Designing Interactive Systems I

GOMS, Interface Efficiency

Prof. Dr. Jan Borchers Media Computing Group RWTH Aachen University

Winter Semester '25/'26

https://hci.rwth-aachen.de/dis

Review

Evaluation Techniques

Evaluating Without Users

E1 Literature Review

E2 Cognitive Walkthrough

E3 Heuristic Evaluation

E4 Model-based Evaluation

• GOMS, HCI Design Patterns, ...

- Evaluation:
 - When, why, where?
 - Evaluation techniques?
- Participatory Design
- How to deal with users?

Qualitative

E5 Model Extraction

E6 Silent Observation

E7 Think Aloud

E8 Constructive Interaction

E9 Retrospective Testing

+ Interviews, questionnaires,...

E10 Controlled Experiments

Evaluating With Users

RWTHAACHEN UNIVERSITY

A Story

- In 1995, now-famous web guru Jakob Nielsen had less than 24 hours to recommend if adding three new buttons to Sun's home page was a good idea
 - Check out his <u>articles at the Nielsen Norman Group</u> for good (and often fun) web design advice
- He found that each new, but unused button costs visitors 0.5 million \$ per year
- 2 of the 3 new buttons were taken back out
- The method he used for his estimate: GOMS

GOMS

- Goals, Operators, Methods, Selection rules
- In Card, Moran, Newell: The Psychology of HCI, 1983
- To estimate execution and learning times before a system is built

Psychology of Human-Computer Interaction

STUART K. CARD THOMAS P. MORAN ALLEN NEWELL

GOMS: Components

- Goals describe users' end goals
 - Routine tasks, not too creative/ problem-solving
 - E.g., "copyedit manuscript"
 - Leads to hierarchy of subgoals
- Operators are elementary user actions
 - Key presses, menu selection, drag & drop, reading messages, gestures, speech commands, ...
 - Assign context-independent duration (in ms)

- Methods are "procedures" to reach a goal
 - Consist of subgoals and/or operators
- Selection rules
 - Which method to use for a (sub)goal
 - E.g., to delete some text (individual preferences apply!)

Sample Method and Operators in Copyediting

GOAL: HIGHLIGHT-ARBITRARY-TEXT

Α.	MOVE-CURSOR-TO-BEGINNING	1.10s
,		

B. CLICK-MOUSE-BUTTON 0.20s

C. MOVE-CURSOR-TO-END 1.10s

D. SHIFT-CLICK-MOUSE-BUTTON 0.48s

E. VERIFY-HIGHLIGHT 1.35s

GOMS Variants

- GOMS (Card, Moran, and Newell 1983)
 - Model of goals, operators, methods, selection rules
 - Predict time an experienced worker needs to perform a task in a given interface design
- Keystroke-level model (simplified version)
 - Comparative analyses of tasks that use mouse (GID) and keyboard
 - Correct ranking of performance times using different interface designs
- CPM-GOMS (critical path method)
 - Computes accurate absolute times
 - Considers overlapping time dependencies
- NGOMSL (natural GOMS language)
 - Considers non-expert behavior (e.g., learning times)

KLM: Keystroke-Level Model

- Execution time for a task = sum of times required to perform the serial elementary gestures of the task
- Typical gesture timings
 - Keying K = 0.2 s (tap key on keyboard, includes immediate corrections)
 - Pointing P = 1.1 s (point to a position on display)
 - Homing H = 0.4 sec (move hand from keyboard to mouse or v.v.)
 - Mentally preparing M = 1.35 sec (prepare for next step, routine thinking)
 - Responding R (time a user waits for the system to respond to input)
- Responding time R affects user actions
 - Causality breakdown after 100 ms
 - User will try again after 250 ms ⇒ R
 - Give feedback that input received & recognized

Keystroke-Level Calculation

- List required gestures
 - E.g., HK = move hand from mouse to keyboard and type a letter
- Compute mental preparation times Ms
 - Difficult: user stops to perform unconscious mental operations
 - Placing of Ms described by rules
- Add gesture timings
 - E.g., HMPK = H + M + P + K = 0.4 + 1.35 + 1.1 + 0.2 = 3.05 sec
- Rule terminology
 - String: sequence of characters
 - Delimiter: character marking beginning (end) of meaningful unit
 - Operators: K, P, and H
 - Argument: information supplied to a command

