
FabArcade Menu Documentation

Guo, Sijia
Gönnheimer, Lina
Güths, Katharina
Iyer, Shailesh

January 25, 2023

Contents

1 Disclaimer 2

2 Getting Started 3
2.1 Constants.py . 3

3 File Structures 4
3.1 File Structure of the Home Folder on the Raspberry Pi 4
3.2 File Structure of the Game Folders 4
3.3 Manifest File . 4

4 Setting up the Raspberry Pi 6
4.1 Novice Method . 6
4.2 Standard Method . 7

4.2.1 Installing Raspberry Pi OS . 7
4.2.2 First Login and Setup . 9
4.2.3 Installing Software . 9
4.2.4 Setup the Files and User . 11

5 Adding your own Games 12
5.1 Project Structure and Management 12
5.2 Folder Structure and Manifest File 13
5.3 Image Requirements . 13
5.4 Additional Information . 14

1

1 Disclaimer

Many parts of this documentation closely follow the 2013 FabArcade Guide with
slight changes. This is especially the case for section 4 – Setting up the Raspberry
Pi.

The 2013 FabArcade Guide can be found here.
For more information on this project, visit the Official FabArcade Website.

2

https://hci.rwth-aachen.de/index.php?option=com_attachments&task=download&id=2108
https://hci.rwth-aachen.de/fabarcade

2 Getting Started

This project uses Python 3.9. Follow the steps below to setup and run the FabArcade
menu code on your own device. Please keep in mind that some of the packages in
the requirements will only work on the Raspberry Pi.

• Start VScode and bring up the command pallete. In it, search for the Python:
Create Environment option.

• Select Venv as the environment type.

• Select python version 3.9.

This will setup the virtual environment in the current workspace for you. To check
if everything is setup correctly, pull up the integrated terminal in VScode. (.venv)
should show up at the start of every new line. This tells you that the virtual envi-
ronment is up and running properly.

After that, run the following commands:

python --version

Should return Python 3.9

python3 --version

Should return Python 3.9

In order to install the required dependencies to run the project go to the root folder
with the requirements.txt file and type in the following command in the integrated
VScode terminal.

python -m pip install -r requirements.txt

This will install all the requisite packages for the project to run. You can now run
src/main.py. This should start the FabArcade menu.

WARNING: Make sure that there is a games folder in your directory. For more
information on folder structures, please reference the section 3.2.

2.1 Constants.py

In src/Constants.py you can edit the constants for the menu. To make sure it
works well on the Pi set the following constants to true/false depending on the test
environment.
This is the configuration for the Pi:

IS_FULLSCREEN = True

Enables the GPIO button on GPIO Button 17

ENABLE_HOME_BUTTON = True

GAMES_PATH = ’/home/pi/games ’

This is the configuration we are using for testing in our local setup. Just make sure
to set the games path to the proper path.

IS_FULLSCREEN = False

Disables the GPIO button.

ENABLE_HOME_BUTTON = False

GAMES_PATH = ’games’

3

3 File Structures

This section describes the file structure of the project.

3.1 File Structure of the Home Folder on the Raspberry Pi

Figure 1: Home Folder

The Home folder on the Raspberry Pi contains the codebase for the menu as well
as a games folder, where the code of the games are stored. For more information on
the Raspberry Pi and how to set it up, please reference section 4.

3.2 File Structure of the Game Folders

The games folder contains further subfolders where each of the games created by
the groups will be stored. At the root of every game folder, there should be a
manifest.json file which gives the menu the required metadata for the game and
how to start it. For further information of the manifest file, reference section 3.3. If
you want to add your own Pygames game to the FabArcade, refer to section 5.

Figure 2: Games Folder

3.3 Manifest File

The manifest file contains all the metadata required to run, display and launch a
game successfully from the menu. It is a JSON file and should be named manifest.json,
all in lowercase. This file needs to be present at the root folder of every game project
and have the following configuration:

4

Figure 3: This is the required structure for the manifest.json file that each game
needs to provide.

WARNING: If manifest.json is missing, the game is assumed to not exist and
will not be shown in the fab arcade menu.

