participants
could differentiate up to four different levels of resistance.

5.3.1.2 Results

No participant had difficulties to order the strengths of two buttons in
all ten trials. In the three button condition, participants made 0.82
mistakes on average (SD = 0.98), while five participants correctly deter-
mined all sequences. When four different button strengths were given,
participants incorrectly reported 1.64 orders on average (SD = 1.57), while
four participants made no error at all.

5.3.1.3 Discussion

Results provide

proof of concept

that button

strengths can be

created in

perceivable way.

Our results provide a proof of concept that we can generate different button
strengths in a perceivable way. Despite the relatively low forces required to
push down buttons, participants could mostly distinguish up to four differ-
ent button resistances with our prototype, where the four button condition
caused higher error rates. Mistakes were equally distributed among all but-
tons. Thus, minor variations in assembly among the four buttons did not
cause the incorrect reports.

Resolution of button

strengths depends

on various factors

that must be

balanced.

The resolution of dynamic button resistances is specific to our system and
depends on several parameters: A lighter button plate, a shorter actuation
distance, or a higher voltage per electromagnet increases the maximum
force that can be applied, and, therefore, provides a wider range of distin-
guishable resistances. Also, more powerful electromagnets could improve
the resolution. Permanent magnets should be chosen carefully: Larger
permanent magnets provide stronger fields but also introduce additional
weight that antagonizes the actuated normal forces. In general, a precise
construction process using appropriate tools like a laser cutter is crucial to
generate replicable results.

Other types of

simulated springs

require tracking of

vertical button

position.

The presented actuation method only simulates progressive springs. To
synthesize other types of springs, such as linear ones, a precise tracking
of the plate’s height in combination with rapidly updating electromagnetic
fields would be required. Then, the force of the virtual spring at the current
height could be mapped to a duty cycle value that regards the attenuation
of the magnetic field.

182 5 Rendering Physical Effects

5.3.2 Dynamic Notches

In the second user test, we tested how well different electromagnetic con-
figurations can simulate dynamic notches in a slider control.

5.3.2.1 Methodology

Conditions involved

two, three, four, or

five dynamic

notches.

Participants operated the slider control that is shown in Fig. 5.10. We re-
placed the handle of our original prototype (Fig. 5.8) with a professional
one from an audio equalizer, because it provided better grip when being op-
erated with a single finger. In each trial, we discretized the slider with two,
three, four, or five notches using dynamic electromagnetic fields. Fig. 5.9
shows the different electromagnetic configurations. A notch was imple-
mented as an attracting field and amplified using repelling fields around
it.

Task: Operate slider

control without

looking and report

number of notches.

Before the first trial, participants placed the index finger on the slider. To
ensure that they only made use of their haptic sense, they were not allowed
to look down at the control during the test. Instead, they looked at our sign
at the wall. In each trial, participants were asked to report the number of
notches they felt. They could shift the slider to the left and right as many
times as needed. Afterwards, they named the number they perceived to
the instructor, who entered it into the software.

Number of notches

was randomized.

After explaining the test procedure, every participant performed ten trials.
The number of notches was randomized between two and five for each trial.
Again, a 10 second break provided time for a cool down of the hardware.

5.3.2.2 Results

On average, participants made 1.46 mistakes (SD = 1.51) in ten trials. The
condition involving four notches was correctly recognized in all cases but
one (3.7% false rejects). Participants misinterpreted 11.5% and 11.1% of
three and five notch condition, respectively. The two notch condition was
missed in nearly one third (30%) of the cases.

5.3.2.3 Discussion

Dynamic notches

can be simulated via

alternatively

polarized

electromagnets.

The results show that dynamic notches can be simulated via alternatively
polarized electromagnets. The combination of an attracting field with two
adjacent repelling ones creates a strong attraction towards the notch po-
sition. The recognition rates were quite high for three to five notches.
However, the two notch condition was not recognized rather frequently.
The probable reason for this was the distance of 8.4 cm between the two
notches. If the handle was shifted near the middle of the two notches,

5.4 Closing Remarks 183

the attracting force was not high enough to overcome friction and Beyond a certain

notch distance,

active actuation is

required.

to drag
the handle to one of the two positions. To solve this issue, a more active
actuation is required: The handle could be first dragged by “intermediate
notches” until it would be close enough to the actual notch to snap to its
position. This requires a precise tracking of the handle.

For arbitrary

alignment of slider

control, exact

tracking and

interpolated magnet

actuations are

needed.

Our test setup optimally aligns the slider so that each notch position is
exactly placed above an electromagnet. Providing notches at intermediate
positions for sliders that are placed in any direction on the surface is more
difficult. The resolution of the array could be increased, but this approach
is clearly limited by physical and economical constraints. Alternatively, the
notches could be dynamically synthesized by interpolating fields of adjacent
electromagnets. An accurate tracking of the handle’s position and a high
update rate of the array are crucial to achieve this.

5.4 Closing Remarks

In this chapter, we explained how to use the electromagnetic actuation of
our Madgets system to dynamically change physical properties of tangible
tabletop controls. After discussing related work, we showed how to simulate
effects, such as perceived weight, friction, spring resistance, and dynamic
notches. Our measurements and user studies provide a proof of concept
that these properties can be varied via electromagnetic forces, in levels that
are differentiable by users. The concept allows designers to quickly iterate
those properties without rebuilding the control and without incorporating
electronic parts. Also, properties can be dynamically changed in real-time,
which leads to a further valuable feedback channel.

Rendering is only

possible near to the

surface.

As mentioned in previous chapters, only the area close to the surface is
suitable for electromagnetic actuation. This inherently limits the design
space for simulating physical properties to shallow controls or mechanisms
that can be controlled indirectly from the surface. Controls are easy to

construct, but

designers have to

learn specific system

parameters.

Although the controls are
easy to construct, designers have to learn the specific system parameters to
make use of the full haptic resolution. For example, choosing a permanent
magnet for a button that is too heavy can cause the button’s plate not to
rise at all. A future prototype could provide stronger electromagnets to
offer a larger range of electromagnetic forces and to enlarge the actuation
area above the surface.

Our prototypes were aligned with the electromagnets to maximize the ap-
plied force. For an arbitrary alignment of controls on the surface, forces
must be interpolated from multiple electromagnets as described in sec-
tion 4.5.4.

Until know, we have examined tangible controls on interactive tabletops
to improve haptic feedback. SLAP Widgets and Madgets provide precise
and eyes-free input. However, in some situations, attaching tangibles to an
interactive surface is difficult, e.g., when operating vertical or small touch

184 5 Rendering Physical Effects

screens. In the next chapter, we will explain a feedback technique based
on electromagnetism that produces a haptic sensation at the user’s finger
when hovering above the surface. The solution does not involve tangibles
and only requires minimal equipment worn by the user.

185

Chapter 6

Beyond Tangibles:
FingerFlux

The use of tangible

controls on vertical

or small touch

screens is difficult.

In the previous chapters, we introduced general-purpose tangibles that en-
rich interaction on interactive tabletops with haptic feedback. Electromag-
netic actuation maintains the coherence between physical objects and their
virtual counterparts. Tangibles are beneficial on large interactive tabletops
where gravity naturally holds them in position and only a relatively small
ratio of the screen is covered by physical objects. However, when it comes to
smaller touch screens and those that are not aligned horizontally, tangibles
are less practical than pure on-screen controls.

Problem of most

haptic feedback

methods on touch

screens: Feedback

occurs first when

surface is touched.

The research community has originated many techniques that provide hap-
tic feedback on small touch screens. A common drawback of most existing
methods is their limitation to “on touch” feedback: Haptic feedback is only
provided in the moment the user touches the surface. In this chapter, we
demonstrate how electromagnetic fields can be employed to produce active
force feedback on the surface and in the space above. This concept, called
FingerFlux, enables a series of applications, including a priori feedback,
input correction, user guidance, or moderate physical constraints when in-
teracting with on-screen controls.

6.1 Haptic Feedback on and Above Surfaces

There is a large body of research that addresses the improvement of haptic
feedback on interactive surfaces and devices. Most of them can be assigned

Publications
Part of the work in this chapter was published as short paper at the UIST ’11 conference [Weiss et al., 2011b].

It was also presented as demonstration at this conference.

186 6 Beyond Tangibles: FingerFlux

to one of three categories. Contact-based feedback generates a haptic sen-
sation directly on the surface when the user touches it. Mediator-based
feedback transfers surface information via a physical object. Non-equipped
3D feedback generates haptic feedback in the 3D space above the surface
without any equipment worn by the user.

6.1.1 Contact-Based Feedback

Contact-based

methods create

feedback in the

moment of finger

contact.

Common example:

Vibration feedback

when touching

mobile screen.

Contact-based feedback is common in mobile devices. An integrated actu-
ator lets the entire device vibrate if certain events occur, such as button
clicks. Examples for those actuators are unbalanced motors rotating ec-
centrically weighted shafts or piezo-based bending motors [Poupyrev et al.,
2002]. Different tactile sensations can be produced by varying frequency
and amplitude of the actuator signals. For example, Fukumoto and Sug-
imura [2001] propose to create a “click” feedback after a user has tapped
the screen by a single vibration pulse or short burst. Watanabe and Fukui
[1995] use ultrasonic vibrations in the order of micrometers to convert a
rough surface into one that feels smooth. As the entire device vibrates,
those approaches are usually limited to small devices and single-touch in-
teraction.

Pin arrays with

vibration and

thermal feedback

Yang et al. [2006] introduced a tactile display containing a 6× 5 pin-array
of piezoelectric bimorphs. In addition to multi-point vibration and micro
shape feedback, a thermoelectric heat pump in combination with a water
cooling mechanism also provides dynamic thermal feedback.

Electrocutaenous

displays directly

stimulate nerves in

skin.

Electrocutaenous displays, such as SmartTouch [Kajimoto et al., 2003], di-
rectly stimulate nerves in the skin by applying small current pulses (1-3 mA
for 0.2 ms). A matrix of 4 × 4 electrodes embedded into a small tactile
display exerts currents though the finger as soon as it is placed over the
surface.

Electrostatic

feedback applies

forces that create

vibration sensation

at finger.

A less intrusive method is electrostatic feedback. Tang and Beebe [1998]
developed an array of 7×7 electrodes on a wafer. By applying a high voltage
between wafer and electrodes, an electric field between a finger’s skin and
the electrode forms. This field creates an electrostatic force that alternately
attracts and repels the finger and, thereby, creates a sensation of texture
when the user slides on the surface. TeslaTouch employs a transparent
electrode layer beneath an insulating layer [Bau et al., 2010].Electrovibration

feedback allows to

simulate different

kinds of surface

friction but works

only if finger slides.

It creates
electrovibration feedback by applying a periodic electrical signal to the
electrode. This gives rise to a periodic attractive force to a sliding finger,
which is perceived as vibration or friction. TeslaTouch provides subtle
haptic feedback and allows users to differentiate between various virtual
textures using their haptic sense. Unlike most other approaches, it can also
be used on large surfaces. However, a drawback of this method is that it
only provides feedback for fingers that slide on the surface. Also, different
feedback at multiple points, e.g., for different fingers, cannot be created.

6.1 Haptic Feedback on and Above Surfaces 187

S S S S S S

N N N N N N

Figure 6.1: Principle of MudPad. Left: By default, particles float freely
within the magnetorheologic fluid (low viscosity). The surface feels soft.
Right: If a homogenous magnetic field is applied, the particles arrange
along the flux lines (high viscosity). The surface becomes stiff. Image
courtesy of Jansen et al. [2010].

MudPad changes

viscosity of surface

by aligning iron

particles in surface

pouch using

electromagnets.

MudPad by Jansen et al. [2010] produces localized haptic feedback by modi-
fying the viscosity of the surface material. The surface consists of a pouch
filled with magnetorheologic fluid, a suspension of carrier fluid and carbonyl
iron particles. Like Madgets, an electromagnet array is placed beneath the
surface, whose electromagnets can be controlled individually. By default,
the surface is soft and can be pushed easily. If an electromagnet is acti-
vated, the particles in the fluid align along the magnetic flux lines; the fluid
becomes stiff (Fig. 6.1). According to Jansen et al., the stiffness of the sur-
face can be continuously varied from a viscosity like water to the stiffness
of “peanut butter”. Within the resolution of the array, MudPad allows to
create individual haptic feedback for multiple points on the surface.

Drawback of

contact-based

feedback:

Differentiation

between surface

palpation and action

trigger is difficult.

Contact-based feedback is suitable for many applications. Some of the tech-
niques can be easily integrated into existing devices without requiring any
equipment worn by the user. A common drawback of this method is that
it only produces a posteriori feedback; a haptic sensation is given after the
user has touched the surface. This can be problematic if touches trigger
actions, e.g., when users unintentionally pushbuttons. To distinguish be-
tween a user “palpating the interface” and “triggering an input”, techniques
like modes or time-based interface are required that increase cognitive load
and potentially give rise to input errors.

6.1.2 Mediator-Based Feedback

Mediator-based

feedback

communicates

haptic feedback via

a physical object

operated by the

user.

Mediator-based feedback is produced via a physical object that the user
holds or that is mounted on the user’s hand. The object is tracked and
generates haptic feedback depending on its current position.

The Haptic Tabletop Puck by Marquardt et al. [2009] is a tangible block for
interactive tabletops (Fig. 6.2). The user can drag this device across the
table and feel the haptic feedback it produces. A camera in the table tracks

188 6 Beyond Tangibles: FingerFlux

Figure 6.2: The Haptic Tabletop Puck is a tangible that mediates virtual information from
the surface via haptic feedback to the user’s hand. Image courtesy of Marquardt et al. [2009].

actuator

optical
sensor

circuit board with
microcontroller

projector
frustum

light zone A

light zone B

Figure 6.3: Principle of Senseable Rays. A projector emits time-
modulated spatial patterns in various light zones. The user wears a tethered
circuit board containing an optical sensor and an actuator. If the optical
sensor at the finger is held into one of the light zones, the circuit board
decodes the light pattern and triggers the actuator accordingly.

the position of the puck via its fiducial marker.Tangibles with

embedded actuators

can transfer spatial

information to the

user’s finger or

hand.