Rules for Placing Ms

- Rule 0, initial insertion for candidate Ms
 - Insert Ms in front of all Ks
 - Place Ms in front of Ps that select commands, but not Ps that select arguments for the commands
- Rule 1, deletion of anticipated Ms
 - Delete M between two operators if the second operator is fully anticipated in the previous one
 - E.g., $PMK \Rightarrow PK$
- Rule 2, deletion of Ms within cognitive units (contiguous sequence of typed characters that form a name)
 - In a string of MKs that form a cognitive unit, delete all Ms except the first
 - E.g., "dir" \Rightarrow MK MK MK \Rightarrow MK K

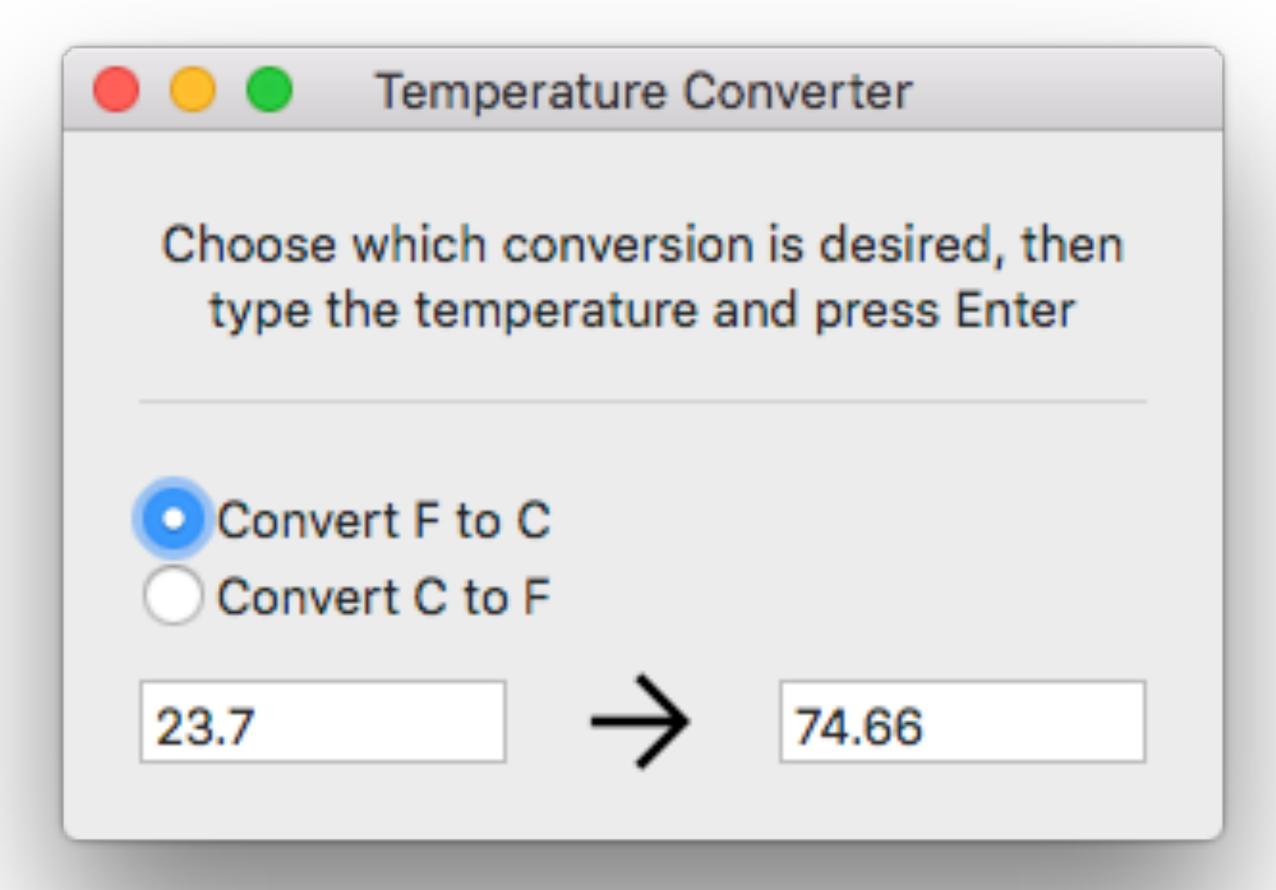
Rules for Placing Ms

- Rule 3, deletion of Ms before consecutive terminators
 - If K is redundant delimiter at end of a cognitive unit, delete the M in front of it
 - E.g., "bla→→" ⇒ M 3K MK MK ⇒ M 3K MK K
- Rule 4, deletion of Ms that are terminators of commands
 - If K is a delimiter that follows a constant string then delete the M in front of it (not for arguments or varying strings)
