Designing Interactive Systems I

Controlled Experiments, GOMS, Interface Efficiency

Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

Winter Semester '20/'21

https://hci.rwth-aachen.de/dis
Review: Evaluation Techniques

Evaluating Without Users
E1 Literature Review
E2 Cognitive Walkthrough
E3 Heuristic Evaluation
E4 Model-based Evaluation (GOMS,...)

Evaluating With Users
Qualitative
E5 Model Extraction
E6 Silent Observation
E7 Think Aloud
E8 Constructive Interaction
E9 Retrospective Testing

Quantitative
E10 Controlled Experiments

+ Interviews, questionnaires,...
Review: Controlled Experiments (E10)

- Quantitative, empirical method

- Used to identify the cause of a situation or set of events
 - “X is responsible for Y”
 - Directly manipulate and control variables

- Correlation does not imply causality
 - Example: relationship between typing speed and time spent playing games

- Use a controlled experiment to verify an observation, a correlation, or a “hunch”
Review: Basic Experimental Designs

- **Between-groups design**
 - Each subject only does one variant of the experiment
 - There are at least 2 groups to isolate effect of manipulation:
 - Treatment group and control group
 - No learning effects across variants
 - Good for tasks that are simple and involve limited cognitive processes, e.g., tapping, dragging, or visual search
 - But: requires more users

- **Within-groups design**
 - Each subject does all variants of the experiment
 - Fewer users required, individual differences canceled out
 - Good for complex tasks, e.g., typing, reading, composition, problem solving
 - But: learning effects may occur
Within-Groups Design: Order Effect

• The order of presenting the treatments (IV levels) might affect the dependent variable
 • Learning effect
 • Fatigue effect

• Solutions
 • Rest period between treatments
 • **Counterbalancing**: all possible orders of treatments are included — but: \(O(n!) \)
 • **Latin Square**: A limited set of orders, \(O(n) \)
Latin Square

- Each condition appears at each ordinal position
- Each condition precedes and follows each other condition once
- Example for six treatments (A, B, C, D, E, F)

```
1 A B F C E D
2 B C A D F E
3 C D B E A F
4 D E C F B A
5 E F D A C B
6 F A E B D C
```
Randomization

- Randomly assign treatments to participants
- Prevents systematic bias
- But: randomization ≠ counterbalancing
 - With small numbers, randomization might not cover all combinations
Analyzing Results

- Do statistical analysis using well-defined test methods
 - E.g., Student’s t-test, ANOVA (analysis of variance), regression analysis, Wilcoxon or Mann/Whitney test, χ^2 test

- Choice depends on number, continuity, and assumed distribution of variables, and the desired form of the result
 - Results can be simple “yes/no”, size of difference, or confidence of estimate
Making Your Evaluation Valid and Reliable

• Validity: How accurate is your result?

• Reliability: How consistent or stable is your result?

• These apply to all evaluations — not just controlled experiments
Validity

- **Construct validity**: Were variables defined concretely enough to be manipulated or measured?
 - ✗ Speed
 - ✓ Time since the cursor leaves the start until it reaches the target

- **Internal validity**: Is the causal inference logical? How strong is it?
 - Usually higher in experimental methods than descriptive or correlational methods

- **External validity**: Can the result be generalized to other populations and settings?
 - Evaluations in the lab usually have lower external validity than those in the field
Reliability

• Can the experiment be replicated by other research teams in other locations and yield results that are consistent, dependable, and stable?

• Is the experimental procedure clearly described in the paper/report?