Two components provide
haptic feedback. A brake pad on the bottom can slow down dragging across
the tabletop. A rod on top of the tangible can dynamically adjust its height,
and acts as pressure sensitive pushbutton at the same time. Marquardt et
al. present a variety of applications. One example is the haptic exploration
of terrain displayed on the table: When moving the puck across the virtual
terrain, the rod’s height reflects the altitude, vibration patterns applied
to the rod represent temperature, while the type of terrain maps to the
strengths of the brake; a puck being moved across virtual mountains is
more “breaky” than on vegetation.

Mediators can also provide haptic feedback in the 3D space above the sur-
face. Senseable Rays by Rekimoto [2009] is a combined tracking and actua-
tion device worn at the index finger (Fig. 6.3). A projector above a surface

6.1 Haptic Feedback on and Above Surfaces 189

renders time-modulated light patterns to encode different volumes above
the surface. If the user places his index finger into one of these volumes,
a photo-detector senses the specific light pattern and triggers the actuator
at the finger accordingly. This setup is rather simple and does not require
an external tracking detector, albeit the external projector is part of the
tracking.

3D force feedback

devices, as used in

Virtual Reality, are

very accurate but

indirect and

stationary.

The PHANTOM device, which was mentioned in the previous chapter,
can be considered as a mediator-based feedback device that produces ac-
curate 3D force feedback. An alternative is the Magnetic Levitation Haptic
Device1. It consists of a handle that can be levitated in six degrees of free-
dom using a set of permanent magnets and electromagnets. This device
allows for 6DOF control in virtual reality scenes and has also been used
to synthesize textures [Unger et al., 2008; Grieve et al., 2009]. However,
the stationary design and the indirect manipulation limits the use of both
devices on interactive tabletops.

Exosceletons are

helpful to guide the

user’s hand or arm,

but they are

intrusive and require

difficult setup.

Exosceletons attached to the user’s hand or the entire arm [Bergamasco
et al., 1994; Wusheng and Tianmiao, 2003] can provide elaborate force
feedback while interacting in 3D space above the surface. Users can feel
virtual objects and obstacles in the scene. While providing rich feedback,
these methods require much setup time, which limits their use in ad hoc
scenarios. Also, these technologies are tethered and heavy. A recent tech-
nique employs electrodes to directly stimulate and control muscles in the
user’s hand [Tamaki et al., 2011]. A goal of this project is to teach manual
tasks, such as learning a musical instrument. However, besides the diffi-
cult setup, this technique is very intrusive, which might impair the user
experience.

Mediator-based

feedback is localized

and scales well, but

ad hoc use on

tabletops is often

limited.

The major benefit of mediator-based feedback is that it provides localized
haptic feedback through a single device. As long as the actuating device
is tracked, it is independent of the size of the surface or space it is used
for. Thus, those techniques scale well and, unlike contact-based feedback,
they allow 3D and a priori feedback in the context of tabletops. The down-
side is the requirement to wear equipment, which limits “walk-up-and-use”
scenarios. Also, the actuating devices require motors, cables, and further
hardware that make them heavy, less robust, and intrusive.

6.1.3 Non-Equipped 3D Feedback

3D feedback

without equipment

worn by the user is

still an unsolved

issue.

The research on systems that produce 3D feedback without any equipment
worn by the user is still in its infancy. One potential approach uses an array
of air jets nozzles that can be activated individually to create a resisting
force at a 3D position above the surface [Suzuki and Kobayashi, 2005].
However, the system currently requires the user to hold a scoop-like “air
receiver” to gather an air stream to perceive its force. One reason might be

1http://butterflyhaptics.com/

http://butterflyhaptics.com/

190 6 Beyond Tangibles: FingerFlux

Figure 6.4: Concept behind FingerFlux. Electromagnetic fields reach well
beyond the surface and apply forces to a permanent magnet that is attached
to the user’s finger. The permanent magnet passes these forces to the skin
where they induce a haptic sensation. The table’s backlighting and LCD
display have been removed in this photo for illustration purposes.

that the jets considerably diffuse with increasing distance from the surface.
Also, the authors state that the system is rather noisy.

Arrays of air-jets or

ultrasound emitters

can create localized

feedback in 3D, but

use on touch-based

surfaces is difficult.

Hoshi et al. [2010] use an array of ultrasound emitters to create unrestricted
tactile feedback in the air. The method bases on a principle called acoustic
radiation pressure. The phase and intensity of every emitter can be con-
trolled individually. By overlaying the ultrasound waves, a focal point in
3D space is generated. This point contains a higher air pressure that can
be felt by the user.

Both systems provide promising alternatives to mediator-based feedback
methods. However, integrating air-jet nozzles and ultrasound emitters into
interactive surfaces is difficult.

6.2 Near-Surface Haptic Feedback Using
Electromagnetic Fields

FingerFlux creates

haptic sensation by

applying magnetic

fields to permanent

magnet at user’s

finger.

FingerFlux is a novel haptic output method that provides haptic feedback
above the surface. It combines electromagnetic actuation with a permanent
magnet attached to the user’s fingertip (Fig. 6.4). We leverage the fact that
synthesized electromagnetic fields reach well beyond the surface. Using
these fields, we can influence the permanent magnet that is connected to
the finger’s skin. Electromagnetic forces applied to the permanent magnet

6.3 Applications 191

are directly passed to the finger and create a haptic sensation. An attract-
ing field drags the finger towards the electromagnet beneath the surface, a
repelling one pushes it away. This is a unique feature, because most other
haptic feedback methods only provide either vibration feedback or repelling
forces. The ability to attract a finger opens a design space for new applica-
tions, as will be explained later in the chapter. Although FingerFlux uses
a permanent magnet as force mediator, it is relatively unobtrusive, because
it does not require the user to wear heavy parts or active electronics.

Haptic feedback

bases on

composition of

attractive and

repelling forces.

These two forces, attraction and repulsion, represent building blocks for
more complex feedback in the area near the surface. For example, quickly
flipping the polarization of an active electromagnet causes a proximate fin-
ger to be alternately repelled and attracted with high frequency, creating
a vibration feedback. As mentioned in previous chapters, electromagnetic
forces strongly attenuate depending on distance, and they are the strongest
when users place the finger directly on the surface. FingerFlux creates

2.5D mediator-based

haptic feedback.

Yet, our user stud-
ies will reveal that haptic feedback is perceivable up to 35 mm above the
surface. Therefore, FingerFlux can be considered as 2.5D mediator-based
haptic feedback.

FingerFlux uses

Madgets Table as

infrastructure.

For our initial prototype and user studies, we employed the Madgets Table
that was described in chapter 4. We later developed a smaller, more com-
pact version of the setup (section 6.5). The electromagnets contain iron
cores and are powered at 40 V DC and 255 mA. We taped two cylindric
neodymium permanent magnets (� 10 mm, height 2 mm) to the user’s
finger. We used elastic insulation tape, because it provided a higher haptic
sensation than rigid tapes. We followed our convention by making sure that
the magnets’ negative pole always faced downwards to the surface. Note
that the two magnets could also be replaced with a single stronger one.

6.3 Applications

FingerFlux provides haptic feedback and supports eyes-free interactions
while interacting with touch-screens. Beyond the benefits of contact-based
haptic feedback, our technique enables two novel concepts: feeling the inter-
face before touching the surface and directional feedback. We will describe
these in the following.

6.3.1 Feeling the Interface

Electromagnetic fields reach beyond the surface and can be used to render
a haptic representation of the interface in the area above the surface.

192 6 Beyond Tangibles: FingerFlux

6.3.1.1 A Priori Feedback

FingerFlux lets users

feel the surface

before touching it.

FingerFlux can let users feel elements of an interface before they (involun-
tarily) initiate an action. This does not just allow for eyes-free interaction
but also supports visually impaired people that could otherwise not use the
interface.

A single electromagnet exerting a moderate repelling force could create a
“haptic bump” on a virtual button. Stronger repelling fields could aug-
ment controls that are inactive and “grayed out”. Those controls would
push approximating index fingers away, indicating that they are not avail-
able. Vibration feedback, synthesized by electromagnets with quickly flip-
ping polarization, could accentuate buttons that trigger a critical conse-
quence. For example, if a user accidentally approaches a button labeled
with “Discard changes” without looking, the vibration feedback could avoid
an unintentional loss of data. Also, vibration patterns are imaginable that
communicate button labels to blind users, maybe using a simplified ver-
sion of morse code. Finally, FingerFlux could be used as a private output
channel, making certain interface elements only sensible for users carrying
permanent magnets.

6.3.1.2 Rendering Objects

Simple lines and

shapes can be

rendered above the

surface.

FingerFlux also allows designers to render lines and simple shapes by ar-
ranging repelling electromagnetic fields in a certain form. This could make
objects on touch screens perceivable for visually impaired users. Assum-
ing a high density of electromagnets, rendering geographic information like
street maps is also imaginable. In this case, streets would be modeled
using attracting fields, while other objects would exert repelling forces. Us-
ing various strengths for different electromagnets could finally be used to
generate 2.5D objects. Note that, due to the nature of magnetic fields,
FingerFlux only provides “elastic” feedback and cannot create height maps
or sharp features.

6.3.2 Directional Feedback

Attracting

electromagnets

provide directional

feedback.

Most haptic feedback techniques on touch screens provide binary feedback:
If a user touches a screen at a certain position, a haptic sensation occurs,
otherwise not. Contrariwise, the lessons learned from actuating tangibles
(chapter 4 and 5) allow us to generate directional feedback: We can attract
the finger to a certain position, drag it into a direction, or constrain a user’s
movement.

6.3 Applications 193

– – – – – – – –
– – + – – + –
– – – – – – –

–
–

Figure 6.5: Actuation concept to reduce drifting at two on-screen buttons.
Users are attracted to the buttons’ centers and repelled from the immediate
surrounding areas.

6.3.2.1 Reduce Drifting

Attracting finger to

positions of

on-screen buttons

can reduce drifting

during eyes-free

operation.

A common issue when interacting with touch screens in an eyes-free man-
ner is drifting [Brown et al., 2003]. When pushing on-screen buttons on a
touch screen without looking, fingers gradually drift over time. Without
visual contact, input becomes error-prone. Although there exist techniques
to deal with uncertain input if users press in between two buttons (e.g.,
[Schwarz et al., 2010]), these techniques only work if drifting does not accu-
mulate too much. Thus, touch screens require visual attention. However,
in some situations, eye contact with the interface is not always available or
represents a security issues, e.g., when driving a car [Bjelland et al., 2007].
This in one reason why operating touch-screens while driving is prohibited
in many countries.

FingerFlux can reduce drifting when operating on-screen buttons without
looking. Instead of creating a haptic bump, an attracting electromagnetic
field can drag the user’s finger towards a button’s center every time he ap-
proaches it. Repelling fields around the button increase this effect. This
actuation concept is illustrated in Fig. 6.5. It compensates input errors at
every button press so that they do not accumulate over time. Thereby, the
need for visual attention is effectively reduced. Feedforward: Input

is corrected before it

happens.

The method generates feed-
forward by correcting input errors before they happen. We will investigate
this feature in detail in our user study in section 6.4.2.

The same technique can be applied to create a snap-to-grid function on
tabletops. By creating attracting magnetic fields beneath certain grid
points, a user’s finger snaps to these positions when approaching them.

194 6 Beyond Tangibles: FingerFlux

– +
– +
– +

—
+

+– – +

attraction

repulsion

a)

b)

c)

+–

+–

+–

Figure 6.6: Actuation concept for guiding user to the right. a) Side view.
b) Illustration of force wave created by actuation gradient. c) Actuation
scheme as seen from top. Dashed circle denotes position of finger.

6.3.2.2 Guiding the User

Madgets actuation

concepts allow to

guide user’s finger

across surface.

The same actuation concept for moving a tangible across the surface can
be applied to drag a user’s finger into a certain direction when it hovers
above the surface. This can be helpful to teach gestures or to guide blind
users to certain points on a touch screen.

Fig. 6.6 shows a gradient actuation pattern to guide a finger to the right.
The magnet beneath the finger creates a moderate repelling force to lift it
from the surface. Strong attracting fields to the right drag the finger into
the desired direction, while strong repelling fields from the left pushes it
away from the opposite one. Rotating this pattern by 90 degrees provides
guiding schemes for up, left, and down direction, respectively.

6.4 User Studies 195

– – – – – – – –
– + + + + + +
– – – – – – –

–
–

Figure 6.7: Actuation concept of slider with moderate constraint. Drag-
ging within slider area is easy, while leaving it lets users push against re-
pelling forces.

6.3.2.3 Moderate Physical Constraints

Aligned attracting

electromagnets

surrounded by

repelling ones create

moderate physical

constraints.

We can generalize the aforementioned actuation scheme for buttons to syn-
thesize moderate physical constraints on the surface. Fig. 6.7 illustrates
an actuation scheme beneath an on-screen slider. Attracting fields in the
slider area and repelling fields around it make it easy to drag the virtual
handle in horizontal direction, but dragging vertically or leaving the slider
range requires more force. As electromagnets can be reconfigured on the fly,
the slider size can be adapted dynamically. Dynamic notches as described
in section 5.2.4 can be generated with stronger attracting fields at notch
positions.

6.4 User Studies

We conducted two user studies to learn to which extent FingerFlux can pro-
vide haptic feedback in the area above the surface, and to explore whether
our technique is suitable to correct input a priori, i.e., before the user
touches the surface.

6.4.1 Height

Test: Up to what

height can users

perceive haptic

feedback?