 - E.g., "clear→" ⇒ M K K K K K K MK ⇒ M K K K K K

Note that the 'clear' command does not take any arguments, and is therefore a constant string. 'Is,' on the other hand, can take arguments and Rule 4 cannot be applied there.

- Rule 5, deletion of overlapped Ms
 - Do not count any M that overlaps an R
 - E.g., user waiting for computer response

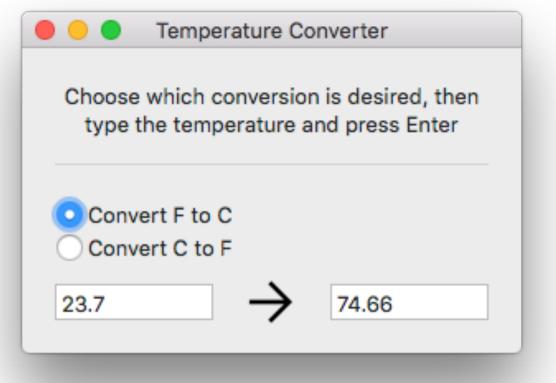
Exercise: Temperature Converter



- Convert from degrees Fahrenheit (F) to Celsius (C) or vice versa, requests equally distributed
- Use keyboard or mouse to enter temperature
- Assume active window awaiting input, an average of four typed characters (including point and sign), hands are on the keyboard, and no typing errors

- Task: create and analyze your own interface!
 - Keying K = 0.2 s, Pointing P = 1.1 s, Homing H = 0.4 s,
 Mentally preparing M = 1.35 s

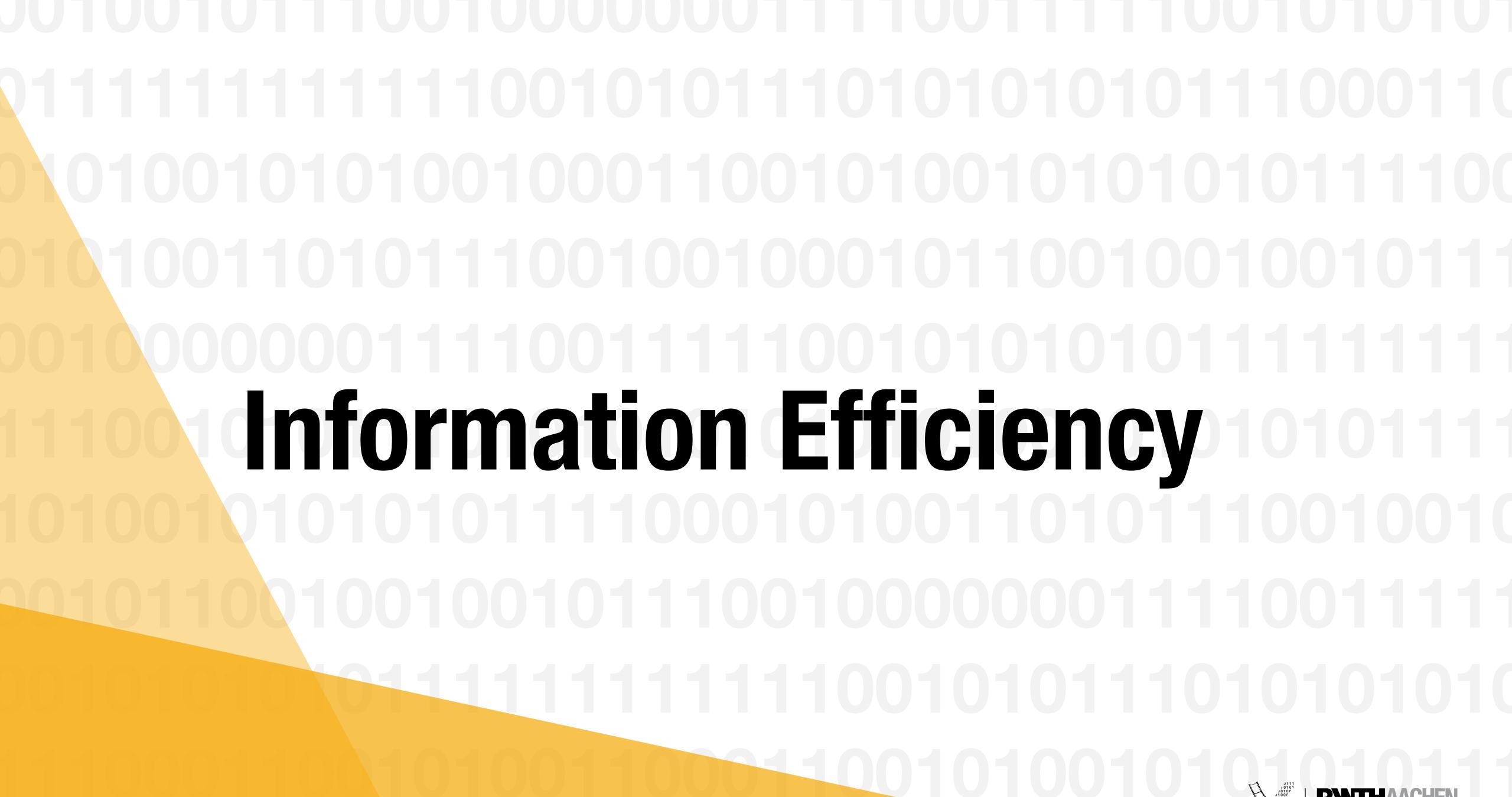
The Dialog Box Solution with Radio Buttons...



