Designing Interactive Systems I

Knowledge, Feedback, Errors, 7 Principles of Design

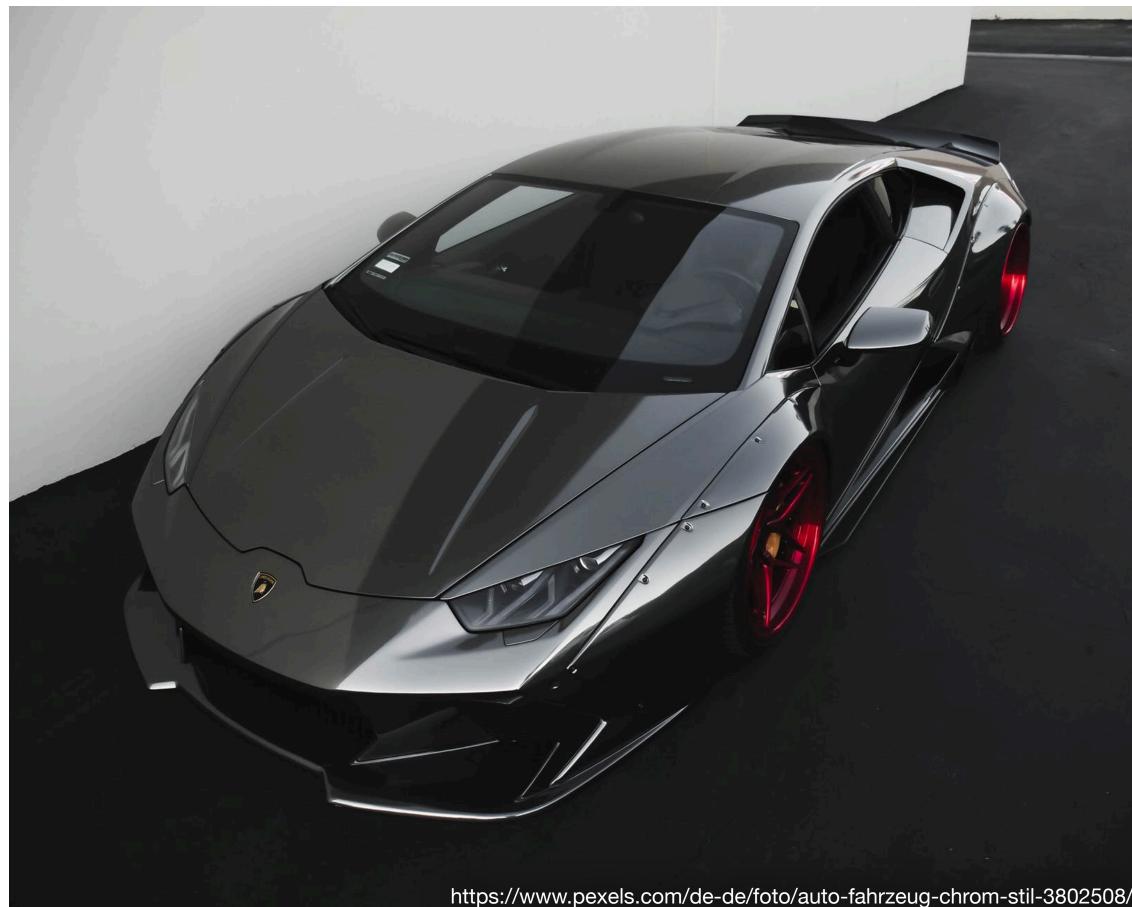
Prof. Dr. Jan Borchers Media Computing Group **RWTH Aachen University**

Winter Semester '24/'25

https://hci.rwth-aachen.de/dis

Review

- What are the Seven Stages of Action?
 - Variations? Gulfs? Design implications?
- What are mappings, natural mappings? Types?
- What are constraints? How do they differ from affordances? Types?