• Other causes of fluctuation
 • **Random errors:** cannot be eliminated — testing with more samples can help
 • **Systematic errors:** push the measured value into the same direction, caused by:
 • Measurement instruments
 • Experimental procedures: not randomized, not counterbalanced, instructions are biased
 • Participants: the recruitment process may filter participants unevenly
 • Experimenter behavior: bias in spoken language during experiment
 • Environmental factors: physical environment might favor one treatment over others
Other Evaluation Methods

• Before and during the design, with users:
 • Questionnaires
 • Personal interviews

• After completing a project:
 • Email bug report forms
 • Hotlines
 • Retrospective interviews and questionnaires
 • Field observations (observe running system in real use)
Dealing with Users

• Tests are uncomfortable for the participant
 • Pressure to perform, mistakes, competitive thinking

• So treat participants with respect at all times!
 • Before, during, and after the test
Before the Test

• Do not waste the users’ time
 • Run pilot tests before
 • Have everything ready when users arrive

• Make sure users feel comfortable
 • Stress that the system is being tested, not them
 • Confirm that the system may still have bugs
 • Let users know they can stop at any time

• Guarantee privacy
 • Individual test results will be handled as private

• Inform user
 • Explain what is being recorded
 • Answer any other questions (but do not bias)

• Only use volunteers (consent form)
During the Test

- Do not waste the users’ time
 - Do not let them complete unnecessary tasks
- Guarantee privacy
 - Never let users’ boss (or others) watch

- Make sure users are comfortable
 - Early success in the task possible
 - Relaxed atmosphere
 - Breaks, coffee, …
 - Hand out test tasks one by one
 - Never show you are unsatisfied with what the user does
 - Avoid interruptions (cell phones, …)
 - Abort the test if it becomes too uncomfortable
After the Test

• Make sure the users are comfortable
 • Stress that the user has helped finding ways to improve the system

• Inform
 • Answer any questions that could have changed the experiment if answered before the test

• Guarantee privacy
 • Never publish results that can be associated with specific individuals
 • Show recordings outside your own group only with written consent from users
Evaluation Techniques

Evaluating Without Users
- E1 Literature Review
- E2 Cognitive Walkthrough
- E3 Heuristic Evaluation
- E4 Model-based Evaluation (GOMS,...)

Evaluating With Users
- Qualitative
 - E5 Model Extraction
 - E6 Silent Observation
 - E7 Think Aloud
 - E8 Constructive Interaction
 - E9 Retrospective Testing
 + Interviews, questionnaires,...
- Quantitative
 - E10 Controlled Experiments
GOMS
A Story

• In 1995, now-famous web guru Jakob Nielsen had less than 24 hours to recommend if adding three new buttons to Sun’s home page was a good idea.

 • Check out his “Alertbox” online column for good (and often fun) web design advice

• He found that each new, but unused button costs visitors .5 million $ per year.

• 2 of the 3 new buttons were taken back out.

• The method he used for his estimate: GOMS.
GOMS

- Goals, Operators, Methods, Selection rules
- Card, Moran, Newell: The Psychology of HCI, 1983
- To estimate execution and learning times before a system is built
GOMS: Components

• **Goals** describe user’s end goals
 • Routine tasks, not too creative/problem-solving
 • E.g., “copyedit manuscript”
 • Leads to hierarchy of subgoals

• **Operators** are elementary user actions
 • Key presses, menu selection, drag & drop, reading messages, gestures, speech commands, …
 • Assign context-independent duration (in ms)

• **Methods** are “procedures” to reach a goal
 • Consist of subgoals and/or operators

• **Selection rules**
 • Which method to use for a (sub)goal
 • E.g., to delete some text (individual preferences apply!)
Sample Method and Operators

GOAL: HIGHLIGHT-ARBITRARY-TEXT

A. MOVE-CURSOR-TO-BEGINNING 1.10s
B. CLICK-MOUSE-BUTTON 0.20s
C. MOVE-CURSOR-TO-END 1.10s
D. SHIFT-CLICK-MOUSE-BUTTON 0.48s
E. VERIFY-HIGHLIGHT 1.35s
GOMS Variants

- **GOMS** (Card, Moran, and Newell 1983)
 - Model of goals, operators, methods, selection rules
 - Predict time an experienced worker needs to perform a task in a given interface design
- **Keystroke-level model** (simplified version)
 - Comparative analyses of tasks that use mouse (GID) and keyboard
 - Correct ranking of performance times using different interface designs
- **CPM-GOMS** (critical path method)
 - Computes accurate absolute times
 - Considers overlapping time dependencies
- **NGOMSL** (natural GOMS language)
 - Considers non-expert behavior (e.g., learning times)
Keystroke-Level Model

