Designing Interactive Systems I
Lecture 12: Petri Nets

Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

Winter term 2015/2016

http://hci.rwth-aachen.de/dis
Petri Nets

• Better approach to dialogs that have several states at once
• But not better for sequential dialogs and mutually exclusive UI elements (radio buttons)
• Relatively old formalism to model concurrency
Petri Nets

- Transition fires when all input places have one or more token
- A token is produced in each output place
- Positions of all tokens represent the current state
- NOTE: This is different from state machines
In-Class Exercise

- Draw the Petri net for our dialog box with concurrent “Bold” and “Italic” options (ignore “Underline” for now)
Petri Net For “‘Bold & Italic’” Dialog

- **Ellipse**: place where user input can occur
- **Circle**: UI place
- **Rectangle**: transition
- **Token**: A token is consumed from each input place
- **Transition ‘fires’**: when all input places have tokens
- **A token is produced in each output place**

User actions represented as a new token

User presses ‘Bold’
- T1
- Bold On
- Bold Off

User presses ‘Italic’
- T3
- Italic On
- Italic Off

User presses
- Bold On
- Bold Off
- Italic On
- Italic Off

T1
- Bold On
- Bold Off

T2
- Bold On
- Bold Off

T3
- Italic On
- Italic Off

T4
- Italic On
- Italic Off
State Charts

- By Harel; used in UML
- Example: TV Control Panel
- State Charts extend STNs
 - Hierarchy
 - Concurrent sub-nets
 - ON resumes both state machines
 - Escapes
 - OFF always active
 - History
 - Link marked “H” goes back to last state on re-entering subdialog
Some dialog descriptions are clear enough to serve as user documentation (similar to GOMS)

Especially if description uses screen shots and is semi-formal
Digital Watch – User Instructions

- Two main modes
- Limited interface
 - 3 buttons
- Button A changes mode
Digital Watch – User Instructions

- Dangerous states
- Completeness
 - Distinguish depress A and release A
 - What do they do in all modes?
Digital Watch – User Instructions

and …

that’s just one button
Semantics - Raw Code

- Event loop for word processor
- Dialogue description
- Very distributed
- Syntactic/semantic trade-off
 - Terrible!

```c
switch ( ev.type ) {
    case button_down:
        if ( in_text ( ev.pos ) ) {
            mode = selecting;
            mark_selection_start(ev.pos);
        }
        ...
    case button_up:
        if ( in_text ( ev.pos )
             && mode == selecting ) {
            mode = normal;
            mark_selection_end(ev.pos);
        }
        ...
    case mouse_move:
        if (mode == selecting) {
            extend_selection(ev.pos);
        }
        ...
} /* end of switch */
```
Design In The World Of Business
Competitive Forces

• A competitive market encourages changes and sacrifices the iterative design process
• Need for speed
• Cost reduction
• Featurism
• Satisfying several classes of customers
Life-cycle of Products

- Months to move from invention to production, but decades until product acceptance
- For example, gestural interfaces took 30 years to move from research labs to commercial products
 - Goals: affordable and reliable
- Small companies and startups can take more innovation risks compared to larger companies
- Cases: VideoPhone (p. 270-274) or Keyboards (p. 274-279)
Incremental and Radical Innovation

- Incremental innovation—slow and natural evolution process
 - Significant changes overtime; make exiting product better
 - Hill climbing analogy
 - E.g., automobile evolution, radical idea but then slow development

- Radical innovation—fast and based on new technologies
 - Changes paradigms
 - E.g., television and music industries

- With technologies becoming more available and less expensive, such as 3-D printers and open-source code, anyone can realise their ideas now. DIY communities are rising rapidly and transforming people from being passive consumers to proactive
Further Reading

• Alan Dix et al.: Human-Computer Interaction, 3rd ed. (2003), Chapter 16

• Ben Shneiderman: Designing The User Interface, 5th ed. (2009), esp. chapter 5
Roadmap

Cognition
- Performance
- Models of interaction
 - Affordances
 - Mappings
 - Constraints
 - Types of knowledge
 - Errors
- Design principles

History
- History of HCI
- Visions
- Phases of Technology

Design Process
- Iterative design
- User observation
- Ideation
- Prototyping
- User studies and evaluation
- Interaction design notation

Cognition diagram: Goal → Plan → Specify → Perform → Compare → Interpret → Perceive → World

History diagram: History of HCI → Visions → Phases of Technology
What’s Next?

- **Designing Interactive Systems 2**
 6ECTS
 hci.rwth-aachen.de/dis2

 - What makes a UI tick?

 - Technical concepts, software paradigms and technologies behind HCI and user interface development

- **Current Topics in HCI**
 6ECTS
 hci.rwth-aachen.de/cthci

 - Understand & practice ways to do research in HCI

 - Learn about up-to-date developments in HCI and interactive multimedia from new books and recent conference/journal articles

Interested in a HiWi position or B.Sc./M.Sc. thesis?
hci.rwth-aachen.de/jobs