In our first study, we intended to determine the maximum distance above
the surface at which users can reliably perceive haptic feedback. We chose
vibration as feedback technique, because pilot studies revealed that it pro-
duces a stronger sensation than constant forces. Alternating repelling and
attracting forces created the largest possible force amplitude that the sys-
tem can create.

196 6 Beyond Tangibles: FingerFlux

Figure 6.8: Experimental setup of height user study. Image adopted from
[Weiss et al., 2011b].

6.4.1.1 Test Setup

Our test setup is shown in Fig. 6.8. A participant placed his finger in
an acrylic box that was open to the top and towards the user. The box
contained a stack of acrylic plates. During the test, the stack supported
the finger in a way that the fingertip was exactly held above an active
electromagnet. We controlled the distance of the fingertip to the surface
with the number of plates in the stack. Each acrylic plate amounted to a
thickness of 3 mm while the bottom plate of the box was 5 mm thick.

6.4.1.2 Procedure

Task: Report

whether or not

haptic stimulus was

given within a time

interval.

Participants used our above mentioned prototype consisting of two cylin-
dric neodymium magnets taped to the index finger. In each trial, a test
subject placed his finger above an electromagnet. Then, he heard two beep
sounds. Between these two sounds, the system randomly chose among two
conditions:

•Independent variable

is the presence or

absence of vibration

stimulus.

Condition “No Haptic Feedback”: No stimulus was created. The elec-
tromagnet beneath the fingertip remained inactive.

• Condition “Vibration Feedback”: Stimulus was presented. The elec-
tromagnet beneath the finger created vibration feedback by quickly
alternating polarization with 10 Hz at full power.

When the participant heard the second beep, he reported whether or not
he had felt the stimulus. The instructor entered the answer into the soft-
ware and started the next trial. In the beginning of the test, the distance
between fingertip and surface amounted to 20 mm. After every ten trials,
the distance was increased by placing another 3 mm plate on the stack.

6.4 User Studies 197

The test ended after ten trials at a height of 65 mm. Thus, in total, a
participant performed 160 trials (16 height steps × 10 trials).

Double-blind test

design

The test was double-blind. Neither the participant nor the instructor could
see or hear whether a stimulus was presented. The latter is crucial because
active electromagnets produce subtle sounds. To avoid the presence of
sound as a confounding variable, we activated a distant electromagnet in
the “No Haptic Feedback” condition. It was too far away from the fingertip
to create a noticeable haptic sensation but generated the same sound as
the magnet in the “Vibration Feedback” condition. Note that the volume
of the sound was so quiet that its position could not be determined. Also,
the power consumption, which is displayed to the instructor on the power
supply, was equal in both conditions. The software logged the participants’
reports and automatically checked the correctness of the answers without
presenting them to the instructor during the test.

We define the maximum height that can be reliably sensed as the maximum
height at which all participants give 10 correct answers. Note that the
probability for guessing the right result of all trials for a given height is
only about 0.1%2.

6.4.1.3 Participants

We tested eight participants between 23 and 28 years old (M = 25.6,
SD = 2.10). One participant was female. All subjects were right-handed
but one.

6.4.1.4 Results

Vibration feedback

was reliably sensed

up to 35 mm above

surface.

Fig. 6.9 shows our results. All participants were able to reliably detect the
presence or absence of vibration feedback up to 35 mm above the surface.
Participant 6 even differentiated signals up to 65 mm.

6.4.1.5 Discussion

Perceivable volume

above surface large

enough to design

haptic feedback for

hovering fingers.

Our results show that FingerFlux can produce haptic feedback in a useful
volume above the surface. The volume is large enough to use electromag-
netic actuation as an haptic output channel for users hovering their fingers
above the interface. However, due to the strong attenuation of electro-
magnetic forces depending on distance, smaller spaces between finger and
surface should be preferred if strong feedback is desired.

Result is

system-specific.

We tested a specific prototype for a proof of concept. Other systems would
probably yield a different volume size. The intensity of the feedback and

2 1
2

10
= 0.0009765625 ≈ 0.1%.

198 6 Beyond Tangibles: FingerFlux

User ID

0

10

20

30

40

50

60

70

5

15

25

35

45

55

65

D
is

ta
n

ce
to

su
rf

ac
e

[m
m

]

1 2 3 4 5 6 7 8

Figure 6.9: Results of height user study. The bars indicate the surface dis-
tances up to which each participant did not make any recognition mistakes.
Modified image from [Weiss et al., 2011b].

the maximum perceivable height depend on many hardware-specific para-
meters, such as the configuration of the electromagnets, the applied voltage,
the quality and size of the permanent magnets as well as the current tem-
perature of the active electromagnets.Inter-individual

differences apply.

Beyond that, our results suggest that
there exist inter-individual differences between users regarding the ability
to feel haptic sensations.

6.4.2 Reduce Drifting

Test: Can

FingerFlux reduce

drifting when

operating on-screen

buttons?

In the second user study, we investigated our claim that FingerFlux can
correct input errors a priori by applying directional forces. We tested if
electromagnetic attraction can reduce drifting when operating on-screen
buttons eyes-free.

6.4.2.1 Test Setup

Again, participants wore our prototype consisting of two combined perma-
nent magnets on the index finger of the dominant hand. During the test,
the participant was standing in front of the table. Two circular buttons
with a diameter of 25 mm were displayed on the surface. They were hor-
izontally arranged with a distance of 40 mm, which equals a gap of two
electromagnets. The buttons were drawn as outline by default and filled
when the participant held them down by touching the surface within the
circle area.

6.4 User Studies 199

“pressed” contact
point “released”

Figure 6.10: Finger touch detection via Vicon tracking system. The 2D
contact point equals the projection of the lowest 3D position between the
hysteresis thresholds in the plane. tU and tL denote the upper and lower
threshold, respectively. Modified image from [Weiss et al., 2011b].

We tracked fingers

using Vicon system.

We used a Vicon optical tracking system for precise tracking of the fin-
ger position. IR cameras around the table captured the 3D position of a
retroreflective marker attached to the top of the user’s fingertip. The 3D
position was measured in millimeter and in local coordinates of the table:
The front left corner of the surface determined the origin, the long and
short edge the x- and y-axis, respectively. The z-axis equaled the normal
vector of the surface. A one time calibration process was required to define
this local coordinate system.

We derived button push events from the 3D trajectories as shown in
Fig. 6.10: When the Vicon marker on the finger was closer than tL =
15 mm to the surface, a virtual button was considered as “pressed”. When
moving it beyond a height of tU = 17 mm, the button was “released”. We
derived theses thresholds from a pilot study. This hysteresis thresholding
avoided repetitive button presses due to sensor noise. The contact point was
the projection of the closest position to the surface (lowest z-coordinate)
into the x-y plane during the period in which the button was “pressed”
(Fig. 6.10).

6.4.2.2 Procedure

Task: Alternately

press left and right

button as precise as

possible without

looking.

The participants’ task was to alternately press the left and the right
on-screen button as precisely as possible without looking at the surface
(Fig. 6.11). Participants were not allowed to rest the hands on the surface
during our measurements. We tested two different conditions (independent
variable):

200 6 Beyond Tangibles: FingerFlux

Figure 6.11: Experimental setup of drifting user study.

•Independent

variable: Presence

or absence of forces

attracting to

buttons.

Condition “Non-Haptic”: No haptic feedback is created. The electro-
magnet array is deactivated.

• Condition “Active Feedback”: The electromagnets beneath the but-
tons create attracting force, while the surrounding ones create re-
pelling ones. Thereby, a finger nearing the button is attracted to its
center.

Within-subject test

design,

counter-balanced

conditions

Participants executed both conditions in a single test while we counter-
balanced the order to prevent learning effects. In the beginning of each
condition, all test subjects conducted a training phase where they could
push the buttons while looking at them. After the initial instructions,
participants were aware that the measured trials were conducted eyes-free.
Thus, they could memorize the buttons’ position during the training phase.

In each condition, participants conducted 15 visual training presses, fol-
lowed by 45 measured presses with closed eyes. Participants started and
ended with the left button. During the test, we logged the contact points
of all button pushes. A trial equaled a trigger of the left button, exclud-
ing the first one where the participants hovered the index finger above the
button. Thus, a test subject performed 7 training and 22 measured trials
per condition.

Dependent variable

is the cumulative

drift over time.

As dependent variable we measured the cumulative drift according to
Brown et al. [2003]: This value denotes the Euclidean distance between
the first contact point on the left button to the contact point of each suc-
cessive trial. According to Brown et al., the cumulative drift increases over
trial number if no visual feedback is given. We hypothesized that the active
feedback by FingerFlux could prevent cumulative drifting.

Note that the position of the Vicon marker might have slightly differed
among participants. However, this did not impair the results, because we
measured the drifting relative to the initial left button press.

6.4 User Studies 201

5 10 15 20

0
10

20
30

40

Trial number

C
um

ul
at

ive
 d

rif
t [

m
m

]
Non−Haptic
Active Feedback

Figure 6.12: Comparison of drifting between “Non-Haptic” and “Active
Feedback” condition. Plot shows inter-subject means of cumulative drift
in each measured trial. Error bars represent inter-subject standard error.
Image adopted from [Weiss et al., 2011b].

6.4.2.3 Participants

We tested 10 participants between 23 and 29 years old (M = 25.6,
SD = 2.17). Two participants were female. All users were right-handed.

6.4.2.4 Results

Absence of haptic

feedback yields

significant drifting.

No significant

drifting occurs when

feedback is

provided.

Fig. 6.12 shows the average cumulative drift of “Non-Haptic” condition
(plotted in bright red) versus the active feedback condition (plotted in
green). Our study confirms the results by Brown et al. [2003]: If no haptic
feedback is given, the participants’ cumulative drift significantly increases
over trials (F (1, 219) = 194.11, p < .001, r = 0.69). Yet, with active haptic
feedback, there is no significant drifting (F (1, 219) = 3.51, p = .062).

The result is confirmed when looking at the actual contact points of a sam-
ple user in Fig. 6.13. The arrows illustrate the order of trials. Apparently,
the contact points in the haptic condition (green) are clustered and move
into no particular direction. In the non-haptic condition, however, contact
points (red) gradually drift downwards.

202 6 Beyond Tangibles: FingerFlux

10 mmNon-Haptic Active Feedback

Figure 6.13: Contact points from a sample user in drifting study. Succes-
sive contacts are connected by arrows. Ellipses denote the 95% confidence
level contours of the normal-probability distributions. Modified image from
[Weiss et al., 2011b].

6.4.2.5 Discussion

FingerFlux can

reduce drifting when

operating on-screen

buttons eyes-free.

The results show that FingerFlux can significantly reduce drifting when
operating on-screen buttons eyes-free. As in the previous test, the strength
of the attraction is specific to our prototype and depends on the particular
hardware configuration and factors like the applied voltage and the choice
of permanent magnets.

Permanent magnet

on fingertip might

influence touch

performance.

Equipping the user with a permanent magnet can potentially impair the
touch precision, because it differs from the direct finger contact that is
common for interactive surfaces. This was not an issue in our study, because
participants wore the magnet in both conditions. The actual position of the
permanent magnet might also have an effect on the performance. According
to Holz and Baudisch [2011], users employ visual clues to derive a mental
model of where the contact point of a finger touch is. In our study, the
electromagnets attracted the finger to a distinct position which does not
necessarily match a participant’s mental model. This is not an issue in our
case, because the buttons were pressed eyes-free. However, in situations
where visual and haptic feedback is provided, the position of the permanent
magnet should be carefully chosen to avoid interferences between the user’s
visual and haptic model.

6.5 Future Design Concepts 203

a)
b)

c)
d)

Figure 6.14: Future FingerFlux design concepts. a) Glove with embedded
magnets. b) Magnet placed next to a finger tip, c) on top of a finger nail,
or d) on a stylus.

6.5 Future Design Concepts

For our FingerFlux prototype, we placed a permanent magnet beneath the
fingertip. While sufficient to prove our concept, a magnet between the
finger and the surface might reduce the tactile sensation at the finger tip,
especially when sensing touches or shearing forces while dragging. Yet, as
shown in Fig. 6.14, other designs are straightforward.

Permanent magnet

on top of fingernail

preserves natural

touch feedback but

lowers intensity of

electromagnetic

feedback.

Following Ando et al. [2007], the magnet can be placed on the fingernail
to superimpose the virtual haptic feedback to the real world feedback of
the surface (Fig. 6.14c). On the one hand, this would preserve the haptic
sensation at the finger when touching the surface. On the other hand,
the additional distance to the electromagnets would lower the maximum
force that can be applied. Beyond that, the skin beneath the finger is
considerably more sensitive than the fingernail. Magnetic nail polish could
be an alternative of the permanent magnets. It is less noticeable but would
presumably yield a smaller magnetic response.

Magnets can be

placed next to the

finger.

Placing two magnets next to the finger could be a compromise that provides
a strong response to magnetic forces without placing a magnet beneath the
finger tip (Fig. 6.14b). The magnets could be attached to a ring as shown

204 6 Beyond Tangibles: FingerFlux

in the Nenya project that uses magnets for input [Ashbrook et al., 2011]. In
this case, the actuation algorithm must regard that two magnets at different
positions must be controlled independently.

Magnets embedded

into a glove provide

multi-point feedback

but also attract

each other.

When designing FingerFlux, we first envisioned a glove with embedded
permanent magnets (Fig. 6.14a). Multiple magnets could provide haptic
feedback at different fingers and other locations on the palm. In general,
a glove is convenient, because it is quick and easy to don. However, an
inherent challenge when designing such a glove is that permanent magnets
attract each other. They have to be placed in a way that they do not
influence each other considerably. A glove with embedded magnets also
tends to collapse if it is doffed. Nevertheless, a glove represents a promising
design.