• Execution time for a task = sum of times required to perform the serial elementary gestures of the task

• Typical gesture timings
 • **Keying** $K = 0.2$ sec (tap key on keyboard, includes immediate corrections)
 • **Pointing** $P = 1.1$ sec (point to a position on display)
 • **Homing** $H = 0.4$ sec (move hand from keyboard to mouse or v.v.)
 • **Mentally preparing** $M = 1.35$ sec (prepare for next step, routine thinking)
 • **Responding** R (time a user waits for the system to respond to input)

• Responding time R effects user actions
 • Causality breakdown after 100 ms
 • User will try again after **250 ms $\Rightarrow R$**
 • Give feedback that input received & recognized
Keystroke-Level Calculation

- List required gestures
 - E.g., HK = move hand from mouse to keyboard and type a letter

- Compute mental preparation times M_s
 - Difficult: user stops to perform unconscious mental operations
 - Placing of M_s described by rules

- Add gesture timings
 - E.g., HMPK = $H + M + P + K = 0.4 + 1.35 + 1.1 + 0.2 = 3.05$ sec

- Rule terminology
 - **String**: sequence of characters
 - **Delimiter**: character marking beginning (end) of meaningful unit
 - **Operators**: K, P, and H
 - **Argument**: information supplied to a command
Rules for Placing Ms

• Rule 0, initial insertion for candidate Ms
 • Insert Ms in front of all Ks
 • Place Ms in front of Ps that select commands, but not Ps that select arguments for the commands

• Rule 1, deletion of anticipated Ms
 • Delete M between two operators if the second operator is fully anticipated in the previous one
 • E.g., PMK ⇒ PK

• Rule 2, deletion of Ms within cognitive units (contiguous sequence of typed characters that form a name)
 • In a string of MKs that form a cognitive unit, delete all Ms except the first
 • E.g., “ls-” ⇒ MK MK MK ⇒ MK K MK
Rules for Placing Ms

• Rule 3, deletion of Ms before consecutive terminators
 • If K is redundant delimiter at end of a cognitive unit, delete the M in front of it
 • E.g., “bla" ⇒ M 3K MK MK ⇒ M 3K MK K

• Rule 4, deletion of Ms that are terminators of commands
 • If K is a delimiter that follows a constant string then delete the M in front of it (not for arguments or varying strings)
 • E.g., “clear" ⇒ M K K K K K MK ⇒ M K K K K K
 Note that the ‘clear’ command does not take any arguments, and is therefore a constant string. ‘ls,’ on the other hand, can take arguments and Rule 4 cannot be applied there.

• Rule 5, deletion of overlapped Ms
 • Do not count any M that overlaps an R
 • E.g., user waiting for computer response
Exercise: Temperature Converter

• Convert from degrees Fahrenheit (F) to Celsius (C) or vice versa, requests equally distributed

• Use keyboard or mouse to enter temperature

• Assume active window awaiting input, an average of four typed characters (including point and sign), and no typing errors

• Task: create and analyze your own interface!
The Dialog Box Solution with Radio Buttons…

Choose which conversion is desired, then type the temperature and press Enter

Convert F to C Convert C to F

23.7 → 74.66
...And Its Keystroke-Level Model

- Case 1: select conversion direction
 - Move hand to mouse, point to desired button, click on radio button (HPK)
 - Move hands back to keyboard, type four characters, tap enter (HPK HKKKK K)
 - Rule 0 (insert M’s): (HMPMK HMKMKMKMKMK MK)
 - Rule 1 (deletion of anticipated M’s): (HMP_K HMKMKMKMKMK MK)
 - Rule 2 (deletion of M’s within cog. units): (HMP_K HMK_K_K_K MK)
 - Result: HMPK HMKKKK MK
 - Estimated time = 7.15 sec

- Case 2: correct conversion direction already selected
 - MKKKKMK = 3.7 sec
 - Average time = (7.15 + 3.7) / 2 = 5.4 sec
GOMS Results

• Execution (& learning) times of trained, routine users for repetitive tasks (goals), leading to cost of training, daily use, errors
 • Can be linked to other costs (purchase, change, update system), resulting in $$$ answers
 • Use to model alternative system offers
 • E.g., “new NYNEX computers cost $2M/year more” [Gray93]
• Estimate effects of redesign
 • Training cost vs. long-term work time savings
• Starting point for task-oriented documentation
 • Online help, tutorials, …
• Don’t use for casual users or new UI techniques
 • Operator times not well defined
Information Efficiency
Measuring Interface Efficiency

• How fast can you expect an interface to be?