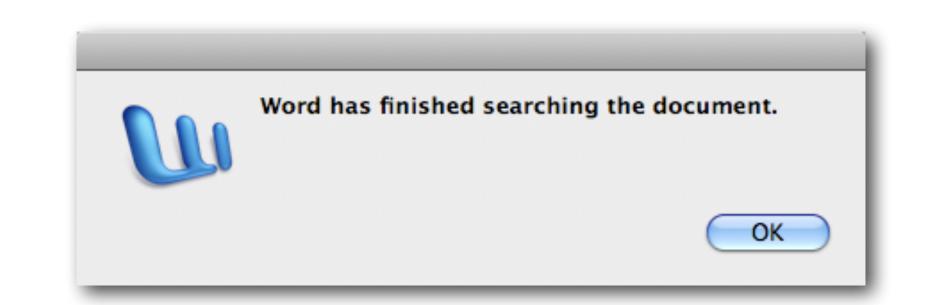
...And Its Keystroke-Level Model

- Case 1: select conversion direction
 - Move hand to mouse, point to desired button, click on radio button (HPK)

- Rule 0 (insert M's): (HMPMK HMKMKMKMK MK)
- Rule 1 (deletion of anticipated M's): (HMP_K HMKMKMK MK)
- Rule 2 (deletion of M's within cog. units): (HMP_K HMK_K_K_K MK)
- Result: HMPK HMKKKK MK
- Estimated time = 7.15 sec
- Case 2: correct conversion direction already selected
 - MKKKKMK = 3.7 sec
- Average time = (7.15 + 3.7) / 2 = 5.4 sec



GOMS Results


- Execution (& learning) times of trained, routine users for repetitive tasks (goals), leading to cost of training, daily use, errors
 - Can be linked to other costs (purchase, change, update system), resulting in \$\$\$ answers
 - Use to model alternative system offers
 - E.g., "new NYNEX computers cost \$2M/year more" [Gray93]
- Estimate effects of redesign
 - Training cost vs. long-term work time savings
- Starting point for task-oriented documentation
 - Online help, tutorials, ...
- Don't use for casual users or new UI techniques
 - Operator times not well defined

Measuring Interface Efficiency

- How fast can you expect an interface to be?
- Information as quantification of amount of data conveyed by a communication (Information theory)