In body

modification scene,

permanent magnets

have been implanted

into fingers.

The idea of using permanent magnets to feel electromagnetic fields has al-
ready been realized in the body modification scene. Some users implanted
magnets into their fingers to gain a“sixth sense”. In several blog posts, users
appreciate the ability to raise ferromagnetic objects with a finger only or to
feel electromagnetic fields that are, e.g., emitted from a transformer. How-
ever, it is questionable if this will become a mainstream trend, especially
due to the potential health hazard (e.g., [Kruavit and Numhom, 2008]).

Magnets can also be

attached to stylus.

This requires

tracking of

orientation.

FingerFlux could also be used to enhance indirect input methods. Attached
to a stylus (Fig. 6.14d), a permanent magnet could, e.g., render a virtual
texture, which a user draws on, in a tactile way. Note though that a
stylus can be turned in three degrees of freedom. As the orientation of the
permanent magnet’s pole can vary significantly, this concept requires an
accurate tracking of the stylus’ orientation.

Implementation into

commercial system

is feasible.

The Madgets Table is too large to embed it into a conventional system like
a car’s touch screen. Yet, the implementation of FingerFlux in a commer-
cial system is technically just around the corner. In order to demonstrate
FingerFlux at the UIST 2011 conference, we developed a smaller compact
version of the electromagnetic array, as shown in Fig. 6.15. It contains 6×5
electromagnets and requires only a single driver board. Unlike the Madgets
Table, it uses manganese-zinc ferrite cores. Cooling is provided by placing
all electromagnets on a heat sink. Two attached fans dissipate the heat
away from the array. The prototype does not provide graphical output,
but a backlit LCD panel or a projector could be easily added. To ease
shipment, we used a single visual OptiTrack FLEX:V100 camera running
at 100 fps in 640 × 480 for tracking. It was mounted on a tripod above the
surface, facing downwards. The 3D position of the user’s permanent mag-
net was derived from the x and y coordinate and the radius of a reflected
marker on top of the fingertip.

6.6 Closing Remarks 205

Figure 6.15: New FingerFlux table prototype containing 6 × 5 electro-
magnets placed on a heat sink and cooled actively. Fingers are tracked
using an optical tracking system.

6.6 Closing Remarks

In this chapter, we presented FingerFlux, a haptic feedback method that
provides a physical sensation in the near space above an interactive sur-
face. It bases on electromagnetic actuation in combination with a minimal
equipment worn by the user, a permanent magnet attached to the user’s
finger. After discussing related work, we explained our design concepts
and potential applications. We presented two user studies that reveal that
FingerFlux works in a usable height above the surface, and that it can ef-
fectively reduce drifting when operating on-screen buttons without looking.
Finally, we illuminated and discussed future design concepts.

FingerFlux provides

active, a priori

feedback.

FingerFlux is one of the few haptic output methods that provide feedback
above the surface without mounting a complex device to the hand. Unlike
most contact-based feedback methods, which just inform the user about
a surface feature, FingerFlux provides active force feedback by employing
attracting and repelling directional forces. Users perceive haptic feedback
before they perform input.

206 6 Beyond Tangibles: FingerFlux

FingerFlux can be

helpful for tasks in

which visual

attention is

restricted.

FingerFlux can be helpful in situations where visual attention to a touch
screen is unavailable or risky. For example, Pitts et al. [2010] conducted a
study on users driving in a car simulator while operating a touch screen.
The results suggest that haptic feedback reduces the total time that users
spent looking at the screen during the test, while the effect is significant
if visual feedback is delayed or absent. We believe that FingerFlux could
further reduce this timespan and, thereby, increase the security for such
tasks. This should be investigated in a future study.

Equipment with a

permanent magnet

might reduce user

experience but is

worth the trouble.

The requirement to wear a permanent magnet might still be a limiting
factor in terms of user experience. For haptic interaction with the surface,
the magnet must be donned. Yet, this might be worth the trouble if it
means that visually impaired users can interact with touch screens who
would otherwise have to rely on audio output only. Apart from that, sighted
users can employ FingerFlux on demand only, e.g., if they have to focus on
a different task while operating a touch screen.

Interpolating

magnetic fields is

practicable

alternative to

maximizing array

resolution.

Our prototype only provides a limited resolution, albeit it is probably suf-
ficient for many button-based interfaces. The resolution can be increased
with smaller and longer electromagnets in the array while optimizing the
core and coil material. However, the resolution cannot be scaled down ar-
bitrarily, because there is a physical limitation for minimizing electromag-
nets. As aforementioned, interpolating forces from adjacent electromagnets
might be a more practical solution.

Robustness against

tilting requires

tracking of finger’s

orientation.

FingerFlux works best if the magnet is held in parallel to the table, i.e., if
the negative pole faces downwards and is orthogonal to the surface. Tilting
the finger more than 180 degrees inverses the applied force. However, we
did not notice such behavior at our users. To make the system absolutely
robust against tilting, the fingers’ orientation must be detected, and the
electromagnetic forces must be updated according to the magnet’s pole.

Depth cameras

could replace Vicon

tracking.

We used a Vicon system to track the finger in our user studies, which is
impractical for ad hoc use. Depth cameras like the Kinect could replace
the finger detection. While requiring a higher computer vision effort, no
markers would be required anymore. An alternative could be to track the
magnets directly, using the aforementioned sensor coils. Also, magnetome-
ters have been successfully applied to sense the position of magnets attached
to a finger [Harrison and Hudson, 2009a] or a ring [Ashbrook et al., 2011].
Again, the influence of the synthetic electromagnetic fields generated by
the array must be deducted for such a tracking method.

Differences in haptic

sensation among

users are crucial and

must be taken into

account.

We observed considerable individual differences among users in terms of
haptic perception. We demonstrated FingerFlux to over a hundred users
at the UIST 2011 conference. The feedback was mixed and ranged from
users who only felt vibration but no directional forces, to those who could
be easily guided in x and y direction. If multiple magnets are placed on
the hand, the varying receptor density in the skin also gives rise to a dif-
ferent sensitivity at every single position.No “one size fits all”

solution

Therefore, designers face inter-
and inner-individual differences, which makes a “one size fits all” feedback

6.6 Closing Remarks 207

solution inadequate. A preceding calibration method could solve this; as
we set our audio volume when listening to music, we could also adjust the
intensity of feedback when operating a FingerFlux device.

209

Chapter 7

Conclusion

Goal of the thesis:

Haptic

general-purpose

controls that

support efficient

input of abstract

parameters and text

on interactive

tabletops.

Interactive tabletops represent a promising alternative to conventional desk-
top computers, especially for collocated collaborative work: Multiple users
share the same workspace and perform a common task. Direct mani-
pulation and awareness of each other’s actions allow for natural interaction
with the system and between users working together. However, productiv-
ity applications are still a rare good on interactive tabletops. One reason
is the lack of controls that enable an efficient input of abstract parameters
and text while respecting the dynamic nature of the tabletop user interface.
In this thesis, we developed such controls and brought the haptic qualities
of conventional buttons, sliders, knobs, and keyboards to interactive table-
tops. In the following, we summarize our contributions and give an outlook
on future research.

7.1 Contributions

SLAP Widgets

enable precise,

eyes-free, ad hoc

input for

general-purpose

tasks.

We introduced SLAP Widgets, physical controls that can be paired with
virtual objects on interactive tabletops for precise, eyes-free input. They
allow to enter abstract parameters and to type texts, which enables their
use in productivity applications. The philosophy behind these controls is to
respect the nature of interactive tabletops. Two main aspects distinguish
our concept from conventional physical controls. First, SLAP Widgets are
passive, which implies that no cables or heavy components are embedded.
This makes them lightweight and untethered, a property that is crucial in
the context of dynamic tabletop applications, for which the composition
of the user interface and the number of users can change quickly. SLAP
Widgets can be placed on the table ad hoc, physically handed over to other
users, and removed as soon as they are not required anymore. Second, the
visual appearance of SLAP Widgets can be adjusted via the table’s back
projection, which makes them versatile and ensures scalability.

We presented a software framework for developing tabletop applications
that support direct manipulation of digital content and ad hoc use of SLAP

210 7 Conclusion

Widgets. It is designed in such a way that the underlying widget detection
and rendering processes are hidden from the application designer. Nev-
ertheless, the framework enables simple integration of new virtual objects
and physical controls.

Our user studies showed that SLAP Widgets can outperform on-screen
controls in terms of task completion time and precision, especially in tasks
where the control and the data that is manipulated are placed at different
locations. Our qualitative study revealed that the concept and handling
of our haptic general-purpose controls is easy to learn and intuitive. We
presented a study on typing that indicated that the SLAP Keyboard is a
potential alternative to an on-screen version. However, additional iterations
will be required to reach the haptic feedback and reliability of conventional
keyboards.

Madgets maintain

physical-virtual

consistency.

We developed Madgets to solve inconsistencies that can occur between the
physical and virtual state of a control, potentially breaking the illusion of
a coherent tangible. To the favor of designers of tabletop controls, we de-
signed Madgets in such a way that they keep all the advantages of SLAP
Widgets: passiveness, lightness, and a dynamic visual appearance. We in-
troduced a novel actuation algorithm that allows to move and transform
physical controls via dynamic electromagnetic fields. Furthermore, we pre-
sented a tracking algorithm based on fiber optics that senses objects and
fingers on the surface under low resolution camera input. We demonstrated
several novel applications of electromagnetic actuation that reach beyond
the maintenance of visual-physical consistency. Especially vertical actua-
tion is a powerful concept that has barely received attention in the field of
interactive tabletops.

Electromagnetic

actuation allows to

vary physical

properties in

controls.

We also showed how to simulate physical properties in haptic controls by
varying electromagnetic forces. Our measurements and proof of concept
studies indicated that we can reliably control perceived weight, friction,
spring resistance, and number of notches. Our techniques not only support
rapid prototyping of controls, they also enable dynamic physical properties,
which can be adjusted at run-time, as information and feedback channel.

FingerFlux provides

active, near-surface

haptic feedback.

Vertical actuation takes advantage of the effect that electromagnetic fields
reach well beyond the table’s surface. We employed this effect to extend
the haptic feedback channel to the space above the tabletop. We developed
FingerFlux, an output method that creates haptic feedback in the area
near the surface. Haptic sensations are created by exerting electromagnetic
fields on a permanent magnet that is attached the user’s finger. Our first
study showed that users can sense haptic feedback in a useful area near the
surface. In contrast to other haptic output methods, FingerFlux provides
active feedback that can guide the user. This was confirmed by our second
study. It revealed that FingerFlux can effectively reduce drifting when users
operate virtual buttons without looking. FingerFlux is especially useful for
small or non-horizontal touch screens, where the applicability of physical
controls is difficult.

7.2 Future Work 211

7.2 Future Work

This thesis provided the foundation for haptic general-purpose controls on
interactive tabletops. At the same time, it highlighted new opportunities for
further research.

General-purpose

controls could be

implemented on

tabletops with

different tracking

technologies.

Optical tracking was the predominant method for detecting fingers and
objects on interactive surfaces. A basic setup can be implemented with-
out the need for industrial manufacturing. The publication of FTIR to a
wide audience gave rise to a large community of tabletop researchers and
an flourishing do-it-yourself movement, which iterated and improved visual
tracking methods. During the development of our projects, new tracking
technologies evolved, and today’s non-optical methods are becoming afford-
able. It is likely that capacitive and resistive screens will play a greater role
in future tabletop systems, because they are thinner and less sensible to am-
bient lighting. Bringing the concept of SLAP Widgets to these devices is
clearly an interesting direction for future work. First projects have already
been published that track controls on touch screens with non-optical sens-
ing. Capacitive or resistive tracking could also replace the rather complex
fiber optical tracking of Madgets.

SLAP Widgets and

Madgets could be

brought to

non-horizontal

surfaces and mobile

devices.

SLAP Widgets and Madgets base on horizontal surfaces, relying on grav-
ity to keep them in place when not being used. Yet, other angles are
imaginable, e.g., placing general-purpose controls on vertical surfaces like
whiteboards. This is a challenging issue, because holding a control in place
becomes more difficult on non-horizontal surfaces. Actuating these controls
would require a novel mechanism. Another platform worth looking at are
touch-based smart phones and tablets that have received much interest in
recent years. General-purpose controls that are attached to these devices
can considerably enhance the user experience.

Pure addition of

haptic feedback

does not necessarily

increase usability.

Further iterations

are required,

involving an

interdisciplinary

team.

An important lesson we learned from developing SLAP Widget prototypes
is that the pure addition of haptic feedback does not imply an increase in
effectiveness. This especially mattered for the SLAP Keyboard. Although
all keys of the rigid version provided a clear pressure point and mimicked
the behavior of keys of a conventional keyboard, their haptic feedback did
not yield better results than a pure on-screen version. As all other widgets,
the keyboards ran through many iterations until their haptic experience
was satisfying. However, further prototypes will be required to reach the
quality of a conventional keyboard. This will necessitate an industrial man-
ufacturing process and an interdisciplinary team of researchers, designers,
and engineers.

Further potential for

electromagnetism in

interface design

The unique property of electromagnetic actuation is the ability to influence
objects over a distance in a calm, unobtrusive way. In this thesis, we demon-
strated various applications of this technology. Yet, we believe that there is
still unexplored potential to exploit electromagnetism in interaction design.
For example, a recent project uses an array of electromagnets to arrange
rheologic fluid on a surface to create “programmable blobs” [Wakita et al.,

212 7 Conclusion

2011]. It is imaginable that, some day, electromagnetic actuation could be
used to assemble complex 3D interfaces.

Area of conflict

between actuation

and user control is

an interesting

research direction.

