Designing Interactive Systems I GOMS, Interface Efficiency, Ten Golden Rules (Part 1)

Prof. Dr. Jan Borchers Media Computing Group **RWTH Aachen University**

Winter Semester '22/'23

https://hci.rwth-aachen.de/dis

Review

Evaluating Without Users
E1 Literature Review
E2 Cognitive Walkthrough
E3 Heuristic Evaluation
E4 Model-based Evaluation
GOMS, HCI Design Patterns, ...

- Evaluation:
 - When, why, where?
 - Evaluation techniques?
- Participatory Design
- How to deal with users?

+ Interviews, questionnaires,...

A Story

- In 1995, now-famous web guru Jakob Nielsen had less than 24 hours to recommend if adding three new buttons to Sun's home page was a good idea.
 - Check out his <u>articles at the Nielsen Norman Group</u> for good (and often fun) web design advice
- He found that each new, but unused button costs visitors 0.5 million \$ per year.
- 2 of the 3 new buttons were taken back out.
- The method he used for his estimate: GOMS.

hutton ooto

GONS

- Goals, Operators, Methods, Selection rules
- In Card, Moran, Newell: The Psychology of HCI, 1983
- To estimate execution and learning times before a system is built

The Psychology Human-Computer Interaction

> STUART K. CARD THOMAS P. MORAN ALLEN NEWELL

> > EA

GOMS: Components

- Goals describe users' end goals
 - Routine tasks, not too creative/ problem-solving
 - E.g., "copyedit manuscript"
 - Leads to hierarchy of subgoals
- Operators are elementary user actions
 - Key presses, menu selection, drag & drop, reading messages, gestures, speech commands, ...
 - Assign context-independent duration (in ms)

- Methods are "procedures" to reach a goal
 - Consist of subgoals and/or operators
- Selection rules
 - Which method to use for a (sub)goal
 - E.g., to delete some text (individual preferences apply!)

Sample Method and Operators in Copyediting

- GOAL: HIGHLIGHT-ARBITRARY-TEXT
 - A. MOVE-CURSOR-TO-BEGINNING 1.10s
 - **B. CLICK-MOUSE-BUTTON** 0.20s
 - C. MOVE-CURSOR-TO-END 1.10s
 - D. SHIFT-CLICK-MOUSE-BUTTON 0.48s
 - E. VERIFY-HIGHLIGHT

1.35s

GOMS Variants

- GOMS (Card, Moran, and Newell 1983)
 - Model of goals, operators, methods, selection rules
 - Predict time an experienced worker needs to perform a task in a given interface design
- Keystroke-level model (simplified version)
 - Comparative analyses of tasks that use mouse (GID) and keyboard
 - Correct ranking of performance times using different interface designs
- CPM-GOMS (critical path method)
 - Computes accurate absolute times
 - Considers overlapping time dependencies
- NGOMSL (natural GOMS language)
 - Considers non-expert behavior (e.g., learning times)

KLM: Keystroke-Level Model

- Typical gesture timings
 - Keying K = 0.2 s (tap key on keyboard, includes immediate corrections)
 - Pointing P = 1.1 s (point to a position on display)
 - Homing H = 0.4 sec (move hand from keyboard to mouse or v.v.)
 - Mentally preparing M = 1.35 sec (prepare for next step, routine thinking)
 - Responding R (time a user waits for the system to respond to input)
- Responding time R effects user actions
 - Causality breakdown after 100 ms
 - User will try again after $250 \text{ ms} \Rightarrow \text{R}$
 - Give feedback that input received & recognized

• Execution time for a task = sum of times required to perform the serial elementary gestures of the task

Keystroke-Level Calculation

- List required gestures
 - E.g., HK = move hand from mouse to keyboard and type a letter
- Compute mental preparation times Ms
 - Difficult: user stops to perform unconscious mental operations
 - Placing of Ms described by rules
- Add gesture timings
 - E.g., HMPK = H + M + P + K = 0.4 + 1.35 + 1.1 + 0.2 = 3.05 sec
- Rule terminology
 - String: sequence of characters
 - **Delimiter:** character marking beginning (end) of meaningful unit
 - Operators: K, P, and H
 - Argument: information supplied to a command

Rules for Placing Ms

- Rule 0, initial insertion for candidate Ms
 - Insert Ms in front of all Ks
 - commands
- Rule 1, deletion of anticipated Ms
 - - E.g., $PMK \Rightarrow PK$
- a name)
 - In a string of MKs that form a cognitive unit, delete all Ms except the first •
 - E.g., "dir" \Rightarrow MK MK MK \Rightarrow MK KK

• Place Ms in front of Ps that select commands, but not Ps that select arguments for the

• Delete M between two operators if the second operator is fully anticipated in the previous one

• Rule 2, deletion of Ms within cognitive units (contiguous sequence of typed characters that form

Rules for Placing Ms

- Rule 3, deletion of Ms before consecutive terminators
 - If K is redundant delimiter at end of a cognitive unit, delete the M in front of it
 - E.g., "bla," \Rightarrow M 3K MK MK \Rightarrow M 3K MK K
- Rule 4, deletion of Ms that are terminators of commands
 - varying strings)
 - E.g., "clear," \Rightarrow M K K K K K M K \Rightarrow M K K K K K K 'ls,' on the other hand, can take arguments and Rule 4 cannot be applied there.
- Rule 5, deletion of overlapped Ms
 - Do not count any M that overlaps an R
 - E.g., user waiting for computer response

• If K is a delimiter that follows a constant string then delete the M in front of it (not for arguments or

Note that the 'clear' command does not take any arguments, and is therefore a constant string.