Three Levels of Processing

1. Visceral Level

- Fast, completely subconscious
- Reflex action, impulse
- E.g., vertigo, feeling of warmth and happiness when basking in the sun
- Not exactly 'emotions', more like hard-coded responses

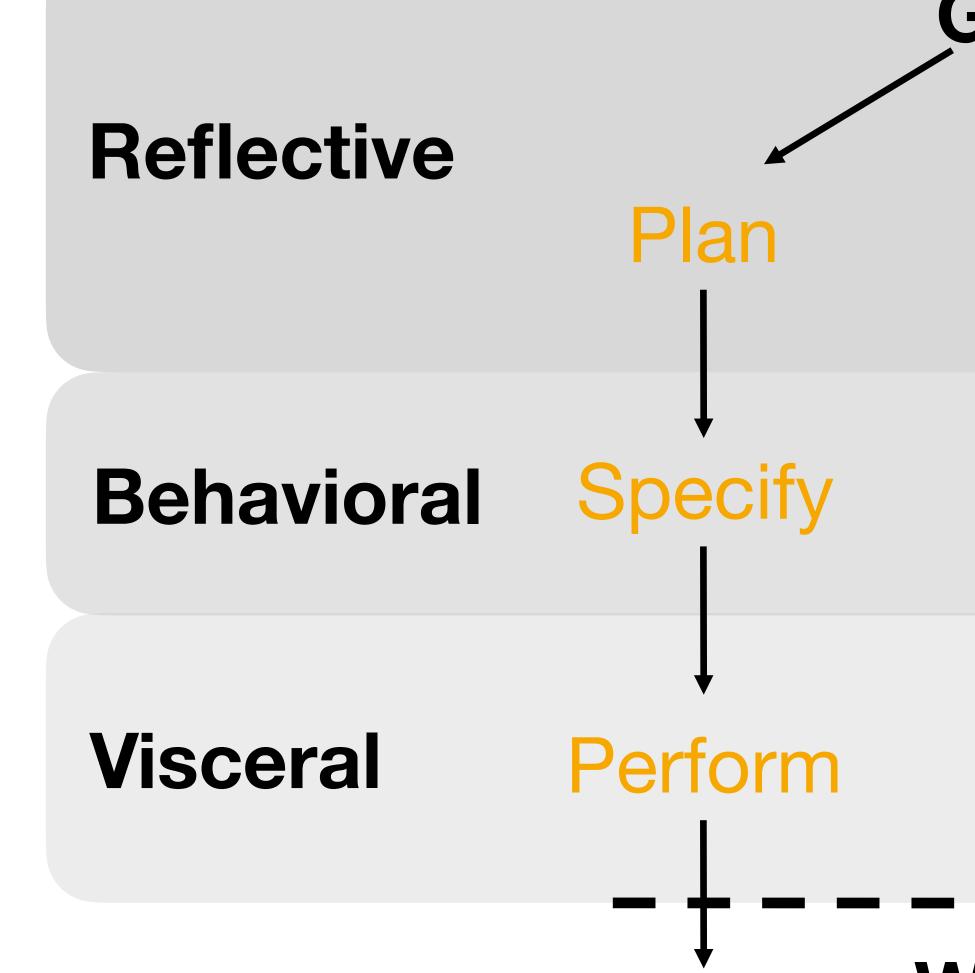
2. Behavioral Level

- The level of "classic usability"
- "Learned responses", triggered by situations matching a pattern
- Mostly subconscious, fast, lower level of emotions
- E.g., sports, walking, etc.
- Behavioral action is associated with an expectation
 - Hope or fear: Am I doing the right set of actions? (feedback)
 - Relief or despair: Did things work out in the way I intended? (conceptual model)

3. Reflective Level

- Conscious thinking about events that have occurred
- Slow, deep thinking
- Highest level of emotions, e.g., guilt, pride, blame, praise
- Retained in memory

Design in Three Levels of Processing

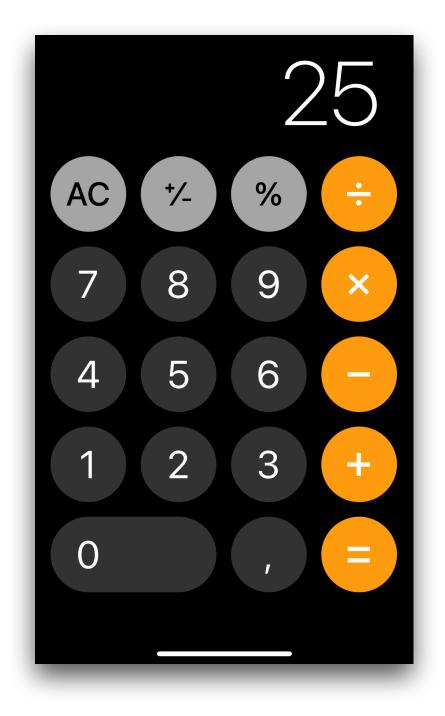

- Visceral design: Make products "feel" great
- Behavioral design: Follow standard c usability rules
- Reflective design: Create something connect to (e.g., culture, meaning of
- Excellent visceral and reflective designation users forgive you small usability mistakes

cognitive				
0	Fri Oct 31	8	52	
	Sat Nov 1	9	53	
users a product)	Sun Nov 2	10	54	
	Today	11	55	A
	Tue Nov 4	12	56	Ρ
	Wed Nov 5	1	57	
gn will make	Thu Nov 6	2	58	