Madgets maintain consistency and enable new actuation dimensions. How-
ever, our preliminary studies indicate that the need for actuation and the
users’ desire to have control over the UI result in a conflict. For example,
the predictability of actuation plays an important role for the user experi-
ence. In collaborative scenarios where physical widgets are shared, conflicts
are likely occur. Finding rules to overcome these and deriving guidelines to
let users feel in control while providing a consistent UI is an exciting and
important future research direction.

Investigation of

inter-individual

differences in haptic

perception could

improve sensations

created by

FingerFlux.

FingerFlux is a suitable method to provide haptic feedback above the sur-
face with a minimal equipment worn by the user. However, the demon-
stration of FingerFlux to a wide audience showed us how strongly inter-
individual differences influence the haptic perception. In future work, these
differences should be investigated in more detail. The result could be a
one-time per-user calibration whose results could be incorporated into the
actuation algorithm. A further promising direction is the guidance of the
user’s finger across the surface. Refining this feature could significantly
help visually impaired users to interact with touch screens.

Development of

productivity

applications is

required for further

investigation of

general-purpose

controls.

On a higher level, productivity applications should be implemented and
tested on interactive tabletops. As conventional GUI applications cannot
just be migrated to tabletops, a design from scratch might be advisable that
involves tabletop experts, UI designers, and target users. A result of this
research could be concrete guidelines or design patterns for developing pro-
ductivity applications on tabletops. Our general-purpose controls should
be evaluated in the light of these applications, in long term studies and
under real-world conditions. Also, pairing techniques should be compared
in a controlled experiment.

Rapid prototyping

tool could improve

the creation of

general-purpose

controls.

Finally, it is worthwhile to take a closer look at the process of designing
general-purpose controls. The visualization and event logic of our wid-
gets are specified in the software. Alternatively, a rapid prototyping tool
could be developed that supports the creation and incorporation of SLAP
Widgets and Madgets without the need for writing programs. We also be-
lieve that the concept of using a Madget as a building block for composing
controls with more complex mechanics is a promising direction for future
work.

7.3 Closing Remarks

We presented a set of physical general-purpose controls, haptic feedback
methods, and interaction concepts that enable precise and eyes-free in-
put on interactive tabletops. Our haptic controls are especially useful for
entering abstract parameters and text, which is crucial in productivity ap-
plications. Nevertheless, our techniques can be combined with other input

7.3 Closing Remarks 213

methods. SLAP Widgets and

Madgets can coexist

with other

techniques.

There might be situations when tapping an on-screen button
might be faster than grabbing a SLAP Keypad, pairing it and pushing the
key. SLAP Widgets and Madgets are designed in a way that they can co-
exist with other interaction concepts. They are especially suitable for tasks
that require precise, eyes-free input in an ad hoc workspace.

Improved

implementations

with smaller form

factors are just

around the corner.

During the development of all systems, we faced many engineering chal-
lenges and there is a great potential for further iterations and improve-
ments. In the recent decades, interactive tabletops were part of a very
agile and dynamic research movement that was and still is producing many
novel technologies. It is likely that concepts like SLAP Widgets, Madgets,
or FingerFlux can soon be realized with smaller form factors and improved
technology.

We hope that this thesis will be an inspiration for other researchers who
intend to create interactive surfaces that bridge the gap between the digital
and the physical world, between dynamic graphical user interfaces that
encourage a natural, collaborative interaction and devices that allow users
to employ their full spectrum of haptic abilities.

215

Bibliography

M. Abednego, J. Lee, W. Moon, and J. Park. I-Grabber: expanding phy-
sical reach in a large-display tabletop environment through the use of a
virtual grabber. In ITS ’09: Proceedings of ACM International Confer-
ence on Interactive Tabletops and Surfaces, pages 61–64, 2009.

C. Alexander, S. Ishikawa, and M. Silverstein. A pattern language: towns,
buildings, construction. Oxford University Press, 1977.

H. Ando, J. Watanabe, M. Inami, M. Sugimito, and T. Maeda. A fingernail-
mounted tactile display for augmented reality systems. Electronics and
Communications in Japan (Part II: Electronics), 90(4):56–65, 2007.

A. N. Antle, A. Bevans, J. Tanenbaum, K. Seaborn, and S. Wang. Futura:
design for collaborative learning and game play on a multi-touch digital
tabletop. In TEI ’11: Proceedings of the fifth international conference
on Tangible, embedded, and embodied interaction, pages 93–100. ACM,
2011.

D. Ashbrook, P. Baudisch, and S. White. Nenya: subtle and eyes-free
mobile input with a magnetically-tracked finger ring. In CHI ’11: Pro-
ceedings of the 2011 annual conference on Human factors in computing
systems, pages 2043–2046. ACM, 2011.

R. M. Baecker, J. Grudin, W. A. S. Buxton, and S. Greenberg. Readings
in Human-Computer Interaction: toward the year 2000, second edition.
Morgan Kaufmann Publishers Inc., 2nd edition, 1995.

J. Barrett and H. Krueger. Performance effects of reduced proprioceptive
feedback on touch typists and casual users in a typing task. Behaviour
& Information Technology, 13(6):373–381, 1994.

O. Bau, I. Poupyrev, A. Israr, and C. Harrison. TeslaTouch: electrovibra-
tion for touch surfaces. In UIST ’10: Proceedings of the 23nd annual
ACM symposium on User interface software and technology, pages 283–
292. ACM, 2010.

P. Baudisch, T. Becker, and F. Rudeck. Lumino: tangible blocks for table-
top computers based on glass fiber bundles. In CHI ’10: Proceedings of
the 28th international conference on Human factors in computing sys-
tems, pages 1165–1174. ACM, 2010.

J. S. Beeteson. Visualising magnetic fields: numerical equation solvers in
action. Academic Press, Inc., 2001.

216 Bibliography

H. Benko and D. Wigdor. Imprecision, inaccuracy, and frustration: the tale
of touch input. In Tabletops - Horizontal Interactive Displays, Human-
Computer Interaction Series, pages 249–275. Springer London, 2010.

H. Benko, A. D. Wilson, and R. Balakrishnan. Sphere: multi-touch interac-
tions on a spherical display. In UIST ’08: Proceedings of the 21th annual
ACM symposium on User interface software and technology, pages 77–86.
ACM, 2008.

M. Bergamasco, B. Allotta, L. Bosio, L. Ferretti, G. Parrini, G. Prisco,
F. Salsedo, and G. Sartini. An arm exoskeleton system for teleoperation
and virtual environments applications. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, 1994, pages 1449–
1454. IEEE, 1994.

X. Bi, T. Grossman, J. Matejka, and G. Fitzmaurice. Magic desk: bringing
multi-touch surfaces into desktop work. In CHI ’11: Proceedings of the
2011 annual conference on Human factors in computing systems, pages
2511–2520. ACM, 2011.

C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., 2006.

H. V. Bjelland, T. Hoff, C. A. Bjørkli, and K. I. Overgard. A case study of
a touch based interface for in-car audio systems. Design Journal, 10(1):
24–34, 2007.

F. Block, M. Haller, H. Gellersen, C. Gutwin, and M. Billinghurst.
VoodooSketch: extending interactive surfaces with adaptable interface
palettes. In TEI ’08: Proceedings of the 2nd international conference on
Tangible and embedded interaction, pages 55–58. ACM, 2008.

F. Block, H. Gellersen, and N. Villar. Touch-display keyboards: transform-
ing keyboards into interactive surfaces. In CHI ’10: Proceedings of the
28th international conference on Human factors in computing systems,
pages 1145–1154. ACM, 2010.

J. Borchers. A pattern approach to interaction design. John Wiley & Sons,
Inc., 2001.

S. Brave, H. Ishii, and A. Dahley. Tangible interfaces for remote collab-
oration and communication. In CSCW ’98: Proceedings of the 1998
ACM conference on Computer supported cooperative work, pages 169–
178. ACM, 1998.

L. E. Brown, D. A. Rosenbaum, and R. L. Sainburg. Limb position drift:
implications for control of posture and movement. Journal of Neurophys-
iology, 90(5):3105–3118, 2003.

W. Buxton and R. Sniderman. Iteration in the design of the human-
computer interface. In Proceedings of the 13th Annual Meeting, Human
Factors Association of Canada, pages 72–81, 1980.

Bibliography 217

X. Cao, A. D. Wilson, R. Balakrishnan, K. Hinckley, and S. E. Hud-
son. ShapeTouch: leveraging contact shape on interactive surfaces. In
TABLETOP ’08: 3rd IEEE International Workshop on Horizontal In-
teractive Human Computer Systems, pages 129–136. IEEE, 2008.

L. Chan, S. Müller, A. Roudaut, and P. Baudisch. CapStones and Zebra-
Widgets: sensing stacks of building blocks, dials and sliders on capacitive
touch screens. In CHI ’12: Proceedings of the 30th international confer-
ence on Human factors in computing systems, pages 2189—2192. ACM,
2012.

P. H. Dietz and B. D. Eidelson. SurfaceWare: dynamic tagging for microsoft
surface. In TEI ’09: Proceedings of the 3rd International Conference on
Tangible and Embedded Interaction, pages 249–254. ACM, 2009.

P. Dragicevic and Y. Shi. Visualizing and manipulating automatic docu-
ment orientation methods using vector fields. In ITS ’09: Proceedings
of ACM International Conference on Interactive Tabletops and Surfaces,
pages 65–68. ACM, 2009.

F. Echtler, A. Dippon, M. Tönnis, and G. Klinker. Inverted FTIR: easy
multitouch sensing for flatscreens. In ITS ’09: Proceedings of ACM Inter-
national Conference on Interactive Tabletops and Surfaces, pages 29–32.
ACM, 2009.

R. Fiebrink, D. Morris, and M. R. Morris. Dynamic mapping of physical
controls for tabletop groupware. In CHI ’09: Proceedings of the 27th
international conference on Human factors in computing systems, pages
471–480. ACM, 2009.

L. Findlater, J. O. Wobbrock, and D. Wigdor. Typing on flat glass: ex-
amining ten-finger expert typing patterns on touch surfaces. In CHI ’11:
Proceedings of the 2011 annual conference on Human factors in comput-
ing systems, pages 2453–2462. ACM, 2011.

G. W. Fitzmaurice, H. Ishii, and W. Buxton. Bricks: laying the foundations
for graspable user interfaces. In CHI ’95: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 442–449. ACM
Press/Addison-Wesley Publishing Co., 1995.

M. Fukumoto and T. Sugimura. Active click: tactile feedback for touch
panels. In CHI EA ’01: Extended Abstracts on Human factors in com-
puting systems, pages 121–122, 2001.

R. Gabriel, J. Sandsjö, A. Shahrokni, and M. Fjeld. BounceSlider: actuated
sliders for music performance and composition. In TEI ’08: Proceedings
of the 2nd international conference on Tangible and embedded interaction,
pages 127–130. ACM, 2008.

W. W. Gaver. Auditory icons: using sound in computer interfaces. Human-
Computer Interaction, 2(2):167–177, 1986.

L. Giusti, M. Zancanaro, E. Gal, and P. L. T. Weiss. Dimensions of collabo-
ration on a tabletop interface for children with autism spectrum disorder.

218 Bibliography

In CHI ’11: Proceedings of the 2011 annual conference on Human factors
in computing systems, pages 3295–3304. ACM, 2011.

S. C. Goldstein, T. C. Mowry, J. D. Campbell, M. P. Ashley-Rollman,
M. De Rosa, S. Funiak, J. F. Hoburg, M. E. Karagozler, B. Kirby, P. Lee,
P. Pillai, J. R. Reid, D. D. Stancil, and M. P. Weller. Beyond audio and
video: using claytronics to enable pario. AI Magazine, 30(2), 2009.

T. Grieve, Y. Sun, J. M. Hollerbach, and S. A. Mascaro. 3-D force control
on the human fingerpad using a magnetic levitation device for fingernail
imaging calibration. In WHC ’09: Proceedings of the World Haptics
2009 - Third Joint EuroHaptics conference and Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, pages 411–
416, 2009.

T. Grossman and D. Wigdor. Going deeper: a taxonomy of 3D on the
tabletop. In TABLETOP ’07: Second Annual IEEE International Work-
shop on Horizontal Interactive Human-Computer Systems, pages 137–
144. IEEE, 2007.

S. Gupta, T. Campbell, J. R. Hightower, and S. N. Patel. SqueezeBlock:
using virtual springs in mobile devices for eyes-free interaction. In UIST
’10: Proceedings of the 23nd annual ACM symposium on User interface
software and technology, pages 101–104. ACM, 2010.

J. Han. Low-cost multi-touch sensing through frustrated total internal
reflection. In UIST ’05: Proceedings of the 18th annual ACM symposium
on User interface software and technology, pages 115–118. ACM, 2005.

C. Harrison and S. E. Hudson. Abracadabra: wireless, high-precision, and
unpowered finger input for very small mobile devices. In UIST ’09: Pro-
ceedings of the 22nd annual ACM symposium on User interface software
and technology, pages 121–124. ACM, 2009a.

C. Harrison and S. E. Hudson. Providing dynamically changeable physi-
cal buttons on a visual display. In CHI ’09: Proceedings of the 27th
international conference on Human factors in computing systems, pages
299–308. ACM, 2009b.

B. Hartmann, M. R. Morris, H. Benko, and A. D. Wilson. Augmenting
interactive tables with mice & keyboards. In UIST ’09: Proceedings of the
22nd annual ACM symposium on User interface software and technology,
pages 149–152. ACM, 2009.

F. Hemmert, S. Hamann, M. Löwe, J. Zeipelt, and G. Joost. Weight-
shifting mobiles: automatic balancing in mobile phones. In CHI EA
’10: Extended Abstracts on Human Factors in Computing Systems, pages
3081–3085, 2010.

O. Hilliges, D. Baur, and A. Butz. Photohelix: browsing, sorting and shar-
ing digital photo collections. In TABLETOP ’07: Second Annual IEEE
International Workshop on Horizontal Interactive Human-Computer Sys-
tems, pages 87–94. IEEE, 2007.