- E.g., speech, messages sent upon click...
- Lower bound on amount of information required for task is independent of interface design
- Information-theoretic efficiency E = Minimal info required for the task
 Info supplied by user
 - $E \in [0, 1]$ (e.g., E = 0 for providing unnecessary information)
- Character efficiency = Minimal number of characters required for the task

 Number of characters entered in the UI

RWTHAACHEN UNIVERSITY

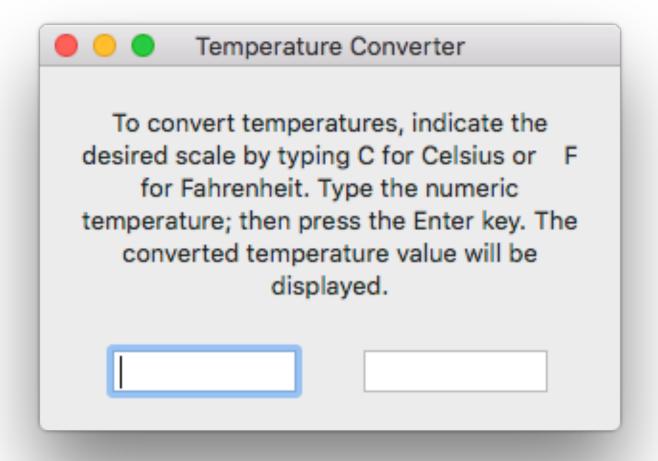
How to Measure Information Required

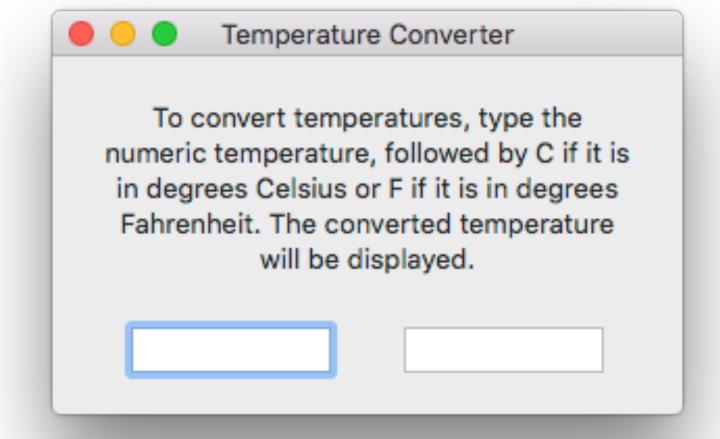
- Information is measured in bits
 - 1 bit represents choice between 2 alternatives
- n equally likely alternatives
 - Total information amount: $log_2(n)$
 - Information per alternative: $\frac{1}{n} \log_2(n)$

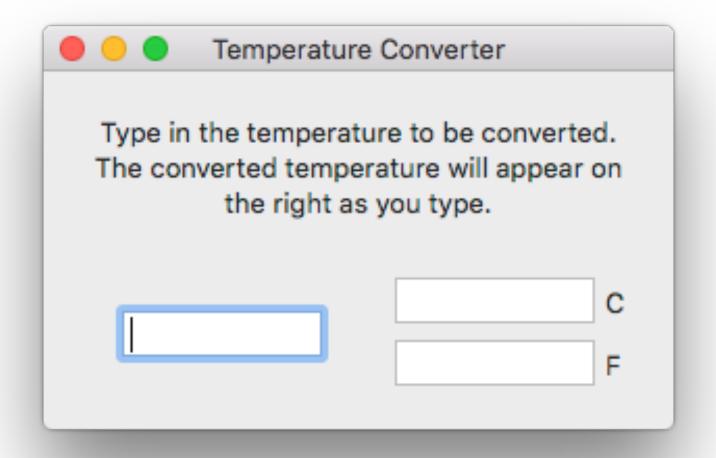
- n alternatives with different probabilities p(i)
 - Information per alternative:

$$p(i) \cdot \log_2(\frac{1}{p(i)})$$

- Total amount = sum over all alternatives
- Consider situation as a whole
 - Probability of messages required
 - Information measures freedom of choice (information ≠ meaning)




How Much Info Does Temperature Converter Need?