Interplay with the Seven Stages of Action

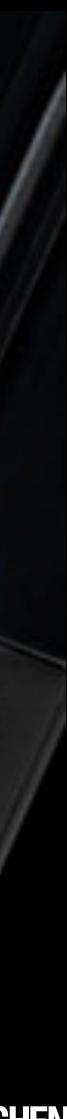
8 Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2024/25

Goal Compare Interpret Perceive


World

Knowledge in the World and in the Head

- Experiment:
 - Write down the digit layout of a telephone and a calculator keyboard



Knowledge in the World and in the Head

- Much knowledge is not in the head but in the world
- Despite less-than-perfect knowledge, precise behavior is possible—how?
- Behavior is determined by combination of knowledge in the world \bullet and in the head
- High precision of knowledge in the head is unnecessary
 - We only need the knowledge to be precise enough to distinguish the right behavior from the others possible
- Example: What is on the front and the back of the German 1 cent coin?

More Reasons Why This Works

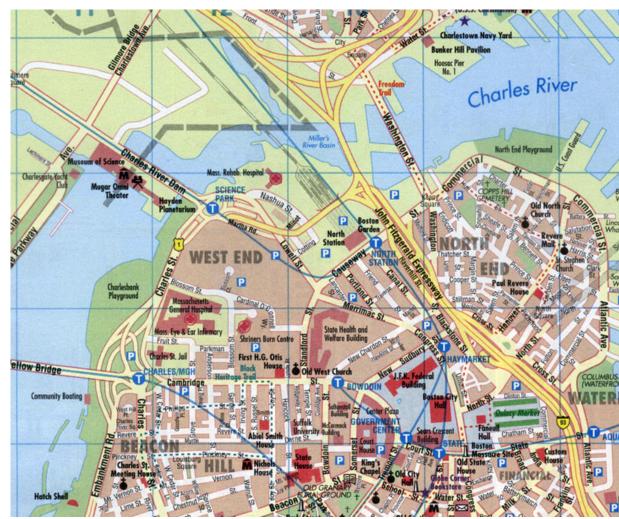
- Physical constraints are in effect
 - They limit the actions possible
 - Example: What can be moved/combined/ manipulated how when repairing your toaster?
- Cultural constraints are in effect
 - Social rules are learned once and are then applicable in many situations
 - Example: What to do upon entering a restaurant?
 - But: Cultural differences!

Knowledge in the Head & Constraints

- Traveling poets were able to recite poems with thousands of lines
 - Story works as semantic constraint
 - Rhyme works as "linguistic constraint"
- Constraints limit the amount of knowledge that needs to be learned
- Humans can minimize the amount/precision/depth of information to remember by arranging their environment and copying people's behavior
 - This can even help people cover missing abilities (dyslexia) or mental disabilities

Example: Typing

- Exercise:
 - What kind of knowledge do beginners/intermediate/expert typists use?
- Beginner: Knowledge in the world (keyboard labeling)
- Intermediate: Knowledge in the world (peripheral vision, feeling keys) and in the head (knowing location of important keys by heart)
- Expert: All knowledge in the head, no eye contact to keyboard necessary anymore (cost/benefit tradeoff)