• Information as quantification of amount of data conveyed by a communication (Information theory)
 • E.g., speech, messages sent upon click…

• Lower bound on amount of information required for task is independent of interface design

• Information-theoretic efficiency $E = \frac{\text{Minimal info required for the task}}{\text{Info supplied by user}}$
 • $E \in [0, 1]$ (e.g., $E = 0$ for providing unnecessary information)

• Character efficiency $= \frac{\text{Minimal number of characters required for the task}}{\text{Number of characters entered in the UI}}$

[Jef Raskin: The Humane Interface, 2000]
Quantify Amount of Data

- Information is measured in bits
 - 1 bit represents choice between 2 alternatives
- n equally likely alternatives
 - Total information amount: $\log_2(n)$
 - Information per alternative: $\frac{1}{n} \log_2(n)$
- n alternatives with different probabilities $p(i)$
 - Information per alternative:
 $$\log_2\left(\frac{1}{p(i)}\right)$$
 - Total amount = sum over all alternatives
- Consider situation as a whole
 - Probability of messages required
 - Information measures freedom of choice (information \neq meaning)
Example: Temperature Converter

- Input assumptions (given)
 - 50% Fahrenheit, 50% Degree Celsius
 - 75% positive, 25% negative
 - only decimal input (no integer numbers)
 - All digits are equally likely
 - Only four characters input
Example: Temperature Converter

• Keystroke efficiency

 • Type C or F, value, enter: M K K K K K M K ⇒ 3.9 sec (char. eff. 67 %)

 • Type value, then C or F: M K K K K M K ⇒ 3.7 sec (char. eff. 80%)

 • Bifurcated: M K K K K = 2.15 sec (char. eff. 100 %)
Example: Temperature Converter

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Prob.</th>
<th>Values</th>
<th>p(i)</th>
<th>Information in bits</th>
<th>Overall (values × information in bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.dd</td>
<td>12.5 %</td>
<td>100</td>
<td>0.00125</td>
<td>0.012</td>
<td>1.2</td>
</tr>
<tr>
<td>-d.d</td>
<td>12.5 %</td>
<td>100</td>
<td>0.00125</td>
<td>0.012</td>
<td>1.2</td>
</tr>
<tr>
<td>.ddd</td>
<td>25 %</td>
<td>1000</td>
<td>0.00025</td>
<td>0.003</td>
<td>3</td>
</tr>
<tr>
<td>d.dd</td>
<td>25 %</td>
<td>1000</td>
<td>0.00025</td>
<td>0.003</td>
<td>3</td>
</tr>
<tr>
<td>dd.d</td>
<td>25 %</td>
<td>1000</td>
<td>0.00025</td>
<td>0.003</td>
<td>3</td>
</tr>
</tbody>
</table>

⇒ Minimal info required for the task = 11.4 bits/message

⇒ Simple approach: 4 \(\log_2(12) \approx 14 \) bits
Example: Temperature Converter

- Information efficiency: $E = \frac{11.4 \text{ bits}}{\text{Info supplied by user}}$

- 128 keys standard keyboard (5 bits/key): $E = \frac{11.4}{4 \cdot 5} \approx 55\%$

- 16 keys numeric keypad: $E = \frac{11.4}{4 \cdot 4} \approx 70\%$

- 12 keys dedicated keypad: $E = \frac{11.4}{4 \cdot 3.6} \approx 80\%$
Summary: Evaluation

• When, why, where, and what?
 • To ensure that system matches the users’ needs
 • In the Lab vs. In the Field

• Concrete methods to evaluate designs and implementations
 • E1 - E10, GOMS, Interface Efficiency

• How to deal with users