Designing Interactive Systems I

GOMS, Interface Efficiency, Ten Golden Rules (Part 1)

Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

Winter Semester ’22/’23

https://hci.rwth-aachen.de/dis
Review

Evaluation Techniques

Evaluating Without Users
- E1 Literature Review
- E2 Cognitive Walkthrough
- E3 Heuristic Evaluation
- E4 Model-based Evaluation
 - GOMS, HCI Design Patterns, ...

Evaluating With Users

Qualitative
- E5 Model Extraction
- E6 Silent Observation
- E7 Think Aloud
- E8 Constructive Interaction
- E9 Retrospective Testing

Quantitative
- E10 Controlled Experiments

+ Interviews, questionnaires,...

• Evaluation:
 • When, why, where?
 • Evaluation techniques?

• Participatory Design

• How to deal with users?
GOMS
A Story

• In 1995, now-famous web guru Jakob Nielsen had less than 24 hours to recommend if adding three new buttons to Sun’s home page was a good idea.

 • Check out his articles at the Nielsen Norman Group for good (and often fun) web design advice.

• He found that each new, but unused button costs visitors 0.5 million $ per year.

• 2 of the 3 new buttons were taken back out.

• The method he used for his estimate: GOMS.
GOMS

- **Goals, Operators, Methods, Selection rules**
- In Card, Moran, Newell: The Psychology of HCI, 1983
- To estimate execution and learning times *before* a system is built
GOMS: Components

- **Goals** describe users’ end goals
 - Routine tasks, not too creative/problem-solving
 - E.g., “copyedit manuscript”
 - Leads to hierarchy of subgoals
- **Operators** are elementary user actions
 - Key presses, menu selection, drag & drop, reading messages, gestures, speech commands, …
 - Assign context-independent duration (in ms)
- **Methods** are “procedures” to reach a goal
 - Consist of subgoals and/or operators
- **Selection rules**
 - Which method to use for a (sub)goal
 - E.g., to delete some text (individual preferences apply!)
Sample Method and Operators in Copyediting

GOAL: HIGHLIGHT-ARBITRARY-TEXT

A. MOVE-CURSOR-TO-BEGINNING 1.10s
B. CLICK-MOUSE-BUTTON 0.20s
C. MOVE-CURSOR-TO-END 1.10s
D. SHIFT-CLICK-MOUSE-BUTTON 0.48s
E. VERIFY-HIGHLIGHT 1.35s
GOMS Variants

• **GOMS** (Card, Moran, and Newell 1983)
 - Model of goals, operators, methods, selection rules
 - Predict time an experienced worker needs to perform a task in a given interface design

• **Keystroke-level model** (simplified version)
 - Comparative analyses of tasks that use mouse (GID) and keyboard
 - Correct ranking of performance times using different interface designs

• **CPM-GOMS** (critical path method)
 - Computes accurate absolute times
 - Considers overlapping time dependencies

• **NGOMSL** (natural GOMS language)
 - Considers non-expert behavior (e.g., learning times)
KLM: Keystroke-Level Model

• Execution time for a task = sum of times required to perform the serial elementary gestures of the task

• Typical gesture timings

 • **Keying** $K = 0.2$ s (tap key on keyboard, includes immediate corrections)

 • **Pointing** $P = 1.1$ s (point to a position on display)

 • **Homing** $H = 0.4$ sec (move hand from keyboard to mouse or v.v.)

 • **Mentally preparing** $M = 1.35$ sec (prepare for next step, routine thinking)

 • **Responding** R (time a user waits for the system to respond to input)

• Responding time R effects user actions

 • Causality breakdown after 100 ms

 • User will try again after 250 ms $\Rightarrow R$

 • Give feedback that input received & recognized
Keystroke-Level Calculation

• List required gestures
 • E.g., HK = move hand from mouse to keyboard and type a letter

• Compute mental preparation times Ms
 • Difficult: user stops to perform unconscious mental operations
 • Placing of Ms described by rules

• Add gesture timings
 • E.g., HMPK = H + M + P + K = 0.4 + 1.35 + 1.1 + 0.2 = 3.05 sec

• Rule terminology
 • **String**: sequence of characters
 • **Delimiter**: character marking beginning (end) of meaningful unit
 • **Operators**: K, P, and H
 • **Argument**: information supplied to a command
Rules for Placing Ms

- Rule 0, initial insertion for candidate Ms
 - Insert Ms in front of all Ks
 - Place Ms in front of Ps that select commands, but not Ps that select arguments for the commands

- Rule 1, deletion of anticipated Ms
 - Delete M between two operators if the second operator is fully anticipated in the previous one
 - E.g., PMK \Rightarrow PK

- Rule 2, deletion of Ms within cognitive units (contiguous sequence of typed characters that form a name)
 - In a string of MKs that form a cognitive unit, delete all Ms except the first
 - E.g., “dir” \Rightarrow MK MK MK \Rightarrow MK K K
Rules for Placing Ms

• Rule 3, deletion of Ms before consecutive terminators
 • If K is redundant delimiter at end of a cognitive unit, delete the M in front of it
 • E.g., “bla” ⇒ M 3K MK MK ⇒ M 3K MK

• Rule 4, deletion of Ms that are terminators of commands
 • If K is a delimiter that follows a constant string then delete the M in front of it (not for arguments or varying strings)
 • E.g., “clear” ⇒ M K K K K K MK ⇒ M K K K K K

Note that the ‘clear’ command does not take any arguments, and is therefore a constant string. ‘ls,’ on the other hand, can take arguments and Rule 4 cannot be applied there.