- Input assumptions (given)
 - 50% Fahrenheit, 50% Degree Celsius
 - 75% positive, 25% negative
 - only decimal input (no integer numbers)
 - All digits are equally likely
 - Only four characters input

Character Efficiency Of Temperature Converters

Type C or F, value, enter

MKKKKKMK

3.9s char. eff. 67%

Type value, then C or F

MKKKKMK

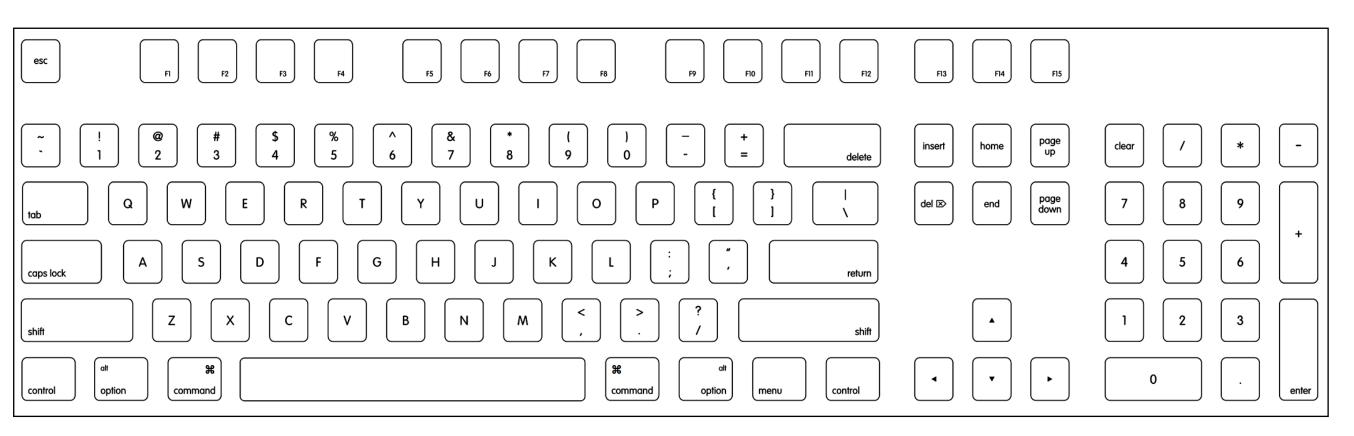
3.7s char. eff. 80%

Bifurcated

MKKKK

2.15s char. eff. 100%

Minimum for Temp. Converter



Numbers	Prob.	Values	p(i)	Information in bits	Overall (values \times information in bits)
dd	12,5 %	100	0,00125	0,012	1,2
-d.d	12,5 %	100	0,00125	0,012	1,2
.ddd	25 %	1000	0,00025	0,003	3
d.dd	25 %	1000	0,00025	0,003	3
dd.d	25 %	1000	0,00025	0,003	3

- \Rightarrow Minimal info required for the task = 11.4 bits/message
- \Rightarrow Simple approach: $4 \log_2(12) \approx 14$ bits

Temperature Converter With Diff. Keyboards

• Information efficiency:
$$E = \frac{11.4 \text{ bits}}{\text{Info supplied by user}}$$

• 128 keys standard keyboard (~5 bits/key in practice):
$$E = \frac{11.4}{4 \cdot 5} \approx 55 \%$$

• 16 keys numeric keypad: E =
$$\frac{11.4}{4 \cdot 4} \approx 70 \%$$

• 12 keys dedicated keypad: E =
$$\frac{11.4}{4 \cdot 3.6} \approx 80 \%$$

Summary

- Evaluation with and without users
 - Validity and reliability
- GOMS KLM to estimate execution and learning times
 - Keying, pointing, homing, mentally preparing, responding
 - Rules for placing Ms
- Information Efficiency

15 Years of Fab Lab Aachen!

We opened **Germany's first Fab Lab** in December 2009, and our **Aachen Maker Meetup** has also been running since that same year!

Learn how to print on our new **Bambu Labs 3D printers** in a Bambu Studio crash course and take home a 3D-printed token

- When: Wed Dec 18, 18:30-22:00
- Where: Im Süsterfeld 9, Second Floor, Right Wing (at Lehrstuhl Informatik 10)

More details at https://hci.rwth-aachen.de/amm
Register for the event there so we can order enough **free pizza** for all!