Exercise: Temperature Converter

- Convert from degrees Fahrenheit (F) to Celsius (C) or vice versa, requests equally distributed
- Use keyboard or mouse to enter temperature
- Assume active window awaiting input, an average of four typed characters (including point and sign), and no typing errors

• Task: create and analyze your own interface!

The Dialog Box Solution with Radio Buttons...

23.7

Temperature Converter

Choose which conversion is desired, then type the temperature and press Enter

...And Its Keystroke-Level Model

- Case 1: select conversion direction
 - Move hand to mouse, point to desired button, click on radio button (HPK)
 - Move hands back to keyboard, type four characters, tap enter (HPK HKKKK K)
 - (HMPMK HMKMKMKMK MK) • Rule 0 (insert M's):
 - Rule 1 (deletion of anticipated M's): (HMP_K HMKMKMKMK MK)
 - Rule 2 (deletion of M's within cog. units):
 - Result: HMPK HMKKKK MK
 - Estimated time = 7.15 sec
- Case 2: correct conversion direction already selected
 - MKKKKMK = 3.7 sec
- Average time = (7.15 + 3.7) / 2 = 5.4 sec

(HMP K HMK K K K MK)

GOMS Results

- Execution (& learning) times of trained, routine users for repetitive tasks (goals), leading to cost of training, daily use, errors
 - Can be linked to other costs (purchase, change, update system), resulting in \$\$\$ answers
 - Use to model alternative system offers
 - E.g., "new NYNEX computers cost \$2M/year more" [Gray93]
- Estimate effects of redesign
 - Training cost vs. long-term work time savings
- Starting point for task-oriented documentation
 - Online help, tutorials, ...
- Don't use for casual users or new UI techniques
 - Operator times not well defined

HEN SITY

Information Efficiency 10101111

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2022/23 17

RWTHAACHEN

Measuring Interface Efficiency

- How fast can you expect an interface to be?
- Information as quantification of amount of data conveyed by a communication (Information theory)
 - E.g., speech, messages sent upon click...
- Lower bound on amount of information required for task is independent of interface design

- Information-theoretic efficiency E =
 - $E \in [0, 1]$ (e.g., E = 0 for providing unnecessary information)
- Minimal number of characters required for the task Character efficiency = Number of characters entered in the UI

- Minimal info required for the task
 - Info supplied by user

[Jef Raskin: The Humane Interface, 2000]

Quantify Amount of Data

- Information is measured in bits
 - 1 bit represents choice between 2 alternatives
- *n* equally likely alternatives
 - Total information amount: $\log_2(n)$
 - Information per alternative: $-\log_2(n)$ N

- *n* alternatives with different probabilities p(i)•
 - Information per alternative: $p(i) \cdot \log_2(\frac{1}{p(i)})$
 - Total amount = sum over all alternatives
- Consider situation as a whole \bullet
 - Probability of messages required
 - Information measures freedom of choice (information \neq meaning)

- Input assumptions (given)
 - 50% Fahrenheit, 50% Degree Celsius
 - 75% positive, 25% negative
 - only decimal input (no integer numbers)
 - All digits are equally likely
 - Only four characters input

Temperature Converter	🔴 😑 🌖 Temp
To convert temperatures, indicate the desired scale by typing C for Celsius or F for Fahrenheit. Type the numeric temperature; then press the Enter key. The converted temperature value will be displayed.	To convert numeric tempe in degrees Ce Fahrenheit. T wi
Type C or F, value, enter	Type va
ΜΚΚΚΚΜΚ	MK

3.9s char. eff. 67%

3.7s

21 Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2022/23

Numbers	Prob.	Values	p(<i>i</i>)	Information in bits	Overall (values \times information in bits)
dd	12,5 %	100	0,00125	0,012	1,2
-d.d	12,5 %	100	0,00125	0,012	1,2
.ddd	25 %	1000	0,00025	0,003	3
d.dd	25 %	1000	0,00025	0,003	3
dd.d	25 %	1000	0,00025	0,003	3

\Rightarrow Minimal info required for the task = 11.4 bits/message

 \Rightarrow Simple approach: $4 \log_2(12) \approx 14$ bits

- Information efficiency: $E = \frac{11.4 \text{ bits}}{\text{Info supplied by user}}$
 - 128 keys standard keyboard (~5 bits/key in prac

• 16 keys numeric keypad: $E = \frac{11.4}{4 \cdot 4} \approx 70\%$

12 keys dedicated keypad: E = $\frac{11.4}{4 \cdot 3.6} \approx 80\%$

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2022/23 23

$$f(x) \in E = \frac{11.4}{4 \cdot 5} \approx 55\%$$