5

4 Setting up the Raspberry Pi

We describe two methods of setting up the Pi, namely the novice method and
the standard method. In the novice method, you will be able to set things up
with relatively little effort and with very little knowledge. On the other hand,
the standard method is more involved. You will be able to learn more about the
Raspberry Pi and it also allows you a higher degree of customization.

4.1 Novice Method

In the novice method, you simply download the provided image from the FabArcade
website and burn the image to an SD card via the Raspberry Pi Imager Utility.
Raspberry Pi Imager Utility can be downloaded from the Raspberry Pi website and
is available for all common operating systems, such as Windows, Linux and Mac
OS. After downloading it, follow these simple steps:

1. Insert the SD card into an SD card reader and plug it into your laptop.

2. Start the Raspberry Pi Imager and click on the ”choose OS” button.

Figure 4: Select ”choose OS”

3. Scroll down and select ”use custom” in the list. Browse and select our image.

Figure 5: Select ”use custom”

4. Choose your SD card as storage and press ”write”.

6

https://www.raspberrypi.com/software/

5. After it is finished writing, remove your SD card and insert it into the Rasp-
berry Pi.

The Raspberry Pi should now boot up with the FabArcade menu.

4.2 Standard Method

In this method, you will set up and configure the Raspberry Pi from the ground up.
Additional files are provided as help.

4.2.1 Installing Raspberry Pi OS

We will be using the Raspberry Pi Imager Utility.

1. Insert the SD card into the SD card slot of your laptop.

2. Press ”Choose OS”. Install the latest version of the Raspberry Pi OS 32-bit.

Figure 6: Select ”Raspberry Pi OS 32-bit” to install it.

3. Select your SD Card.

4. Click on the small settings wheel in utility. The advanced options can be
customized here.

5. Set the hostname to fabarcade, enable ssh, and set a username and password
for the Pi. Here, we will be using arcade as the username and password. Make
sure to set your password to something other than ”raspberry” which is the
default password for the pi.

7

Figure 7: Settings for advanced options

6. Configure the WIFI for the Pi so that you can have access to the internet and
set the Wireless LAN country. We will be going with DE. Remember to also
set the locale settings to the correct timezone and check in the autologin for
the Pi.

7. After you are done with all the configurations, write to the SD card. Click
”yes” to the prompt that says all the data from the SD card will be erased.

8. Once the write is successful, you can remove the SD card from the SD card
slot.

Figure 8: A pop-up window will inform you when the write was successful.

On the SD card, there should be two partitions now for the Raspberry Pi. If you
are on Windows, only the boot drive is visible.

In order to make sure that the Raspberry Pi works well with the Arduino Joy-
sticks that are being emulated, plug the SD card back into your laptop. Find the
cmdline.txt file in the boot drive and add the following to the end of the file, all in
one line:

usbhid.quirks =0x2341:0x8036 :0x040 usbhid.jspoll =1

8

You can also configure the WIFI for the Pi and add more networks to it using
wpa_supplicant.conf. You can add the wpa_supplicant.conf file to the boot
drive as well, allowing it to pick up the WIFI networks on first boot.
Now, insert the SD card back into the Raspberry Pi. Connect the Pi to power, an
external monitor, a mouse and a keyboard. The Pi should boot up and generate
SSH keys. This first boot might take some time.

4.2.2 First Login and Setup

Don’t worry if you do not have an external monitor for the Raspberry Pi. Grab
an Ethernet cable and connect the Pi to your laptop. We will ssh onto it. On
Linux or on the Windows Powershell you can ssh to the Pi using the command
ssh pi@[hostname/IP address]. Since we set the hostname of the Pi earlier, we
can use that to ssh into the ssh arcade@fabarcade. The terminal will now prompt
you to enter the password. The default password for the Raspberry Pi is ”raspberry”,
however in section 4.2.1, step 5, we changed it to arcade. Enter the command
sudo raspi-config to configure the Pi. Set the WIFI country to the current coun-
try you are occupying, so that the Pi connects to the WIFI. Additionally, you can
also set up your keyboard under localisation options. Set ctrl + alt + backspace

to terminate the X Server.
Next, you can set up the boot configurations. Type the command

sudo nano /boot/config.txt

In the file, uncomment the following lines:

hdmi_force_hotplug

framebuffer_width =1280

framebuffer_height =720

Figure 9: Uncomment these lines in config.txt.