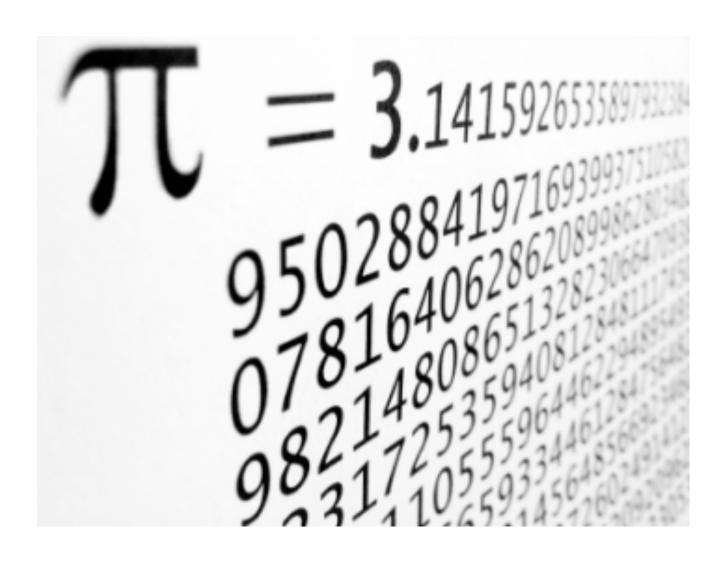


Example: City Map

- Exercise:
 - Try to write down exactly how to get from your home to the main university building
- Result:
 - Nobody has a perfect street/building map in their head; often entire parts are forgotten in route descriptions
 - Nevertheless we can get from A to B safely
 - Why? Signage and constraints (e.g., street numbers) supply external knowledge

Types of Knowledge

- Declarative knowledge ("what")
 - Facts (Bonn is southeast of Aachen)
 - Rules (stop at red traffic lights)
 - Easy to write down and teach (not learn!)
- Procedural knowledge ("how")
 - How to play an instrument
 - Hard to write down, subconscious
 - Hard to teach, best by demo/training
- Design can easily convey **declarative** knowledge



How Much Can We Remember?

- Random unconnected facts: little
 - "Press Ctrl-Alt-Delete to log on"
 - Not learnable per se, only via associations
 - Example: First 1,000 digits of π
 - If your recipe fails, you are lost
- Connected facts: more
 - Using associations
 - Example: motor bike directional indicator

The Daily Struggle

- Exercise:
 - How many online accounts with passwords do you have?
 - How many of these can you remember the passwords to?
 - For how many of them do you use the same password?
- Credit cards, bank accounts with bank codes, number plates, phone numbers/ addresses/birthdays/age of friends, clothing sizes,...
- As the password requirements become more complex, the system becomes less secure, why?
 - We tend to move these things from the head into the world

******* Usemame **** Password

Knowledge in the World: Characteristics

- Nothing to remember
- But: only there while you see it
- Especially difficult with things that are not very important to you
- Solution: Reminders
 - Paper agenda vs. PDA
 - Signal vs. message

Comparing Knowledge in the World and in the Head

- In the world:
 - Available as soon as visible
 - No learning needed
 - Low efficiency (interpreting needed)
 - High initial usability
 - Aesthetics difficult with much to display
- Remember: Natural mappings can save both learning and labeling

- In the head:
 - Less available
 - Less suitable for beginners
 - Harder to learn
 - But efficient
 - Invisible (less labels)

Decision Structures

- To reduce chance of error, use either shallow or narrow decision trees
 - Shallow: No planning required, e.g., ice cream parlor menu
 - Narrow: No deep thinking required, e.g., cook book instructions, start your car, motorway exits
- Wide and deep structures:
 - Games like chess, etc.
 - Designed to occupy the mind
- Subconscious thought is effortless, associative, pattern-matching
- Conscious thought is slow, serial, demanding

Feedback

22 Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2024/25

Feedback

- Feedback communicates to the user the current system state, success or failure of actions, and results of actions
- Good feedback:
 - Immediate
 - Informative and clear
 - The right amount
 - Prioritized

Sound

- Exercise:
 - readily available in class)
- Examples: Pen cap, hard drive, bike lock, car door, telephone, software
- Sound is a unique information channel
 - Omnidirectional: blessing and curse
- But: Use it to convey **meaning** if possible! \bullet
- More on sound in DIS 2

24 Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2024/25

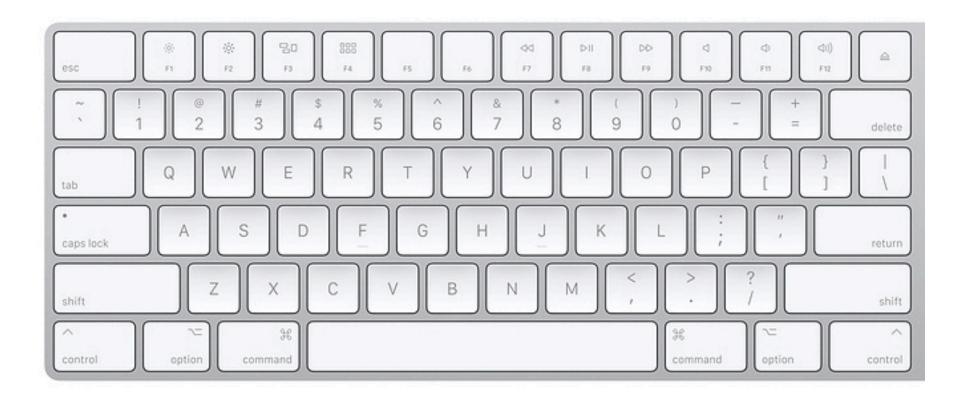
Listen to everyday objects and their acoustic feedback (or think about it if not

