
Prof. Dr. Jan Borchers

Media Computing Group

RWTH Aachen University

WS ’22/’23 • hci.rwth-aachen.de/ios

Lecture 10: Introducing SwiftUI

iOS Application Development

http://hci.rwth-aachen.de/ios

Recap
• Swift Generics

• How to specify type constraints?

• How to use generic types in protocols?

• Diffable Data Sources

• How to create smooth animations in CollectionViews?

• CollectionViews

• What are the three components?

Prof. Dr. Jan Borchers: iOS Application Development2

A Brief History of SwiftUI
• 2014 Apple releases the Swift language as successor to Objective-C

• 2015 Development of SwiftUI begins at Apple

• 2019 SwiftUI is introduced officially with iOS 13

• 2022 Apple ships several new parts and entire apps 
on iOS and macOS using SwiftUI

Prof. Dr. Jan Borchers: iOS Application Development3

SwiftUI: the Big Messages
1. Object-Oriented Programming is Dead, Long Live Declarative Programming!

2. MVVM is the corresponding modern improvement over MVC

3. Modern universal languages can describe UIs like domain-specific languages

4. You can design a UI graphically and in code simultaneously

5. The best app languages must evolve together with a UI library and IDE

6. Declarative Programming simplifies development across mobile and desktop

7. SwiftUI is a current case study of a paradigm shift across a major OS family

Prof. Dr. Jan Borchers: iOS Application Development4

5

Hello SwiftUI!

Prof. Dr. Jan Borchers: iOS Application Development

6

Looking at the Code: the Shortest SwiftUI App

Prof. Dr. Jan Borchers: iOS Application Development7

import SwiftUI

 

struct ContentView: View {

 var body: some View {

 Text("Hello, Aachen!") 

 }

}

 

struct ContentView_Previews: PreviewProvider { 
 static var previews: some View { 
 ContentView() 

 } 

}

Composing Views
• The body property can only return one view

• To compose views, they need to be
embedded into layout views like VStack

• Their initializers use trailing closures for
multiple child views (max. 10)

• Note that this makes the code begin to look
like a hierarchical UI layout tree!
• "Modern universal languages can describe

UIs like domain-specific languages"

Prof. Dr. Jan Borchers: iOS Application Development8

import SwiftUI

struct ContentView: View {

 var body: some View {

 VStack {

 Image(systemName: "globe")

 Text("Hello, Aachen!")

 }

 }

}

…

9

Modifiers

Prof. Dr. Jan Borchers: iOS Application Development

Modifiers
• Modifiers allow us to adjust Views

• They are View methods returning another View

• Have (optional) parameters

• E.g., spacing for VStack

• Order matters

• Executed first to last

• If applied to containers, they are also applied
to children (unless property is overridden)

Prof. Dr. Jan Borchers: iOS Application Development10

Text("Label") 
 .padding() 
 .background(Color.red) 
 .cornerRadius(16.0) 

Text("Label") 
 .cornerRadius(16.0) 
 .background(Color.red) 
 .padding()

Common Modifiers
• .font

• Applies font to all text in a view

• Predefined fonts such
as .largeTitle

• .foregroundColor

• .background

• Sets the background to a style

• Adds a layer behind the view

• Must conform to ShapeStyle

• .frame

• Positions view within an invisible
frame having the specified size
constraints

• .frame(maxWidth: .infinity) extends
view to device edges

• .padding

• Adds space around a view

Prof. Dr. Jan Borchers: iOS Application Development11

12

Xcode Preview and Inspector

Prof. Dr. Jan Borchers: iOS Application Development

Preview
• Lets you preview your layout in the

Canvas, without launching the simulator

• Changes instantly while editing code

• Provides dummy data to test your layout

• Useful if data is not static

• Can preview different devices and
different modes (dark mode, dynamic
text size,…)

Prof. Dr. Jan Borchers: iOS Application Development13

import SwiftUI

struct ContentView: View {

 var myText: String = ""

 var body: some View {

 VStack {

 Text(myText)

 .font(.largeTitle)

 .foregroundColor(Color.orange)

 .padding([.top, .leading, .bottom], 20.0)

 .padding([.trailing], 10.0)

 .bold()

 Image(systemName: "globe")

 .imageScale(.large)

 .foregroundColor(.accentColor)

 }

 .padding()

 }

}

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView(myText: "Hello, iOS!”) // dummy data

 }

}

Common Preview Options

Prof. Dr. Jan Borchers: iOS Application Development14

• .preferredColorScheme

• Sets the color scheme  
(e.g., dark mode)

• .previewDevice

• Allows us to set the device

• .environment

• Sets properties of the used 
environment such as a dynamic 
type size or truncation mode

Attribute Inspector
• Powerful tool to adjust properties of views

• Set, change, enable, or disable modifiers and other properties

• Changes affect the code and vice versa

• Smartly adapts the code

• E.g., combines .top and .bottom padding to .vertical

• "You can design a UI graphically and in code simultaneously"

• "The best app languages must evolve together with a UI library and IDE"

Prof. Dr. Jan Borchers: iOS Application Development15