Bibliography 219

O. Hilliges, D. Kim, and S. Izadi. Creating malleable interactive surfaces
using liquid displacement sensing. In TABLETOP ’08: 3rd IEEE Inter-
national Workshop on Horizontal Interactive Human Computer Systems,
pages 157–160. IEEE, 2008.

O. Hilliges, S. Izadi, A. D. Wilson, S. Hodges, A. Garcia-Mendoza, and
A. Butz. Interactions in the air: adding further depth to interactive
tabletops. In UIST ’09: Proceedings of the 22nd annual ACM symposium
on User interface software and technology, pages 139–148. ACM, 2009.

U. Hinrichs, M. Hancock, C. Collins, and S. Carpendale. Examination
of text-entry methods for tabletop displays. In TABLETOP ’07: Second
Annual IEEE International Workshop on Horizontal Interactive Human-
Computer Systems, pages 105–112. IEEE, 2007.

S. Hodges, S. Izadi, A. Butler, A. Rrustemi, and B. Buxton. ThinSight:
versatile multi-touch sensing for thin form-factor displays. In UIST ’07:
Proceedings of the 20th annual ACM symposium on User interface soft-
ware and technology, pages 259–268. ACM, 2007.

R. Hofer, D. Naeff, and A. Kunz. FLATIR: FTIR multi-touch detection on
a discrete distributed sensor array. In TEI ’09: Proceedings of the 3rd
International Conference on Tangible and Embedded Interaction, pages
317–322. ACM, 2009.

A. Hoffmann, D. Spelmezan, and J. Borchers. TypeRight: a keyboard with
tactile error prevention. In CHI ’09: Proceedings of the 27th international
conference on Human factors in computing systems, pages 2265–2268.
ACM, 2009.

C. Holz and P. Baudisch. The generalized perceived input point model
and how to double touch accuracy by extracting fingerprints. In CHI
’10: Proceedings of the 28th international conference on Human factors
in computing systems, pages 581–590. ACM, 2010.

C. Holz and P. Baudisch. Understanding touch. In CHI ’11: Proceedings
of the 2011 annual conference on Human factors in computing systems,
pages 2501–2510. ACM, 2011.

J. Hook, S. Taylor, A. Butler, N. Villar, and S. Izadi. A reconfigurable
ferromagnetic input device. In UIST ’09: Proceedings of the 22nd annual
ACM symposium on User interface software and technology, pages 51–54.
ACM, 2009.

M. S. Horn, E. T. Solovey, R. J. Crouser, and R. J. K. Jacob. Comparing the
use of tangible and graphical programming languages for informal science
education. In CHI ’09: Proceedings of the 27th international conference
on Human factors in computing systems, pages 975–984. ACM, 2009.

T. Hoshi, M. Takahashi, T. Iwamoto, and H. Shinoda. Noncontact tac-
tile display based on radiation pressure of airborne ultrasound. IEEE
Transactions on Haptics, 3(3):155–165, 2010.

E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation
interfaces. Human-Computer Interaction, 1(4):311–338, 1985.

220 Bibliography

H. Ishii. Tangible bits: beyond pixels. In TEI ’08: Proceedings of the 2nd
international conference on Tangible and embedded interaction, pages xv–
xxv. ACM, 2008.

H. Ishii and B. Ullmer. Tangible bits: towards seamless interfaces between
people, bits and atoms. In CHI ’97: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 234–241. ACM,
1997.

H. Iwata, H. Yano, F. Nakaizumi, and R. Kawamura. Project FEELEX:
adding haptic surface to graphics. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive techniques,
pages 469–476. ACM, 2001.

S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and
J. Westhues. Going beyond the display: a surface technology with an
electronically switchable diffuser. In UIST ’08: Proceedings of the 21st
annual ACM symposium on User interface software and technology, pages
269–278. ACM, 2008.

D. Jackson, T. Bartindale, and P. Oliver. FiberBoard - compact multi-
touch display using channeled light. In ITS ’09: Proceedings of ACM
International Conference on Interactive Tabletops and Surfaces, pages
25–28. ACM, 2009.

Y. Jansen, T. Karrer, and J. Borchers. MudPad: tactile feedback and
haptic texture overlay for touch surfaces. In ITS ’10: Proceedings of the
ACM International Conference on Interactive Tabletops and Surfaces,
pages 11–14. ACM, 2010.

S. Jorda, G. Geiger, M. Alonso, and M. Kaltenbrunner. The reacTable: ex-
ploring the synergy between live music performance and tabletop tangible
interfaces. In TEI ’07: Proceedings of the 1st international conference
on Tangible and embedded interaction, pages 139–146. ACM, 2007.

L. Jun, D. Pinelle, C. Gutwin, and S. Subramanian. Improving digital
handoff in shared tabletop workspaces. In TABLETOP ’08: 3rd IEEE
International Workshop on Horizontal Interactive Human Computer Sys-
tems, pages 9–16. IEEE, 2008.

H. Kajimoto, M. Inami, N. Kawakami, and S. Tachi. SmartTouch - aug-
mentation of skin sensation with electrocutaneous display. In HAPTICS
’03: Proceedings of the 11th Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, pages 40–46. IEEE, 2003.

S. K. Kane, M. R. Morris, A. Z. Perkins, D. Wigdor, R. E. Ladner, and
J. O. Wobbrock. Access overlays: improving non-visual access to large
touch screens for blind users. In UIST ’11: Proceedings of the 24th annual
ACM symposium on User interface software and technology, pages 273–
282. ACM, 2011.

M. E. Karagozler, S. C. Goldstein, and J. R. Reid. Stress-driven MEMS
assembly + electrostatic forces = 1mm diameter robot. In IROS ’09:

Bibliography 221

Proceedings of the IEEE International Conference on Intelligent Robots
and Systems. IEEE, 2009.

K. Kin, M. Agrawala, and T. DeRose. Determining the benefits of direct-
touch, bimanual, and multifinger input on a multitouch workstation. In
GI ’09: Proceedings of Graphics Interface 2009, pages 119–124. Canadian
Information Processing Society, 2009.

M. Kojima, M. Sugimoto, A. Nakamura, M. Tomita, M. Inami, and H. Nii.
Augmented coliseum: an augmented game environment with small vehi-
cles. In TABLETOP ’06: First IEEE International Workshop on Hori-
zontal Interactive Human-Computer Systems, pages 3–8. IEEE, 2006.

K. Koukouletsos, B. Khazaei, A. Dearden, and M. Ozcan. Teaching usabil-
ity principles with patterns and guidelines. In Creativity and HCI: From
Experience to Design in Education, pages 159–174. Springer Verlag, 2009.

A. Kruavit and S. Numhom. Magnet implantation into a dice game dealer’s
digital tips with late thumb tip infection: an iatrogenic criminal opera-
tion. The Thai Journal of Surgery, 29:97–100, 2008.

J. Lee, R. Post, and H. Ishii. ZeroN: mid-air tangible interaction enabled by
computer controlled magnetic levitation. In UIST ’11: Proceedings of the
24th annual ACM symposium on User interface software and technology,
pages 327–336. ACM, 2011.

S. Lee and S. Zhai. The performance of touch screen soft buttons. In CHI
’09: Proceedings of the 27th international conference on Human factors
in computing systems, pages 309–318. ACM, 2009.

D. Leithinger, D. Lakatos, A. DeVincenzi, M. Blackshaw, and H. Ishii.
Direct and gestural interaction with relief: a 2.5D shape display. In UIST
’11: Proceedings of the 24th annual ACM symposium on User interface
software and technology, pages 541–548. ACM, 2011.

J. Leitner and M. Haller. Geckos: combining magnets and pressure images
to enable new tangible-object design and interaction. In CHI ’11: Pro-
ceedings of the 2011 annual conference on Human factors in computing
systems, pages 2985–2994. ACM, 2011.

J. Leitner, J. Powell, P. Brandl, T. Seifried, M. Haller, B. Dorray, and
P. To. FLUX: a tilting multi-touch and pen based surface. In CHI ’09:
Proceedings of the 27th international conference on Human factors in
computing systems, pages 3211–3216. ACM, 2009.

J. G. Linvill and J. C. Bliss. A direct translation reading aid for the blind.
Proceedings of the IEEE, 54(1):40–51, 1966.

I. S. MacKenzie and R. W. Soukoreff. Phrase sets for evaluating text entry
techniques. In CHI EA ’03: Extended Abstracts on Human factors in
computing systems, pages 754–755, 2003.

J. Mankoff, S. E. Hudson, and G. D. Abowd. Interaction techniques for
ambiguity resolution in recognition-based interfaces. In UIST ’00: Pro-
ceedings of the 13th annual ACM symposium on User interface software
and technology, pages 11–20. ACM, 2000.

222 Bibliography

N. Marquardt, M. A. Nacenta, J. E. Young, S. Carpendale, S. Greenberg,
and E. Sharlin. The haptic tabletop puck: tactile feedback for interactive
tabletops. In ITS ’09: Proceedings of the ACM International Conference
on Interactive Tabletops and Surfaces, pages 85–92. ACM, 2009.

N. Marquardt, R. Jota, S. Greenberg, and J. A. Jorge. The continuous
interaction space: interaction techniques unifying touch and gesture on
and above a digital surface. In INTERACT ’11: Proceedings of the 13th
IFIP TC 13 international conference on Human-computer interaction -
Volume Part III, pages 461–476. Springer-Verlag, 2011.

T. H. Massie and J. K. Salisbury. The PHANToM haptic interface: a
device for probing virtual objects. In Proceedings of the 1994 ASME
International Mechanical Engineering Congress and Exhibition, volume
DSC 55-1, pages 295–302, 1994.

N. Matsushita and J. Rekimoto. HoloWall: designing a finger, hand, body,
and object sensitive wall. In UIST ’97: Proceedings of the 10th annual
ACM symposium on User interface software and technology, pages 209–
210. ACM, 1997.

T. Miller and R. Zeleznik. An insidious haptic invasion: adding force feed-
back to the x desktop. In UIST ’98: Proceedings of the 11th annual
ACM symposium on User interface software and technology, pages 59–
64. ACM, 1998.

T. Miller and R. Zeleznik. The design of 3D haptic widgets. In I3D ’99:
Proceedings of the 1999 symposium on Interactive 3D graphics, pages
97–102. ACM, 1999.

C. Müller-Tomfelde and M. Fjeld. Introduction: a short history of tabletop
research, technologies, and products. In Tabletops - Horizontal Interac-
tive Displays, pages 1–24. Springer London, 2010.

M. A. Nacenta, D. Aliakseyeu, S. Subramanian, and C. Gutwin. A compar-
ison of techniques for multi-display reaching. In CHI ’05: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
371–380. ACM, 2005.

J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., 1993.

H. Noma, S. Yoshida, Y. Yanagida, and N. Tetsutani. The proactive desk:
a new haptic display system for a digital desk using a 2-DOF linear
induction motor. Presence: Teleoperators and Virtual Environments, 13
(2):146–163, 2004.

T. Paek, K. Chang, I. Almog, E. Badger, and T. Sengupta. A practi-
cal examination of multimodal feedback and guidance signals for mobile
touchscreen keyboards. In MobileHCI ’10: Proceedings of the 12th inter-
national conference on Human computer interaction with mobile devices
and services, pages 365–368. ACM, 2010.

G. Pangaro, D. Maynes-Aminzade, and H. Ishii. The actuated workbench:
computer-controlled actuation in tabletop tangible interfaces. In UIST

Bibliography 223

’02: Proceedings of the 15th annual ACM symposium on User interface
software and technology, pages 181–190. ACM, 2002.

J. Patten and H. Ishii. Mechanical constraints as computational con-
straints in tabletop tangible interfaces. In CHI ’07: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 809–
818. ACM, 2007.

E. W. Pedersen and K. Hornbæk. Tangible bots: interaction with active
tangibles in tabletop interfaces. In CHI ’11: Proceedings of the 2011
annual conference on Human factors in computing systems, pages 2975–
2984. ACM, 2011.

M. J. Pitts, G. E. Burnett, M. A. Williams, and T. Wellings. Does haptic
feedback change the way we view touchscreens in cars? In ICMI-MLMI
’10: International Conference on Multimodal Interfaces and the Work-
shop on Machine Learning for Multimodal Interaction, page 38. ACM,
2010.

I. Poupyrev, S. Maruyama, and J. Rekimoto. Ambient touch: designing
tactile interfaces for handheld devices. In UIST ’02: Proceedings of the
15th annual ACM symposium on User interface software and technology,
pages 51–60. ACM, 2002.

I. Poupyrev, T. Nashida, S. Maruyama, J. Rekimoto, and Y. Yamaji.
Lumen: interactive visual and shape display for calm computing. In
SIGGRAPH ’04 Emerging Technologies: Conference Abstracts of the
31st annual conference on Computer graphics and interactive techniques,
page 17. ACM, 2004.

D. Prescher, O. Nadig, and G. Weber. Reading braille and tactile ink-
print on a planar tactile display. In ICCHP ’10: Proceedings of the 12th
international conference on computers helping people with special needs,
pages 482–489. Springer-Verlag, 2010.

B. Reeves and C. Nass. The media equation: how people treat comput-
ers, television, and new media like real people and places. Cambridge
University Press, 1996.

J. Rekimoto. SenseableRays: opto-haptic substitution for touch-enhanced
interactive spaces. In CHI EA ’09: Proceedings of the 27th international
conference extended abstracts on Human factors in computing systems,
pages 2519–2528, 2009.

J. Rekimoto, B. Ullmer, and H. Oba. DataTiles: a modular platform for
mixed physical and graphical interactions. In CHI ’01: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
269–276. ACM, 2001.

C. Remy. A pattern language for interactive tabletops in collaborative
workspaces. Master’s thesis, RWTH Aachen University, 2010.