Visibility and Feedback

- Invisible On/Off switch on the rear
- VCRs without on-screen programming required lengthy programming instructions without much visible feedback
- A good display is great to improve visibility, and therefore often usability
- This becomes more feasible as technology progresses (Augmented Reality/Ubicomp)

26 Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2024/25

rear door handle


Guulietta

Feedforward

- Feedforward is to execution as feedback is to evaluation
- Information that helps you know what you can do
- Uses signifiers, constraints, and mappings
- Visual, but also haptic
 - Example: feeling keys before typing eyes-free on real vs. onscreen keyboard

Human Errors

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2024/25 28

Errors

- People make errors using everyday objects all the time
- Often blame themselves (untypical!)
- Often caused by taught helplessness
 - E.g., maths classes
- May lead to learned helplessness
 - Conspiracy of silence, depression
- models work better for everyday life
 - E.g., thermostats

Not only "dumb folk" have misconceptions of everyday life, and often those "wrong"

Mistakes

- Result of conscious decision/thinking
- Often major events
- Reasons: Wrong goal, wrong plan, leaping to wrong conclusions, false causalities
- Hard to detect

Classes of Mistakes

- Memory-lapse: memory fails during goal-setting, planning, or evaluation • E.g., a mechanical failure because the mechanic was distracted while
 - troubleshooting
- Knowledge-based: wrong evaluation of the situation because of incomplete knowledge
 - E.g., reporting the weight of an item in pounds instead of kilograms
- Rule-based: correct evaluation of the situation, but wrong course of action
 - E.g., blocking night club attendees from an emergency exit assuming they are avoiding payment

Slips

- Most everyday errors
- Small things going wrong
- Goal formed, but execution messed up
- Usually easy to discover
- Occur mostly in skilled behavior
- \bullet
- We can only do one conscious thing at once

Often caused by lack of attention, busy, tired, stressed, bored, more important things to do,...

Jef Raskin, The Humane Interface: Walking and eating and solving a maths problem

Classes of Slips

- Action-based: the wrong action is performed
 - E.g., pouring a cup of coffee and milk and placing the cup in the fridge
 - Types: capture slips, description-similarity slips, mode errors

- Memory-lapse: memory fails, and the intended action is not done or its results not evaluated
 - E.g., forgetting to lock the door when leaving the house

Action-based Slips

- Capture slips
 - Two action sequences with similar initial but different later sequence The sequence well practiced "captures" the unfamiliar one

 - Driving to work on a Sunday
 - Pocketing a borrowed pen

Action-based Slips

- Description-Similarity slip
 - Intention not described in enough detail, fitting 2 different action sequences
 - Often occurs if similar objects are physically close to each other (e.g., switches)
 - E.g., throwing t-shirt into toilet instead of laundry basket
 - Putting a lid onto the obviously wrong container
 - Pouring orange juice into your coffee pot

Action-based Slips

- Mode errors
 - expected
 - Who has seen this in their favorite text editor: ":wq"?
 - Happens whenever devices resort to modes to cope with more functions than controls
 - The most prominent problem in many software user interfaces

Triggering the wrong action because the device is in a different mode than

Install Adobe Flash Player wants to make changes. Type your password to allow this.					
Username:	Chris				
Password:				(
		(Cancel	ОК	

Memory-Lapse Slips

- Memory lapses are common causes of errors
- Caused by interruption through other people or devices
- Forgetting to complete action sequence
 - E.g., walking into your bedroom, then wondering what you wanted to do here
- Sometimes because main part of goal is accomplished
 - E.g., ATM card in machine, originals in copier
- Minimize by
 - reducing the number of required steps
 - providing reminders of the steps
 - applying forcing functions

In-Class Exercise: Slips

- Think of three examples of slips that happened to you. What type are they?
 - Capture (driving to work)
 - Description-similarity (shirt in toilet) \bullet
 - Mode (vi)
 - Memory-lapse (ATM)

Detecting Errors

- Detecting slips is easier than mistakes, but requires visible feedback lacksquare
 - Example: "Adjust the window!"
- Mistakes are hard to detect because nothing signals a wrong goal
- Problem: Finding the right level at which to correct
 - Are we doing this bottom-up?
 - The wrong car key
 - Confirmation is unlikely to catch errors
 - "Remove file blah.txt?"
 - Soft, reversible actions are better (e.g., trashcan), but people begin to rely on it