Also make sure that disable overscan is enabled and not commented. Press ctrl-O
to write the file and press enter to save it.

4.2.3 Installing Software

The following software needs to be installed to make the FabArcade work as in-
tended. Before that, update and upgrade the Pi to the latest version first using the
following commands:

sudo apt update

sudo apt upgrade

9

To make things easier, we also recommend installing a better text editor like Vim
using the command sudo apt install vim. Next, install the software required by
pygame via

sudo apt install libgles2 -mesa -dev \

pkg -config libsdl2 -dev libsdl2 -image -dev \

libsdl2 -mixer -dev libsdl2 -ttf -dev

To make the evdev and legacy mode work correctly we need to add the following
udev rules to /etc/udev/rules.d/50-uinput.rules

KERNEL ==" uinput",GROUP=" udev_group", MODE ="0666"

Then, add arcade to the new udev_group via

sudo groupadd udev_group

sudo usermod -a -G udev_group arcade

To make it work correctly on a fresh boot, create /etc/modules-load.d/modules.conf
with the contents of uinput. To help test the joystick inputs, you can also in-
stall evtest so you are able to get the correct evinput key codes designated to
the button presses and axis from the FabArcade. For this, use the command
sudo apt install evtest.
Now that your Pi is up to date and equipped with the necessary tools, install the
rest of the software. This procedure is analogous to step 14 from section 3.3.2 of the
2013 FabArcade Guide. Use the following commands:

• sudo apt install xorg (enter Y when asked) – The X server is executed
from xinit and it is necessary for the graphical output. This will take some
time to install.

• sudo apt install openbox – Openbox is a window manager and will ensure
the focus of java applications. Note that it is usually installed by default on
Raspbian, such that the process might be aborted.

• sudo apt install xli – xli can draw an image on the root windows of the
X Server.

• sudo apt install xbindkeys (enter Y when asked) – We will use xbindkeys
to kill java games.

• sudo apt install libsdl1.2-dev (enter Y when asked) – This lib is used
by gngeo and advmame. The installation will take some time.

• sudo apt install samba samba-common-bin (enter Y when asked) – Samba
will make your Pi available to receive and serve files in the local network. It
is very useful if you want to transfer roms to you FabArcade.

• sudo apt install alsaplayer-common and alsaplayer-text (enter Y when
asked) – alsaplayer is used by some java games to play back audio files. The
installation will take some time.

• Optional: Install htop to see processes and how they perform, via sudo apt install htop

Additionally, install java for the old java based games via

sudo apt update

sudo apt install default -jdk

10

https://hci.rwth-aachen.de/index.php?option=com_attachments&task=download&id=2108

4.2.4 Setup the Files and User

Now copy the files that we have provided to FabArcade. Set the samba pass-
word of the user using the command smbpasswd -a arcade. Then, navigate to the
fab-arcade-menu/scripts in the folders provided and link the samba file. Now,
link the samba configuration file to our smb.conf. Again, this follows the 2013 FabAr-
cade Guide. First remove the old smb.conf and type sudo rm /etc/samba/smb.conf.
After that you should link the new file to this place by typing (one command):

sudo ln -s /home/arcade/fab -arcade -menu/scripts/smb.conf

/etc/samba/smb.conf

Next, we will set up the files required to make the menu boot up as soon as the Pi
boots up from text mode. First, change the Pi’s default login from Desktop Autologin
to Console Autologin by going to sudo raspi-config > System Options > Boot.
There, select B2 Console Autologin. Afterwards, navigate to our rc.local file in
scripts/rc.local in our codebase and modify the contents of /etc/rc.local on
the Pi to be the same as our rc.local. You can also replace the file present
in /etc/rc.local with our version and replace /etc/X11/xinit/xinitrc with
our xinitrc. Lastly, replace the files of /etc/xdg/openbox/autostart with our
autostart and similarly replace rc.xml in /etc/xdg/openbox/rc.xml with our
version of it as well. Reboot the Pi and the FabArcade menu should start up on
reboot.