224 Bibliography

C. Remy, M. Weiss, M. Ziefle, and J. Borchers. A pattern language for inter-
active tabletops in collaborative workspaces. In EuroPLoP ’10: Proceed-
ings of the 15th European Conference on Pattern Languages of Programs,
pages 9:1–9:48. ACM, 2010.

D. S. Reznik and J. F. Canny. C’mon part, do the local motion! In ICRA
’01: Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2235–2242. IEEE, 2001.

I. Rosenberg and K. Perlin. The UnMousePad: an interpolating multi-
touch force-sensing input pad. In SIGGRAPH ’09: Proceedings of the
36th annual conference on Computer graphics and interactive techniques,
pages 1–9. ACM, 2009.

D. Rosenfeld, M. Zawadzki, J. Sudol, and K. Perlin. Physical objects as
bidirectional user interface elements. IEEE Computer Graphics and Ap-
plications, 24(1):44–49, 2004.

K. Salisbury, F. Conti, and F. Barbagli. Haptic rendering: introductory
concepts. Computer Graphics and Applications, IEEE, 24(2):24–32, 2004.

P. Scherz. Practical Electronics for Inventors. McGraw-Hill, Inc., 2nd
edition, 2007.

J. Schöning, J. Hook, T. Bartindale, D. Schmidt, P. Olivier, F. Echtler,
N. Motamedi, P. Brandl, and U. v. Zadow. Building interactive multi-
touch surfaces. In Tabletops - Horizontal Interactive Displays, Human-
Computer Interaction Series, pages 27–49. Springer London, 2010.

m. c. Schraefel, G. Smith, and P. Baudisch. Curve dial: eyes-free parameter
entry for GUIs. In CHI EA ’05: Extended abstracts on Human factors
in computing systems, pages 1146–1147, 2005.

F. Schwarz. Madgets: actuated translucent controls for dynamic tangible
applications on interactive tabletops. Master’s thesis, RWTH Aachen
University, 2010.

J. Schwarz, S. Hudson, J. Mankoff, and A. D. Wilson. A framework for
robust and flexible handling of inputs with uncertainty. In UIST ’10:
Proceedings of the 23nd annual ACM symposium on User interface soft-
ware and technology, pages 47–56. ACM, 2010.

S. D. Scott, K. D. Grant, and R. L. Mandryk. System guidelines for co-
located, collaborative work on a tabletop display. In ECSCW ’03: Pro-
ceedings of the eighth conference on European Conference on Computer
Supported Cooperative Work, pages 159–178. Kluwer Academic Publish-
ers, 2003.

R. Seidel. An analysis of the conflict between the user control and the need
for physical-visual consistency in tangible tabletop interaction. Master’s
thesis, RWTH Aachen University, 2011.

O. Shaer and E. Hornecker. Tangible user interfaces: past, present, and
future directions. Foundations and Trends in Human-Computer Interac-
tion, 3(1-2):1–137, 2010.

Bibliography 225

A. Shahrokni, J. Jenaro, T. Gustafsson, A. Vinnberg, J. Sandsjö, and
M. Fjeld. One-dimensional force feedback slider: going from an analogue
to a digital platform. In NordiCHI ’06: Proceedings of the 4th Nordic
conference on Human-computer interaction, pages 453–456. ACM, 2006.

K. A. Siek, Y. Rogers, and K. H. Connelly. Fat finger worries: how older
and younger users physically interact with PDAs. In INTERACT ’05:
Proceedings of the 2005 IFIP TC13 international conference on Human-
Computer Interaction, pages 267–280. Springer-Verlag, 2005.

S. S. Snibbe, K. E. MacLean, R. Shaw, J. Roderick, W. L. Verplank, and
M. Scheeff. Haptic techniques for media control. In UIST ’01: Proceed-
ings of the 14th annual ACM symposium on User interface software and
technology, pages 199–208. ACM, 2001.

J. Steimle. Pen-and-paper user interfaces - integrating printed and digital
documents. Human-Computer Interaction Series. Springer, 2012.

N. Sultanum, S. Somanath, E. Sharlin, and M. C. Sousa. ”Point it, split
it, peel it, view it”: techniques for interactive reservoir visualization on
tabletops. In ITS ’11: Proceedings of the ACM International Conference
on Interactive Tabletops and Surfaces, pages 192–201. ACM, 2011.

Y. Suzuki and M. Kobayashi. Air jet driven force feedback in virtual reality.
IEEE Computer Graphics and Applications, 25:44–47, 2005.

C. Swindells, K. E. MacLean, K. S. Booth, and M. J. Meitner. Exploring
affective design for physical controls. In CHI ’07: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 933–
942. ACM, 2007.

A. Tabard, J. Hincapié-Ramos, M. Esbensen, and J. E. Bardram. The
eLabBench: an interactive tabletop system for the biology laboratory. In
ITS ’11: Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces, pages 202–211. ACM, 2011.

E. Tamaki, T. Miyaki, and J. Rekimoto. PossessedHand: techniques for
controlling human hands using electrical muscles stimuli. In CHI ’11:
Proceedings of the 2011 annual conference on Human factors in comput-
ing systems, pages 543–552. ACM, 2011.

H. Tang and D. Beebe. A microfabricated electrostatic haptic display for
persons with visual impairments. IEEE Transactions on Rehabilitation
Engineering, 6(3):241–248, 1998.

J. Underkoffler and H. Ishii. Illuminating light: an optical design tool with
a luminous-tangible interface. In CHI ’98: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 542–549. ACM
Press/Addison-Wesley Publishing Co., 1998.

J. Underkoffler and H. Ishii. Urp: a luminous-tangible workbench for urban
planning and design. In CHI ’99: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 386–393. ACM, 1999.

226 Bibliography

B. Unger, R. Hollis, and R. Klatzky. The geometric model for perceived
roughness applies to virtual textures. In HAPTICS ’08: Proceedings of
the 2008 Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, pages 3–10. IEEE, 2008.

N. Villar and H. Gellersen. A malleable control structure for softwired user
interfaces. In TEI ’07: Proceedings of the 1st international conference
on Tangible and embedded interaction, pages 49–56. ACM, 2007.

J. Wagner. SLAP, silicone illuminated active peripherals. Master’s thesis,
RWTH Aachen University, 2009.

A. Wakita, A. Nakano, and N. Kobayashi. Programmable blobs: a rhe-
ologic interface for organic shape design. In TEI ’11: Proceedings of
the fifth international conference on Tangible, embedded, and embodied
interaction, pages 273–276. ACM, 2011.

M. Waldner, J. Hauber, J. Zauner, M. Haller, and M. Billinghurst. Tangible
tiles: design and evaluation of a tangible user interface in a collaborative
tabletop setup. In OZCHI ’06: Proceedings of the 18th Australia confer-
ence on Computer-Human Interaction, pages 151–158. ACM, 2006.

L. Walker and H. Z. Tan. A perceptual study on haptic rendering of surface
topography when both surface height and stiffness vary. In HAPTICS
’04: Proceedings of the 12th international conference on Haptic interfaces
for virtual environment and teleoperator systems, pages 138–145. IEEE,
2004.

J. R. Wallace and S. D. Scott. Contextual design considerations for co-
located, collaborative tables. In TABLETOP ’08: 3rd IEEE Interna-
tional Workshop on Horizontal Interactive Human Computer Systems,
pages 57–64. IEEE, 2008.

T. Watanabe and S. Fukui. A method for controlling tactile sensation of
surface roughness using ultrasonic vibration. In Proceedings of IEEE
International Conference on Robotics and Automation, 1995, volume 1,
pages 1134 –1139 vol.1. IEEE, 1995.

M. Weiser. The computer for the 21st century. Scientific American, 265
(3):94–104, 1991.

M. Weiss, R. Jennings, J. Wagner, J. D. Hollan, R. Khoshabeh, and
J. Borchers. SLAP: silicone illuminated active peripherals. In TABLE-
TOP EA ’08: Extended abstracts of 3rd IEEE International Workshop
on Horizontal Interactive Human Computer Systems, pages 37–38, 2008.

M. Weiss, F. Schwarz, and J. Borchers. Actuated translucent controls
for dynamic tangible applications on interactive tabletops. In ITS EA
’09: Extended Abstracts of ACM International Conference on Interactive
Tabletops and Surfaces, 2009a.

M. Weiss, J. Wagner, Y. Jansen, R. Jennings, R. Khoshabeh, J. D. Hol-
lan, and J. Borchers. SLAP widgets: bridging the gap between virtual
and physical controls on tabletops. In CHI ’09: Proceedings of the 27th

Bibliography 227

international conference on Human factors in computing systems, pages
481–490. ACM, 2009b.

M. Weiss, J. Wagner, R. Jennings, Y. Jansen, R. Khoshabeh, J. D. Hollan,
and J. Borchers. SLAP widgets: bridging the gap between virtual and
physical controls on tabletops. In CHI EA ’09: Extended Abstracts on
Human Factors in Computing Systems, pages 3229–3234, 2009c.

M. Weiss, J. Wagner, R. Jennings, Y. Jansen, R. Khoshabeh, J. D. Hol-
lan, and J. Borchers. SLAPbook: tangible widgets on multi-touch tables
in groupware environments. In TEI ’09: Proceedings of the 3rd Interna-
tional Conference on Tangible and Embedded Interaction, pages 297–300.
ACM, 2009d.

M. Weiss, J. D. Hollan, and J. Borchers. Augmenting interactive tabletops
with translucent tangible controls. In Tabletops - Horizontal Interactive
Displays, Human-Computer Interaction Series, pages 157–180. Springer
Verlag, 2010a.

M. Weiss, F. Schwarz, S. Jakubowski, and J. Borchers. Madgets: actuating
widgets on interactive tabletops. In UIST ’10: Proceedings of the 23nd
annual ACM symposium on User interface software and technology, pages
293–302. ACM, 2010b.

M. Weiss, S. Voelker, C. Sutter, and J. Borchers. BendDesk: dragging
across the curve. In ITS ’10: Proceedings of the ACM International Con-
ference on Interactive Tabletops and Surfaces, pages 1–10. ACM, 2010c.

M. Weiss, C. Remy, and J. Borchers. Rendering physical effects in tabletop
controls. In CHI ’11: Proceedings of the twenty-ninth annual SIGCHI
conference on Human factors in computing systems, pages 3009–3012.
ACM, 2011a.

M. Weiss, C. Wacharamanotham, S. Voelker, and J. Borchers. FingerFlux:
near-surface haptic feedback on tabletops. In UIST ’11: Proceedings of
the 24th annual ACM symposium on User interface software and techno-
logy, pages 615–620. ACM, 2011b.

M. Weiss, G. Herkenrath, L. Braun, and J. Borchers. Text entry on in-
teractive tabletops using transparent physical keyboards. In CHI ’12
Workshop on Designing and Evaluating Text Entry Methods, 2012.

G. Welch and G. Bishop. An introduction to the kalman filter. Technical
report, University of North Carolina at Chapel Hill, 1995.

P. Wellner. Interacting with paper on the DigitalDesk. Communications of
the ACM, 36(7):87–96, July 1993.

W. White. Method for optical comparison of skin friction-ridge patterns,
1965. U.S. Patent 3,200,701.

A. D. Wilson. Using a depth camera as a touch sensor. In ITS ’10: Pro-
ceedings of the ACM International Conference on Interactive Tabletops
and Surfaces, pages 69–72. ACM, 2010.

228 Bibliography

R. Wimmer. FlyEye: grasp-sensitive surfaces using optical fiber. In TEI
’10: Proceedings of the fourth international conference on Tangible, em-
bedded, and embodied interaction, pages 245–248. ACM, 2010.

R. Wimmer, F. Hennecke, F. Schulz, S. Boring, A. Butz, and H. Huß-
mann. Curve: revisiting the digital desk. In NordiCHI ’10: Proceedings
of the 6th Nordic Conference on Human-Computer Interaction Extending
Boundaries, page 561, 2010.

J. O. Wobbrock. Measures of text entry performance. In Text entry systems:
Mobility, accessibility, universality, pages 47–74. Morgan Kaufmann Pub-
lishers Inc., 2007.

J. O. Wobbrock, M. R. Morris, and A. D. Wilson. User-defined gestures
for surface computing. In CHI ’09: Proceedings of the 27th international
conference on Human factors in computing systems, pages 1083–1092.
ACM, 2009.

C. Wusheng and W. Tianmiao. Design of data glove and arm type haptic
interface. In HAPTICS ’03: Proceedings of the 11th Symposium on Hap-
tic Interfaces for Virtual Environment and Teleoperator Systems, pages
422–427. IEEE, 2003.

G. Yang, K. Kyung, M. A. Srinivasan, and D. Kwon. Quantitative tactile
display device with pin-array type tactile feedback and thermal feed-
back. In ICRA ’06: Proceedings of the IEEE International Conference
on Robotics and Automation, pages 3917–3922. IEEE, 2006.

S. Yoshida, H. Noma, and K. Hosaka. Proactive desk II: development of
a new multi-object haptic display using a linear induction motor. In
VR ’06: Proceedings of the IEEE conference on Virtual Reality, pages
269–272. IEEE, 2006.

N. Yu, S. Tsai, I. Hsiao, D. Tsai, M. Lee, M. Y. Chen, and Y. Hung. Clip-on
gadgets: expanding multi-touch interaction area with unpowered tactile
controls. In UIST ’11: Proceedings of the 24th annual ACM symposium
on User interface software and technology, pages 367–372. ACM, 2011.