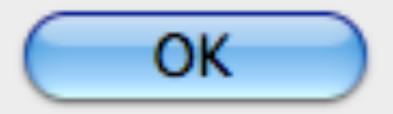
• Action-based slips are easier to detect that memory-lapses because the feedback is tangible

The Paradox of Automation

- When automation works, tasks are done as well or even better than by people
- The paradox is that automation can take over dull and simple tasks, but not complex ones
- When automation doesn't work, the results are unpredictable and could be dangerous, e.g., self-driven cars

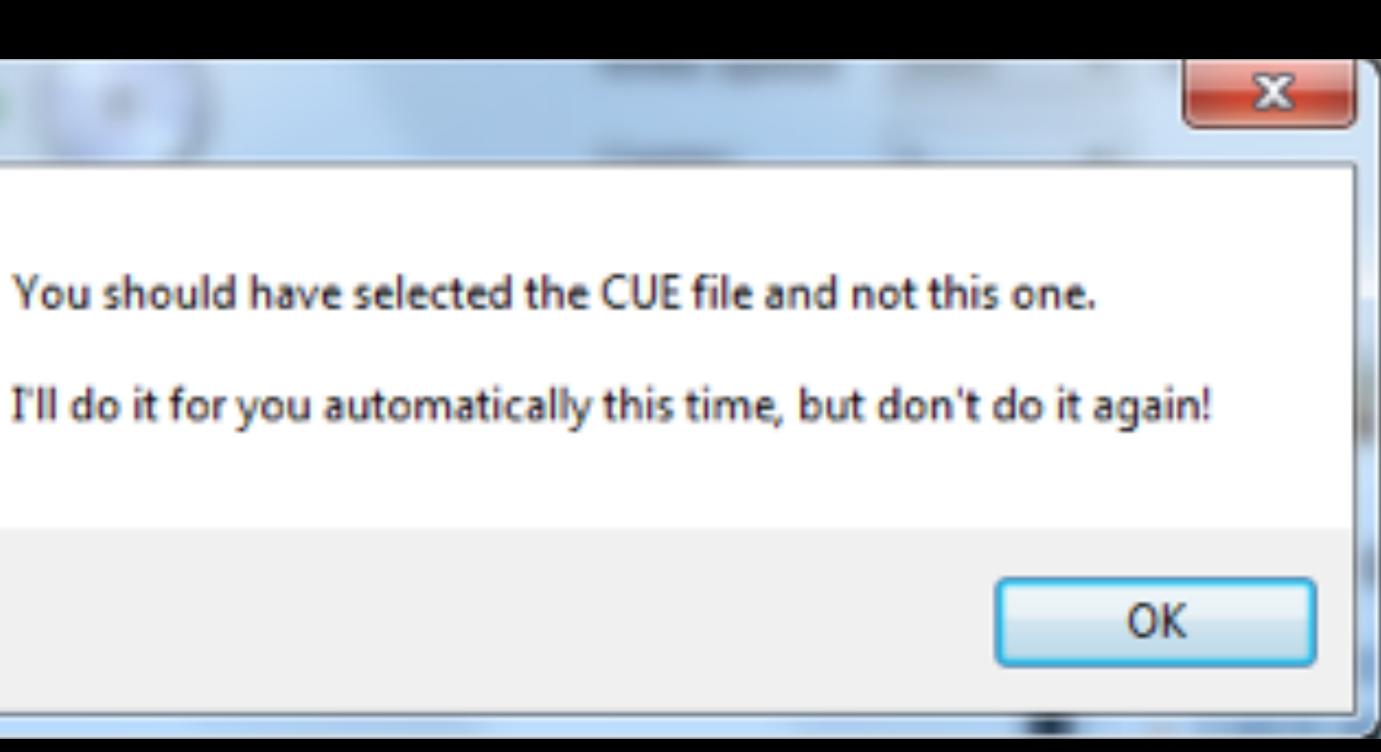
Designing for Error

- Assume all possible errors will be made
- Minimize the chance of errors occurring
- Minimize their effect if they are made
- Make them easy to detect
- Make them easy to reverse (undo)
- Watch people using your system (and their slips and mistakes)
- Don't punish, don't ignore
- Warning signals are ignored, warning features bypassed if inconvenient



Operation Could not be completed.

client-error-not-possible



ImgBurn

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2024/25 43

What to Do Now

• Read Norman's book until page 216