• Rule 5, deletion of overlapped Ms
 • Do not count any M that overlaps an R
 • E.g., user waiting for computer response
Exercise: Temperature Converter

• Convert from degrees Fahrenheit (F) to Celsius (C) or vice versa, requests equally distributed

• Use keyboard or mouse to enter temperature

• Assume active window awaiting input, an average of four typed characters (including point and sign), and no typing errors

• Task: create and analyze your own interface!
The Dialog Box Solution with Radio Buttons...

![Temperature Converter Dialog](image)

Choose which conversion is desired, then type the temperature and press Enter.

- Convert F to C
- Convert C to F

Temperature Conversion Example:

- Input: 23.7°C
- Output: 74.66°F
...And Its Keystroke-Level Model

- Case 1: select conversion direction
 - Move hand to mouse, point to desired button, click on radio button (HPK)
 - Move hands back to keyboard, type four characters, tap enter (HPK HKKKK K)
 - Rule 0 (insert M’s): \((HMPMK HMKMKMKMK MK)\)
 - Rule 1 (deletion of anticipated M’s): \((HMP_K HMKMKMKMK MK)\)
 - Rule 2 (deletion of M’s within cog. units): \((HMP_K HMK_K_K_K MK)\)
 - Result: HMPK HMKKKK MK
 - Estimated time = 7.15 sec
- Case 2: correct conversion direction already selected
 - MKKKKKMK = 3.7 sec
 - Average time = \((7.15 + 3.7) / 2 = 5.4\) sec
GOMS Results

• Execution (& learning) times of trained, routine users for repetitive tasks (goals), leading to cost of training, daily use, errors
 • Can be linked to other costs (purchase, change, update system), resulting in $$$ answers
 • Use to model alternative system offers
 • E.g., “new NYNEX computers cost $2M/year more” [Gray93]

• Estimate effects of redesign
 • Training cost vs. long-term work time savings

• Starting point for task-oriented documentation
 • Online help, tutorials, …

• Don’t use for casual users or new UI techniques
 • Operator times not well defined
Information Efficiency
Measuring Interface Efficiency

• How fast can you expect an interface to be?

• **Information** as quantification of amount of data conveyed by a communication (Information theory)
 - E.g., speech, messages sent upon click…

• Lower bound on amount of information required for task is independent of interface design

• Information-theoretic efficiency $E = \frac{\text{Minimal info required for the task}}{\text{Info supplied by user}}$
 - $E \in [0, 1]$ (e.g., $E = 0$ for providing unnecessary information)

• **Character efficiency** = $\frac{\text{Minimal number of characters required for the task}}{\text{Number of characters entered in the UI}}$

[Jef Raskin: The Humane Interface, 2000]
Quantify Amount of Data

- Information is measured in bits
 - 1 bit represents choice between 2 alternatives
- n equally likely alternatives
 - Total information amount: $\log_2(n)$
 - Information per alternative: $\frac{1}{n} \log_2(n)$
- n alternatives with different probabilities $p(i)$
 - Information per alternative:
 $$p(i) \cdot \log_2\left(\frac{1}{p(i)}\right)$$
 - Total amount = sum over all alternatives
- Consider situation as a whole
 - Probability of messages required
 - Information measures freedom of choice (information ≠ meaning)
Example: Temperature Converter

• Input assumptions (given)
 • 50% Fahrenheit, 50% Degree Celsius
 • 75% positive, 25% negative
 • only decimal input (no integer numbers)
 • All digits are equally likely
 • Only four characters input
Example: Temperature Converter

Type C or F, value, enter

M K K K K M K

3.9s char. eff. 67%

Type value, then C or F

M K K K M K

3.7s char. eff. 80%

Bifurcated

M K K K K

2.15s char. eff. 100%
Example: Temperature Converter

Minimal info required for the task: $= 11.4$ bits/message

Simple approach: $4 \log_2(12) \approx 14$ bits

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Prob.</th>
<th>Values</th>
<th>$p(i)$</th>
<th>Information in bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.dd</td>
<td>12,5%</td>
<td>100</td>
<td>0,00125</td>
<td>0,012</td>
</tr>
<tr>
<td>-d.d</td>
<td>12,5%</td>
<td>100</td>
<td>0,00125</td>
<td>0,012</td>
</tr>
<tr>
<td>.ddd</td>
<td>25%</td>
<td>1000</td>
<td>0,00025</td>
<td>0,003</td>
</tr>
<tr>
<td>d.dd</td>
<td>25%</td>
<td>1000</td>
<td>0,00025</td>
<td>0,003</td>
</tr>
<tr>
<td>dd.d</td>
<td>25%</td>
<td>1000</td>
<td>0,00025</td>
<td>0,003</td>
</tr>
</tbody>
</table>

Overall (values \times information in bits):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.dd</td>
<td></td>
<td></td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>-d.d</td>
<td></td>
<td></td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>.ddd</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>d.dd</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>dd.d</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Example: Temperature Converter

- Information efficiency: \(E = \frac{11.4 \text{ bits}}{\text{Info supplied by user}} \)

- 128 keys standard keyboard (~5 bits/key in practice): \(E = \frac{11.4}{4 \cdot 5} \approx 55 \% \)

- 16 keys numeric keypad: \(E = \frac{11.4}{4 \cdot 4} \approx 70 \% \)

- 12 keys dedicated keypad: \(E = \frac{11.4}{4 \cdot 3.6} \approx 80 \% \)