229

Index

2.5D mediator-based haptic feedback . see FingerFlux

a priori haptic feedback . 192
Aachener Friedenstisch . 99
active pixel .149
Actuated Workbench . 110
actuation algorithm . 124
Actuation Framework . 115, 129
actuation methods

- electromagnetism . 110, 124
- linear induction motors .126
- motorized controls . 105
- motorized vehicles . 109
- robots. .109
- vibrating plate . 110

actuation model . 128
actuation optimizations . 135
affective design . 174
Anoto . 20, 38
anthropomorphic aspect of actuation . 164
antialiasing electromagnetic actuation

- Madgets . 142
- pucks . 125

architecture
- Madgets . 115
- SLAP Widgets . 63

attenuation
- IR through LCD panel . 145, 152
- magnetic force .131, 142, 167, 174, 181, 191, 197

Augmented Coliseum. 109

background image . 54, 149
BendDesk . 26, 88
bidirectional interaction . 104
BounceSlider . 106
Braille display . 107

calibration
- fiber optics . 148
- GUI-to-camera mapping . 57
- magnet array. .122

calm technology . 12
camera parameters

- Madgets . 148
- SLAP Widgets . 58

capacitive widget detection . 99

230 Index

cell representative . 149
circular gradient fiducial . see gradient fiducial
Claytronics . 106
close loop actuation . 127
Coin-CLP . see Coin-or linear programming library
Coin-or linear programming library . 139
collapsibility . 41, 47
collocated collaboration . 11
command events. .71
compliant surface .14
Conference on Interactive Tabletop and Surfaces . 3
contact-based haptic feedback . 186
conventional keyboard . 41, 88

- with top projection. .100
critical angle . 13
cumulative drift . 200

damping function . 131
DataTiles . 35
dead dot . 150
depth camera . 20, 206
design guideline . 27
design patterns . see HCI design patterns
DI . see Diffused Illumination
Diffused Illumination . 16, 42
Diffused Surface Illumination . 17, 114, 144
digital pen . 20
direct manipulation . 11, 21, 31
directional haptic feedback . 192
drifting . 83, 193, 198
driver board . 117, 121, 123
DSI. .see Diffused Surface Illumination
dynamic friction force . 133
dynamic magnet . 129, 142
dynamic notch . 177

ecology of objects . 13
EL foil .see electroluminescent foil
electroluminescent foil . 114, 154
electromagnetic display . 115
Endlighten . 114, 144, 152, 153
European Conference on Pattern Languages of Programs . 30
EuroPLoP see European Conference on Patterns Languages of Programs

FEELEX. 107
FeelTheBeat . 106
fiber optics . 98, 144, 163
FiberBoard . 19, 115
FingerFlux . 190
fixed aspect ratio transform . 21
FLATIR. .19
flicking gesture . 23, 74
FLUX. 26
FlyEye . 98
footprint . 43, 59, 96
foreground image . 149
friction . 137, 174

Index 231

- dynamic friction. .133
- static friction force . 133, 176

Frustrated Total Internal Reflection . 13, 42
FTIR . see Frustrated Total Internal Reflection

general-purpose tiles .35
gesture . 23, 31
Gesture (class) . 74
gesture detection . 72
GestureDelegate (protocol) . 74
GesturePathHandler (protocol) . 74
GestureTimerHandler (protocol) . 74
GestureTouchHandler (protocol) . 74
global grid integration . 150
gradient fiducial . 146

- detection . 151
Graspable User Interface . 24
grid alignment . 149

haptic feedback. .12
Haptic Rendering . 170
Haptic Tabletop Puck . 187
HCI design pattern language for interactive tabletops . 28
HCI design patterns . 28
heat sink . 163
heating electromagnets . 141, 163

identification marker . 59
IFSR sensor see Interpolating Force-Sensing Resistance sensor
Illuminating Light . 25, 34
image editing . 76, 84
image processing pipeline

- Madgets . 150
- SLAP Widgets . 54

indirect actuation . 110
infrared LED . 14, 16
input disambiguation . 12, 23
input precision . 12
input techniques .21
inter-individual differences . 198, 206
inter-object communication . 71
inter-widget inconsistency . 103
interactive tabletop . 11
Interpolating Force-Sensing Resistance sensor . 99, 167
Inverted FTIR . 16
IR pass filter . 15
iron core. .118, 132, 163
iterative design . 169
ITS. .see Conference on Interactive Tabletop and Surfaces

Kinect. .20

lingua franca . 28
liquid displacement tracking . 18
Lumen . 107
Lumino . 98

Madgets . 112, 126

232 Index

- Bell . 159
- Blockable Button. .157
- Friction Knob . 174
- Induction . 160
- Knob . 112
- Motor . 161
- Radio Buttons. .156, 176
- slider with dynamic notches . 178
- slider with dynamic ranges (concept) . 158
- Weight . 173

Madgets Table . 113
Magnet Array Control Interface . 116
Magnet Array Controller application. .122, 180
Magnetic Levitation Haptic Device . 189
magnetic widgets . see Madgets
maintenance . 163
manganese-zinc ferrit core . 118, 141, 163
Manhattan motion . 124
marker . 59
marker placement

- Madgets . 152
- SLAP Widgets . 97

marker threshold image . 150
mbed controller. .121, 162
mechanical actuation constraints . 111
Media Computing Project . 97
mediator-based haptic feedback. .187
moderate physical constraints . 195
modular composition . 98, 161
motor driver . 120
motorized general-purpose controls

- knob . 105
- slider. .105

MTTouching (protocol) .58, 65, 68, 74
MudPad . 187
multi-focus policy . 32, 51
MultiTouchFramework . 58

Narrow Substructure (design pattern) . 99
Nenya . 204
non-equipped 3D haptic feedback . 189
non-horizontal surface . 26
non-interactive edge . 43
normal force . 129
notch . 177

objective function. .136, 137, 139
obtrusive physical state. .103
omnidirectional interface . 11
on-screen controls . 6, 79
on-screen keyboard . 40, 88
optical tracking. .13
Optimus Maximus. .100

pairing . 51, 53
PCA . see Principal Component Analysis
perceived weight . 172

Index 233

persistence . 154
personalization . 12
PHANTOM device . 170, 189
photo sorting application . 12
PhotoHelix . 39
physical-visual consistency . 26, 33, 164, 166
pin array . 186
Planar Manipulator Display . 109, 164
pneumatic actuation . 107
principal axis deviation check . 61
Principal Component Analysis . 55
privacy . 12
productivity task . 31
programmable matter . 106
projector . 15
pulse-width modulation . 120
PWM . see pulse-width modulation

radial distortion . 56
reacTable. .34
reference magnet . 129
Relief . 107
remote collaboration . 155
remote inconsistency . 104
rendering haptic objects . 192
Rendering Utility Library . 64
rest state . 6, 85
rotatability . 12

Scratch . 35
self-actuating tangibles . 109
Senseable Rays . 188
SenseSurface . 38
sensor coil . 167
sensor-in-pixel display . 19
shape display. .106
signal-to-noise ratio . 16–18
SIP display . see sensor-in-pixel display
SLAP Framework . 63
SLAP Keyboard. .76

- flexible . 45, 88
- rigid . 86, 88

SLAP Keypad . 47, 72, 77
SLAP Knob . 49, 76–78

- hue mode . 51
- jog wheel mode. .50, 51, 71, 76
- menu mode . 51, 77
- value mode . 51, 77

SLAP Slider . 48, 71, 76
SLAP Table . 42
SLAP UITK . see SLAP User Interface Toolkit
SLAP User Interface Toolkit . 64, 115
SLAP Widget detection . 59
SLAP Widgets . 43

- Keyboard . see SLAP Keyboard
- Keypad . see SLAP Keypad
- Knob . see SLAP Knob

234 Index

- Slider . see SLAP Slider
SLAPAlignableObject (class) . 67, 71
SLAPCommandReceiver (protocol) . 71
SLAPGUIObject (class) . 67
SLAPUITKDelegate (protocol) . 66
SLAPValueReceiver (protocol). .71
SLAPViewDelegate (protocol) . 66
SLAPWidget (class) . 70
SmartTouch . 186
Snell’s Law . 13
special-purpose tangible. .24, 34
sphere (multi-touch) . 27
spot event . 55
spots . 15
spring resistance . 176
SqueezeBlock. .172
state marker. .59
static magnet. .129, 142
superposition principle. .125, 132
suppressor diode . 121

TABLETOP. see Workshop on Horizontal Interactive Human-Computer Systems
tangential force. .129

- bounds . 130
tangible . see Tangible User Interface
Tangible Bots . 109
tangible presence . 156
Tangible Tiles . 36
Tangible User Interface . 24
taxonomy . 28
TeslaTouch . 186
Thin form factor tracking. .18
ThinSight . 18
total internal reflection . 14
touch event. .56
Tower defense game . 97
Toxic Waste Cannon (tangible) . 97
tracking

- Madgets . 144
- SLAP Widgets . 54

translation (dragging) . 21
TUI . see Tangible User Interface
type marker . 59
TypeRight . 176
typing . 39, 45, 76, 86

Ubiquitous Computing . 12, 34, 96
unidirectional interaction . 102
Universal Planar Manipulator . 110
Urp. .25, 34
usage scenario . 74

- collaborative image selection and editing. .76
- video ethnography. .75

user study
- dynamic notches . 182
- height . 195
- keyboard performance . 86

Index 235

- qualitative evaluation of SLAP Widgets . 84
- reduce drifting . 198
- replicability of spring resistance . 180
- widget performance . 78

value events . 71
vertical actuation . 143, 156
video navigation . 75, 79, 84
virtual knob . 79
VoodooIO . 36
VoodooSketch . 38

Weber-Fechner law . 180
widget detection . see SLAP Widget detection
Workshop on Horizontal Interactive Human-Computer Systems 3

ZeroN . 167

Typeset September 6, 2012

	Abstract
	Zusammenfassung
	Acknowledgements
	Conventions
	Introduction
	From Physical to Digital Controls
	Contributions
	Structure

	Interactive Tabletops
	Optical Tracking
	Frustrated Total Internal Reflection (FTIR)
	Diffused Illumination (DI)
	Diffused Surface Illumination (DSI)
	Liquid Displacement
	Thin Form Factor Tracking
	Depth Cameras
	Digital Pens
	Combining Techniques

	Input Techniques
	Triggering and Arranging Virtual Objects
	Drawing and Gestures
	Tangible User Interfaces

	Non-Horizontal Surfaces
	Capturing Design Knowledge
	Closing Remarks

	Translucent Controls on Tabletops: SLAP Widgets
	Design Considerations
	Related Work
	Special-Purpose Tangibles
	General-Purpose Tiles
	Physical Controls for General Purposes
	Typing

	System Design
	Tabletop Infrastructure
	Widget Design
	Basic Widget Set
	Keyboard
	Keypads
	Slider
	Knob

	Interaction Design
	Pairing Gestures

	Input Sensing
	Tracking Pipeline
	Camera to GUI Mapping
	Camera Parameters
	Receiving Touch Events

	Widget Detection

	Software Architecture
	Writing SLAP Applications
	Extending the Framework
	Virtual Objects
	SLAP Widgets
	Inter-Object Communication
	Gesture Detection

	Usage Scenarios
	Video Ethnography
	Collaborative Image Selection and Editing

	User Studies
	Widget Performance
	Task
	Experimental Design
	Participants
	Results
	Discussion

	Qualitative Evaluation
	Procedure
	Participants
	Results
	Discussion

	Typing
	Rigid SLAP Keyboard with Pressure Point
	Task
	Test Setup
	Procedure
	Participants
	Quantitative Results
	Qualitative Feedback
	Discussion
	Future Study Design

	Closing Remarks

	Maintaining Consistency: Madgets
	Unidirectional Interaction
	Related Work
	Actuated Knobs and Sliders
	Shape Displays
	Actuated Tangibles on Tabletops
	Self-Actuating Tangibles
	Indirect Actuation

	Magnetic Widgets
	System Overview
	Surface
	Architecture
	Table Construction

	Electromagnetic Actuation
	Hardware Control
	Conventions
	Calibration
	Actuation Algorithm
	From Single Pucks to Multi-Element Controls
	Overview
	Model
	Step 1: Compute Total Tangential Force and Torque
	Step 2: Assign Forces to Permanent Magnets
	Step 3: Distributing Forces to Electromagnets
	Generalization

	Discussion

	Tracking
	Hardware Setup
	Tracking Algorithm
	Gradient Fiducials

	Calibration
	Image Processing Pipeline
	Marker Placement
	Discussion

	Visual Output
	Applications
	General-Purpose Widgets
	Persistence
	Remote Collaboration
	Actuation by Gesture

	Going 3D: Height
	Buttons
	Clutch
	Mechanical Audio Feedback

	Force Feedback
	Vibration
	Resistance

	Water Wheel Madgets
	Inductive Energy Transfer
	Motors

	Prototyping Physical Properties

	Implementation Challenges
	Actuation versus User Control
	Preliminary Study

	Closing Remarks

	Rendering Physical Effects
	Haptic Rendering in General-Purpose Devices
	Using Magnetism to Induce Physical Effects
	Perceived Weight
	Friction
	Spring Resistance
	Dynamic Notches

	User Studies
	Spring Resistance
	Methodology
	Results
	Discussion

	Dynamic Notches
	Methodology
	Results
	Discussion

	Closing Remarks

	Beyond Tangibles: FingerFlux
	Haptic Feedback on and Above Surfaces
	Contact-Based Feedback
	Mediator-Based Feedback
	Non-Equipped 3D Feedback

	Near-Surface Haptic Feedback Using Electromagnetic Fields
	Applications
	Feeling the Interface
	A Priori Feedback
	Rendering Objects

	Directional Feedback
	Reduce Drifting
	Guiding the User
	Moderate Physical Constraints

	User Studies
	Height
	Test Setup
	Procedure
	Participants
	Results
	Discussion

	Reduce Drifting
	Test Setup
	Procedure
	Participants
	Results
	Discussion

	Future Design Concepts
	Closing Remarks

	Conclusion
	Contributions
	Future Work
	Closing Remarks

	Bibliography
	Index