11

https://hci.rwth-aachen.de/index.php?option=com_attachments&task=download&id=2108
https://hci.rwth-aachen.de/index.php?option=com_attachments&task=download&id=2108

5 Adding your own Games

If you want to add your own Pygames game to the FabArcade, then it needs to
fulfill the following requirements.

5.1 Project Structure and Management

The setup of your project has a huge impact on the ability to get reproducible builds
for your game. This is important as any change in specifications, dependencies, or
Python versions could lead to weird, hard to debug issues. It also makes it easier
for you to debug issues and solve them since it allows you to isolate the problems to
just your code and not your dependencies or anything else. Hence, it is important
that you set up the project as outlined below. These are also general best practices
for setting up a python project. We will talk about specifics further down but the
link below provides a good baseline for setting up your project.

Structuring Your Project — The Hitchhiker’s Guide to Python

Python has a feature called virtual environments, that you need for setting up
isolation for your project. It allows the user to run an isolated Python instance with
its own interpreter etc., making sure that other Python instances/versions are not
being used to run your Python project. It also allows you to isolate the project
dependencies installed using pip for your project from the global dependencies for
python that are installed system wide. Furthermore, it allows the menu to run the
game on the exact Python level that you specify. Our menu requires that a virtual
environment is present for a python game.

How to Set Up a Virtual Environment in Python – And Why It’s Useful

Use the command below to set up your virtual environment. Name your virtual
environment .venv.

python -m venv .venv

After you have the virtual environment set up, the next important thing to do is
to install your dependencies. You will notice that if you try and run your project,
it will not work. It will probably fail saying a module is missing in the virtual
environment. You need to install your dependencies separately in the virtual envi-
ronment and you also have to freeze those dependencies in a requirements.txt file.

User Guide - pip documentation v22.3.1

Use the command below.

\~ pip freeze > requirements.txt

This allows the installation of all of your dependencies, using a single command.

\~ pip install -r requirements.txt

Make sure that you have a .venv folder for the virtual environment, and a requirements.txt
file.

12

https://docs.python-guide.org/writing/structure/
https://www.freecodecamp.org/news/how-to-setup-virtual-environments-in-python/
https://pip.pypa.io/en/stable/user_guide/#requirements-files

5.2 Folder Structure and Manifest File

Please reference section 3.2 and section 3.3 respectively for the required structure
of your folder and manifest.json.

5.3 Image Requirements

The menu can display a different image in each of its views. To make things cohesive,
we set the following requirements for the images. If the manifest does not include
any images, a standard image will be generated so that the game can still be accessed
through the menu.
The first image is referred to as coverArt in the manifest will be used in the carousel
view:

• The cover art should be a square (500x500 pixels)

• The image should have the name of the game in it

• The image should be in .png format

Figure 10: This is what the carousel-style menu view looks like. The gray square
will contain the cover art of the game. Name and year will be adjusted accordingly.

The second image is simply referred to as image in the manifest. This image will
be used in the grid view:

• The image should be a square (140x140 pixels)

• The image should be in .png format

Figure 11: In the grid-style menu view, the images of twelve games are shown,
together with a description of the selected one on the right.

13

5.4 Additional Information

• The selection of whether the game is being played in single player or multi-
player mode should happen in your games.

• The player should be allowed to return to the home screen directly by pressing
the home button on the FabArcade.

• Make sure to check for coin inputs to start your game.

• It’s useful to test your games with an XBox Controller since that is exactly
how the FabArcade controls are being implemented.

14

	Disclaimer
	Getting Started
	Constants.py

	File Structures
	File Structure of the Home Folder on the Raspberry Pi
	File Structure of the Game Folders
	Manifest File

	Setting up the Raspberry Pi
	Novice Method
	Standard Method
	Installing Raspberry Pi OS
	First Login and Setup
	Installing Software
	Setup the Files and User

	Adding your own Games
	Project Structure and Management
	Folder Structure and Manifest File
	Image Requirements
	Additional Information

